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ABSTRACT

ESSAYS ON THE EVALUATION OF ENVIRONMENTAL PROGRAMS

BY

MERLIN MACK HANAUER

April 2011

Committee Chair: Dr. Paul J. Ferraro

Major Department: Economics

This dissertation comprises four chapters. The unifying theme is the evaluation

of environmental programs. Specifically, each chapter examines some facet of the

impacts of protected areas.

The first chapter examines the heterogeneous environmental and economic

impacts of protected areas in Costa Rica. Previous studies suggest that Costa

Rica’s protected area system induced both reduced deforestation and alleviated

poverty. We demonstrate that these environmental and social impacts were spatially

heterogeneous. Importantly, the characteristics associated with the most avoided

deforestation are the characteristics associated with the least poverty alleviation. In

other words, the same characteristics that have limited the conservation

effectiveness of protected areas may have improved the social welfare impacts of

these areas. These results suggest that ‘win-win’ efforts to protect ecosystems and

alleviate poverty may be possible when policymakers are satisfied with low levels of

each outcome, but tradeoffs exist when more of either outcome is desired.

The second chapter explores in more detail the heterogeneous impacts of

protected areas in Costa Rica and Thailand. In particular we investigate the

potential for protected areas to act as a mechanism for poverty traps and use

semiparametric models to identify the spatial congruence of environmental and

economic outcomes. We find no evidence that protected areas trap historically

poorer areas in poverty. In fact, we find that poorer areas at baseline appear to have

xiv



the greatest levels of poverty reduction as a result of protection. However, we do

find that the spatial characteristics associated with the most poverty alleviation are

not necessarily the characteristics associated with the most avoided deforestation.

We demonstrate how an understanding of these spatially heterogeneous responses to

protection can be used to generate suitability maps that identify locations in which

both environmental and poverty alleviation goals are most likely to be achieved.

In the third chapter we address the mechanisms through which protected areas

affect economic outcomes. Using recently developed quasi-experimental methods

and rich biophysical and demographic data, we quantify the causal post-treatment

mechanism impacts of tourism, infrastructure development and ecosystem services

on poverty, due to the establishment of protected areas in Costa Rica prior to 1980.

We find that nearly 50% of the poverty reduction estimated in a previous study can

be attributed to tourism. In addition, although the mechanism estimates for the

infrastructure and ecosystem services proxies are negligible, we argue that the

results provide evidence that enhanced ecosystem services from the establishment of

protected areas has likely helped to reduce poverty. The results provide additional

information to policy makers that wish to enhance the future establishment of

protected areas with complementary policy.

The final chapter studies the economic impacts of protected areas in Bolivia. We

find that municipalities with at least 10% of their area occupied by a protected area

between 1992 and 2000 exhibited differentially greater levels of poverty reduction

between 1992 and 2001 compared to similar municipalities unaffected by protected

areas. We find that the results are robust to a number of econometric specifications,

spillover analyses and a placebo study. Although the overarching results that

Bolivia’s protected areas were associated with poverty reduction are similar to

previous studies , the underlying results are subtly, but significantly, different. In

previous studies it was found that controlling for key observable covariates lead to

xv



fundamentally antithetical results compared to näıve estimates. Conversely, these

results indicate that näıve estimates lead to an over-estimation of the poverty

reducing impacts of protected areas. The results expose the heterogeneity of

protected area impacts across countries and, therefore, underscore the importance of

country-level impact evaluations in order to build the global knowledge base

regarding the socioeconomic impacts of protected areas.
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Chapter I

Protecting Ecosystems and Alleviating Poverty with Parks and Reserves:

‘Win-Win’ or Tradeoffs?

Introduction

National parks and reserves are globally popular approaches to protecting

biodiversity and the supply of ecosystem services (MEA 2005). These protected

areas now cover approximately 12% of the world’s terrestrial surface, with few

nations lacking a protected area system (WDPA 2009). Despite the ubiquity of

protected area systems, the published scientific evidence related to their

environmental impacts is sparse and comprises predominantly case study analyses

(MEA 2005, Joppa and Pfaff 2010). The evidence base related to their impacts on

neighboring human communities is much weaker (Coad et al. 2008). A debate has

emerged over whether the environmental goals of protected areas conflict with

poverty alleviation goals, particularly in developing nations (Adams et al. 2004,

Wilkie et al. 2006, Coad et al. 2008). Opponents highlight the role that protected

areas can play in limiting agricultural development and exploitation of natural

resources. Proponents highlight the role that protected areas can play in supplying

ecosystem services, promoting tourism and improving infrastructure.

Empirical studies have found that protected areas, on average, are effective in

reducing deforestation, although not as much as proponents may have expected

(e.g., Cropper et al. (2001), Andam et al. (2008), Pfaff et al. (2009). Only a few well

1
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designed empirical studies have examined protected area impacts on socioeconomic

outcomes in surrounding populations. They have found either no effect (Duffy-Deno

1998, Lewis et al. 2002, 2003) or a positive average effect (Andam et al. 2010, Sims

2010). As with most empirical studies in environmental policy, prior research on

protected area impacts tends to focus on either environmental or social outcomes,

but not both, and estimate only mean treatment effects.

In order to better understand the way in which a protected area system affects

environmental and social outcomes, one must examine the two outcomes jointly and

elucidate how different subpopulations are impacted. The econometric and program

evaluation literature tends to focus primarily on the estimation of mean treatment

effects, paying little attention to the impacts of treatment on population subgroups

(Manski 2005, Crump et al. 2008). Yet, as noted by Manski (2005), average

treatment effects may not provide sufficient information to a social planner whose

goal is to maximize a specific social welfare function. For example, a medication

may have positive mean health impacts on the treated population as a whole, yet

men and women may respond differently. Suppose that the positive treatment

effects are driven by males’ strong responses whereas the medication has no, or

deleterious, impacts on women. A physician would be remiss in prescribing such a

medication without conditioning on subgroup characteristics.

Understanding subgroup impacts allows for the formulation of what Manski

(2005) terms conditional empirical success (CES) rules. CES rules select treatments

that maximize average impacts based on observable covariates (Manski 2005 pp.75).

In the context of environmental policy, decisionmakers must possess an

understanding of the heterogeneous impacts of ecosystem protection conditional on

biophysical and demographic characteristics. For example, a planner may generate

little avoided deforestation when establishing protected areas on high slope land if

this land would likely remain forested in the absence of protection because it is less
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suitable for agriculture. Similarly, in an attempt to minimize negative

socioeconomic impacts from land-use restrictions, a planner may not want to place

protected areas in regions that comprise high proportions of agricultural workers if

the opportunity costs of conservation in such regions greatly outweigh the local

benefits from protected areas.

Costa Rica is an ideal setting for studying CES rules related to protected areas.

Costa Rica is a biodiverse developing nation with rich and reliable spatially explicit

data on biophysical and demographic characteristics. It was an early adopter of

protected areas in the late 1960s and early 1970s and, by 2000, had protected about

25% of the nation. Despite these efforts to protect ecosystems, however, Costa Rica

experienced a substantial amount of deforestation over the last 50 years: of the

approximately 3 million hectares of forest in 1960, more than 1 million had been

deforested by 1997 (Andam et al. 2008). The Costa Rica government has

established a goal to be a model of sustainable development in Central America

(Rubin and Hyman 2000). Most importantly, the available empirical evidence

(Andam et al. 2008, 2010) suggests a ‘win-win’ scenario in which both avoided

deforestation and poverty alleviation were, on average, achieved in and around

Costa Rican protected areas. In order to examine this conjecture more deeply, we

examine the heterogeneity of the protected area impacts conditional on biophysical

and demographic characteristics. We find that the characteristics associated with

the most avoided deforestation are the characteristics associated with the least

poverty alleviation. While our analysis confirms that Costa Rica’s protected areas

system did lead to moderate levels of avoided deforestation and poverty alleviation,

even among high-poverty areas, it also points to tradeoffs if decisionmakers desire

higher levels of either outcome.
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Background

Two studies of the impacts of protected areas on avoided deforestation (Andam

et al. 2008) and poverty (Andam et al. 2010) comprise the point of departure for

our study. Both studies use quasi-experimental matching techniques to obtain

estimates of the average treatment effect on the treated (ATT). Estimating the

ATT is akin to asking, “what would deforestation or socioeconomic outcomes have

been had these areas not been protected?” Using digital forest cover data, Andam

et al. (2008) estimate the amount of avoided deforestation between 1960 and 1997

that can be attributed to the designation of protected areas prior to 1980.1

Conventional methods of analysis in the conservation literature simply compare

deforestation outcomes on protected and unprotected parcels. Using these methods

yields estimates that imply protected areas were accountable for a 44% reduction in

deforestation. These estimates are inherently biased due to the nonrandom

designation of protection. Protected land parcels are observably different from

unprotected parcels based on covariates that have been found in other studies to

affect deforestation. To control for selection on observable characteristics, the

authors create a representative counterfactual group by matching unprotected land

parcels to protected parcels based on key observable covariates. The resulting

estimate of avoided deforestation is a more modest 11% reduction in deforestation

attributable to protection. Their study confirmed that protected areas did indeed

prevent deforestation, but because they tend to be placed on land that is undesirable

for agriculture, the deforestation they avoid is modest. The placement of protected

areas on land poorly suited for agriculture is a global phenomenon (MEA 2005).

Andam et al. (2010) use Costa Rica census tracts (segmentos) as the units of

analysis to estimate the impact of protected areas established prior to 1980 on

1They also estimate the impact of protected areas established after 1980, but the focus of our
analysis is on the areas established before 1980.
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poverty between 1973 and 2000. Similar to Andam et al. (2008), the authors use

matching techniques to form a counterfactual sample that is similar to the treated

census tracts based on observable covariates that are believed to affect both

designation of protected areas and socioeconomic outcomes. Their results indicate

that the mean poverty was 1.3 points lower in census tracts with more than 10% of

their area protected compared to similar matched census tracts with less than 1%

protected land. This reduction is equivalent to an effect size of 0.2 (impact divided

by standard deviation of the matched control group). Selection bias was substantial

because protected areas tend to be placed in high poverty areas with low potential

for economic growth. A simple comparison of census tracts with and without

protected areas would lead to biased estimates that imply protected areas

exacerbated poverty.

Data

Baseline Data Sets

We use data from Andam et al. (2008) and Andam et al. (2010) to estimate the

heterogeneous impacts of protection, conditional on biophysical and demographic

characteristics. The deforestation analyses use digital forest cover boundaries from

1960 and 1997, and georeferenced land characteristics that are believed to influence

both the designation of protected areas and deforestation (see Table 1 and Andam

et al. (2008) for details). To ensure comparability, the sample land parcels from

Andam et al. (2008) are used. Forest cover outcomes are calculated using

geographic information systems (GIS) and digital forest cover maps from 1960 and

1997. Twenty thousand three-hectare land parcels (minimum mappable unit) were

selected at random from the 1960 forest cover layer. This layer pre-dates protected

areas and thus serves as the baseline forest cover,which can be compared across time

to the 1997 forest cover. Forest cover is represented by a binary indicator: a land
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parcel is considered forested if it has greater than 80% canopy cover. The outcome

for each land parcel is denoted by a 0 if it had not been deforested by 1997 and a 1

if it had been deforested. To determine if a land parcel is considered protected for

the analyses, a layer containing all protected areas established prior to 1980 is

overlaid with the land parcels. Costa Rica’s protected areas system includes

International Union for Conservation of Nature (IUCN) management categories Ia,

I, II, IV and VI, which represent the level of land-use restrictions: Ia being the most

strict. The proportions of these IUCN categories in our sample are: Ia&I = 0.038; II

= 0.43; IV = 0.038; VI = 0.496. Land parcels within the boundaries of a protected

area receive and indicator of treatment.2 Similar overlays are performed with other

data layers to create a set of covariates associated with each observation.

In the socioeconomic analyses, the unit of observation is the census tract. The

1973 census is used as the baseline year (see Appendix A) and demographic data are

geocoded to their respective census tracts to form a set of covariates for each

observation. In 1973 Costa Rica contained 4,694 census tracts with an average size

of 8.82km2 (range: 0.00466-836 km2). To determine if a census tract is considered

protected for the analyses, a layer containing all protected areas established prior to

1980 is overlaid with the census tracts. As in Andam et al. (2010), a census tract is

considered protected if at least 10% of its area is occupied by protected land (results

are robust to changes in this threshold definition).3 Conversely, any census tract

2Of the 20,000 land parcels in the random sample, 3,380 were protected prior to 1980. To avoid
potential bias in estimates we follow Andam et al. (2008) and drop any land plot that was protected
between 1980 and 1997 from the pool of potential counterfactual observation. 4,717 land parcels are
excluded prior to the analysis for various reasons, justification for which can be found here: http:

//www.pnas.org/content/suppl/2008/10/14/0800437105.DCSupplemental/0800437105SI.pdf
3We use the 10% threshold in accordance with Andam et al. (2010). A 10% threshold was chosen

because protecting 10% percent of the worlds’ ecosystems was the goal of the 4th World Congress
on National Parks and Protected Areas (Andam et al. 2010). Andam et al. (2010) show that their
results are robust to changes in this threshold value (alternatively defined as 20% and 50%).

http://www.pnas.org/content/suppl/2008/10/14/ 0800437105.DCSupplemental/0800437105SI.pdf
http://www.pnas.org/content/suppl/2008/10/14/ 0800437105.DCSupplemental/0800437105SI.pdf
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Standard
Variable Description Mean Median Deviation Range

Deforestation Covariates
High Productivity Land Land Use Capacity I, II or III 0.008 0 0.09 0-1

Land suitable for agricultural production.
May require special land and crop
management (classes II & III).

Medium-High Land Use Capacity IV 0.0289 0 0.167 0-1
Productivity Land Moderately suitable for agricultural

production; permanent of semi-permanent
crops

Medium-Low Land Use Capacity V, VI or VII 0.0802 0 0.272 0-1
Productivity Land Strong limiting factors on agricultural

production.

Distance to Forest Edge Distance (km) to the edge of the forest in 2.79 2.35 2.19 0.0001-11.2
1960

Distance to Road Distance (km) to nearest road in 1969. 16.99 14.28 11.62 0.04-53.31

Distance to Major City Linear distance (km) to nearest major 77.4 56.9 49.53 9-180.5
city: Limon, Puntarenas or San Jose.

Socioeconomic Covariates
Baseline Poverty Poverty index measured in 1973. 14.9 15.8 6.43 -6.4-28.9

Forest Cover Percentage of census tract 0.412 0.383 0.342
occupied by forest in 1960.

% High Productivity Percent of census tract occupied by Land 0.118 0 0.22 0-1
Land Use Capacity I, II or III land

%Medium-High Percent of census tract occupied by Land 0.295 0.04 0.377 0-1
Productivity Land Use Capacity IV land.

%Medium-Low Percent of census tract occupied by Land 0.347 0.156 0.387 0-1
Productivity Land Use Capacity VI, VII or VIII land.

Distance to Major City Average linear distance from each 300m2 57.3 49.7 41.28 0.0037-208
(km) land plot within a census tract to nearest

major city: Limon, Puntarenas or San Jose.

Roadless Volume The sum of the product of area and 308,000 66,400 699,100 0.28-7,590,000
distance to nearest road (1969) for every
square with side length 100m
within the census tract.
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that contains less that 1% protected land is considered unprotected and a binary

treatment indicator is assigned accordingly.4 A poverty index is derived for each

tract from census data following Cavatassi et al. (2004). Higher levels of poverty are

associated with greater poverty index values (negative poverty index values indicate

low levels of poverty). The censuses from which the poverty index is derived were

conducted in 1973 and 2000. In the analyses, the poverty index calculation for 2000

is the outcome of interest. To match tracts on baseline characteristics, we use the

matching covariates used in Andam et al. (2010), which include the 1973 poverty

index and other baseline covariates that affect both protected area location and

economic growth (see Table 1 and Appendix A for more details). As noted in

(Andam et al. 2010) there were some protected areas established prior to our

baseline year (1973). However, a majority of the protected areas in our sample

(approximately 85%) were established between 1973 and 1979. Further, when we

drop the protected areas that were established prior to 1973 from the analysis, the

qualitative results remain the same.

Subgroup Variables

Agriculture has played a central role in the history of deforestation and economic

growth in Costa Rica (de Camino Velozo et al. 2000). For protected areas to stem

deforestation, they must be placed in areas in which the forest was at risk of

conversion to other uses and they must be enforced. Thus we wish to estimate

treatment effects within subgroup covariates that capture the returns to agriculture,

the dependence of an area on agricultural activity, and the ease of enforcement. All

threshold values used to define subgroups are baseline, pre-protection values, and we

test the sensitivity of our results to the choice of these thresholds.

4Of the 4,691 census tracts, 249 are considered protected (treated) prior to 1980 and 4164 are
considered potential counterfactual observations. To avoid bias in the analysis, 278 tracts with
protection between one and ten percent are dropped from the analysis.
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Land use capacity is a measure of land’s suitability for cultivation that takes

into account such factors as soil, precipitation, climate and slope (see Table 1).

Land parcels designated as land use capacities 1, 2, 3 or 4 are denoted as land with

high returns to agriculture. In a related study, Pfaff et al. (2009) estimate how

avoided deforestation between 1986 and 1997 on protected Costa Rican land parcels

varies according to geographic characteristics that categorize the parcels as either

“high” or “low” pressure. They use slope as a subgroup variable under the

assumption that high-sloping land is less productive and more costly to cultivate (it

is also more costly to log). To permit comparisons between our study and their

study, as well as to provide another proxy for returns to agriculture in an area, we

designate land with a slope of more than 23% as high-slope areas (the median value

of the deforestation analysis sample).

The returns to agriculture are higher on land that is closer to cities with

markets. Yet cities also tend to be the seats of government enforcement of

deforestation laws and thus their proximity to a plot may have a countervailing

effect on ecosystem conversion. In other words, parcels far from cities may have low

returns to agriculture, but less enforcement of land-use laws. Cities also provide a

tourism gateway and thus may further mediate the economic impacts of protected

areas. As a measure of access to markets we use the distance to one of Costa Rica’s

three major cities. Land parcels more than 57 kilometers of San Jose, Puntarenas or

Limon are considered to be high-distance parcels (the median value of the

deforestation analysis sample).5 We also ran analyses with distance to road, which

is a covariate that captures the same economic relationships as distance to cities,

but we omit it from the final analyses because it provides qualitatively similar

results to distance to major city as a measure of access to markets. Among treated

5Pfaff et al. (2009) use distance to San Jose.
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parcels, distance to major city and distance to road have a (Pearson’s) correlation

coefficient of 0.704.

The aforementioned covariates are measures of the characteristics of the land

parcel. To characterize the economic conditions in the surrounding area, we use the

percentage of adults employed in the agricultural sector in the census tract.

Robalino (2007) presents a theoretical model that predicts negative economic

impacts from protected area will be stronger in areas with greater proportions of

agricultural workers. We define areas with high-baseline agricultural workers as

census tracts with more than 13% of the workers employed in agriculture (the

median value of the poverty analysis sample).

As a final variable to form subgroups for analysis, we chose a variable based on

policy-relevance rather than theory. As noted in the Introduction, the relationship

between protected areas and poverty is important in international environmental

policy debates (Adams et al. 2004, Wilkie et al. 2006, Coad et al. 2008). Thus

differences in outcomes for low-poverty and high-poverty regions are of interest to

decisionmakers. We define an area as high-poverty if it has a baseline poverty index

of greater than 18 (the median value of the poverty analysis sample).

Methods

Estimator

Andam et al. (2008) and Andam et al. (2010) use matching techniques as

identification strategies to estimate the average treatment effect on the treated

(ATT).6 Naturally, once an area is protected one is unable to observe what would

6ATT is the appropriate estimand in these studies because the interest lies in the sample of areas
that were protected as compared to areas that could have been protected (unprotected areas that
are similar to protected areas based on key covariates). Alternatively, the average treatment effect
(ATE) additionally imputes values for all control units (finds the best match from the treatment
group). Given that there are many observational units that would never feasibly be selected for
protection, using ATE as the estimand makes little sense.
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have happened in this area had it not been protected (termed the fundamental

problem of causal inference by Holland 1986). Matching therefore constructs an ex

post counterfactual group of unprotected units that is observably similar to the

group of protected units in terms of key covariates believed to affect both outcome

and selection into treatment. The underlying goal is to achieve balance across the

key covariates similar to that achieved by a randomized experiment. To achieve this

balance, Andam et al. (2008) and Andam et al. (2010) use bias-adjusted nearest

neighbor Mahalanobis matching.

Our study uses a quasi-experimental design to conduct subgroup analyses. We

form an ex post control group, based on observable covariates, on which we conduct

subgroup analyses with the ATT as the estimand of interest. Subgroup analyses are

relatively rare in the program evaluation literature (Crump et al. 2008), but can

provide valuable insight even when average treatment effects are not significantly

different from zero (Crump et al. 2008, Imbens and Wooldridge 2009). Perhaps the

most common method of subgroup analysis is the use of interaction terms in a

regression framework. However, even if this type of approach were preceded by

matching (Ho et al. 2007) or trimming (Imbens 2004, Imbens and Wooldridge 2009),

the subgroup treatment effect estimate is more similar to the Average Treatment

Effect (ATE) than the ATT. Crump et al. (2008) suggest estimating separate

regression functions (parametric or nonparametric) for treatment and control

groups, and testing for differences in the coefficients on the subgroup variable.

While this approach is more transparent, it too is an estimand that is more in-line

with ATE than ATT.

We propose an estimator that uses regression-adjusted imputation methods (see

Imbens (2004), Abadie et al. (2004), Imbens and Wooldridge (2009) and a general

form matching-based variance estimator (Abadie and Imbens 2006, Imbens and

Wooldridge 2009) to estimate subgroup effects in terms of ATT. The advantage of
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this approach is that it allows for the estimation of confidence intervals to compare

point estimates across subgroup pairs, while still allowing transparent comparison of

subgroup effects to the overall ATT.

Like nearly all estimators for treatment effect we use the form τ̂ =
∑
N

λi · Yi

where Yi is the outcome for unit i and λi is a known weight such that
∑

i:Ti=1

λi = 1,∑
i:Ti=0

λi = −1, where Ti is the treatment indicator for unit i.7 Letting s indicate the

subgroup of interest, the subgroup ATT estimator is

τ̂ s =
∑
N

λsi · Y s
i . (1)

where

Y s
i =

 Y s
i if Ti = 1

Ŷ s
i = Y s

i:T=0 + µ̂0 (Xi:T=1)− µ̂0 (Xi:T=0) if Ti = 0
(2)

and µ̂0(·) represents the predicted values obtained from combining the coefficients

from a control group regression, of outcome on covariates, with the respective

treated and control covariates.8 Because we are interested in the ATT, our

estimator is

τ̂ s =
∑
Ni:T=1

λsi · Y s
i +

∑
Ni:T=0

λsi · Ŷ s
i . (3)

Variance

Variances for these subgroup ATT estimates are calculated using a general method

proposed by Imbens and Wooldridge (2009) which is related to the method

proposed by (Abadie and Imbens 2006). The method permits heteroskedasticity

7The simplest example of weights would come from one-to-one matching without replacement.
In this case λi:T=1 = −λi:T=0 = 1/NT=1. In general the weight is based upon the estimation
strategy (i.e., propensity score weighting, kernal matching etc.). For our purposes λi:T=1 = 1/NT=1,
λi:T=0 = #C/NT=0, where #C is the number of times an observation is used in the control group.

8The imputations are calculated by plugging the covariates Xi:T=1 and Xi:T=0 into the vector
of coefficients from the regression Yi:T=0 = Xi:T=0β0 + ε to obtain µ̂0 (Xi:T=1) and µ̂0 (Xi:T=0),
repectively.
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across treatment arms (protected, unprotected) and covariates. Matches are chosen,

based on covariates, within treatment arms and the difference in outcome between

these matches forms the basis for the variance estimation

σ̂2
i (Xi) = (Yi − Yl)2 /2. (4)

Where Yl is the outcome of the nearest within treatment arm neighbor. This

conditional variance estimate is then used to estimate the variance for the sample

V̂ (τ̂) =
∑
N

λ2
i · σ̂2

i (Xi) . (5)

These variance estimates can then be used to form confidence intervals by which

the point estimates of the differences between treated and control subgroups can be

evaluated.9

Inference

There are two components of our estimator τ̂ s, delineated by high baseline levels of

the covariates mentioned in the Data Section, τ̂H , and low baseline levels, τ̂L.

Protected and unprotected units are assigned to high and low subsets based on an

established threshold =. Assignment to subgroup s ∈ [L,H] is conducted according

to the following rule

si =
H if xi > =

L otherwise.
(6)

Each subgroup pair is composed of units xs=Hi with corresponding estimator τ̂H

and units xs=Li with corresponding estimator τ̂L. The estimator τ̂H is therefore

calculated by comparing the outcomes of protected and unprotected units for which

9All ATT point estimates and associated variances were programmed in R v.2.9.1. The code is
available from the authors upon request.
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xs=Hi . Similarly, the estimator τ̂L is calculated by comparing protected and

unprotected units for which xs=Li . These estimators address how protected units

with high baseline levels of a covariate, for instance, would have fared had they not

been treated by comparing them to similar unprotected units with high baseline

levels of the same covariate.

Greater interest lies in the comparison, within subgroup pairs, of the two

components of the subgroup estimator than in the respective point estimates. We

want to compare the ATT estimates of high-baseline units to the ATT of

low-baseline units for each set of subgroup pairs. Specifically we want to know if

τ̂H 6= τ̂L, which is an indication of heterogeneous subgroup response to treatment.

Let Cs
(
τ̂ s, V̂

)
=

[
τ̂ s − c ·

√
V̂ (τ̂ s), τ̂ s + c ·

√
V̂ (τ̂ s)

]
be the 95% confidence

interval for subgroup s, where c is the appropriate critical value associated with the

normal distribution. Let C = CH ∩ CL be the intersection of the high and

low-baseline covariate components of Cs. If C = ∅ then there is a statistically

significant difference between the point estimates of τ̂H and τ̂L within subgroup

pairs. In other words, the absence of an intersection between the confidence

intervals of two subgroup ATT point estimates provides evidence that the point

estimates differ statistically. For instance, suppose that for some baseline covariate

the subgroup pair deforestation outcomes have the relationship τ̂H > τ̂L and C = ∅.

This supposition would indicate that those units with high baseline levels of the

covariate exhibited statistically greater amounts of deforestation than those units

with low baseline levels of the covariate. Conversely, if in the previous example

C 6= ∅ we cannot draw any statistically meaningful conclusions regarding

heterogeneous treatment effects, in spite of the observed point estimates τ̂H > τ̂L.
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Implementation

We begin by creating two counterfactual control groups for the deforestation and

socioeconomic subgroup analyses. To ensure comparability, we follow the methods

of Andam et al. (2008) and Andam et al. (2010) closely. There are two primary

concerns in the formation of the counterfactual groups. The first is comparability

across studies. We ensure comparability by drawing counterfactual groups that are

similar to those used in previous studies.10

Our second concern is the precision of our estimates. Because subgroup analyses

require the segmentation of the sample (or population), subgroup treatment effect

estimates will generally have less precision than the overall sample (or population)

treatment effect estimates. In the deforestation sample, precision is not a concern.

There are 2,806 protected land parcels in the sample and an equal number of

unprotected parcels. However, because the unit of analysis in the socioeconomic

analyses is the census tract, there are far fewer protected units (249) in the sample.

Precision decreases when the sample is broken into subsets according to the

observable characteristics of interest. To improve precision, we form the

socioeconomic counterfactual group by combining propensity score and trimming

methods (Imbens 2004, Imbens and Wooldridge 2009). We calculate propensity

scores for the entire population of census tracts based on the covariates in Table 1.

The population is then trimmed according to Crump et al. (2009) and Imbens and

Wooldridge (2009) in order to remove extreme propensity score values which

indicate that the units are not good comparison units for the treated sample.11

After trimming, the remaining sample consists of 231 protected census tracts and

10In the deforestation analysis our counterfactual group is slightly different for two reasons. First,
we use an updated protected areas spatial layer which differs from the layer used by Andam et al.
(2008). Second, we use only a single nearest neighbor match (Andam et al. (2008) uses the two
nearest neighbors) because there are negligible gains to precision, whereas bias is minimized using
only one match (Imbens and Wooldridge 2009).

11This trimming method is based on the distribution of propensity scores. The trimmed set
Ţ=Ţα = {x ∈ X|α ≤ p (x) ≤ 1− α} where p (x) is the estimated propensity score and α is the
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973 unprotected census tracts. By using this alternative method of forming our

counterfactual group we face the concern that the estimates of ATT will differ

significantly from the estimates obtained by Andam et al. (2010). It can be seen,

however, that by using the same bias-adjustment techniques as those used by

Andam et al. (2010), the estimated ATT of -1.39 is similar to that of original study.

This gives us confidence that the subgroup estimates from this sample are indeed

comparable to the average treatment effects from (Andam et al. 2010).

To address potential heterogeneous deforestation and socioeconomic response by

subgroup, we first break the deforestation and socioeconomic samples into subgroup

pairs according to equation (6) using the threshold for each of the pretreatment

(baseline) covariates listed in the Subgroup Variable Section. Estimates of subgroup

ATT are made for each subgroup within each of the subgroup pairs according to the

methods outlined in the Estimator Section. This is done for both the deforestation

and socioeconomic samples using the same threshold values to define subgroups.

Using the same values allows us to compare how similar subgroups respond to

protection in terms of deforestation and socioeconomic outcomes.

Results

Table 2 presents the results. For each subgroup, it presents the average outcome for

protected units, the imputed counterfactual values for these units and the ATTs.

Figure 1 graphically presents results from a statistical comparison of subgroup point

estimates. Each major column represents a subgroup pair and contains two ATT

sub-columns. The height of each bar represents the point estimate of ATT for the

specified subgroup. The associated whisker represents the 95% confidence interval

for each of point estimate. Figure 1 shows for which characteristics we find evidence

solution to: 1
α·(α−1) = 2 ·

[
1

p(Xi)−(1−p(Xi))

∣∣∣α < p (Xi) < 1− α
]
. The estimate for our set is α =

0.027.
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Figure 1: Estimated heterogeneous impacts of protection on avoided deforestation and
poverty.

of heterogeneous subgroup effects. If the whiskers of the two ATT estimates within

a subgroup pair do not overlap, a statistical difference in subgroup effects exists.

Land Use Capacity

As an indicator of agricultural suitability we find that protected land parcels with

high land use capacities display significantly higher levels of avoided deforestation

(32.4%) than those with low capacities (9%). This result is consistent with the

assumption that agricultural pressure increases the likelihood of deforestation.

Table 2 indicates that even though deforestation was higher on protected land

parcels with high land use capacity (21% were deforested as compared to 10% of low

capacity protected parcels), the expected deforestation in the absence of protection

was much higher (54% on high-capacity land as compared to 20% on low-capacity

land). However, the results suggest that protection on high-capacity land may have

exacerbated poverty (positive rather than negative ATT). In contrast, the poverty

reduction impacts on low-capacity lands are quite large.
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Slope

The results also indicate a significant difference in deforestation ATT for high-slope

and low-slope land parcels. Avoided deforestation from protection on high-slope

forest parcels is estimated to be 1.4%, which is significantly lower than the

estimated avoided deforestation of 15.9% on low-slope parcels (these results are

qualitatively similar to the estimates of Pfaff et al. (2009)). However, as was the

case using land use capacity to define subgroups, the impacts of protection on

poverty are reversed: poverty alleviation associated with protection is greater on

census tracts with high average slopes than those with low average slopes.

The results in I and I thus indicate that while the returns to protection in terms

of avoided deforestation are higher on land with relatively higher potential returns

to agriculture, protection assigned to such land leads to comparatively poorer

socioeconomic outcomes.

Distance to Major City

We find that protected land parcels that are located further from one of Costa Rica’s

three major cities experience significantly higher levels of avoided deforestation

(15.3%) than parcels that are closer (5%). These results are counterintuitive when

distance to a major city is only viewed as a proxy for market access that increases

the returns to agriculture. However, distance to a major city also serves as a

measure of land-use law enforcement. There is less enforcement of existing land-use

laws the further a land parcel is located from a city. This explanation is consistent

with the estimated avoided deforestation values in Table 2: deforestation is higher

on both treated and control parcels farther from major cities. The conditional



19Table 2: Estimated average treatment effect on the treated (ATT) by subgroup pair.

Deforestation Socioeconomic
High Baseline Levels Low Baseline Levels High Baseline Levels Low Baseline Levels

Subgroup Pair Threshold YT=1 ŶT=0 τs=H YT=1 ŶT=0 τs=L YT=1 ŶT=0 τs=H YT=1 ŶT=0 τs=L

Land Use High 0.212 0.535 -0.324 0.108 0.202 -0.094 1.62 0.003 1.617 -2.22 -0.528 -1.693
Capacity [104] [104] (0.077) [2702] [2702] (0.017) [22] [301] (0.663) [209] [672] (0.359)

Slope 23% 0.098 0.112 -0.014 0.132 0.291 -0.159 -3.9 -2.3 -1.62 1.03 1.25 -0.228
[1624] [1133] (0.023) [1139] [1656] (0.019) [135] [284] (0.244) [96] [689] (0.301)

Distance To 57km 0.141 0.294 -0.153 0.081 0.131 -0.05 2.86 2.81 0.053 -3.82 -2.58 -1.247
Major City [1418] [1377] (0.016) [1388] [1429] (0.015) [67] [298] (0.511) [164] [675] (0.223)

%Agricultural 13% 0.107 0.24 -0.133 0.119 0.164 -0.045 -1.41 -1.41 0.008 -2.45 -0.643 -1.802
Workers [1660] [1676] (0.019) [1146] [1130] (.019) [131] [487] (0.267) [100] [486] (0.335)

Baseline 15 0.123 0.239 -0.116 0.082 0.162 -0.08 0.968 2.06 -1.088 -4.51 -3.83 -0.684
Poverty [2002] [2002] (0.018) [804] [804] (0.024) [112] [564] (0.301) [119] [409] (0.208)

Notes: Y denotes the outcome (deforestation, poverty index), T = 1 denotes protected units, T = 0 denotes matched unprotected units.

ŶT=0 s imputed according to equation (2).

τs is the subgroup ATT calculated, τ = YT=1 − ŶT=0.
[Number of Observations in Subgroup]
(Standard Errors)
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impacts on poverty, however, are the opposite: although protection yields greater

avoided deforestation when located farther from cities, it yields higher

socioeconomic impacts when located near cities.

Agricultural Workers

We find a statistical difference in the efficacy of protected areas on deforestation

outcomes according to the percentage of agricultural workers that reside in the

census tract from which the land parcel is sampled. Avoided deforestation estimates

are significantly higher on parcels that fall in census tracts with high percentages of

agricultural workers (13.3%) compared to those in census tracts with lower

percentages of agricultural workers (4.5%). Such a result is consistent with the

conjecture that a higher proportion of agricultural workers in the population serves

as a good measure of the amount of agricultural activity within the area, which is

correlated with higher returns to avoided deforestation.

We find that census tracts with high percentages of agricultural workers

exhibited significantly lower socioeconomic outcomes due to protection (0.008) than

did census tracts with low percentages of agricultural workers (-1.802). These results

provide evidence consistent with predictions that land restrictions associated with

protected areas have a differential effect on agricultural workers (Robalino 2007).

Poverty

Although we find the point estimates of avoided deforestation due to protection to

be higher on land parcels that fall within census tracts with high levels of baseline

poverty, the difference between high (11.6%) and low (8%) subgroups is statistically

insignificant. So too are the estimates of protections impact on socioeconomic

outcomes for these subgroups. The point estimates indicate that protection was

more beneficial in areas with high baseline poverty but the confidence intervals for
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these estimates clearly overlap. Statistical significance aside, the point estimates

depict a desirable situation from many planners’ perspectives. Although

high-poverty areas fared no better, statistically, with protection than low-poverty

areas, avoided deforestation and poverty alleviation in high-poverty areas were

significantly different from zero. Thus placing protected areas in high-poverty areas

can, on average, achieve environmental gains without exacerbating poverty. In fact,

the evidence suggests that, if anything, protected areas have alleviated poverty in

these areas.

Robustness to Subgroup Definitions

To define subgroups, we use median values of the relevant covariates (see the

Subgroup Variable Section). We test the sensitivity of our results to a +/-10%

change in these median threshold values. Our inferences are unchanged in all but

two instances. In the analysis of protection’s impact on poverty, the difference

between subgroups near and far from major cities is no longer statistically significant

at the 5% level for either a +10% or -10% change in the threshold value. The

difference between subgroups with high and low-sloped land is no longer significant

for a 10% increase in the threshold value. The ordinal relationships between the

point estimates for each subgroup, however, remain qualitatively the same. In the

slope subgroup analysis, the precision of the estimates changes when the threshold

is increased because there are relatively few census tracts with a majority of land

having very high slopes This problem does not arise when the threshold value is

decreased (in fact, the qualitative and statistical relationships are the same using a

threshold value that is 50% lower than the one used in our analyses).12

12The threshold value of 23% slope to separate the subgroups comes from the median slope of
units in the deforestation sample. If one were to instead use the median slope of the census tract
in the socioeconomic sample (16%), a relationship similar to that displayed by land use capacity
is observed. High-slope areas show relatively high poverty alleviation, whereas low-slope areas are
associated with poverty exacerbation.
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We run three additional robustness analyses. In the first two we define the

threshold as the 40th and 60th percentile subgroup values. For the third analysis we

drop any observation with a covariate value that lies between the 40th and 60th

percentile and define the “low” group as any observation below the 40th percentile

and the “high” group as any observation above the 60th percentile. The results from

each of these analyses are qualitatively similar to the robustness analysis using a

+/-10% change in the median threshold values.

Unobserved Heterogeneity

Unobserved heterogeneity (hidden bias) is a concern in any non-experimental study.

Consistent estimation of the average treatment effect on the treated depends on the

untestable assumption that, after conditioning on baseline characteristics, the

outcome under the no-treatment state is independent of treatment exposure. In our

study, if the protected and matched unprotected units differ in some unobservable

way that affects deforestation, our estimates will be biased. For example, consider

how Andam et al. (2008) measure forest cover: a three-hectare plot is considered

forested if its canopy cover was greater than 80%. If forested plots selected for

protection systematically were to have more (less) canopy cover than the matched

controls, our avoided deforestation estimates would be biased upward (downward).

For example, say that mean baseline crown cover was 95% in protected plots and

85% in matched control plots. With similar levels of deforestation on protected and

unprotected plots, unprotected forest plots would be more likely to pass the 80%

threshold and be declared “deforested.” 13

To test the sensitivity of their results to hidden biases, Andam et al. (2008,

2010) use a sensitivity test recommended by Rosenbaum (2002). For example, in

the avoided deforestation study of (Andam et al. 2008), the authors examine the

13We thank an anonymous referee for noting this particular potential source of hidden bias.
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possibility that the protected plots may be unobservably less likely to be deforested

than their matched controls. They posit the existence of a strong confounding

factor that not only affects protection decisions, but also determines whether

deforestation is more likely in protected plots or the matched controls. They find

that the treatment effect estimate is highly robust to hidden bias: if an unobserved

plot attribute caused the odds ratio of protection to differ between protected and

unprotected plots by a factor of as much as 2.15, the 99% confidence interval of the

estimate would exclude zero.

Of course, a sensitivity test to hidden bias only quantifies and expresses the

uncertainty from hidden bias. It does not dispel that uncertainty.14 Our study,

however, focuses on the ordinal rankings of treatment effect estimates within

subgroup pairs rather than on the level of the point estimates themselves. In other

words, we are less interested in stating the avoided deforestation is X% in a

particular subgroup, and more interested in saying that avoided deforestation in

subgroup A is greater than in subgroup B. Unobserved heterogeneity would be a

concern in our analyses only if it were to differentially affect the subgroup pairs such

that it caused the ordering of subgroup estimates to switch. We cannot think of a

simple story of systematic unobserved heterogeneity that would act differentially

within subgroup pairs (e.g., on flat lands, decision makers systematically sought out

sparse-canopies among forests observably similar on the dimensions we match, and

on steep lands they systematically sought out thick-canopies). Thus, even if

14To directly assess the potential source of bias from not using continuous crown cover data, we
would need continuous baseline data, which we lack. However, we obtained such data for the period
1992 -1993 from the Global Land Cover Facility (Earth Science Data Interface). If we assume that
any canopy cover bias in decisions to protect forests before 1980 would continue into the early 1990s,
we can use these recent data to test whether canopy cover percentages were similar between protected
and unprotected plots at baseline. We measure canopy cover inside and outside of protected areas
established between 1991 and 1995. These data (measured at 1square km-level) range from 0-80%.
Because there is no variation above 80% (the threshold for our binary indicator), we use the next
quintile (60-80%). If forest canopy percentage affects selection into protection, we should observe
a difference in the mean canopy cover for protected and unprotected units. We do not observe
any meaningful difference: mean canopy cover percentage within protected areas is 69.75% and in
unprotected areas is 69.6%.
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unobserved heterogeneity were to bias the underlying average treatment effect on

the treated estimates of the original samples, it is unlikely to affect our estimated

ordering of subgroup pairs.

Discussion

Recent studies have found what appears to be evidence of so-called ‘win-win’

outcomes associated with protected areas in Costa Rica. Protection has been

moderately effective, on average, in preventing deforestation (Andam et al. 2008)

and in alleviating poverty (Andam et al. 2010). However, these impact estimates

ignore the potential for heterogeneous responses to protection for different

subgroups. Understanding heterogeneous treatment response is important from the

perspective of a social planner because conditional assignment of protected areas

can lead to greater average treatment response for the population (Manski 2005).

Using new quasi-experimental methods, we estimate the heterogeneous subgroup

impacts of protected areas established prior to 1980 on deforestation and

socioeconomic outcomes in Costa Rica. For nearly all the biophysical and

demographic subgroups we define, we find statistically significant, and

policy-relevant, evidence of heterogeneous responses to protected areas. Avoided

deforestation is highest when protection is assigned to lands that are highly suitable

for agriculture, are far from major cities and infrastructure, or where a high

percentage of adults are employed in agriculture: about three times higher than on

lands that exhibit the opposite characteristics. However, poverty alleviation is

highest when protection is assigned to areas with the opposite characteristics. In

other words, the characteristics associated with the most avoided deforestation are

the characteristics associated with the least poverty alleviation.

Caution should be observed when using our results to guide future conservation

planning in Costa Rica. We estimated the average treatment effects of protection on
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protected forests in each subgroup impacts. Thus extrapolation should only be

made to areas that are observably similar to the protected ecosystems in this study.

Given that the covariates associated with areas already protected are most likely

very similar to areas that will be chosen for protection in the future, basing

extrapolation on the counterfactual samples used in this study may not be

unreasonable. Future analyses, however, should estimate the average treatment

effect on the control (ATC) to provide insights into the way in which protection

anywhere in Costa Rica that is currently unprotected would affect deforestation and

poverty. As noted in Andam et al. (2010), future analyses should also focus on the

impacts of alternative management strategies, such as community management

(e.g., Somanathan et al. (2009), and on elucidating the mechanisms through which

protection has reduced poverty (e.g., tourism, infrastructure development,

ecosystem services). Our analysis provides a useful foundation for such analyses by

highlighting the spatially heterogeneous impacts of protection.

Although historical treatment responses do not necessarily predict future ones,

our results indicate that prudent conservation planning would pay special attention

to covariates related to agriculture. For example, decisionmakers may wish to look

at the composition of employment in the surrounding areas before assigning

protective legislation to an ecosystem. If protecting ecosystems in areas with a large

percentage of adults employed in agriculture cannot be avoided, additional

interventions, such as performance payments for environmental services to local

communities, may be warranted to contribute to poverty alleviation goals.

One of the goals set forth at the Fifth World Parks Congress in 2003 is that

protected areas should do no economic harm to surrounding human populations

(Adams et al. 2004). The results to date indicate that, on average, Costa Rica’s

protected area system achieved this goal. Equally important, the results support

claims that protecting ecosystems in high-poverty areas can, on average, achieve
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environmental gains and alleviate poverty. Yet the amount of avoided deforestation

generated by Costa Rica’s protected area system was modest. As in other nations,

Costa Rican protected areas tend to be assigned to ecosystems with low economic

returns from conversion.15 Our study shows that the same factors that have limited

the conservation effectiveness of protected areas may have improved the social

welfare impacts of these areas. This observation implies that ‘win-win’ efforts to

protect ecosystems and alleviate poverty may be possible when policymakers are

satisfied with low levels of each outcome, but tradeoffs exist when more of either

outcome is desired. Without innovations in conservation technology, having more of

one will imply having less of the other.

15The Millennium Ecosystem Assessment (2005, pp. 130) reports that “many protected areas
were specifically chosen because they were not suitable for human use.”



Chapter II

Conditions Associated with Protected Area Success in Conservation and

Poverty Reduction

Introduction

Protected areas are the dominant approach to protecting biodiversity and the

supply of ecosystem services (MEA 2005). A fundamental concern surrounding the

establishment of protected areas, particularly in developing countries, is that

ecosystem conservation goals may conflict with poverty alleviation goals by reducing

incomes or perpetuating poverty traps (Adams et al. 2004, Coad et al. 2008, Wilkie

et al. 2006, WDPA 2009, Brockington et al. 2006). A poverty trap, as described in

the introduction to this special issue, is a self-reinforcing mechanism that causes an

area to remain poor. By restricting access to natural resources, protected areas

might create new poverty traps or reinforce old ones.16 Protected areas tend to be

established away from major cities and on agriculturally undesirable land (Joppa

and Pfaff 2009); characteristics also associated with high levels of poverty. We

might therefore be concerned that protected areas would reinforce poverty traps.

More optimistically, they might push local economies out of poverty traps by

providing tourism business opportunities, improved infrastructure, or enhanced

supplies of ecosystem services. For example, new evidence from Costa Rica and

16For example Robalino (2007) predicts that protected areas would place a greater burden on
non-landowning workers, who are often the poor.

27
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Thailand suggests that protected areas in these two countries have, on average,

reduced local poverty (Andam et al. 2010, Sims 2010).

To fully understand protected area impacts, one should consider environmental

and socioeconomic outcomes jointly and quantify the heterogeneity in impacts.

Unfortunately, there is little scientific evidence on the nature of this heterogeneity

or of the potential tradeoffs between environmental and socioeconomic outcomes

(Coad et al. 2008, Joppa and Pfaff 2010). Retrospective causal analysis of the

socioeconomic impacts of developing country protected areas is limited

(Brockington et al. 2006, Andam et al. 2010, Sims 2010, Ferraro and Hanauer 2011,

Bandyopadhyay and Tembo 2010). Only the work in Thailand and Costa Rica

(Andam et al. 2010, Sims 2010, Ferraro and Hanauer 2011) also collects information

on environmental outcomes. However, those previous studies do not include

sufficiently detailed analysis of heterogeneity in impacts to assess potential tradeoffs

between ecosystem protection and poverty alleviation (Manski 2005, Crump et al.

2008).

Using data from Costa Rica and Thailand, we examine the heterogeneity of

protected area impacts as a function of baseline poverty and covariates that are

likely to moderate how protection affects outcomes (Baron and Kenny 1986). We

select these two nations because they have significant biodiversity, large protected

area systems and reliable spatially explicit data. Unlike previous studies that

explore heterogeneous impacts of protected areas (Sims 2010, Ferraro and Hanauer

2011, Pfaff et al. 2009), we examine impacts on both avoided deforestation and

poverty reduction and use a nonparametric method of locally weighted scatterplot

smoothing (LOESS) (Cleveland 1979, Cleveland and Devlin 1988) and a

semiparametric partial linear differencing model (PLM) (Yatchew 1997, 1998).

These models estimate more informative continuous relationships between

observable characteristics and outcomes. We are thus able to identify covariate
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ranges that are associated with high conservation and poverty reduction outcomes

(‘win-win’), low conservation and poverty exacerbation outcomes (‘lose-lose’), or

incongruence where one outcome is ‘win’ and the other is ‘lose’ (‘win-lose’).

The rapidly growing conservation planning literature focuses on how to target

conservation investments conditional on observable environmental and economic

characteristics (Margules and Pressey 2000, Naidoo et al. 2006). Planners interested

in achieving both avoided deforestation and poverty reduction need to understand

how these outcomes co-vary with observable characteristics. Such understanding

allows for the development of conditional empirical success rules (see Manski (2005),

p.75) that can be used to target interventions based on expected impacts as

predicted by observable characteristics. We demonstrate how such rules can be

visualized through suitability maps that identify locations associated with ‘win-win’,

‘lose-lose’, or ‘win-lose’ scenarios.

Data

For additional details on data, see Appendix B and Andam et al. (2008, 2010).

Previous studies estimated that protected areas resulted in significant avoided

deforestation and poverty reduction in Costa Rica and Thailand (Andam et al.

2010, Sims 2010, Andam et al. 2008). About 11% of the area protected in Costa

Rica would have been deforested had it not been protected (25). Using similar

methods, we estimate that about 15% of protected forest in Thailand would have

been deforested in the absence of protection (see Appendix B). Protected areas in

Costa Rica accounted for about 10% of the poverty decline around the areas. In

Thailand, protected areas reduced poverty by about 30% (Andam et al. 2010). We

use data from these studies to explore the heterogeneity of protected areas’ impacts.
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Poverty

Poverty measures are based on national census data of household characteristics and

assets (see Appendix B for detail). Costa Rica analyses use 1973 and 2000 census

tract poverty indices (Andam et al. 2010) from a principal components analysis

((Cavatassi et al. 2004); see Appendix B). Thailand analyses use the subdistrict

poverty headcount ratio, which is the share of the population in 2000 with monthly

household consumption below the poverty line and comes from a poverty mapping

analysis (Healy and Jitsuchon 2007, Elbers et al. 2003). The sample comprises

subdistricts in north and northeast Thailand, which is where the majority of

protected forest areas are located. Larger values of both poverty measures imply

greater poverty.

As in Andam et al. (2010), we define a census tract or subdistrict as protected if

at least 10% of its area is protected prior to 1980 (Costa Rica) or 1985 (Thailand)

(249 census tracts and 192 subdistricts).17 With protection assigned 15 or more

years before poverty outcomes are measured, longer-term impacts can be measured.

Unprotected units, from which matched controls are selected, comprise units with

less than 1% protected before 1980 or 1985 (4,164 census tracts and 3,479

subdistricts).18 Protected areas comprise IUCN Categories I, II, IV and VI in Costa

Rica and IUCN Categories I and II in Thailand.

Avoided Deforestation

As a proxy for conservation success, we estimate avoided deforestation from

protected areas (we acknowledge this is not the only possible measure of success).

17Andam et al. (2010) select a 10% threshold because it reflects the call by the fourth World
Congress on National Parks and Protected Areas to protect 10% of each of the world’s major biomes
by 2000, and by the Conference of Parties to the Convention on Biological Diversity to conserve 10%
of each of the world’s ecoregions. Andam et al. (2010) show that the estimated impacts are robust
to changes in this threshold.

18Units with one to ten percent of their area protected are dropped from the analysis to avoid
matching protected units to “marginally” protected units.
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The unit of analysis for the deforestation data is a 3 hectare land parcel (20,000

randomly selected) drawn from forested areas at baseline (Costa Rica, 1960;

Thailand, 1973). Each parcel is classified as deforested or forested by the end year

(Costa Rica, 1997; Thailand, 2000). A parcel is defined as protected if it lies within

a protected area that was established prior to 1980 (Costa Rica) or by 1985

(Thailand). Control parcels were never protected.

Covariates

For each country, multiple spatial layers are used to create covariates for each

census tract, subdistrict or parcel (Tables 1 and 14).

Study Design

To estimate the impact of protection on the protected units, one must establish

what would have happened in the absence of protection. Like the studies from

which we obtain our data (Andam et al. 2010, 2008), we using matching to select

unprotected control units that are similar at baseline to protected units.

Preprocessing the data (Ho et al. 2007) through matching ensures that the

distributions of key covariates believed to affect both outcome and selection into

protection are balanced across protected and unprotected units (see Appendix B).

The goal of matching, like standard regression techniques, is to control for

differences in baseline characteristics that affect the designation of protected areas

and poverty or deforestation (Ho et al. 2007, Imbens and Wooldridge 2009, Angrist

and Pischke 2009). For example, protected areas are often placed on land less suited

for agriculture (MEA 2005, Joppa and Pfaff 2009, Pfaff et al. 2009). The matching

strategy assumes that, after matching, the expected outcomes of protected and

matched control units in the absence of protection are the same. Thus the control

group’s outcome represents the protected group’s counterfactual outcome. Although
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there is no direct way to test this assumption, the previous studies in Costa Rica

and Thailand found the estimates were robust to unobserved heterogeneity using

our matching specifications (Andam et al. 2010, 2008). The Thailand results were

also confirmed using an instrumental variable approach (Sims 2010). For the Costa

Rica poverty sample and both deforestation samples, we use nearest neighbor

Mahalanobis matching with replacement. For the Thailand poverty sample, we use

propensity score matching with exact matching on district to control for baseline

fixed effects. See Appendix B for details on the matching methods used and the

covariates on which units are matched.

Post-matching, we use nonparametric LOESS (Cleveland 1979, Cleveland and

Devlin 1988, Nelson and Chomitz 2009)to estimate impacts as a function of baseline

poverty. LOESS allows us to assess whether or not protected areas contributed to

poverty traps. We use LOESS because we are interested in how poor areas,

including all the factors that make them poor, respond to protection.19 To isolate

the moderating effects on avoided deforestation and poverty from observable

baseline characteristics net of other influences, we use semiparametric PLM

(Cleveland 1979, Cleveland and Devlin 1988, Yatchew 1997, 1998) on the matched

data. This two-stage estimator allows us to linearly control for other influencing

covariates in the first stage and then estimate the outcome as a nonparametric

function of the covariate of interest using LOESS in the second stage (see Appendix

B). The benefit of this approach is that it allows us to conduct inference along a

continuum of covariate values (e.g., distances from cities) while holding constant

potentially complimentary or countervailing covariates (e.g., slope). The results

from the PLMs are then used in the suitability mapping exercise (see Appendix B

for more details).20

19See Appendix B for additional discussion of the choice of methods.
20As done in the studies from which we draw (Andam et al. 2010, 2008), we implement bias-

adjustment techniques within all LOESS iterations (Imbens and Wooldridge 2009, Abadie et al.
2004).
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Figure 2: Heterogeneous responses to protection.



34

Results: Heterogeneous Impacts

Figure 2 presents the results. In each panel, the solid and dashed lines represent the

estimated difference between protected and counterfactual units, i.e. the conditional

average treatment effect on the treated (ATT) for avoided deforestation and poverty

reduction, respectively. The green (red) shaded area around the solid (dashed) line

represents the 95% pointwise confidence band for the avoided deforestation (poverty

reduction) ATT estimate.21 The solid green (red) horizontal line represents the zero

line for the avoided deforestation (poverty reduction) estimate, at which there are

no impacts from the establishment of protected areas.

Poverty Traps

We first test whether protected areas reinforced or exacerbated poverty traps in

Costa Rica. If this were the case, we would expect to find that areas that were very

poor at baseline would be negatively affected by protected areas. Based on theory,

we would also expect that negative effects occur only when land-use restrictions are

binding. Thus any exacerbation of poverty should be accompanied by avoided

deforestation.

The results in Figure 2(a) confirm that avoided deforestation (solid line) in Costa

Rica is positive across observed baseline poverty values. In other words, protected

areas did impose binding land-use restrictions. Avoided deforestation is relatively

constant along a majority of the baseline poverty range, although there is a dip

between baseline poverty index values of 15 and 18. Poverty reduction (dashed line),

however, appears to be U-shaped (inverted) as a function of baseline poverty. The

estimates suggest that protected areas achieved significant poverty reduction for

most of the range above the median baseline poverty level (poverty index = 12). At

very high levels of poverty, these effects are not significantly different from zero. The

21See Figures 14 - 16 for more detailed illustration of all the impact heterogeneity results.
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LOESS results therefore do not suggest that protected areas exacerbated poverty in

the poorest populations. In fact, a majority of the poorest areas experienced

poverty reduction compared to their estimated counterfactual poverty levels.22

Moderating Covariates

To better understand the nature of protected areas’ impacts on poverty, we next

consider two covariates that are highly related to poverty and, based on theory, are

expected to moderate the impacts of protection: slope and distance to major cities.

The primary driver of deforestation in Costa Rica and Thailand was agriculture

(de Camino Velozo et al. 2000, Evans 1999, Cropper et al. 1999).23 Slope is highly

correlated with agricultural potential: the steeper the slopes, the less suitable the

land is for agriculture. Steeper slopes are therefore associated with lower

deforestation pressure and, therefore, lower opportunity costs of protection.24 Slope

and baseline poverty are also highly correlated: in Costa Rica the mean slope for

land among the poorest quartile is 16.4 percent, whereas for the richest quartile it is

only 3.8 percent.

Like slope, distance to city is also positively correlated with baseline poverty: in

Costa Rica the mean distance of the poorest quartile is 70 km and of the richest

quartile is 9 km. However, the distance to a major market city has a more

complicated theoretical relationship with deforestation and protection. On one

hand, being far from cities lowers agricultural returns and thus the returns to

deforestation (because of, for example, higher transportation costs and poorer price

22As a robustness check we run a parametric quantile regression. These results are consistent with
the LOESS results (see Appendix B).

23Logging was also an important source of deforestation during this time period and large-scale
logging often cleared the way for conversion of previously forested land to agricultural use. Forest
cover in logged areas tends to regenerate in these nations unless used for agriculture.

24Slope captures other deforestation pressures too, such as ease of logging (Pfaff et al. 2009), but
agriculture is the key deforestation force in our study. In Costa Rica slope has been shown to be
a good proxy for agricultural suitability (Ferraro and Hanauer 2011). Furthermore, the response
functions conditional on slope and baseline labor force in agriculture exhibit similar trends (see
Figure 15).
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information). On the other hand, being far from cities also means one is likely to be

far from the nodes of enforcement of land-use regulations inside and outside

protected areas, thus increasing returns to agriculture. Finally, if one believes that

tourism and associated infrastructure development is a key mechanism through

which protection reduces poverty, then greater distance from cities implies less

potential for poverty reduction. Thus the opportunity costs from protection can

change nonlinearly as distance to cities increases.

Panels (b) and (c) of Figure 2 present the results of the analysis of the two

moderating covariates in Costa Rica. Protection on low-sloped land is associated

with significant tradeoffs in joint outcomes. We observe statistically significant

poverty exacerbation up to an average slope of 10%, whereas the associated impact

on avoided deforestation is relatively high along this range. Between approximately

15% and 40% slope, we observe ‘win-win’ outcomes of avoided deforestation and

poverty reduction statistically different from zero. The results help to explain why

we do not observe an association between protected areas and poverty traps despite

evidence that land-use restrictions were binding. Figure 2(b) also indicates that the

protection of low-sloped land is associated with significantly more avoided

deforestation than the protection of steeply-sloped land.25 As noted by Andam et

al. (25), protected lands are rarely located on lands highly suitable for agriculture,

and thus we can see why Andam et al. (2010, 2008) find a ‘win-win’ outcome, on

average. These results suggest that protected areas are not serving as poverty traps

partly because they tend to be sited in areas with low agricultural potential and

thus low opportunity costs.

Figure 2(c) confirms the conjecture that distance to major cities captures

countervailing forces and thus may generate nonlinear relationships between

protection and the outcomes. The interval at which poverty reduction is greatest is

25This relationship arises largely because the amount of deforestation in the absence of protection
decreases with slope (see Figure 15).
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farther from cities than the interval at which avoided deforestation is greatest.

Nevertheless, there is a substantial overlap of poverty reduction and avoided

deforestation (‘win-win’) at intermediate distances (approximately 40km to 100km).

These results provide indirect evidence that protected areas are not creating poverty

traps partly because they tend to be sited in localities that can respond to

opportunities afforded by tourism and associated infrastructure development. They

also suggest that poor localities far from cities may not respond as well to

protection as poor localities closer to cities.
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Figure 3: Costa Rica protected area suitability map.
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In Thailand, we lack baseline poverty data,26 but we can examine protection’s

impact on deforestation and poverty as a function of slope and distance to major

cities. The shapes of the PLM graphs in Figure 2 panel (d) look remarkably similar

to the shapes of the corresponding graphs for Costa Rica: slope is negatively related

to avoided deforestation and positively related to poverty reduction. While there is

a range over which ‘win-win’ outcomes are observed, the general trend of tradeoffs

(more poverty reduction correlating with less avoided deforestation) is even more

pronounced in Thailand. As in Figure 2(c), we observe in Figure 2(e) a nonlinear

relationship between avoided deforestation and poverty impacts as a function of

distance from major cities. The relationship with avoided deforestation in Thailand

looks different from the relationship observed in Costa Rica (lower avoided

deforestation at intermediate distances), but the relationship between poverty

impact and distance from cities looks strikingly similar in both nations: the largest

reductions in poverty are observed at intermediate distances from major cities.

Results: Suitability Mapping

Figure 2 suggests that the way in which areas respond to protected areas

established in their midst will differ conditional on observable baseline

characteristics. An understanding of these heterogeneous effects offers insights into

how protected areas can be established in the future to manage tradeoffs between

environmental and poverty reduction goals.

Suitability mapping allows one to visualize the joint outcomes spatially. We use

the results from the previous section to create illustrative protected areas suitability

maps for Costa Rica and Thailand. We break the regions into 3 hectare units and,

based on results from PLM models, assign each unit a suitability score according to

26As did Andam et al. (2010), we address this lack of baseline poverty data by matching on a
large number of baseline and time-invariant variables likely correlated with baseline poverty and by
including district fixed effects.
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the predicted impact on deforestation or poverty if the unit were protected (see

Material and Methods and Appendix B). For example, based on historical impacts

of protected areas in Costa Rica, a land parcel located on slopes of approximately

12% is highly suitable for protection in terms avoided deforestation, but only

moderately suitable in terms of poverty reduction (recall that we are controlling for

other parcel characteristics in the PLM estimation). By mapping underlying

covariate relationships jointly with deforestation and poverty outcomes, we are able

to identify areas of ‘win-win’, ‘lose-lose’ and ‘win-lose’. These maps therefore are a

type of graphical illustration of conditional empirical success rules.
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Figure 4: Thailand protected area suitability map.

We classify a land parcel’s suitability for protection based on its slope and its

distance from major cities, which are two time-invariant characteristics that are
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typically available to decision makers (see Methods and Appendix B for details).27

Because protection is assigned mainly to forested areas in the two nations, we limit

our classification to parcels that were forested in the final period of our analyses:

1997 for Costa Rica and 2000 for Thailand.

Figures 3 and 4 display the illustrative suitability maps. The bivariate color grid

represents increasing suitability for protected areas in terms of avoided deforestation

(horizontal axis) and poverty reduction (vertical axis), based on historical impacts.

Boundaries of the protected areas used to estimate the historical impacts of

protection are in blue. In yellow, we highlight areas in the upper five deciles for

both potential avoided deforestation and poverty reduction. These locations might

be considered potential ‘win-win’ locations (see Methods and Appendix B). In

Costa Rica, 324,156 hectares of forest in 1997 are classified as ‘win-win’ locations

(14% of the total) with an average environmental (socioeconomic) suitability score

of 7.25 (6.77). In Thailand, 662,013 hectares of forest in 2000 are classified as

‘win-win’ (5% of the total) with an average environmental (socioeconomic)

suitability score of 6.17 (6.38). In black, we highlight areas that, based on historical

responses, would likely experience poverty exacerbation and thus might be

considered undesirable for establishing a protected area, regardless of environmental

suitability. Because these expected poverty outcomes are driven by low-sloped land,

all these areas are associated with positive avoided deforestation and therefore

expected ‘win-lose’ outcomes. In Costa Rica, 659,730 hectares are classified as likely

exacerbation locations (28% of the total forest area) with an average environmental

suitability score of 5.2. In Thailand, 1,180,041 hectares are classified as likely

exacerbation locations (10% of the total forest area) with an average environmental

suitability score of 6.6 (see Appendix B).

27Slope data are often used in global protected area analyses (Joppa and Pfaff 2009, Nelson and
Chomitz 2009).
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These maps are meant to be illustrative and used in conjunction with other

sources of data and expertise. Other baseline conditions are likely to be important

in determining tradeoffs. In future applications, suitability maps would incorporate

knowledge of other indicators of biological value (e.g., endemic species) and other

forms of expert knowledge about local conditions into a more sophisticated

optimization algorithm (see Naidoo et al. (2006) for examples of algorithms).

Moreover, the maps are based on the assumption that past associations will hold for

future outcomes, which may not be true in rapidly changing societies. Suitability

maps present a static picture of expected relationships and do not capture potential

general equilibrium effects: the protection of an area may fundamentally change the

suitability of the remaining unprotected areas. Finally, future analyses should also

incorporate an understanding of the differential impacts of protected area types

(e.g., wildlife refuges versus national parks) and other characteristics determining

economic opportunities.

Discussion

Debates over the effectiveness of protected areas in achieving conservation results

and in affecting poverty are often based on little empirical evidence. Critics of

protected areas highlight the role that protected areas can play in limiting

agricultural development and exploitation of natural resources. They would thus

predict that observable characteristics associated with high levels of avoided

deforestation from protection would also be associated with poverty exacerbation.

Proponents highlight the role that protected areas can play in supplying ecosystem

services, promoting tourism and improving infrastructure. They would thus predict

that characteristics associated high levels of avoided deforestation from protection

would be associated with high levels of poverty reduction. Our results indicate that
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the realities in Costa Rica and Thailand are more complicated than either of these

two stereotypes.

Our results are not consistent with protected areas creating poverty traps. In

fact, the results suggest that protection in areas associated with high poverty has,

on average, reduced poverty while also reducing deforestation. Such ‘win-win’

outcomes were most commonly associated with locations at intermediate distances

from major cities (40-80 km) and on land of moderate to poor agricultural

potential. These patterns are consistent with a hypothesis that protected areas have

reduced poverty by being placed on lands with little agricultural value that, by their

proximity to major markets, can benefit from tourism and associated infrastructure

development (thus offsetting any losses from foregone agriculture and forest resource

exploitation). To support this hypothesis, more explicit analyses of mechanisms will

be necessary (e.g., Imai et al. (2010)). Although we find no evidence that

protection, on average, created poverty traps, our results do not imply that

protection reduced poverty in all poor communities. poverty may have been

exacerbated in some poor communities.

Despite the lack of evidence for poverty traps from protected areas, the results

do suggest potential tradeoffs: the most avoided deforestation is found on low-sloped

land with high agricultural value, but these lands are where poverty exacerbation is

observed. Thus although protected areas did lead, on average, to moderate levels of

avoided deforestation and poverty reduction in Costa Rica and Thailand, our

analysis points to tradeoffs if decision makers desire higher levels of either outcome.

The potential for tradeoffs underscores the importance of conditional empirical

success rules, especially as practitioners attempt to better target protected area

investments to increase conservation effectiveness and as policymakers look to

protected areas as a means to obtain international financial transfers from reducing

emissions from deforestation and forest degradation (REDD) programs.
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Costa Rica and Thailand are middle-income countries, have made substantial

investments in their protected area systems, and have relatively successful

eco-tourism sectors. Whether our results would hold for other nations is an open

question. Our approach can, and should be, replicated in other nations through

cooperation between groups collecting spatially explicit data on poverty, protected

areas, and land-use change. A greater understanding of heterogeneous impacts can

improve conservation planning and offer insights into the potential tradeoffs

between environmental and development goals in future efforts to reduce emissions

from deforestation and degradation.



Chapter III

Causal Mechansisms of Protected Areas

Introduction

The proliferation of protected areas in recent decades has led to increased interest in

understanding their economic impacts on surrounding populations. However, there

have been few studies with the requisite data and methodologies to accurately

estimate the socioeconomic impacts of protected areas (Andam et al. 2010, Coad

et al. 2008). The few studies that satisfy the conditions for an impact study of high

quality,28 have found that the establishment of protected areas has been associated

with poverty reductions in surrounding areas (Canavire-Bacarezza and Hanauer

2011, Andam et al. 2010, Sims 2010). Such results run counter to the conventional

wisdom (Coad et al. 2008, Wilkie et al. 2006, Adams et al. 2004) and limited theory

(Robalino 2007). Unfortunately the quasi-experimental methods employed in the

previous protected area impact evaluations are not suitable for addressing the

underlying mechanisms through which protected areas affect poverty. Therefore, the

question of why protected areas have been found to be associated with reductions in

poverty remains. An understanding of these mechanisms would help explain why

impacts occur, rather than simply quantifying the impacts.

The establishment of protected areas has elicited concern from poverty

advocates due to their associated land-use restrictions (Wilkie et al. 2006, Adams

28See Ferraro (2008) for a discussion of the necessary components.

44
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et al. 2004). Coupled with the facts that, historically, protected areas have been

placed on marginal lands (Joppa and Pfaff 2009),29 and much of the remaining

global biodiversity (land likely to be targeted for protection) lies in areas of high

poverty (Sachs et al. 2009), land-use restrictions are expected to impose economic

hardship on already imperiled populations. This concern is formalized in a Von

Thunen model developed by Robalino (2007) in which the author shows that

land-use restrictions associated with protected areas are predicted to negatively

impact landless workers. Therefore, from a policy standpoint, identification of the

mechanisms through which protected areas affect poverty is of particular interest;

especially if negative channels can be mitigated, or positive channels bolstered,

through social policy.

We use rich biophysical and socioeconomic data from Costa Rica, a developing

country with a renowned protected area network, to identify and quantify the causal

mechanisms through which protected areas established prior to 1980 impacted

poverty between 1973 and 2000. Using recently developed quasi-experimental

approaches to mechanism analysis which allow for both causal interpretation of

mechanism effects and salient comparison to previous studies of Costa Rica (Andam

et al. 2010, Ferraro and Hanauer 2011, Ferraro et al. 2011), we quantify the

proportion of estimated poverty alleviation (Andam et al. 2010) from tourism,

infrastructure development and ecosystem services due to the establishment of

protected areas. By proxying for the respective mechanisms with park entrances,

changes in road networks and changes in forest cover, we find that nearly half of the

poverty alleviation associated with the establishment of protected areas is causally

attributable to tourism. Conversely, infrastructure development accounts for a

relatively small proportion of the estimated poverty alleviation. Finally, because we

proxy for ecosystem services with avoided deforestation (which is associated with

29This is a concern because Andam et al. (2010) show that marginal land is correlated with
poverty.
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potentially negative poverty mechanisms), we argue that our findings of no

mechanism affect due to the prevention of deforestation implies a positive impact on

poverty due to the preservation of ecosystems associated with protected areas. In

addition, we conduct several robustness checks which provide evidence that our

general findings are likely not an artifact of our econometric strategy.

Background

Recent Studies

Only a handful of studies from developing nations have met the necessary data and

methodological requirements for a protected area impact study of high quality. To

properly account for changes in poverty due to the establishment of protected areas,

a study must incorporate pre-protection, baseline measures of poverty. In addition,

the non-random nature in which protected areas are established must be accounted

for in the empirical strategy, which necessitates rich baseline measures of covariates

that jointly determine the establishment of protected areas and poverty outcomes.

Recent studies, that meet the aforementioned requirements, from Bolivia

(Canavire-Bacarezza and Hanauer 2011), Thailand (Sims 2010, Andam et al. 2010),

and Costa Rica (Andam et al. 2010) have found the establishment of protected

areas to be associated with subsequent reductions in poverty. Our study follows

directly from Andam et al. (2010) in which the authors designate census tracts

(segmentos) with 10% or more of their areas protected, as treated. They then use

matching techniques to construct a counterfactual group that is similar along

pretreatment dimensions to the treated census tracts. The authors’ calculation of

average treatment effect on the treated (ATT) provides evidence that census tracts

with protected areas that were established prior to 1980 had differentially greater

levels of poverty reduction between 1973 and 2000 than comparable unprotected

census tracts.
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The only paper to empirically address the potential mechanisms through which

protected areas affect economic outcomes aims to quantify the effects of eco-tourism

on local wages. Robalino and Villalobos-Fiatt (2010) explore how national parks

affect local wages in Costa Rica and how these effects vary within different areas of

a park and among different social groups. They use highly disaggregated geographic

references, and find that parks’ effects on wages vary according to economic activity

and proximity to the entrance of the park. Workers close to entrances receive higher

wages and are employed in higher-paid, non-agricultural activities.

The Argument for the Estimation of Mechanism Effects

The dearth of information regarding the mechanisms through which protected areas

affect economic outcomes serves an archetype of the criticism leveled at experimental

and quasi-experimental reduced form estimation (Deaton 2009, Heckman 2010).30

Studies in which the estimate of interest is the effect of some non-random treatment

have increasingly turned toward quasi-experimental methods. Such methods (e.g.,

matching) seek to mimic the identification mechanism of a randomized experiment

through specific ex post manipulation of the data (e.g., trimming, weighting, etc.).

Although quasi-experimental identification strategies tend to be transparent– if one

can control all other influences on the outcome then all remaining differences are

due to treatment assignment –they generally lack the ability to identify the causal

mechanisms through which treatments work. There are three main limitations to

the estimation of mechanism effects: (1) rich data that include intermediate

observation of mechanism values are necessary; (2) post-treatment mechanisms are,

by definition, affected by treatment (and, therefore, generally subject to selection

bias) so simply controlling for post-treatment mechanisms within a regression

framework will generally lead to biased estimates (Rosenbaum 1984); and (3) within

30Given the methodology used in this study I focus on quasi-experimental methods.
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the quasi-experimental framework, the absence of theoretical models limit the

identification of mechanistic channels (e.g., Heckman (2010)).

Despite these hurdles, an understanding of why protected areas affect poverty is

of paramount importance. Given the recent movements toward increasing the global

coverage of protected areas and the goal that the establishment of protected areas

should at least do no economic harm (Adams et al. 2004), social planners need a

deeper understanding of the interplay between protected areas and economic

outcomes. This is a point that is highlighted by Ferraro and Hanauer (2011) and

Ferraro et al. (2011). These studies provide evidence that protected areas (in Costa

Rica and Thailand) have had heterogeneous economic (and conservation) impacts

according to demographic and biophysical characteristics. They argue (a la Manski

(2005)) that understanding how different subgroups respond to treatment can help

planners optimize the placement of future protected areas. Similarly, understanding

the post-treatment mechanisms through which protected areas affect economic

outcomes will allow planners to optimize social policy concurrent with the

establishment of protected areas. In conjunction, an understanding of both the

heterogeneous impacts and mechanisms of protected areas might greatly improve

the economic outcomes associated with the future establishment of protected areas.

Data

We use data from Andam et al. (2010) to identify and quantify the mechanisms

through which protected areas affected poverty in Costa Rica. The unit of

observation is the census tract. The 1973 census is used as the baseline year and

demographic data are geocoded to their respective census tracts to form a set of

covariates for each observation. In 1973 Costa Rica contained 4,694 census tracts

with an average size of 8.82km2 (range: 0.00466-836 km2). To determine if a census

tract is considered protected for the analyses, a layer containing all protected areas
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established prior to 1980 is overlaid with the census tracts. As in Andam et al.

(2010), a census tract is considered protected if at least 10% of its area is occupied

by protected land.31 Conversely, any census tract that contains less that 1%

protected land is considered unprotected and a binary treatment indicator is

assigned accordingly.32 A poverty index is derived for each tract from census data

following Cavatassi et al. (2004). Higher levels of poverty are associated with

greater poverty index values (negative poverty index values indicate low levels of

poverty). The censuses from which the poverty index is derived were conducted in

1973 and 2000. In the analyses, the poverty index calculation for 2000 is the

outcome of interest. To match tracts on baseline characteristics, we use the

matching covariates used in Andam et al. (2010), which include the 1973 poverty

index and other baseline covariates that affect both protected area location and

economic growth (see Table 3).

Mechanisms

Mechanisms have received the most attention in the epidemiology (surrogate

variables) and psychology (mediating variables) literatures (e.g., Imai et al. (2010),

Rubin (2004), Frangakis and Rubin (2002), Baron and Kenny (1986)). Whereas,

economics has seen relatively little estimation of mechanism effects (Flores and

Flores-Lagunes 2011). Fundamentally a causal mechanism can be viewed as a

variable which, once affected by treatment, impacts the outcome of interest. In

causal Directed Acyclic Graphs (DAGs) developed by Pearl (2009) and highlighted

31We use the 10% threshold in accordance with Andam et al. (2010). A 10% threshold was chosen
because protecting 10% percent of the worlds’ ecosystems was the goal of the 4th World Congress
on National Parks and Protected Areas (Andam et al. 2010). Andam et al. (2010) show that their
results are robust to changes in this threshold value (alternatively defined as 20% and 50%).

32Of the 4,691 census tracts, 249 are considered protected (treated) prior to 1980 and 4164 are
considered potential counterfactual observations. To avoid bias in the analysis, 278 tracts with
protection between one and ten percent are dropped from the analysis.
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Covariate Description Mean Median Std. Dev. Range

Matching Covariates
Baseline Poverty Poverty index measured in 1973. 14.9 15.8 6.43 -6.4-28.9
Forest Cover Percentage of census tract 0.412 0.383 0.342 0-1

occupied by forest in 1960.

% High Productivity Percent of census tract occupied by Land 0.118 0 0.22 0-1
Land Use Capacity I, II or III land.

%Medium-High Percent of census tract occupied by Land 0.295 0.04 0.377 0-1
Productivity Land Use Capacity IV land.

%Medium-Low Percent of census tract occupied by Land 0.347 0.156 0.387 0-1
Productivity Land Use Capacity VI, VII or VIII land.

Distance to Major City Average distance (km) from each 300m2 land 57.3 49.7 41.28 0.0037-208
plot within a census tract to nearest major

city: Limon, Puntarenas or San Jose.

Roadless Volume The sum of the product of area and 308,000 66,400 699,100 0.28-7,590,000
distance to nearest road (1969) for every

1 ha parcel within the census tract.

Mechanism Variables
Park Entrance Binary indicator equal to 1 if census tract 0.0276 0 0.164 0-1

has at least 10% of its area occupied by a
protected area with a park entrance

∆ Roadless Change in roadless volume between 1969 -8.76e+04 -1.75e+01 605191 -2.65e+07-6.32e+04
Volume and 1991

∆ Forest Percent change in forest cover between 0.0084 0 0.0926 0-0.75
Cover 1960 and 1986 within each census tract



51

by Morgan and Winship (2007), a mechanism (S) is drawn as causal pathway (→)

that links treatment (T ) to outcome (Y ), T → S → Y . Therefore, a causal

mechanism is a variable whose quantity is directly effected by treatment, the result

of which causes a direct change in the outcome of interest.

Mechanism variables

The putative mechanism through which protected areas achieve environmental

outcomes (e.g., preventing deforestation, etc.) is land-use restriction. Such

restrictions, which limit access, conversion and the exploitation of natural resources,

would be expected to negatively impact economic conditions in surrounding areas.

If land-use restrictions were the only mechanism (or the dominant mechanism)

through which protected areas impact surrounding populations then we would

expect poverty to have been exacerbated in these areas. In Costa Rica this has not

been the case (Andam et al. 2010). We are, therefore, interested in investigating

potential mechanisms through which protected areas have positively influenced

economic conditions in surrounding populations.

Tourism. Tourism is widely cited (anecdotally, e.g., Wilkie et al. (2006), Adams

et al. (2004) and empirically, e.g., Menkhaus and Lober (1996)) as a likely

mechanism through which protected areas enhance local economies. Costa Rica’s

stable government and rich biodiversity make it a popular destination for so-called

eco-tourists. Conjecture that tourism, catalyzed by the establishment of protected

areas, is likely enhancing the welfare of surrounding communities is supported by

the fact that approximately 54% of international tourists visit a protected area (ICT

2010). Further empirical support is offered from Ferraro et al. (2011). The authors

find that reductions in poverty due to the establishment of protected areas are

greatest at intermediate distances to cities; this range coincides with the location of

a majority of Costa Rica’s national parks (which receive the most tourists). Using
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global positioning system (GPS) data from Robalino and Villalobos-Fiatt (2010) we

proxy for tourism with the establishment of a park entrance. Of Costa Rica’s 39

protected areas that were established prior to 1980, 19 received at least one park

entrance prior to 2000 (total of 23 entrances). A protected census tract (see

definition above) is considered affected by a park entrance if it is occupied by a

protected area in which at least on entrance was established. According to this

assignment rule, 122 census tracts are considered affected by a park entrance.

Infrastructure Development. Access to infrastructure can be expected to

enhance economic outcomes (e.g., reduced production costs). Previous studies from

Costa Rica and Thailand have shown a relationship between access to urban

infrastructure and poverty (Andam et al. 2010). We proxy for infrastructure with

road networks. Access to roads increases access to markets and other resources

(reducing transportation costs, etc.). In addition, roads serve as a good indicator of

the level of infrastructure development and urbanization. We are, therefore,

interested in how differential levels of road development, due to the establishment of

protected areas, has impacted poverty in surrounding communities. We use changes

in roadless volume (Watts et al. 2007) between 1969 and 1991 to capture the impact

of changes in access to infrastructure. Roadless volume is an aggregation of the

euclidean distance to a road for each one-hectare land parcel within a census tract,

adjusted for the size of the land parcel. Roadless volume is calculated by summing

the product of the area of each land parcel (1 ha in this case) and the distance of

that parcel to the nearest road (1969 and 1991). Therefore, higher measurements of

roadless volume indicate fewer road networks within a municipality. Summary

statistics for baseline roadless volume and changes in roadless volume can be found

in Table 3.

Ecosystem Services. Since the seminal paper by Costanza et al. (1997) there

has been great interest in quantifying the economic impacts of the services provided
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by intact ecosystems. One of the arguments from protected area advocates for

potential win-win outcomes is that the establishment of protected areas prevent

ecosystem degradation (win) thereby providing a stream of economic benefits (win)

to surrounding communities (in addition to the global benefits such as carbon

sequestration). We proxy for maintenance of ecosystem services via avoided

deforestation (the difference between observed and counterfactual levels of

deforestation in protected census tracts). We are interested in how the causal

reduction in deforestation (that would have occurred in the absence of protection)

due to the establishment of protected areas has impacted surrounding communities.

We measure the percentage of deforestation within each census tract using GIS and

forest cover boundaries from 1960 and 1986 (see Table 3 for baseline and mechanism

measurements of forest cover).33

Methods

Mechanism Concepts

In the context of a quasi-experimental design, in which one conditions on baseline

characteristics to estimate effects of treatment on subsequent-stage outcomes,

estimating the effect of a mechanism is confounded by the fact that the mechanism

is necessarily observed post-treatment. As such, mechanisms are generally affected

by treatment assignment (or selection) and, therefore, confounded. Thus,

controlling for such concomitant variables generally leads to biased estimates

(Rosenbaum 1984).34. This of course rules out the argument for the inclusion of a

mechanism as a control. Therefore, precluding the estimate of mechanism effects via

the difference between the estimates of a specification (e.g., regression or matching)

33We acknowledge that avoided deforestation is a coarse measure of maintained ecosystem services.
In fact, preventing deforestation likely produces countervailing (to ecosystem services) mechanism
effects. See the Summary of Results Section for a detailed discussion.

34The exception is when the concomitant variable is not effected by the treatment, in which case
it can be considered a baseline covariate (Rosenbaum 1984)
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with and without the mechanism variable. In order to estimate the effects of a

mechanism, it must be treated, and controlled for, like an outcome (hence the

concept of surrogate variables in the epidemiology literature, see e.g., Mealli and

Rubin (2003)). We appeal to the concept of principal strata (see below) developed

by Frangakis and Rubin (2002) to conceptualize and account for mechanisms within

the potential outcomes framework.

Setup

To estimate the causal mechanisms through which protected areas have impacted

economic outcomes we use an augmented potential outcomes framework (we follow

the framework and much of the notation of Flores and Flores-Lagunes (2011). In

the traditional potential outcome framework there are two potential outcomes, Yi(1)

and Yi(0), for each individual i ∈ N under treatment (T = 1) and control (T = 0),

respectively. Intuitively this means that each individual would have one outcome if

they were to receive treatment, and another if they were withheld treatment.

Unfortunately, for any given individual i only one of the two potential outcomes is

observed: Y obs
i (1)|T = 1 or Y obs

i (0)|T = 0. In practice either individual i’s outcome

under treatment is observed given they were treated or individual i’s outcome in the

absence of treatment is observed given they were in the control group. This is the

fundamental problem for the estimation of causal effects because individual

treatment effects are calculated τi = Yi(1)− Yi(0), for which only one of the rhs

terms is observed. In order to calculate treatment effects in the absence of random

assignment, it is necessary to invoke the conditional independence assumption35

Assumption 1 Yi(1), Yi(0)⊥⊥Ti|Xi,

which states that potential outcomes are independent (⊥⊥) of treatment given a set

of covariates X that jointly determine outcomes and selection into treatment.

35Also known as ignorability, unconfoundedness or selection on observables.
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Random assignment assures independence, without condition, due to the fact that

each individual has and equal probability (or more generally, a probability known to

the experimenter) of assignment to treatment. Therefore, all covariates (X) that

influence outcomes are balanced across treatment and control groups, hence the

independence of treatment and outcome. For conditional independence to hold

under non-random assignment, one must condition on (e.g., matching) or control for

(e.g., regression) all covariates (X), thus rendering any remaining differences in

outcomes between groups a function of treatment.

Principal strata

Further complications arise when post-treatment mechanisms are introduced.

Suppose S is a post-treatment mechanism that is measured at an intermediate

period between administration of treatment and measurement of outcome.36

Because, by definition, S is affected by treatment it is not unconditionally

independent of treatment37 and thus must be handled in a manner similar to the

outcome of interest (Y ). Therefore, as with Y , S has two potential outcomes Si(1)

and Si(0) for each i, depending on assignment to treatment or control, respectively.

This simply states that because mechanisms are affected by treatment, with the

exception of some special cases, the mechanism outcome for each individual is

dependent on the administered treatment. The implications, within the potential

outcomes framework, are that four potential outcomes must now be considered for

each individual: (Yi(1), Yi(0), Si(1), Si(0)).

There are now four compound potential outcomes of interest for i: Yi(1, Si(1)),

the outcome under treatment when the mechanism is affected by treatment;38

36Note that the three mechanisms of interest are denoted formally as Sj , where j = 1, 2, 3. For
ease of exposition throughout a majority of this discussion, the subscript is omitted.

37This is true under random assignment of treatment as well.
38Yi(1, Si(1)) represents the total effect of treatment and is equivalent to Yi(1) in the traditional

potential outcomes framework.
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Yi(1, Si(0)), the outcome under treatment when the mechanism is not affected by

treatment (mechanism is blocked (Flores and Flores-Lagunes 2011)); Yi(0, Si(0)),

the outcome under control and the mechanism is not affected by treatment;39 and

Yi(0, Si(1)), the outcome under control when the mechanism changes as if the

individual was treated.40

To help conceptualize the joint potential outcomes and identify the casual

mechanism effect we use the principal strata framework developed by Frangakis and

Rubin (2002) (see also, Rubin (2004), Mealli and Rubin (2003)). Defining a

principal stratum is similar to the concept of matching individuals (or groups of

individuals) based on similar potential outcomes in a standard quasi-experimental

setting. Two units from different treatment arms share a principal stratum if they

share potential mechanism outcomes (formally a principal stratum is defined where

{S(0) = s0, S(1) = s1} , see below).

To identify units from disparate treatment arms but similar principal strata an

extension to the conditional independence of Assumption 1 is necessary

Assumption 2 Si(1), Si(0)⊥⊥Ti|Xi.

We term Assumption 2 conditional mechanism isolation. Morgan and Winship

(2007) note that in order to estimate the effect of a mechanism on outcomes, the

mechanism must be isolated from (independent of) confounding covariates.

Assumption 2 states that potential mechanism outcomes are independent of

treatment given a set of covariates (X) that jointly determine selection into

treatment and mechanism outcomes, and, therefore, isolated from confounders.

Under Assumption 2 we can identify units within similar principal strata: units

from disparate treatment arms with similar values of X lie within common strata

39Yi(0, Si(0)) represents the outcome in the absence of treatment and is equivalent to Yi(0) in the
traditional potential outcomes framework (implied that post-treatment mechanism is not affected
in absence of treatment).

40Note that, in general, only Yi(1, Si(1)) and Yi(0, Si(0)) are observed in practice, leaving
Yi(1, Si(0)) and Yi(0, Si(1)) as counterfactuals that necessitate estimation.
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and, therefore, share similar potential mechanism outcomes. Assumptions 1 and 2

imply that potential outcomes and potential mechanism values are independent of

treatment given covariates X. Combining Assumptions 1 and 2 we have

Assumption 3 Yi(1, Si(1)), Yi(1, Si(0)), Yi(0, Si(0)), Yi(0, Si(1)), Si(1), Si(0)⊥⊥Ti|Xi.

The necessary condition for Assumption 3 to hold, is that the covariates (X)

must jointly determine selection into treatment, outcomes of interest and

mechanism outcomes. Upon cursory examination Assumption 3 may seem

somewhat untenable. However, when one considers jointly that a primary purpose

of X is to control for the non-random process of selection into treatment and that

treatment directly affects mechanisms, Assumption 3 seems more reasonable.

Formally Assumption 3 allows

E [Si(1)|Xi = x, T = 1] = E [Si(1)|Xi = x, T = 0] (7)

E [Si(0)|Xi = x, T = 1] = E [Si(0)|Xi = x, T = 0] . (8)

Equations (7) and (8) state that the expected mechanism outcomes under

treatment, for individuals that were treated, are equal to those in the control group,

with similar values of X, had they been treated, and vice versa.41 We present (7) and

(2) for completeness, however, note that only (8) is necessary for our analyses.

Estimands

In the study from which we draw (Andam et al. 2010) the estimand of interest is

the average treatment effect on the treated, ATT. Estimation of the ATT is akin to

asking the question, “what would outcomes for treated units have been had they

41These are analogous to E[Y (1)|X,T = 1] = E[(Y (1)|X,T = 0] and E[Y (0)|X,T = 1] =
E[(Y (0)|X,T = 0] which follow from Assumption 1. These equations are commonly used in the
matching literature and demonstrate the equality (in expectation) of potential outcomes conditional
on observable covariates (X) used to estimate average treatment effects.
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not been treated?” Estimating the ATT is appropriate in a protected area impact

evaluation because the supposition that all units have the potential to receive

treatment is inappropriate (e.g., supposing that urban census tracts might contain a

protected area). Therefore, the average treatment effect (ATE), which requires the

estimation of counterfactual outcomes for all control units (had they been treated)

is not the estimand of interest.

Given that the total treatment effect estimand of interest is the ATT, the

mechanism treatment effect of interest is the Mechanism Average Treatment Effect

on the Treated. Our estimands follow directly from the framework for mechanism

average treatment effects (MATE) and net average treatment effects (NATE)

developed by Flores and Flores-Lagunes (2011). Defining a principal strata as

{S(0) = s0, S(1) = s1},42 the MATT can be written

MATT = E {E [Yi(1, Si(1))− Y (1, Si(0))|Si(0) = s0, Si(1) = s1, Xi = x, T = 1]} .

(9)

To estimate the MATT one must ask, “what would outcomes for the treated

have been, had they remained treated but treatment not affected the mechanism?”

Estimation of the MATT answers this question by isolating the only source of

variation in (9) to be the effect on outcomes due to a change in the mechanism (via

blocking the effect of the mechanism on the outcome in the second term of (9)). A

similar estimand of interest is the net average treatment effect on the treated

(NATT) which isolates the effect on outcomes due to a change in treatment

NATT = E {E [Yi(1, Si(0))− Yi(0, Si(0))|Si(0) = s0, Si(1) = s1, Xi = x, T = 1]} ,

(10)

42This states that individuals located within a common principal strata would have similar mech-
anism outcomes s0 had they been in the control group (S(0)), or s1 had they been treated (S(1)),
independent of actual treatment received.
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Mechanism Average Treatment E�ect on the Treated

                                 Net Average Treatment E�ect on the Treated

Figure 5: Causal Directed Acyclic Diagram (DAG) depicting the the concept of Mechanism
Average Treatment Effect on the treated (T → S → Y ) and Net Average Treatment Effect
on the Treated (T → Y ) on outcome.
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X

(a) Assumption 1: Conditional Independence. Conditioning on covariates
      (X) that jointly determine selection inro treatment and outcome
      allows for unbiased estimation of the causal e�ect of  T on Y.

Average Treatment E�ect on the Treated

ConfoundersConfounders

X

T Y
                                 Net Average Treatment E�ect on the Treated

Mechanism Average Treatment E�ect on the Treated

S

(c) Assumption 3: Sequential Ignorability. Conditioning on covariates that jointly determine selection into treatment, outcomes of interest, and
      mechanism outcomes allows for estimation of Mechanism Average Treatment E�ects on the Treated (MATT) and Net Average Treatment E�ects
      on the Treated (NATT). 

T S

X

(b) Assumption 2: Conditional Mechanism Isolation. Conditioning on
      covariates (X) that jointly determine selection inro treatment and
      post-treatment mechanism values allows identi�cation of the cau-
      sal e�ect of  T on S and therefore principal strata.

ConfoundersConfounders

Figure 6: Directed Acyclic Graphs (DAGs) demonstrating the assumptions necessary for
the causal estimation of ATT, MATT and NATT. Each DAG shows how conditioning
on observable covariates (X) breaks the confounding causal relationships (T ← X → Y ,
T ← X → S and S ← X → Y ; represented by the broken single-headed arrows) and allows
for estimation of ATT (a), the causal effect of treatment on mechanism outcomes (b) and
MATT (and NATT)(c).
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holding S at untreated levels. Estimation of NATT is akin to asking, “what would

outcomes for the treated have been, had they not been treated but their mechanism

values remained at levels realized under treatment?” An advantage of MATT and

NATT (under Assumption 1) is that they decompose the ATT such that

ATT=MATT+NATT.43,44 This decomposition states that the average treatment

effect on the treated is equal to the proportion of the of treatment effect that is due

to a change in the mechanism (catalyzed by treatment), the MATT, and the

proportion that is due solely to the effect of treatment (net of the effect of the

mechanism), the NATT (see Figure 5). Therefore, once either MATT or NATT is

estimated the complementary estimate falls out of the difference with ATT.

Estimation Strategy

Estimation of either MATT or NATT is confounded by the fact that Yi(1, Si(0)) is

rarely observed.45 We use matching in the first stage of the estimation to satisfy

Assumption 3 (which encompasses Assumptions 1 and 2), see Figure 6.

Post-matching we follow methods suggested by Flores and Flores-Lagunes (2011),

using mechanism data from the matched control units, and a simple assumption

about the way in which mechanisms affect outcomes within principal strata, to

impute outcomes for treated units had treatment not affect the mechanism

variables: Ŷi(1, Ŝi(0)), the counterfactual of interest.

43Assumption 1 is necessary for this identity to hold. Morgan and Winship (2007) outline condi-
tions under which T → Y can be estimated using a set of mechanisms (e.g., the set of mechanisms
is exhaustive and isolated). However, one can measure the partial effect of T → Y using a non-
exhaustive set of mechanisms, S (i.e., S → Y ), which leads to an estimate of MATT. In conjunction
with Assumption 1, under which unbiased estimates of the ATT can be estimated, the remaining
difference between MATT and ATT can be attributed to the mechanisms not included in S.

44The full decomposition can be written: ATT=E [Y (1, S(1))− Y (1, S(0))] +
E [Y (1, S(0))− Y (0, S(0))], given principal strata {S(0) = s0, S(1) = s1} .

45In the case where a subgroup of treated units for which treatment did not affect mechanism
values can be identified, Flores and Flores-Lagunes (2011) develop an estimand for the local average
treatment effect (LNATE) which requires less restrictive assumptions. See the LNATT Section for
an application of this methodology to our data.
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First stage: matching

We use one-to-one Mahalanobis covariate matching with replacement and

post-match bias-adjustment (Abadie et al. 2004, Abadie and Imbens 2006) to match

control units to treated units. This approach serves two purposes. First, it provides

an estimate of ATT, for comparison to MATT and NATT, which offers

comparability to previous studies from Costa Rica (Andam et al. 2010, Ferraro and

Hanauer 2011, Ferraro et al. 2011). Second, it provides a set of matched controls

that, by Assumption 3 are within the same principal strata as the treated units to

which they are matched. The latter purpose implies that the mechanism outcomes

of the matched controls can be assumed to be the value observed by their treated

counterparts, had treatment not affected the mechanisms. See Table 3 for a

description of the covariates used for matching.

Second stage: estimate the influence of mechanisms

Flores and Flores-Lagunes (2011) suggest using a form of regression adjustment to

impute outcomes for treated units had treatment not affected mechanisms,

Ŷi(1, Ŝi(0)). The necessary assumption for this approach (in addition to Assumption

3) is that the mechanism has a similar effect on potential outcomes Yi(1, Si(1)) and

Yi(1, Si(0)), i.e., their conditional expectation functions share the same functional

form (Flores and Flores-Lagunes 2011).

Assumption 4 Suppose

E [Yi(1, Si(1))|Si(1), Xi = x, T = 1] = a1 + b1Si(1) + c1X, (11)

then,

E [Yi(1, Si(0))|Si(1), Xi = x, T = 1] = a1 + b1Si(0) + c1Xi. (12)
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Assumption 4 implies that the marginal effect of a change in the mechanism

outcome has the same effect on units for whom exposure to treatment affects the

mechanism as it does on units for whom exposure to treatment does not affect the

mechanism.

In (11) and (12) of Assumption 4, b1 represents the effect on outcome due to a

change in the value of the mechanism S. The counterfactual of interest (Ŷ (1, Ŝ(0)))

can be estimated by evaluating (12)), which uses the coefficients from (11), setting

Si(0) = E[Si(0)|T = 1] = [Ŝi(0)|T = 1] which, according to (8), is equal to the

observed control mechanism values within the common principal stratum of each

treated unit.

Empirical estimation of the counterfactual of interest
(
Ŷi(1, Ŝi(0))

)
is conducted

by first running a regression of observed outcomes on covariate and mechanism

values for treated units (as in (11)). Using the coefficients from this regression

(a1, b1, c1), we impute Ŷi(1, Ŝi(0)) using the same treated unit covariates (as in (12))

and the matched control unit mechanism outcomes (where in (12)

Si(0) = E[Si(0)|T = 1] = Sobsi (0) and Sobsi (0) is the observed mechanism outcome of

each treated units respective matched control). Replacing the the second term in

(9), the empirical form for MATT becomes

MATT = E
{
E
[
Y obs
i (1)|Sobsi (1) = s1, Xi = x, T = 1

]}
− E [f1(Si(0), Xi)] . (13)

Similarly, the empirical form of NATT becomes

NATT = E [f1(Si(0), Xi)]− E
{
E
[
Y obs
i (0)|Sobsi (0) = s0, Xi = x, T = 1

]}
, (14)

where in f1(Si(0), Xi) in (13) and (14) is equal to

E [Yi(1, Si(0))|Si(1), Xi = x, T = 1] from (12).
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We again emphasize the intuition behind the counterfactual of interest, which

can be used in the estimation of both MATT and NATT. The regression imputation

methods presented in (11) and (12) allow us to address the question, “what would

the outcomes for treated units have been had their respective covariates(
Xobs
i |T = 1

)
and influences of these covariates on outcomes (b1) remained the same,

but their mechanism taken on the values that would have been observed had they

not been treated S(0)|T = 1?” We note that the difference between Sobsi (1)|T = 1

(the observed mechanism value of treated units) and Ŝi(0)|T = 1 (the estimated

counterfactual values of treated units, had they not been treated) represents the

unit-level causal effect of treatment on mechanism outcomes (T → S) .

Bias-adjusted mechanism outcomes

Abadie and Imbens (2006) and Abadie et al. (2004) suggest the use of post-match

regression bias adjustments in the estimation of ATT to control for remaining

imbalance in matched samples. We apply a similar method in the estimation of our

counterfactual mechanism outcomes to control for imbalance in our matched sample.

Post-match bias-adjustment in estimation of ATT is conducted by first running a

regression of outcomes on matching covariates YT=0 = XT=0βC + ε. This regression

estimates the impact (βC) of the matching covariates on outcomes for the matched

control sample. To impute the ATT counterfactual of interest, βC is combined with

the covariates from the treated units XT=1 to estimate ŶBA = XT=1βC : what

treated unit outcomes would have been had their matching covariates had the same

influence on outcomes as the control units. Note that if matching produces perfect

balance across treated and matched control units then a counterfactual based on the

observed values of the matched control outcomes (Yi:T=0) will be identical to those

estimated from the regression bias adjustment procedure
(
Ŷi:BA

)
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The estimation of our counterfactual of interest in (12) is a function of both b1

from (11) and Ŝi(0)|T = 1. By Assumption 2 we can use the mechanism outcomes of

the matched controls as the counterfactual for treated units. However, if imbalance

in the baseline mechanism covariates remains after matching, we may be concerned

that counterfactual mechanism values will be biased.46 We, therefore, estimate our

counterfactual mechanism values

[
Ŝi(0)|T = 1

]
= Sobsi:T=0 + µ̂0(Xi:T=1)− µ̂0(Xi:T=0) (15)

where µ̂0 represents the predicted values obtained from combining the coefficients

from a control group regression, of mechanism outcomes on covariates, with the

respective treated (µ̂0(Xi:T=1)) or control group (µ̂0(Xi:T=0)) covariates. This

procedure estimates the influence of baseline covariates on mechanism outcomes for

control units and uses these estimated values to impute what the mechanism

outcomes would have been had the control units been treated.

Standard errors

To calculate the precision of our MATT estimates we base our standard error

estimator on the heteroskedasticity robust matching-based estimator suggested by

Abadie and Imbens (2006).47 Our estimator is calculated in two stages to allow for

heteroskedastic variances within and across treatment arms. The variance for

control units (for which comparison to MATT is not meaningful) is calculated using

a within treatment arm matching estimator. The Mahalanobis weighting matrix

from the original matching process (used to create the matched sample) is used to

46If mechanism outcomes are state dependent, then imbalance is a concern. For instance, if, after
matching, unprotected tracts have lower baseline roadless volume, on average, than protected tracts,
change in roadless volume may be less (in absolute terms) in unprotected tracts, simply because
they started with larger road networks.

47A function that estimates the standard errors outlined in this section was programmed in R

2.11.1 and is available from the author upon request.
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find the nearest within treatment arm (unprotected) neighbor to estimate unit-level

variances

σ̂2
i:T=0 (Xi) = (Yi − Yl)2 /2, (16)

where Yl represents the outcome of the nearest neighbor to unit i. The treatment

level variance is then calculated

V̂T=0

(
M̂ATT

)
=
∑
NT=0

λ2
i · σ̂2

i (Xi) , (17)

where λi = #Ci/NT=0, and #Ci is the number of times that control unit i occurs in

the set (was used as a match in the original matching specification).

The individual level variance for protected units is based on unit level deviations

from the estimated MATT

σ̂2
i:T=1 (Xi) =

(
Yi − Ŷi(1, Ŝ(0))− M̂ATT

)2

. (18)

These unit level variances are then aggregated to calculate the treatment level

(protected) variance

V̂T=1

(
M̂ATT

)
=

1

N2
T=1

∑
NT=1

σ̂2
i:T=1 (Xi) . (19)

The final MATT standard error estimate is therefore

σ̂
(
M̂ATT

)
=

√(
V̂T=0 + V̂T=1

)
. (20)
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Results

Empirical Estimation of MATT

We conduct two distinct analyses to estimate the MATT of our mechanisms of

interest. First, the mechanisms are considered separately and the procedure

outlined in the preceding sections is performed for each mechanism. Second, the

mechanisms are considered jointly in the estimation of each MATT via inclusion of

all mechanisms in (11) and (12).

We begin by matching protected and unprotected census tracts using one-to-one

Mahalanobis covariate matching with replacement. The resulting matched set

(identical to the sample used by Andam et al. (2010)) comprises 249 protected and

unprotected tracts, the covariate balance can be seen in Table 4. Using post-match

regression bias-adjustment, the estimated ATT is -1.27, according to the poverty

index. This result indicates that census tracts with at least 10% of their area

occupied by a protected area prior to 1980 had differentially greater levels of

poverty reduction (lower poverty index scores) between 1973 and 2000, on average,

than comparable census tracts that remained unaffected by protected areas (see

Andam et al. (2010) for full details).

Counterfactual mechanism values

The counterfactual of interest necessitates estimation of mechanism outcomes for

treated units, had protection not affected the mechanism. For each mechanism,

estimation of the counterfactual entails a two-step process. First, we estimate a

matched unprotected group regression

Si:T=0 = Xi:T=0β1C + ε (21)
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Table 4: Balance Results for Matched Set. Mahalanobis one-to-one covariate matching with
replacement.

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 15.05 5.376 9.673 0.769 9.687
1973 Matched 15.05 15.240 -0.187 0.013 1.64 98.07%

% Forest 1960 Unmatched 0.523 0.117 0.406 0.734 0.405
Matched 0.523 0.488 0.035 0.054 0.035 91.38%

% Land Use Unmatched 0.093 0.304 -0.211 0.315 0.212
Capacity 1,2,3 Matched 0.093 0.12 -0.028 0.060 0.03 86.84%

% Land Use Unmatched 0.209 0.453 -0.244 0.330 0.245
Capacity 4 Matched 0.209 0.20 0.009 0.016 0.026 96.19%

% Land Use Unmatched 0.233 0.196 0.036 0.056 0.102
Capacity 5,6,7 Matched 0.233 0.243 -0.011 0.019 0.034 70.98%

Distance to Unmatched 58.53 34.87 23.670 0.286 23.62
Major City Matched 58.53 57.56 0.968 0.01 5.282 95.91%

Roadless Unmatched 1113000 66830 1046000 0.321 1035000
Volume 1969 Matched 1113000 681500 431600 0.110 440900 58.75%

where Si:T=0 and Xi:T=0 represent the observed mechanism and baseline covariate

values, respectively, of matched unprotected census tracts. The coefficients from (21)

are then used to impute counterfactual mechanism outcomes for each mechanism

[
Ŝi(0)|T = 1

]
= Xi:T=1β̂1C (22)

where Xi:T=1 are the observed covariate values of the protected census tracts

(empirical analog to equation (15)). Observed and counterfactual mechanism values

for the protected census tracts can be seen in Table 5. The imputed counterfactual

mechanism values from (22) are then used to calculate the counterfactual of

interest: the outcomes for protected units, had protection not affected mechanisms

(Ŷi(1, Si(0))).

Columns (i) and (ii) of Table 5 list the observed and estimated counterfactual

mechanism values for the protected census tracts (see Table 6 for estimates of

counterfactual mechanism values when bias-adjustment is not implemented). The

counterfactual for our proxy for tourism is straight forward. Of the 122 census

tracts that were impacted by a protected area with a park entrance, none would
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have a park entrance in the absence of protection. The estimated counterfactual for

change in forest cover is significantly different from observed values as well. The

average deforestation in protected census tracts between 1960 and 1986 was only

6.7%. We estimate that, had protection not affected deforestation, deforestation

would have been approximately 23% (i.e., avoided deforestation between 1960 and

1986 due to the establishment of protected areas was approximately 16.3%).

Finally, we observe that there was greater infrastructure development (greater

reduction in roadless volume) in protected census tracts between 1969 and 1991.

However, the counterfactual measures of road networks are not significantly

different from observed values.48

Single mechanism estimation

In the single mechanism estimation the following procedure is run on each

mechanism of interest independently. We first estimate the influence of covariates

and mechanism on outcomes using the protected census tracts

Yi:T=1 = Xi:T=1β1T + Si:T=1β2T + ε (23)

where Yi:T=1, Xi:T=1 and Si:T=1 are the observed outcomes, matching covariates and

mechanism values for the protected census tracts, respectively. The counterfactual

of interest is then estimated by obtaining the fitted values from

Ỹi:T=1 = Xi:T=1β̂1T + Ŝiβ̂2T (24)

where Ŝi =
[
Ŝi(0)|T = 1

]
are the counterfactual mechanism values from (22), thus

Ỹi:T=1 = Ŷi(1, Si(0)). MATT for each mechanism is calculated by subtracting the

48Differences are significant when counterfactual mechanism values are estimated without bias-
adjustment. See the Without Mechanism Bias-Adjustment Section for results without mechanism
imputation.
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mean of the fitted values (Ỹi:T=1) from mean of the observed protected tract

outcomes (Yi(1, S(1)) = Yi(1)).

Results from the single mechanism estimation strategy can be found in Columns

(iii) and (iv) of Table 5. Column (iii) lists the estimated marginal impact of each

mechanism (β̂2T from (23)) on poverty. Concordant with conjecture that protected

areas have a positive impact on poverty by attracting tourism, we find that

protected census tracts that were impacted by parks with entrances had lower

poverty (by 1.04 according to the poverty index) than similar protected tracts.

Because no protected tract would have been influenced by a park entrance in the

absence of protection, the estimated MATT (column (iv)) is -0.492. In other words,

tourism, as measured by park entrances, accounted for approximately 40% of the

poverty reduction associated with the establishment of protected areas.

The marginal impact of infrastructure development also has the expected sign

(Column (iii)). Our results indicate that as road networks develop (roadless volume

decreases) there is an associated reduction in poverty. We estimate that, had

protection not affected road development in surrounding census tracts, there would

have been less development in the absence of protection. However, the difference

between observed and counterfactual values is relatively small. The slightly greater

road development in protected census tracts accounts for a poverty reduction

(MATT) of only -0.143 (approximately 11% of the total ATT).

The results for change in forest cover reflect the conflicting impacts underlying

deforestation. There is a significant difference in observed and counterfactual

deforestation in protected census tracts. We estimate that, had protection not

affected deforestation, over 22% of the protected census tracts, on average, would

have been deforested between 1960 and 1986 (compared to 6.7% observed

deforestation). Despite this stark difference the MATT of deforestation is quite
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small, 0.099, and indicates that the prevention of deforestation caused by the

establishment of protected areas had essentially no impact on poverty.

Table 5: Mechanism Results Using Mechanism Imputation

Single Mechanism All Mechanisms
(i) (ii) (iii) (iv) (v) (vi)

Observed Counterfactual Mechanism Mechanism
Mechanism Mechanism Coefficient MATT Coefficient MATT

Park 122 0 -1.004 -0.492 -1.345 -0.619
Entrance (0.439) (0.448)

∆ Roadless -727,579 -674,147 2.694e-06 -0.143 2.790e-06 -0.148
Volume (0.447) (0.449)

∆ Forest -0.067 -0.23 0.627 0.103 0.124 0.02
Cover (0.439) (0.45)

(Heteroskedasticity robust standard errors)

Joint mechanism estimation

In the single mechanism estimation strategy each mechanism is considered

independently. However, the estimated impact (according to β̂2T ) of a particular

mechanism may be influenced by the inclusion or exclusion of additional

mechanisms in (23). By including all of the mechanism variables in (23) we allow

the coefficients for each mechanism to reflect the presence of the other mechanisms.

For clarity we denote the park entrance, change in roadless volume and

deforestation mechanism variables as E, R and F respectively. The joint mechanism

estimation analog to (23) is

Yi:T=1 = Xi:T=1β1T + Ei:T=1β2T +Ri:T=1β3T + Fi:T=1β4T + ε (25)

where all variables represent the observed values from the protected census tracts.

The counterfactual of interest for each mechanism is estimated in a series of three
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imputations

Ỹ E
i:T=1 = Xi:T=1β̂1T + Êiβ̂2T +Riβ̂3T + Fiβ̂4T (26)

Ỹ R
i:T=1 = Xi:T=1β̂1T + Eiβ̂2T + R̂iβ̂3T + Fiβ̂4T labeleq : mech21 (27)

Ỹ F
i:T=1 = Xi:T=1β̂1T + Eiβ̂2T +Riβ̂3T + F̂iβ̂4T (28)

where Êi, R̂i and F̂i represent the imputed mechanism values from (22) (i.e.,[
Ŝi(0)|T = 1

]
for the respective mechanisms). Equations (26) - (28) show that the

counterfactual of interest for each mechanism is estimated by substituting the

imputed mechanism values (from (22) for the mechanism of interest) into the

respective equation, while leaving the covariates and complementary mechanism

values at observed levels.49 For instance, the counterfactual of interest for change in

roadless volume (Ỹ R
i:T=1) is calculated by plugging in the imputed counterfactual

values for change in roadless volume (R̂i) into the coefficients from (25), while

leaving covariates (Xi:T=1) and mechanism values for park entrances (Ei) and

change in forest cover (Fi) at the observed levels of protected census tract.

Results for the joint mechanism estimation strategy can be found in Columns

(v) and (vi) of Table 5. We find that inclusion of all mechanisms in (25) does

change the estimated influence of each mechanism (compare to Column (iii)): the

coefficient on the park entrance mechanism increases in absolute terms from -1.004

to -1.345 (indicating increased poverty reduction attributable to tourism,

comparatively); the coefficient on the roadless volume mechanism increases from

2.694e-06 to 2.790e-06 (indicating increased poverty reduction attributable to

infrastructure development, comparatively), and; the coefficient on the deforestation

mechanism decreases from 0.627 to 0.124 (indicating reduced poverty exacerbation

attributable to deforestation, comparatively).

49A function that performs this iterative process was written in R 2.11.1 and is available from the
author upon request.
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Under the joint mechanism estimation we find that the MATT for the park

entrance mechanism increases, in relative terms, to -0.619. This result implies that

tourism associated with the establishment of protected areas accounts for

approximately 49% of the estimated poverty reduction due to protection. Joint

estimation also affects the MATT for the deforestation mechanism which falls to

0.02. In other words, reductions in deforestation due to the establishment of

protected areas has almost no impact of poverty. Joint mechanism estimation has a

trivial effect on the MATT of roadless volume which increases, in absolute terms, to

-0.148.

Summary of Results

We estimate the MATT for each of our mechanisms using both a single, and joint

estimation strategy. Our results indicate that, while there are some differences, the

choice of strategy is not driving the results or underlying implications. However, a

priori, we prefer the joint estimation strategy because each mechanism coefficient

(and, therefore, each MATT) accounts for the presence of the other mechanisms.

Of the mechanisms we consider, tourism accounts for greatest MATT, in

absolute terms, and the greatest proportion of total poverty reduction due to the

establishment of protected areas (estimated in the ATT). Nearly half of the poverty

reduction associated with the establishment of protected areas is accounted for by

our proxy for tourism, the establishment of a park entrance within a protected area.

These results are concordant with anecdotal evidence, conjecture, and findings from

a previous study (Robalino and Villalobos-Fiatt 2010).

The development of infrastructure in protected census tracts has a strong

poverty reducing influence as well (as measured by β̂3T ). However, because the

establishment of protected areas did not substantially increase the road networks in



73

the affected census tracts, compared to our counterfactual estimates, the MATT on

poverty was modest.

We find that the reduction in deforestation associated with the establishment of

protected areas (compared to counterfactual levels) has essentially no impact on

poverty, as measured by the MATT. By measuring the impact of reductions in

deforestation on poverty, due to protection, we were hoping to capture the impact of

preserving ecosystem services. However, as mentioned in the Introduction, there are

likely countervailing mechanism effects of avoided deforestation, which we believe

are highlighted by our results. Figure 7 presents a DAG that depicts two of the

potential underlying impacts that avoided deforestation would likely have on

poverty. The establishment of protected areas reduces deforestation T
(−)→ F . This

causal reduction in deforestation has two impacts. First, we expect an increase in

ecosystem services F
(+)→ ES which would lead to a positive impact on poverty

(poverty reduction), ES
(+)→ Y . Second, we expect the reduction in deforestation to

decrease extraction profits F
(−)→ EP which would lead to a negative impact on

poverty (poverty exacerbation), EP
(−)→ Y .50

Considering the concepts from the DAG in Figure 7, our estimated MATT for

change in forest cover and results from previous studies in Costa Rica (Ferraro and

Hanauer 2011, Ferraro et al. 2011), we believe that ecosystem services can be shown

to exhibit a positive MATT on poverty (reduces poverty). First, assume that the

only causal mechanism relationship between protection, deforestation and poverty is

T→F→EP→Y (i.e., ecosystem services either are not affected by avoided

deforestation or do not impact economic outcomes). Our results show that the

establishment of protected areas is associated with a causal reduction in

50This mechanism channel captures the concern the land-use restrictions associated with the
establishment of protected areas may impose economic hardship by prohibiting extractive activities.

Avoided deforestation provides an indication that land-use laws were binding and, therefore, F
(−)→

EP
(−)→ Y is likely a valid channel.
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deforestation T
(−)→ F . Ferraro and Hanauer (2011) and Ferraro et al. (2011) show

that increases in avoided deforestation, associated with the establishment of

protected areas, generally result in lower levels of poverty reduction or, in some

cases, poverty exacerbation. This association is due to the fact that protected areas

reduce profitable economic activities such as resource extraction. Therefore, by

reducing deforestation we expect the establishment of protected areas to reduce

extractive profits F
(−)→ EP thereby causally reducing poverty outcomes

(exacerbating poverty) EP
(−)→ Y . Taken together, if T

(−)→ F
(−)→ EP

(−)→ Y was the

sole deforestation mechanism process then we would expect the change in forest

cover MATT to be positive (indicating poverty exacerbation to a higher magnitude).

T YF

EP

ES

(-)

(-)

(+)

(-)

(+)

Figure 7: Directed Acyclic Diagram (DAG) depicting two of the potential underlying ef-
fects (and direction) of the change in forest cover mechanism. The the establishment of

protected areas reduces deforestation T
(−)→ F . This causal reduction in deforestation has

two impacts. First, we expect an increase in ecosystem services F
(+)→ ES which would

lead to a positive impact on poverty (poverty reduction), ES
(+)→ Y . Second, we expect the

reduction in deforestation to decrease extraction profits F
(−)→ EP which would lead to a

negative impact on poverty (poverty exacerbation), EP
(−)→ Y . The relative magnitude of

these countervailing effects determine the estimated MATT.

Incorporating the preceding logic into the model established in the DAG in

Figure 7, our posited relationship T
(−)→ F

(+)→ ES
(+)→ Y must hold. In other words,

because preventing deforestation prevents economically beneficial extractive

activities, the buttressing of ecosystem services associated with the establishment of

protected areas must provide countervailing poverty reducing impacts.
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Robustness

Without mechanism bias-adjustment

In the Counterfactual Mechanism Values Section we motivate and describe the use

of bias-adjustment techniques to impute counterfactual mechanism values. We

argue that, like the use of post-match regression bias-adjustments in the estimation

of average treatment effects, this technique provides a (more) unbiased estimate of

counterfactual mechanism values when imbalance persists (especially in baseline

mechanism covariates) post-matching. We re-estimate all MATTs without using

bias-adjustment, the results can be found in Table 6. As expected, given the

purpose of the bias-adjustment procedure, we find little difference in counterfactual

values for change in forest cover (compare Column (ii) in Tables 5 and 6), for which

a high degree of balance in baseline measures is achieved (see Table 4). In addition,

because of the binary nature of the park entrance mechanism, the counterfactual

values are identical with, and without, bias-adjustment. However, the

counterfactual values for the roadless volume mechanism differ substantially.

Without bias-adjustment the estimated counterfactual change in roadless volume is

only -447,024 (compared to -674,147 with bias-adjustment). In turn, there is a much

larger difference between observed and counterfactual roadless volume mechanism

values which, thus, leads to much larger, in absolute terms, estimate of the MATT

(-0.7827). In other words, by not using bias-adjustment the estimated proportion of

poverty reduction in the ATT attributable to protections causal effect on roadless

volume, changes from approximately 11% to 61%. These results highlight that

infrastructure development has a large influence on poverty reduction (as measured

by β̂3T ). However, the magnitude of the associated MATT is determined by the

counterfactual mechanism value, which we believe is best estimated using the
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bias-adjustment framework that we outline in the Counterfactual Mechanism Values

Section.

Table 6: Mechanism Results Without Mechanism Imputation

Single Mechanism All Mechanisms
(i) (ii) (iii) (iv) (v) (vi)

Observed Counterfactual Mechanism Mechanism
Mechanism Mechanism Coefficient MATT Coefficient MATT

Park 122 0 -1.004 -0.492 -1.345 -0.619
Entrance (0.439) (0.546)

∆ Roadless -727,579 -447,024 2.694e-06 -0.756 2.790e-06 -0.7827
Volume (0.54) (0.54)

∆ Forest -0.067 -0.223 0.627 0.099 0.124 0.019
Cover (0.439) (0.55)

(Heteroskedasticity robust standard errors)

LNATT

The estimation of MATT and NATT requires the imputation of counterfactual

mechanism values which are, by definition, unobserved. Our data provide a unique

opportunity to estimate the causal effects of protection net of tourism under less

restrictive assumptions than those used in the main analyses. We exploit the fact

that some protected census tracts are observed in the absence of a park entrance

mechanism. For this subset of the data Si(1) = Si(0) by definition. In other words,

the potential park entrance mechanism value for protected units that did not receive

an entrance is same under protection as it would have been in the absence of

protection (Si(1) = Si(0) = s0). Therefore, we can identify this principal stratum

({Si(1) = Si(0) = s0}) without invoking Assumption 2 or 3. In addition, we observe

Yi(1, Si(0)) for this subset of the data and, therefore, do not need Assumption 4 to

impute the counterfactual of interest.
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The local NATT (LNATT) can be estimated51

LNATT = E{E[Yi(1, Si(0))− Yi(0, Si(0))|Si(1) = Si(0) = s0]} (29)

for the subset of data in the principal stratum {Si(1) = Si(0) = s0} (Flores and

Flores-Lagunes 2011). The fact that we observe protected census tracts that were

not affected by a park entrance means that we can take the simple difference in

these protected tract outcomes (Yi(1, Si(0))) and their matched controls

(Yi(0, Si(0))), both of which are observed in the data. We estimate the LNATT for

this subgroup to be -0.6122. Flores and Flores-Lagunes (2011) note that the

LNATT represents the local ATT (LATT) for this subgroup because there is no

mechanism effect for this group so Yi(1, (Si(0)) = Yi(1). Therefore, under

Assumption 1, LNATT=LATT=E[Yi(1)− Yi(0)|Xi] for this subgroup.

We note that the estimated LNATT for park entrances is very close to the

NATT from the main analysis (-0.6122 and -0.659, respectively). We believe that

the similarity between the two estimates provides evidence that the assumptions

and methods employed in the main analyses are providing unbiased estimates of the

respective mechanism effects. We can make further comparisons to the MATT

estimates using the estimated LNATT and an additional assumption of constant

individual net effects (Flores and Flores-Lagunes 2011)

Assumption 5 Yi(1, Si(0))− Yi(0, Si(0)) = C, for all i.

Under this assumption we can define LNATT=NATT and, therefore, estimate

MATT=ATT-LNATT. Using this framework, the estimate of park entrance MATT

(-0.6658) is very close to the estimate from the main analysis (-0.619).

51This framework follows directly from the framework for the local net average treatment effect
(LNATE) established by Flores and Flores-Lagunes (2011).
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Discussion

Recent impact evaluations from developing countries have found that the

proliferation of protected areas in the past several decades has been associated with

poverty reduction in surrounding communities (Canavire-Bacarezza and Hanauer

2011, Andam et al. 2010, Sims 2010). The findings are contrary to the expectations

that the land-use restrictions, through which protected areas achieve their

environmental goals, restrict economically beneficial activities. While the results

from these studies are important to understanding the policy impacts, in the

context of protected areas, it is arguably more important to understand through

what mechanisms protected areas affect economic outcomes than it is to estimate

the overall effect. Unfortunately, the methodologies employed in previous studies

are not suited to identify or quantify the potential mechanisms through which

protected areas affect economic outcomes.

Using recently developed quasi-experimental methods, and rich biophysical and

demographic data from Andam et al. (2010), we quantify the mechanistic impacts of

tourism, infrastructure development and ecosystem services on poverty due to the

establishment of protected areas in Costa Rica prior to 1980. To capture the causal

effects of our respective mechanisms we use the establishment of park entrances,

changes in road networks and deforestation as proxies. Our results indicate that

approximately 50% of the poverty reduction estimated by Andam et al. (2010) can

be attributed to tourism. Conversely, infrastructure development played a negligible

role in poverty reduction. Finally, although the mechanistic impact of avoided

deforestation is near zero, we argue that, given the negative economic impacts

associated with the prevention of deforestation, enhanced ecosystem services (due to

the establishment of protected areas) likely had a positive effect of poverty

reduction.
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Our results offer insight to potential policy actions that might complement the

establishment of protected areas. For instance, in support of common conjecture,

our results suggest that the promotion of tourism concurrent with the establishment

of protected areas may have beneficial poverty effects. Given that one of the goals

set forth by the 5th World Parks Congress is that the establishment of protected

areas should at least do no economic harm, greater understanding of the

mechanisms through which protected areas affect poverty is needed. Future studies

in Costa Rica should obtain less coarse measures of mechanism variables in order to

more accurately measure the impacts. This will facilitate, for instance, a more

precise measure of the impacts that enhanced ecosystem services, due to the

establishment of protected areas, have on economic outcomes.

There is likely a great deal of heterogeneity in the overall impacts and the

mechanism impacts of protected areas across countries. Therefore, caution should

be taken in the extrapolation of these results to protected area networks elsewhere.

Future studies should apply similar methodologies in other countries. Indeed, to

truly understand the mechanisms through which protected areas affect poverty, the

evidence base will need to built on a country-by-country basis.



Chapter IV

Estimating the Impacts of Protected Areas on Poverty in Bolivia

Introduction

Protected areas are an important tool for the global conservation of ecosystems and

biodiversity (MEA 2005). Presently, approximately 13% of the world’s terrestrial

surface is covered by some form of protected area (WDPA 2009). The sheer scale of

the global coverage of protected areas highlights the importance of understanding

their underlying impacts. Unfortunately, there is little empirical evidence on the

environmental impacts of protected areas and even less on the socioeconomic

impacts of protected areas on surrounding communities (Coad et al. 2008). The

socioeconomic implications of establishing protected areas are of particular interest

given the high degree of overlap between areas of remaining biodiversity (i.e., areas

likely to be targeted for protection) and poverty (Sachs et al. 2009). This raises

concerns from poverty advocates that achieving environmental goals may come at

the expense of the populations impacted by such policy (Coad et al. 2008, Adams

et al. 2004).

The dearth of quality evidence on the impacts of protected areas fuels a general

debate regarding the relationship between areas protected by environmental law and

the socioeconomic outcomes in surrounding areas. Conservationists see the

establishment of protected areas as essential to global environmental stability,

whereas poverty advocates argue that, while the benefits from protecting these

80
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areas are paid to all, the costs are borne only by those proximal to the areas (Coad

et al. 2008, Wilkie et al. 2006, Adams et al. 2004). This argument concerns the

land-use laws associated with protected areas that restrict economic development by

preventing forms of profitable activities such as the exploitation of natural resources

and agricultural cultivation (Coad et al. 2008, Fleck et al. 2006).

There have been few empirical studies with the proper data and methodologies

to accurately estimate the socioeconomic impacts of protected areas on local

economies, especially in developing nations (exceptions include: Ferraro and

Hanauer (2011), Ferraro et al. (2011), Andam et al. (2010), Sims (2010), Robalino

and Villalobos-Fiatt (2010)).52 Most studies have either been ex ante estimates of

future costs and benefits, or ex post studies of observed states of welfare (Andam

et al. 2010, Wilkie et al. 2006). The ability to empirically measure the

socioeconomic impacts of protected areas is complicated by the non-random nature

in which areas are assigned to protection. The presence of such selection issues

necessitates the use of sophisticated research design and methodologies, absent most

previous studies. Further confounding the process is the fact that most developing

nations do not have sufficiently rich data sets with which to measure pre- and

post-treatment poverty outcomes.53

Bolivia is an apt setting for evaluating the impacts of protected areas on poverty

in surrounding communities. Bolivia is one of the most biodiverse countries in the

world.54 Yet despite having a wealth of natural resources, Bolivia is one of the

52To our knowledge, there is no study that examines the relevance of protected areas on welfare
in Bolivia.

53See Ferraro (2008) for a discussion on the components of a quality socioeconomic impact evalua-
tion which include: 1) An appropriate measure of welfare; 2) observations on outcomes and pertinent
covariates for both pre- and post-treatment; 3) relevant indicators for both treatment and control
units, and; 4) observations of pretreatment covariates that affect both selection into treatment and
socioeconomic outcomes.

54Bolivia is one of the 15 most biologically diverse countries in the world. It is recognized as one
of the 11 nations with the greatest diversity of flora (about 20 thousand species) and one of the
top 10 most abundant in terms of birds (1,400 species) and mammals (356 species). Information
provided by the Protected Areas National Service of Bolivia SERNAP (2009). Moreover, according
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poorest countries in Latin America, with poverty levels upwards of 60% (UDAPE

2006). Bolivia also has an extensive protected area network that was made effective

by an identifiable restructuring of the existing system in 1992, followed by a surge in

proliferation of new protected areas throughout the 90s. Moreover, Bolivia has rich

biophysical and socioeconomic data that predate the effective establishment of

protected areas.

Using rich biophysical and socioeconomic data, and quasi-experimental methods,

we ask, “what would poverty outcomes in Bolivian communities affected by

protected areas have been had protected areas not been established?” We find no

evidence that communities affected by protected areas established between 1992 and

2000 fared any worse, between 1992 and 2001, than similar communities that

remained unaffected by protected areas. In fact, all of our point estimates indicate

that protected communities had differentially greater levels of poverty reduction.

We find that these results are robust to a number of econometric specifications,

sensitivity analyses, spillover analyses and placebo studies. Our results are

concordant with findings of poverty alleviation due to the establishment of

protected areas in Costa Rica (Andam et al. 2010) and Thailand (Andam et al.

2010, Sims 2010). However, unlike previous studies (Andam et al. 2010, Sims 2010)

our results indicate that näıve (uncontrolled) comparisons of protected and

unprotected communities leads to an overestimation of the poverty alleviation

associated with the establishment of protected areas. Accordingly, our results

underscore the fact that protected area impacts are likely not generalizable and,

therefore, the importance of country-level protected area impact evaluations. To

that end, our results add to the scientific body of knowledge on the socioeconomic

impacts of protected areas in developing countries, which is exceedingly sparse.

to an UNESCO report, Bolivia has the largest water reserves in Latin America and ranks 6th in the
world in terms of tropical moist forest resources (the third in the continent after Brazil and Mexico).
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Background

Protected areas in bolivia

The evolution of the establishment and enforcement of protected areas in Bolivia is

complex but can be defined, coarsely, by two periods: pre- and post-1992. A

non-trivial amount of Bolivia’s area was designated for protection between the late

30’s and early 90’s.55 However, the criteria for establishing these areas were not

uniform, or systematic. Most were established with little technical background and

absent the participation of local actors (SERNAP, 2007). Furthermore, there was a

lack of recognition and requisite enforcement within these areas, a phenomenon

commonly referred to as, “paper parks” (e.g., Bruner et al. (2001)).

The progression of the theme of conservation and the consequent international

commitments undertaken by countries in the early 90’s, after the Rio Conference,

led to the development of policy and institutional foundations related to the then

new paradigm of sustainable development and environmental care. Thus, under the

Environment Law (Law 1333), the National System of Protected Areas in Bolivia

(SNAP) was created in 1992, defined as natural and cultural heritage of the State

and public and social interest.

The Law 1333, defines protected areas in Bolivia as “natural areas with or

without human intervention, declared under state protection by law, in order to

protect and preserve the flora and fauna, genetic resources, natural ecosystems,

watersheds and values of scientific, aesthetic, historical, economic and social interest,

in order to conserve and protect natural and cultural heritage of the country.”56

55The 10 protected areas that were established prior to the 1990’s cover 5,917,638 ha which is
approximately 1/3 of the total protected area.

56One of the most important characteristics of Bolivia’s protected areas is their compatibility
with the existence of traditional indigenous people (Environment Law 1333, Section 60-65). Since
its initiation in 1992, the National System of Protected Areas in Bolivia has been designed with
a participatory approach, recognizing that the areas are occupied and are ancestral territories of
indigenous populations. Therefore, the participation of local people is a fundamental in the main
aspect of the system.
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The consequence of Bolivia’s history of protection and Law 1333 is that, even for

areas designated prior to 1992, the effective establishment date of Bolivia’s protected

area system was 1992 (and thereafter). The identification of this administrative

recognition and enforcement allows us to use 1992 as a baseline, pre-treatment year,

after which the intervention impact of protected areas can be measured.

Related literature

There have been only a handful of studies on the socioeconomic impacts of

protected areas that properly control for their non-random establishment. Further,

there is no formal literature regarding the impacts of protected areas on

socioeconomic outcomes in Bolivia. The closest study to this kind for Bolivia

(Yáñez 2006) examines the potential effects of three protected areas on poverty in

Bolivia. Based on household surveys carried out near these protected areas, the

author finds a small positive effect of protected areas on poverty. Nevertheless, this

study not only has a small sample of protected areas, but also presents some

methodological drawbacks such as selection bias and sample selection.

The most comparable study to ours is a quasi-experimental analysis of protected

areas in Costa Rica (Andam et al. 2010). The authors designate census tracts

(segmentos) with 10% or more of their areas protected, as treated. They then use

matching techniques to construct a counterfactual group that is similar along

pretreatment dimensions to the treated census tracts. The authors’ calculation of

average treatment effect on the treated (ATT) provides evidence that census tracts

with protected areas that were established prior to 1980 had differentially greater

levels of poverty reduction between 1973 and 2000 than comparable unprotected

census tracts.

In a similar study Sims (2010) uses a continuous measure of the percent of land

area protected within Thailand sub-districts to measure the marginal effect of
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protected areas (IUCN category I & II) on a poverty headcount ratio. The author

compiles an extensive set of pre- and post-treatment biophysical covariates.

However, the outcome variable is only available for the contemporaneous period,

therefore, the baseline levels of poverty are unknown. The results of the study show

that when baseline geographic and development variables are controlled for,

sub-districts with more protected area displayed lower poverty levels than

comparison districts.

Robalino and Villalobos-Fiatt (2010) explore how national parks affect local

wages in Costa Rica and how these effects vary within different areas of a park and

among different social groups. They use highly disaggregated geographic references,

and find that parks’ effects on wages vary according to economic activity and

proximity to the entrance of the park. Workers close to entrances receive higher

wages and are employed in higher-paid, non-agricultural activities.

Several studies from the United States have shown no effect of protected areas

on economic outcomes at the county level. In two studies, (Lewis et al. 2002, 2003)

use a simultaneous equations framework to examine the county level effects of

protected areas (publicly owned land designated for preservation and multiple use)

in the Northern Forest Region of the United States on migration, on employment

and wage composition. A broader study by (Duffy-Deno 1998) uses a cross-section

of intermountain western counties of the United States to determine the effect of

protected areas (Wilderness, Forest Service and BLM land) on population and

employment densities. The author finds no significant effect on either outcome of

interest. However, all of these studies suffer from the lack of a true baseline, given

that all of the protected areas were designated decades prior to the first census

observations.
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Data and Methods

Data

We employ three categories of spatial and demographic data in this study: (1)

temporally distinct boundary mappings of terrestrial protected areas, (2) boundary

mappings of municipalities for the 1992 and 2001 censuses and the underlying

demography, and; (3) key biophysical characteristics believed to jointly affect the

establishment of protected areas and poverty.

The 1992 and 2001 census data were obtained from the Bolivian National

Statistical Office (INE). The census provides information that allows us to estimate

socioeconomic indicators at municipal level, such as structural poverty measures,

education, employment, housing, indigenous populations and health. Information

regarding Bolivia’s protected areas and their boundaries was obtained from

Servicion Nacional de Areas Protegidas (SERNAP) and the World Database on

Protected Areas (WDPA). Further geographic data (e.g., road networks, digital

elevation models, cities, forest cover, etc.) were obtained from NASA, Conservation

International and Bolivian forest regulation office (Superintendencia Forestal).

Unit of analysis

The unit of analysis for our study is the municipality. The municipality is the

penultimate political boundary in terms of disaggregation, second to the

comunidad. Bolivia comprises 326 municipalities with an average area of 325,083 ha

(about the size of Rhode Island; range: 28,928 – 1,298,121 ha). The maps in Figures

reffig:bol1 and reffig:bol2 show that the municipalities in the mountainous and

altiplano regions (southwest) tend to be smaller than those in the lowlands (east

northeast; see Figure reffig:bol3 for the topography of Bolivia).
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Variable Description Status Mean Median Std Min Max

Poverty Index 1992 Asset-based poverty index Unprotected 0.74 1.20 2.08 -5.89 3.97
for 1992 Protected 0.68 1.27 1.96 -5.08 3.56

Poverty Index 2001 Asset-based poverty index Unprotected -0.45 -0.05 2.01 -6.59 2.94
for 2001 Protected -0.94 -0.98 1.90 -5.47 2.35

NBI 1992 % population with unmet Unprotected 91.05 95.73 11.60 44.21 100.00
basic needs 1992 Protected 87.52 93.28 14.07 45.76 99.67

NBI 2001 % population with unmet Unprotected 86.03 93.82 17.00 19.08 100.00
basic needs 2001 Protected 76.70 83.31 21.60 23.83 99.84

Area (m) Municipality area, square Unprotected 2.179E+09 9.313E+08 3.652E+09 1.235E+07 3.511E+10
meters Protected 6.937E+09 2.214E+09 1.270E+10 2.179E+08 7.136E+10

Change in Forest Cover % deforestation in municipality Unprotected -0.01 0.00 0.05 -0.31 0.00
1976-1991 1976-91 Protected -0.02 0.00 0.05 -0.26 0.00

Percent Forest % of municipality under Unprotected 0.19 0.00 0.31 0.00 0.99
Cover 1991 forest cover 1991 Protected 0.48 0.58 0.34 0.00 0.93

Average Distance Avg. dist. to city from each 1ha Unprotected 107999 94104 71562 6828 384000
to a City (m) parcel within each municipality Protected 142790 104553 131397 8400 589100

Average Elevation (m) Average elevation of each 1ha Unprotected 2713 3265 1470 143 4478
parcel within each municipality Protected 1825 1695 1357 149 4589

Average Slope (pct) Average slope of each 1ha parcel Unprotected 18.97 16.58 14.82 0.91 59.35
within each municipality Protected 23.89 27.38 14.31 1.29 55.74

Roadless Volume (m) Sum of the product of area and Unprotected 8.350E+13 9.801E+12 2.604E+14 1.342E+10 2.53E+15
dist. to road, each 1ha parcel Protected 2.979E+14 2.544E+13 8.477E+14 6.059E+11 5.61E+15

Notes: Sample includes 56 protected and 252 unprotected units. 21 “marginally” protected units (those with between [0.01,0.1)
of their area occupied by a protected area) are removed from the sample.
*The municipalities are segmented into square parcels with sides of 100m. Measurements are made for each parcel then
averaged within municipalities.



88

Protected areas and treatment assignment

Bolivia has 23 protected areas that cover a total area of 17,131,507.48 ha or ˜16

percent of Bolivia’s terrestrial area (GIS calculations). The average size of a

protected area is 475,875 ha (range: 221 – 2,919,143 ha). To determine the

socioeconomic impacts of protected areas we must identify the municipalities that

are spatially influenced by protected areas. We use GIS to determine the proportion

(percentage) of each municipality that is occupied by a protected area established

between 1992 and 2000. Of the 87 municipalities that intersect with one or more

protected area, the average area designated as protected is 29.3% (range: 0.00007 –

100%). In order to assign municipalities a binary indicator of treatment we must

establish a threshold (percentage), above which municipalities are considered

protected. Our initial threshold is established at 10%.57 In order to reduce potential

bias to our estimates we need to ensure that we are not comparing protected

municipalities with marginally protected municipalities (doing so would likely serve

to weaken estimates of treatment effect). We, therefore, drop municipalities with

percentage overlap along the interval [0.1, 10). According to our assignment rule,

there are 56 municipalities that are considered protected. The percentage of overlap

within these protected municipalities ranges from 10.26 – 100% (mean = 43.9%,

median = 39.14%). We are left with 256 municipalities that are considered

unprotected.

57We use the 10% threshold in accordance with previous studies (Andam et al. 2010, Ferraro and
Hanauer 2011, Ferraro et al. 2011). A 10% threshold was chosen because one the goals of set forth
by 4th World Congress on National Parks and Protected Areas was to protect 10% of the worlds
ecosystems (Andam et al. 2010). We test the robustness of our results to this protection threshold
by defining alternative thresholds at 5, 20, 30 and 50%. We find that our results are robust to these
alternative thresholds (see Appendix C for full threshold results).
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Figure 8: Map of protected areas, major cities and quintiles of poverty in 1992 according
to poverty index.
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Covariates of interest

To isolate the causal effect of protected areas on poverty, we compile a set of

observable covariates that jointly affect the establishment of protected areas and

poverty outcomes (and assume that all unobservables do not exhibit joint influence).

These covariates are used in our analyses to control for the observable differences

between protected and unprotected municipalities, therefore, isolating the impact of

protection.

Distance to major city. Cities tend to be the nodes of major markets,

economic activity and opportunity. Protected areas are often located distant from

major cities, where the opportunity cost of land is lower (Sims 2010, Joppa and

Pfaff 2009). We calculate the average distance from each municipality to the nearest

city (each municipality is broken into 1 ha parcels and the average euclidean

distance from the set of parcels within each municipality to the nearest city is

calculated using GIS). Cities included in the measurement are the state capitals: La

Paz, Sucre, Cochabamba, Cobija, Trinidad, Oruro, Potosi and Santa Cruz. Table 7

shows that protected municipalities are significantly farther from cities, on average,

than unprotected municipalities. This is consistent with previous findings (e.g.,

Andam et al. 2010, Sims 2010, Joppa and Pfaff 2009).

Roadless volume. Access to roads increases access to markets and other

resources (reducing transportation costs, etc.). In addition, roads serve as a good

indicator of the level of infrastructure development and urbanization. Previous

country-level studies have found that protected areas tend to be located in areas

with sparse road networks (Andam et al. 2010, 2008). To control for baseline

measures of these influences we calculate roadless volume (Watts et al. 2007).

Roadless volume is an aggregation of the euclidean distance to a road for each land

parcel within a municipality, adjusted for the size of the land parcel. Roadless

volume is calculated by summing the product of the area of each land parcel (1 ha
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to NBI.
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in this case) and the distance of that parcel to the nearest road (1992). Therefore,

higher measurements of roadless volume indicate fewer road networks within a

municipality. Table 7 shows that roadless volume is greater within protected

municipalities, which is consistent with previous studies (e.g., Andam et al. 2010).58

Elevation and slope. Productivity of land, especially related to agricultural

productivity, plays a large role in economic development. Low slope, low elevation

land tends to be more suitable for agriculture and general development (lower

production, extraction and development costs). Previous studies, both globally

(Joppa and Pfaff 2009) and at the country-level (Sims 2010), have found that

protected areas tend to be placed on land that is relatively steep and high elevation.

It is, therefore, important to control for the average slope and elevation of

municipalities. Bolivia presents somewhat of a unique case, however. Bolivia is

characterized by a dichotomous landscape in that the country is defined (in general)

by the highlands and lowlands. Table 7 shows that the slope in protected

municipalities is greater in unprotected municipalities (expected), however the

average elevation is lower (on average) within these protected municipalities

(unexpected).

Forest cover. Protected areas tend to be placed on forested lands (Andam

et al. 2010, Sims 2010). In addition, forests represent potential for economic

opportunities (timber, fuelwood, etc.). We therefore calculate the percentage of each

municipality covered by forest in 1991. Table 7 shows that protected municipalities

contained significantly more forested areas at baseline.

58One may be concerned that disparate municipality areas across protected and unprotected units
might confound the estimates of protected area impacts (e.g., may be correlated with urbanization
or other unobservable). However, roadless volume is nearly perfectly correlated with the area of
respective municipalities (Pearson correlation coefficient is 0.905), mitigating such concerns.
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N

Figure 10: Digital elevation model of Bolivia, with protected areas draped (green). While
a majority of the designated protected areas lie in relatively mountainous regions, there
is a large area protected in the east that accounts for the relatively low average slope of
protected municipalities. The red points represent the location of major cities listed in
Figures 8 and 9.
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Poverty

In order to estimate the impact of protected areas on poverty, an outcome that

objectively measures levels of socioeconomic welfare is necessary. In the absence of a

universal metric such as income, we are tasked with developing metrics that

adequately capture socioeconomic outcomes. We employ two measures of poverty in

our analyses: an asset based poverty index (PI) and Necesidades Basicas

Insatisfechas (NBI). Both poverty indicators are measured during the 1992 and 2001

census years and serve two purposes. First, the PI and NBI in 2001 serve as the

outcome of interest to measure differences in poverty between protected and

unprotected municipalities. Second, the PI and NBI in 1992 serve as controls for

baseline states of poverty. By ensuring that we compare protected and unprotected

municipalities with similar baseline poverty characteristics, we improve the

probability that these units share similar poverty trajectories prior to the

establishment of protected areas.

Table 8: Eigenvectors from principal component analysis

Eigenvectors, Pooled
Variable EigenV

Adult men in population* -0.02836
Households without bathroom* 0.34984

Households that use fuelwood for cooking* 0.39719
Households with dirt floors* 0.39399

Low-quality houses* 0.33074
Households without electricity* 0.46972

Illiterate population* 0.17906
Population employed with salary* -0.06499

Average persons per bedroom 0.00384
Households without access to public water* 0.39091

Households without sewer or septic* 0.20994
Average years of education -0.02452

Notes: Census data from 1992 and 2001 are pooled to measure
average influence of assets across time.
* Indicates that variable is measured as a percentage.
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Table 9: Mean Asset Values by Deciles of 1992 Poverty Index

Richer Deciles of PI 1992 Poorer
Variable 1 2 3 4 5 6 7 8 9 10

pct.men.92 57.77 55.96 55.78 54.74 54.45 56.5 55.1 54.56 54.3 57.9
pct.wo.bath.92 43.96 66.88 61.13 68.52 77.72 86.13 82.14 85.15 92.49 99.26

pct.fuelwood.92 25.59 46.61 70.06 69.85 65.79 74.67 82.98 89.47 91.4 99.2
pct.dirt.floor.92 28.77 49.74 63.72 72.77 76.89 79.72 80.52 81.61 92.19 91.7

pct.low.qual.house.92 15.23 23.07 37.02 41.09 49.08 47.7 57.57 58.63 68.46 82.57
pct.wo.elct.92 26.35 45.1 63.42 73.31 82.13 86.89 94.17 94.65 97.19 99.87

illit.92 12.5 19.32 23.11 27.04 24.7 33.12 30.24 37.22 47.19 67.91
emp.92 95.8 91.28 90.17 88.66 89.6 88.09 85.62 84.93 81.45 61.62

avg.person.room.92 3.28 3.26 3.48 3.52 3.42 3.34 3.53 3.57 3.77 4.09
pct.nowater.92 27.13 46.12 59.33 69.38 75.83 75.63 77.57 83.98 90.18 97.56
pct.nosewer.92 65.05 87.19 90.97 93.19 96.16 96.98 97.34 98.5 99.03 99.87

avg.edu.92 6.77 5.1 4.66 4.2 4.42 3.68 3.77 3.36 2.72 1.45

We use two separate measures of poverty to buttress the robustness of our

analyses. Although the PI and NBI are both designed as measures of poverty, they

capture different aspects that contribute to poverty. Given that we do not have a

more direct metric for poverty, such as income, we feel that it is important not to

limit our analyses to a single proxy.

Poverty Index (PI).59 Our PI is an asset based poverty index founded on

household responses to the 1992 and 2001 censuses. The index is constructed using

a principal component analysis (PCA). The primary purpose of the PCA is to

measure the influence of a vector of variables on a latent outcome, poverty. The

relative influence of each component variable is measured by the eigenvectors (factor

loading) calculated from the variance/covariance matrix underlying the component

variables. The eigenvectors are combined with the relative municipal-level variation

in assets to calculate a municipal-level PI.

Table 8 lists the variables used in the construction of the poverty index, and the

eigenvectors associated with each asset.60 These eigenvectors (from the first

59A similar asset based poverty index was developed for Costa Rica (Andam et al. 2010, Cavatassi
et al. 2004) and used by the Mexican government in the analyses of the PROGRESA program (cited
by Cavatassi et al. (2004).

60Our analyses are designed to measure changes in poverty over time. To ensure that our poverty
indexes are comparable across time we pool the asset data from the 1992 and 2001 census data
similar to Cavatassi et al. (2004) (see also (Filmer and Pritchett 2001)). By pooling the data for
the PCA we estimate the mean influence of each asset across time, allowing the variation in assets
between time periods to drive the estimated changes in poverty.
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component) account for over 60% of the variation in the asset variables and provide

the factor scores Fj for asset j ∈ {1, 2, ..., J} which indicate the weight and direction

of the influence each asset aj exerts on the PI. These factor scores are combined

with observed asset levels to formulate the PI for municipality i ∈ {1, 2, ..., N} ,

P Ii =
J∑
1

Fj

[
aij − aj
sj

]
, (30)

where aij is the observed level of asset j in municipality i, aj is the mean of asset j

across all municipalities, and sj is the standard deviation of asset j across

municipalities. The intuition underlying our PI is that there are a number of

household assets and characteristics that explain variation in unobserved poverty

outcomes. By understanding of how these assets co-vary (and by how much), we

can infer, from the composition of these assets across municipalities, how relative

poverty levels vary across municipalities.

We confirm the validity of our PI both internally and externally. The factor

scores from the eigenvectors in Table 8 provide evidence that our PI is internally

coherent. A positive factor score indicates that the asset variable contributes (adds)

to poverty, and vice versa. The factor score of each asset variable carries the

expected sign.61 We provide further evidence of the internal validity of our PI in

Table 9, in which we list the mean values of each asset within the deciles of the 1992

PI. The trends in asset levels as the PI increases (increasing deciles) are similar to

what we would expect to see as wealth decreases, indicating that the PI is likely

capturing poverty. As an external (to the PI) measure of our poverty index’s

validity we measure the correlation between the PI and NBI. Although the PI and

NBI capture different aspects of poverty, the two measures should be correlated. We

61According to the manner in which the poverty index was constructed, poverty is decreasing in
the negative orthant.
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find that this is the case, for instance, the correlation between NBI and PI in 2001 is

over 0.88.62

NBI. The NBI measures the percentage of the population within a municipality

with unsatisfied basic human needs. It captures poverty by measuring the goods or

services that a household possesses that are associated with well-being and then

comparing these municipality-level values to a norm (or ideal). The Bolivian NBI

was estimated by the INE in coordination with UDAPE. It comprises a set of

factors such as housing, basic services, education and health.63 The housing

component aims to isolate the household environment, in terms of providing

protection from the outdoors and other external factors such as animals and insects

that transmit diseases. It also includes living spaces inside the household in order to

consider social environment, privacy and comfort. The basic services component

considers basic sanitation in terms of the need for good quality water for food and

hygiene, and the availability of health services that allow privacy, sanitation and

hygiene. In addition, NBI considers energy availability and cooking sources. The

education portion includes the years of schooling, school attainment and literacy.

Finally, the health component relates to the capabilities of people, and good health

that allows the proper development within the social environment.

The individual household components are compared to a norm which is used to

determine if the household’s basic needs are met. The compilation of each equally

weighted component allows for the identification of the poverty condition of each

62This correlation can be observed spatially in the maps in Figures 8 and 9.
63The health component of the Bolivian NBI is not fully comparable between censuses as the

questions have changed. The full methodology can be found at http://www.ine.gob.bo/pdf/

Metodologias2004/NBI.doc

http://www.ine.gob.bo/pdf/Metodologias2004/NBI.doc
http://www.ine.gob.bo/pdf/Metodologias2004/NBI.doc
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household.64 Accordingly, a higher measure of the NBI indicates greater poverty

within the associated municipality.

Baseline covariate distributions

Previous studies at the global and country level have found significant differences in

the biophysical (Andam et al. 2010, Sims 2010, Joppa and Pfaff 2009, Pfaff et al.

2009) and socioeconomic (Andam et al. 2010) characteristics underlying protected

and unprotected areas. The differences underscore the non-random nature in which

protected areas are allocated. Globally it has been shown that protected areas tend

to be located distant from cities (markets) and on agriculturally unsuitable land

(high slope, high elevation), so-called “high and far” or “rocks and ice” bias (Joppa

and Pfaff 2009). In addition, a similar study in Costa Rica demonstrated that

communities affected by protected areas had significantly higher levels of baseline

poverty than unaffected communities (Andam et al. 2010).

Table 7 shows that Bolivia shares many of the characteristics associated with

protected areas that are observed globally. The geographic characteristics associated

with access to markets, infrastructure and urbanization differ significantly between

protected and unprotected areas. The average distance to a major city, roadless

volume and percent baseline forest cover are greater in protected municipalities,

indicating that protected areas tend to be established in more rural areas. In

addition, it can be seen that one of the primary indicators of agricultural suitability,

slope, is greater (indicating lower suitability) in protected municipalities. However,

contrary to global trends, we observe that the average elevation in protected

64The methods used to formulate the NBI present some limitations related to the weight of the
components that are included in the index. All the factors included have the same weight, in
addition, the method require some norms to which indicators are compared. These norms are, to
some extent, arbitrary. Also, a household is considered poor if at least one of the NBI components
are not satisfied. Moreover, NBI does not consider explicitly the demographic structure of the
household and prioritizes the housing indicators. There is one final, practical, limitation: there are
13 municipalities (four of which are considered protected) for which NBI was not calculated in 1992.
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municipalities is lower than in unprotected municipalities (see Figure 10). Most

interesting is the fact that, according to both poverty measures, baseline poverty is

slightly lower in protected municipalities. This finding is contrary to findings from

Costa Rica (Andam et al. 2010) and common wisdom.

Methods

The underlying differences in covariate values between protected and unprotected

municipalities indicates the importance of controlling for such differences in the

estimation of the impacts of protected areas. The selection issue that we must

address is that protected areas are not established randomly across the landscape.

Non-random allocation leads to the observed imbalance across these key covariates,

that jointly determine selection into protection and socioeconomic outcomes (see

Table 7), which may lead to biased estimates of the impacts of protected areas

under näıve comparisons of protected and unprotected municipalities. To reduce the

bias associated with our estimates of the socioeconomic impacts of protected areas,

we use matching as our primary strategy to control for this confounding imbalance.

Matching

To measure the impact of protected areas on poverty in surrounding municipalities

we use matching to estimate the average treatment effect on the treated (ATT).

Estimation of the ATT is implied in our research question, “what would poverty

outcomes in protected municipalities have been had they not been protected?”

Answering such a question implies the estimation of a counterfactual, and because

there are municipalities for which it is implausible to suppose the establishment of a

protected area, the estimation of an ATT is most appropriate.65

65Estimation of average treatment effects (ATE), for instance, entails the estimation of an addi-
tional counterfactual: outcomes for all unprotected units had they been protected. We argue that
it is implausible for many of Bolivia’s municipalities to have been protected and, therefore, the
estimation of ATT is more appropriate that ATE.
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The key to matching as an identification strategy to estimate ATT is the

balancing of covariate distributions across treatment arms (protected and

unprotected) thus mimicking the identification strategy of a randomized

experiment. This covariate balance is achieved in expectation through

randomization. Covariate balance is implicit under randomization because each unit

of the experimental sample has an equal probability (or more generally, a

probability that is known to the experimenter) of being assigned to treatment or

control. Therefore, treatment is assigned independent of potential outcomes Y (1)

and Y (0) under treatment (T = 1) and control (T = 0), respectively. In the absence

of a treatment, one would expect similar average outcomes from both groups.

Similarly, if both groups were to receive (the same) treatment, one would expect

similar average outcomes from both groups. In the statistics, epidemiology and

social science literature this assumption is termed ignorability of treatment,

independence of treatment or unconfoundedness. Stated formally,

E[Y (1)|T = 1)] = E[Y (1)|T = 0)] = E[Y (1)] (31)

E[Y (0)|T = 1)] = E[Y (0)|T = 0)] = E[Y (0)] . (32)

In words, (2) simply states that average potential outcome for the treatment

group under treatment, E[Y (1)|T = 1)], is equal to the average potential outcome of

the control group had they been treated, E[Y (1)|T = 0)]. Similarly, (3) states that

the average potential outcome for the treated group had they not been treated,

E[Y (0)|T = 1)], is equal to the average potential outcome of the control group in

the absence of treatment, E[Y (0)|T = 0)]. In (2) and (3), the terms E[Y (1)|T = 0)]

and E[Y (0)|T = 1)] are termed counterfactual outcomes. The fundamental problem

for causal inference (Holland 1986) is the fact that counterfactual outcomes are not

observed. However, with treatment assigned at random (and thus independent of
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potential outcomes), the average outcome for control units can act as the

counterfactual for treatment units, and vice versa.

Protected areas in Bolivia were not established randomly. Matching seeks to

mimic the identification of randomization by balancing key covariates that jointly

determine selection into treatment and outcomes. Balance, conditional on key

covariates, leads to conditional ignorability or conditional independence. However,

because our primary estimand of interest is the ATT we only need to estimate one

counterfactual. Therefore, it is only necessary for us to invoke the conditional

independence assumption (CIA) for (2). This more restrictive assumption can be

stated formally as the analog to (2),

E[Y (0)|T = 1, X] = E[Y (0)|T = 0, X)] = E[Y (0)|X] . (33)

Equation (4) states that, conditional on similar covariate distributions across

treatment arms, the average outcomes for the matched control units,

E[Y (0)|X,T = 0)], can be used as the counterfactual for treatment units. In other

words, by ensuring that the distributions of key covariates are balanced across

treatment and control groups, similar methods to those used in randomized

experiments can be used to estimate ATT on matched datasets.66 By ensuring that

units are comparable across treatment and control groups, we make the CIA, which

is necessary for causal inference, more defensible (Angrist and Pischke 2009).

Primary estimator

There are many matching metrics from which to choose. Our final specification is

determined by the metric that provides the best balance across our covariates of

66Similarly, by additionally invoking CIA for equation (3) (i.e.,
E[Y(1)—T=1,X]=E[Y(1)—T=0,X)]= E[Y(1)—X]), average treatment effects can be measured.
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interest.67 We find that, given our relatively small sample size, genetic matching

provides the best balance and, therefore, is most likely to satisfy the CIA. Genetic

matching (Sekhon 2007) conducts an algorithmic search across potential weighting

matrices in order to optimize the weighting matrix to best satisfy covariate balance.

We conduct a series of robustness checks on the estimates stemming from the

genetic matching, including adding calipers, calculating the Rosenbaum bounds

(Rosenbaum 2002), and various regression based estimators (see the Robustness

Section below).

Our primary genetic matching specification uses the single nearest neighbor (in

terms of covariate distribution) to each treated unit to act as the counterfactual for

each treated unit. We allow for replacement (which generally reduces bias but can

increase the variance (Imbens and Wooldridge 2009, Dehejia and Wahba 2002))

during matching, use a post-match regression bias adjustment (Imbens and

Wooldridge 2009, Abadie and Imbens 2006, Abadie et al. 2004),68 and calculate

so-called Abadie and Imbens (2006) heteroskedasticity robust standard errors. Our

matching specification seeks to find an unprotected municipality that is observably

similar to each protected municipality, isolating the only remaining variation

between treatment arms to be the establishment of protected areas, thereby

allowing the unbiased estimation of ATT.

67During the process of selecting a matching metric we tested the balancing properties of many
different metrics (e.g., Mahalanobis, propensity score and inverse covariance). Outcomes and ATT
estimates were omitted while inspecting balance across different specifications to prevent the esti-
mates from potentially affecting the selection of a metric.

68Because our matched samples are relatively balanced, the post-match regression bias adjustment
has relatively little effect on the point estimates.
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Results

Primary Results

Figure 11 and Table 10 present the results from our primary, and ancillary

robustness, analyses (Tables 11 and 12 provide balancing results from our primary

matching specifications). In this subsection we focus on the second column of the

respective right, and left, hand bar charts and the respective row in Table 10, which

present the ATT estimates stemming from the genetic matching algorithm.

For both our PI and NBI poverty indicators we find no evidence to suggest that

the establishment of protected areas in Bolivia had deleterious effects on poverty.

To the contrary, all of our point estimates indicate that protected areas were likely

associated with poverty alleviation. In other words, after controlling for covariates

that jointly influence the establishment of protected areas and poverty, we find that

there was differentially greater poverty reduction between 1992 and 2001 in

municipalities that had at least 10% of their area occupied by a protected area. The

point estimates from the primary specification are statistically significant (at any

standard level) when the PI is used as the outcome of interest, but is insignificant

when NBI is used as the outcome of interest (though the point estimates are

concurrent with those of the PI).

An attractive feature of our matching-based estimator is its transparency in

terms of allowing for the identification of mean poverty outcomes across treatment

arms of the matched sample, which represent the components of the ATT. Table 10

highlights the underlying difference between the näıve and genetic matching

estimates, which stem from the formulation of the counterfactual sample. When the

counterfactual comprises all unprotected municipalities other than those marginally

protected, the counterfactual poverty outcome (the poverty level that would have

been observed in protected municipalities, had they not been protected) is -0.451
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(85.61) according to the PI (NBI). Under our genetic matching specification we are

left with 56 and 53 counterfactual unprotected municipalities for the PI and NBI

analyses, respectively (41 and 38 of which are unique in the respective analyses).

Because the counterfactual unprotected units under the genetic matching

specification are observably similar (at least more so than the näıve counterfactual,

see Tables 11 and 12), the counterfactual outcome estimates are more similar to the

treated sample (-0.805 for the PI and 84.16 for NBI), resulting in a more modest

estimate of the poverty reduction associated with the establishment of protected

areas for both poverty metrics.

Our results are concordant with previous studies from Costa Rica (Andam et al.

2010) and Thailand (Andam et al. 2010, Sims 2010): protected areas are associated

with poverty reduction. However, our results differ fundamentally from these

previous studies. Andam et al. (2010) and Sims (2010) find that näıve estimates of

protected area impacts indicate that protected areas exacerbated poverty. When

key covariates are controlled for, however, their results reverse. In contrast, our

results indicate that a failure to control for key covariates leads to the over

estimation of the impacts of protected areas on poverty reduction.

Robustness

We test the robustness of our primary estimates in several ways. First, we test the

sensitivity of our matching estimator to unobserved heterogeneity between

protected and unprotected units. The purpose is to identify by how much the

groups would have to differ (unobservably) in order to nullify our results of

statistically significant poverty reduction. Second, we test the robustness of our

matching specifications by comparing our primary specification to a number of

matching- and regression-based econometric specifications.
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Figure 11: Primary estimates of the impacts of protected areas on poverty in Bolivia.
The left hand (right hand) group of bars represent the impact according to poverty index
(NBI) across a number of econometric specifications. The results from the primary genetic
matching specification described in Methods can be found in the second bar of the respective
bar groups. The whiskers represent the 95% confidence interval for the corresponding point
estimates underlying each bar.
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Internal robustness of matching specification

In any observational study it must be acknowledged that the ability to eliminate

bias associated with non-random selection is limited by one’s understanding of the

underlying selection process (Meyer 1995), moreover, from a practical standpoint,

by the pertinent characteristics of selection that one can actually observe and

obtain. If the selection process and outcomes are systematically determined only by

observable characteristics (for which one controls) then a treatment effect estimate

derived from a matching algorithm that provides balance will be unbiased and

consistent. However, if there are unobservable characteristics that also contribute to

determining selection and outcomes, then treatment effect estimates, even for a well

balanced matched sample, may be biased. We believe our data are rich enough to

provide sufficient covariates with which to control, therefore mitigating unobserved

heterogeneity. However, we test the sensitivity of our ATT estimates to unobserved

heterogeneity/bias using Rosenbaum bounds (Rosenbaum 2002).

The Rosenbaum bounds sensitivity analysis measures the amount of unobserved

heterogeneity necessary to undermine the statistical results from our matching

process. If a great (small) amount of unobserved heterogeneity is necessary to

weaken the significance of our results then the results are relatively robust

(sensitive).69 Table 13 indicates the level of unobserved heterogeneity (unaccounted

for in our matching process) that would be necessary to nullify our findings of

statistically significant poverty reduction according to the PI. Our results are robust

(at the 5% level) to unobserved heterogeneity that affects the odds of selection into

protection by a factor of 2.3. In other words, these results are highly robust to

potential unobserved bias.

69See Appendix C for full details on Rosenbaum bounds.
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Robustness of matching specification to alternative econometric specifications

To ensure that our results are not sensitive to the choice of econometric

specification, we conduct a series of ancillary matching and regression based

analyses. The results of these analyses can be found in Figure 11 and Table 10.

Genetic matching with calipers. We use one-to-one nearest neighbor

matching based on the genetic matching algorithm in our primary econometric

specification. Although we achieve a high level of balance in expectation across

treatment arms, there are invariably a number of treated units that do not obtain a

well-matched control/counterfactual unit. To ensure that a few poorly matched

units are not biasing or driving the results, we impose calipers equal to one

standard deviation on our primary matching specification. In other words, we use

the identical genetic weighting matrix, however, we remove from the sample any

matched pair that differ by more than one standard deviation across covariate

values.70

Figure 11 and Table 10 show that the results for the PI are relatively robust to

the introduction of calipers, i.e., there is only a marginal absolute increase in the

point estimate of ATT. Seven protected municipalities are dropped from the

analysis, resulting in a bilateral increase in PI outcomes across matched protected

and unprotected municipalities (from -1.33 to -1.07 and -0.805 to -0.511,

respectively). The variance of the resulting ATT changes little and the point

estimate is significant at any conventional level.

Results for NBI are not as robust. Six protected municipalities are dropped from

the sample resulting in an absolute reduction in the ATT from -4.99 to -2.47. Table

10 indicates that this change is due to opposite movements in average poverty

70The variance is measured according to the scalar value assigned to each unit after taking the
product of the covariate values of each unit and the genetic weighting matrix. This scalar, like a
propensity score, mitigates the so-called curse of dimensionality associated with multivariate match-
ing.
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Table 10: Results from Primary and Ancillary Analyses

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.33 -0.451 -0.838 76.7 85.61 -8.92
in Means [56] [268] {0.014} [53] [242] {0.005}

Regression on Raw NA NA -0.502 NA NA -5.52
Data [56] [268] (0.98) [53] [258] (1.17)

Regression Dropping NA NA -0.535 NA NA -5.62
Marginal [56] [252] (0.099) [53] [242] (1.2)

Post-Match Frequency NA NA -0.494 NA NA -2.63
Weighted Regression [56] [41] (0.106) [53] [45] (1.7)

Genetic Matching -1.33 -0.805 -0.525 76.18 81.16 -4.99
[56] [56] (0.142) [53] [53] (3.67)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}

across the protected and unprotected samples. Average NBI in protected

municipalities increased from 76.18 to 79.04 while average NBI in unprotected

municipalities decreased from 84.16 to 81.51. Although the variance in ATT

decreases after calipers are imposed, the resulting ATT estimate remains

insignificant at conventional levels.

Regression-based specifications. We run several regression-based

econometric specifications to ensure that our results are not driven by the use of a

matching-based estimator. The results of these specifications are found in Table 10

(see Appendix C Table 34 for full regression results) and we highlight these

specifications in last two columns of each bar group of Figure 11. Although there is

slightly greater heterogeneity in the specifications for which NBI is the outcome, the

central results from these specifications are that: (1) protected areas are associated

with significant poverty reductions according to both the PI and NBI, and; (2) the

results do not differ significantly from the primary matching-based estimates.
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Table 11: Balance Results for Primary GenMatch Specification- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 0.267 0.744 -0.477 0.141 0.436
1992 Matched 0.267 0.319 -0.052 0.015 0.164 89.12%

% Forest 1991 Unmatched 0.485 0.194 0.291 0.476 0.292
Matched 0.485 0.466 0.019 0.029 0.037 93.40%

Distance to Unmatched 142800 108000 34790 0.173 35950
Major City Matched 142800 136600 6151 0.029 32940 82.32%

Average Unmatched 1825 2713 -888 0.307 884
Elevation Matched 1825 1794 30.94 0.011 118.9 96.52%

Average Slope Unmatched 23.89 18.97 4.922 0.162 5.34
Matched 23.89 23.89 0.004 0.000 1.628 99.92%

Roadless Unmatched 2.98E+14 8.35E+13 2.14E+14 0.194 1.96E+14
Volume 1992 Matched 2.98E+14 2.53E+14 4.53E+13 0.030 1.27E+14 78.89%

Table 12: Balance Results for Primary GenMatch Specification- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

NBI 1992 Unmatched 87.52 91.05 -3.527 0.078 3.15
Matched 87.52 87.56 -0.044 0.001 0.97 98.74%

% Forest 1991 Unmatched 0.464 0.187 0.277 0.453 0.277
Matched 0.464 0.459 0.005 0.007 0.03 98.22%

Distance to Unmatched 136400 108600 27790 0.140 29580
Major City Matched 136400 132600 3730 0.017 25160 86.58%

Average Unmatched 1888 2751 -863.1 0.299 862.8
Elevation Matched 1888 1884 4.489 0.002 106.7 99.48%

Average Slope Unmatched 24.01 19.45 4.555 0.149 5.055
Matched 24.01 23.67 0.334 0.010 3.979 92.66%

Roadless Unmatched 3.06E+14 8.53E+13 2.20E+14 0.195 1.99E+14
Volume 1992 Matched 3.06E+14 2.58E+14 4.80E+13 0.033 1.06E+14 78.22%
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Bar columns 4 and 5 of each bar group in Figure 11 present the results of a

standard regression (marginally protected units are dropped from the sample and all

covariates are included as controls), and a post-match frequency weighted

regression,71 respectively.

Both the regression-based analyses for which the PI is the outcome of interest

(bars 4 and 5 on the left hand side of Figure 11) return estimates that are strikingly

similar to one another, and to the primary matching specification. The confidence

intervals are slightly tighter than those from the matching based estimators

(expected given the efficiency properties of OLS and the fact that the standard

specification contains a larger sample of unprotected units). There is more

heterogeneity in the impact estimates in which NBI is the outcome of interest.

However, one of the more interesting results from the NBI regression specifications

is that, although the estimated impacts of protected areas on poverty do not differ

significantly from the primary matching specification, the impacts of protected areas

on NBI are all significantly different from zero.

Results Summary

The central finding in our results is that it does not appear as if protected areas

have had any negative effect on poverty in surrounding communities. Rather, our

results indicate that protected areas were likely associated with reductions in

poverty. Though these results are relatively robust across specifications, a couple of

questions linger.

71The post-match frequency weight regression is conducted on the resulting matched sample from
the primary genetic matching specification. To correct for potential overstatement in the precision
of coefficient estimates (due to repeat unprotected matched observations) we drop all duplicate
observations from the unprotected sample and then weight each unprotected unit by the number of
times it was used as a match for a protected unit, to ensure unbiased coefficient estimates. This
so-called “double robust” estimation strategy is promoted by Ho et al. (2007) because the second
stage regression helps to eliminate any residual differences across treatment arms that remain after
matching.
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PI or NBI?

Although the point estimates in all the primary and ancillary analyses indicate

poverty reductions associated with protected areas, the results from analyses in

which the PI is the outcome of interest are more consistent, and remain statistically

significant. This begs the question, in which poverty measure we should place more

stock? From a policy standpoint we argue that it matters little. There is no evidence

that protected areas exacerbated poverty, by any measure. From a technical

standpoint, however, we believe that the PI is more appropriate in our study.

The NBI has some technical and practical shortcomings, mentioned previously.

First, the NBI weights all socioeconomic components equally, unlike the PI in which

weights are determined empirically via the PCA. Second, the NBI measure the

percentage of households that lie below a norm which is (somewhat) arbitrarily

established. The PI, on the other hand, is based on deviations from

municipality-level means (in either direction). Finally, and from a practical

standpoint, analyses in which the NBI is used are limited by the fact that we do not

have baseline NBI measurement for 14 municipalities (four of which are considered

protected).

Why are the matching-based and regression-based estimates so similar?

The goals of matching and regression in causal analysis are the same: achieve

plausible conditional independence of the treatment. However, the two methods go

about doing so in different manners. Regression isolates the causal effect of a

treatment by establishing a functional relationship between treatment, covariates

and outcome, then isolates the causal effect of treatment by partialing out the

effects of the covariates of interest. Instead of controlling for the differences across

treatment arms via the imposition of a functional form, matching uses a weighting
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scheme72 to create balance in expectation across the covariates, thereby

“controlling” for their influence.

Typically in an analysis in which the ATT is the estimand of interest we would

expect greater differences in matching- and regression-based results. The reason

relates to the idea of propensity for treatment. In a study like ours, where there are

control units that would never plausibly be treated, the overlap in propensity for

treatment is generally sparse (or completely lacking) at the tails of the distributions

(of propensity scores and the underlying covariates) between protected and

unprotected units. This scenario can lead to bias in regression results because the

coefficient estimates can be heavily (and inappropriately) influenced by outlying

control units (e.g., Ho et al. (2007)).

The reason that our results across matching- and regression-based estimates are

so similar can be seen in Figure 22. We plot the distributions of propensity scores

across treatment arms for pre- and post-matched samples. It can be seen that there

is a high degree of overlap across the range of propensity scores even prior to

matching (left panel of Figure 22). Therefore, it makes sense that the matching-

and regression-based results are comparable because, even within the full sample,

the regression results are not plagued by “out of sample” predictions.

Discussion

Protected areas have played an increasingly important role in the global

conservation of biodiversity and ecosystem services over the past several decades.

However, there is little empirical evidence of the environmental impacts of protected

areas and even less evidence of their socioeconomic impacts on surrounding

communities. Given the high degree of overlap between remaining global

72For example, with one-to-one matching without replacement, control units are excluded from
the sample by receiving an effective weight of 0 whereas remaining units receive a weight of 1.
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Table 13: Rosenbaum Upper Bound on P-Value at Given Levels of Γ for Primary Matching
Analysis- PI

Upper Bound
Γ P-value

1 0
1.1 0.0001
1.2 0.0003
1.3 0.0007
1.4 0.0015
1.5 0.0029
1.6 0.005
1.7 0.0081
1.8 0.0124
1.9 0.018
2 0.0253

2.1 0.0342
2.2 0.0448
2.3 0.0572

biodiversity and poverty, it is of paramount importance to understand how the

establishment of protected areas impacts poverty.

We use rich biophysical and socioeconomic data, and a myriad of econometric

specifications to estimate the impact of protected areas established in Bolivia

between 1992 and 2000 on poverty between 1992 and 2001. Contrary to the

concerns of poverty advocates, that the land-use restrictions associated with

protected areas impart economic hardship on surrounding communities, our results

do not indicate that protected municipalities were adversely affected by the

establishment of protected areas. In fact, we find evidence that municipalities with

at least 10% of their areas occupied by a protected area had differentially greater

poverty reduction than those unaffected by protected areas. We employ two

separate measures of poverty in our analyses and find that the point estimates of

poverty reduction are robust across our econometric specification.

Although our overarching results that Bolivia’s protected areas were associated

with poverty reduction are similar to previous studies from Costa Rica (Andam

et al. 2010) and Thailand (Andam et al. 2010, Sims 2010), our underlying results
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are subtly, but significantly, different. In those studies the authors found that

controlling for key observable covariates lead to fundamentally antithetical results

compared to näıve estimates. Conversely, our results indicate that näıve estimates

lead to an over estimation of the poverty reducing impacts of protected areas.

The implications of our results are twofold. First, our results add to a growing

body of literature on the impacts of protected ares on poverty. More importantly

our findings add support to this literature that environmental conservation policies

do not necessarily run in opposition to development goals. On the contrary, our

results indicate that environmental goals can be complementary to social poverty

goals. Second, our results underscore the importance of country-level analyses of the

socioeconomic impacts of protected areas. Protected areas in Bolivia exhibit many

of the characteristics observed globally (i.e., located relatively distant from major

cities, roads and on steeper slopes), however, some of the key drivers of poverty

differ in important ways from global and previous country-level observations.

Importantly, we key find differences from previous country-level and global studies

which indicate that evidence from single country or global studies are likely not

generalizable across countries.

The fact that our results exhibit subtle differences to previous results implies

that the external validity of our, and other studies of this ilk, is likely limited.

Indeed, we believe that comprehensive understanding of the socioeconomic impacts

for protected areas requires that the scientific body of knowledge be built on a

country-by-country basis.

Further studies in Bolivia and elsewhere should strive to identify and quantify

the mechanisms through which protected areas affect poverty (e.g., Hanauer (2011),

Robalino and Villalobos-Fiatt (2010)). Although studies such as ours are important

for building an understanding of the global impacts of protected areas, only by

understanding how protected areas affect poverty (especially in terms of alleviating
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poverty) can social policies be designed to enhance (mitigate) the positive

(negative) impacts of protected areas. In addition, because the theme of protection

in Bolivia has been toward integrated management and recognition of indigenous

populations, future studies should account for differences in protected area

management practices and baseline populations.
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Appendix to Chapter I

A.1 Areal Interpolation

Costa Rica’s census tract boundaries are not spatially consistent across time. The

number of census tracts increases from 4,694 in 1973 to 17,625 in 2000. Furthermore,

the addition of census tracts over time did not follow any discernible pattern, the

newer subdivided census tracts do not necessarily fall within the boundaries of the

old census tracts. This poses a problem for the comparability of the demographic

data over time. In order to make the 2000 data comparable to the 1973 data, the

geographic method of Areal Interpolation (Reibel 2007) is implemented.

Areal interpolation is a GIS method by which demographic variables are made

comparable across time given changes in political boundaries. For our analyses the

1973 census tracts are used as baselines. Therefore, areal interpolation assigns

weights (assuming a uniform population distribution) based upon the amount that

the 2000 census tracts overlap with the 1973 census tracts. These weights are used

to interpolate the 2000 populations that reside within the 1973 census tract

boundaries. The resulting data set contains the original 1973 demographic data

according to its native boundaries and the 2000 demographic data distributed as if

the census tract boundaries had not changed since 1973.

116
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A.2 Poverty Index

Costa Rica does not have properly disaggregated income data that date back to

1973 (Gindling and Terrell 2004). To measure the socioeconomic impacts of

protected areas an alternative metric is necessary. Cavatassi et al. (2004) suggest

the use of principal components analysis to form a poverty index. The method uses

indicators from the respective censuses that are believed to affect poverty to create

a measure that is spatially and temporally comparable. The variables included in

the poverty index are: (* indicates a percentage): men in total population*, families

who cook with coal or wood*, families without washing machine*, families without

refrigerator*, people who are employed and get a salary as job remuneration*,

illiterate population aged 12 or more*, household dwellings without connection to

private or public water system*, household dwellings without sewers*, household

dwellings without electricity*, household dwellings without telephone*, dwellings with

earth floor*, dwellings in bad condition*, dwellings without bathroom*, dwellings

without access to hot water*, dependency ratio, average number of occupants per

bedroom, average years of education per adult. A similar measure was employed by

the Mexican government in the analysis of the PROGRESA program (Cavatassi

et al. 2004).
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Appendix to Chapter II

B.1 Data

B.1.1 Costa Rica

For full details on data, see Andam et al. (2008, 2010). Digital layers of protected

areas (source: National System of Conservation Area Office, Ministry of

Environment and Energy, 2006) were provided by the Earth Observation Systems

Laboratory, University of Alberta. Other GIS layers are land use capacity (source:

Ministry of Agriculture) and roads digitized from hard copy maps for 1969 (source:

Instituto Geográfico Nacional, Ministerio Obras Publicas y Transporte). Summary

statistics of the data are presented in Table 1.

For the deforestation analyses, digital forest cover layers are created from either

aerial photographs (baseline, 1960) or Landsat Thematic Mapper satellite images.73

The units of analysis are land parcel pixels that measure three hectares, the

minimum mappable area. We use Andam et al. (2008) data set, which comprises

20,000 randomly selected land parcels that were forested (80% or more canopy

cover) in 1960. Forested parcels in a given year receive a value of 1; deforested

parcels receive a value of 0. The outcome of interest is change in forest cover

between 1960 and 1997. Given all sample parcels were forested in 1960, the outcome

measure equals 0 if the parcel is still forested in 1997 and 1 if it is deforested.

73Earth Observation Systems Laboratory, University of Alberta, Edmonton, AB.
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Spatial layers of protected status (IUCN categories Ia, I, II, IV and VI are used

in the analyses) and other geographic characteristics are used to create a set of

covariates for each land parcel (Table 14). For various reasons (e.g., cloud cover),

4,737 land parcels are dropped prior to analysis, leaving 15,283 land parcels, of

which, 2,809 were protected prior to 1980. We remove parcels that were protected

after 1980 (2,183), leaving 10,291 unprotected land parcels from which matches can

be drawn.

For the poverty analyses, data come from the population and housing censuses

conducted by the Instituto Nacional de Estadistica y Censos (INEC) in 1973 and

2000. Digitized GIS census segment boundaries for 1973 and 2000 were provided by

the Cartography Department at INEC. The unit of analysis is the census tract

(segmento). In 1973 Costa Rica contained 4,694 census tracts with an average size

of 8.82km (range: 0.00466-836 km). The 1973 census is used as the baseline year

and all census data are geocoded to their respective census tracts. Between 1973

and 2000 there was a great deal of segmentation of census tracts, with few of the

segmented tracts being proper subsets (or sharing major borders) with the original

1973 census tracts. Through the method of areal interpolation ((Andam et al. 2010,

Reibel 2007)); see below), the 2000 census data are aggregated to fit to the 1973

census tract boundaries so that the data are spatially and temporally comparable.

The poverty measure (poverty index) builds on recent efforts to develop a

census-based poverty index for Costa Rica (Cavatassi et al. 2004), which uses

principal components analysis to formulate a temporally comparable index based on

variables believed to influence poverty.

B.1.2 Thailand

For full details on data see Andam et al. (2010) and Sims (2010). Digital layers of

protected area boundaries are from the IUCN World Database on Protected Areas
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(accessed 3/2007; IUCN categories I and II were used in the analyses). Other GIS

data and the source layers from which they are derived are slope and elevation

(NIMA’s Digital Terrain Elevation Data- USGS Global GIS database, 1999);

distance to major cities (ESRI World Cities, 2000); distance to roads in 1962

(digitized East Asia Road Map, U.S. Map Service 1964, data from 1962); distance

to rail lines, distance to major rivers, proximity to watershed boundaries, distance

to mineral deposits, distance to Thai border, and ecoregions (USGS Global GIS

database, 1999), average monthly temperature and rainfall (Marc Souris, IRD).

The deforestation analysis is based on two classified layers from 1973 and 2000.

The 1973 data are based on Landsat MSS images interpreted by the Tropical Rain

Forest Information Center (Michigan State University) and the 2000 data on

Landsat TM images interpreted by the Thai Royal Forestry Department (courtesy

of Marc Souris). The units of analysis are points which are spaced so as to represent

the centroid of a three hectare parcel. The data set is created in a similar manner to

the Costa Rica deforestation data set and comprises 20,000 randomly selected

points which were forested in 1973. Forested points in a given year receive a value of

1; deforested points receive a value of 0. The outcome of interest is change in forest

cover between 1973 and 2000. Given all sample points were forested in 1973, the

outcome measure equals 0 if the point is still forested in 2000 and 1 if it is

deforested. Spatial layers of protected status and other geographic characteristics

are used to create a set of covariates corresponding to each sample point (Table 14).

For the poverty analysis the unit of analysis is a subdistrict (tambon). In

descending order of size, Thailand has administrative units of “province,” “district,”

“subdistrict,” and “village.” The sample consists of subdistricts in the North and

Northeast regions, where the majority of protected forest areas are located. We

exclude subdistricts that are less than 10 km away from a major city (population
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100,000; all of these cities had been established by the 1960’s). The average size of a

subdistrict in the sample is 74 sq km; the average population is 5043.

The poverty measure for Thailand (poverty headcount ratio) is the share of the

population with consumption below the poverty line. This outcome is derived from

a poverty mapping analysis by Healy and Jitsuchon (2007), applying the poverty

mapping methodology developed by Elbers et al. (2003).

B.2 Preprocessing

We preprocess the data (Ho et al. 2007, Imbens and Wooldridge 2009) using

matching techniques prior to performing any of the LOESS or PLM analyses. Our

primary motivation for matching is not the estimation of an overall average

treatment effect on the treated. With the exception of an analysis of Thailand

deforestation at the scale used in our study, these impacts have already been

estimated (Andam et al. 2008, 2010). We use matching to preprocess the data so

that we can estimate conditional average treatment effects on the treated. To ensure

that our analyses are as comparable as possible to the studies from which we draw

(Andam et al. 2008, 2010), we use the same matching methods to create the same

matched data sets as those studies. These methods were chosen in these studies

because they generated the best covariate balance.

The key to matching as an identification strategy to estimate average treatment

effects on the treated is the balancing of key covariate distributions across treatment

arms (protected and unprotected). This covariate balance is achieved in expectation

through randomization. Covariate balance is implicit under randomization because

each unit of the experimental sample has an equal probability (or more generally, a

probability that is known to the experimenter) of being assigned to treatment or

control. Therefore, treatment is assigned independent of potential outcomes Y (1)

and Y (0) under treatment (T = 1) and control (T = 0), respectively. In the absence
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of a treatment, one would expect similar average outcomes from both groups.

Similarly, if both groups were to receive (the same) treatment, one would expect

similar average outcomes from both groups. In the statistics, epidemiology and

social science literature this assumption is termed ignorability of treatment,

independence of treatment or unconfoundedness. Stated formally,

E[Y (1)|T = 1)] = E[Y (1)|T = 0)] = E[Y (1)] (34)

E[Y (0)|T = 1)] = E[Y (0)|T = 0)] = E[Y (0)] . (35)

In words, (34) simply states that average potential outcome for the treatment

group under treatment, E[Y (1)|T = 1)], is equal to the average potential outcome of

the control group had they been treated, E[Y (1)|T = 0)]. Similarly, (35) states that

the average potential outcome for the treated group had they not been treated,

E[Y (0)|T = 1)], is equal to the average potential outcome of the control group in

the absence of treatment, E[Y (0)|T = 0)]. In (34) and (35), the terms

E[Y (1)|T = 0)] and E[Y (0)|T = 1)] are termed counterfactual outcomes. The

fundamental problem for causal inference (Holland 1986) is the fact that

counterfactual outcomes are not observed. However, with treatment assigned at

random (and thus independent of potential outcomes), the average outcome for

control units can act as the counterfactual for treatment units, and vice versa.

Protected areas in Costa Rica and Thailand were not established randomly.

Matching seeks to mimic the identification of randomization by balancing key

covariates that jointly determine selection into treatment and outcomes. Balance,

conditional on key covariates, leads to conditional ignorability or conditional

independence. These more restrictive assumptions can be stated formally as the
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analogs to (34) and (35),

E[Y (1)|T = 1, X] = E[Y (1)|T = 0, X)] = E[Y (1)|X] (36)

E[Y (0)|T = 1, X] = E[Y (0)|T = 0, X)] = E[Y (0)|X]. (37)

Equations (36) and (37) state that, conditional on similar covariate distributions

across treatment arms, the average outcomes for the matched control units,

E[Y (0)|X,T = 0)], can be used as the counterfactual for treatment units, and vice

versa. In other words, by ensuring that the distributions of key covariates are

balanced across treatment and control groups, similar methods to those used in

randomized experiments can be used to estimate average treatment effects on

matched datasets. We present (34)-(37) for completeness; however, we focus on the

estimation of conditional average treatment effects on the treated, for which only

(35) and (37) are necessary.

By ensuring that units are comparable across treatment and control groups, we

make the conditional independence assumption (CIA), which is necessary for causal

inference, more defensible (Angrist and Pischke 2009). We extend the CIA by

assuming that if average treatment effect on the treated estimates are unbiased,

conditional on balance across key covariates, comparisons of subgroups within these

balanced sets are also unbiased. This allows for causal inference to be drawn from

the LOESS and PLM analyses.

As mentioned in Chapter 2, matching can only account for heterogeneity in

observable covariates. If the selection process and outcomes are systematically

determined only by observable characteristics (for which one controls) then a

treatment effect estimate derived from a matching algorithm that provides balance

will be unbiased and consistent. However, if there are unobservable characteristics

that also contribute to determining selection and outcomes, then treatment effect
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estimates, even for a well balanced matched sample, may be biased. There is no way

to formally test the conditional independence assumption, however Andam et al.

(2008, 2010) test the robustness of their estimates (which are derived from the same

matched sets used in our study) to unobserved heterogeneity.

B.2.1 Matched Datasets

For the Costa Rica data, we use nearest neighbor Mahalanobis covariate matching

with replacement to preprocess the socioeconomic and deforestation data. We use

the same algorithm and covariates (Table 1) as Andam et al. (2008, 2010), and thus

our resulting matched datasets are nearly identical to those used in their analyses.74

The resulting socioeconomic matched set comprises 249 protected (prior to 1980)

and unprotected census tracts. The resulting deforestation matched set comprises

2,809 protected (prior to 1980) and unprotected land parcels. See Table 1 for

description and summary statistics of the covariates used in each Costa Rica

matching specification.

For the Thailand socioeconomic data we use propensity score matching with

exact matching on district in order to control for baseline fixed effects associated

with poverty. This is the same specification and matched set used in (Andam et al.

2010) which comprises 197 protected (prior to 1985) and unprotected subdistricts.

For the Thailand deforestation data we use Mahalanobis covariate matching, with

exact matching on district, to create a dataset that is similar to the Costa Rica

deforestation analysis (see Tables 16 and 17 for estimates of ATT and balancing

results). The resulting matched set comprises 2,808 protected (prior to 1985) and

74The socioeconomic matched set is identical to the final data set in Andam et al. (2010). The
deforestation matched sets would be exact, but we use a slightly updated protected areas database
resulting in slightly more protected observations. The average treatment effect on the treated es-
timates, however, are not different between the two datasets. We present the balancing results in
Table 15.
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unprotected land parcels. See Table 14 for description and summary statistics of the

covariates used in each Thailand matching specification.

B.2.2 Thailand Deforestation Analysis

To ensure methodological comparability across countries, we perform a similar

deforestation analysis to that of (Andam et al. 2008) for Thailand. Our primary

interest was to create a dataset, comparable to the Costa Rica deforestation

dataset, with which to perform the heterogeneity analyses. As a point of departure,

however, we perform sample average treatment effect on the treated calculations

similar to those done in (Andam et al. 2008). There are two benefits to this

approach. First it offers a comparison to the original Costa Rica deforestation

analysis (Andam et al. 2008). Second, it provides an average treatment effect on the

treated (ATT) estimate to which we can contrast our heterogeneity analyses.

In creating our deforestation dataset for Thailand we follow the methodology of

(Andam et al. 2008); see their SI Text), all geoprocessing is done in ArcGIS 9.x. We

begin by selecting 20,000 random points, spaced so as to represent 3 ha land parcels,

from the areas of Thailand that were forested in 1973, our baseline year. Using

spatial overlays, we create indicators for parcels that were protected by 1985 (2,808)

and parcels that were protected after 1985 (3,423). The analysis is designed to

estimate the impact of protected areas that were established prior to 1985 on

deforestation outcomes between 1973 and 2000. Therefore, we remove from the pool

of potential controls, any parcel that was protected after 1985. As a result, our

potential pool of controls comprises 13,609 parcels that were never protected prior

to 2000.75 We run a series of overlay analyses on the remaining parcels to assign a

value for each of the covariates listed in upper panel of Table 14.

75Due to incongruence in spatial layers, 160 parcels are dropped prior to analysis.
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Using these data, we implement regression bias-adjusted nearest neighbor

Mahalanobis matching with replacement (Imbens and Wooldridge 2009, Abadie

et al. 2004) to estimate the ATT. Point estimates and balancing results can be

found in Tables 15and 16, respectively.76 Similar to (Andam et al. 2008), we find

that the naive difference in means overestimates the amount of avoided deforestation

attributable to the establishment of protected areas. As noted in Chapter 2, this is

a finding that is consistent with the general observation that protected areas tend to

be placed on land that is less desirable for agriculture, and therefore less likely to be

deforested in the absence of protection. The resulting matched dataset is used for

the Thailand deforestation heterogeneity analyses described in Chapter 2.

B.3 LOESS

Three LOESS estimators (Cleveland 1979, Cleveland and Devlin 1988) are

performed for each of the covariates in the heterogeneous response to protection

analyses: (1) on the protected units only; (2) on the imputed counterfactual control

units only, and; (3) on the difference between protected and counterfactual

unprotected units, the Average Treatment Effect on the Treated (ATT).

In LOESS the data of interest are the doubles (Yi, Xi) representing the outcome

and covariate values for observation i ∈ {1, 2, ..., N}, where N is the number of

observations in the dataset. The data are first ordered according to X such that

X1 ≤ ... ≤ XN . Beginning with the first observation (i∗ = 1) in this ordered set,

fitted values
(
Ŷ
)

are predicted via a local quadratic regression

Ŷi∈s = β̂0 + β̂1Xi∈s + β̂2X
2
i∈s, (38)

76In addition to the covariates listed in Tables 14 and 16, matching is required to be performed
within districts (i.e., exact matching on district ID) to control for regional heterogeneity.
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where the vector β̂ is estimated from

Yi∈s = β0 + β1Xi∈s + β2X
2
i∈s + εi, (39)

and only observations that lie within span (s) are used. The total number of

observations used for each imputation is therefore j = sN . Moving stepwise through

the ordered data set, N local regressions are estimated.

For each of these local regressions all of the j observations are assigned a weight

(wd) using the tricubic function

wd =


(
1− |di|3

)3
for 0 ≤ |di| < 1

0 otherwise
, (40)

where di is a cardinal distance ratio

di =
|Xi∗ −Xi|

max (|Xi∗ −Xi|)
. (41)

Here Xi∗ represents the covariate value of the observation for which we are

imputing Ŷ . The weight wd reduces the influence of observations according to their

disparity in covariate value as compared to the observation being evaluated. The

LOESS estimation moves stepwise repeating (38)-(41) for each (ith) observation,

“re-centering” the span s to include an equal number j observations about the ith

observation. The result of these N local regressions is N local fit values
(
Ŷi

)
and

their corresponding standard errors of the fit which can be used to form confidence

intervals about each fit value. This standard LOESS process is run on the protected

units for each analysis (dash-dot line in Figures 14 - 19.

We extend the LOESS methodology in order to offer comparability to the studies

from which we draw (Andam et al. 2008, 2010, Ferraro and Hanauer 2011) by
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including local bias-adjusted imputation of counterfactual (unprotected) outcomes.

This type of method is used in the matching literature (e.g., Imbens and Wooldridge

(2009), Abadie et al. (2004)) to impute counterfactual values by plugging the values

of treated unit covariates into the coefficients estimated from a regression of control

unit covariates on control unit outcomes. The purpose of this imputation is to

reduce post-match bias, in finite samples, due to remaining covariate imbalance.

This process is like asking the question, “what would the outcomes of protected

units have been in the absence of protection had their covariates influenced their

outcomes in the same manner as the units that were not protected?”

Our methodology requires us to modify the LOESS procedure. In order to

impute counterfactual outcome values for each treated unit, both protected and

unprotected units must be used as inputs for the LOESS. Prior to the ith local

estimation outlined in equations (38)-(41), a counterfactual value for each protected

unit outcome in the span (s) is imputed according to

Ỹi∈s = Yi∈s:T=0 + µ̂0 (Xi∈s:T=1)− µ̂0 (Xi∈s:T=0) , (42)

where T is an indicator of treatment (0 and 1 indicating the unit is unprotected or

protected, respectively) and µ̂0(·) represents the predicted values obtained from

combining the coefficients from a control group regression, of outcome on covariates,

with the respective treated or control covariates (see Tables 1 and 14 for a list of the

covariates).77 In addition to estimating a LOESS curve based on these

counterfactual outcomes (dotted line in Figures 14 - 19), the counterfactual value

Ỹi∈s from (42) of the observation being evaluated (i∗) is stored in a vector for use in

evaluating a LOESS for ATT.78

77The imputations are calculated by plugging the covariates Xi∈s:T=1 and Xi∈s:T=0 into the
vector of coefficients from the regression Yi∈s:T=0 = Xi∈s:T=0β0 + ε to obtain µ̂0 (Xi∈s:T=1) and
µ̂0 (Xi∈s:T=0), respectively.

78Imputations within the LOESS were programmed in R v2.10.1. Code is available from authors
upon request.
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The LOESS curve for ATT is estimated using the difference between actual

protected unit outcomes (Yi) and their respective counterfactual outcomes
(
Ỹi

)
from (42), (

Yi∈s − Ỹi∈s
)

= β0 + β1Xi∈s + β2X
2
i∈s + εi, (43)

where the corresponding fits are estimated in a similar manner to (36). The

standard error of the fit is used to form the confidence band (red/green shaded

area) about the ATT LOESS curve (solid line in Figures 2 and 14 - 19).

The span for any LOESS estimator must be chosen so as to balance the

bias/variance tradeoff. A relatively small span includes fewer data points and is

considered to be more localized and therefore less biased. However, there will be

greater variation, ceteris paribus, within a small span. Conversely, a relatively large

span uses more data and produces smoother curves (less variation) that are

considered to be more biased. For each of the LOESS estimators that we

implement, we set the span (s) equal to 0.75. We choose this span for all analyses

because: (1) after experimenting with many specifications we felt that it captured

the important underlying variability with relatively little noise; and (2) we wanted

to remain consistent across analyses.

B.4 PLM

B.4.1 Model

For all (moderating) covariates introduced in the Study Design Section we use a

two-stage semiparametric partial differencing linear model (Yatchew 1997, 1998).

The PLM is advantageous in that it allows us to control, linearly, for a vector of

covariates that influence the outcome of interest and then map the outcome as a

nonparametric function of the covariate of interest.
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The data used in the PLM are the triples (Yi, Xi, Zi) where Y is the scalar

outcome of interest, X is the scalar covariate for which the nonparametric function

will be estimated and Z is a vector of covariates for which we wish to control in our

estimation. Our first-stage equation is thus

Yi = Ziβ + f(Xi) + εi, (44)

where β is a vector of coefficients and f(·) is an unknown real function. Our

intention is to estimate f(·) net of the effects of Z. In order to achieve the final goal

of removing the influence of Z on Y we must first remove the influence of X on Y.

In the first stage we begin by ordering the data according to X such that

X1 ≤ ... ≤ XN where i ∈ {1, ..., N}. Yatchew (1997, 1998) shows that the influence

of X on Y can be removed be taking the (first) difference (in (44)) according to X

Yi − Yi−1 = (Zi − Zi−1)β + (f (Xi)− f (Xi−1)) + (45)

+εi − εi−1, i = 2, ..., N.

Under the assumption that ∂Y/∂X is bounded by a constant, (f (Xi)− f (Xi−1))

goes to zero as N increases. Intuitively this assumption implies that, when the data

are ordered according to X, the marginal influence of X on Y is zero, so that term

can be dropped from the equation. OLS can then be run on (45) to return an

estimate of β̂diff . Yatchew (1997, 1998) shows that because β̂diff converges

sufficiently quickly to β, Ziβ̂diff can be subtracted from both sides of (44) to obtain

Yi − Ziβ̂diff = Zi

(
β − β̂diff

)
+ f(Xi) + εi (46)

∼= f(Xi) + εi. (47)
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Denoting Yi − Ziβ̂diff = Yi − Ŷi,diff = Ỹ , the combination of the LHS of (46) and

RHS of (46) is equivalent to

Ỹi = f(Xi) + εi. (48)

We are now able to estimate f(·), which is the nonparametric relationship

between X and Y, net of the effects of Z. We do so for treatment, control and ATT

estimates using the same LOESS estimator described above. Lokshin (2006)

suggests using LOESS in the second stage and wrote a Stata ado file which performs

the estimate. We wrote a similar function for R. The code is available from the

authors upon request.

Yatchew (1997, 1998) noted that although β̂diff is an unbiased estimate of β,

due to the differencing, β̂diff is relatively inefficient. However, he provides analytical

higher order differencing weights that can be applied to a high order difference

generalization of (45) to greatly improve the efficiency of estimates. We incorporate

these weights into our estimation using the 10th order difference (the highest order

for which weights are provided).79 See (Yatchew 1997) for detailed description of

the efficiency issues and a table of the analytical weights.

B.4.2 Empirical Specifications

For each of our PLM analyses we include in Z covariates that we believe affect the

outcome of interest. This means that we control for the covariates used in each

matching specification and the complementary moderating covariates. There are

some notable exceptions, however, in which we exclude or add covariates as controls.

For each of the analyses in which distance to major city is the moderating covariate

of interest, we exclude distance to road from the controls due to high correlation

(multicollinearity). For each of the Thailand socioeconomic analyses, we add

79The PLM estimates were programmed in R v. 2.11.1. The code is available from the authors
upon request.
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province level fixed effects to the vector of covariates. For a detailed account of the

controls used in each specification see Table 18. Complete first stage results are

available from the authors upon request.

B.4.3 Use of PLM and LOESS

We use LOESS to estimate the relationship between baseline poverty and the

outcomes of interest in Costa Rica (Figure 2(a)) because we are interested in what

actually happened to the poor over time rather than simply the effect of being poor.

To identify the potential for protected areas to act as a mechanism for poverty

traps, we do not want to partial out any of the variables that are correlated with

being poor. We simply want to observe how areas with differing levels of baseline

poverty fared over time.

We view the other covariates (slope, distance to city and percent agricultural

workers) as moderating variables through which protection affects outcomes. For

this reason we are interested in identifying the specific effect of these covariates, net

of other influences, on our outcomes. Thus we use PLM. In addition, the use of

PLM to isolate the specific effects of variables allows us to overlay these effects on

the suitability maps with fewer concerns of confounding effects

B.5 Suitability Mapping

B.5.1 Motivation

The illustrative suitability maps presented in Chapter 2 characterize the suitability

of end-period forested land for protection, based on past observed relationships

between covariates and the environmental and socioeconomic outcomes. We

characterize suitability along these two outcome dimensions because, while the

targeting of protected areas is likely to be based on expected environmental

outcomes, the opportunity costs of protection are socioeconomic in nature.
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Therefore, it would be beneficial to a planner to understand the expected joint

outcomes of the establishment of protected areas.

We choose to formulate our suitability maps based on slope and distance to

major city for two reasons. First, these are measurements that are globally available

and have been used in past studies of protected areas. Second, these covariates

capture the notion of deforestation pressure (see main text) and are therefore likely

to be considered in the establishment of protected areas.

B.5.2 Formulation

To map expected suitability for protection in Costa Rica and Thailand we begin by

rasterizing the end-period forest cover shapefiles so that each raster cell is 3 ha in

size. We then create a distance to city and slope raster based on these end-period

forest cover rasters for each analysis.80 The values of the rasters’ cells are populated

with measurements of distance to major city and slope, respectively.

The results from the PLM heterogeneity analyses act as the basis for our

designation of expected suitability. The PLM results are appropriate for the

creation of these maps because they map the continuous nonparametric effect of the

covariates on the outcome of interest, net the effect of other influencing covariates.

To allow for aggregation of suitability across covariates, we rescale the estimated

covariate effects on avoided deforestation and poverty to fall within a range of 1 to

10.81 For example, the maximum estimated effect of slope on avoided deforestation

in Costa Rica is 0.139 at a slope of 14%, so it is rescaled to 10. Conversely, the

minimum estimated effect is 0.00087 at a slope of 50%, so it is rescaled to 0.

Similarly, all estimated effect between the min and max are rescaled and rounded.

The rescaled values are then assigned to the distance to city and slope rasters for

80This leaves us with four initial rasters for each country: a distance to major city and slope raster
for the deforestation analysis, and a distance to major city and slope raster for the poverty analysis.

81Mathematica has a Rescale command which we rewrote for R.
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each analysis.82 For example, all of the cells (of the slope raster) with slope values

of 14 in the Costa Rica deforestation analysis are assigned a suitability score of 10.

Comparable value assignments are made for each covariate in each analysis.

As a result of these assignments each parcel (in each country) has two rescaled

environmental suitability scores and two rescaled socioeconomic suitability scores

(one based on distance to city and the other based on slope). We use these values to

calculate the average suitability (separately for environmental and socioeconomic

outcomes) scores for each land parcel. Figure 12 and 13 show the aggregated

environmental and socioeconomic suitability on separate maps for Costa Rica and

Thailand, respectively. The final compound suitability maps (Figures 3 and 4 in

Chapter 2) are created by overlaying the aggregate environmental and

socioeconomic suitability maps.

On the final suitability maps, we highlight two types of land parcels: those with

expected ‘win-win’ outcomes (yellow), and those with expected poverty

exacerbation (black). A parcel is designated as ‘win-win’ if its average

environmental and socioeconomic suitability scores are jointly greater than or equal

to 6 (this corresponds to the top five deciles). Conversely, if the underlying

covariate value of a parcel is associated with negative socioeconomic impacts then

the parcels is designated as unsuitable for protection due to potential poverty

exacerbation from protection. For instance, due to the relationship between

agricultural suitability and slope, flat parcels in Costa Rica and Thailand are

designated as unsuitable for protection.

82In the rescaling of the socioeconomic effects of the covariates, only positive expected outcomes
are rescaled between 0 and 10. Any covariate value that is associated with socioeconomic effects
deemed unsuitable for protection (see below).
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B.5.3 Note on Thailand Results

In the final Thailand suitability map there are distinct concentric circles of

predicted ‘win-win’ outcomes. It can be seen from the underlying suitability maps

(Figure 13) and PLM results (Figure 2(d&e)) that these expected outcomes are

driven by the nonparametric relationship between the outcomes of interest and

distance to a major city. Figure 2(e) indicates that the greatest poverty reduction is

expected between approximately 50km and 90km. Expected avoided deforestation is

also positive along this range. The range 55-75km, where both expected outcomes

are relatively high, is where a majority of the ‘win-win’ areas lie.

While distance to major city drives the concentric circles observed in Figures

4and 13, it is but a one facet in the determination of the joint suitability. In order

for a parcel to be designated as ‘win-win’ there must be congruence in expected

outcomes across distance to city and slope. Much of the land that lies within the

50-75km range is also relatively steeply sloped. Close examination of Figures 4 and

13 show that this is not the case throughout. In fact, there are many parcels within

this range that are not designated as expected ‘win-win’ due to the underlying low

slope.

B.6 Ancillary Analyses

B.6.1 Quantile Regression

In the Results Section of Chapter 2, we use the LOESS estimates to assert that the

establishment of protected areas has not acted as a mechanism for poverty traps in

Costa Rica. Our assertion stems from the fact that, in the mapping of the LOESS,

there is a general trend of greater poverty alleviation in areas with higher baseline

poverty. To corroborate these results from the nonparametric LOESS estimator, we

use a parametric quantile regression (see Koenker and Hallock (2001) for a nice
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overview). Quantile regressions estimate covariate effects at defined quantiles of the

outcome. In our case, we use deciles of the poverty index in 2000. We are interested

in the response to protection according to baseline poverty. To interpret the results

of a quantile regression as a treatment effect on the distribution of outcomes, we

must invoke a rank preservation assumption. This assumption implies that the

poverty rank among census tracts remains stable over time. Given that the

correlation coefficient between baseline and outcome poverty index is nearly 0.7, this

assumption seems plausible.

We run a quantile regression (using deciles) of 2000 poverty index on an

intercept and indicator of protection using the same matched set as is used in the

LOESS analysis (described above). We do not include any additional controls in the

regression because: (1) the LOESS estimator is (essentially) a univariate regression

method, and thus our intention is to use similar specifications to that analysis; and

(2) the quantile regression is run using the preprocessed matched set which is

designed to be balanced across key confounding covariates. Figure 20 presents the

results of the quantile regression in which the solid line represents the point

estimates at each decile with the corresponding pointwise 95% confidence band in

green. The point estimates can be interpreted as the effect on poverty of “moving”

from unprotected to protected at each level of poverty. The results display a similar

trend to that seen in the LOESS results (Figure 2(a) of the main text): namely that

protection has had greater poverty alleviating effects on the poorer census tracts.

B.6.2 Agricultural Workers

In Chapter 2, we use slope as a proxy for agricultural suitability. Slope has been

used in a similar manner in previous studies (Ferraro and Hanauer 2011) as well as

a proxy for other deforestation pressures (e.g., logging access; (19)). To support the

conjecture that the slope analysis is indeed highlighting the impact of opportunity
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costs from agriculture, we run a PLM analysis to study the heterogeneity of

protection’s impact conditional on baseline percentage of the workforce employed in

agriculture in Costa Rica (where we have data on this measure). An opportunity

cost argument would predict that avoided deforestation would be higher in areas

with a high percentage of the workforce in agriculture and poverty impacts would be

lower in these same areas. We observe this relationship in Figure 15 (bottom panel).

B.6.3 Standard Errors

All of our analyses are preceded by matching to improve balance across protected

and unprotected units. Because the matching is performed with replacement there

are repeated control observations in the final matched samples. The concern with

repeat control observations is that precision of the standard error estimates in

post-match analyses (e.g., regression) may be overstated. In response to this

concern, we first note that our results are driven by the relationships presented in

the ATT estimates, rather than the precision of these estimates. For example, we

are more interested in the overall relationship between avoided deforestation and

slope than knowing whether or not avoided deforestation was significantly different

from zero at 45 percent slope.

Second, we note that the standard errors of the fit presented in the main text are

not likely to be understated. The final estimate in each of our analyses (both LOESS

and PLM) is designed to be interpreted in a manner similar to a post-matching,

bias-adjusted difference in means. This design allows us to compare our results to

the studies from which we draw. Thus we are performing the final stage LOESS

using the independent variable of interest and the individual ATT, which is simply

the difference between actual outcome and imputed counterfactual outcome for each

protected unit (see LOESS section above). Therefore the degrees of freedom in the

estimation of the standard error of the fit is based only on the number of
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observations in the protected sample, rather the entire sample of protected and

unprotected units (as would be the case in a typical regression context). The fact

that unprotected units do not add to the degrees of freedom serves to mitigate the

effect of repeated observations, which lie only in the unprotected units.

Third, to offer the reader more confidence that the standard errors used in

Figure 2 are not substantially understated, we calculate standard errors via

bootstrapping. The 95% pointwise confidence band is determined by the 2.5 and

97.5 percentile bootstrapped outcome at each point of interest along the range of

the independent variable. In each analysis, the final stage LOESS estimate is

bootstrapped 1000 times.83 The bootstrapped standard errors are overlaid on the

standard errors of the fit in Figures 17 - 19 in which it can be seen that the two

standard error estimates coincide closely. One of the key insights that can be taken

from Figures 17 - 19 is that our main results are robust to alternative methods of

estimating the standard errors.

83The bootstrapping function was written in R v. 2.11.1. Code is available from authors upon
request.
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Figure S1b. Costa Rica Socioeconomic Suitability MapProtected Prior to 1980
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Figure S1a. Costa Rica Environmental Suitability Map

Protected Prior to 1980

Figure 12: Costa Rica protected area suitability maps by environmental and socioeconomic
suitability.
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Figure S2a. Thailand Environmental Suitability MapProtected Prior to 1985
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Figure S2b. Thailand Socioeconomic Suitability MapProtected Prior to 1985

Figure 13: Thailand protected area suitability maps by environmental and socioeconomic
suitability.
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Figure 14: Costa Rica: Full LOESS results.
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Costa Rica: Avoided Deforestation by Agricultural Workers
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Figure 15: Costa Rica: full heterogeneous response to protection results.
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Thailand: Poverty by Distance to Major City
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Figure 16: Thailand: full heterogeneous response to protection results.
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Costa Rica: Avoided Deforestation by Baseline Poverty
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Figure 17: Costa Rica: Comparison of bootstrapped standard errors to standard errors of
the fit.
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Costa Rica: Avoided Deforestation by Slope
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Figure 18: Costa Rica: Comparison of bootstrapped standard errors to standard errors of
the fit.
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Thailand: Poverty by Distance to Major City
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Figure 19: Thailand: Comparison of bootstrapped standard errors to standard errors of the
fit.
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Costa Rica: Quantile Regression
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Figure 20: Costa Rica: Quantile regression estimating impact of protection according to
deciles of 2000 poverty index.
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Standard
Variable Description Mean Median Deviation Range

Deforestation Covariates
Slope Slope of parcel (degrees) 5.905 5 5.48 0-43

Distance to Major Distance (km) to major river 30.598 27.62 19.552 0.004-109.3
rivers (flow accumulation greater than 5000)

Elevation Elevation (m) of parcel 555.535 497 316.942 0-2183

Distance to Forest Edge Distance (km) to the edge of the 2.747 1.884 2.775 0.0001-19.58
forest in 1973

Distance to Road Distance (km) to nearest road in 1962 21.08 116.4 17.682 0.00076-93.8

Distance to Major City Distance (km) to nearest major city 113.573 113.5 42.621 7.26-254.3
(pop greater than 100,000)

Socioeconomic Covariates
Average Slope Average slope of subdistrict (degrees) 1.018 0.0504 2.042 0-14.33

Maximum Slope Maximum slope of subdistrict (degrees) 4.05 0.9882 6.99 0-46.99

Distance to Major River Distance (km) to major river 21.61 0 16.61 0.01-97.82
(flow accumulation greater than 5000)

Forest Cover 1973 Percent of subdistrict covered by forest, 1973 0.194 0.00423 0.315 0-1

Distance to Major City Distance (km) to nearest major city 85.59 81.03 44.51 10.05-222.6
(pop greater than 100,000)

Distance to Major Road Distance (km) to major road in 1962 5.26 7.615 6.22 0.002-76.16

Distance to Any Road Distance (km) to minor road in 1962 10.42 3.448 0.002 88.08

Distance to Thai Border Distance (km) to Thailand border 91.62 91.33 52.36 0.062-218.9

Near Watershed Within 1 km of major watershed boundary 0.461 0 0.499 0-1

Distance to Rail Line Distance (km) to rail line 55.05 42.95 45.76 0.015-222.1

Dist. to Mineral Deposit Distance (km) to nearest mineral deposit 119.46 102.7 84.73 1.371-376.4

Temperature Average temperature (C) for subdistrict 25.37 25.89 1.448 18.07-27.85

Rainfall Average monthly rainfall (mm) 1064 1021 225.3 375.8-2308
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Table 15: Costa Rica - Covariate balance for baseline avoided deforestation analysis.

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

High Land Use Unmatched 0.008 0.205 -0.197 0.307 0.197
Capacity Matched 0.008 0.008 0.000 0.000 0.000 100.0%

Medium-High Unmatched 0.029 0.198 -0.170 0.259 0.170
Land Use Capacity Matched 0.029 0.029 0.000 0.000 0.000 100.0%

Median-Low Unmatched 0.080 0.507 -0.427 0.563 0.427
Land Use Capacity Matched 0.080 0.080 0.000 0.000 0.000 100.0%

Distance to Unmatched 2.857 2.045 0.812 0.162 0.886
Forest Edge Matched 2.857 2.713 0.143 0.031 0.148 82.3%

Distance to Unmatched 17.354 15.336 2.017 0.078 2.099
Road Matched 17.354 16.709 0.645 0.026 0.975 68.0%

Distance to Unmatched 76.980 80.515 -3.535 0.037 15.894
Major City Matched 76.980 77.912 -0.933 0.008 2.295 73.6%

Table 16: Thailand- Baseline avoided deforestation analysis.

Difference Mahalanobis
in Means Matching†

Avoided Deforestation -0.2595*** -0.14738***
(YT=1 − YT=0) {0.0062} (0.0175)

N Protected 2,808 2,808
N Available Controls NA 13,609

*** Indicates significance at the 1% level
† ATT is post-match difference in means using regression
bias-adjustment to control for bias in finite samples
(Abadie-Imbens heteroskedasticity robust standard errors)
{Standard errors}

Table 17: Thailand - Covariate balance for baseline avoided deforestation analysis.

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Distance to Unmatched 109.67 114.06 -4.395 0.040 8.498
Major City Matched 109.67 110.42 -0.756 0.008 4.958 82.8%

Distance Unmatched 31.16 17.16 13.999 0.401 14.001
to Road Matched 31.16 29.42 1.741 0.039 2.054 87.6%

Distance to Unmatched 3.62 2.26 1.359 0.242 1.358
Forest Edge Matched 3.62 3.30 0.316 0.051 0.317 76.7%

Slope Unmatched 7.96 4.99 2.970 0.254 2.972
Matched 7.96 7.81 0.152 0.012 0.437 94.9%

Distance to Unmatched 35.93 27.24 8.691 0.217 8.689
Major River Matched 35.93 34.89 1.043 0.024 2.464 88.0%

Elevation Unmatched 697.13 486.61 210.519 0.307 210.448
Matched 697.13 635.13 62.004 0.093 62.061 70.6%
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Table 18: Exclusions and Inclusions, with respect to the baseline set of controls, in PLM
analyses.

Covariate Exclusions Inclusions Justification

Costa Rica
Slope Land Use Cap.†‡ NA LUC is a function of slope
D. MCity Dist.e to Road†‡ NA Colinearity with distance to city
% AgWorkers NA NA NA

Thailand
Slope NA Province Fixed Effects‡ Control for baseline poverty
D. MCity Dist. to Road†‡ – Colinearity with distance to city

Dist. to Railroad‡ – Colinearity with distance to city
– Province Fixed Effects‡ Control for baseline poverty

Baseline set of controls for each analysis include all matching covariates (Table 1)
and other mediating covariates
† Indicates inclussion/exclussion from the deforestation analysis
‡ Indicates inclussion/exclussion from the socioeconomic analysis



Appendix C

Appendix to Chapter IV

C.1 Threshold Analyses

In our primary specifications we designate a municipality as protected if at least

10% of its area is occupied by a protected area. A 10% protection threshold is in

line with the goals set forth at the 4th World Congress on National Parks and

Protected areas (Andam et al. 2010)84 and previous studies (Andam et al. 2010,

Ferraro and Hanauer 2011, Ferraro et al. 2011). However, it could be argued that

this threshold is somewhat arbitrary. We, therefore, test the robustness of our

results to changes in this threshold assignment.

Table 19 provides comparisons of ATT for the primary genetic matching

specification at the 5%, 10% (primary specification in main analysis), 20%, 30% and

50% protection thresholds for both PI and NBI (Tables 20-23 provide full results for

all protection thresholds). Table 19 shows that as the protection threshold increases,

i.e., as we increase the protected area land coverage required for a municipality to

be considered protected, the number of protected municipalities drops (as

expected). In the final 50% threshold specification, only 18 (17) treated units

remain in the PI (NBI) analyses.

In the PI analyses we find that the ATT remains relatively stable, and

statistically significant, across the range of protection thresholds. The mean

84As mentioned in the main text, one of the goals set forth by the 4th World Congress on National
Parks and Protected areas was to protect 10% of the earth’s ecosystems by the year 2000.
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outcomes for treated and control groups jumps up (in absolute terms) at the 50%

threshold providing indication that there is somewhat lower poverty within

municipalities with greater area protected (note that their matched counterparts

have relatively low average poverty levels as well). We see a similar phenomenon in

the NBI analyses in Table 19. The lowest average poverty outcomes (for protected

and matched unprotected units) are observed at the highest levels of protection.

The ATT according to NBI is increasing monotonically (in absolute terms) with

percent protection, however none of the estimates are significant at the 5% level

(the 50% threshold specification is significant at the 10% level).

The results in Tables 19 - 23 provide evidence that our primary results are not

driven by the choice of threshold. Rather, our results are robust and consistent

across protection threshold specifications.

C.2 Placebo Analysis

In our main and ancillary analyses we show that the estimated poverty alleviation

associated with the establishment of protected areas is robust to a number of

econometric specifications and ancillary analyses. However, there is always the

concern that the difference in outcomes between protected and unprotected

municipalities stems from our inability to select a control group that closely enough

resembles the protected group.85 To address this potential confounding issue we

perform a placebo analysis.

The goal is to see if our covariates of interest perform well in the construction of

a counterfactual for municipalities that are observably similar (on average) to

protected municipalities, but were never protected. In other words, to see if the gap

in poverty outcomes between protected and unprotected groups was due to

something other than protection. If protection was the only remaining source of

85This concern is unlikely true given the high degree of balance across treatment arms in Tables
11 and 12.
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variation across treatment arms (to which the treatment effect can be attributed) in

our main analyses, then we should observe no difference in expected outcomes

between the placebo group and its matched controls (i.e., our covariates are creating

a quality counterfactual).

We proceed by selecting a placebo group that is observably similar to the

original protected group. We then run the same genetic matching specification,

assigning the placebo group as the “treated” group, as in the primary matching

analysis. The placebo group in this analysis comprises the 56 matched controls from

the primary genetic matching analysis in the main text.86 This group is observably

similar to the original protected group (on average; see Table 11) with the exception

that the placebo group was not affected by protected areas. Therefore, if our

covariates are capturing underlying poverty trajectories well, then by selecting

unprotected municipalities that are observably similar to our placebo group, we

should observe no difference in outcomes because there is no longer protection as a

source of variation between the two groups.

The results in Table 24, for both the full and unique placebo groups, indicate

that there is no placebo effect. In other words, our covariates of interest appear to

be predicting poverty trajectories well (see Tables 25 and 26 for balance results).

These results buttress our claims that the treatment effects present in our main

analyses are due to the establishment of protected areas rather than an inability to

estimate quality counterfactuals.

C.3 Spillover Analysis

The central result from our main analyses is that municipalities that were affected

by protected areas had differentially greater poverty reduction than comparable

86Recall that matching was performed with replacement so the placebo group has 15 repeat
observations. We choose this for our primary placebo group because it most closely resembles our
original protected group in expectation . We perform an additional analysis assigning only unique
matched controls, from the original analysis, to the placebo group (see Table 25).
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municipalities that were unaffected by protected areas. An often voiced concern is

that protected areas, rather than having a positive impact of proximal populations,

caused those most negatively impacted to emigrate from the impacted communities.

If such emigration was undertaken by relatively poor populations (a supposition

supported by Robalino 2007) it would have two effects. First, the departure of a

relatively poor population would result in a decrease in the measured average

poverty level within protected municipalities. Second, immigration of these

relatively poor populations would have negative impacts on measured average

poverty in surrounding municipalities. The former affect is a concern because it

implies that there were no truly positive mechanisms through which protected areas

affected poverty (e.g., tourism, infrastructure development, ecosystem services, etc.).

Instead, the former implies that protected areas didn’t make surrounding

populations better-off, it just compelled those that they made the worst-off, to

emigrate. The latter effect is one that we attempt to test. To do so we first assume

that if the poor are negatively affected by protected areas, they will migrate to the

nearest unaffected communities.

Our analysis to test local migration effects is thus framed as a spillover analysis.

Using GIS we select all the municipalities that neighbor (congruent to)

municipalities with at least 10% of their area occupied by a protected area (see

Figure 21). If protected areas caused poor populations to migrate to surrounding

communities, then we would expect an increase in poverty between 1992 and 2001

in these neighboring municipalities, compared to observably similar (unprotected)

municipalities. To test this hypothesis we treat the 99 neighboring municipalities87

as “treated” units and match them to observably similar unprotected municipalities

(according to our covariates of interest). Under the null hypothesis of no spillover,

there should be no treatment effect in the resulting matched sample. In other

87There are 116 municipalities that are congruent to a protected municipality. 17 are dropped
from the sample because they are considered marginally protected.
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words, there should be no difference in poverty outcomes between congruent (to

protected municipalities) and matched unprotected municipalities.

We run our primary genetic matching and regression specifications on the

spillover data, the results of which can be found in Table 27 (see Tables 28 and A11

for balance results). We find no evidence of negative spillover effects from protected

municipalities into congruent communities. For both specifications in which we

designate the PI as the outcome, the estimated impacts are quite small and

statistically insignificant. In the specifications using NBI, we find estimates of

poverty alleviation in congruent municipalities (compared to similar unprotected

municipalities). These results are statistically significant (insignificant) in the

regression (genetic matching) specification.

The results from our spillover analysis indicate that municipalities congruent to

protected municipalities fared no worse (and by most indications, better) than

similar unprotected municipalities. We, therefore, propose that the positive poverty

impacts associated with the establishment of protected areas are unlikely due to the

emigration of poor populations to surrounding communities. While this proposition

may hold for our regional spillover analysis, it is difficult to test for broader general

equilibrium migration effects.

One potential scenario is that the emigrants move to urban areas. If this were

the case then we would expect to see less poverty reduction in urban areas as

compared to protected municipalities, ceteris paribus. We attempt to capture this

potential migration effect by limiting our control sample to municipalities that lie

within 50km of a major city.88 Our resulting sample comprises the original 56

protected municipalities and 53 unprotected municipalities. The regression results

from this sample can seen found in Table 30. We find that, compared to relatively

88Unprotected municipalities remain in the sample if their average euclidean distance from each
1ha parcel is within 50km from a major city. We choose 50km to balance the tradeoff between
capturing urban areas and sample size.
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urban areas, protected areas still had differentially greater level of poverty reduction

between 1992 and 2001. Though coarse, this provides evidence that our results are

not consistent with poor populations being driven to urban areas.

One final piece of evidence that indicates our results are unlikely driven by

complex migration patterns comes from the preceding placebo analysis. Aside from

localized (congruent) or urban migration, it is not illogical to presume that

adversely affected poor populations might migrate to municipalities that are

observably similar to the protected municipalities from which they originate. Under

this scenario we might reasonably assume that poor populations would migrate to

the unprotected municipalities found in the matched control group from the

primary genetic matching specification. However, these are the municipalities that

compose our “treated” placebo group, for which we found no difference in poverty

outcomes (compared to similar unprotected municipalities) in the placebo analysis.

If our more complex migration scenario were occurring, we would expect to find a

negative (poverty exacerbation) treatment effect in the placebo analysis.

Unfortunately it is not possible to fully capture all the potential general

equilibrium poverty effects of protected areas. However, given the limited mobility

of poor populations and migration scenarios explored, we believe that our analyses

provide strong evidence that the positive impacts of protected areas are not driven

by the emigration of poor populations.

C.4 Areas Formally Protected in the 1990s

Fundamental to our identification of the impacts of protected areas in our study

period was Law 1333 and the associated restructuring and enforcement or protected

areas subsequent to 1992. Despite the evidence of that protected areas were

so-called “paper parks” (e.g., (Bruner et al. 2001)), if the 10 protected areas that
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were established prior to our study period were in fact effective, this may be biasing

our results.

There are a number of plausible impacts to our results that stem from including

protected areas established (and maintained effectively) prior to our study period.

However, our primary concern is that such inclusion would significantly increase the

probability of inferring poverty alleviation associated with the establishment of

protected areas. To address this potential bias, we drop the 10 protected areas that

were originally established prior to our study period. We are left with 32 (30)

protected municipalities when the PI (NBI) is used as the outcome of interest. We

run our primary specifications on this sample and find the results to be strikingly

similar to those from the original sample (see Table 31 for results and Tables 32 and

34 for balance results).

C.5 Rosenbaum Bounds

The ATT estimates from the primary genetic matching specifications represent

unbiased estimates of the impact of protected areas on poverty under the

assumption that we have sufficiently controlled for all covariates that jointly

determine the spatial establishment of protection and poverty (conditional

independence assumption). However, if there exists an unobserved covariate or

group of covariates, that is highly correlated with protection and poverty, and

uncorrelated with the covariates for which we do control, then we may be concerned

that this confounder might be biasing our results. The fundamental concern is that

the poverty alleviation observed in protected municipalities is due to systematic

differences between protected and unprotected municipalities, other than protection.

One of the desirable properties of matching is that under CIA we can invoke

many of the methods of inference used in a randomized experiment. Under pure

randomization each selected unit has an equal probability of being assigned to the
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treatment or control group. Therefore, under the null hypothesis of no treatment

effect there is a Pr = 0.5 that any unit within a pair chosen across treatment arms

has a greater outcome than the other unit within the pair (outcomes are

“exchangeable” within pairs). In other words, under randomization, if treatment

has no effect, we should observe treated units within pairs exhibiting greater

outcomes approximately 50% of the time, and control units exhibiting greater

outcomes approximately 50% of the time.89 If matching satisfies CIA then similar

logic, and inference, can be applied to matched pairs.

Suppose that matching perfectly accounts for all covariates that affect outcome

and selection. Similar to randomization, under the null hypothesis of no treatment

effect, we should observe treated units exhibiting greater outcome values within

matched pairs approximately 50%, and vice versa. This type of inference is valid

within matched pairs because, conditional on covariates X, the probability of

treatment within these pairs in equal and, therefore, outcomes within matched pairs

are considered exchangeable.90 Now suppose that there is some unobserved

covariate, u, that is uncorrelated with X, but correlated with outcomes Y and

treatment T . There are two ways of looking at the impact of u on inference. (1) u

affects the probability of treatment such that exchangeability is no longer satisfied,

therefore, invalidating permutation-based inference using a null of no treatment

effect. (2) The differences in u, which are systematically related to T, are driving

the observed differences in Y, otherwise attributed to T.

Rosenbaum (2002) proposes measures by which we can test the sensitivity of our

matching results to the presence of u. Rosenbaum bounds allow us to measure how

strong a confounder, u, would need to be to the invalidate our statistical findings.91

89Under randomization, there are a number of permutation-based inference tests by which to
estimate exact p-values based on this logic (e.g., Rosenbaum 2002).

90Another way of expressing this is that, conditional of X, there remains no other source of
variation between treated and control groups that affects Y , other than T .

91It should be noted prior to exposition that any measurement of sensitivity to unobserved bias,
or varying degrees therein, does not imply the presences of unobserved bias.
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In Rosenbaum’s model the probability of assignment to treatment πj for unit j can

be expressed in terms of odds as
πj

(1−πj)
. Under randomization πj = πk for j 6= k.

Similarly, in an observational setting and in absence of u, πj = πk when xj = xk. In

other words, conditional of similar values of X within matched pairs, the probability

of treatment is equal for treated and control units. The departure from

randomization (or the influence of u), can be expressed by Γ in the odds ratio

between matched pairs

1

Γ
≤ πj (1− πk)
πk (1− πj)

≤ Γ, for all j, k with xj = xk,

where Γ = 1 under randomization. Conversely, if xj = xk but πj 6= πk this implies

the presence of u, the degree of which is captured by Γ 6= 1. For instance, if Γ = 2

(but xj = xk) this implies that the presence of u is causing the odds of treatment

between j and k to differ by a factor of 2. In Rosenbaum’s sensitivity test we ask

how large Γ would need to be (i.e., how strong a confounder u would need to be) in

order to alter matching-based inference.

To frame Γ explicitly in terms of the unobserved bias, u, Rosenbaum (2002)

shows that the log odds ratio for j is equivalent to

log

(
πj

(1− πj)

)
= k(xj) + γuj, with 0 ≤ uj ≤ 1,

which states that the odds of treatment are an unknown function of x plus an

unknown parametrization of u.92 The odds ratio can therefore be rewritten as

πj (1− πk)
πk (1− πj)

= exp{γ(uj − uk)},

92See Rosenbaum (2002) for a discussion of the restriction on u.
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where k(·) cancels when xj = xk. By stating the odds ratio in terms of u it can be

seen that in the absence of u, i.e., when u does not influence π (or when uj = uk),

eγ = Γ = 1. Conversely, as the influence of u increases (or as uj and uk diverge) Γ

and the absolute difference in probability of treatment between treated and

untreated units increases.

In observational studies we cannot observe the presence of u or its potential

influence as measured by Γ = eγ. In Rosenbaum’s sensitivity test we impose

increasing levels of Γ to measure at what influence of unobserved bias our inference

would be invalidated (shown to be insignificant). If inference is altered by a level of

Γ close to 1 this implies that a study is sensitive to unobserved bias. However, we

reiterate that estimated sensitivity to unobserved bias in no way implies the

presence of unobserved bias.
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Figure 21: Map of municipalities congruent (orange) to a municipality with at least 10%
area occupied by a protected area (yellow).
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Histogram of Propensity Score for Protected 
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Figure 22: Histogram of propensity score distributions according to PI for full and matched
datasets. Red bars indicate frequency of unprotected units and blue bars indicate frequency
of protected units (purple represent areas where bars overlap).

Table 19: ATT Estimates from Primary GenMatch Specification by Protection Threshold

Poverty Index NBI

Threshold Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

5% -1.23 -0.761 -0.465 77.12 81.78 -4.66
[63] [63] (0.136) [60] [60] (3.394)

10% -1.33 -0.805 -0.525 76.18 84.16 -4.99
(Primary Specification) [56] [56] (0.142) [53] [53] (3.67)

20% -1.214 -0.725 -0.489 76.21 82.3 -6.075
[42] [42] (0.149) [39] [39] (4.75)

30% -1.162 -0.731 -0.431 76.64 82.92 -6.282
[38] [38] (0.154) [36] [36] (5.1)

50% -1.67 -1.223 -0.454 70.14 76.49 -6.35
[18] [18] (0.272) [17] [17] (3.52)

(Abadie-Imbens Heteroskedasticity Robust Standard Errors)
[Observation]
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Table 20: Results from Primary and Ancillary Analyses, Treatment Threshold=5%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.23 -0.4946 -0.731 77.12 85.89 -8.77
in Means [63] [261] {0.0215} [60] [251] {0.004}

Regression Dropping NA NA -0.42 NA NA -2.04
Marginal [63] [46] (0.103) [60] [42] (1.55)

Post-Match Frequency -1.23 -0.761 -0.465 77.12 81.78 -4.66
Weighted Regression [63] [63] (0.136) [60] [60] (3.394)

Genetic Matching -0.986 -0.516 -0.471 79.72 82.73 -3.01
[56] [56] (0.14) [54] [54] (2.09)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}

Table 21: Results from Primary and Ancillary Analyses, Treatment Threshold=20%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.21 -0.551 -0.663 76.2 85.3 -9.13
in Means [42] [282] {0.018} [39] [272] {0.013}

Regression Dropping NA NA -0.527 NA NA -7.23
Marginal [42] [252] (0.113) [39] [242] (1.39)

Post-Match Frequency NA NA -0.47 NA NA -2.83
Weighted Regression [42] [31] (0.116) [39] [29] (1.95)

Genetic Matching -0.996 -0.475 -0.52 78.95 82.48 -3.53
[36] [36] (0.155) [35] [35] (3.1)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}
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Table 22: Results from Primary and Ancillary Analyses, Treatment Threshold=30%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.16 -0.567 -0.595 76.6 85.2 -8.551
in Means [42] [282] {0.108} [36] [275] {0.029}

Regression Dropping NA NA -0.523 NA NA -7.42
Marginal [38] [252] (0.119) [36] [242] (1.44)

Post-Match Frequency NA NA -0.45 NA NA -2.91
Weighted Regression [38] [30] (0.124) [36] [28] (2.08)

Genetic Matching -1.162 -0.731 -0.431 76.64 82.92 -6.282
[38] [38] (0.154) [36] [36] (5.1)

Genetic Matching, -0.908 -0.506 -0.402 79.71 83.59 -3.872
Calipers=1sd [32] [32] (0.157) [31] [31] (3.1)

[Number of observations]
(Standard errors)
{P-value}

Table 23: Results from Primary and Ancillary Analyses, Treatment Threshold=50%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.67 -0.577 -1.1 70.14 85.01 -14.87
in Means [18] [306] {0.09} [17] [294] {0.04}

Regression Dropping NA NA -0.684 NA NA -11.3
Marginal [18] [252] (0.162) [17] [242] (1.95)

Post-Match Frequency NA NA -0.627 NA NA -8.52
Weighted Regression [18] [15] (0.218) [17] [15] (3.3)

Genetic Matching -1.67 -1.223 -0.454 70.14 76.49 -6.35
[18] [18] (0.272) [17] [17] (3.52)

Genetic Matching, -1.23 -0.451 -0.782 75.9 82.22 -6.33
Calipers=1sd [15] [15] (0.245) [14] [14] (6.95)

[Number of observations]
(Standard errors)
{P-value}
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Table 24: Results from Placebo Matching Test

Poverty Index
Method Y(T=1) Y(T=0) Treatment

Genetic Matching -0.797 -0.84 0.044
Full Matched Sample [56] [56] (0.17)

Genetic Matching -0.915 -0.7189 -0.196
Dropped Repeat [41] [41] (0.156)

[Number of observations]
(Standard errors)

Table 25: Balance Results for Placebo Matching Analysis- Full Sample

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 0.319 0.834 -0.515 0.157 0.502
1992 Matched 0.319 0.264 0.054 0.016 0.216 89.48%

% Forest 1991 Unmatched 0.466 0.148 0.317 0.531 0.315
Matched 0.466 0.458 0.008 0.012 0.035 97.51%

Distance to Unmatched 136600 102500 34100 0.205 33260
Major City Matched 136600 137500 -868.1 0.004 13100 97.45%

Average Unmatched 1794 2860 -1066 0.375 1052
Elevation Matched 1794 1936 -142 0.051 204.9 86.68%

Average Slope Unmatched 23.89 18.06 5.822 0.191 5.989
Matched 23.89 24.17 -0.287 0.008 4.508 95.07%

Roadless Unmatched 2.526E+14 6.101E+13 1.916E+14 0.259 1.860E+14
Volume 1992 Matched 2.526E+14 1.269E+14 1.257E+14 0.162 1.547E+14 34.38%

Table 26: Balance Results for Placebo Matching Analysis- Unique Sample

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 0.282 0.834 -0.551 0.170 0.537
1992 Matched 0.282 0.283 -0.001 0.000 0.188 99.89%

% Forest 1991 Unmatched 0.427 0.148 0.279 0.458 0.274
Matched 0.427 0.426 0.002 0.002 0.024 99.41%

Distance to Unmatched 136100 102500 33560 0.201 32230
Major City Matched 136100 132900 3230 0.017 10430 90.38%

Average Unmatched 1956 2860 -904.1 0.313 887.6
Elevation Matched 1956 2000 -44.070 0.015 147.3 95.13%

Average Slope Unmatched 23.62 18.06 5.556 0.181 5.591
Matched 23.62 23.03 0.594 0.017 3.361 89.30%

Roadless Unmatched 1.992E+14 6.101E+13 1.382E+14 0.212 1.265E+14
Volume 1992 Matched 1.992E+14 1.415E+14 5.764E+13 0.080 1.097E+14 58.28%
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Table 27: Spillover Analyses, Municipalities Congruent to Protected Municipalities Consid-
ered Treated

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Regression Dropping NA NA -0.14 NA NA -3.12
Marginal [99] [153] (0.09) [95] [147] (0.98)

Genetic Matching -0.629 -0.726 0.097 81.7 83.88 -2.187
[99] [99] (0.185) [95] [95] (2.29)

[Number of observations]
(Standard errors)

Table 28: Balance Results for Congruent Spillover Analysis- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 0.678 0.787 -0.109 0.034 0.323
1992 Matched 0.678 0.616 0.062 0.019 0.331 43.27%

% Forest 1991 Unmatched 0.319 0.113 0.206 0.355 0.208
Matched 0.319 0.311 0.008 0.012 0.020 96.30%

Distance to Unmatched 109000 107400 1569 0.009 10650
Major City Matched 109000 110500 -1567 0.009 9140 0.06%

Average Unmatched 2124 3095 -970.3 0.342 959.5
Elevation Matched 2124 2109 15.45 0.005 195.9 98.41%

Average Slope Unmatched 21.66 17.23 4.43 0.145 4.688
Matched 21.66 20.70 0.96 0.029 3.121 78.28%

Roadless Unmatched 7.926E+13 8.624E+13 -6.976E+12 0.009 3.20E+13
Volume 1992 Matched 7.926E+13 7.774E+13 1.524E+12 0.002 1.95E+13 78.15%

Table 29: Balance Results for Congruent Spillover Analysis- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

NBI 1992 Unmatched 89.760 91.880 -2.114 0.049 1.957
Matched 89.760 90.560 -0.797 0.018 1.936 62.32%

% Forest 1991 Unmatched 0.309 0.108 0.201 0.346 0.203
Matched 0.309 0.304 0.005 0.007 0.023 97.56%

Distance to Unmatched 109200 108200 1048 0.006 10110
Major City Matched 109200 107300 1894 0.011 7354 -80.79%

Average Unmatched 2158 3135 -977 0.348 965.8
Elevation Matched 2158 2137 20.97 0.008 167.7 97.85%

Average Slope Unmatched 22.08 17.75 4.332 0.141 4.579
Matched 22.08 22.72 -0.643 0.019 2.743 85.15%

Roadless Unmatched 8.04E+13 8.84E+13 -8.04E+12 0.010 3.26E+13
Volume 1992 Matched 8.04E+13 7.70E+13 3.43E+12 0.004 2.08E+13 57.36%
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Table 30: Spillover Regression Results, Controls Within 50km of Major City

Standard
Covariate/Outcome PI NBI

(Intercept) -2.16*** -48.9***
(0.266) (6.09)

Protected -0.469** –4.88*
(0.161) (2.58)

Baseline Poverty 0.918*** 1.26***
(0.025) (0.0648)

Percent Forest 1991 0.643* 16.48**
(0.349) (5.70)

Distance to Major City 2.44E-06*** 1.87E-06***
(6.87E-07) (1.17E-05)

Average Elevation 2.15E-04** -0.0049***
(8.18E-05) (0.00135)

Average Slope -9.99E-04 0.071
(0.0052) (0.082)

Roadless Volume 7.83E-17 4.01E-15*
(1.11E-16) (1.77E-15)

R2=0.944 R2=0.836
DF=101 DF=96
F=242 F=69.7

Notes: Outcomes are indicated at column heads
and represent 2001 poverty index and NBI.
***, **, * Indicate significance at the
(0.01, 0.05 and 0.1 level, respectively.)
(Standard Errors)

Table 31: Results from Primary and Ancillary Analyses, Protected Areas Established in
1990s

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Regression Dropping NA NA -0.599 NA NA -4.23
Marginal [32] [252] (0.128) [30] [242] (1.48)

Post-Match Frequency NA NA -0.54 NA NA -1.87
Weighted Regression [32] [24] (0.151) [30] [24] (2.09)

Genetic Matching -0.79 -0.313 -0.485 79.95 85.85 -5.89
[32] [32] (0.205) [30] [30] (5.38)

[Number of observations]
(Standard errors)
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Table 32: Balance Results for Analysis Using Protected Areas Established in 1990s- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

Poverty Index Unmatched 0.552 0.744 -0.192 0.056 0.329
1992 Matched 0.552 0.563 -0.010 0.003 0.199 94.54%

% Forest 1991 Unmatched 0.510 0.194 0.316 0.534 0.316
Matched 0.510 0.501 0.009 0.014 0.048 97.28%

Distance to Unmatched 175400 108000 67370 0.314 65140
Major City Matched 175400 145900 29480 0.123 41660 56.24%

Average Unmatched 1649 2713 -1065.000 0.373 1057
Elevation Matched 1649 1584 65.060 0.027 130.400 93.89%

Average Slope Unmatched 24.970 18.970 6.006 0.193 6.080
Matched 24.970 24.890 0.087 0.003 2.305 98.56%

Roadless Unmatched 3.825E+14 8.350E+13 2.990E+14 0.234 2.558E+14
Volume 1992 Matched 3.825E+14 2.808E+14 1.017E+14 0.061 1.632E+14 65.98%

Table 33: Balance Results for Analysis Using Protected Areas Established in 1990s- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff. Diff. Mean Diff.

NBI 1992 Unmatched 89.11 91.050 -1.934 0.043 1.821
Matched 89.11 89.130 -0.017 0.000 1.069 0.991%

% Forest 1991 Unmatched 0.488 0.187 0.301 0.510 0.298
Matched 0.488 0.483 0.006 0.009 0.036 0.982%

Distance to Unmatched 165600 108600 57030 0.271 54590
Major City Matched 165600 139400 26230 0.108 34620 0.540%

Average Unmatched 1731 2751 -1021 0.360 1013
Elevation Matched 1731 1746 -14.74 0.006 112.6 0.986%

Average Slope Unmatched 25.83 19.45 6.376 0.204 6.4
Matched 25.83 27.43 -1.602 0.045 3.239 0.749%

Roadless Unmatched 3.924E+14 8.528E+13 3.071E+14 0.234 2.600E+14
Volume 1992 Matched 3.924E+14 3.027E+14 8.969E+13 0.052 1.691E+14 0.708%
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Table 34: Regression Results from Primary Specifications

Standard Post-Match Weighted
Covariate/Outcome PI NBI PI NBI

(Intercept) -2.01*** -42.3*** -1.42*** -39.4
(0.157) (3.41) (0.288) (6.37)

Protected -0.535*** -5.62*** -0.494*** -2.63
(0.099) (1.2) (0.106) (1.7)

Baseline Poverty 0.896*** 1.26*** 0.927*** 1.31***
(0.017) (0.0361) (0.0235) (0.066)

Percent Forest 1991 0.574** 6.22*** -0.0298 -2.73
(0.192) (2.34) (0.302) (4.75)

Distance to Major City 2.77E-06*** -2.47E-05*** 2.22E-06*** 1.12E-05
(4.88E-08) (5.98E-06) (6.33E-07) (9.69E-06)

Average Elevation 1.95E-04*** -0.0035*** -4.51E-05 6.70E-04
(4.39E-05) (0.00054) (9.09E-05) (0.0014)

Average Slope -0.003 0.027 0.006 0.071
(0.0027) (0.032) (0.005) (0.074)

Roadless Volume 2.67E-17 1.96E-15* -7.78E-17 1.58E-15
(9.26E-17) (1.11E-15) (8.29E-17 (1.41E-15)

R2=0.918 R2=0.848 R2=0.951 R2=0.845
DF=300 DF=287 DF=89 DF=83
F=481 F=229 F=245 F=64.8

Notes: Outcomes are indicated at column heads and represent 2001 poverty index and NBI.
***, **, * Indicate significance at the 0.01, 0.05 and 0.1 level, respectively.
(Standard Errors)
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