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ABSTRACT 

 

Comparative research on event memory has typically focused on the binding of spatial and 

temporal information in memory, but much less is known about how animals remember 

information about the source of their memories (i.e., whether the event is something they 

performed themselves or whether they observed it). The purpose of the present study was to 

examine how rhesus monkeys (n = 8) and 3- to 4- year-old children (n = 20) remember this 

information along with other relevant event features (object identity, spatial location, temporal 

properties and contextual features) in working memory. In Experiment 1, rhesus monkeys 

completed five different delayed matching-to-sample tasks to assess independent encoding of these 

five event components. In Experiment 2, the monkeys either performed or observed an event and 



 

then had to respond to a randomly selected pair of memory tests used in the previous experiment.   

In Experiment 3, children were presented with the same memory task, but were given a brief 

demonstration to learn how to perform the task.  Both children and monkeys responded to these 

tests using photos and shapes (for the identity and spatial tests) and icons (for the temporal, agency 

and context tests). The monkeys demonstrated significantly above-chance performance on the 

identity, spatial, temporal and agency tasks.  The children were above chance on the one 

component the monkeys had difficulty with (context), but conversely demonstrated difficulty on 

the temporal memory test. There was evidence of feature integration in both monkeys and children. 

Specifically, the children were significantly more likely to respond correctly to the second memory 

test if they had also been correct on the first memory test.  Two of five rhesus monkeys also showed 

this effect, indicating that for these individuals, the features were integrated in working memory.    

Implications of this research are discussed in relation to self-awareness and episodic memory 

research in children and nonhuman species.   

 

INDEX WORDS:  Agency, Self-awareness, Rhesus monkey, What-where-when memory, Episodic-like 
    memory, Episodic memory, Spatial, Temporal, Context 
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1     INTRODUCTION 

In a natural environment, many foraging and food-storing species must rely on memory for spatial 

and temporal information to locate and track the availability of food sources in the environment. 

However, the exact mechanism that supports this is less well understood and has been highly 

debated in recent years.  Still, this is not to say that the study of animal memory in relation to 

foraging and other natural behaviors is a new area of study; the field began in the 1920’s with 

research on learning and memory in wild and captive primate species (Hunter, 1913; Kohler & 

Winter, 1925; Tinklepaugh, 1932; Yerkes & Yerkes, 1928).  Since that time, many other studies have 

shown that a number of different bird and mammal species are able to remember spatial 

information about the location of food sites in the environment (for reviews, see Tomasello & Call, 

1997; Shettleworth, 1998).  This has been established by designing laboratory studies in which 

olfactory cues can be controlled, either by having an animal hide an item which an experimenter 

later removes and/or hiding control items that the animal never sees to determine whether they 

can still locate these items through smell alone (Gibeault & MacDonald, 2000; Kohler & Winter, 

1925; Lacreuse et al., 2005; MacDonald, 1994; MacDonald & Agnes, 1999; MacDonald, Pang, & 

Gibeault, 1994; E. W. Menzel, 1973; Tinklepaugh, 1932; Yerkes & Yerkes, 1928).    

In addition to remembering where items are located in the environment, many species can also 

remember specific information about the types of foods at each location.  The earliest discussion of 

this was by Tinklepaugh (1932) who studied spatial memory in monkeys and chimpanzees. 

Although the chimpanzees were able to remember multiple locations of hidden food items, when 

one of the items had been surreptitiously replaced with a less desirable food, they reacted with 

“disappointment” and “surprise,” indicating that they had some knowledge of what had previously 

been at the locations or some expectation of what they expected to find at those locations. There are 
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numerous studies demonstrating memory for this type of object information in different species, 

including pigeons, rhesus monkeys and rats (e,g., Roitblat, Penner, & Nachtigall, 1990; Tavares & 

Tomaz, 2002; Washburn, Hopkins, & Rumbaugh, 1989).  Research has also shown that many 

species (e.g., honeybees, hummingbirds, rats, and nonhuman primates) are also able to retain 

temporal information about when they stored particular food items.  This has been investigated by 

presenting animals with simulated foraging problems in which foods replenish or deplete at 

various rates; the animal conveys memory for temporal information by visiting the site only when 

enough time has passed for the food to remain fresh or be replenished (e,g., Burke & Fulham, 2003; 

Burke, Cieplucha, Cass, Russell, & Fry, 2002; Platt, Brannon, Briese, & French, 1996). 

Even from this brief description it is clear that a number of different bird and mammal species can 

retain information about item type, spatial location, and temporal information and use this 

information in foraging or food-storing situations that they would face in the natural environment. 

In recent years, researchers have been building upon this research to determine whether these 

abilities are supported by an episodic memory system similar to what we experience as humans or 

whether these abilities can be explained through semantic memory.  A related question pertains to 

how flexible this type of memory is in other species (e.g., can a particular species respond flexibly in 

different situations or can they only perform species-specific tasks they would encounter in a 

natural environment?).  Before discussing the comparative work that has been done in this area, 

one first needs to address the construct of episodic memory – specifically, what is the nature of this 

memory system and how can it be studied in other species?    

The present literature review begins with a brief history of the study of episodic memory in 

cognitive psychology.   This is followed by a discussion of the theoretical and practical implications 

of applying this program of research to other species, which then leads into a comprehensive 

review of the studies that have been done with nonhuman animals.  After reviewing the 
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comparative studies in this area, the different paradigms are critically evaluated for strengths and 

weaknesses, and based on this analysis, a new comparative approach is proposed.   This approach 

includes measures for assessing memory for self-agency and environmental context in other 

species.   There have been numerous studies on agency and context memory in human participants, 

but this important characteristic has not been incorporated in event/episodic memory in other 

animal species.  Finally, I describe a series of experiments which I designed to examine whether 

rhesus monkeys and human children remember agency information about recent events, along 

with spatial, temporal, and contextual features in working memory.   

 

Brief History of Episodic Memory 

There are distinctions in the types of long-term memories we encode, store, and retrieve.  We are 

consciously aware of some memories, and these memories can be explicitly encoded and later 

retrieved, whereas others are implicit and appear to be encoded and retrieved with no conscious 

effort on our part.   This distinction between implicit and explicit memory was first acknowledged 

by Korsakoff in his work with amnesic patients that retained implicit knowledge in the absence of 

any explicit memory for previously acquired knowledge (as cited in Schacter, 1987).  The term 

declarative memory has also been used to describe the explicit memory system.  Further 

subdivisions in long-term memory were proposed by Tulving (1972) who suggested two separate 

memory systems within the explicit/declarative memory system: 1) episodic memory, which 

includes memory for personally experienced past events and 2) semantic memory, which refers to 

our memories for generalized factual knowledge.  The episodic/semantic memory distinction has 

been described as remembering (i.e., recalling the event when the information was acquired) 

versus simply knowing information without any explicit recall of the episode when the information 

was acquired (Roediger & McDermott, 2000).   An individual recalling a past event from episodic 

memory understands that the event occurred in a particular spatial and temporal context.  It is also 
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said to be accompanied by a sense of self-awareness and knowledge that the memory is from one’s 

personal past (Tulving, 2002).  Furthermore, it is said to involve a subjective phenomenological 

experience in which the person recalling the past episodes reports feeling as if they are mentally 

revisiting the event or “mentally traveling back in time” to when and where the event took place.   

This distinction between episodic memories and factual/semantic memories was first supported by 

case studies of individuals with neurological damage to medial temporal lobe structures including 

the hippocampal region.  In these cases, patients were able to recall much factual information from 

semantic memory, but were unable to remember specific past events or form new episodic 

memories (Tulving, 2002).   Although the ability to encode and retrieve semantic memories 

remained intact, these patients experienced selective deficits in episodic memory, suggesting that 

the two types of memory were supported by different neural mechanisms.  The role of the 

hippocampus in encoding and retrieving episodic memories is further supported by brain imaging 

studies of nonclinical populations.  However, a more complex picture has emerged from some of 

these studies, indicating that the two forms of memory interact in significant ways and may not be 

entirely separate.   The hippocampus appears to play an integral role in initial encoding of 

information initially in memory, but over time, through the process of memory consolidation, 

connections are made with higher cortical regions and these areas also become activated when the 

memory is retrieved.   Eventually these memories get reorganized and reallocated to these higher 

cortical regions and sometimes even become independent of the hippocampus.  In contrast, 

episodic memories continue to remain dependent on the hippocampus (Rekkas & Constable, 2005).   

Therefore, it seems that both types of memories start out the same: as particular episodes in which 

we initially learned something about the world.   In some cases, the source of this information is 

maintained, whereas in other cases we are only left with the factual knowledge that we obtained, 

but no memory of the episode itself.    The hippocampus appears to serve a similar function in other 

species. Animals with damage to the hippocampal formation demonstrate deficits in remembering 
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specific past episodes (Colombo & Broadbent, 2000; Eichenbaum & Fortin, 2003; Ergorul & 

Eichenbaum, 2004).  The anatomical structure of the hippocampus is also similar across species 

(Morris, 2002).  Therefore, it would seem reasonable to predict on the basis of these structural and 

functional similarities that humans and nonhuman species may share similar underlying 

mechanisms for integrating relevant features from past events in memory.   

The way episodic memory has typically been studied in humans is through the use of verbal 

reports.  In one of the most commonly used tests, participants are given a series of words to learn 

and are later asked which words they “remember” and which words they simply “know” are 

familiar (Gardiner & Richardson-Klavehn, 2000).  These studies have indicated that “remember” 

responses are more likely to come from situations in which participants had engaged in deeper 

processing and are also associated with more activation of the hippocampus and medial temporal 

lobe.  However, other species cannot provide such verbal reports, and as a result, it was once 

assumed that this form of memory could not be studied in these species.  In recent years this 

assumption has been challenged.  As with other cognitive processes, episodic memory can be 

studied in nonhuman animals by using behavioral tests that do not rely on verbal reports. If animals 

are able to succeed on these tests and their performance cannot be explained as the result of 

semantic memory processes, we can infer that they possess some other form of memory that allows 

for encoding of specific past episodes.  Following this logic, some have proposed that the term 

episodic-like memory be used to describe the unique situation of nonhuman species that 

demonstrate behavioral evidence of this memory system, while still maintaining the traditional 

definition of episodic memory and its emphasis on a subjective conscious experience (e.g., Clayton 

& Dickinson, 1998).     
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Theoretical & Practical Implications 

The field of comparative psychology has built an impressive literature detailing how different 

species are able to acquire information from past experiences, store this information in memory, 

and retrieve it when needed to solve novel problems or challenges.  These comparative studies 

shed light on cognitive processes in other species, but also serve to improve our understanding of 

memory in general and can potentially lead to practical applications for improving human learning 

and memory.  As discussed above, it has been well established that a number of different bird and 

mammal species are able to learn from past experiences and store general knowledge in memory 

based on these experiences (Shettleworth, 1998).    However, much less is known about how 

animals encode individual past events in memory and whether they are able to retain memories for 

past episodes over extended periods of time in a way similar to humans.  The ability to form 

episodic memories of past events has traditionally been investigated in humans using verbal report 

methods and initially it was believed that because animals lacked language they would be unable to 

encode such episodic memories.  Furthermore, even if animals could encode such memories 

without language, it was believed that such a capacity would be difficult to assess without a verbal 

measure.  However, in the past decade there has been a resurgence of interest in this question, with 

researchers developing behavioral tests to investigate episodic memory in different species (e.g., 

rats, pigeons, scrub jays, monkeys, and the great apes).  Unfortunately, no researchers to date have 

attempted to make direct comparisons between animals and human participants in the study of 

episodic memory, so the results with animals are often compared to what we would expect humans 

to do in similar situations.   It is understandably difficult to make direct comparisons between 

nonhuman animals and human participants; humans engage in a number of cognitive processes 

(e.g., verbal encoding, rehearsal, etc.) that may facilitate episodic memory, but that may not be 

crucial to the memory system itself.  Therefore, any differences observed between animals and 

human participants may be due to the presence of such confounding variables.  However, one way 
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to make valid comparisons between animals and humans is to test children who are in the early 

stages of language development and are therefore less likely to use verbal labels and specific 

strategies when encoding past events in memory.    

This comparison would not only be theoretically relevant, but would also provide practical 

applications for other areas of research.   An animal model of episodic memory would prove useful 

in understanding the progression of episodic memory loss as a result of normal aging processes or 

specific neurodegenerative diseases that compromise this memory system.   The model would also 

be useful in understanding memory deficits that result from developmental disorders.  Recent 

studies have shown that individuals with autistic spectrum disorders (ASD) often experience 

deficits in episodic memory, but not in semantic memory.   This deficit has been observed in both 

children (Millward, Powell, Messer & Jordan, 2000; Yamamoto, Saito & Kamio, 2004) and adults 

(Crane & Goddard, 2008) diagnosed with autism.  These individuals do not exhibit memory deficits 

in other areas, but do appear to have more difficulty encoding personally experienced events.   

Some have argued that this may be due to difficulties in understanding the “self” (Hare, Mellor & 

Azmi, 2007), but it is also possible that these tests are not appropriate tests as they have relied too 

heavily on tasks involving verbal instructions which may be difficult for children who often 

experience delays in language acquisition.   Tasks designed to be used with nonverbal animals are 

visually based and do not rely on verbal material or instructions.  Consequently, such tasks could be 

easily adapted to provide more appropriate tests of episodic memory in children with ASD, as well 

as other unique populations that have verbal deficits or learning disabilities.    However, before 

developing a comparative test of episodic memory that can be used in both animals and children, it 

is first necessary to provide some background describing what is known about episodic memory, as 

well as the different methods that have been used to study it in both humans and other species.   
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Tulving has argued that three qualities distinguish episodic memory from semantic memory:  1) a 

sense of self, 2) subjective time travel, and 3) autonoetic awareness (Tulving, 2002).  To show 

evidence of episodic memory, an animal must be able to demonstrate that it has an awareness of 

itself as a unique agent in the past (and/or future).  It has been difficult to find a way to assess these 

subjective qualities in nonhuman animals and many authors have acknowledged the challenges in 

developing such a test to determine whether animals have a sense of self that is not limited to the 

present (Dere, Kart-Teke, Huston & De Souza Silva, 2006). 

 

A third clue is that mental time travel requires a traveler. No traveler, no traveling. The 

traveler in this case is what is referred to as “self.” But an ordinary self will not do. By 

some criteria at least—the well known Gallup mirror test, for example—some 

nonhuman primates (chimpanzees and gorillas) also have minds in which their own 

selves exist as entities different from the rest of the world, but if one assumes that they 

are not quite capable of the human-type time travel, their selves exist only in the 

present, whereas ours exist in subjective time.           - Endel Tulving (2002) 

 

However, it would also seem that this remains a difficult quality to assess in human participants.  

The existing methods we use with human participants rely heavily on language, and specifically on 

self-report, as a way of conveying information about participants’ subjective, internal states.  

Although Tulving does not explicitly state that language is a necessary component of episodic 

memory, it is often an implicit assumption that language is either necessary for experiencing 

episodic memory and/or necessary for demonstrating it in the laboratory.  Although language may 

be able to facilitate encoding and retrieval, it does not appear to be necessary for remembering past 

events.  For example, human infants under two years of age, who have not yet learned language, are 

still able to encode and retrieve memories for recently experienced events (Bauer, 2002; Bauer 
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Hertsgaard & Dow, 1994).   There are also examples of deaf adults, who were never taught sign 

language or were never able to develop their own gestural language with peers, yet are still capable 

of encoding memories for personal events (Schaller & Sacks, 1995).  And of course there are a 

myriad of empirical demonstrations of memory in the absence of language from studies of 

nonhuman animals, as will be discussed below. 

 

Comparative Studies of Episodic Memory 

In a natural environment, many foraging and food storing species need to remember spatial 

information concerning the location of particular food sources.  Many species consume different 

food sources, some of which (e.g., tree sap) are replenished quickly after being depleted and some 

of which (e.g., fruit, nuts) do not replenish until relatively long intervals once they are completely 

depleted.  For such species, being able to keep track of the time since specific foraging episodes, 

would be extremely adaptive in determining when specific food sources will once again become 

available.  Based on the natural behavior of many species, it would seem that an episodic memory 

system would facilitate survival, as animals could reduce energy expenditure and risk by avoiding 

revisits to locations that do not contain viable food sources. However, in some cases animals might 

be able to rely on semantic memory to recall information about food sources, spatial locations, and 

temporal ripening patterns.  For example, a food-storing animal might always cache nuts in a 

particular set of locations and cache other foods in a different group of locations, eliminating the 

need to remember any particular past episode to recover the items.  The animal might also adopt 

the strategy of only caching and recovering particular food types at different times of the year in 

response to a variety of environmental cues.  Yet, there are reasons to suspect that nonhuman 

species would benefit from an episodic memory system, including situations in which animals have 

large territories, must migrate to a different area in search of food, or live in a rapidly changing 

environment.    
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As stated previously, episodic memory requires the encoding of an event in terms of its spatial and 

temporal context in memory.  Before examining the integration of these components in nonhuman 

animals, it is first necessary to provide some background on each of these individual components.  

There have been an extensive number of laboratory studies showing that a variety of species are 

able to retain information about objects (what) that they have encountered.  In these tasks, memory 

has most often been assessed using delayed matching-to-sample tasks (DMTS) in which an animal 

is presented with a particular stimulus and then, after a brief delay, the animal is presented with a 

discrimination task in which several alternatives are available and the animal must select the 

alternative that matches the sample (for a review, see Shettleworth, 1998).  The study of spatial 

(where) memory in nonhuman species has also received considerable attention. These 

investigations have typically been conducted using delayed-response tasks that have been modeled 

after the foraging ecology of the species under investigation.  In delayed-response tasks an animal 

learns that an item has been hidden in one of several locations (either by caching the item 

themselves, finding it in a foraging task, or by watching an experimenter hide the food item), and 

after some period of delay the individual is then allowed to recover the remaining food at the 

different locations.  Using this approach, a variety of animals have been found to retain information 

about where food sources are located in a complex environment after both short-term and long 

delay intervals, and modify their routes to make recovery more efficient (for a review, see 

Shettleworth, 1998; Tomasello & Call, 1997).  There has also been work examining whether animals 

are able to discriminate between various temporal intervals (when). In these tasks, animals are 

usually required to make a response, followed by a delay, and are then presented with a 

discrimination tasks in which they are required to make one response if the retention interval was 

of a particular length, and to make another response if the retention interval was a different length.  

Although these delays are usually relatively short (on the order of seconds) many species are able 

to discriminate between such temporal intervals (for a review, see Shettleworth, 1998; Zentall, 
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Weaver, & Clement, 2004).   Even before there was any discussion of an episodic-like memory 

system in animals, researchers were interested in whether animals were able to remember specific 

past episodes and integrate features from past events in memory  Early work by Tinklepaugh 

(1932) and Menzel (1973) provided indirect evidence that chimpanzees retained information about 

food type along with its location.  Kummer (1968) noted that baboons appeared to remember 

information about where water sources were located in the environment, even in the absence of 

any perceptual cues.   Although not explicitly labeled as studies of episodic memory, this early 

research was the first attempt to examine how animals remember features of unique past 

experiences. 

In recent years, a number of behavioral tests have been designed explicitly to assess episodic-like 

memory in animals.   In some cases, tasks have been designed that incorporate the natural behavior 

of the species being studied, making it difficult to provide comparable tests for species that have a 

different suite of natural behaviors.  In addition, different perspectives have emerged on precisely 

what the definition of episodic-like memory should include: some researchers have argued that the 

binding of spatial and temporal information in memory is integral to the definition, whereas others 

have maintained that spontaneous recall (which cannot be anticipated by the animal in advance) is 

the defining feature of the memory system in both humans and animals. As episodic memory 

typically involves spontaneous encoding of information (we recall things even though we may have 

never deliberately encoded them for later recall), some tasks have used unanticipated memory 

tests in which animals are given an unexpected probe trial in which they must report information 

about their previous behavior.  Still, other experimenters have focused on the deliberate nature of 

episodic recall and have required animals to present explicit information about past events through 

the use of photographs or icons.  These paradigms are discussed in detail throughout the following 

sections. 
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The Food-Caching Paradigm   One of the most influential studies of episodic-like memory was 

done by Clayton & Dickinson (1999) with food-caching scrub jays.  They presented the scrub jays 

with a situation that took advantage of their natural food storing behavior in the wild.  They were 

allowed to cache different food types with varying rates of perishability in two separate locations in 

a sand filled tray.  The scrub jays were first trained to learn that a highly preferred food (wax 

worms) was perishable and would be degraded shortly after caching, but a less preferred, but more 

stable food (peanuts) would remain fresh for a long time after caching.  The jays were returned to 

the cache sites after either a short delay (4h) or a long delay (128h),  If the jays were able to 

remember information about where particular food items were hidden, as well as the amount of 

time that had elapsed since they had stored them, they should preferentially search locations where 

they had stored the preferred wax worms when the delay had been short (4h), but switch to 

selecting the less preferred, but still fresh peanuts after long delays (128h).   This is exactly what 

they found.  However, this was not observed in a control group that had not learned this temporal 

contingency, suggesting that the results were not simply due to a natural predisposition in food 

caching behavior.  It is important to note that in all of these tests, the food items had been removed 

from the locations and the sand substrate replaced to ensure that the birds were not responding on 

the basis of visual or olfactory cues.  To control for familiarity (the jays may have simply adopted a 

strategy of searching for worms if the memory for the sand filled trays was recent or highly 

familiar), a subsequent experiment was done in which the birds were required to cache one food 

item (e.g., wax worms) and then after a delay of 120h cache another item (e.g., peanuts), ensuring 

that the sand filled trays would be equally familiar regardless of when the worms had actually been 

stored. The scrub jays were then allowed to search for the food items 4h after caching the second 

item.  They showed memory for what, where, and when information by preferentially  searching  for 

worms if they had cached them only a short time ago (4h), but searching for peanuts if this 

preferred item had been cached in the distant past and was no longer fresh (128h).  Again, this 
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effect was not observed in a comparison group of scrub jays for which the wax worms were not 

perishable (Clayton & Dickinson, 1999).   Similar studies have replicated these findings in other 

food-caching and foraging species, including magpies (Zinkivskay, Nazir & Smulders, 2009), black-

capped chickadees (Feeney, Roberts & Sherry, 2009) and the great apes (Martin-Ordas, Haun, 

Colmenares & Call, 2010).  

In subsequent work, Clayton, Yu, and Dickinson (2001) extended these findings by including three 

food items that differed in perishability in order to ensure that scrub jays were able to remember 

multiple features about more than one type of food type.  They noted that in previous experiments 

the scrub jays could have simply learned to search for wax-worms if they had cached them recently, 

and may have only searched for peanuts as a default response.    To test this, the scrub jays were 

allowed to cache peanuts along with one other perishable food items (mealworms or crickets).  

They were reintroduced to the caching tray after 4h delays, 28h delays and 100h delays.  The 

perishability rates were as follows: the mealworms and crickets were both fresh after 4h delays; 

crickets remained fresh after 24h delays; and both foods had perished after 100h delays.  This 

allowed the researchers to make different predictions about the scrub jays’ behavior depending on 

whether crickets or mealworms had been cached.  If the scrub jays had cached peanuts and 

mealworms, they should not search for the preferred item after the 24h delay, but if they had 

cached peanuts and crickets, the birds should search for the preferred crickets after the 24h delay.  

The scrub jays did just this, suggesting that they had not simply adopted the strategy of searching 

for the preferred food after a particular delay, but had remembered multiple features of both 

caching episodes.  The scrub jays were also able to apply this knowledge to a new situation in which 

they were required to cache only mealworms and crickets.    

Simulated Foraging Tasks    The food caching paradigm has also been modified for use with rats 

and monkeys.  In these tasks, there is period of training in which the animal learns that a preferred 
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food degrades more quickly than a less preferred food.  After learning this contingency, the 

individual is given the opportunity to explore a simulated foraging environment.  The individual 

visits some or all of the experimental locations and is allowed to consume a portion of food found at 

the locations.  Then, after either a short or long delay, the animal is returned to the environment 

and its behavior is recorded.  If the individual can retain what, where, and when information about 

past foraging episodes, they would be expected to search for the perishable/preferred foods after 

short delays, but search the less preferred food items after long delays.   

Babb and Crystal (2005) presented rats with an eight arm radial maze in which three locations 

were baited with a less preferred food (rat chow) and one location was baited with a more 

preferred food (chocolate).  The rats visited these locations, consumed the foods at each location 

and then were removed from the maze.  Then, the rats were returned to the maze after either a 

short delay (30m) or long delay (4h).  The rats had to learn that, after a short delay, the food sites 

that previously contained food no longer contained food, whereas the four previously empty 

locations now did contain food.  In contrast, if the rats were returned after a long delay, the foods 

that contained food before had been replenished.  The rats were able to keep track of how much 

time had passed since their initial foraging experience.  After short delays (30m) they did not return 

to previously visited locations, but after long delays (4h) they were more likely to search these old 

locations were which now replenished.  In addition, on these trials they first visited the location 

that was replenished with the preferred food (chocolate) before visiting locations that had been 

replenished with the standard rat chow, indicating that they remember information about what 

specific food items were available at the baited locations and when each food site had previously 

been visited.    

The foraging task has also been adapted for use in rhesus monkeys (Hampton, Hampstead, & 

Murray, 2005).  In this task, monkeys were allowed to search three potential food sites, two of 
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which contained foods and one which was empty.  The food locations were randomly selected to 

contain a highly preferred food and a less preferred food.    In training, the monkeys had learned 

that the preferred food (banana slices or grapes depending on individual preferences) degraded 

quickly, whereas less preferred foods (peanuts, primate treats, or primate food pellets) remained 

stable over long periods.  The monkeys were allowed to recover food at each location and then 

were removed from the environment.  They were returned after a 1h delay and a 25h delay; these 

delays ensured that recovery always occurred at the same time of day regardless of the delay 

length.  The monkeys learned to avoid the empty location indicating that they remembered spatial 

information about the locations that contained food.  However, the monkeys continued to visit 

locations where they had stored preferred/perishable foods even after 25h delays when the items 

were no longer fresh suggesting that they retained memory for which foods were located in 

particular locations, but not when they had been initially found.  It should be noted, however, that 

this study is somewhat different in design than the other foraging task that has been described.  The 

delays used in this study were longer than those used in studies with rats (Babb & Crystal, 2005), 

making it difficult to draw any comparisons between rats and monkeys.  It is also important to note 

that in this study the monkeys were returned after both 1h and 25h delays on each trial, whereas in 

other experiments the animals are only returned after one delay.  Being returned to the 

environment after the 1 h delay, may have interfered with monkeys’ memory for the initial event.     

Environmental Context    Eacott and Norman (2004) took another approach, focusing on the 

environmental “context” of past episodes rather than the temporal context in which they occurred.  

In this experiment, an event could occur in one of two environmental contexts.  Each context had 

different visual and tactile features, but both contexts shared the same spatial layout.  The rats were 

exposed to one context and allowed to investigate two items at different locations (e.g., item A on 

the left, B on the right).  The rats were then exposed to the other context, and this time the objects 

were reversed (e.g., item B on the left, A on the right).  Then, after various delay intervals, the rats 
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were given a memory test in which they were presented with one of the contexts, but this time only 

one object (A or B) was present; a copy of the object appeared at both locations.  This resulted in 

four possible tests conditions.  In each condition one of the objects appeared in a location that it had 

not been seen before in that particular context. As rats naturally prefer novelty, it was expected that 

if they had recalled the context of the object/location pairs, they would be more likely to investigate 

items that appeared in a novel context.   The rats were more likely to approach these items, even 

when the items had been replaced with copies (to eliminate olfactory cues) and were not directly 

visible, requiring the rat to respond based on memory and not simply familiarity (Eacott, Easton, & 

Zinkivskay, 2005).    

Unanticipated Memory Tests for Actions    We often recall details of past episodes even though we 

had not intentionally encoded this information to recall at a later time.  Yet, this aspect of episodic 

memory is not specifically addressed by the food caching and foraging paradigms.  In these tasks, 

tests occur on every trial, so it is very possible that the animals come to anticipate being tested in 

the future, and may encode information differently because of this (e.g., by rehearsing information 

during the delay and using prospective instead of retrospective memory processes).  In studies 

using unanticipated memory tests, an animal is presented with a cognitive task, and they are given 

a number of surprise “probe” tests to assess what they remember from their recently performed 

actions.  Mercado, Uyeyama, Pack, and Herman (1999) studied memory for previously performed 

action events in a bottlenose dolphin that had been trained to understand a variety of gestural 

instructions.  The dolphin had been trained to understand gestures that represented actions (e.g., 

hit), objects (e.g., ball), and body parts (e.g., tail flukes) as well as a “repeat” gesture that instructed 

her to repeat the behavior she had just performed.  On each trial, the dolphin was instructed to 

perform a specific action with a particular object in her tank.  Then, on some randomly selected 

trials, the dolphin was given the “repeat” gesture.  This was a novel task, as these objects and 

actions had never been used together with the “repeat” instruction.  The dolphin was highly 
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accurate at performing the requested task, and she performed at levels significantly above chance 

when asked to repeat her previous behavior.  As the dolphin was not expecting that she would have 

to repeat her action, such a task presumably required her to use retrospective memory of the prior 

event.  However, there are some methodological issues that complicate this interpretation.  For one, 

often the object remained in the same area of the tank after the dolphin performed the behavior, so 

it is possible that the dolphin could have solved the task by simply encoding spatial information and 

not object information.  In addition, the dolphin could have used visual cues from these nearby 

items to help remember the previously performed action.   

Zentall, Clement, Bhatt and Allen (2001) presented pigeons with a similar task that required them 

to perform a behavior (peck) or inhibit a behavior (refrain from pecking) in response to distinct 

cues.  Then, on some randomly selected trials, pigeons were unexpectedly “asked” to report 

information about their previous behavior through the use of color keys that represented two 

behaviors (pecking and refraining from pecking).  In the first phase of training, pigeons were 

presented with one of two samples (a vertical or horizontal line) indicating whether they should 

peck (vertical line) or refrain from pecking (horizontal line).  After they successfully pecked the 

sample or refrained from pecking for a brief period (4s), they were presented with a choice 

between a red and green color key.   This discrimination task allowed them essentially to 

“comment” on their previous behavior; they were reinforced for pecking one color (e.g., red) if they 

had pecked and reinforced for pecking the other color (e.g., green) if they had refrained from 

pecking.   In the next phase of the experiment, pigeons were presented with yellow and blue keys.  

The presentations of the yellow key were followed by food reward, whereas the presentation of the 

blue key was not followed by a food reward.  This task did not require the pigeons to peck at the 

key that produced food, but the pigeons typically did peck at this key and refrained from pecking 

the key that did not produce food.  On randomly selected trials, this was followed by an unexpected 

question from the earlier phase of the experiment (the red and green comparison, which was 
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analogous to asking the pigeons whether they had just pecked or did not peck). The pigeons 

selected the correct color key corresponding to their pecking behavior on 71% of the trials, which 

was significantly better than chance performance, indicating that they were able nonverbally to 

report information about their most recent action.   

The pigeons also applied this to a new task that is somewhat closer to the way humans use episodic 

memory in everyday situations.  Although we sometimes remember events we have been 

instructed to perform, our actions are often freely chosen and instructed by another individual.  

With this reasoning, pigeons were presented with a different task with novel stimuli.  They were 

not reinforced with these novel forms, but some pigeons naturally pecked out of curiosity, while 

others abstained from pecking.  The pigeons were still able to answer the “did you peck or not 

peck?” question even when presented after these novel stimuli and when no instruction had been 

given.  Although these results are compelling, the retention interval in both of these studies was 

relatively short (on the order of seconds) and it is possible that the pigeons may have been 

responding on the basis of proprioceptive cues (including the position and sensation of the beak 

recently being used) rather than memory for past events.   

Singer and Zentall (2007) acknowledged this possibility and presented a new task in which pigeons 

could not rely on proprioceptive cues.  In this experiment, pigeons were unexpectedly asked “where 

did you peck?” instead of “did you peck?” They were first trained with a task in which a left or right 

sample box was illuminated.  The pigeons pecked the sample and then were required to peck a 

center triangle key to continue with the trial. They were then presented with two color keys (red 

and green) and they learned that they should select one color if they pecked the left location and 

the other color if they pecked right location.  In a second phase, pigeons were presented with blue 

and yellow samples and they had to learn the arbitrary association of selecting a corresponding line 

orientation (vertical or horizontal) for each color sample.  However, this association was only done 
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to mask the real purpose of the task.  On these trials, the correct response was either on the left or 

the right, requiring the pigeon to peck to the left or right.  On some probe trials, pigeons were 

required to select the center triangle key and then were unexpectedly presented with the red and 

green comparison (essentially asking “where did you just peck?”).  The pigeons were as accurate on 

these trials as in the Zentall et al. (2001) study indicating that the pigeons were able to do this task 

without the use of proprioceptive cues.  In a subsequent study, the center triangle key was replaced 

with a new stimulus to ensure that the triangle had not become a cue that a spatial memory test 

would be given and the pigeons remained significantly above chance on this new variation (Zentall, 

Singer, & Stagner, 2008).   

Use of Lexigrams in a Chimpanzee  In everyday situations, we are not always systematically 

questioned about our memories for past events.  Rather, we often spontaneously retrieve 

information about past episodes in response both internal and external retrieval cues.   Another 

approach to studying episodic memory in animals incorporates this characteristic and allows the 

animal to report information from past events without explicitly being prompted to do so.  This 

approach was developed by Menzel (1999) to examine memory for spatial and object information 

in a symbol-trained chimpanzee.  The chimpanzee, Panzee, had been trained to understand a large 

vocabulary of symbolic lexigrams that represented a variety of objects she encountered in her 

everyday life (humans, conspecifics, foods, objects, and locations).  On each trial, Panzee watched 

from her enclosure as an experimenter hid a food or object in the wooded area surrounding her 

enclosure; the object was placed on the ground and covered with mulch and other ground cover so 

that it was not visible.  She was not able directly to retrieve the object herself, so she had to go 

indoors to gain the attention of an experimentally blind caretaker.  She did this by gesturing to the 

outdoors, covering her face in a gesture that meant “hide” and using her lexigram board to report 

the contents that had been hidden.  The caretaker would respond to Panzee’s requests to go 

outdoors and, through the use of pointing and gesture, she would reliably direct the individual to 



 

 

20 

the location where the item had been hidden.  She spontaneously reported the correct food or 

object that had been hidden on 84% of the trials, and directed the individual to the correct location 

on 100% of the trials. She remained highly accurate even after long delays (in many cases these 

delays extended overnight and on occasion over a period of days).    Panzee’s behavior was even 

more compelling considering that she did not have direct contact with the items and had to 

determine when to attempt to get help to retrieve them in the absence of any prompting by 

experimenters.  In other tasks that have been used in episodic-like memory research, the animals 

engage in the actions themselves, and receive proproioceptive, tactile, and visual cues in touching 

and manipulating the objects. These cues likely facilitate memory for past events (Menzel, 2005), 

presumably by providing a more extensive number of retrieval cues.  In the studies reviewed up to 

this point, the animals have only two or three alternatives to choose from in a memory test.  

However, Panzee had a much larger number of alternatives to choose from (256 lexigrams, and an 

almost limitless number of possible outdoor locations) making this test more analogous to human 

episodic recall.   

Use of Photos to Assess Memory for Event Features   In another study with a great ape, Schwartz 

et al. (2002) investigated whether a western lowland gorilla, King, was able to remember what and 

who information from past episodes.  In this case, the samples and choices were presented in 

different modalities; an event was presented in real life, but the choices were presented as symbolic 

images mounted on wooden cards, making this a special case of DMTS.  On each trial, King was 

given a particular food (apple, banana, pear, orange, or grapes) by one of three experimenters.  

Then, after either a short delay (7m) or long delay (24h) the gorilla was presented with five large 

cards with illustrations of each of the food items and was asked in English, by an experimentally 

blind tester, which food item he had received.  He responded by handing one of the cards to the 

blind tester.  The gorilla was significantly above chance at selecting the correct food item after both 

short delays (70%) and long delays (82%).  In another experiment, King was asked to indicate what 
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food he had eaten, as well as the person who had given him the food.  The same five food cards were 

used, as well as a set of three symbolic person cards, each containing a unique symbol associated 

with the corresponding experimenter.  The gorilla was significantly above chance at selecting both 

the correct food item and the person involved in the event after both short (9m) and long (24h) 

delays. 

In a subsequent study, Schwartz and collaborators (2004) extended these findings by presenting 

King with a familiar person doing a novel activity, an unfamiliar person doing a novel activity, or a 

novel object.  After an average retention interval of 7m the gorilla was given three alternative cards 

to choose from (one correct photo and two distractor photos selected from the same category).  

King demonstrated significantly above chance performance when identifying familiar people, 

unfamiliar people, and novel objects.  The purpose of these experiments was to expand on the 

results of Schwartz et al. (2002) and show that this particular gorilla was capable of remembering 

events and identifying photos of people and objects from the events, a task for which he was not 

explicitly trained.  An additional area of interest in episodic memory research is whether animal 

memory is affected by the same factors that affect memory accuracy in humans.  Another 

experiment showed that King’s memory for past events was impaired if he received misinformation 

after the event, a factor known to effect the accuracy of episodic recall in human participants.  

Schwartz, Hoffman, and Evans (2005) also examined whether King was able to remember spatial 

information from past events.  The gorilla was shown a special object or event at one of three 

locations surrounding his enclosure (main enclosure, nighthouse, or tunnel gate).  After a brief 

delay (5m) he was given three photo cards of the locations and asked, in English, by an 

experimentally blind tester, to return the card where he had witnessed the event.  His overall 

performance, although above chance was not particularly compelling compared to his performance 

on previous tasks, and the authors speculate that this was likely due to changes in his diet during 

the experiment.  Indeed, King performed at above chance levels during the first 20 trials of the 
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experiment, but his performance significantly decreased during the last 20 trials of the experiment 

after abrupt changes in his diet resulted in changes in his reinforcement schedule.   

Computerized What-Where-When Task    In a delayed matching-to-sample task (DMTS), an 

individual is presented with a sample stimulus, which after a brief period disappears and is 

followed by a retention interval.  Then, the animal is given a choice between two or more 

alternatives, one of which matches the sample.   The animal is reinforced for selecting the choice 

that matches that sample.  In some cases, the task requires a physical match to sample, whereas 

oftentimes the animal must symbolically match to sample on some abstract dimension (for 

example, the animal might have to select one symbol if the sample belonged to a particular category 

and another symbol if the object belonged to another category).   These tasks have been used 

extensively to investigate memory in animals, but in the past these experiments only required 

animals to retain one component at a time from past events.  New extensions of this approach have 

been used to determine whether animals are able to remember multiple features of an event, and 

whether the components are integrated in memory.  Skov-Rackette, Miller, and Shettleworth 

(2006) first trained pigeons on three separate computerized DMTS tasks: 1) an identity task, 2) a 

spatial task, and 3) a temporal task.  Each of these tasks began the same: the pigeons were shown a 

sample (a green triangle or red circle) that appeared in one of eight locations on the computer 

screen.  After the sample disappeared, a short (2s) or long (6s) retention interval ensued.  In the 

identity task, pigeons were reinforced for selecting the sample that had previously been presented 

from a set of two alternatives; in the spatial task, pigeons were reinforced for selecting the location 

where the sample had been presented from a set of eight possible locations indicated by grey 

boxes; and in the temporal task, pigeons were reinforced for selecting one icon (blue paw) if the 

delay was short and another icon (yellow sunburst) if the delay was long. 
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After pigeons reached a criterion of 80% correct on these DMTS acquisition tasks, they were 

presented with two question types on each trial, essentially requiring them to report two features 

of the event.  This task was used to determine whether these components were integrated in 

memory (i.e., whether accurate memory for one memory component successfully predicts 

performance on a subsequent question).  The pigeons performed at significantly above chance 

levels on the first question (87%) and the second question (80%).   However, performance on the 

first question did not significantly predict performance on the subsequent question.  If the 

components are encoded and retrieved independently, the probability of being correct on both 

trials is equivalent to the probability of being correct on the question 1 multiplied by the 

probability of being correct on question 2.  However, the observed probability of being correct on 

both questions was not significantly different from this expected probability, indicating that the 

components were not integrated in memory.  

In the previous experiment, it is possible that the memory components may have appeared to have 

been encoded and retrieved independently due to the extensive training pigeons received on 

individual tasks and the high level of accuracy they achieved on these tasks.  If an animal performs 

correctly on the majority of the trials, there is less variability in the sample dataset and can make it 

difficult to detect a real effect that exists in the population.   Therefore, a second experiment was 

done in which some tests were bound, meaning that a memory component not being tested was 

available as a cue at test.  For example, a bound what test would present both choices (the green 

triangle and red circle) in the location where the sample had been presented.  A bound version of 

the where test would place the sample that had been presented at the two choice locations.  To 

make the task simpler and more analogous to tests in humans, the temporal component was not 

included in this experiment.  An additional bound test (what + where) was also given and in this 

case, both choices (triangle and circle) appeared at the two choice locations. If the what, where, and 

when components are integrated, pigeons should do better on these bound tests than on unbound 
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tests.  The unbound tests were the same as those presented in the first experiment.  The results 

indicated that the birds reached 90% correct on both what and where tasks, but there was no 

significant difference between bound and unbound trials.   This suggests that components are 

encoded and/or retrieved from memory independently. If components had been bound together in 

memory there should have been greater accuracy for bound than unbound trials.  However, it is 

important to note that because the pigeons were highly accurate on these tasks as a result of their 

training, there may not have been enough variability in the dataset to detect feature integration.   

 Hoffman, Beran, and Washburn (2009) used a similar task to assess memory for what, where, and 

when information in rhesus monkeys.  The monkeys were presented with three DMTS tasks: 1) an 

identity task, 2) a spatial task, and 3) a temporal task.  On each trial, the monkeys were shown an 

object selected from a large array of photographs, which appeared at one of two locations on the 

computer screen.  The object then disappeared, followed by a short (1s) or long (10s) retention 

interval.   In the identity task, monkeys were reinforced for selecting the sample that had previously 

been presented from a set of two alternatives; in the spatial task, monkeys were reinforced for 

selecting the location where the sample had been presented; and in the temporal task, monkeys 

were reinforced for selecting one icon (purple triangle) if the delay was short and another icon 

(black circle) if the delay was long.  The monkeys were trained with each individual task and then 

were given tasks in which they had to: 1) report all three components sequentially, or 2) respond to 

one randomly selected question on each trial.  The monkeys were significantly above chance at 

reporting object, spatial and temporal components when the question was randomly selected on 

each trial.  When the questions were sequentially presented on each trial (so that monkeys had to 

respond to  what, where, and when the event took place), all individuals remained above chance at 

remembering what and where information and two of four monkeys were also capable of reporting 

when the event took place.  The reason why some monkeys were unable to perform well on the 

temporal task when it was presented sequentially is likely due to the fact that the time it took to 
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respond to the previous what and where questions significantly lengthened the original retention 

interval. Although the monkeys may have only been presented with a 1s retention interval, the time 

it took to answer the first two questions lengthened the amount of time considerably, so that the 

resulting delay was much closer to 10s than the intended 1s delay.  However, there was evidence 

that what, where, and when information were integrated in working memory; accuracy on the what 

and where questions predicted performance on the when question for two monkeys.  Specifically, 

these individuals were more likely to be correct on the when question if they had also been correct 

on both what and where questions, suggesting that memory for when an event took place was 

integrated with memory for what and where the event occurred.  Although there was no evidence 

of what-where-when integration in the other two monkeys, it is important to note that such 

integration may have obscured by the fact that these monkeys were highly accurate on all three 

questions.  This high level of accuracy may have made it difficult to detect any binding of 

information even if it were present.   It is also worthwhile to note that all of the monkeys succeeded 

when only one randomly selected question was presented on each trial.  As the monkeys were 

unable to anticipate which question type would be presented, they presumably had to remember all 

three memory components in order to succeed on all three question types.  It is important to 

acknowledge that, although the monkeys performed well on this type of memory task, this does not 

necessarily mean that they would show this proficiency on other spatial/temporal memory tasks.  

Some of the monkeys had participated in a similar memory task modeled after the children’s 

memory game Concentration, but they were less proficient at this task and tended to perseverate on 

choosing incorrect stimuli that had been selected on previous trials (Washburn & Gulledge, 2002; 

Washburn, Gulledge & Martin, 2003). 
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A Comparison of the Strengths and Weaknesses of Comparative Tasks 

These tasks that have used to examine episodic memory in animals vary on a number of features 

including: 1) the extent to which the task is standardized for use across species, 2) the type of 

information to be remembered, 3) the length of retention interval, and 4) the way memory for 

temporal information is defined and measured.  The temporal issue has received attention in recent 

years, with many researchers acknowledging that the temporal component is poorly defined and 

may be a more specific instance of context encoding.  It is reasonable to assume that one may 

encode the context of events in many different forms, including the temporal context, the spatial 

context, the emotional context, etc, with the important point being that the event occurred in a 

specific context in the past. In addition, there is debate, even among those who do agree that the 

temporal encoding is essential to episodic memory, about what exactly temporal encoding requires 

(is it encoding of time of day, time since an event took place, or relative memory for the sequence of 

events?)  This ambiguity was recently addressed by Roberts et al. (2008) by presenting rats with 

two different tasks: one that could only be solved by remembering the exact time of day that an 

event took place and another that could only be solved by remembering how long ago an event took 

place.  The rats appeared to encode temporal information in terms of the how long ago an event 

took place, not the precise time of day or date of the event, which is similar to the way humans 

appear to encode temporal information (Friedman, 1993). 

However, in this process, it seems that other important aspects of the memory system have been 

overlooked.  When we remember a past event, we not only recall where and when the event took 

place, but we also remember that we played a particular role in the past event.  As acknowledged by 

Tulving in a quote presented earlier in this paper, self awareness is a critical component of the 

episodic memory system. This has been studied in the human memory literature, with a number of 

studies examining participants’ source memory for events they performed and those they observed 
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(Hornstein & Mulligan, 2004; Manzi & Nigro, 2008).   This type of source information has not been 

studied in the animal memory literature, but it is an important feature of episodic encoding by 

humans (Engelkamp, Jahn, & Seiler, 2003).  This type of information makes it possible to distinguish 

between memories for things we directly observed ourselves from those we heard about through 

another source.  This type of source information, along with environmental features at encoding, 

also makes it possible to distinguish between events that we actually performed from those we 

simply imagined or dreamed.   There has only been one study that has assessed how animals 

encode other environmental features from past events (Eacott & Norman, 2004) and no 

researchers have attempted to assess whether animals remember information about their own role 

in past events.  These are important features of episodic memory and would increase the validity of 

existing tests of episodic memory in animals.  Before discussing how these features could be 

integrated into tests with animals, it is necessary to review studies of source memory with human 

participants.    

 

Self-Agency and Context 

The ability to remember the origin of one’s memory is referred to as source memory or source 

monitoring, and has been a prominent area of research in the area of cognitive psychology, 

especially within the field of eyewitness memory.  The ability to remember the source of one’s 

knowledge or memories is important in everyday life, but is most obvious in situations in which 

one’s memories are highly influential, such as in eyewitness testimony.  An individual’s memory for 

a particular past event can be compromised by presenting misleading information immediately 

following the event.   In this case, the person may recall the information, but not remember the 

source or context in which this information was obtained and incorrectly attribute it to the event 

itself.    In a related situation, which has been described as unconscious transference, an innocent 

bystander or another person encountered sometime after the event can be incorrectly identified as 
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the perpetrator because a witness incorrectly attributes the familiarity of the person as a result of 

them being the perpetrator of the crime. (Mitchell & Johnson, 2000).    Such source memory errors 

have been shown to occur even in relatively stress free laboratory settings.  For example, if 

participants are asked to label a series of names as either those belonging to famous people or non-

famous people, they will later incorrectly identify many of the non-famous names as “famous” 

because they are highly familiar from the previous experimental session (Jacoby, Woloshyn & 

Kelley, 1989).   This is not surprising, as the probability of making of source monitoring errors has 

been found to increase when the contextual source information from events overlaps perceptually 

or semantically (Mitchell & Johnson, 2000).   

In this case, source memory is defined as one’s memory for the specific environmental context in 

which a particular event occurs.  However, the term source memory has also been used to describe 

memory for one’s own role in a past event (Englekamp, 1998).  This feature is a relevant 

characteristic of episodic encoding, and may also affect how other features are encoded in memory.  

For example, greater personal involvement in a past event may actually improve memory for the 

event itself.  This prediction would make sense in light of the self-reference effect which has shown 

that we are better at retaining information if we are able to relate it to ourselves.  In order to 

determine the extent to which personal agency or involvement facilitates memory, some 

researchers have investigated whether people recall more accurate information from actions that 

they perform themselves compared to actions they simply observe performed by another person, 

most typically an experimenter (Englekamp, 1998).  A number of studies have shown a general 

memory advantage for self-performed tasks in human adult participants (Engelkamp, 1983; 1998, 

as cited in Nilsson, 2000; Engelkamp & Dehn, 2000; Manzi & Nigro, 2008).   This effect also has been 

observed in studies of typically developing children (Baker-Ward, Hess, & Flannagan, 1990), but 

appears absent in those diagnosed with autism spectrum disorders (ASD).  In fact, some studies 

have shown that children with ASD are significantly more accurate at recalling actions performed 
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by other individuals than those they performed themselves (Millward, Powell, Messer & Jordan, 

2000; Yamamoto, Saito & Kamio, 2004).  This is not surprising considering the fact that individuals 

with ASD have also shown impairments in other tasks that are related to the self, including self 

monitoring, processing of self-referential information, and in developing self concepts.  

In addition to being able to recall the events better, some studies have shown that people also make 

more accurate source memory judgments for self-performed events (Senkfor et al., 2002, as cited in 

Hornstein & Mulligan, 2004) than for events performed by others.  However, some studies have 

failed to replicate the finding that performing an event facilitates memory (Cohen, 1981; 1983, as 

cited in Nilsson, 2000) or more specifically, that performing an event leads to better source 

memory concerning one’s involvement (Cohen & Faulkner, 1981, as cited in Nilsson, 2000; Koriat, 

1991, as cited in Hornstein & Mulligan, 2004; Manzi & Nigro, 2008).   It is not clear from these 

studies whether actually performing an event leads to any enhanced encoding in memory, but it is 

clear that human participants do appear to label their memories as those involving the “self” and 

those involving “others” and can do so reliably even when they do not anticipate being tested on 

this information. 

These results fit with what we know about social learning in humans.  The ability to understand the 

actions of another individual and represent them in memory has been said to be an important 

process in social learning and imitation.  In recent years, studies have found that performed and 

observed actions are represented similarly in the brain.  Neurophysiological studies have identified 

mirror neurons in the premotor and parietal lobes of the macaque brain that fire when a monkey 

performs an action and when it observes the action being performed by another individual 

(Iacoboni & Dapretto, 2006).  It has been speculated that this provides the neural mechanism 

underlying the ability to imitate actions performed by another individual; the actions of a 

demonstrator must be encoded by the observer in order to successfully reproduce the behavior at a 
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later time.   Another technique has been used with human participants to study the mirror neurons 

system.   Researchers have used transcranial magnetic stimulation (TMS) to stimulate the motor 

cortex while simultaneously recording the resulting motor-evoked potentials (MEP) from extremity 

muscles.   Then, participants are either instructed to grasp an object themselves or observe as 

another person grasps an object.  The amplitude of the MEPs increases when the participant grasps 

an object and when they observe another individual grasping an object (Rizzolatti & Craighero, 

2004).   This suggests that neurons in the prefrontal cortex are activated in response to both 

observed and performed actions.  However, because human participants are able reliably to 

discriminate between events they perform and events they observe, the source of these events 

must be represented in other areas of the brain. Research has pointed to the hippocampal region of 

the medial temporal lobe, as well as regions of the prefrontal cortex as areas that are necessary for 

encoding source information. This has been determined by brain-imaging studies (Mitchell & 

Johnson, 2009) and studies of patients with hippocampal damage who demonstrate source memory 

deficits (Gold, et al., 2006).  This ability to attend to and encode our own actions and actions 

produced by other individuals would be beneficial for other highly social species.   It is would also 

be adaptive for such species to be able to discriminate between these two types of memories. For 

example, the ability to distinguish between events we performed ourselves and those we observed 

makes it possible to determine whether we will be capable of performing the same action in the 

future.  It would also appear to be an important prerequisite for other forms of social knowledge, 

such as understanding what other individuals know and may therefore be relevant to studies of 

theory of mind.   

The Present Study 

As it should be clear from this literature review, our understanding of how different species 

encode information in memory is still relatively limited; there are numerous questions remaining, 
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and for the data from nonhuman animals that do exist, it is difficult to draw conclusions when there 

are no comparable experiments done with human participants.  Also, the comparative studies have 

varied broadly in their paradigms and methodologies, making it equally difficult to draw species 

comparisons. Therefore, in the present study I directly compared rhesus monkeys and 3- to 4-year-

old human children on a common memory test.  This is a particularly good comparison group, as 

children at this age have fully developed hippocampal structures and are able to encode and 

retrieve episodic memories from long-term memory.  Children at this age are also in the early 

stages of language learning, so they are less likely than adults to use deliberate verbal rehearsal 

strategies, and this too makes them an ideal comparison group for rhesus monkeys.  The goal of the 

present study is also to build on the knowledge produced from previous tasks by incorporating 

essential features of episodic memory that have been overlooked.  To my knowledge, no studies 

have directly investigated how nonhuman species remember information about their own 

involvement in past events.  Although we may never know whether animals experience and 

retrieve memories for past events in the same way as humans, we can certainly provide animals 

with the opportunity to convey source information about their own involvement in a past event.  

Including this source-memory (or agency) component may elucidate the phylogenic similarities in 

this memory system which would prove useful in developing animal models of episodic memory.   

This would also have implications for other areas in comparative cognition.  For many years 

researchers have tried to examine self-awareness in animals using the mirror-mark test (Gallup, 

1970; Gallup, 1979).  In this procedure, a mark is surreptitiously placed on an individual’s forehead 

while it is anesthetized.  The individual is supplied with a mirror and after regaining consciousness 

is examined to determine whether they perform any behaviors directed at examining the spot on 

their forehead.  There are problems with this approach because for many species, the act of staring 

at another individual is a threatening or aggressive behavior.   Another problem with this approach 

is that it equates physical recognition with self-awareness.   
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The present set of experiments was designed to examine whether rhesus monkeys and children 

between the ages of 3.5 and 4.5 years of age were able to remember information about their own 

role in past episodes along with other event features (i.e., identity, spatial, temporal, and contextual 

knowledge).    These experiments build on previous research, in which the author and colleagues 

examined whether rhesus monkeys could be trained to associate abstract icons with performing 

and observing past events.   The methods and results from those experiments were used in 

designing the experiments in the present study.   The next section provides a description of the 

methods and results from that initial work. 

 

 

2     PREVIOUS STUDY OF AGENCY IN RHESUS MONKEYS 
 
 

The monkeys completed a series of training tasks to see whether they were able to use symbolic 

icons to convey information about their recent behavior.  Two initial sessions were intended to 

familiarize the monkeys with the task of moving the picture on the computer screen, while also 

teaching them that sometimes they would have to watch the picture and not use the joystick.   The 

first session only required monkeys to move a picture to a selected location on the computer 

screen.  The location was selected randomly on each trial and the monkey had to determine which 

location had been selected by trying to move the joystick to that location (the picture only moved 

when the monkey moved the joystick in the corresponding direction of the chosen location).   The 

picture remained in the location and flashed once every second for a total of 3 seconds before 

disappearing.  After a brief delay (1s) two choice icons appeared on the screen (a star within a 

circle and a purple box with vertical lines).  The monkeys had to learn one icon (star shape) if they 

had moved the picture and the other icon (purple box) if they had watched the picture move. The 

icons always appeared in the same position on the screen, so the task was fairly simple.  In the next 

session, the monkey had to learn to refrain from touching the picture while it was moving on the 
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screen and to select the corresponding icon after a brief delay.  The monkeys completed 3,000 trials 

in each of these sessions.   

Agency Training      

The monkeys then completed the following training tasks in which various controls were 

introduced: 1) a basic discrimination task in which performed and observed trials were mixed 

together and monkeys had to select the appropriate icon, 2) the discrimination task with choice 

positions randomized on each trial, 3) an added control so that the joystick/picture moved at the 

same speed on performed and observed trials, 4) an added control so that the joystick/picture 

moved along the same path on performed and observed trials, 5) another control added in which 

the monkeys had to remove their hand from the joystick after each trial, and 6) a longer delay 

interval (10s) added to the task. The number of trials completed and the percent correct on the last 

100 trials of each task are shown in Table 2.1.  All of the monkeys were significantly above chance 

on the last 100 trials of each training task, as determined by a binomial test, p < .001.   

 

Table 2.1:   Accuracy on the last 100 trials of each agency training task 

 
Agency Training Tasks 

  Murph Gale Willie Chewie 

    Trials Last Trials Last Trials Last Trials Last 

1 Discrimination 6,228 98% 10,656 92% 8,924 96% 9,807 95% 

2 Choice Positions 8,720 91% 15,276 96% 15,854 87% 13,636 98% 

3 Joystick Speed 3,000 99% 4,000 85% 3,715 82% 2,000 90% 

4 Joystick Path 13,970 92% 14,820 94% 15,578 77% 15,553 88% 

5 Remove Hand 15,577 96% 15,609 79% 15,292 73% 15,715 96% 

6 10s Delay 6,907 76% 23,088 88% 15,581 56% 19,715 91% 
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Results from the final task (10s delay) indicated that monkeys were able to retain information 

about their behavior after a brief delay interval.  The monkeys did respond fairly quickly on most of 

these trials (three of the monkeys responded within 5 seconds on 95% of the trials; one monkey 

responded within 10 seconds on 95% of the trials).  However, there were trials in which the 

monkeys took substantially longer to respond.  This provided a unique opportunity to examine 

memory for agency after extended retention-intervals (1 minute – 3 minutes).  Two of the four 

individuals were reliably accurate even after these extended delays.  Murph was correct on 79% of 

these trials (n=14) and had a median response latency of 1m 48s.  Chewie was correct on 66% of 

these trials (n=183) and had a median response latency of 1m 15s. 

DMTS Tasks      

These monkeys had previously participated in a what-where-when memory experiment (Hoffman, 

Beran & Washburn, 2009).  In this study, they learned to respond to three separate delayed 

matching-to-sample tasks: 1) an identity task, 2) a spatial task, and 3) a temporal task.     A similar 

version of these tasks was presented to the monkeys to determine whether they still understood 

the objective of the tasks.  In the identity task, a picture appeared at one of two locations in the top 

left and right portions of the computer screen.  It remained in this location and flashed once every 

three seconds and then disappeared from view.  There was a brief (1s) delay in which the screen 

was blank before the monkeys were presented with a choice between two photos.  The spatial task 

was identical except that in the test phase the monkeys had to now make a choice between the two 

spatial locations.  The temporal task was slightly different; the same picture on each trial was 

presented in the center of the computer screen.  The photo disappeared and was followed by a 

short or long delay.  These icons were the same as those used in the previous what-where-when 

memory study.  Then, the monkeys had a choice between the two temporal icons.   
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Table 2.2:  Review of DMTS tasks 

Delayed Matching-to-Sample Tasks 

 Identity Spatial Temporal Agency 

 Trials Correct p Trials Correct P Trials Correct  Trials Correct p 

Murph 1,344 97% *** 1.201 81% *** 3,062 94% *** 3,439 75% *** 

Gale 1,577 92% *** 1.926 81% *** 2,505 91% *** 3,374 80% *** 

Willie 1,706 86% *** 3.164 84% *** 3,016 93% *** 7,234 58% *** 

Chewie 1,412 81% *** 2.562 92% *** 1,000 83% *** 4,794 95% *** 

 

Paired Memory Tests       

The monkeys were also given trials with two randomly selected questions on each trial.  This 

provided an opportunity to measure accuracy when the test type could not be anticipated 

beforehand and to examine whether accuracy on the first test predicted accuracy on the 

subsequent test.   Figure 1.1 shows each monkey’s accuracy on the different question types when 

they were presented first in the test pairing.    A binomial test was done to determine whether each 

monkey’s accuracy differed from chance performance (50%). Each monkey was above chance on 

the identity and temporal tests, p < .001.  In addition, three of four individuals were above chance 

on the spatial memory test and two of the four monkeys also scored at above chance levels on the 

agency test, p < .001.  There was also evidence that some of the features were integrated in 

memory.  This was determined using a binary logistic regression to examine the relationship 

between outcome of the first memory test and outcome of the second memory test.  If the monkeys 

correctly responded to the spatial memory test when it was presented first, they were significantly 

more likely to be correct on the second memory test, χ2(1, N = 7,908) = 12.63, Exp(B) = 1.19, p < 

.001.  If the monkeys were correct on the agency test when it was presented first, they were also 

more likely to be correct on the second memory test, χ2(1, N = 7,674) = 4.32, Exp(B) = 1.11, p < .05. 
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Figure 2.1:  Results from a preliminary study examining agency in rhesus monkeys. 

 

3 EXPERIMENT 1 

 

The purpose for this experiment was to examine how rhesus monkeys remember separate event 

features in working memory.   There were five conditions in this study; each one was designed to 

assess memory for a different feature from past events.  1) In the identity condition, monkeys had to 

remember the identity of a particular object they had seen.  2)  In the spatial condition, monkeys 

had to remember where the object had appeared.  3)  In the temporal condition, the monkeys had to 

remember how long ago the event occurred.  4)  In the agency condition, the monkeys had to 

remember whether they performed the event or observed the event.  5)  In the context condition, 

the monkeys had to remember information about the environmental context from the event.   The 

same basic memory task was used in all conditions; a monkey observed an event on a computer 

display in his home cage and after a brief retention interval (5s) was presented with a two-choice 

discrimination in which he had to make a behavioral response to convey information about the 

event.   The event portion of the memory task was consistent across conditions; the only thing that 
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varied was the type of information the monkey had to remember.  This made it possible to assess 

differences in retrieval rates for these different conditions, but also served as a necessary 

scaffolding stage needed for subsequent experiments which would test how these features were 

integrated in working memory.  In many comparative studies with animals, the task goals may not 

be immediately apparent to the animals and so some initial training is often required.  The tasks in 

the present study are relatively novel (in order to control for prior learning) and not specific to any 

one species (so that the testing paradigm can be used across species).   Although some tasks were 

relatively straightforward, other tasks required animals to learn abstract icons in order to convey 

information about past events.  As such, monkeys required some training to learn “the rules of the 

game” for each condition/task and to ensure that they understood the objective of each task. 

 

Participants 

Eight joystick-trained, adult male rhesus monkeys (Macaca mulatta) participated in this study.  The 

monkeys all had prior experience with computerized testing and had participated in previous 

cognitive studies (see Washburn, Beran, Evans, Hoffman & Flemming, in press).  The individuals 

that participated in this experiment included animals (Murph, Gale, Willie and Chewie) that had 

some prior experience on what-where-when memory tasks (Hoffman, Beran & Washburn, 2009) as 

well as monkeys that were naïve to these tests (Lou, Hank, Han, Luke and Obi).  All were familiar 

with the task of matching stimuli based on physical resemblance and association. Each monkey had 

a computerized test system (or “Rumbaughx”; Washburn et al., in press) set up in its home cage and 

had the opportunity to work on the task at their own pace during testing sessions.  Each monkey 

participated on a voluntary basis, receiving supplemental food rewards (flavored chow pellets) in 

exchange for participation.  No monkey was reduced in body weight or otherwise deprived of food 

or fluids for purposes of testing. 
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General Procedure 

In each condition, monkeys were presented with a delayed matching-to-sample (DMTS) task, in 

which they experienced an event presented on the computer screen, followed by a memory test in 

which they had to choose between two alternatives, one of which corresponded to the recent event.  

The event phase in each of these conditions was the same – a photo moved along a diagonal path to 

one of two locations in the upper left and right corners of the computer screen.  The critical 

difference between the tasks/conditions was that each one tested monkeys on a different feature 

from the event.  The format of the memory tests for each task/condition was consistent, with 

monkeys receiving a choice between two alternatives and being reinforced with food/auditory 

feedback if they were correct.  The nature of the choice stimuli varied depending on the 

task/condition; for the identity and spatial conditions, the alternatives were physical 

representations from the events (i.e., the monkeys had a choice between two photos, or two spatial 

locations/boxes), whereas for the temporal, agency, and context conditions, the monkeys were 

trained to associate icons/shapes with different contingencies (e.g., the monkeys learned that if 

they had experienced a short delay, they should select the purple triangle, but if the delay had been 

long, they should choose the black circle). In all conditions, monkeys received the same type of 

feedback for correct and incorrect responses.  If they made a correct choice, the monkeys received a 

fruit-flavored primate chow pellet and heard an ascending tone that they had learned to associate 

with positive outcomes.  If they made an incorrect choice, they simply heard a brief and low buzz 

tone to inform them that their choice was incorrect.  To reduce proactive interference, all trials 

were followed by a 3s interval before the next trial was available to the monkey.  To begin a trial, 

the monkey moved the cursor to a start box in the center of the computer display. 

In many cases, DMTS tasks are relatively straightforward and require matching on the basis of 

physical similarity.  However, three of the DMTS tasks in this experiment were designed to assess 
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relatively abstract features of past events (e.g., one’s level of involvement or the amount of time that 

has elapsed since an event) using icons that correspond to event features.  Consequently these tasks 

required some prior training for the monkeys to learn the associations between the various 

contingencies (e.g., performing an action) and its associated icon.  The nature of the training 

procedures varied for each condition/task.  The specific methods for each training task and 

experimental task are described in later sections.  The monkeys completed each training task when 

they reached a performance criterion of 75% correct (and a minimum of 2,000 trials) or when they 

completed the maximum number of trials (10,000 or one month of testing on the same task).  The 

monkeys completed each experimental task when they reached a performance criterion of 85% 

correct on three consecutive sessions and a minimum of 2,000 trials or when they reached the 

maximum number of trials (10,000 trials or one month of testing on the same task).   

The monkeys were each given 3-4 testing sessions each week.  Each session was 4-h in length and 

the monkeys were given the opportunity to complete up to 3,000 trials during each session.  

Because the monkeys worked at their own pace on this task, the specific number of trials completed 

during each session varied depending on the type of task and motivation of the animals.  The 

monkeys could take as long as they needed to respond to each memory test.  Therefore, on some 

trials the delay length was substantially longer than the initial delay selected by the computer 

program.  One way to deal with this would be simply to begin a new trial if a monkey took too long 

to respond, but this approach is problematic because monkeys might simply have waited longer to 

respond on trials in which they were uncertain (thereby strategically or unintentionally avoiding 

these trials but  artificially inflating their accuracy level).  Indeed, many studies have indicated that 

monkeys are sensitive to their uncertainty during cognitive tasks and will take the opportunity to 

opt out for a smaller reward rather than risk failing a memory test for which they are not prepared 

(Smith & Washburn, 2005). In light of this, monkeys were presented with memory tests on each 

trial regardless of their response latency.  In addition, trials with variations in response latencies 
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(on the order of 10-20 seconds) could actually be useful in understanding how monkeys 

represented temporal intervals and whether the icons were used flexibly or based on discrete 

intervals. 

Identity DMTS       The identity task was used to assess how rhesus monkeys remembered 

information about item identity in working memory.   The monkeys did not receive any additional 

training on this task because the objective of matching based on physical similarity was familiar to 

all of the monkeys due to prior experience on similar tasks.  The stimuli in this task consisted of 80 

visually distinct photographs.  On each trial, one photo (the “sample”) was chosen at random from 

the set and presented in the bottom-center portion of the computer screen.   From this position, the 

photo moved along a diagonal path to one of two locations in the top-right and top-left portion of 

the computer screen, each of which was defined by a dark grey box (7.5cm x 7.5cm).  The object 

remained in this location for 3s and then disappeared from view so that all that remained was a 

blank, white computer screen.  After a 5s retention interval, the monkeys were given a choice 

between two photos (one that matched the photo presented earlier and a distractor photo that did 

not match the sample).  These choices appeared in the left and right hand portions of the computer 

monitor, and the position of the correct photo was randomized across trials to ensure that the 

correct photo appeared approximately equally often in the left and right positions (see Figure 3.1).   

 

 

 

 

 

 

 

Figure 3.1:  An illustration of the identity DMTS task used with rhesus monkeys 
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Spatial DMTS        The spatial task was used to assess how rhesus monkeys remembered basic 

spatial features from computer-generated events. For some of the monkeys, this type of spatial 

problem was a unique challenge they had not encountered before in an experimental setting and 

therefore we provided these individuals with a series of training tasks with increasing delay 

intervals (no delay  500ms delay  2s delay) before presenting them with the experimental task.  

In each of these training tasks, a photo moved to a particular location on the screen.  This was 

followed by either an immediate choice (the photo remained in the location and the monkeys 

simply needed to use the joystick to select the location of the photo) or a delayed choice (the 

locations/photos disappeared and were followed by a brief delay before the choice icons 

appeared).  

 

 

 

 

 

 

 

 

Figure 3.2:  An illustration of the spatial task used with rhesus monkeys 

 

After demonstrating that they were able to perform the task after these delays (with at least 75% 

accuracy on the last session), the monkeys moved on to the experimental version of the task.  The 

experimental version of the spatial task was the same as the procedure described earlier for the 
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identity task, but with one difference.  After the photo moved to one of the locations and then 

disappeared, the monkey had to deflect the joystick cursor down to contact a large blue “+” shape in 

the bottom-center portion of the screen, at which point the delay began (see Figure 3.3). This 

control was needed to ensure that monkeys could not keep their hand on the joystick and use their 

hand position as a proprioceptive cue when given the memory test.  After the 5s retention interval, 

the monkeys had a choice between the two spatial locations and had to select the location where 

the photo had been moved.  As both locations were identical in all respects and both were present 

during the event, the only way this task could be solved was by encoding spatial information about 

the event itself.  

 

Temporal DMTS    The temporal task was used to assess how rhesus monkeys remembered 

temporal information from the computer-generated events.  The temporal distinction was on a 

relatively short time scale (5s and 15s) and required animals to match symbolically based on this 

distinction.    This type of task typically requires more trials for monkeys to learn.  Therefore, all of 

the monkeys completed a training task to teach them this temporal distinction.  In this task, the 

monkeys simply observed a picture (a clipart image of a clock with wings) on the computer screen 

which remained on the screen for a 3 s interval.  This was followed by a short or long delay, and 

then a choice between two shapes (a purple triangle and black circle).   The locations of the choice 

icons were randomly determined on each trial, so that monkeys had to attend to the icon itself 

rather than learning to move the cursor right or left depending on the delay length.  In order to be 

successful on this task, the monkeys had to learn the arbitrary association between each delay 

length and icon.  After monkeys were performing reliably on this training task (75% correct on the 

last session), they proceeded to the experimental task.  The only difference between the training 

and experimental tasks was that a randomly selected photo (instead of the same image) was used 

on each trial and the photo moved to a location rather than simply being displayed in the center of 
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the screen.  The monkeys then had a choice between the two temporal icons, and they were 

reinforced for selecting the appropriate icon (see Figure 3.3). 

 

 

 

 

 

 

 

 Figure 3.3:  An illustration of the temporal DMTS task used with rhesus monkeys. 

 

Agency DMTS        The agency task was used to assess how monkeys remembered information 

about their own involvement in a computer-generated event, specifically, whether they watched the 

event or played an active role in it.  This task possibly posed a greater challenge to the monkeys, as 

it required them to associate their own past actions with arbitrary icons (a circle with a star in the 

center and a purple box with vertical lines).  In the past, the monkeys had never been required to 

encode their own action events in memory or use icons to convey information about these 

behaviors.   To help monkeys learn that the icons could be used to convey information about their 

own role in a past event, they were presented with three training phases.  In the first phase, the 

monkeys were given sessions which consisted entirely of performed trials.  This was to familiarize 

the monkey with the task of moving the picture on the screen.  Although the monkeys all had 
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extensive experience with using a computer joystick, this particular task required them to hold the 

joystick in a particular position, as the cursor would only move in a straight diagonal path to the 

selected location.  After a 1s delay, monkeys made a choice between two icons (a circle with a star 

in the center and a purple box with vertical lines).  The position of the choice icons (left or right) 

was randomly determined on each trial.  The monkey was reinforced for selecting the appropriate 

icon (purple box with vertical lines) with food and auditory feedback.  In the second phase of 

training, the monkeys had to watch as the picture moved independent of their own involvement.  

To ensure that monkeys did not try to participate, code was included in the program to re-start the 

trial if the joystick was touched while the picture was moving.  The purpose of this was to 

familiarize monkeys with the idea that on some trials they did not get to move the picture.  After the 

picture was moved and disappeared, a brief 1s delay followed before the monkeys were shown the 

choice icons.  The monkey was reinforced for selecting the appropriate icon (star inside circle).  In 

the final phase of training, the trial type (performed or observed) was randomly determined on 

each trial.  After a 1s delay, the monkeys were given a choice between the two agency icons.  The 

monkeys were able to move on to the experimental version of the task when they either: a) met 

75% correct criterion on the last session, or b) completed 10,000 trials.  The event phase of the 

experimental task was the same as for the other tasks, but as with the spatial task, the monkey had 

to deflect the joystick cursor down to make contact with a large “+” icon at the bottom of the screen.  

This was to ensure that the monkeys would not be able to use proprioceptive cues or motor 

memory about their recent hand position on the subsequent memory test.  This control ensured 

that the monkeys were responding on the basis of their memory for self-agency and not simple 

motor memory (e.g., “it must be a performed trial because my hand was just touching the joystick).  

After deflecting the joystick, the monkeys experienced a brief retention interval (5s) followed by a 

choice between the two agency icons (a grey star inside a blue circle and a purple box filled with 

wavy black lines).    An illustration of this task is provided in Table 3.4. 



 

 

45 

 

 

 

 

 

 

 

Figure 3.4:  An illustration of the agency task.  

In both the training phases and experimental task, the performed and observed trials were equated 

on all relevant measures to ensure that monkeys were responding on the basis of their own actions 

and not some other cue that differentiated the two conditions.   There are many ways an animal 

could differentiate performed and observed trials other than relying on memory for their past 

actions.  For example, if an animal moved the object at a slower rate than the computer, the animal 

might learn to make the discrimination between these two conditions on the basis of the joystick 

speed and not their own involvement.  Therefore, in this task, the speed at which the monkey could 

move the object was identical to the speed at which the object was moved by the computer.   The 

specific path along which the object moved was also held constant across the two trial types; the 

object always moved in a smooth diagonal direction from the bottom center of the screen to one of 

the locations in the upper part of the screen.  To ensure that both observed and performed trials 

were equivalent, monkeys were not able to choose the location where they would move the object; 

the joystick cursor would only move in the randomly selected direction.  There was also another 

important reason for not allowing monkeys to choose where they moved the picture.  If monkeys 
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were able to select the location, they could adopt the strategy of always selecting the same location 

on all trials.  Although this would not pose a problem for this individual task, it would have posed a 

problem for Experiment 2, where monkeys completed randomly selected pairs of memory tests.  If 

monkeys were to adopt the strategy of selecting one location more often than the other, they could 

remember this general rule and succeed on spatial memory tests without relying on memory.  

Consequently, the computer program randomly selected the location on all trials. 

Context DMTS    The context task was used to assess how rhesus monkeys remembered contextual 

information about the background or environment during computer-generated events.  As with the 

temporal and agency tasks, this task was relatively abstract and required animals to learn the 

association between background lighting and arbitrary icons.   Each monkey received two training 

phases before this task.  In the first phase (no delay training), the background display was randomly 

chosen on each trial.  This background was presented simultaneously with the choice icons (a sun 

and night skyline) which were positioned randomly on each trial.  The monkeys had to select the 

sun icon if the background was bright or the night icon if the background was dim.  In the second 

phase (1s delay training), the background was displayed for 3s, but then disappeared and was 

replaced with a blank, white computer screen.  After a 1s delay, the monkeys were shown the two 

choice icons.  In this situation, the monkeys now had to remember the background display and 

respond accordingly.  In the third phase of training, the delay was extended to 5s to determine 

whether monkeys could retain this information about background display (see Figure 3.5).  It was 

necessary to reach 75% correct performance on this final training task to progress to the 

experimental task.  However, none of the monkeys were able to reach this performance criterion 

and therefore could not continue to the experimental task, which would have included the typical 

event phase used in the other conditions. 
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Figure 3.5:  An illustration of the context task. 

 

Results 

The data for each individual monkey and task were analyzed using binomial tests to determine 

whether performance was significantly different from chance (50%).  This made it possible to 

determine whether each individual monkey was able to retrieve a specific feature from memory 

and whether there were individual differences in retrieval accuracy.  Because there was not a time 

limit for completing each trial, there was variation in response latencies for each individual and 

task.   In this situation, the best method for measuring central tendency was to calculate the median 

scores and the 95th percentile scores to determine where the majority of the trials fell along the 

response timescale.   A binary logistic regression was also used to determine whether response 

latency was a significant predictor of performance on the subsequent memory test.   

 

Identity DMTS          The monkeys did not receive any training before completing the identity task.  

The task was relatively straightforward because it required the monkeys to match based on 
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physical similarity and all of the monkeys had prior experience on such matching tasks.  The results 

from each monkey are displayed in Table 3.1.  The monkeys that did not participate in prior 

research examining what-where-when memory (Obi, Luke, Lou, Han, and Hank) are labeled in the 

table with an asterisk (*) to indicate that they were naïve to the task prior to this study.  Each 

monkey reached the performance criterion (85% correct on three consecutive test sessions) and 

their overall accuracy was significantly above chance (50%) using a binomial test, p < .001.  The 

majority of the monkeys reached the criterion within a relatively small number of sessions (3-5).  

However, one monkey (Hank) took a larger number of sessions and trials to reach this criterion.  

The median response latencies and 95th percentile score for latencies were calculated to determine 

where the majority of the responses fell along the timescale.  The monkeys responded within 7 

seconds on 95% of the trials.  However, there were individual differences in response latencies, 

with some monkeys taking longer to respond on the memory test.  The median and 95th percentile 

scores were also calculated for each individual monkey and are given in Table 3.1.  

 

Table 3.1:  Results from the identity DMTS task 

Identity DMTS 

  Trials  Response Latencies  All Trials  Last Session 

Chewie n = 1,801  Md = 2.83 P95  = 18.32  85.90% ***  85.16% *** 

Gale n  =7,34  Md = 2.25 P95  = 3.27  95.92% ***  91.43% *** 

*Han n = 2,063  Md = 2.34 P95  = 7.36  94.43% ***  95.50% *** 

*Hank n = 5,970  Md = 2.94 P95  = 5.74  76.33% ***  85.71% *** 

*Lou n = 2,474  Md = 2.42 P95  = 6.16  98.26% ***  97.86% *** 

*Luke n = 731  Md = 2.28 P95  = 4.48  90.56% ***  95.94% *** 

Murph n = 512  Md = 2.25 P95  = 3.81  97.07% ***  95.20% *** 

*Obi n = 710  Md = 2.67 P95  = 5.93  92.68% ***  95.80% *** 
 

Spatial DMTS    The results from the training phases and experimental version of the task are 

shown in Table 3.2.  Four of the eight monkeys had experience with spatial memory tests like this 
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one and did not require any training.  The other individuals completed a series of training tasks to 

familiarize them with the task of matching based on physical location.  The training task was 

identical to the experimental task except shorter delays were used. The number of trials and 

percent correct for each training task are shown in Table 3.2.  The monkeys that did not participate 

in prior research examining what-where-when memory (Obi, Luke, Lou, Han, and Hank) are labeled 

in the table with an asterisk (*) to indicate that they were naïve to the task prior to this study.  The 

monkeys first completed training sessions with a 500 ms delay, but they remained at chance levels 

(50%) even after a substantial number of trials.  Consequently, they were moved to an easier 

version of the training task (no delay) in which the photo remained in the location and the monkeys 

simply needed to use the joystick to select the location of the photo.  The monkeys did learn how to 

respond on this version of the task, and all but one individual (Hank) reached criterion on the 

subsequent training tasks (500ms delay and 2s delay).  After a month of training and a large 

number of trials (>15,000), Hank failed to reach criterion on this task and consequently did not 

move on to the experimental version of the spatial task.  The seven monkeys that completed the 

experimental version of the spatial DMTS task all reached criterion (85% correct on three 

consecutive testing sessions).  The overall percent correct for each monkey also was significantly 

above chance (50%), p < .001.  There were individual differences in response latencies, with some 

monkeys taking longer to respond on the memory test.   The median response latencies and 95th 

percentile score for latencies were calculated to determine where the majority of the responses fell 

along the timescale.  The monkeys responded within 11 seconds on 95% of the trials.  Additional 

values for each monkey are given in the Table 3.2.   The latencies for this task were slightly longer 

than those in the identity DMTS task because the monkeys had to deflect the joystick cursor to the 

bottom of the screen after each event. 
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Table 3.2:  Results from the spatial DMTS task 

Spatial Training 

 500 ms  No Delay 500 ms 2s 

*Obi n=2,153 49.51% n=5,000 90.54% n=6,208 89.42% n=6,621 95.05% 

*Luke n=672 52.23% n=3,000 88.27% n=3,244 79.41% n=3,441 95.50% 

*Han n=6,076 57.55% n=2,183 98.44% n=3,210 77.73% n=1,931 80.84% 

*Hank n=9,566 50.61% n=5,617 96.83% n=26,059 75.40% n=15,514 60.40% 

 

Temporal DMTS        The results from the training phases and experimental version of the task are 

shown in Table 3.3.  The monkey that failed to meet criterion on the identity and spatial tasks 

(Hank) was excluded from this and future tasks.  Because he had difficulty on physical matching 

tasks, it was expected that he would encounter more difficulty when the task required matching 

with icons.   The remaining monkeys completed a temporal training task to familiarize them with 

the delays and temporal icons that they would use to respond to this task.  On each trial, a large 

clipart image of a clock appeared on the screen for 3s, followed by either a short (5s) and long (15s) 

delay interval.  The delay was randomly selected on each trial and the temporal choice icons 

appeared in randomly chosen positions so the monkey had to learn by trial-and-error that short 

delays were associated with one icon (the purple triangle) whereas long delays were associated 

with a different icon (the black circle).   All seven monkeys reached criterion on this task and moved 

on to the experimental version.  All seven monkeys that completed the experimental version of the 

Spatial DMTS 

 Trials  Response Latencies  All Trials  Last Session 

Chewie n = 4,312  Md  = 6.27 P95  = 27.25  73.54% ***  85.71% *** 

Gale n = 6,873  Md  = 5.23 P95  = 6.74  80.68% ***  85.83% *** 

*Han n = 11,619  Md = 5.19 P95   = 12.86  77.73% ***  85.60% *** 

*Lou n = 8,841  Md = 5.41 P95   = 11.88  88.19% ***  90.20% *** 

*Luke n = 1,543  Md = 5.31 P95   = 7.75  87.23% ***  96.60% *** 

Murph n = 2,935  Md = 5.17 P95   = 7.67  87.80% ***  91.67% *** 

*Obi n = 1,528  Md = 5.09 P95  = 7.52  88.42% ***  89.61% *** 
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temporal DMTS task reached criterion.  The overall percent correct for each monkey was also 

significantly above chance (50%), p < .001. The median response latencies and 95th percentile score 

for latencies were calculated to determine where the majority of the responses fell along the 

timescale.  The monkeys responded within 5 seconds on 95% of the trials.  Additional values for 

each monkey are given in the Table 3.3.  The monkeys that did not participate in prior research 

examining what-where-when memory (Obi, Luke, Lou, and Han) are labeled in the table with an 

asterisk (*) to indicate that they were naïve to the task prior to this study. 

Table 3.3:  Results from the temporal DMTS task 

Temporal Training 

  All Trials   Last Session 

Chewie n = 5,159 80.77%  n = 1,000 85.40% 

Gale n = 3,898 68.70%  n = 348 81.61% 

*Han n = 7,704 75.80%  n = 1,000 83.70% 

*Lou n = 7,950 73.52%  n = 1,000 88.80% 

*Luke n = 6,032 79.01%  n = 1,000 89.40% 

Murph n = 3,868 76.01%  n = 842 84.20% 

*Obi n = 5,525 71.62%   n = 572 81.47% 
 

Temporal DMTS 

   Trials  Response Latencies   Percent Correct  Last Session 

Chewie  n = 2,167  Md = 2.59 P95  = 9.01  88.83% ***  85.95% *** 

Gale  n = 2,044  Md = 2.61 P95  = 3.95  79.65% ***  87.54% *** 

*Han  n = 2,853  Md = 2.36 P95  = 5.10  84.33% ***  84.49% *** 

*Lou  n = 4,008  Md = 2.48 P95  = 4.26  86.85% ***  86.22% *** 

*Luke  n = 4,797  Md = 2.34 P95  = 5.03  87.39% ***  94.19% *** 

Murph  n = 2,503  Md = 2.28 P95  = 3.30  88.77% ***  91.00% *** 

*Obi  n = 9,968  Md = 2.72 P95  = 5.35   87.15% ***  88.68% *** 
 

Agency DMTS     The results from the training phases and experimental version of the task are 

shown in Table 1.4.  The monkeys that did not participate in prior research examining what-where-
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when memory and prior agency research (Obi, Luke, Lou, and Han) are labeled in the table with an 

asterisk (*) to indicate that they were naïve to the task prior to this study. The monkeys each 

completed two orientation sessions; in the first session, they had to use the joystick to move a 

photo to a predetermined location on the computer screen and in the second session they had to 

refrain from touching the joystick while the photo moved.  In both of these sessions, they were 

presented with a  choice between the two agency icons and had to learn to select one icon in 

response to the first type of event and the other icon in the second type of event.  The purpose of 

these orienting sessions was to teach monkeys how to perform each event type and to teach them 

that the different events were associated with different responses.  In the training task, they were 

presented with a random selection of performed and observed trials and they had to distinguish 

between performed and observed events after 1s delay intervals. Four monkeys reached criterion 

on this task.  The remaining individuals completed the maximum number of trials without reaching 

this criterion.  However, because these monkeys were extremely close to the set criterion, they 

were allowed to move on to the experimental version of the agency task.   

The total number of trials and percent correct for each monkey on the experimental agency task are 

displayed in Table 3.4.   The overall percent correct for each monkey was also significantly above 

chance (50%), p < .001.  The monkeys completed the task when they reached the criterion (85% 

correct on three consecutive sessions) or completed 10,000 trials on this task.   Four of the seven 

individuals met criterion on this task.  However, because these individuals were very close to the 

criterion (~70%) and were significantly above chance, they were permitted to continue to the final 

DMTS task in this experiment.  The median response latencies and 95th percentile score for 

latencies were calculated to determine where the majority of the responses fell along the timescale 

(see Table 1.4).  The monkeys responded within 11 seconds on 95% of the trials.  Additional values 

for each monkey are given in the Table 3.4. 
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Table 3.4:  Response Latencies and Percent Correct for the Agency DMTS 

Agency Training 

   All Trials   Last Session 

Chewie  n = 5,381 81.88%   n = 177 90.96% 

Gale  n = 8,718 71.68%   n = 325 88.31% 

*Han  n = 25,579 61.77%   n = 1,295 68.11% 

*Lou  n = 38,631 62.88%   n = 236 69.92% 

*Luke  n = 15,877 71.89%   n = 1,619 95.99% 

Murph  n = 14,363 66.73%   n = 1,388 80.84% 

*Obi   n = 12,360 59.03%     n = 508 66.93% 
 

Agency DMTS 

   Trials Response Latencies  All Trials  Last Session 

Chewie  n = 8,407 Md = 6.55 P95  = 10.81  79.16% ***  79.40% *** 

Gale  n = 7,583 Md = 4.31 P95  = 5.52  82.91% ***  90.60% *** 

*Han  n = 16,129 Md = 7.30 P95  = 10.65  62.54% ***  62.54% *** 

*Lou  n = 8,835 Md = 8.02 P95  = 14.39  57.36% ***  62.50% *** 

*Luke  n = 3,132 Md = 7.88 P95  = 10.22  68.10% ***  66.73% *** 

Murph  n = 12,490 Md = 7.44 P95  = 9.63  72.48% ***  74.47% *** 

*Obi  n = 13,569 Md = 7.77 P95  = 10.31   61.89% ***  59.36% *** 
 

Context DMTS      The monkeys completed a series of training tasks to teach them the association 

between the background display and the context icons.  In the first training task, the monkeys were 

shown the background at the same time as the context icon.  The monkeys quickly met criterion on 

this no delay version of the task.  In the next training task, the background appeared for 3s and 

disappeared for 1s before the monkeys were given the choice between the context icons. Only three 

of the seven monkeys reached the training criterion on this task (see Figure 3.5).   These individuals 

moved on to complete the 5s delay task.   There were four individuals that did not meet the 

criterion: two of the monkeys were included in the 5s delay task to determine whether a longer 

delay interval (and consequently longer waiting times between trials) would improve accuracy, but 

the other two monkeys (Gale and Murph) did not complete the 5s delay task   This is because these 
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monkeys had completed the context training prior to the other individuals, and it was only after 

their training that I considered including the 5s delay as a control.  In the 1s delay task, there was 

very little cost to responding incorrectly on a trial.  The monkeys may not have been sufficiently 

motivated to learn how to perform this task because they could simply respond randomly on each 

trial and get a large number of pellets.  In contrast, there was a longer wait time if a monkey 

responded incorrectly after a 5s delays and if the monkeys were responding randomly they would 

receive 20% of the pellets they normally would in a session.  However, presenting the monkeys 

with a longer delay time did not improve accuracy for these individuals.  In fact, none of the 

individuals reached criterion, even after they completed a large number of trials (10,000 trials or 

persisting on the task for one month without improvement). 

Figure 3.5: Results from the context DMTS task. 

Context Training 

    500 ms Delay  1s Delay  5s Delay 

Chewie  n = 4,159 84.23%  n = 14,600 53.30%  n = 3,262 51.69% 

Gale  n = 4,177 84.70%  n = 8,086 66.87%   ----------   --------- 

Han  n = 3,000 88.80%  n = 8,016 65.70%  n = 4,489 50.79% 

Lou  n = 1,940 92.73%  n = 16,531 65.82%  n = 11,005 56.68% 

Luke  n = 7,209 94.65%  n = 10,581 72.89%  n = 2,764 52.42% 

Murph  n = 3,609 96.70%  n = 7,160 68.52%    ----------   --------- 

Obi   n = 2,602 92.43%   n = 2,352 65.65%   n = 12,729 52.39% 
 

 

4     EXPERIMENT 2 

The purpose of this experiment was to examine how rhesus monkeys remembered information 

about self-agency, along with spatial, temporal and contextual features when they were not able to 

anticipate which feature they would be tested on.  The previous experiment provided baseline 

measurements of how monkeys remembered the individual components in memory as well as a 
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way to measure differences in retrieval accuracy for the different features, but the present study 

was designed to determine whether retrieval of any given feature was a reliable predictor of 

retrieval of the other features.  If so, this would indicate that the components are integrated to form 

a cohesive memory for the past episode. In the past, research with rhesus monkeys has shown 

some evidence for what-where-when memory integration (Hoffman, Beran & Washburn, 2009).  For 

example, for some individuals, the ability to retrieve temporal information concerning a past event 

was a reliable predictor of whether they were successful at retrieving the other event components.  

Of particular interest in the present study was whether successfully retrieving information about 

the environmental context in which an event occurred and/or one’s involvement in a past event 

was a successful predictor of whether monkeys will retrieve the additional memory components as 

well.  If a monkey’s performance on the agency and context tests reliably predicted their ability to 

retrieve other event features, this would indicate that these may indeed be relevant features that 

are integrated in memory for past events.  

Participants 

The same eight rhesus monkeys from the previous experiment participated in this experiment.  

Note that even those monkeys that failed to learn some portion of the Experiment 1 tasks were 

tested in the present study.  

Event Presentation      

At the beginning of each trial a start box appeared in the center of the screen.  In order to begin the 

trial, the monkey used the joystick to move the cursor to the start box.  A photo was randomly 

selected from the same set of images used in the previous experiment.   The photo appeared at the 

bottom-center of the computer screen.  It appeared against one of the two context backgrounds 

(dim or bright) used in the previous experiment.  On each trial, the computer program also 
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determined whether the trial would be a performed or observed trial.  On monkey-observed trials, 

the object moved across the screen in a diagonal path to a randomly selected location (top-left or 

top-right), as in Experiment 1.  In contrast, on monkey-performed trials, the object remained 

stationary until the monkey touched the joystick.  The monkey could only move the joystick in the 

general direction of the selected location (i.e., the program only responded to input in that 

direction).  However, to ensure that monkeys were aware that they were in control on these trials, 

the photo stopped moving if the monkey released the joystick and would resume again once the 

monkey moved the joystick in the appropriate direction.  Although it was necessary to ensure that 

monkeys understood that they played a role in monkey-performed trials, it was also essential to 

control for any visual cues that might serve as a basis to discriminate the two trial types.  In order 

to control for these cues, the movement of the object was constrained to the same path and speed 

on performed and observed trials.  Although the monkey was responsible for moving the object on 

performed trials, the computer program constrained the photo’s movement so that it moved along 

a straight diagonal path and at the same speed as monkey-observed trials. 

After the photo reached the location (defined by a dark grey square) it remained there for 3s before 

disappearing. The program randomly selected a retention-interval for each trial (5s or 15s), but 

before the retention-interval could begin, the monkeys had to deflect the joystick cursor to make 

contact with a large blue “+” in the bottom-center portion of the screen.  This control was also used 

in the previous experiment and was necessary to ensure that the monkeys could not use 

information about their hand position to solve the memory tests.    

Paired Memory Test      

The retention-interval was followed by two randomly selected memory tests.  Because there were 

five different question types (identity, spatial, temporal, context and agency), this randomization 

process resulted in 20 different trial-types.  These trial types can be broken down according to 



 

 

57 

which memory test was presented first:  1) An identity test followed by another test type (i.e., 

identity-spatial, identity-temporal, identity-context, identity-source), 2) A spatial test followed by 

another test type (i.e., spatial-identity, spatial-temporal, spatial-context, spatial-agency),  3) A 

temporal test followed by another test type (i.e., temporal-identity, temporal-spatial, temporal-

context, temporal, source),  4) An agency test followed by another test type (i.e., agency-identity, 

agency-spatial, agency-temporal, agency-context), and 5) A context test followed by another test 

type (i.e., context-identity, context-spatial, context-temporal, context-agency),  The memory tests 

were identical to those used in the previous experiment; however, in this experiment the monkeys 

did not know which tests they would be given and had to complete two tests after each event.  As in 

the prior experiment, the monkeys continued to receive auditory feedback after each test, and if 

correct, they received a flavored primate pellet.  There was a 5s interval between each trial to 

reduce the chance of proactive interference and the monkeys always had to make contact with the 

start box to initiate a new trial.  An illustration of the paired memory test is provided in Table 4.1. 

  
 

 

 

 

 

 

 

 

 

 

Figure 4.1:  An illustration of the paired memory test used with rhesus monkeys. 
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Results 

The monkeys completed at least 5,000 trials on this task (1,000 trials of each test type) and were 

allowed to work on the task for 5 to 6 test sessions per week for a six week period.  The monkeys 

completed an average of 13,252 trials in this experiment (with an average of 23 sessions and 582 

trials per session).   There were 20 possible test pairs so this large number of trials was necessary 

to have a sufficiently large sample for each test pair/condition.    

A binomial test was conducted to determine whether performance on the different test types was 

significantly different than chance (50%) and the results are displayed in Table 4.1.  The monkeys 

were significantly above chance on the identity, spatial, temporal and agency tests when they were 

presented as the first test in the pair.  However, only two of the eight monkeys were significantly 

above chance (p < .001) on the context test.   There was one monkey who also exhibited chance 

performance on the spatial task.  The monkeys were less accurate at recalling many of the 

components if they had to do so after first responding to a different memory test.  Even in this 

situation, the monkeys all remained above chance on the identity and temporal components, but 

two individuals were no longer above chance on the spatial test and agency tests (the same 

individuals in both cases).    

The monkeys who had retained context information continued to do so when it was presented as 

the second memory test, and one individual actually performed better on the context test when it 

was presented second and was significantly above chance when the test was given in this position.   

Although these differences were statistically significant, they were not the high levels observed in 

the previous experiment, but did indicate that monkeys retained some features from past events in 

memory.   This analysis included all of the trials completed, so the percentage correct does not 

reflect how learning may have improved monkeys performance over time.  In the next analysis, the 

first 500 and last 500 trials were examined to determine how accuracy changed over time.   
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Table 4.1:  Accuracy when presented as first test 

Accuracy When Presented As First Test               

  Trials  Identity Spatial Temporal Agency Context 

Chewie 2,380  78% *** 58% *** 90% *** 55% *** 52%  
Gale 2,895  95% *** 63% *** 76% *** 55% *** 49%  
Lou 3,398  83% *** 57% *** 81% *** 54% *** 57% *** 

Murph 3,068  93% *** 64% *** 90% *** 61% *** 53% *** 

Obi 1,510  91% *** 52%  87% *** 56% *** 52%  

             
Accuracy When Presented As Second Test               

  Trials  Identity Spatial Temporal Agency Context 

Chewie 2,380  76% *** 51%  71% *** 52%  52%  
Gale 2,895  88% *** 53% ** 65% *** 52% * 51%  
Lou 3,398  75% *** 51%  65% *** 52%  54% *** 

Murph 3,067  89% *** 54% *** 73% *** 54% *** 53% *** 

Obi 1,510  84% *** 49%  66% *** 53% * 53% * 
 

Accuracy and Experience   The first block of 500 trials was analyzed to determine whether 

monkeys were significantly above chance on the first trials they experienced.  The only memory 

tests included in this analysis were the first test from each pair.  The results from the first block of 

500 trials revealed that all of the monkeys were significantly above chance on the identity and 

temporal tests.  One of the five monkeys was also significantly above-chance on the agency test 

during these initial trials.  However, none of the monkeys showed above chance performance on the 

spatial or context tests.  The last block of 500 trials was also analyzed to determine whether 

accuracy improved across sessions.  The previous experiment consisted of a long series of tasks and 

the monkeys may have needed to have some period to relearn the different tasks and icon 

associations.  In the last block of trials, all of the monkeys were significantly above chance on the 

spatial test and two additional individuals showed above chance performance on the agency test.  

The data and results from these analyses are displayed in Table 4.2.   
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Table 4.2: First and last trial blocks 

First and Last Trial Blocks 

  First Block of 500 Trials  Last Block of 500 Trials 

Identity 
  

Chewie n = 96 68.75% ***  n = 102 82.35% *** 

Gale n = 91 86.81% ***  n = 101 100.00% *** 

Lou n = 108 67.59% ***  n = 100 91.00% *** 

Murph n = 98 76.53% ***  n = 100 99.00% *** 

Obi n = 93 76.34% ***   n = 96 97.92% *** 

Spatial 
  

Chewie n = 101 51.49%   n = 100 63.00% * 

Gale n = 96 55.21%   n = 102 64.71% ** 

Lou n = 96 50.00%   n = 81 61.73% * 

Murph n = 113 51.33%   n = 101 63.37% ** 

Obi n = 109 51.38%     n = 103 43.69%   

Temporal 
  

Chewie n = 96 84.38% ***  n = 103 91.26% *** 

Gale n = 97 65.98% **  n = 104 79.81% *** 

Lou n = 93 68.82% ***  n = 113 86.73% *** 

Murph n = 89 73.03% ***  n = 90 92.22% *** 

Obi n = 98 82.65% ***   n = 111 89.19% *** 

Agency 
  

Chewie n = 103 52.43%   n = 107 47.66%  
Gale n = 108 60.19% *  n = 98 53.06%  
Lou n = 99 58.59%   n = 98 57.14%  
Murph n = 110 54.55%   n = 110 64.55% ** 

Obi n = 94 51.06%     n = 103 59.22% p < .10 

Context 
  

Chewie n = 104 53.85%   n = 88 43.18%  
Gale n = 108 45.37%   n = 95 40.00%   

Lou n = 104 55.77%   n = 108 54.63%  
Murph n = 90 50.00%   n = 99 56.57%  
Obi n = 106 51.89%     n = 87 47.13%   

 

Response Latencies    The monkeys responded relatively quickly on the majority of trials (on 95% 

of the trials monkeys responded to both questions within 4 seconds).  The response latencies for 

each monkey are given in Table 4.3.  However, one concern is that monkeys may have taken longer 
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to respond on some types of trials and may have used this as a cue in the memory test.  For 

example, the monkeys could have potentially taken longer to respond when there was a long delay 

than when there was a short delay.  They could have moved away from the test station during these 

longer delays and then upon returning could use their recent behavior as a cue to guide their 

responses (e.g., I had to walk back over to the test station before responding, so I should select the 

long icon).   In addition, the added time could have made the distinction between short and long 

delays more pronounced and may have made the task easier.  However, the response latencies for 

short and long delay trials indicated that monkeys responded just as quickly on both trial types.   

The median response latency was 2.22 seconds for short delay trials and 2.31 seconds for long 

delay trials.   For both trial types, 95% of the trials completed fell below the 4 second mark, 

indicating that the monkeys responded quickly on both types of trials.  The response latencies also 

did not vary as a function of whether the monkey performed or observed the event.  The median 

response latency was 2.27 seconds for both performed and observed trials, and the majority of the 

responses (95%) were made within 4 seconds.   

Table 4.3: Response latencies for the first and second memory tests 

Response Latencies 

   Latency for Test 1  Latency for Test 2 

 N  Median P95 SD  Median P95 SD 

Chewie 11,899  2.20 4.59 69.59  1.89 2.95 527.62 

Gale 14,472  2.11 3.11 708.12  2.03 3.13 806.61 

Lou 16,988  2.38 3.88 776.00  2.31 3.69 374.49 

Murph 15,330  2.22 3.38 363.47  2.18 3.41 961.24 

Obi 7,552  2.45 4.55 42.63  2.22 3.80 48.61 
 

Comparing Accuracy for Performed and Observed Trials    Another question was whether 

monkeys were more likely to retrieve correctly the event features if they had performed the event 

than if they had simply watched the event.   If there was an enhancement effect for performing the 
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trial, this effect would likely be most apparent when the task was still relatively novel.  Each 

monkey’s performance on the first 500 trial block were examined to see whether performing the 

event led to enhanced memory for this agency information, as well as the other event features.   A 

binomial logistic regression was used to determine whether monkeys were more accurate at 

recalling individual features on performed or observed trials.   Although they were significantly 

above chance at reporting the identity component for both observed and performed trials, an 

enhancement effect was found for the identity test: the monkeys performed significantly better on 

this test when they had performed the event themselves.  However, the monkeys performed 

significantly better on the agency test when they had observed the event than when they had 

performed it.  The percent correct for both trial types and the results of the analyses are provided in 

Table 4.4. 

Table 4.4:  Comparing accuracy on observed and performed trials 

Comparison of Observed and Performed Trials 

 Observed   Performed   Binary Logistic Regression 

  Trials Correct   Trials Correct   B S.E. Wald df Exp(B) P 

Identity 249 71% *** 237 79% *** -0.47 0.21 4.79 1 1.59 0.029 

Spatial 247 54%  268 50%  0.19 0.18 1.10 1 0.83 0.294 

Temporal 222 73% *** 251 77% *** -0.25 0.21 1.43 1 1.29 0.232 

Agency 264 69% *** 250 41% ** 1.19 0.19 41.01 1 0.31 0.001 

Context 275 49%   237 54%   -0.17 0.18 0.87 1 1.18 0.351 
 

However, the monkeys were more likely to select the observed icon (64%) than the performed icon 

(36%) on these trials (i.e., they were just more likely to select the observed icon regardless of the 

type of trial) and this is why they appeared to be more accurate on observed trials.   

Integration of Features     The probability of getting the second test correct increased for two of 

the monkeys if they had also been correct on the first memory test.  This was determined using a 

binary logistic regression to determine whether performance on the first test was a reliable 
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predictor of performance on the subsequent memory test (see Table 4.5).  The odds ratio, which is 

denoted by Exp(B), can be interpreted as the relative increase in the dependent variable given a one 

unit increase in the independent variable.   For Murph, the probability of correctly responding to 

the second test in the pair increased by a factor of 1.11 if he had responded correctly to the other 

memory test, p < .001.  For Gale, the probability of correctly responding to the second test in the 

pair increased by a factor of 1.13 if he had responded correctly to the other memory test, p < .001.  

Table 4.5:  Binary logistic regression to examine feature integration 

Feature Integration  
  N B S.E. Wald df Exp(B) P 

Chewie 11,900 0.06 0.04 1.94 1 1.06 0.164 

Gale 14,477 0.12 0.04 10.85 1 1.13 0.001 

Lou 16,992 0.05 0.03 2.02 1 1.05 0.155 

Murph 15,339 0.10 0.04 7.52 1 1.11 0.006 

Obi 7,552 0.06 0.05 1.28 1 1.06 0.257 

 

Separate analyses were also done for each of the 20 test pairs to determine which specific event 

features showed evidence of integration.  The results from this binary logistic regression are given 

in Table 4.6.   For two individuals, performance on the spatial memory test was a significant 

predictor of performance on the agency test.  However, the odds ratio indicated that there was an 

inverse relationship between the two outcomes.  Specifically, if these monkeys had been correct on 

the spatial test, they were actually less likely to be correct on the agency test.  Some monkeys also 

showed this pattern on the agency-temporal and context-temporal test pairs.   The one feature that 

did show evidence of integration with other features was the temporal component.   For one 

monkey, the chance of being correct on the spatial memory test increased if he had been correct on 

the temporal test that came before it.  This same monkey, along with another individual, was also 
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more likely to be correct on the identity test if he had correctly responded to the temporal test that 

preceded it.  

Table 4.6:  Binary logistic regression for separate test pairs 

Feature Integration for Separate Test Pairs 

  Chewie Gale Lou Murph Obi 

    Exp(B) p Exp(B) p Exp(B) p Exp(B) p Exp(B) P 

Identity Spatial 1.15 0.49 1.30 0.41 1.14 0.448 1.48 0.14 0.98 0.96 

Identity Temporal 1.25 0.30 0.98 0.97 1.38 0.088 1.03 0.93 0.85 0.70 

Identity Agency 1.07 0.74 0.86 0.72 1.20 0.308 0.84 0.52 1.04 0.91 

Identity Context 1.16 0.44 1.16 0.63 1.10 0.626 1.07 0.81 1.38 0.40 

Spatial Temporal 1.23 0.26 1.06 0.71 1.15 0.323 0.81 0.24 1.44 0.08 

Spatial Agency 0.96 0.79 0.78 0.11 1.11 0.451 0.74 0.04 0.61 0.02 

Spatial Context 0.74 0.07 1.00 1.00 0.90 0.448 0.84 0.26 0.90 0.62 

Spatial Identity 1.01 0.97 1.60 0.12 1.20 0.255 1.59 0.05 1.32 0.36 

Temporal Spatial 1.31 0.31 1.47 0.03 1.10 0.573 1.44 0.15 0.81 0.49 

Temporal Agency 0.82 0.49 1.14 0.47 1.01 0.935 1.16 0.56 0.85 0.61 

Temporal Context 1.11 0.71 0.98 0.92 1.36 0.080 0.82 0.37 0.81 0.45 

Temporal Identity 0.94 0.84 1.65 0.03 0.76 0.229 1.21 0.60 2.55 0.01 

Agency Spatial 0.90 0.51 1.09 0.57 1.04 0.761 0.94 0.65 0.96 0.85 

Agency Temporal 1.42 0.06 0.62 0.00 0.96 0.792 0.74 0.09 1.09 0.69 

Agency Context 1.00 1.00 0.93 0.61 0.95 0.697 0.91 0.52 1.47 0.06 

Agency Identity 0.79 0.24 1.20 0.39 1.22 0.205 1.01 0.97 1.16 0.59 

Context Spatial 1.00 0.98 0.94 0.66 0.80 0.100 1.05 0.75 0.93 0.74 

Context Temporal 0.90 0.57 0.74 0.06 0.74 0.041 1.06 0.74 1.36 0.17 

Context Agency 1.29 0.12 0.99 0.96 0.92 0.570 1.07 0.63 0.73 0.12 

Context Identity 1.13 0.53 1.43 0.09 0.86 0.323 1.40 0.15 0.77 0.34 
 

5     EXPERIMENT 3 

The aim for this experiment was to assess how children between the ages of 3.5 and 4.5 years of age 

performed on the paired memory task used with rhesus monkeys.  To date, there are no 

comparative studies assessing episodic-like memory or even working memory for what-where-
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when information in children and a nonhuman species on a comparable memory test.   A question of 

particular interest for the present research is whether children are able to remember information 

about their own role in past events along with spatial, temporal and contextual features.  This study 

is also particularly relevant because it provides a useful new methodology which may be able to be 

used with various different populations of children, including those with developmental disabilities 

and/or episodic memory impairments.    The task itself can be used to assess whether particular 

populations of children and adults (e.g., those on the autistic spectrum) have episodic memory 

impairments or whether their failures on episodic memory tasks result from the verbal nature of 

the tasks traditionally used in this area of research.   If such episodic impairments are less prevalent 

when spatial/visual tasks are used in lieu of verbal tasks, an experimental paradigm like the one 

proposed here could be used to teach children and adults more effective encoding strategies to 

improve their memory. 

Participants 

The participants in this study were 20 children between the ages of 42 m (3.5 years) and 55 m (4.5 

years).   The majority of the children were in the middle part of this range; 15 of the 20 participants 

in this study were within one month of their 4th birthday (47-49 m).   The remaining five children 

were the following ages: 42 m, 52 m, 53 m, 54m, and 55m.  The children were recruited and tested 

at the Learning and Development Lab and the Child Development Center at Georgia State 

University.   

 

Procedure 

The procedure was very similar to the one used with rhesus monkeys in Experiment 2, but with 

minor changes to ensure that children were able to understand the objective of the more abstract 

memory tests (i.e., the temporal, context, and agency).  In contrast to monkeys which learned the 



 

 

66 

rules of each DMTS task through trial-and-error, children had a very limited amount of time to 

complete this experiment.  Consequently, they were given a brief demonstration at the beginning of 

the experiment in which they learned about the different types of events and delays used in the 

task.  The demonstration began with the experimenter asking the child if he or she wanted to play a 

fun game on the computer.  Then, the experimenter said they would show the child how to play the 

game.  There were eight basic parts to the demonstration – each one accompanied by experimenter 

narration and a visual animation that mirrored the memory task itself.   The experimenter script is 

described here (with a description of the visual display in brackets).  Screen captures of the 

animations used for each stage of the demonstration are also provided in Figure 5.1.   

Demonstration     The instructions began with a novel photo of a cat (one that would not be used in 

experiment) and two spatial locations defined by dark grey boxes measuring 7.5cm x 7.5cm.  The 

experimenter said to the child “I’m going to show you a picture” and pointed to the photo of the cat.    

1) The experimenter added, “…and it is going to move.  Sometimes it will move itself.”   The 

experimenter then clicked a button to begin the animation and the photo moved to the 

upper-left corner.   

2) Then, the experimenter said “…and sometimes you will move it.  Here, try it.”    The 

experimenter gave the child the joystick (which had been positioned behind the computer 

screen).  The child only needed to move the joystick in any direction for picture to begin 

(and continue moving) until it reached upper-left location. 

3) The experimenter pointed out that the picture could move to either of the two locations on 

the screen, saying “Sometimes it will move here and sometimes it will move here” while 

pointing to each location. 

4) Next, the experimenter familiarized the children with the context backgrounds.  A dark 

background appeared on the screen, with the corresponding icon (a dark shaded light bulb) 
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in the center of the screen.  The experimenter told the child, “Sometimes the picture will 

move on a dark screen… like this” and pointed to the dim background and icon on the 

screen. 

5) The context background changed to the bright screen and the corresponding icon (the 

brightly lit light bulb) appeared on the screen.  The experimenter said, “Sometimes the 

picture will move on a bright screen… like this” while pointing to the background and icon. 

6) Finally, the experimenter familiarized the children with the delay intervals that would be 

used in the study.  The icon for the short delay (a rabbit) appeared on the screen and the 

experimenter said, “Then I’ll ask you a question.  Sometimes I’ll do it really fast like a bunny 

rabbit.  See… like this.”  The screen went blank and a 5s delay interval followed.  The bunny 

rabbit icon reappeared on the screen and the experimenter said, “Then, I will ask you a 

question…see how fast that was?” 

7) Next, the icon for the long delay (a turtle) appeared on the screen and the experimenter 

added, “Sometimes I’ll do it really slow like a turtle… like this”.  The screen went blank and a 

15s delay interval followed.  The turtle icon reappeared on the screen and the experimenter 

said, “Then, I will ask you a question…see, that took a long time!” 

 The demonstration concluded with the experimenter asking “OK, are you ready to play?” 
 

Testing Session    This demonstration phase was followed by a 10 m testing session, in which the 

children completed 10 trials (one for each type of paired memory test).  The children were 

randomly assigned to one of two conditions (condition A or condition B).  The same question pairs 

were presented to both groups, but in a different order to control for potential order and 

interference effects.  For example, although both groups would receive a paired memory test in 

which they had to report both agency and temporal  
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Figure 5.1:  Screen captures showing each stage of the demonstration. 

memory, group A would be given the tests in a different order (temporal  agency) than group b 

(agency  temporal).  The photos used as stimuli in this study were 10 photos selected from the 

rhesus monkey experiment.  The photo, location, delay length, background context, and whether 

the event was to be performed or observed was semi-randomly determined.  There were 

parameters in the computer code to ensure that each photo was only selected once in the session 

and there were an equal number of each trial type (e.g., short/long delays for the temporal 

component).   
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There were some minor differences in the apparatus used in this task compared to those in 

Experiment 2.  The monkeys used a vertically mounted gamepad joystick to move the photos on the 

screen and to select choice stimuli.  However, children in this age group did not have much 

experience with these types of devices and in pilot testing they often did not have the manual 

dexterity needed to move the joystick in a specific direction and hold the joystick in this position for 

several seconds while the photo moved on the screen.  Consequently, the program was modified to 

respond to user-input in any direction (i.e., the child simply needed to move the joystick in any 

direction and the photo would begin moving) and the joystick did not need to be held down while 

the object moved; however, the children were not told this and they continued to maintain contact 

with the joystick and appeared to be under the impression that they were in absolute control of its 

movement. 

The experimenter in this study gave the participant basic task instructions during the test session 

(e.g., “move the picture”) and also provided instructions for the memory tests after each event (e.g., 

“which picture did you see?”).  The experimenter was not entirely blind to the correct answer (for 

many of the tests, such as the temporal and agency tests, this would not be possible).  However, the 

experimenter followed a carefully designed script to avoid any unintentional cuing during the 

memory tests and did not make eye contact or otherwise engage children when the memory tests 

appeared on the screen.   There were other sources of information in the environment that could 

also serve as cues in this experiment.  In some cases, the parent remained in the room because the 

participant was anxious in the experimental setting and did not want to separate from his or her 

parent.  In these cases, the parents sat behind their child and were carefully instructed not to help 

their child by providing any “answers” during the task.   However, none of the children sought help 

from their parents or from the experimenter during this experiment.  Another concern was that 

children might be tempted to touch the joystick on all trials.  To ensure that they only had access to 

the joystick on performed trials, it was positioned behind the computer screen.  The experimenter 
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gave the child the joystick on performed trials, but always put it back behind the computer screen 

after the event was completed.  This was done to ensure that the child could not use the joystick as 

a visual cue during the memory test (i.e., “If the joystick is in front of me, I must have moved the 

picture.”)  

Event and Memory Tests      The experimenter controlled the task using a wireless mouse.  Each 

trial began with a start box in the center of the screen, which the experimenter clicked to begin a 

trial.  The program displayed on-screen instructions and a script for the experimenter.  If the child 

needed to perform the event on a given trial, the experimenter’s instructions were to say, “OK, you 

get to move the picture” and give the joystick to the child.   After the event was completed, the 

joystick was placed back behind the computer screen (see Figure 5.2).  

Figure 5.2:  An illustration of the task used with children. 

The children each received the paired questions in a randomly determined order.  The choice icons 

appeared on the screen and the experimenter followed a verbal script when asking the children 

about the event (see Figure 5.3).   The experimenter asked the child the question as it was written 

in the script and pointed to both choice icons that corresponded to each possible response (in the 
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order of left  right).   The children were encouraged to point to one of the choice icons, but they 

could also respond verbally if they had trouble using the choice icons.  To ensure that children did 

not become frustrated by incorrect responses, they always received positive feedback after each 

memory test.  After they made a selection, the experimenter would say “good job” and move on to 

the next memory test or trial.  At the end of the experimental session, the children were allowed to 

select a toy as a gift for participating.    

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  The script and icon choices used with children. 

 

Results 

The children did not appear to engage in any type of overt verbal rehearsal strategy during the 

delay intervals.  In a small number of cases, a child would initially comment that the delay was long, 
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but they did not appear to maintain this information in working memory by continuing to rehearse 

this information.  Instead, they tended to focus on something else in the environment to look at or 

comment on before the memory test became available.  Some children spontaneously labeled the 

photos or asked the experimenter “what is that?” if they were confused about the photo.  The 

experimenter responded by saying “I don’t know.  We will have to find out later.”  This was done to 

keep the task consistent across trials. 

 
   

Figure 5.4:  The childrens’ accuracy for each event feature. 

 

The children performed at levels significantly greater than chance on the identity (83%), spatial 

(85%), agency (88%), and context (68%) tasks when they were presented first in the test sequence.  

However, they were not significantly above chance at the temporal task (48%).  The children 

remained above chance on the identity, spatial, and agency tasks even when they were presented as 
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the second memory test.  In contrast, the children were no longer above chance on the context 

memory test when it was presented as the second test in the sequence (see Figure 5.4). 

Memory for the Temporal Feature   One of the possibilities could be that the children were 

overestimating or underestimating the delay length on all trials (i.e., always selecting the short or 

long temporal icon on all trials).  They did show a general bias in selecting the short temporal icon 

more often (67.5%) than the long temporal icon (32.5%), and this difference was statistically 

significant, χ2(1, N = 40) = 5.74, p < .05.  They showed this bias across both short and long delay 

trials (see Figure 5.5). 

 

Figure 5.5:   Frequency of choosing the short and long delay icons on the first test. 

 

It is likely that most children at this age are just beginning to learn about temporal intervals and the 

difference in delays used in this task may have been too subtle for the children to distinguish.   The 

data also were analyzed separately for each child to see whether this was the general trend for all of 

the children in the study or whether a few individuals that scored extremely low on the temporal 

tests were driving this effect.  The scores were approximately evenly distributed: 10% of the 
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children were incorrect on all four temporal tests, 35% correctly responded to one of the four tests, 

25% were correct on two of the four tests, and 30% were correct on three of the temporal tests.   

Comparing Accuracy for Performed and Observed Trials      The children were only above chance 

at remembering the identity, spatial, and agency features from observed events.  However, when 

they performed the events themselves, they were significantly above chance at reporting all of the 

features, including the temporal component, which the children were not above chance on initially 

when all trial types were lumped together (see Figure 5.6)   The difference in accuracy for the 

temporal feature on performed and observed trials was statistically significant, as determined by a 

chi-square difference test, χ2(1, N = 40) = 8.02, p < .01.  This analysis only included data from the 

first memory test.  The data from the second memory test were not included because the added 

amount of time taken to respond on these memory tests resulted in poorer performance and 

including them here might have obscured any real effect agency had on memory.   

 

Figure 5.6:  Accuracy when analyzed as a function of trial type (observed/performed) 
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Feature Integration     One of the important questions in this experiment was whether children 

were more likely to respond correctly to the second question if they had correctly retrieved the 

previous event feature from memory.  A binary logistic regression was used to determine whether 

successful performance on the first memory test predicted subsequent performance on the second 

memory test. The results indicated that children were significantly more likely to respond correctly 

to the second memory test if they had been successful on the first memory test χ2(1, N = 100) = 

12.63, Exp(B) = 2.22, p < .01.   However, due to the large number of possible test pairings and 

relatively small number of trials, it was not possible to use binary logistic regression to examine 

this relationship in more detail (i.e., at the level of specific test pairings).  However, a chi-square 

difference test was used to examine the relationship between correct retrieval of specific event 

features.  This was done by comparing the number of trials in which children correctly retrieved 

both features from memory to what we would expect based on accuracy rates for each of the 

components alone (this expected value was calculated by multiplying the observed probabilities for 

the two features).   There were differences between the expected and observed probabilities for 

some test pairs (identity-spatial, identity-temporal, and spatial context), but these differences were 

not significant using a chi-square difference test (see Table 5.1).   

This is likely due to the small number of trials within each test pairing (n=20) because the binary 

logistic regression on all trials did reveal a significant relationship between the test outcomes.  For 

binary logistic regression with one predictor variable, a minimum sample size of 100 is needed to 

ensure sufficient power to detect a statistical effect (Long, 1997; Peduzzi, Concato, Kemper, Holford 

& Feinstein, 1996).  This criterion for minimum sample size was met when all trials types were 

included in the analysis (N = 200), but not when separate analyses were performed on each 

possible testing pairing (N = 20). 
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Table 5.1:  Results of chi-square tests used to test for feature integration in children 

Examining Integration in Paired Tests with Children  

 N Test 1 Test 2   Expected 
Probability 

Observed 
Probability   χ2 P 

Identity – Spatial  20 80% 81%  65% 75%  0.48 0.490 

Identity - Temporal  20 80% 44%  35% 50%  0.92 0.337 

Agency – Identity  20 80% 80%  64% 70%  0.11 0.736 

Context – Identity  20 60% 80%  48% 50%  0.00 1.000 

Spatial – Temporal  20 81% 44%  36% 25%  0.48 0.490 

Agency – Spatial  20 80% 81%  65% 70%  0.11 0.736 

Spatial – Context  20 81% 60%  49% 70%  1.67 0.197 

Temporal – Agency  20 44% 80%  35% 40%  0.11 0.744 

Temporal – Context  20 44% 60%  26% 25%  0.00 1.000 

Context – Agency  20 60% 80%  48% 35%  0.92 0.337 
 

6    DISCUSSION 

The previous research leading up to this set of experiments showed that monkeys are able to retain 

basic information about their recent behavior on a computerized task and use this information 

along with other event features to respond to pairs of memory tests.  Two of the four monkeys 

retain information about their own behavior even after relatively long delay intervals (1m – 3m).   

However, the monkeys could have solved this challenge by using proprioceptive information about 

their recent hand position to respond to the memory tests.   The present set of studies used a more 

stringent control (the monkeys were required to deflect the joystick down after each event whether 

or not they had performed the event).  The monkeys showed that they still performed the agency 

discrimination even when they had to deflect the joystick cursor to the bottom of the screen after 

each event.   It did appear to cause some interference though, as the monkeys had been more 

accurate in the previous agency tests which only required them to remove their hand from the 

joystick.   
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The rhesus monkeys performed the identity, spatial, temporal, and agency tasks at above chance 

levels, but none of the monkeys reached this level of performance on the context task and 

responded at chance levels even after extensive training.  The monkeys have used background color 

as a discriminative stimulus on other tasks (Flemming, Beran & Washburn, 2007) and in the 

present study the monkeys discriminated between the two backgrounds when no delay interval 

was included.  Therefore, it seems that the monkeys learned the basic discrimination, but that they 

either had trouble applying it to longer delay intervals or had trouble remembering the information 

after delays.  It is possible that the background did not attract the monkeys’ attention or that the 

brightness dimension was not relevant to the monkeys.   Even though monkeys were not above 

chance on the context test, it was included in the paired memory test because it could be that 

retrieval of context was dependent upon retrieval of other features.    

The rhesus monkeys also were successful on the identity, spatial, temporal tests when they could 

not anticipate which test type they would receive.  Two of the five individuals also were successful 

on the agency task in this format.  Although there is not much evidence that monkeys engage in any 

form of visuospatial rehearsal to maintain information in working memory (Washburn & Astur, 

1998), it is certainly possible that receiving the same type of memory tests across a large number of 

sessions made the task easier.  In contrast, the use of randomly selected memory tests is more 

similar to the type of tasks that we routinely engage in everyday and therefore provides a more 

accurate, albeit more difficult, measure of working memory for these event features.  The monkeys 

did improve on the memory tests over trials; although most of the monkeys were not initially above 

chance on the spatial, agency, and context tests, many monkeys improved and demonstrated above 

chance performance on the last 500 trials.   

There was also evidence that the identity, spatial, temporal and agency features were integrated in 

memory.  For two monkeys, the probability of correctly retrieving the feature from the second 
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memory test was significantly higher if the monkey had responded correctly to the first memory 

test.  This indicates that, at least in this experimental situation, some monkeys reliably integrated 

features from past episodes.  These monkeys also tended to perform better than the other 

individuals on the different memory tasks.  It is possible that being able to integrate features from 

past events facilitated encoding and subsequent retrieval.  However, it does not appear that 

integration is necessary for successful performance on these tasks, as three individuals failed to 

show any evidence of integration, but still performed at significantly above-chance levels on the 

individual memory tests.  It is often difficult to interpret null results from statistical tests to 

examine binding/integration, as real effects can be obscured by high levels of accuracy across 

different tests.  In previous work with pigeons, Skov-Rackette et al. (2006) acknowledged this issue 

and noted that although pigeons did not show evidence that components were integrated in 

memory, it is possible that their high level of performance would have made integration difficult to 

detect.   However, in the present study this was not an issue because all of the monkeys performed 

at similar levels, yet only some showed evidence that the features were integrated in memory.  

There do appear to be marked individual differences, both in monkeys’ accuracy at recalling 

independent features and their ability to integrate features in memory.    

In the human literature, there is research examining the role that active participation plays in 

enhancing memory for event features.  In many situations, performing an event, as opposed to 

being a passive observer has been found to improve memory for object information.  This effect 

also was observed in the rhesus monkeys, with the identity component being recalled at a higher 

rate for events they performed than events they observed.  It did not appear that this was the result 

of the monkeys paying more attention to the events they performed than those they observed 

because the monkeys were significantly above chance at recalling features from both test 

conditions.  A different effect was observed for recalling agency information; monkeys were more 

likely to recall their role in the past event correctly if they had observed the event rather than 
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performed the event.  It is possible that having to inhibit using the joystick on these trials made the 

trials more salient to the monkeys.   The majority of the time the monkeys themselves are in control 

of the joystick and cursor during experimental tasks and this may have made these observed events 

distinctive, and thus more memorable than other trials. 

The children performed differently than the monkeys on some of the types of memory tests.  In 

contrast to the monkeys, the children were better at remembering the context feature of past 

events, but had more difficulty with the temporal dimension. The children performed at chance 

levels even when they were given the temporal test first.  It is not clear why children performed 

poorly on the temporal tests.  It is possible that the children could not yet perceptually distinguish 

between the two intervals used in the task.   It is also possible that the delays were so aversive to 

children that they all appeared to be long delays.  However, the children were not more likely to 

choose the long delay; in fact, they were significantly more likely to label long delays as “short”.   

Another possibility is that children may have understood the delays perfectly, but were confused by 

the icons.  However, the children often verbalized their responses and there were no situations in 

which their verbal labels conflicted with their icon choices (i.e., they did not select the turtle and say 

“short” when asked how long they had to wait).   Therefore, it is unlikely that this could account for 

their performance.  It is more likely that children perceived most of the delays as short because 

they were relatively short, and had the long delay been substantially longer (on the order of 

minutes) the children may have been able to perform the task.   

In recent studies, children from this same age group have demonstrated the ability to remember 

temporal order information from a series of past events.  In one experiment, children were led by 

an experimenter to different locations where they hid a series of objects (Hayne & Imuta, 2011).  

The 4-year-old children remembered the temporal order of the past events, while 3-year-old 

children had difficulty reporting this information.   Therefore, this appears to be a sensitive period 
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during which children are beginning to understand the concepts of time and order. However, the 

majority of the children in the present study were the same age as those that passed the temporal 

order test in the Hayne and Imuta (2001) study.   It would seem, therefore, that children at this age 

do appear to remember temporal information, but that the scale of the temporal discrimination or 

the intervals themselves may have been too similar for children to distinguish in the present study. 

The children, like the rhesus monkeys, showed an enhancement effect for performing events.  The 

children were better at retrieving the temporal, agency, and context features from memory when 

they had performed the event than when they had only observed the event.  This difference was not 

statistically significant for the agency and context tests, but the difference was significant for the 

temporal test.   The children were above chance at retrieving the temporal feature from events they 

performed themselves, whereas they were not above chance at retrieving this feature on observed 

trials.  Studies with human participants (e.g., Engelkamp, 1983; 1998, as cited in Nilsson, 2000; 

Engelkamp & Dehn, 2000; Manzi & Nigro, 2008) also have shown a memory advantage for 

performed events, but these studies have been limited to examining memory for item information 

(words or actions) and order (position in a list).    These studies have found that participants were 

better at retrieving item information about words in a list when they performed the tasks 

themselves, but were conversely better at retrieving information about the position of the item if 

they had observed someone else reading/performing the list of words/actions.  However, in these 

tasks the visual feedback varied dramatically for performed and observed trials.  This difference in 

perceptual perspective could have served as a retrieval cue and may account for these results.   The 

present study was able to control for such perceptual or visual cues by eliminating the 

“experimenter” and eliminating additional cues that could be used to solve the task (i.e., hand 

position, joystick path, etc).   The multiple test types also made it possible to examine retrieval of 

specific types of information that had not been addressed in previous work (i.e., spatial, temporal 
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and contextual features).  Using these controls, the present study demonstrated a similar advantage 

for performed trials in a nonhuman primate species and human children.   

Implications for Comparative Research 

The results from this study have implications for the design of future comparative memory studies.   

The rhesus monkeys in these experiments demonstrated that they were able to encode information 

about their own role in past events and successfully retrieve this information even when they were 

unable to use proprioceptive cues about their recent hand position to solve the task.  In some 

previous work by Singer and Zentall (2007), pigeons were able to convey information about their 

recent behavior (pecking or inhibiting their behavior) on unexpected memory tests even when they 

had to peck a key on probe tests before responding to a memory test (to eliminate proprioceptive 

information about beak movement).   However, this task is qualitatively different from the one used 

in the present study.  The pigeons either pecked (event) or did not peck (absence of event) on each 

trial, whereas in the present study the monkeys always observed an event (a picture moving to a 

location), but had to determine whether they were directly involved in the event.   The pigeons 

simply had to determine if something had happened, but the monkeys had to determine the source 

of their memory for the event.   In a study by Mercado et al. (1999), a bottlenose dolphins was able 

to repeat a recently performed behavioral action with multiple components (action type, body part 

used and object involved).  The dolphin was able to do this even when she did not know she would 

be tested, but again, this task is qualitatively different from the one used with monkeys.   The 

dolphin could succeed on this task by simply remembering her most recent behavior and not by 

necessarily referencing a specific episode.   However, the results from the present study indicate 

that at least one species is able to retain information about their recent role in an event and to 

access this information about the source of their memories after brief delay intervals.  
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These findings also have implications for task design in comparative memory research.  In the event 

memory and episodic memory literature, there has been no discussion concerning how the extent 

of an animal’s involvement affects performance.  Some studies have used tasks in which an animal 

directly engages in the behavior and other studies have used tasks in which the animal watches an 

experimenter perform the event.   However, no one has acknowledged that these studies may be 

qualitatively different and making comparisons across such different studies may be inappropriate.   

The present research indicates that the animal’s involvement in a task should be taken into 

consideration when designing tasks and when comparing performance across different 

studies/species.   

The fact that the monkeys were able to retain information about their own role in a past event also 

has implications for research on self-awareness.  The ability to recognize oneself as a unique agent 

in the world has often been examined using the mirror mark test which relies on an individual’s 

ability physically to recognize itself in a mirror (Gallup, 1970; Gallup, 1979).  A number of monkey 

species have failed to show evidence of recognition using the mirror mark test and instead attempt 

to threaten the individual in the mirror (see Anderson, 1984).  However, the problem with the 

mirror mark test is that it equates physical recognition with self-awareness, which is not 

necessarily correct.  There are adult humans with neurological deficits (e.g., prosopagnosia and 

Capgras syndrome) that have difficulty recognizing individuals from visual features, but they do not 

appear to lack self-awareness or knowledge that other individuals exist as distinct entities.  

Although they have significant difficulty with physical recognition based on visual features, they are 

able to recognize other individuals from their voice and other cues (Beyn & Knyazeva, 1962; 

Hirstein & Ramachandran, 1997). Therefore, physical recognition is not necessary for self 

awareness or awareness/recognition of other individuals. Consequently, having a task that does not 

rely on physical recognition may prove useful in getting at this issue in nonhuman species.    
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The main purpose for these experiments, however, was to measure self-awareness as it relates to 

past action events.  The experiments meet Tulving’s (2002) requirement for self-awareness, at least 

in a limited behavioral sense, and provide a new method for assessing how animals remember 

personal information about their role in past events.  Tulving argued that the self-awareness 

required for episodic memory must extend to an awareness of the self in the past and the future 

(Tulving, 2002).  Although the results do not indicate that monkeys are experiencing mental time 

travel and the phenomenological experience of remembering that we associate with episodic 

memory retrieval, they do suggest that monkeys have knowledge of a self that is not limited to the 

present.  Future research is needed to examine whether this knowledge extends further into the 

distant past and whether monkeys are also capable of anticipating future actions. 

The results suggest that, at least for some individuals, agency information is integrated along with 

other event features in working memory.  In the previous what-where-when memory study with 

rhesus monkeys, there were similar individual differences, with only some monkeys displaying 

evidence of integration (Hoffman et al., 2009).   These results suggest that agency information is a 

relevant dimension and can be retrieved from working memory along with other event features.   

Knowing how these features are initially encoded in working memory is essential to understanding 

how they are later retrieved, even in respect to long-term episodic memory.  If animals fail on long-

term episodic memory tasks, it is difficult to determine whether this is a result of encoding or 

retrieval failure.  Consequently, being able to assess initial encoding is an important step in building 

an understanding of how animals represent past experiences in memory.   

 

Implications for Developmental Research 

There is research which suggests that the 3 to 5 year-old period of development is a particularly 

important stage in which children learn about the sources of their knowledge as well as the 
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knowledge and beliefs of other individuals (Gopnik & Graf, 1988; O'Neill & Gopnik, 1991).  In one 

study, Gopnik and Graf (1988) presented 3- and 5-year-old children with a task in which they 

learned about the contents of a drawer through three separate sources of information: 1) they 

directly experienced the information themselves by seeing the item, 2) they heard about the 

contents from an experimenter, or 3) they inferred the contents from a clue.   The 5-year-old 

children made source judgments about how they obtained information about the drawer contents, 

but three years olds were not able to do this task.   Further experiments indicated that 4-year-old 

children also were capable of making these source memory judgments, but that at three years of 

age this ability had not yet developed sufficiently (O’Neill & Gopnik, 1991).    

The present study replicated and extended these findings.  The 4-year-old children in the present 

study made judgments about whether they had performed or observed a recent event.  Researchers 

have also examined whether participants are better at remembering events they perform 

themselves compared to those they simply observe (Engelkamp & Dehn, 2000).  Adult participants 

are more likely to accurately recall features from events they perform themselves than those they 

observed performed by an experimenter.  There are some exceptions to this general finding and in 

some situations observing an event can actually facilitate encoding of event features, but this 

appears to be due to the increased visual feedback and cues available in observed tests.   There is 

research with children between the ages of 6 and 9 years of age which indicates that this effect is 

apparent even in young children (Baker-Ward, Hess & Flannagan, 1990).  This was also observed in 

the present study with a younger age group; children between the ages of 3.5 and 4.5 years were 

significantly better at recalling some event features (temporal information) if they had performed 

the event themselves.   

This research and other studies examining memory for performed and observed events can have 

important implications for work with atypically developing children and adults.  Research on 
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episodic memory processing in adults with autistic spectrum disorders (ASD) appears to suggest 

that adults with ASD are more likely than intellectually matched controls to experience difficulty 

recalling personally experienced events (Crane & Goddard, 2008).  Other studies have indicated 

that a similar effect appears in children diagnosed with ASD, as they have more difficulty 

remembering features from events they performed than those performed by another individual 

(Millward, Powell, Messer & Jordan, 2000; Yamamoto Y, Saito T, Kamio Y. (2004).  However, some 

studies have failed to show any difference for remembering components from performed and 

observed tasks (Hill & Russell, 2002; Russell & Jarrold, 2010).  It is difficult to sort out exactly what 

all of this means and there are numerous confounds that have not been addressed in these studies.   

Children diagnosed on the autistic spectrum may be less likely than typically-developing children to 

attend to the actions of other individuals and this may explain why they sometimes appear better at 

remembering performed events (i.e., they may not be attending to actions performed by other 

individuals and therefore do not encode them in memory).  In addition, these studies often use 

verbal instructions and materials which may not be appropriate with individuals in this diagnostic 

category.  Visual tasks, like the one used in the present study, may be more appropriate in this 

situation.  There is also speculation that a lack of self-awareness may explain many of the social and 

cognitive deficits in this group, specifically problems with imitation and social learning (Crane & 

Goddard, 2008).  A task like this could be adapted to examine whether these individuals lack self-

awareness.  In contrast to other studies that are verbally based, a study designed for use with a 

non-verbal species could prove useful for examining memory in humans with language delays and 

impairments.   

General Implications for Cognitive Theory 

This series of experiments can be evaluated in terms of its broader impact within the fields of 

cognitive and comparative psychology.  These experiments demonstrate that humans are not the 
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only species capable of encoding episodes in memory, and they are not the only species capable of 

making judgments about the source of their memories for past events.  These findings, taken 

together with other findings demonstrating that animals’ memory for past episodes is influenced by 

the same variables (e.g., misleading post-event information) that affect human episodic recall 

(Schwartz, Hoffman & Evans, 2005), suggests some commonalities in memory systems across 

species.  

Thorndike, Watson, Skinner and other behaviorists viewed animals as creatures bound by stimulus-

response learning, and the notion that animals (including human animals) had mental experiences 

that were causal in explaining or predicting behavior was simply not relevant for scientific 

discussion because it was assumed that such internal processes could not be studied.  However, the 

current study builds upon existing evidence which suggests animals are capable of responding to 

abstract features of their experiences, such as time and agency, qualities of events that are not 

easily translated into a visual image.  This means that some mental representation or internal 

mental process is needed.   There is a distinction between memories for which we are consciously 

aware (i.e., explicit/declarative memory) and memories which influence our behavior without 

awareness (i.e., implicit/procedural memory).  An individual can respond to a particular stimulus 

based on past experiences without awareness or understanding why they are responding in that 

manner.  Accordingly, some people might ask whether the tasks in the present study could be 

solved using such basic associative processes—implicit, conditioning forms of memory rather than 

explicit, episodic forms.  The monkeys clearly used associative processing in learning the 

relationship between the various task icons and experimental contingencies, but they also 

generalized this learning to novel stimuli and different testing situations, which may suggest 

emergent learning from associative processes (see Rumbaugh, Washburn & Hillix, 1996).  
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Associative processes seem unlikely to account for how the monkeys performed on the memory 

task itself.   In any event, this task is not fundamentally different from a recognition test or cued-

recall test used with human participants, so the same associative criticism could be made against 

those studies.  If one wants to argue that associative processes alone can account for the data in the 

present study, then this is also the case for numerous studies of human memory as well.  However, 

this is not done because it becomes less parsimonious when trying to explain such complex 

behavior through associative processes alone.    Rather, the animals and children in the present 

study appeared to respond flexibly to the various memory cues (what, where, when, agency or 

context) in a way that was consistent with the suggestion that they were remembering the stimulus 

episode rather than having learned a complex matrix of if-then stimulus-response associations. 

The monkeys in this study did not need to integrate components in order to solve the task.  At first 

glance, this may appear to suggest that monkeys are doing something fundamentally different from 

human participants when we recall past episodes.  According to Tulving (2002), the autonoetic 

conscious awareness that we experience results directly from the integration of spatial, temporal 

and contextual features in memory.  Following this logic, there are two initial conclusions: 1) 

animals do not share this mechanism for integrating event features in episodic memory and/or 2) 

the tasks in the present study do not assess the same memory process we experience as humans 

when we recall past experiences.  However, an alternative interpretation exists.  The monkeys may 

well be doing what we do as humans, using our knowledge about the world to reconstruct our 

experiences and fill in the gaps when we fail to encode or retrieve certain event features.  We only 

assume that humans integrate features from past events based on our own experiences.  It is never 

explicitly tested, for instance in the way demonstrated in the present paper and elsewhere (e.g.,  

Skov-Rackette, Miller, & Shettleworth, 2006), because we take for granted that our memories are 

cohesive representations of past events.  However, in reality, there are overwhelming data to 

suggest that our memories for past episodes are far from perfect representations that are formed 
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by accurately integrating features in memory (see Schacter, 2001, for one extensive review). 

Rather, memories are reconstructive and modified by prior knowledge, subsequent experience, and 

expectations.  If we acknowledge this fact, then monkeys’ failure to integrate is not an indication 

that they are doing something different from humans, but that they may actually be remembering 

events in a way similar to humans.  

Another criticism that could be leveled at this approach is that the tasks in the present study may 

not actually assess episodic memory.  For example, some might argue that maintaining information 

in working memory in these tasks is a qualitatively different task than reflecting back to a past 

episode that happened in the distant past (e.g., last hour, last week, last month or last year).   There 

are a number of variables (e.g., rehearsal, the presence of appropriate retrieval cues and the 

occurrence of similar events which can introduce interference) that influence whether information 

initially maintained in working memory will become a more stable memory that can be retrieved a 

week, month, or year later.  It is likely the case that the monkeys and children will not remember 

specific events from this experiment for months or years to come; yet this does not mean that the 

mechanism that allows monkeys to perform this task is qualitatively different from the one that 

allows us to retrieve individual episodes years after the event in question.  The working memory 

model proposed by Baddeley and Hitch (1974) conceptualized working memory as a process that 

allows us to search for information in long-term memory and bring it back into a state of active 

maintenance so we can use it.  Baddeley (2000) expanded upon this model, arguing that an episodic 

buffer allows information to be temporarily bound together in working memory before being 

transferred to long-term memory.  It is this process of temporarily binding information in working 

memory that is essential for episodic memory and this model supports the theoretical argument 

that the tasks used in the present study are examining the same underlying process that supports 

the encoding and retrieval of episodic memories.  Indeed, it seems reasonable to suggest that short-

duration tests of what/where/when memory like the one employed here may be useful for 
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exploring the characteristics of the episodic buffer and its relation to more enduring forms of 

episodic memory. 

More recent unistore models, such as the working memory models proposed by Cowan (2010) and 

Unsworth and Engle (2007) argue that there is no need to posit distinct structures or stores in 

memory, but still maintain that there is a portion of memory that is active (i.e., primary memory) 

and a portion of memory that is not currently active, but can be called upon and brought back into 

an active state (i.e., secondary memory).  Following the logic of these models, information initially 

encoded in working memory and information stored in long-term memory (and brought back into 

active/working memory) would have to be encoded, maintained, and retrieved by the same 

mechanism. In this case, the distinction between long-term episodic memories and short-term 

episodic memories is a matter of activation rather than a qualitative difference in memory type.  

Accordingly, the monkeys’ and children’s responses on the present task are perfectly applicable to 

the larger literature on how human adults remember episodes over long periods of time.  The 

findings in the present study reflect a fundamental memory system that is not a product of language 

or culture, but instead forms the basis of how we learn information about the world (and thus upon 

which language and culture may be scaffolded).   It is a fundamental memory system that manifests 

the characteristics of episodic memory, or the articulatory loop, or procedural memory (and so 

forth) depending on the nature of the to-be-remembered information and the parameters of the 

memory test. 

In learning, we initially experience novel episodes that we encode as specific past events in 

memory.  However, after repeated exposure to similar episodes, it becomes increasingly difficult to 

differentiate these episodes, so contextual information about where, when or how the information 

was acquired can become difficult to ascertain.  As a result, we refer to these general knowledge 

representations as semantic memories, but what we mean by this is that we have lost the source 



 

 

90 

information about how, when and where the information was acquired (and the phenomenological 

experience that results from knowing this information). The distinction between episodic and 

semantic memory can perhaps better be described as a distinction between memory and 

knowledge.  Following this reasoning, the tasks in this study are fundamentally episodic ones 

because they assess memory for specific past episodes and not general knowledge about the world.  

The fact that the tasks in the present study do not require retrieval from long-term memory does 

not mean that these tasks are assessing different mechanisms or processes.  In fact, the episodic 

buffer proposed in Baddeley’s working memory model (2002) posits that features from past events 

are initially held together in working memory before being transferred to long-term memory.  

Whether animals have the same mental experiences we have when we retrieve episodic memories 

cannot be tested, but it can also be said that we can never really know the mental experiences of 

other humans.  The experience itself does not even have to be an integral component to episodic 

memory retrieval, but may be something that arises from the inferences we make when 

reconstructing our memories.  In the future, additional research is needed to determine whether 

other variables that are known to affect the accuracy of human episodic memory also affect 

performance in children and animals.  For example, the study of imagination inflation and false 

memory using this paradigm would prove especially useful in determining the extent to which 

these working memory tasks are tapping into true episodic memory, as it is commonly investigated 

in the laboratory. 

 

Directions for Future Research 

This study highlights the need for a more comparative approach in the field of comparative 

cognition.   It is not always necessary or even appropriate to compare nonhuman species to human 

participants.  However, in some situations we compare other species to what we expect we would 

do, without any direct comparison.  As researchers studying our own species and other species, we 
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experience a unique challenge because we have direct experience of the behavior and cognitive 

phenomena we are studying.   Therefore, we often do not include members of our own species in 

comparative studies because we take for granted that humans behave in a way we expect based on 

our experiences.  In some cases, we also require more stringent criteria to demonstrate some 

cognitive ability in another species than we would require for demonstrating this in our own 

species (e.g., episodic memory or self-awareness). However, including children or adults in 

comparative studies helps us ensure that the tests we have designed for animals are fair tests of 

cognitive abilities.    

Fortunately, there have been some studies published in the past year that have used this approach 

by examining this ability in human adults (Holland & Smulders, 2011) and children (Hayne & Imuta, 

2011) using tasks that more closely resemble tasks used with nonhuman animals.  Holland and 

Smulders (2001) examined what-where-when memory in adult participants using a modified 

caching task in which participants hid coins that varied in value.  The hiding occurred on two 

separate days and participants were asked to retrieve the coins when they returned.  However, 

some participants had been in an active encoding condition (at the beginning of the experiment, 

they were told that they would get to keep coins that they hid and later retrieved) while others 

experienced a passive encoding condition (they were told that they were hiding the coins for 

someone else).   They were also given an episodic memory test concerning the context or situation 

from each day (participants had to provide “know” or “remember” judgments and these judgments 

were used to measure participants’ mental experience of episodic retrieval of the context from each 

of the hiding events).  Performance on the subjective episodic retrieval test predicted retrieval of 

what-where-when information for passive encoding situations, but not always for active encoding 

situations.   The authors argued that this provided additional support for the notion that what-

where-when memory tasks used with food caching species are appropriate measures of episodic 

memory.  
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However, just because human participants may have used episodic memory to solve this task, it 

does not mean that these types of problems can only be solved using this strategy.  Even though 

some researchers have argued that these tasks are an ideal approach for examining integration, 

there are drawbacks to the food-caching and food storing tasks: 1) in order to solve this task in an 

efficient manner, an animal would need to integrate features if it could, but this does not mean that 

they would naturally do this, 2) just because an animal succeeds on this task does not mean that 

they could convey information about discrete features from past events (this explicit quality seems 

essential to the notion of self-awareness and personal experience).  In addition, many food-caching 

studies with birds involve a series of training tasks and a probe test (to control for olfactory or 

visual cues).   The authors argue that birds demonstrate integrated memory for what-where-when 

information because they tend to direct more of their searches to the appropriate location based on 

the delay since caching.  However, the first search may provide important retrieval cues that help 

the animal search in subsequent locations.  This may artificially inflate the number of correct 

searches, especially if the birds have grouped food pieces of the same type together in the 

environment (simply finding the first one makes it much easier to locate the other food items).    

Therefore, researchers should not feel limited to using the food-caching and foraging tasks.  Those 

tasks may be useful for answering some questions about what-where-when encoding, but like all 

paradigms, they have strengths and weaknesses.   There are benefits to using tasks that require an 

animal to retrieve specific event features and make discrete responses to memory tests for each 

event feature.   In some cases, such as with language trained chimpanzees that have a large 

vocabulary of symbolic lexigrams, this provides a unique opportunity that more closely resembles 

human recall tasks that are used with humans (Menzel, 1999; Menzel, 2005).   Other approaches, 

like the one used to examine agency in the present study, can probe other essential aspects of event 

memory that have been overlooked by previous research.   The awareness that one played a 

particular role in a past event appears to be the most difficult characteristic of episodic memory to 
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assess in nonverbal animal species.  However, the present study provides a new method for 

assessing this cognitive ability in animals and children and suggests that self-agency information is 

an important feature that is encoded with other relevant event features in working memory.   
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