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ABSTRACT 

 Children with mild disabilities are known to have difficulties with developing mathematical skills 

(Hoard, Geary, & Hamson, 1999). Yet, children with mild intellectual disabilities (MIDs) have rarely 

been included in rigorous scientific research. The present study has three goals. The first goal was to 

determine the structure of mathematics achievement in elementary aged children with MIDs and children 

with reading disabilities (RDs) without accompanying mathematics disabilities. The second goal was to 

establish the measurement stability of mathematics achievement. The third goal was to evaluate students’ 

response to a mathematics intervention. The participants were 265 children with MIDs and 137 children 

with RDs. Confirmatory factor analysis and measurement invariance evaluation was utilized to determine 

the structure of mathematics achievement and to ensure reliable and valid measurement of mathematics 

achievement between groups across three time points. The results of measurement invariance evaluation 

indicated that a joint model specification, characterized by two groups, both of which included children 

with MIDs and children with RDs who were differentiated according to intervention condition 



 
 

participation (not disability status), provided the best account of the underlying data structure. Further, the 

structure of mathematics achievement in the present sample was unidimensional, and the measurement of 

mathematics achievement was temporally stable between groups. Finally, latent mathematics achievement 

growth was evaluated. The results indicated that students in the mathematics intervention condition 

evidenced an advantage over those in a reading intervention condition at mid- and post-intervention 

evaluation, while also evidencing more growth in this conceptual domain. Instructional implications are 

discussed in terms of topic choice and pacing. 
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1.  INTRODUCTION 

1.1 The Importance of Mathematics Achievement 

 In high wage industrialized countries such as the United States, mathematics underachievement is 

related to poor educational and occupational success. For instance, middle school math proficiency is 

related to enrollment in advanced high school math courses, which is subsequently, related to an 

increased likelihood of graduating from college (National Math Advisory Panel, 2008; Sadler & Tai, 

2007) and increased employability, productivity, and wages (Altonji, 1995; Joensen & Nielsen, 2009; 

Riveria-Batiz, 1992) 10 years after high school graduation (Rose & Betts, 2004). Further, the influence of 

mathematics achievement on occupational success is robust. Using the High School and Beyond data set, 

Rose and Betts (2004) demonstrated that the influence of high school mathematics achievement on 

occupational success remained significant even after accounting for the influence of a multitude of 

covariates. These covariates included the individual’s demographic (e.g., race/ethnicity, gender, age, 

marital status), family (e.g., parental income, education, number of siblings) and school (e.g., student-

teacher ratio, books per pupil, length of school year, school enrollment, average spending per student, 

geographic region) characteristics as well as the individual’s highest educational degree attained, college 

major, and occupation. In short, “math matters” (Rose & Betts, 2004; p. 501); however, children with 

mild disabilities (i.e., mild intellectual disabilities—MIDs and learning disabilities—LDs) may be less 

likely to experience increased employability and earnings due in part to a lack of enrollment in advanced 

high school mathematics courses. Unfortunately, Rose and Betts (2004) could not directly examine the 

influence of high school mathematics achievement on occupational success for students with MIDs as 

demographic information for MID was not included in the High School and Beyond data set. 

 Early research suggests that mathematics achievement in children with MIDs and children with 

LDs (i.e., RD, mathematics disability-MD, and RDMD) lags behind that of their typically achieving 

peers. For instance, Cawley and Miller (1989) and Cawley et al. (2001) identified that students with mild 

disabilities (i.e., MID and LD) required between two and three years of schooling to show one year of 

academic progress (Cawley & Miller, 1989; Cawley et al., 2001). Consequently, on average, mathematics 
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achievement of students with mild disabilities, upon exiting school, is near the fifth or sixth grade 

competency level (Warner et al., 1980). In contrast to this early research, more recent investigations 

documenting the academic difficulties of children with mild disabilities have focused on high school 

dropout rates (e.g., Polloway, Lubin, Smith, & Patton, 2010) and post school outcomes (Cameto, 2005). 

According to the President’s Commission on Excellence in Special Education (2002), children identified 

as having a disability (i.e., any of the 13 disability categories) are twice as likely to drop out of school 

compared to their non-disabled peers; with 29% of students with intellectual disabilities and 32% of 

students with LDs dropping out of school (Polloway et al., 2010). In regard to post school outcomes, 

Cameto (2005) utilized the National Longitudinal Transition Study-2 (NLTS-2) data and identified that 

25% of individuals with intellectual disabilities and 46% of individuals with LDs were employed one-to-

two years following their graduation compared to 55% (42% who were going to college were employed 

and 78% of those were not were employed) of recent high school graduates from the general population. 

However, Cameto (2005) did not fully examine the influence of enrollment in post secondary school 

experiences on employment rates for individuals with disabilities. Therefore, the employment rates of 

individuals with intellectual disabilities and those with LDs should be interpreted cautiously. Despite this 

caution, the collective results suggest that students with mild disabilities are at risk for poor educational 

achievement and consequently, meager employment outcomes.  

 In order to foster occupational success, it is important to support academic achievement and in 

particular, mathematics achievement, early in the lives of students with mild disabilities. Improving 

mathematics achievement may improve high school graduation rates, college enrollment and graduation 

rates, and substantially improve occupational success (e.g., reduce unemployment and underemployment, 

increase full time employment, increase wages) in individuals with MIDs and LDs. To do so, empirical 

study related to improving mathematics achievement in children with mild disabilities should be 

furthered. In particular, this research field has discussed the possibility of quantitative verses qualitative 

differences between children with MIDs and children with LDs for a few decades (e.g., Parmar, Cawley, 

& Miller, 1994); however, the structure (or nature) of mathematics achievement as it relates to these 
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special populations has yet to be systematically investigated using rigorous statistical methodology. 

Further, studies concerned with students’ response to mathematics interventions have been limited. In 

particular, empirical work that has included children with MIDs and children with LDs within the same 

empirical study are often characterized by small samples and fail to establish between group longitudinal 

measurement invariance, which is a precondition to studying group differences and longitudinal change. 

The present study will therefore systematically investigate the nature of mathematics achievement in 

these special populations and establish equivalent measurement of mathematics achievement before 

investigating students’ response to a mathematics intervention.  

1.2 The Nature of Mathematics Achievement in Elementary School Children 

 A substantial portion of the research concerned with the development of mathematical 

competencies in elementary school aged children has focused on arithmetic calculations (Fuchs, Fuchs, & 

Prentice, 2004; Gersten, Jordan, & Flojo, 2005); however, during these academic years, mathematics is 

broader than this single area of study. For instance, the Common Core State Standards for Mathematics 

(CCSSM; National Governors Association Center for Best Practices, Council of Chief State School 

Officers, 2010) is an attempt to improve mathematics achievement in the United States by providing a 

more focused and coherent set of mathematics standards by grade level. The set of standards proposed by 

the CCSSM (2010) outline in detail, competencies across several areas of mathematics (e.g., numeration, 

estimation and measurement, problem solving, geometry, and conceptual knowledge) that elementary 

school students are expected to demonstrate proficiency. Broadly, proficiency related to numeration 

extends beyond small quantities that characterized earlier grades (i.e., kindergarten through first grade) to 

working with groups of objects to gain foundations for multiplication. Competencies related to estimation 

and measurement involve standard units; solving problems involving intervals of time, liquid volumes, 

and masses of objects; converting measurements from a larger unit to a smaller unit; and converting like 

measurement units within a given measurement system. Problem solving related competencies include 

representing and solving problems involving addition, subtraction, multiplication, and division; 

performing the four operations with multi-digit whole numbers and with decimals to the hundredths place 
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value position; and representing and interpreting data. Skills related to geometry include reasoning with 

shapes and their attributes (e.g., number of angles, sides, perimeter, radius, area); classifying shapes by 

properties of their lines and angles; and graphing points on the coordinate plane to solve problems. 

Finally, conceptual knowledge is an area that involves understanding place value, relationships among the 

four arithmetic operations, fractions, and geometric concepts. In short, the CCSSM (2010) standards 

highlight the breadth of areas and skills that elementary school mathematics achievement encompasses.  

1.3 Children with Mild Intellectual Disability and Children with Specific Learning Disability  

 Children with mild intellectual disability (MID) and children with specific learning disability 

(SLD) are two special populations that are included in a category referred to as ‘mild disabilities.’  

However, the umbrella term, mild, should not be taken lightly. Impairments associated with each 

disability are life-long and can affect all areas of an individual’s life (e.g., academic, occupation, social-

emotional).   

Mild Intellectual Disability (MID) 

 Individuals with MID evidence significant limitations in both intellectual functioning (reasoning, 

learning, and problem solving) and adaptive behavior (conceptual, social, and practical adaptive skills), 

that originate before 18 years of age (American Association on Intellectual Disabilities, 2010). Significant 

limitations are defined as IQ and adaptive behavior scores that are at least two standard deviations below 

the population mean (e.g., ≤ 70), with the IQ range for MID being between 55 and 70. In regard to the 

prevalence of intellectual disability, data from the Metropolitan Atlanta Developmental Disabilities 

Surveillance Program suggests that 11.7 per 1,000, 8-year-old children have an intellectual disability (Obi 

et al., 2011). Of those with intellectual disability, early work (Glass, Christiansen, & Christiansen, 1982) 

suggested that MID accounted for between 75 and 80% of all children diagnosed with intellectual 

disabilities. With respect to etiology of intellectual disabilities, more recent work suggests that the cause 

is unknown in 52 (Heikura et al., 2005) to 80% (Rauch et al., 2006) of individuals. When the cause of 

intellectual disability is known, the leading etiological factors have included Down syndrome, Williams 

syndrome, Fragile-X syndrome, Cohen syndrome, and monosomy 1p36 (Heikura et al., 2005; Rauch et 
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al., 2006). 

Specific Learning Disability (SLD) 

 A specific learning disability (SLD) is a disorder in one or more basic cognitive processes (e.g., 

input, integration, memory, output, and motor) involved in understanding or using spoken or written 

language that may manifest itself in difficulty with listening, speaking, reading, writing, spelling, or 

completing mathematical calculations (20 U.S.C. Section 1401(30)). With respect to specific reading 

(RDs) and mathematics disabilities (MDs), previous versions of the Diagnostic Statistical Manual (DSM) 

(e.g., DSM-IV TR; American Psychiatric Association, 2000) referred to each as a disorder (i.e., reading 

disorder, mathematics disorder) where achievement in the respective area is substantially below the 

individual’s expected level, given his or her chronological age, IQ and age appropriate education. In 

contrast, DSM-V (American Psychiatric Association, 2013) refers to Specific Learning Disorder as a 

single category of disability (or overall diagnosis) that incorporates deficits that impact academic 

achievement while providing specifiers for the areas of reading, mathematics, and written expression.   

 In regard to prevalence estimates, Landerl and Moll (2010) recently utilized a strict (-1.5 SD 

below age norm) and a lenient (-1. SD below age norm) criterion to identify elementary aged children 

who exhibited a reading or arithmetic disorder. Their results suggested that between 7.0 (strict criterion) 

and 14.8% (lenient criterion) of elementary aged children evidence a reading disorder; whereas between 

6.1 (strict criterion) and 15.4% (lenient criterion) evidenced a arithmetic disorder. Further, comorbidities 

between reading and arithmetic disorders also were determined. Of the children with reading deficits that 

met the lenient criteria, 38.8% presented a comorbid arithmetic deficit, whereas, of those who met the 

strict criteria, 22.7% also evidenced an arithmetic deficit. Of the children with arithmetic deficits that met 

the lenient criteria, 37.3% presented a comorbid reading deficit, whereas, of those who met the strict 

criteria, 25.9% also evidenced a comorbid reading deficit. In short, it appears that it is relatively common 

for children with a reading or arithmetic deficit to evidence a deficit in the other academic domain.  

 In regard to the etiology of SLDs, the National Joint Committee on Learning Disabilities (1991) 

has maintained the position that the basis of learning disorders is presumed to be due to central nervous 
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system dysfunction. Nervous system dysfunction in children with SLDs may be characterized by different 

activation patterns during phonological processing tasks, for example, compared to nondisabled children 

(Miller, Sanchez, & Hind, 2003; Simos, et al., 2000). Other implicated causes of SLDs include 

genetics/heredity, tobacco, alcohol, and other drug use during pregnancy, complications during 

pregnancy, environmental toxins, poor nutrition, and maturational delay (Pierangelo & Giuliani, 2007). 

1.4 Mild Disabilities and Mathematics Achievement: Empirical Study 

 Children with mild disabilities are known to have difficulties developing mathematical skills 

(Hoard, Geary, & Hamson, 1999). Subsequently, two groups of children with mild disabilities, those with 

MID and their peers with SLD, exit school with poor mathematics proficiency (Warner et al., 1980). 

However, empirical study of mathematics achievement has largely focused on employing models of 

typical development in understanding the mathematics development of children with SLDs, and in 

particular, children with MD. As a consequence, sufficiently well-developed theoretical models and 

experimental techniques have been developed to guide the study of mathematics development and 

achievement in children with SLDs (Geary, Hoard, & Hamson, 1999). In contrast, few studies have 

included children with MIDs, and consequently, very little is known about the nature of mathematics 

achievement in children from this special population. It is therefore valuable to include children with 

MIDs in studies concerned with mathematics skill development and achievement.  

 Early research suggested that there is a disparity between the mathematics skill sets characteristic 

of students with MIDs compared to that of their peers with LDs. For instance, Parmar et al. (1994) 

investigated differences in mathematics performance and rate of skill growth in 206 students with mild 

mental retardation (MMR) and 295 students with LD (students’ specific area of disability [i.e., MD, RD, 

MDRD] was not described) between the ages of 8 and 14 years. Skill performance was individually 

assessed across four mathematical domains (i.e., Basic Concepts, Listening Vocabulary, Problem Solving, 

Fractions). The results suggested that students with LD evidenced significantly higher mean scores across 

each domain. Parmar et al. (1994) therefore concluded that students with LDs demonstrated greater 

growth rates than their age-equivalent peers with MMR, noting that students with MMR at the highest age 
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group (14 years) were unable to achieve, on average, as younger students (8-, 9-, and 10-year-olds) with 

LDs. As a consequence, Parmar et al. (1994) inferred that the nature of mathematics achievement was 

different in children with MMR and children with LDs.  

1.5 Response to Mathematics Interventions 

 Mathematics difficulties may be related to a particular skill area (e.g., numeration, estimation and 

measurement, problem-solving, geometry, and conceptual knowledge.) or they can be more severe, 

affecting several different areas (Kroesbergen & Van Luit, 2003). The potential causes for these 

difficulties are numerous; however, poor fit between the learning characteristics of individual students 

and the instruction they receive is a likely cause (Carnine, 1997). Subsequently, different intervention 

methods (e.g., direct instruction, strategy instruction, computer assisted instruction) have been employed 

to remediate ‘prerequisite skills’ (i.e., counting and number sense), ‘basic skills’ (i.e., arithmetic facts), 

and the use of mathematical ‘problem-solving strategies’ in low performing/at risk students and students 

with mild disabilities (Kroesbergen & Van Luit, 2003). Intervention study outcomes carry the potential to 

inform teaching pedagogy and ameliorate mathematics difficulties in children with and without 

disabilities.  

 Through the provision of theoretically informed, evidence-based instructional practices, children 

with disabilities may be more likely to gain essential mathematical knowledge and skills during their 

elementary school years. As a result, children with disabilities may be more highly motivated to enroll in 

more advanced high school mathematics courses that are related to several positive outcomes as a young 

adult (see National Mathematics Advisory Panel, 2008; Rose & Betts, 2004; and Sadler & Tai, 2007). To 

date, research concerned with improving mathematics skills has rarely included children with MIDs and 

children with SLDs within the same study; however, some limited empirical work exists that has included 

both special populations. Such studies have included interventions that targeted early numeracy skills 

(e.g., Van Luit & Schopman, 2000) arithmetic calculation skills, and arithmetic facts and coin sums (e.g., 

Mattingly & Bott, 1990; Miller & Mercer, 1993; Podell, Tournaki-Rein, & Lin, 1992; Van Luit, 1987; 

1994; Van Luit & Naglieri, 1992).  
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Early Numeracy Intervention 

 The acquisition of early numeracy skills (e.g., subitizing, rote counting, enumeration, counting 

procedures, and concepts of comparison, classification, seriation, and correspondence) is crucial to the 

development of basic arithmetic skills involving the four operations (i.e., addition, subtraction, 

multiplication, division). For instance, Van Luit and Schopman (2000) identified 124 Dutch students 

between the ages of five and seven years as, ‘low mathematics achievers’ (i.e., children with a score 

comparable to the lowest 25% of the norm group on an early numeracy norm-referenced test), which 

included students with MIDs and students with LDs. Students were assigned to an experimental (n = 62) 

or comparison (n = 62) group, matched for gender, age, and early numeracy performance. Mean (and 

standard deviation) age in years and IQ of the children in the experimental group was 6.30 (0.5) and 74.90 

(13.1), respectively. For the children in the comparison group, mean (sd) age in years and IQ (sd) was 

6.10 (0.5) and 79.10 (14.3), respectively. The early numeracy intervention consisted of twenty 30-minute 

instructional lessons (focusing on numbers between 1 and 15) that were delivered to small groups of 

students twice a week, and alternated between the use of concrete, semiconcrete, and abstract 

representations of number. Results showed that the intervention group significantly improved with respect 

to several early numeracy skills (e.g., comparison, using number names, general understanding of 

number, and several types of counting procedures). Moreover, in comparing the effect size (Cohen’s d) 

for the intervention group (1.44) with that of the comparison group (0.68), the result suggests that 

children in the former group scored higher than those in the latter group on the outcome measures at 

posttest assessment.  

Arithmetic Calculation Skills, Arithmetic Facts and Coin Sums Interventions 

 Knowledge of arithmetic facts appears to be a part of the foundation for later mathematics 

learning (National Mathematics Advisory Panel, 2008) while also being a source of mathematics 

difficulties (e.g., Geary et al., 1999). Early research has provided mixed findings in regard to the 

effectiveness of various interventions in improving students’ basic mathematics skills. In one attempt, 

Mattingly and Bott (1990) utilized a constant time delay procedure with a multiple-probe design to 
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facilitate multiplication fact acquisition in two fifth and two sixth grade students (age range: 11-12 years). 

Of the four students, two were identified as educable mentally handicapped (IQ = 65 and 71, 

respectively), one as learning disabled (IQ = 101), and one as evidencing a behavior disorder (IQ = 91). 

The results suggested that the four students learned a set of 30 multiplication facts; although the number 

of minutes and number of one-on-one direct instruction sessions required for learning the facts to criterion 

(i.e., 100% accuracy for three consecutive instructional sessions), varied across the students, requiring 

between 280 and 388 minutes and between 86 and 111 sessions. Further, mean rate of correct responding 

following implementation of the intervention for all responses, across all students, was 98.3%. It therefore 

appears that the introduction of the time delay procedure (or intervention) accelerated correct responding 

for multiplication facts that the students had not yet learned. 

 In another study (Miller & Mercer, 1993) concerned with improving students’ proficiency with 

solving arithmetic facts, a concrete-semiconcrete-abstract teaching sequence (Miller, Mercer, & Dillon, 

1992) was utilized within the context of a multiple baseline across subjects design, for three separate 

investigations. Participants included nine elementary school students; five were classified as students with 

SLDs (age range: 7.7-9.7 years; IQ: 71-85), three as at risk for a SLD (age range: 10.1-11.3 years; IQ not 

reported), and one as educably mentally handicapped (EMH) who was 8.3 years of age with an IQ score 

of 63. The three areas of arithmetic facts (addition facts; division facts; coin sums) were taught to 

different students such that addition facts were taught to the three students with SLD; division facts were 

taught to the three students at risk for SLD; and coins sums were taught to the two students with SLD and 

the student identified as EMH. The instructional sessions were 20 minutes in duration and consisted of 

providing students with an advanced organizer, demonstration of the skill followed by student modeling 

of the skill, provision of guided practice with feedback, and finally, independent practice. The results of 

Miller and Mercer (1993) suggested that between three and seven lessons (i.e., 60-140 minutes of 

instruction) using manipulative devices (i.e., concrete phase) and pictures (i.e., semiconcrete phase) were 

needed, before students transferred their learning to abstract type problems in each of the domains, 

respectively. Thus, transfer to accurately solving abstract problems within each of the three areas (i.e., 
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addition and division facts and coin sums) required between 6 and 14 lessons (i.e., 120-280 instructional 

minutes). From the report, it was not possible to determine whether the teacher provided one-on-one 

instruction or instruction to the groups of three students at once.  

 In a study concerned with the effects of computer assisted instruction (CAI), Podell et al. (1992) 

compared the effects of CAI with that of a traditional approach (i.e., utilized worksheets and provided 

positive reinforcement and corrective feedback) in promoting automatization of basic addition and 

subtraction skills. The addition and subtraction interventions were separate investigations. The former 

investigation included 52 students, whereas the latter included 42. With respect to the addition 

investigation, 24 students were described as non-handicapped second graders, Mage (sd) = 7.78 (0.74) 

years. The other 28 participants were described as second to fourth grade students with mild mental 

handicaps, Mage (sd) = 8.62 (1.51) years, and included children with MMR and LDs. For the subtraction 

investigation, 20 students were described as non-handicapped, Mage (sd) = 7.79 (0.80) years, while 22 

were second to fourth grade students that evidenced mild mental handicaps, Mage (sd) = 8.82 (1.53) years, 

and again, included children with MMR and LDs. Students with and without disabilities were randomly 

assigned to the CAI addition (non-handicapped, n = 15; mild mental handicaps, n = 18) and subtraction 

(non-handicapped, n = 14; mild mental handicaps, n = 14) intervention conditions. CAI was provided 

using the Math Blaster computer program, which was described as providing instruction via drill-and-

practice. Further, the Math Blaster program had an authoring capability, a built-in scoring mechanism and 

a timer. The authoring feature enabled the researchers to create the addition and subtraction programs that 

gradually increased in difficulty over the course of the intervention. The intervention was considered 

complete either when students attained mastery of all lessons, or after they had participated in ten 15-

minute instructional sessions, whichever came first. For problem solving accuracy, the results did not 

suggest that the CAI was more effective than the traditional approach. However, students that participated 

in the CAI intervention reached the accuracy criterion of at least 90% (i.e., 18 of 20 items) in fewer 

lessons than those in the comparison group. Unfortunately, this treatment effect was limited to the non-

handicapped group suggesting that students with mild mental handicaps needed more practice than their 
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typically achieving peers to achieve fluency with basic arithmetic facts.  

 Finally, Van Luit and Naglieri (1999) assessed the effectiveness of self-instruction methods to 

increase the use of strategies when solving multiplication and division problems. Their participants 

included 42 Dutch students with MMR (Mage = 12-years-8-months; MIQ = 70.3) and 42 students with LDs 

(Mage = 10-years-10-months; MIQ = 98.5). Each group of children was randomly assigned to the strategy 

intervention (MMR, n = 21; LD, n = 21) or the comparison condition (MMR, n = 21; LD, n = 21). 

Children assigned to the strategy intervention received small group instruction (three to six students) for 

45-minutes three times a week during a four-month period. The goal of the strategy intervention was to 

help children use simple multiplication and division results in more complex problems such as 8 × 13 (8 × 

10 + 8 × 3) or 64 ÷ 4 (40 ÷ 4 + 24 ÷ 4). The results suggested that children in both experimental 

conditions improved their accuracy in solving multiplication and division problems. Children who 

participated in the strategy intervention, however, improved more than their peers as evidenced by an 

effect size (Cohen’s d) of 3.45 verses 0.76 for the comparison condition. Further decomposition of the 

results according to disability status (i.e., MMR and LD) and experimental condition (i.e., intervention 

and comparison condition) indicated that children with MMR and children with LDs who participated in 

the strategy intervention demonstrated greater improvement than their disability similar peers as 

evidenced by higher post-test scores despite nonsignificant pre-test score differences (i.e., pre-

intervention test scores were similar). Moreover, of the four groups (i.e., disability status by experimental 

condition) children with MMR that participated in the strategy instruction intervention outperformed 

children with LDs that participated in the comparison condition at the post-test evaluation. This finding 

suggests that the strategy intervention was effective in helping children with MMR catch up to their peers 

(albeit slightly younger peers) who evidence less severe cognitive impairments as characterized by IQ. 

The findings of Van Luit and Naglieri (1999) therefore suggest that strategy instruction is an effective 

means of intervening to improve student performance with solving multiplication and division problems.  

 To summarize, different mathematics interventions have been successful in improving early 

numeracy (Van Luit & Schopman, 2000) and calculation skills (Mattingly & Bott, 1990; Miller & 
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Mercer, 1993; Van Luit & Naglieri, 1999) in children with MIDs and children with LDs; while the drill-

and-practice intervention employed in Podell et al. (1992) was not. Notably, the studies by Van Luit and 

colleagues were the only ones that employed random assignment to study conditions and were effective 

in improving mathematics skills. Further, Van Luit and colleagues demonstrated that early numeracy and 

arithmetic problem solving skills are amenable to interventions explicitly designed to target specific areas 

of mathematics development. In particular, strategy instruction was effective in improving multiplication 

and division problem solving accuracy (Van Luit & Naglieri, 1992), while an early numeracy program 

that utilized a concrete-semiconcrete-abstract instructional sequence was effective in improving counting 

related skills (Van Luit & Schopman, 2000). In contrast to these positive findings, utilization of a CAI 

program, Math Blaster, which employs a drill-and-practice format (Podell et al., 1992), was not an 

effective intervention method for improving accuracy in solving basic arithmetic skills in children with 

mild disabilities. 

1.6 Overview of the Present Study 

 An inference drawn from early work (Parmar et al., 1994) was that the nature of mathematics 

achievement in students with MIDs and students with LDs was different. Despite this potential difference, 

students from both special populations have responded well to interventions that have targeted early 

numeracy (Van Luit & Schopman, 2000) and arithmetic calculation (Mattingly & Bott, 1990; Miller & 

Mercer, 1993; Van Luit & Naglieri, 1992) skills. Although the discussed studies have contributed to our 

understanding of the nature of mathematics achievement and the influence of intervention as it relates to 

each special population, the aforementioned research is limited in important ways. 

 With respect to the nature of mathematics achievement, Parmar et al. (1994) suggested that 

mathematics achievement between children with MMR and children with LDs is substantially different; 

that qualitative and quantitative differences in mathematics skills are a consequence of between group IQ 

score differences; and that as a result, differentiating mathematics intervention (or instruction) according 

to this student characteristic should be considered. Unfortunately, Parmar et al. (1994) did not have access 

to student files and consequently, their IQ scores. Accounting for IQ within the statistical analyses, may 
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have shown that the performance of children in both groups were more closely approximated to one 

another than the researchers concluded (see Jordan, Hanich, & Kaplan, 2003). Subsequently, the absence 

of IQ score data threatens the validity of the aforementioned conclusion and leaves the question 

concerning the nature of mathematics achievement is relates to children with MIDs and children with LDs 

unresolved. The present study will therefore systematically evaluate the nature (or structure) of 

mathematics achievement in each group of children. 

 In regard to students’ response to mathematics intervention, empirical work has failed to address 

the possibility that measurement of mathematics achievement in children with MIDs and children with 

LDs was biased (or unreliable). Specifically, studies that employed group design methods (i.e., Podell et 

al., 1992; Van Luit & Naglieri, 1999; Van Luit & Schopman, 2000) assumed, perhaps fallaciously, that 

the nature and measurement of mathematics achievement was equivalent between children with MIDs 

and children with LDs at pre- and post-intervention time points. Failure to establish measurement 

equivalence/invariance (ME/I) between groups across time points leaves the possibility of differential 

item (or subtest) functioning unanswered. Thus, any given mathematics measure (or subtest) may have 

been biased such that children from one of the special populations (or intervention groups) responded to 

different attributes of the measures compared to children from the other special population. Moreover, the 

mathematics intervention may have altered the structure of mathematics achievement as measured over 

time (Vandenberg & Lance, 2000) in one of the groups (i.e., special population or intervention condition).  

As a result, systematic inaccuracies or variability in the information provided (e.g., measurement non-

invariance due to variable language demands across items or subtests) may have biased the results 

concerning between group differences and/or students’ response to the mathematics intervention (Brown, 

2006). 

 In evaluating mathematics achievement growth within the employed studies, one study (Parmar et 

al., 1994) concluded that students with LDs evidenced greater growth rates than their age-equivalent peers 

with MMR. The use of a cross-sectional research design as employed in Parmar et al. (1994) is 

inadequate to demonstrate developmental trends or change over time due to the lack of time precedence, 
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which requires a longitudinal study design (Whitley, 2002). Therefore, the conclusion that students with 

LDs evidence greater growth rates than their age-equivalent peers with MMR is therefore not supported 

by the methodology employed.  

 In other studies (i.e., Podell et al., 1992; Van Luit & Naglieri, 1992; Van Luit & Schopman, 

2000), a pre-, post-test design was employed that utilized analysis of variance (ANOVA). Shortcomings 

associated with traditional methods such as ANOVA include (a) assuming that change in the conceptual 

domain is linear; (b) assuming that measurement of the conceptual domain is equivalent between groups 

across time, which is especially problematic when groups are composed of children from separate special 

populations; and that (c) tests of mean differences are not corrected for measurement error (Brown, 2006; 

Vandenberg & Lance, 2000). Acceleration in average growth for mathematical skills may be curvilinear 

as opposed to linear. Subsequently, forcing curvilinear data to fit a linear model of change (as in 

ANOVA) results in specification error and can influence the stability of the parameter estimates (e.g., 

over or underestimate estimates). In contrast to the use of repeated measures ANOVA, the present study 

will utilize growth curve modeling with repeated measures within the structural equation modeling (SEM) 

framework. It is advantageous to utilize latent growth curve modeling when possible. For instance, with 

data from three or more time points, a sample’s average level for a given mathematics outcome (or 

competency) at each time point and their average rate of growth over time, can be estimated using growth 

curve modeling (Raudenbush & Bryk, 2002). Further, growth curve modeling is flexible such that 

measurement time points do not need to be equally distributed. With respect to SEM, using confirmatory 

factor analysis (CFA) is advantageous because it partitions the conceptual construct (e.g., mathematics 

achievement) into true score unique variance and random error variance (e.g., measurement error). 

Consequently, the biasing effects of random measurement errors can be accounted for (Medsker, 

Williams, & Holahan, 1994) and the distorting effects of measurement error on parameter estimates are 

mitigated (Chan, 1998; Vandenberg & Lance, 2000). In short, in comparison to using manifest indicators 

in ANOVA, using latent variables in SEM remedies problems related to poor measurement reliability and 

consequently, measurement error (Kline, 2011). Thus, growth curve modeling in an SEM framework 
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provides a more flexible and stronger analytical methodology for investigating change over time 

compared to more traditional methods such as repeated-measures ANOVA.  

 A final limitation of the early empirical work cited, was that students with LDs were not further 

characterized according to their SLD status (i.e., RD, MD, MDRD). Failure to differentiate groups 

according to their SLD may have masked substantial group differences (e.g. Fuchs et al., 2004; Geary, 

Hamson, & Hoard, 2000; Geary et al., 1999; Jordan & Hanich, 2000). For instance, empirical evidence 

shows that students with MDRD evidence greater difficulties than students with MD on number 

comprehension tasks (Geary et al., 2000; 1999) and untimed arithmetic calculations (Hanich, Jordan, 

Kaplan, & Dick, 2001). Moreover, not further characterizing children with LD according to their specific 

status (i.e., SLD), prevents investigation of the relationship between SLD status and intervention 

outcome. Consequently, substantial group differences concerned with students’ response to mathematics 

intervention may have been masked. In the present study, participants include students identified as 

mildly intellectually disabled and students with a SLD, RD. 

 With respect to remediating mathematics difficulties, historically, poor instruction has been cited 

as a primary cause of mathematics difficulties in students with disabilities (e.g., Carnine, 1991; Cawley, 

Fitzmaurice-Hayes, & Shaw, 1988; Cawley, Miller, & School, 1987; Kelly, Gersten, & Carnine, 1990; 

Miller & Mercer, 1993; 1997; Van Luit & Schopman, 2000; Wilson & Sindelar, 1991). While the 

potential exists that students with MIDs and students with LDs respond differentially to intervention, little 

research has examined this possibility. Of the few studies that included children from both special 

populations, the results suggest that the use of concrete, semiconcrete, and abstract instructional materials 

can improve early numeracy skills (Van Luit & Schopman, 2000) and can increase student’s proficiency 

with solving addition, subtraction, and coin sum problems (Miller & Mercer, 1993). Further, time-delay 

procedures where the interval of time between the teacher’s presentation of task directions paired with a 

novel stimulus and a controlling prompt, or the teacher’s model of the correct response have been 

employed to improve student’s multiplication facts proficiency (Mattingly & Bott, 1990); and students 

with MMR and LD have been shown to benefit from strategy instruction related to solving multiplication 
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and division problems (Van Luit & Naglieri, 1999). However, some of these studies (Mattingly & Bott, 

1990; Miller & Mercer, 1993) relied on small sample sizes and single-subject research methodology, 

which is characterized by high internal validity but poor external validity. Further, descriptions 

concerning one of the most debated characteristics of defining disability, IQ (see Ferrari, 2009; Fletcher, 

Lyon, Fuchs, & Barnes, 2007; Schalock, 2011), were not uniformly or clearly described in the reviewed 

literature as it related to subgroups of study participants.  

 Consequently, a need exists for a longitudinal study that systematically examines the nature (or 

structure) of mathematics achievement in elementary aged children with MIDs and their peers with LDs. 

Additionally, when two potentially separate groups of children are included within the same empirical 

study and analyses, ME/I should be examined between groups over time. Finally, structural equation 

modeling and latent growth curves should be used in place of ANOVA when possible. For the present 

study, participant data from two separate, completed randomized control trials with elementary aged 

students was utilized. One study included students with MIDs (n = 265), while the other included 

students with RD (n = 137).  In each study, one group received a mathematics intervention, and the 

comparison group, intensive reading intervention. In both studies, mathematics achievement data were 

collected at three consecutive time points during the course of the school year. Measurement 

equivalence/invariance was evaluated, followed by an examination of the students’ response to an 

evidence-based mathematics intervention.  

1.7 Research Aims 

 Given the growing understanding that mathematics achievement is related to educational and 

occupational success, the paucity of empirical studies devoted to growing this field of research is 

unfortunate. Moreover, the majority of the research in this area has been concerned with mathematics 

development and difficulties as they relate to children with mathematics learning disabilities (MD) 

(Geary, 2013). In doing so, the study of mathematics development as it relates to children with MIDs has 

been neglected. Consequently, very little is known about mathematics achievement in children with MIDs 

(Brankaer, Ghesquière, & De Smedt, 2011; Foster, Sevcik, Romski, & Morris, 2014). Also, whereas the 
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majority of studies concerned with mathematics development have focused on arithmetic calculations 

(Fuchs et al., 2004; Gersten et al., 2005), the present study will investigate mathematics achievement 

more broadly. One aim of the present study is to therefore investigate the nature (or structure) of 

mathematics achievement conceptualized as proficiency in skills related to the following areas: 

numeration, geometry, addition, subtraction, measurement, and time/money; areas of achievement that 

map onto the CCSSM (2010) standards.  

 Early work concerned with the nature of mathematics achievement and response to intervention 

as it relates to children with MIDs has been limited. Therefore, a rigorous longitudinal study that includes 

children with MID is needed. The present study systematically examines the nature (or structure) of 

mathematics achievement and students response to a mathematics intervention in a relatively large sample 

of elementary aged students’ with MID and students’ with RD. Of children with SLDs, those with RD, by 

definition, show an advantage in mathematical skill development over their peers with MD and MDRD, 

and more closely approximates that of typically achieving children (see Fuchs et al., 1994; Geary, 

Hamson, & Hoard, 2000; Geary, Hoard, Hamson, 1999; Jordan, Hanich, & Kaplan, 2003; Jordan, Kaplan, 

& Hanich, 2002). Inclusion of students with RDs in the present study can therefore enable inferences 

concerning the acquisition of mathematics proficiency in children with MIDs as it relates to typically 

achieving children. In particular, finding that the structure of mathematics achievement is equivalent in 

children with MIDs and those with RDs suggests that children from both special populations follow 

similar, if not the same, sequence in developing mathematics proficiency as typically achieving children. 

Subsequently, this provides a basis that can help researchers understand observed growth and change in 

its ordered and sequential manner.   

 In order to draw clear inferences concerning students’ response to intervention, limitations of 

early research are addressed. In particular, the nature (or structure) of mathematics achievement as it 

relates to children with MIDs and children with RDs will be investigated through CFA; after which, 

measurement of mathematics achievement will be systematically examined through ME/I evaluation. 

Establishing longitudinal ME/I is a necessary precondition to studying longitudinal change. Without first 
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establishing longitudinal measurement stability, it cannot be determined that temporal change observed in 

a construct (i.e., mathematics achievement) is due to true change or changes related to precision in 

measurement of the construct, or changes in the construct itself that varies across time (Brown, 2006).  

 For between group studies involving different populations, establishing ME/I between groups is a 

necessary precondition to making meaningful inferences concerned with mean group differences. This is 

because it is necessary to rule out the potential for differential item (or subtest) functioning such that 

group differences are not a consequence of the target groups responding to different attributes of an item 

(e.g., expressive language skills necessary to correctly respond to an item on a norm-referenced 

mathematical test). Thus, in the absence of ME/I, it is misleading to analyze and interpret longitudinal 

change and/or group mean differences. Therefore, whereas early research (Parmar et al., 1994; Podell et 

al., 1992; Van Luit & Naglieri, 1999; Van Luit & Schopman, 2000) implicitly assumed that the structure 

and measurement of mathematics achievement was equivalent, the present study will explicitly evaluate 

the tenability of this assumption through ME/I evaluation. In particular, students will be combined in a 

single group for ME/I evaluation; however, in the case that measurement non-invariance is identified, 

students will be separated according to intervention condition assignment because intervention effects can 

result in non-invariance of model parameters (McArdle, 1996). 

 Following ME/I evaluation, students’ response to an evidence-based mathematics intervention is 

assessed using the SEM framework. In doing so, the present study examines, whether or not, children 

with MIDs and children RDs benefit from a mathematics intervention as evidenced by change over time 

captured by a norm-referenced test. Given present educational policy (Individuals with Disabilities 

Education Act, 2004) that expects students with disabilities to make progress in their mathematics 

curricula and to demonstrate proficiency on high stakes testing (e.g., Georgia High School Graduation 

Exam), it is important to identify interventions that educators can implement to remediate mathematics 

difficulties in children with mild disabilities.    

1.8 Research Questions 

 In order to examine the structure of mathematics achievement, its measurement, and students’ 
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response to mathematics intervention, the following three research questions were addressed.  

 Question 1. Is the nature (or structure) of mathematics achievement in children with MIDs and 

children with RDs temporally stable? That is, is the form (or configuration) of mathematics achievement 

equivalent over time in elementary aged children with MIDs and others with RDs? Although children 

from these groups represent potentially separate special populations, prior work (Foster et al., 2014; Wise 

et al., 2008) has demonstrated that children with MID and those with RD evidence the same types of 

reading and mathematics relationships. It is expected that the form of mathematics achievement will be 

equivalent between groups across time. In other words, it is expected that the structure (i.e., the number of 

factors and pattern of factor-indicator loadings) of this conceptual domain will be stable between groups 

across pre-, mid-, and post-intervention time points.   

 Question 2. Is the measurement of mathematics achievement in children with MIDs and children 

with RDs temporally equivalent? That is, does the measurement of mathematics achievement function 

equivalently over time in elementary aged children with MIDs and others with RDs? It is expected that 

the measurement of mathematics achievement is equivalent in children from these special populations as 

evidenced by equal form (see Question 1) and at minimum, partially equivalent factor loadings and 

intercepts between groups across the three time points. 

 Question 3. Did elementary aged students’ with MIDs and students with RDs who participated in 

an evidenced-based mathematics intervention show increased mathematics achievement growth compared 

to their peers who participated in a reading intervention? The present study is the first systematic attempt 

to evaluate students with MIDs and students with RDs response to intervention following ME/I 

evaluation. Early research (Mattingly & Bott, 1990; Miller & Mercer, 1993; Van Luit & Naglieri, 1992; 

Van Luit & Schopman, 2000), however, suggests that interventions that have targeted early numeracy and 

arithmetic skills have been successful in improving mathematics proficiency. It is therefore expected that 

students who participated in the mathematics intervention will evidence more growth in mathematics than 

students that participated in a reading intervention. 
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2.  METHOD 

 The data analyzed for this study were collected as part of two completed reading intervention 

efficacy projects for elementary aged children that differed according to disability status (Sevcik, 2005 

and Morris, 1996). Sevcik (2005) collected data over the course of five school years from August 2005 to 

May 2010 and focused on second to fifth grade students diagnosed by their local school districts with 

MID. Morris (1996) collected data over the course of five years from May 1996 to May 2001 and focused 

on second and third grade students diagnosed with RD. Due to the focus (i.e., reading intervention) of 

Sevcik (2005) and Morris (1996), participants in both projects had the opportunity to be randomly 

assigned to a reading condition each of the five years, whereas the opportunity to be randomly assigned to 

the mathematics condition was only available in years one through four. Further, the data analyzed in this 

study are from three time points (pre-intervention, intervention midpoint, and post-intervention);  

2.1 Participants 

Children with Mild Intellectual Disabilities 

 Participants with MIDs were screened with a set of inclusionary and exclusionary criteria. 

Inclusionary criteria included measured IQ from 50-70 and poor or no reading skills (below the 10th 

percentile on standardized reading measures). Participants were excluded if they did not speak English, 

had a history of hearing impairment (<25 dB at 500+Hz bilaterally), a history of uncorrected visual 

impairment (<20/40), and/or had serious emotional/psychiatric disturbance (e.g., major depression, 

psychosis) as described in parent reports.  

 The 265 participants with MID were assessed by and met their local school district’s eligibility 

criteria for MID. IQ scores were obtained from each child’s school when available. Student MIQ (sd) = 

63.03 (9.64). Etiology of the intellectual impairments was heterogeneous and included Down syndrome, 

Fragile X syndrome, and etiology unknown. Of the participants, 96 (36.2%) were girls and 169 (63.8%) 

were boys. In regard to racial and ethnic diversity, there were 6 (2.3%) Asian, 150 (56.6%) African 

American, 43 (16.2%) Hispanic, 53 (20.0%) Caucasian, and 12 (4.5%) Multi-racial students (race was not 

reported for one participant). Sample Mage (sd) = 9.27 (1.34) years and ranged from 6.67 to 12.25 years. 
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Finally, participants with MID were close to equally distributed across grade levels with 84 (31.7%) 

second grade, 58 (21.9%) third grade, 69 (26.0%) fourth grade, and 54 (20.4%) fifth grade students. Of 

these 265 participants, 182 were randomized to a reading intervention, and 83 were randomized to a 

mathematics intervention. 

Children with Reading Disabilities 

 Participants with RDs were screened with a set of inclusionary and exclusionary criteria. 

Inclusionary criteria included the low achievement (LA) and/or Ability-Achievement Regression 

Corrected Discrepancy (DISC) definitions for RD. Participants with a Kaufman-Brief Intelligence Test 

(K-BIT; Kaufman & Kaufman, 1990) composite score greater than 70 and whose reading skills were 

equal to, or less than, a standard deviation score of 85 on the Woodcock Reading Mastery Test-R 

(WRMT-R; Woodcock, 1987) were identified as meeting the LA criteria for reading disability. 

Participants whose reading performance was at least one standard error of the estimate below their 

Expected Achievement Standard Score (EASS), calculated based on an average correlation of 0.60 

between measures of reading performance and intellectual ability, were included under the DISC criteria. 

As in Sevcik (2005), participants were excluded if they did not speak English, had a history of hearing 

impairment (<25 dB at 500+Hz bilaterally), a history of uncorrected visual impairment (<20/40), and/or 

had serious emotional/psychiatric disturbance (e.g., major depression, psychosis) as described in parent 

reports. Additionally, children were excluded if they had repeated a grade or had a K-BIT Composite 

Score below 70. Participants who had repeated a grade were excluded in attempt to control for the amount 

of previous educational experience of the children. 

 Of the 279 participants in Morris (1996), mathematics achievement was measured in 137. These 

137 participants, all with RD were from three large metropolitan areas (Atlanta: n = 47 [34.3%], Boston: 

n = 29 [21.2%] and Toronto: n = 61 [44.5%]). In contrast to Sevcik (2005), all students were 

independently evaluated for RDs. Mean reading achievement measured by the WRMT was 77.33 (sd = 

11.97) and mean IQ as measured by the K-BIT was 91.09 (sd = 11.04). Of the participants, 47 (34.3%) 

were girls and 90 (65.7%) were boys. In regard to racial and ethnic diversity, there were 67 (48.9%) 
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African American and 70 (51.1%) Caucasian students. Sample Mage (sd) = 7.51 (0.56) years and ranged 

from 6.42 to 8.83 years. Finally, with respect to grade level 102 (74.5%) second grade and 35 (25.5%) 

third grade students with RDs are represented in the present analyses. Of these 137 participants, 70 were 

randomized to a reading intervention and 65 were randomized to a mathematics intervention. 

2.2 Assessment Instruments 

 The KeyMath-Revised Diagnostic Inventory (Connolly, 1988) was administered as part of a larger 

assessment battery. This norm-referenced mathematics measure was selected because it is widely used in 

educational and remedial outcome research, psychometrically appropriate for growth curve modeling, and 

because it has adequate reliabilities and validity. Finally, the KeyMath-R will allow for comparison of the 

sample’s mathematics achievement and abilities with those from other published empirical studies.   

 Students in Sevcik (2005) and Morris (1996) were evaluated throughout the school year and the 

data in this study are from three time points (prior to random assignment to a study condition, at the 

intervention mid-point, and following the completion of the intervention). The number of intervention 

hours differed between the studies. Students in Sevcik (2005) received up to 120 hours of intervention 

with mid-point assessment occurring after 60 hours. In contrast, students in Morris (1996) received up to 

70 hours of intervention with mid-point assessment occurring after 35 hours. The present study will 

analyze raw rather than standard scores because the KeyMath-R examiner’s manual does not report 

including children with disabilities in the norming standardization procedures. Therefore, using standard 

scores would likely underestimate student performance and restrict variability in scores due to 

measurement sensitivity issues (i.e., floor effects) in the data and consequently, result in incorrect 

parameter estimates that could mask the true relationships between the mathematics indicators.   

Measures of Mathematics 

 Students’ mathematics achievement was measured using six subtests from the KeyMath-R: 

Numeration, Geometry, Addition, Subtraction, Measurement, and Time/Money. The KeyMath-R is 

widely used in education and research settings and evidences sufficient reliability. For children between 6 

and 12 years of age, split-half reliability coefficients corresponding to each subtest were generally 
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stronger for Spring (r range: between .66—Addition, and .92—Time/Money) than Fall (r range: between 

.57—Measurement, and .93—Time/Money). The domain-referenced scope and sequence of the 

KeyMath-R identified hierarchies of concepts and skills. The subtests above are divided into the three 

following areas.   

 Basic Concepts Measures. The Numeration subtest measures students’ understanding of quantity, 

order, and place value; whereas the Geometry subtest measures their understanding of spatial and 

attribute relations, two-dimensional shapes, coordinates and transformations, and three-dimensional 

shapes.  

 Operations Measures. The Addition and Subtraction subtests assess students’ understanding of 

arithmetic facts, algorithms to add/subtract whole numbers, and adding/subtracting rational numbers.  

Written calculation begins with item seven on each subtest, respectively. 

 Application Measures. The Measurement subtest evaluates students’ understanding of 

comparisons using standard and non-standard units related to length, area, weight, and capacity. The 

Time/Money subtest measures identification of passage of time, use of clocks and clock units, and 

understanding monetary amounts from one dollar to one hundred dollars and business transactions. 

2.3 Mathematics and Reading Intervention Programs 

Mathematics Intervention 

 Both of the completed larger projects utilized the same direct instruction mathematics programs, 

Distar Arithmetic II (Engelmann & Carnine, 1976) and/or Connecting Math Concepts (CMC; Engelmann 

& Carnine, 1992), which was a function student’s curriculum-based placement testing results. Both of the 

larger projects also utilized Base Ten Blocks (McLean, Laycock, & Smart, 1990) as a supplement to the 

direct instruction mathematics program(s). Distar II and CMC are direct instruction programs with lessons 

organized around multiple concepts and skills, each of which is addressed for only 5 to 10 minutes in a 

given day and then revisited day-after-day for many lessons. In both mathematics programs, students are 

explicitly taught concepts and strategies for solving arithmetic computations and word problems. Distar II 

was employed with students who demonstrated a need to develop and build prerequisite and basic skills 
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such as rote counting, numeral copying, symbol identification, and basic addition, subtraction and place 

value skills. In contrast, CMC was used with more advanced students. Instruction quickly advances from 

counting activities and symbol identification to learning concepts such as equality, discriminating 

between differing numerical magnitudes, and understanding number relationships and using the number 

line, to solving arithmetic and application problems involving money, measurement, and estimation as 

well as solving problems involving fractions and word problems. More advanced students in the CMC 

curriculum series were also explicitly taught skills related to geometry (e.g., identifying shapes, 

computing perimeter and area), and analyzing data presented in tables and interpreting graphs.  

 Base Ten Blocks was used as a supplement to the interventions described above. Corresponding 

activities taught computational procedures in concrete format to help students consolidate numeration, 

number line, and arithmetic concepts. Additionally, Morris’s (1996) mathematics intervention condition 

included a component focused on teaching students to listen for critical words and implementing a four-

step metacognitive strategy (think, plan, do, check) when solving word problems. Note that although the 

KeyMath-R includes a word problem-solving subtest, it was not utilized in the present study.  

Reading Intervention 

 Both of the completed parent projects used the same reading programs: Phonological Analysis 

and Blending/Direct Instruction Program (PHAB/DI) and the Retrieval-Rate, Accuracy, Vocabulary 

Elaboration and Orthography Program (RAVE-O). However, in Morris (1996), measurement of 

mathematics achievement was limited to children randomly assigned to mathematics and the PHAB/DI 

conditions. In Sevcik (2005) mathematics achievement was measured in all children regardless of their 

intervention condition assignment. PHAB/DI trains children in phonological analysis and blending skills 

in the context of printed presentations and direct instruction of letter-sound and letter-cluster-sound 

correspondences; whereas RAVE-O was designed to add to a phonological foundation in reading 

instruction and emphasizes meaning, rapid retrieval in oral and written language, and efficient 

orthographic decoding. Finally, Morris (1996) paired the Classroom Survival Skills Program (CSS) with 

each intervention condition. CSS is not theoretically informed and trains students in classroom etiquette, 
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life skills, and organizational strategies, with an emphasis on academic problem solving and self-help 

techniques.    

Teacher Training and Treatment Integrity 

 Teachers that led the instructional groups were employees of Georgia State University and were 

certified to teach in the state of Georgia. All teachers received intensive training (three to seven days) in 

delivering intervention components within the respective research projects. Additionally, weekly 

meetings were used to provide ongoing instructional support to teachers and the use of an observational 

rating form documented treatment integrity. Ten percent of the total number of instructional sessions also 

were videotaped and indicated that the intervention programs were being carried out as planned. Finally, 

daily logs of the sessions were kept and reviewed weekly to provide close monitoring of instructional 

issues as they arose. 

Statistical Analyses and Power 

 The present study utilizes analytic procedures within the SEM framework. In regard to sample 

size and consequently, power, several rules of thumb have been proposed. For instance, in order to avoid 

model nonconvergence and inadmissible solutions (e.g., negative variance estimates), Boosma and 

Hoogland (2001) recommend a minimum sample size (N) of 200 and that the ratio of number of 

indicators per factor equal 3:1 or 4:1 (given N of 200). The present sample consists of data for 402 total 

participants (MIDs, n = 265; RDs, n = 137) and the corresponding ratio of indicators per factor (6:1) 

exceed the rules of thumb proposed by Boosma and Hoogland (2001). In regard to model fit of specific 

analyses, recommendations provided by Bentler (2007) will be followed. As such, model fit will be 

evaluated in terms of the 2 test of exact fit as well as the comparative fit index (CFI; Bentler, 1990), root 

mean square error of approximation (RMSEA; Steiger, 1990), and standardized root mean square residual 

(SRMR).   

2.4 Procedure 

 In both larger projects (Sevcik, 2005; Morris, 1996) the procedures were similar. School 

administrators and teachers initially identified children who met the state and local school district’s 
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criteria for the respective disability. Packets that contained the study’s description, a consent form, and a 

demographic survey were sent home with identified students. After students returned signed consent 

forms and provided assent, they were administered an assessment battery by trained project personnel 

(graduate students and faculty). Test administration occurred within the student’s local school during the 

typical school day and required between three and five hours over the course of a few days.  

 Following pre-intervention assessment in Sevcik (2005), small groups of children and teachers 

were randomly assigned to one of three study conditions (two reading interventions or a mathematics 

intervention). Groups of four to five children, on average, were taught by trained certified teachers for up 

to 120 instructional hours during a school year. All children were evaluated at the beginning (0 hours), 

middle (60 hours), and end of the intervention (up to 120 hours).  

 Following pre-intervention measurement testing in Morris (1996), small groups of children and 

teachers were randomly assigned to one of four study conditions (three reading interventions or a 

mathematic intervention); although, only two intervention conditions are relevant to the present study 

(PHAB/DI and Mathematics). Groups of four to five children, on average, were taught by trained certified 

teachers for up to 70 instructional hours during the school year. All children were evaluated at the 

beginning (0 hours), middle (35 hours), and end of the intervention (70 hours). 

 To ensure accuracy and quality control of data, all data were entered into SPSS 18 using a double 

entry procedure with two independently working researchers. Crosschecks between the two entries were 

run to determine potential inconsistencies. If an inconsistency was found, the original test protocol was 

referenced, the data corrected, and cross checks run again. This process was continued for all data until no 

inconsistencies were found. 

3. RESULTS 

3.1 Descriptive Statistics 

 In order to evaluate the nature (or structure) of mathematics achievement and students’ response 

to a mathematics intervention, data from students with MIDs and students with RDs that participated in 

the two larger projects were analyzed. Descriptive statistics according to intervention condition are 
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presented in Tables 1, 2, and 3 for the pre-, mid-, and post-intervention time points, respectively (see 

Appendices 1 and 2 for descriptive statistics differentiated by student disability status, and in the 

combined group of students, respectively). In each table, means for each variable represent the average 

number of items correct for a given subtest. Examination of the distributions for several of the KeyMath-

R subtests differentiated by intervention condition type (mathematics and reading) indicated that they 

evidenced non-normal distributions. For instance, skew and kurtosis statistics can be converted to z scores 

by subtracting the mean of the respective distribution (in this case 0) from the target score and then 

dividing by the standard error (SEskewness; SEkurtosis) of the distribution. An absolute value greater than 1.96 

is significant a p < .05, whereas an absolute value of 2.58 is significant a p < .01 (Field, 2012). For the 

pre-intervention data (Table 1), by dividing the skewness statistic by its standard error resulted in a value 

greater than 1.96 for five (Numeration, Addition, Subtraction, Measurement, and Time/Money) of the six 

subtests for the mathematics intervention group and all of subtests in the reading intervention group; 

whereas, dividing the kurtosis statistic by its standard error indicated significant (p < .05) kurtosis for 

four (Numeration, Geometry, Measurement, and Time/Money) of the six subtests in the mathematics 

group and three of the subtests (Geometry, Subtraction, and Time/Money) in the reading group. Further 

investigation of non-normality was examined visually through histograms and q-q plots of the data. 

Examination of histograms corresponding to each subtest differentiated by intervention condition 

indicated that three (Subtraction, Measurement, and Time/Money) of the six subtests evidenced positive 

skew across both intervention groups, which is in part due to floor effects. Examination of q-q plots 

confirmed the previous findings. Finally, investigation of significant skewness and kurtosis at the second 

and third time points, also suggested that the data were significantly (p < .05) skewed and/or kurtotic. As 

displayed in Tables 1, 2, and 3, the number of participants that earned a score of zero on the respective 

subtests varied within and across each time point. In short, most of the indicator’s distributions are 

characterized by non-normality. Methods for addressing issues related to distribution non-normality and 

floor effects will be discussed in the data analysis section. 
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Table 1. Descriptive Statistics by Intervention Group Across Studies: Pre-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

Math Group           

 

 NUM 149 5.94 3.21 5.0 0 19 1 1.01 (.20) 1.35 (.40) 

 

 GEO 149 5.48 3.93 5.0 0 14 17 0.36 (.20) -0.82 (.40) 

 

 ADD 149 4.17 2.72 4.0 0 12 9 0.53 (.20) -0.33 (.40) 

 

 SUB 149 1.95 1.98 1.0 0 10 45 0.99 (.20) 0.32 (.40) 

 

 MST 149 4.50 3.40 3.0 0 12 10 0.57 (.20) -0.94 (.40) 

 

 TIMO 149 2.47 2.37 2.0 0 10 36 1.14 (.20) 1.09 (.40) 

 

Reading Group          

 

 NUM 248 6.20 3.21 6.0 0 18 2 0.68 (.16) 0.10 (.31) 

 

 GEO 247 5.08 3.78 5.0 0 15 35 0.36 (.16) -0.72 (.31) 

 

 ADD 248 4.13 3.14 3.5 0 14 25 0.70 (.16) -0.15 (.31) 

 

 SUB 248 2.01 2.05 1.0 0 10 71 1.09 (.16) 0.80 (.31) 

 

 MST 247 4.02 3.29 3.0 0 13 29 0.82 (.16) -0.31 (.31) 

 

 TIMO 247 2.97 2.57 2.0 0 12 36 1.16 (.16) 1.32 (.31) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0. MID = Mild intellectual 

disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = 

Measurement, TIMO = Time/Money. 
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Table 2. Descriptive Statistics by Intervention Group Across Studies: Mid-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

Math Group          

 

 NUM 143 7.55 3.70 7.0 0 18 1 0.51 (.20) -0.51 (.40) 

 

 GEO 144 6.82 4.49 7.0 0 16 11 0.15 (.20) -1.03 (.40) 

 

 ADD 144 5.30 3.26 5.0 0 12 9 0.18 (.20) -1.04 (.40) 

 

 SUB 144 2.78 2.48 2.0 0 11 28 0.89 (.20) 0.23 (.40) 

 

 MST 144 5.13 3.92 4.0 0 13 12 0.31 (.20) -1.30 (.40) 

 

 TIMO 144 3.62 2.88 3.0 0 15 15 1.05 (.20) 1.31 (.40) 

 

Reading Group          

 

 NUM 242 7.18 3.59 6.0 1 19 0 0.59 (.16) -0.36 (.31) 

 

 GEO 241 6.43 4.07 6.0 0 16 20 0.17 (.16) -0.82 (.31) 

 

 ADD 242 5.43 3.32 5.0 0 14 10 0.30 (.16) -0.69 (.31) 

 

 SUB 241 2.43 2.40 2.0 0 10 62 1.00 (.16) 0.30 (.31) 

 

 MST 241 4.81 3.46 3.0 0 16 13 0.60 (.16) -0.59 (.31) 

 

 TIMO 241 3.80 2.96 3.0 0 16 21 1.07 (.16) 1.53 (.31) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0. MID = Mild intellectual 

disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = 

Measurement, TIMO = Time/Money. 
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Table 3. Descriptive Statistics by Intervention Group Across Studies: Post-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis(SE) 

 

Math Group          

 

 NUM 143 8.25 3.95 7.0 0 20 1 0.63 (.20) -0.11 (.40) 

 

 GEO 143 7.41 4.26 7.0 0 16 8 0.10 (.20) -0.78 (.40) 

 

 ADD 143 6.05 3.49 6.0 0 14 8 0.63 (.20) -0.90 (.40) 

 

 SUB 143 3.17 2.76 3.0 0 11 27 0.81 (.20) 0.23(.40) 

 

 MST 143 5.70 3.92 5.0 0 15 8 0.44 (.20) -0.95 (.40) 

 

 TIMO 143 4.66 3.82 4.0 0 21 11 1.53 (.20) 3.25 (.40) 

 

Reading Group          

 

 NUM 238 7.87 3.72 7.0 1 18 0 0.35 (.16) -0.73 (.31) 

 

 GEO 238 7.39 4.13 7.0 0 17 10 0.13 (.16) -0.71 (.31) 

 

 ADD 238 6.16 3.53 6.0 0 14 7 0.16 (.16) -0.79 (.31) 

 

 SUB 238 3.01 2.50 3.0 0 10 37 0.72 (.16) -0.20 (.31) 

 

 MST 238 5.41 3.76 4.5 0 16 15 0.38 (.16) -0.82 (.31) 

 

 TIMO 238 4.49 3.19 4.0 0 16 16 0.90 (.16) 0.84 (.31) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0. MID = Mild intellectual 

disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = 

Measurement, TIMO = Time/Money. 

 

3.2 Missing Data Patterns 

 Instances of missing data were investigated by hand and through Mplus software (Muthén & 

Muthén, 1998-2010), which identified 11 patterns of missing data. In general, missingness was assumed 

to be at random (MAR). The first pattern was no missing data (n = 367). The second through seventh 

patterns of missing data each represented one participant who was missing scores for the pre-intervention 

Measurement and Time/Money subtests, pre-intervention Geometry subtest, all six subtests at pre-

intervention, mid-point Measurement and Time/Money subtests, mid-point Subtraction subtest, and all 

subtests at mid-point except Time/Money, respectively. The eighth pattern of missing data represented 
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participants who were missing scores for all pre-intervention and mid-point KeyMath-R subtests (n = 4). 

The ninth pattern represented participants who were missing scores for the Time/Money subtest 

administered at the post-intervention time point (n = 2). The tenth pattern represented participants who 

were missing data for all KeyMath-R subtests administered at the post-intervention assessment (n = 10). 

This group of participants represented those who left their respective study early. Finally, the eleventh 

pattern represented participants who had missing scores across all measures for the mid-point and post-

intervention time points (n = 11). This group’s missingness also was due to leaving their respective study 

early. In summary, the largest source of missing data was due to participants leaving the study before its 

completion, respectively (total, n = 19). Nevertheless, 92.75% of participants had complete data for all of 

the measures administered across the three time points. Strategies for addressing issues related to missing 

data will be discussed in the analysis section.  

3.3 Confirmatory Factor Analysis (CFA) for Mathematics Achievement 

 The nature (or structure) of mathematics achievement in children with MIDs and children with 

RDs was assessed utilizing confirmatory factor analysis (CFA) and ME/I evaluation with Mplus (version 

7) software. CFA is a strategy whose purpose is to identify latent constructs (or factors) that account for 

variation and covariation among a set of indicators. All aspects of the factor model are pre-specified (e.g., 

the number of factors, the pattern of indicator-factor loadings, etc. (Brown, 2006). CFA utilizes maximum 

likelihood (ML) estimation to find parameter estimates that maximize the likelihood of observing the 

given data if it were collected from the same population again. Additionally, ML is a full information 

(FIML) estimation method (also referred too as direct ML), which is a preferred method for handling 

missing data (Allison, 2003; Schafer & Graham, 2002). FIML makes use of all of the available 

information, even cases with missing data, when estimating parameters (Brown, 2006). 

3.4 Data Preparation and Special Considerations 

 Prior to investigating the nature of mathematics achievement and subsequently, students’ 

response to a mathematics intervention, steps were taken to prepare the data. Using SPSS 20, two separate 

data sets, one for students with MIDs and another for students with RDs were merged. The merged data 
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set included all variables reported in the present study. An advantage of employing a one-sample 

approach as in the present study was that correlated errors could be estimated and accounted for when 

estimating other model parameters (Brown, 2006). In addition, maximum likelihood estimation with 

robust standard errors (MLR; Bentler, 1995) was chosen for the present analyses in order to address non-

normality of the distributions and non-independence of observations for the included subtests (see Tables 

1, 2, and 3). An advantage of MLR estimation (2
SB) is that it provides a correction for non-normality 

(e.g., floor effects) in continuous indicators (Yuan & Bentler, 2000). Thus, MLR estimation provides a 

model chi-square and standard errors of the parameter estimates that are corrected for non-normality. 

3.5 Testing the Structure of Mathematics Achievement 

 The nature (or structure) of mathematics achievement was examined using ME/I evaluation 

within the context of CFA with nested 2 methods (i.e., difference testing). Evaluation of ME/I is a 

method that directly evaluates the tenability that a set of indicators (e.g., KeyMath-R subtests) reliably 

and validly assess a conceptual domain (e.g., mathematics achievement) between groups (multiple group 

CFA) and/or within groups across time (Curran & Hussong, 2009). Further, the use of nested models 

provides the opportunity to make direct statistical comparison of alternative models (or solutions) 

possible. Within this context, alternative (or subsequent) models are characterized by more constraints 

than the prior model and difference testing provides evidence that indicates whether or not the additional 

constraints significantly reduce model fit. As such, ME/I evaluation within the present study utilized the 

forward restriction method, which is recommended in Vandenberg and Lance (2000). The forward 

restriction method adds constraints to an unconstrained model such that, in the present study, ME/I 

evaluation proceeds from evaluation of equal form, to equal factor loadings, and finally, equal intercepts. 

The test of equal form evaluated the hypothesis that the same number of factors and pattern of factor-

indicator loadings were temporally equivalent between groups of students differentiated by intervention 

condition participation. The test of equal factor loadings evaluated the hypothesis that the indicator’s 

factor loadings were temporally equivalent between the two groups of children; and the test of equal 
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intercepts evaluated the hypothesis that the intercept parameters were temporally equivalent between the 

groups.      

 Model fit was evaluated in terms of the Satorra-Bentler chi-square (2
SB) test of model fit, the 

comparative fit index (CFI; Bentler, 1990), the root mean square error of approximation (RMSEA; 

Steiger, 1990), and the standardized root mean square residual (SRMR). When difference testing and the 

corresponding fit indices indicated acceptable model fit, the respective equality constraint remained in 

place and an additional equality constraint was included in the subsequent analysis. For instance, if the 

addition of the factor loadings equality constraint resulted in acceptable model fit, it remained in place 

while adding the intercept equality constraint within the subsequent analysis. Model fit of this new model, 

characterized by the additional specification for intercept equivalence, was then evaluated in comparison 

to the previous model (i.e., that did not include the intercept equality constraint). In cases where the 

inclusion of an additional equality constraint significantly reduced model fit, partial ME/I (see Byrne, 

Shavelson, & Muthén, 1989) was pursued. Returning to the previous example, if the addition of the 

intercept equality constraint resulted in significantly reduced model fit as indicated by difference testing 

(2
SBdiff), analyses were carried out to determine if some, but not all, of the indicator intercepts, for 

example, were temporally equivalent between groups.  

 Questions 1 and 2. In order to address Research Question 1 and examine the nature (or structure) 

of mathematics achievement in elementary aged students with MIDs and students with RDs, data 

corresponding to both groups were combined. After which, the structure of mathematics achievement was 

evaluated using the test of equal form. In order to address Research Question 2 and examine the 

measurement of mathematics achievement, the test of equal form was followed by the test of equal factor 

loadings and then equal intercepts, respectively. In this ‘combined group’ context, each equality test was 

simultaneously employed across the three time points. In doing so, temporal stability in mathematics 

achievement was examined. Of the equality tests, it was expected that mathematics achievement would be 

characterized by equal form (or configural invariance) and equal factor loadings (or metric invariance). 



34 

However, because intervention effects can result in non-invariant model parameters, especially intercepts 

(McArdle, 1996), it was anticipated that the addition of the intercept equivalence (or scalar invariance) 

constraint (to the equal factor loadings model) would significantly reduce model fit as students in this 

combined group were randomly assigned to a reading (n, MID = 182, RD = 71; Total = 253) or 

mathematics (n, MID = 83, RD = 66; Total = 149) intervention condition.  

 For the test of equal form, each of the six KeyMath-R subtests were specified as indicators of a 

single mathematics achievement latent construct at each of the three time points (across population, study, 

and intervention group), respectively (see Figure 1). Accordingly, correlated residuals were specified to 

account for indicator specific method variance (or method effects) associated with repeated 

administrations of the same measure; however, for ease in interpretation, the specification of correlated 

residuals as well as the correlations between the latent mathematics achievement factors, are omitted 

below. Model identification was achieved by fixing the latent mathematics achievement means and 

variances at each of the three time points to zero. The overall fit for the equal form solution is presented 

in Table 4. Although, the 2
SB was significant, all other fit indices provided support for the hypothesis that 

the structure of mathematics achievement is unidimensional at each measurement occasion. That is, the 

same form (or configuration) is present at each time point in this combined group of children. 

 

 
 
Figure 1. Combined Group Model: Equal Form. Specification of correlated residuals and correlations between latent 

mathematics achievement factors are omitted above. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. T1 = Pre-intervention time point, T2 = Mid-intervention time point, T3 

= Post-intervention time point.  
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Table 4. Measurement Invariance Evaluation for Mathematics Achievement: Combined Group Model 

  

2
SB (df) 2

SBdiff ∆df CFI RMSEA (90% CI) PRMSEA ≤ .05 SRMR 

 

Step 1.  

Equal Form 203.09 (114)***   .986 .044 (.034, .054) .829 .024 

 

Step 2.  

Equal Factor 

Loadings 221.35 (124)*** 17.35 10 .985 .044 (.035, .054) .836 .030 

 

Step 3.  

Equal Intercepts 321.45 (134)*** 100.10*** 10 .970 .059 (.051, .067) .035 .049 

Note. 2
SB = Satorra-Bentler scaled 2; 2

SBdiff = difference test; ∆df = change in degrees of freedom; CFI = Comparative fit 

index, RMSEA = Root mean square error of approximation, PRMSEA ≤ .05 = Test of close fit, SRMR = Standardized root mean 

square residual. 
 ***p < .001. 

 

 In the subsequent analysis (Step 2) measurement stability was further evaluated by investigating 

whether or not the factor loadings were equivalent across time. Because ME/I evaluation focuses on the 

unstandardized relationships within the specified model, factor loadings are regression coefficients. That 

is, factor loadings represent the regression of the latent construct on the observed indicators. Building on 

the previous model specification (i.e., equal form with correlated residuals), the factor loadings for each 

of the six KeyMath-R subtests were simultaneously constrained to equality across the three time points 

(see Figure 2). In other words, the regression of each indicator on the latent construct was specified as 

equivalent across time. Model identification was achieved by fixing the latent means to zero; however, in 

contrast to the previous analysis, the metric of the latent variance was set by fixing the variance of 

mathematics achievement at the first time point to one, while freely estimating the latent variance at the 

latter two time points. The results of difference testing (see Table 4, Step 2) provided evidence for metric 

invariance. Table 4 displays the overall model fit as well as model fit statistics, which suggest that the 

equal factor loading model specification provides a good fit to the data. Moreover, the model 2
SB for the 

equal factor loadings solution was 221.35 (df = 124), which resulted in a non-significant 2 difference 

test, 2
SBdiff (10) = 17.35, p = 0.066. These findings therefore suggest that the factor loadings (i.e., 

measurement metric) are temporally stable. Thus, each of the six factor loadings were equivalent across 

time in this combined group model. In Figure 2, the estimates for the factor loadings are displayed below 
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each indicator. As evident in Figure 2, the factor loadings are the same for each indicator at each of the 

three time points, which indicates that with each unit of change in the latent mathematics achievement 

factor, the Numeration subtest score, for example, is expected to change 2.87 units, the Geometry subtest, 

2.85 units, the Addition subtest, 2.45 units, and so on. 

 

 

Figure 2. Combined Group Model: Equivalent Factor Loadings. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB 

= Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention time point, 2 = Mid-intervention time point, 3 = 

Post-intervention time point. Factor loadings displayed below each indicator. 

 

 After demonstrating that the latent mathematics achievement construct was characterized by 

configural (Step 1) and metric (Step 2) invariance, equality of the intercepts was investigated (see Figure 

3). As such, the intercepts for each of the six KeyMath-R subtests were constrained to equality across 

time while the two previous model constraints remained in place. Model identification was achieved by 

fixing the latent mathematics achievement mean and variance for the first time point to zero and one, 

respectively. In addition to the factor loadings, the estimates for intercept parameters are displayed above 

their indicator in Figure 3 and the asterisk indicates non-invariance. As displayed in Table 3, the model fit 

statistics are attenuated compared to the equal factor loadings model. Moreover, the model 2
SB of the 

equal intercepts solution was 321.45 (df = 134), which resulted in a significant difference test, 2
SBdiff (10) 

= 100.10, p < 0.001, suggesting that the equal intercepts solution fit significantly worse than the equal 

factor loadings solution specified in Step 2 (see Table 4).   

 Intercept parameters are interpreted as the model-implied origin of scale or where the mean 

would be given a level of the latent factor. Finding that the intercepts are not equal across the three time 



37 

points and that by forcing them to equality, model fit suffers, suggest that the indicator’s mean, changes 

significantly over time. Moreover, intercept non-invariance is evidence of instability of the scale of the 

latent mathematics achievement construct within the combined group context (identified in Figure 3 by 

the red intercept parameter with asterisk). 

 
 
Figure 3.Combined Group Model: Equivalent Intercepts. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention time point, 2 = Mid-intervention time point, 3 = 

Post-intervention time point. Factor loadings displayed below each indicator. Intercepts displayed above each indicator. Asterisk 

indicates non-invariance. 

 

 In summary, configural, metric, and scalar invariance were evaluated in a combined group model 

that included elementary school aged students with mild disabilities who participated in either a reading 

or mathematics intervention. It was demonstrated that a congeneric factor model provided the best 

representation of the underlying data structure at each of the three time points (i.e., equal form). Evidence 

of metric invariance (i.e., factor loading equivalence) also was established suggesting that the indicators 

evidenced comparable relationships to the latent mathematics achievement construct over time. In 

contrast, scalar invariance (i.e., intercept equivalence) could not be established implying that the 

indicator’s location parameters (means) changed over time.  

 In responding to Research Question 1, evidence of configural invariance within the combined 

group model provides support for the hypothesis that the nature (or structure) of mathematics 

achievement is equivalent in children with MIDs and children with RDs during the elementary school 

years. That is, the findings suggest that the structure of mathematics achievement is unidimensional in 

both populations. In regard to Research Question 2, evidence of configural and metric invariance provides 
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support suggesting that the measurement of mathematics achievement is temporally stable in the 

combined group model. Inferences concerning change (or growth) in this conceptual domain, however, 

are inconclusive due to finding intercept non-invariance across the three time points. It was anticipated 

that intercept non-invariance would emerge in the combined model as a result of student participation in 

one of two intervention conditions. Specifically, it was thought that students in the mathematics 

intervention would show an advantage over students who participated in a reading intervention in regard 

to mean mathematics achievement on the latent scale or with respect to one or more of the indicators. In 

order to identify sources of intercept non-invariance (and potential sources of intervention effects) follow-

up analyses were performed in a ‘joint group model’. 

 Question 1: Follow-up. In the previous analyses, children from both of the larger projects were 

combined such that children with MIDs and children with RDs who participated in either a reading or 

mathematics intervention condition were represented in a single group. Subsequently, ME/I was evaluated 

in this combined group. The results of which suggested that the latent mathematics achievement factor 

was congeneric and characterized by equivalent factor loadings across time; however, the intercept 

parameters varied across time. Due to the potential for multiple sources of non-invariance (e.g., between 

and within group across time), the combined group was separated into two groups for further ME/I 

evaluation. In this joint group context, groups were differentiated according to intervention condition 

assignment (reading or mathematics). Therefore, each group consisted of children from both special 

populations. As with the previous series of analyses, ME/I evaluation in this joint group context involved 

three primary analyses (i.e., equal form, factor loadings, and intercepts).  

 The first analysis in the joint group context specified a congeneric model between the two 

intervention groups across each of the three time points (see Figure 4). Thus, mathematics achievement 

was specified as one latent construct at each time point for children in the reading intervention group (n = 

253) and children in the mathematics intervention group (n = 149). Although correlated residuals and 

correlations between the latent mathematics achievement factors were specified, for ease in interpretation 

they are omitted below. Model identification was achieved by fixing the latent mathematics achievement 
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means and variances at each of the three time points to zero in both groups of children. The overall fit for 

the equal form solution is presented in Table 5. As with previous analyses, the 2
SB was significant; 

however, the corresponding fit statistics (see Table 5) provided evidence indicating that a unidimensional 

measurement model provided a good fit to the data. Thus, evaluation of equal form in the joint group 

context provided evidence of configural invariance between intervention groups across time. Further, 

because each intervention group is comprised of children with MIDs and children with RDs, this finding 

provides additional evidence suggesting that the structure (or nature) of mathematics achievement is 

fundamentally the same (i.e., unidimensional) in children with MIDs and children with RDs. 

 
 
Figure 4. Joint Group Model: Equal Form. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = 

Measurement, TIMO = Time/Money. T1 = Pre-intervention time point, T2 = Mid-intervention time point, T3 = Post-intervention 

time point. MATH = Mathematics achievement. Read Group = Reading intervention group, Math Group = Mathematics 

intervention group. 

 

 Given evidence of configural invariance, equality of factor loadings between groups for the three 

time points was investigated in the joint group context. Model identification was achieved by fixing the 

latent means to zero; however, the metric of mathematics achievement latent variance was set to one for 

the reading intervention group for the first time point, while freely estimated at the second and third time 
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points. Further, the reading intervention group served as the comparison group. Therefore, the latent 

variance for mathematics achievement was freely estimated at each of the three time points for the 

mathematics intervention group. The overall model fit and fit indices for the equal factor loadings 

solution are presented in Table 5. As displayed, the model fit indices suggest that the equal intercepts 

solution fits the data well. However, the model 2
SB of the equal factor loadings solution was 405.55 (df = 

253), which resulted in a significant difference test, 2
SBdiff (25) = 46.11, p < 0.01.  

Table 5. Measurement Invariance Evaluation of Mathematics Achievement: Joint Group Model  

  

2
SB (df) 2

SBdiff ∆df CFI RMSEA (90% CI) PRMSEA ≤ .05 SRMR 

 

Step 1.  

Equal Form 358.21 (228)***   .981 .053 (.043, .064) .289 .027 

 

Step 2.  

Equal Factor Loadings 405.55 (253)*** 46.11*** 25 .977 .055 (.045, .065) .204 .037 

 

Step 3. 

Equal Factor loadings (TIMO 

loading free in Math Group) 379.19 (250)*** 20.10 22 .981 .051 (.040, .061) .437 .033 

 

Step 4.  

Equal Intercepts 442.98 (272)*** 63.79*** 19 .975 .056 (.046, .065) .145 .039 

 

Step 5. 

Equal Intercepts: Numeration  379.19 (250)*** 00.00 0 .981 .051 (.040, .061) .437 .033 

 

Step 6. 

Equal Intercepts: Geometry 389.27 (255)*** 10.37 5 .980 .051 (.041, .061) .406 .033 

 

Step 7. 

Equal Intercepts: Addition 397.46 (257)*** 8.43* 2 .979 .052 (.042, .062) .346 

 

.034 

 

Step 8. (final model) 

Equal Intercepts: Subtraction 394.45 (260)*** 4.88 5 .980 .051 (.040, .061) .435 .034 

 

Step 9.  

Equal Intercepts: Measurement 423.24 (265)*** 25.91*** 5 .977 .055 (.045, .064) .212 .036 

Note. TIMO = Time/Money; 2
SB = Satorra-Bentler scaled 2; 2

SBdiff = difference test; ∆df = change in degrees of freedom; CFI = 

Comparative fit index, RMSEA = Root mean square error of approximation, PRMSEA ≤ .05 = Test of close fit, SRMR = 

Standardized root mean square residual. 
 *p < .05; ***p < .001. 

 

 Preliminary analyses of within group invariance (see Appendix 3) for the mathematics 

intervention group identified the Time/Money factor loadings as evidencing temporal non-invariance. The 

subsequent model (Step 3) therefore released the corresponding constraint and allowed the Time/Money 

factor loading to vary across time within the mathematics intervention group, but not the reading 
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intervention group. Model identification was achieved as in the previous analysis. This model 

specification provided a good fit to the data as characterized by the model fit indices. Moreover, 

compared to the equal form model, the addition of the factor loadings constraint (with Time/Money factor 

loading “free” for the mathematics group ) did not significantly reduce model fit, 2
SBdiff (22) = 20.10, p = 

0.53. Thus, five of the six factor loadings were fully invariant between groups across time.  

 As displayed in Figure 5 below, the factor loadings are the same for the reading and mathematics 

intervention groups at each time point for the Numeration (2.84), Geometry (2.84), Addition (2.39), 

Subtraction (1.74), and Measurement (2.68) subtests. The factor loadings for the Time/Money subtest, 

however, are the same at each of the three time points for the reading intervention group (2.11), while 

changing at each time point for the mathematics intervention group (1.92, 2.04, 2.66, for pre-, mid-, and 

post-intervention, respectively). Non-invariance of the Time/Money factor loading is further specified in 

Figure 5 by the red intercept parameter with asterisk. Non-invariance of the Time/Money subtest indicates 

that with each unit change in the latent mathematics achievement construct, the Time/Money subtest is 

expected to change differentially by time point for the mathematics intervention group, but not the 

reading intervention group. However, all other factor loadings are stable between groups across time. 

Thus, with one unit change in the latent mathematics achievement construct, the Numeration subtest is 

expected to change 2.84 units, the Geometry subtest, 2.84 units, the Addition subtest, 2.39 units, and so 

on. Moreover, expected change in the indicators is consistent across groups. Given this partially invariant 

factor loadings model, Figure 5 also includes estimates of the variance for the latent mathematics 

achievement construct for both intervention groups at each time point. Finally, note that as a result of 

non-invariance of the Time/Money factor loading within the mathematics intervention group, between 

group comparisons of Time/Money intercepts cannot be investigated. 

 Given partial invariance of factor loadings in the joint context, tests of equal intercepts were 

investigated. Model identification was achieved by fixing the latent variance and means to one and zero, 

respectively, for the reading intervention group. The remaining latent variances and means for the reading 

intervention group were freely estimated while all three latent variances and means for the mathematics 
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intervention group were freely estimated. The model results and difference testing (see Table 5) indicated 

that the addition of the intercepts’ equality constraint between groups across time for the Numeration, 

Geometry, Addition, Subtraction, and Measurement subtests (intercept equivalence was not evaluated for 

Time/Money due to factor loading non-invariance in the previous analysis) significantly reduced model 

fit. The model 2
SB of the equal intercepts solution was 442.98(df = 272), which resulted in a significant 

2 difference test, 2
SBdiff (19) = 63.79, p < 0.001, suggesting that the scale of the latent mathematics 

achievement is unstable (or inconsistent) between groups across time. In attempt to identify the specific 

source(s) of intercept non-invariance, subsequent analyses systematically examined intercept equivalence 

between groups across time one indicator at-a-time in a step-wise fashion. 

 
 
Figure 5. Joint Group Model: Equivalent Factor Loadings. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention time point, 2 = Mid-intervention time point, 3 = 

Post-intervention time point. σ2 = factor variance. MATH = Mathematics achievement. Read Group = Reading intervention 

group, Math Group = Mathematics intervention group. Factor loadings displayed inside of the figure. Asterisk indicates non-

invariance. 
  

 As displayed in Table 5, these analyses built from the equal factor loadings model where the 

Time/Money factor loading was allowed to vary across time within the mathematics intervention group 

(Step 3). In Steps 5 through 9, the hypothesis that each indicator’s (Numeration, Geometry, Addition, 



43 

Subtraction, Measurement) intercept was invariant between groups and across time was investigated. Of 

the five intercepts, the results of ME/I analyses suggested that the Numeration, (Step 5), Geometry (Step 

6), and Subtraction (Step 8) intercepts were invariant between groups across time. Thus, the means for 

Numeration, 6.16, Geometry, 5.39, and Subtraction, 1.97, were consistent between groups across time. In 

contrast, ME/I analyses suggested that the Addition (Step 7) and Measurement (Step 9) intercepts were 

non-invariant between groups across time as evidenced by significantly reduced model fit compared to 

the previously specified model. Thus, the means for the Addition and Measurement subtests were 

inconsistent between groups across time. The final model is displayed in Figure 6. As in previous figures, 

residual and latent factor correlations are omitted for ease in interpretation (see Appendix 4 for final 

model residual and latent correlations). Figure 6 also includes estimates for the latent mathematics 

achievement means between groups for each time points. In general, intercept non-invariance suggests 

that one group evidences an advantage on a given subtest; however, in examining Figure 6, between 

group differences appear to be minimal. Rather than a group advantage, intercept non-invariance likely is 

due to within group measurement inconsistency. For instance, in examining Figure 7, the Addition 

intercepts appear to be consistent within the mathematics intervention group and between groups at the 

pre-intervention time point. However, the Addition intercepts evidence a marked increase between the 

pre- and mid-intervention time points within the reading intervention group. For the Measurement subtest, 

intercepts for the reading group appear stable across time and between groups at time three and perhaps, 

time two. Thus, intercept non-invariance for the Measurement subtest is likely due to the marked decrease 

in this parameter estimate from time one (4.60) to time two (3.78) within the mathematics group. In 

summary, ME/I evaluation of mathematics achievement demonstrated that the latent construct was 

characterized by configural invariance (i.e., equal form) and partial metric (i.e., factor loadings) and scalar 

(i.e., intercept) invariance between the two intervention groups across time. The final model parameter 

estimates for each indicator’s factor loading, intercept, and residual variance by intervention group and 

time point are displayed in Table 6.  
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Figure 6. Joint Group Model: Equivalent Intercepts. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention time point, 2 = Mid-intervention time point, 3 = 

Post-intervention time point. σ2 = factor variances, µ = factor means. MATH = Mathematics achievement. Read Group = Reading 

intervention group, Math Group = Mathematics intervention group. Factor loadings displayed inside of the figure. Intercepts 

displayed outside each indicator. Asterisk indicates non-invariance. 

 
 To better understand the non-invariance that characterized the Addition, Measurement, and 

Time/Money intercepts, longitudinal plots of the intercepts differentiated by intervention condition are 

displayed below. In regard to the Addition (Figure 7) and Measurement (Figure 8) subtests, they were 

characterized by equivalent factor loadings between groups across the three time points. As displayed in 

Figure 7, the reading and mathematics group evidenced similar intercepts for the Addition subtest at the 

pre-intervention time point; however, the means diverge at the intervention mid-point (difference of 0.48) 

and maintain an attenuated difference at post-intervention (difference of 0.37). In contrast, Figure 8 

indicates that there was a pre-existing group difference in mean achievement for the Measurement 

indicator that provided an initial advantage for the mathematics group over the reading group (difference 

of 0.56). By the second and third time point, however, this advantage was negligible (difference of 0.13 

and 0.001, for the second and third time points, respectively). With respect to the final indicator, 

Time/Money (see Figure 9), this was the only subtest that evidenced temporal non-invariance for the 



45 

factor loadings (i.e., for the mathematics group). Consequently, the intercept plots are provided for 

descriptive purposes only as the metric of measurement varies between groups.  

 In summary, configural, metric, and scalar invariance were evaluated in a joint group context that 

differentiated children with MIDs and children with RDs according to their intervention condition 

participation. Sources of indicator non-invariance were identified. It was demonstrated that a congeneric 

factor model (i.e., equal form) provided the best representation of the underlying factor structure between 

groups across time. Evidence of metric invariance (i.e., factor loading equivalence) also was established 

suggesting that the indicators evidenced comparable relationships to the latent mathematics achievement 

construct between groups across time (with the exception of Time/Money loading in the mathematics 

group). Evidence of partial scalar invariance also was obtained. Specifically, the intercepts for 

Numeration, Geometry, and Subtraction were temporally stable between groups across time, while the 

intercepts for Addition, Measurement, and Time/Money were characterized by non-invariance. In 

responding to Research Question 1, the results provided consistent evidence of configural invariance 

indicating that the latent mathematics achievement construct was characterized by one latent factor. The 

absence of configural invariance in the combined or joint group context at the pre-intervention time point 

would suggest that the structure of mathematics achievement in children with MIDs was fundamentally 

different than that in children with RDs. This difference likely would have manifested as poor model fit 

and unacceptable model fit statistics for the configural invariance analyses. As displayed in Tables 4 and 

5, model fit indices concerned with equal form provided support for configural invariance. Thus, the 

hypothesis that the nature (or structure) of mathematics achievement is equivalent in children with MIDs 

and children with RDs is supported. 

 

 

 

 



46 

Table 6. Joint Group Model: Final Model Parameter Estimates 

 

 

 

Group 

 

Factor Loadings (SD) Factor Intercepts (SD) Residual Variances (SD) 

Reading Math Reading Math Reading Math 

 

Math1 

 

Numeration 2.85 (.13) 2.85 (.13) 6.16 (.19) 6.16 (.19) 2.03 (.28) 1.80 (.30) 

 

Geometry 2.86 (.13) 2.86 (.13) 5.39 (.21) 5.39 (.21) 6.44 (.59) 6.22 (.82) 

 

Addition 2.39 (.12) 2.39 (.12) 4.14 (.20) 4.26 (.21) 3.22 (.45) 1.68 (.26) 

 

Subtraction 1.72 (.09) 1.72 (.09) 1.97 (.12) 1.97 (.12) 1.38 (.18) 0.85 (.12) 

 

Measurement 2.69 (.13) 2.69 (.13) 4.04 (.21) 4.60 (.24) 3.26 (.41) 3.06 (.41) 

 

Time/Money 2.11 (.15)† 
1.92 (.14) 2.98 (.16) 2.57 (.17) 2.39 (.25) 1.76 (.26) 

 

Math2 

 

Numeration 2.85 (.13) 2.85 (.13) 6.16 (.19) 6.16 (.19) 2.22 (.27) 1.37 (.22) 

 

Geometry 2.86 (.13) 2.86 (.13) 5.39 (.21) 5.39 (.21) 6.83 (.64) 7.01 (.88) 

 

Addition 2.39 (.12) 2.39 (.12) 4.62 (.21) 4.14 (.22) 3.59 (.41) 2.40 (.32) 

 

Subtraction 1.72 (.09) 1.72 (.09) 1.97 (.12) 1.97 (.12) 2.01 (.24) 1.47 (.26) 

 

Measurement 2.69 (.13) 2.69 (.13) 3.91 (.21) 3.78 (.25) 3.27 (.38) 3.79 (.51) 

 

Time/Money 2.11 (.15)† 2.04 (.16) 3.11 (.18) 2.63 (.18) 2.64 (.34) 2.02 (.35) 

 

Math3 

 

Numeration 2.85 (.13) 2.85 (.13) 6.16 (.19) 6.16 (.19) 2.49 (.54) 2.59 (.40) 

  

Geometry 2.86 (.13) 2.86 (.13) 5.39 (.21) 5.39 (.21) 5.81 (.60) 4.85 (.58) 

  

Addition 2.39 (.12) 2.39 (.12) 4.63 (.22) 4.26 (.22) 4.12 (.48) 3.05 (.45) 

  

Subtraction 1.72 (.09) 1.72 (.09) 1.97 (.12) 1.97 (.12) 1.76 (.21) 2.04 (.43) 

  

Measurement 2.69 (.13) 2.69 (.13) 3.69 (.22) 3.69 (.26) 3.35 (.45) 3.97 (.52) 

  

Time/Money 2.11 (.15)† 2.66 (.22) 3.17 (.19) 2.75 (.23) 4.06 (.49) 3.16 (.62) 
Note. Math1 = Pre-intervention, Math2 = Mid-point of intervention, Math3 = Post-intervention; Model fit statistics are 2

SB 

(260) = 394.45, p = .001, CFI = .98, RMSEA = .051 (90% CI = .040-.061), SRMR = .034; † = Constrained factor loading within 

the reading group; bold indicates a freely varying parameter. 
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Figure 7. Addition Intercepts by Intervention Group. Time 1 = Pre-intervention, Time 2 = Intervention mid-point, Time 3 = Post-

intervention. 

 

 

 
 

Figure 8. Measurement Intercepts by Intervention Group. Time 1 = Pre-intervention, Time 2 = Intervention mid-point, Time 3 = 

Post-intervention. 
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Figure 9. Time/Money Intercepts by Intervention Group. Time 1 = Pre-intervention, Time 2 = Intervention mid-point, Time 3 = 

Post-intervention. 

 

 In responding to Research Question 2, the results provided consistent evidence of metric 

invariance. In the combined group model, the results indicated that the factor loadings for all six 

mathematics indicators were monotonically invariant (i.e., consistently increasing) and proportional. In 

contrast, the results of the joint group model indicated that the factor loadings for the six indicators were 

monotonically invariant and proportional in both intervention groups, with the exception of the 

Time/Money factor loadings in the mathematics group, which were characterized by non-invariance. This 

source of non-invariance is likely due to the substantial increase in the Time/Money factor loading from 

mid- to post-intervention. As result, the amount of predicted change on the Time/Money subtest given a 

unit change in the latent mathematics achievement factor varied across time within the mathematics 

group. In regard to intercept invariance in the combined group model, the results indicated that the 

addition of the intercept constraint significantly reduced model fit (see Table 4). Therefore, intercept 

invariance was evaluated within the context of the joint group model where students were differentiated 

according to their participation in a mathematics or a reading intervention condition. The results of this 

series of analyses suggested that three intercepts (Numeration, Geometry, and Subtraction) were 

temporally stable between groups across time, while three others (Addition, Measurement, Time/Money) 
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were not. Thus, the collective results indicate that the mathematics achievement factor is characterized by 

the same configuration and pattern of indicator-factor loadings. Moreover, half of the intercepts 

demonstrated longitudinal stability between groups, while the non-invariance evidenced does not appear 

to be due to intervention effects (see Figures 7 and 8); as the indicator means do not favor students in the 

mathematics intervention condition. Thus, the hypothesis that the measurement of mathematics 

achievement is equivalent in children with MIDs and children with RDs, who were differentiated 

according to intervention condition participation, is supported as evidenced by the strong, partially 

invariant measurement model. 

 In an effort to further substantiate the previous results and rule out an alternative hypothesis, an 

additional analysis was run. For this analysis, a fully invariant measurement model (omnibus test) that 

differentiated children according to disability status and intervention assignment was specified. This 

specification resulted in four separate groups. For children with MID, one group consisted of 83 children 

that participated in the mathematics intervention, while the other consisted of 182 that participated in a 

reading intervention. For children with RD, one group consisted of 65 children that participated in the 

mathematics intervention, while the other consisted of 70 children that participated in a reading 

intervention. Evaluation of model fit and approximate fit indices, χ2
SB (df) = 1023.26 (566), p < .001, CFI 

= 0.916, RMSEA (90% CI) = 0.090 (0.81, 0.099), pRMSEA ≤ .05 < .0001, SRMR = 0.111, did not support 

the tenability of this model over those reported in detail in this study. Therefore, the four group model 

specification was rejected as a tenable solution in favor of the two group approach with children 

differentiated by intervention condition participation. 

 In conclusion, the results of ME/I evaluation provide evidence of a strong, partially invariant 

model of mathematics achievement for children with MIDs and children with RDs differentiated 

according to intervention condition. Specifically, strong factorial invariance held for a subset of the 

measured indicators (Numeration, Geometry, Subtraction), whereas partial invariance held for the other 

subset (Addition, Measurement, Time/Money). It therefore follows that a unit change in the latent 

mathematics achievement construct is associated with comparable changes between groups across time. 
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Further, the collective results demonstrate that mean change over time in the latent mathematics 

achievement construct is due to true change and not changes in the structure or measurement of 

mathematics achievement (for discussion on true change, see Golembiewski, Billingsley, & Yeager, 

1976; Vandenberg & Lance, 2000). Consequently, inferences and conclusions concerning group 

differences and mathematics achievement growth within the present study are meaningful.  

3.6 Evaluating Students’ Response to Mathematics Intervention 

 Question 3. Evaluation of the structure (or nature) of mathematics achievement and its 

measurement provided evidence for a strong, partially invariant model of mathematics achievement. 

Because the measurement of mathematics achievement was reliable and valid, inferences and conclusions 

concerning growth and subsequently, evaluation of students’ response to a mathematics intervention are 

meaningful. Therefore, Research Question 3, which examines mathematics achievement growth, was 

investigated. As discussed, students with MIDs and students with RDs comprised each intervention 

condition. Further, whereas the previous analyses were concerned with the individual indicators 

(KeyMath-R subtests), analyses investigating response to intervention are focused on mathematics 

achievement as measured on the latent scale. Latent mathematics achievement includes information from 

all six indicators because configural and partial metric and scalar invariance was established.  

 In order to investigate mathematics achievement growth and make group comparisons, the 

reading intervention group was specified as the reference group by fixing their latent mean at the pre-

intervention time point to 0.0 (see Figure 10). All other latent means were freely estimated. Comparison 

of the groups, then, was based on the difference from zero on the latent scale. It was originally projected 

that latent growth curves would be estimated separately for each intervention group. However, 

preliminary analyses suggested that mathematics achievement growth was curvilinear for the mathematics 

intervention group. Linear growth curves for the latent mathematics achievement construct were therefore 

not specified in order to avoid model misfit as evidenced by model fit indices test statistics.  

 Although latent growth curves were not estimated, group differences for the latent means were 

tested. Difference testing of latent mathematics achievement means between groups at the second and 
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third time points, was carried out using Mplus software. The results suggest that children in the 

mathematics intervention group evidenced an advantage over those in the reading intervention group at 

mid-intervention, difference = 0.137 (0.13), p = 0.29, and post-intervention, difference = 0.105 (0.14), p 

= 0.44. Although, these mathematics achievement mean differences were not statistically significant, they 

are in latent score units and therefore, can be interpreted as standardized deviations relative to 

mathematics achievement at the pre-intervention time point. Therefore, the mathematics group’s latent 

mean (µ = -0.041) represents a deviation from the reference group and indicates that, on average, students 

in the mathematics intervention group scored 0.041 units lower than their peers in the reading intervention 

group. Latent change scores were then calculated by taking the difference of each group’s post- and pre-

intervention latent means (0.582 – 0.00 = 0.582, and 0.687 – [-0.041] = 0.728, for the reading and 

mathematics group, respectively) the results indicate that, in addition to evidencing a small advantage at 

mid- and post-intervention assessment, the mathematics group demonstrated greater growth (0.728) 

compared to the reading group (0.582) over the course of the intervention (difference = 0.146). Thus, on 

average, students that participated in the mathematics intervention condition started out with lower 

mathematics achievement scores compared to those in the reading intervention conditions. However, on 

average, by the end of the school year (and completion of the students respective interventions), students 

in the mathematics group outperformed those in the reading group. In short, their performance caught up 

with and surpassed that of their peers in the reading intervention group. 
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Figure 10. Longitudinal Mathematics Achievement by Intervention Group. Scores reported are latent means (i.e., kappa) with 

standard error bars; MATH = Mathematics achievement; 1 = Pre-intervention, 2 = Intervention mid-point, 3 = Post-intervention. 

Group = Intervention group.  

 

3.7 Treatment Effects 

 In considering treatment effects (or effect size) in the present study, the reported growth 

parameters were 0.582 and 0.728 for the reading and mathematics groups, respectively. These latent 

growth parameters indicate that, on average, students in each intervention condition evidenced improved 

mathematics achievement over the school year with the students in the mathematics group showing an 

advantage, 0.146, over students in the reading group. The effect size reported in the present study is 

somewhat stronger than that reported by McKenzie, Marchand-Martella, Martella, and Moore (2005) who 

utilized CMC Level K to instruct preschool children. Their 16 participants included children with (n = 5) 

and without (n = 11) developmental delays; each of which completed all 30 lessons of CMC Level K 

(Engelmann & Becker, 1995). The results of McKenzie et al. (2005) indicated that the group of students 

with developmental delay evidenced an effect size of 0.54, whereas the group of students without 

developmental delays evidenced an effect size of 0.61, on the Battelle Developmental Inventory 

(Newborg et al., 1984). In addition to the effect sizes reported in the present study being somewhat 

stronger than that reported in McKenzie et al. (2005), it also is important to note that the presently 
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reported estimates are corrected for measurement error and are therefore, unbiased estimates. That is, the 

effect sizes reported in McKenzie et al. (2005) were not corrected for measurement error and are therefore 

biased estimates. Consequently, they are not necessarily reliable estimates of treatment effects in the 

population from which the sample was drawn. 

 In an attempt to compare the present effect size estimates with that of the discussed literature (i.e., 

Van Luit & Naglieri, 1999; Van Luit & Schopman, 2000), Cohen’s d with pooled variance (represented in 

the denominator) was estimated for overall raw mathematics achievement. This variable was created by 

taking the sum of each participant’s scores for the six KeyMath-R subtests at the pre- and post-

intervention time points, respectively. Table 7 displays the data used to estimate Cohen’s d and the 

procedures for calculating effect size as found in Van Luit and Naglieri (1999) and Van Luit and 

Schopman (2000). In comparison to the cited literature, the magnitudes of the effect sizes reported in the 

present study are weaker. This finding is likely due in part to the use of a norm-referenced measure of 

mathematics achievement as opposed to a researcher designed test. Norm-referenced assessments can 

lack sensitivity to detect subtle changes in an academic domain, especially when the target measure (i.e., 

the KeyMath-R) fails to include children with disabilities in the standardization procedures (see the 

KeyMath-R examiner’s manual). Thus, it is not uncommon for treatment effect size estimates for 

criterion-referenced measures (teacher or researcher developed) to be stronger in magnitude compared to 

effect size estimates for norm-referenced measures (Berkeley, Scruggs, & Mastropieri, 2010). Further 

explanation concerning the effect size differences between the present study and the cited literature is 

presented in the Discussion section below. 
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Table 7. Pre- and Post-Intervention Means, Standard Deviations, and Effect Sizes Across Studies 
 

 

 

Pre-Intervention 

 

Post-Intervention 

 

Study n M SD n M SD Pre-Post Effecta 

 

Van Luit & Naglieri (1999) 

       

  

 Intervention 42 11.3 6.5 42 31.9 5.4 3.45 

  

 Comparison 

 

42 

 

12.5 

 

6.7 

 

42 

 

18.2 

 

8.2 

 

0.76 

        

Van Luit & Schopman (2000)        

  

 Intervention 62 46.1 9.3 62 59.5 9.3 1.44 

 

 Comparison 

 

62 46.9 9.3 62 53.3 9.4 0.68 

 

Present Study: Foster (2014)        

  

 Intervention 149 24.50 15.53 143 35.23 19.98 0.60 

 

 Comparison 246 24.25 15.26 238 34.32 18.05 0.60 

Note. aEffect size = 
      

√
        

           
 

      

 

 

3.8 Differential Indicator Bias 

 In an attempt to describe the potential differential effects of the non-invariant indicators, the 

expected observed scores for the mathematics and reading intervention groups were evaluated. In the 

present context, differential item functioning refers to the between group difference in observed scores for 

a given mathematics subtest when the groups have the same value of the underlying attribute (McDonald, 

1999). Thus, students in the mathematics and reading groups who have the same common factor score can 

be expected to have different observed scores on the non-invariant indicators (i.e., Addition, 

Measurement, Time/Money). The following is the indicator-specific equation used to examine differential 

subtest functioning, Ygmt = τ + λ(η) + ε, where Y is the expected observed score for an individual in 

intervention group g(Math = 0; Reading = 1), on subtest m(A = Addition; M = Measurement, T = Time/Money), for time point t(3 = post-

intervention). Tau, τ, represents the group, measure, and time specific intercept; lambda, λ, the group, measure 

and time specific factor loading; eta, η, the strength of the underlying attribute; and epsilon, ε, the residual 
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effect that is assumed to be zero. Thus, using the intercept and factor loadings for the non-invariant 

indicators at the post-intervention time point, while setting eta (η) to -1, 0, +1, respectively, results in the 

equations and predicted observed scores displayed in Table 8.  

 As displayed in Table 8, of the three non-invariant indicators, the observed scores for the 

Measurement subtest at the post-intervention time point appears to be comparable between groups (Y1M3 

and Y0M3 = 1.00, 3.69, 6.38 when η = -1, 0, +1, respectively). Therefore, non-invariance of this indicator is 

likely due to the between group difference at the first time point, or the within group difference for the 

mathematics group from the first to second time points (see Table 6); the latter of which appears to be the 

largest in magnitude. With respect to the predicted observed scores for the Addition subtest at post-

intervention (see Figure 11), the results suggest that the reading group evidenced a slight advantage at 

each value (-1, 0, +1) of the underlying latent factor (i.e., η). Finally, for Time/Money, there appears to be 

an interaction such that when η = -1 and when η = 0, there is an advantage for the reading group, while at 

eta +1, there is a slight advantage for the mathematics group; however, this latter finding must be 

interpreted with caution as the Time/Money factor loading was freely estimated in the mathematics group 

but not the reading group. Consequently, the metric for the Time/Money subtest, although relative to the 

latent scale, is not necessarily equivalent across the intervention groups. In summary, differential 

functioning of the non-invariant subtests is minimal and likely does not interfere with using the KeyMath-

R to measure mathematics achievement growth. Moreover, the displayed discrepancies are likely not of 

sufficient magnitude to interfere with the use of the KeyMath-R in the groups being compared (see 

Millsap, 2005).  
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Table 8. Predicted Observed Scores by Group for Non-Invariant Indicators at Post-Intervention 

  

Reading Group 

 

Mathematics Group 

 

Addition 

 

Y1A3 = 4.63 + 2.39(-1) + 0 = 2.24 

 

Y1A3 = 4.63 + 2.39(0) + 0 = 4.63 

 

Y1A3 = 4.63 + 2.39(+1) + 0 = 7.02 

 

Y0A3 = 4.26 + 2.39(-1) + 0 = 1.87 

 

Y0A3 = 4.26 + 2.39(0) + 0 = 4.26 

 

Y0A3 = 4.26 + 2.39(+1) + 0 = 6.65 

 

Measurement 

 

Y1M3 = 3.69 + 2.69(-1) + 0 = 1.00 

 

Y1M3 = 3.69 + 2.69(0) + 0 = 3.69 

 

Y1M3 = 3.69 + 2.69(+1) + 0 = 6.38 

 

Y0M3 = 3.69 + 2.69(-1) + 0 = 1.00 

 

Y0M3 = 3.69 + 2.69(0) + 0 = 3.69 

 

Y0M3 = 3.69 + 2.69(+1) + 0 = 6.38 

 

Time/Money 

 

Y1T3 = 3.17 + 2.11(-1) + 0 = 1.06 

 

Y1T3 = 3.17 + 2.11(0) + 0 = 3.17 

 

Y1T3 = 3.17 + 2.11(+1) + 0 = 5.28 

 

Y0T3 = 2.75 + 2.66(-1) + 0 = 0.09 

 

Y0T3 = 2.75 + 2.66(0) + 0 = 2.75 

 

Y0T3 = 2.75 + 2.66(+1) + 0 = 5.41 
Note. Indicator-specific equations, Ygmt = τ + λ(η) + ε, Y is the expected observed score for an individual in the math (0) or 

reading (1) group, on the Addition (A), Measurement (M), or Time/Money (T) subtest, for the post-intervention time point (3). 

Tau (τ) represents the group, measure, and time specific intercept; lambda (λ) represents the group, measure, and time specific 

factor loading; eta (η) represents the factor loading (or underlying attribute); and epsilon (ε) represents residual effects and is 

assumed to be zero. 

 
 

 
Figure 11. Predicted Post-Intervention Observed Scores for Addition by Intervention Group. Eta (η) represents the value of the 

underlying attribute. 
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Figure 12. Predicted Post-Intervention Observed Scores for Time/Money by Intervention Group. Eta (η) represents the value of 

the underlying attribute. 
 

 In summary, difference testing of latent means, although not significant, provided evidence that 

indicates that students who participated in the mathematics intervention condition showed stronger 

mathematics achievement at mid- and post-intervention compared to their peers who participated in a 

reading intervention condition. Further, comparisons of mathematics achievement growth from pre- to 

post-intervention provided evidence indicating that, on average, students in the mathematics intervention 

group improved more than their peers in the reading intervention group. In regard to effect size, the 

present estimates are corrected for measurement error and provide evidence of a small treatment effect 

according to the latent scale over time, 0.146 latent units, in favor of the mathematics group. Finally, 

evaluation of differential subtest functioning suggests that non-invariance evidenced at post-intervention 

is minimal and likely does not interfere with reliability and validity of using the KeyMath-R to document 

mathematics achievement growth in children with MIDs and children with RDs. Therefore, in response to 

Research Question 3, the results provide support for the conclusion that students responded favorably to 

the mathematics intervention, albeit, a small effect. 

4. DISCUSSION 

 The overarching goal of this dissertation was to examine the nature of mathematics achievement 
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and response to intervention in children with MIDs and children with RDs. In doing so, the present study 

extends the mathematics achievement literature in several ways. To begin with, students with MIDs have 

only been included in a few relatively large randomized control studies related to mathematics. 

Consequently, very little is known about their mathematical development (Branakaer, Ghesquière, & De 

Smedt, 2011; Foster et al., 2014) and their response to intervention. Furthermore, the present study is the 

first to systematically examine the structure of mathematics achievement in children with MIDs and 

children with RDs. Additionally, mathematics achievement growth was investigated after establishing a 

reliable and valid measurement model, which is rarely completed in applied research (Vandenberg & 

Lance, 2000). Finally, the research methodology employed, CFA with ME/I evaluation, provides 

advantages (e.g., correction for measurement error) that traditional methods (i.e., ANOVA) cannot (see 

Vandenberg & Lance, 2000).  

4.1 The Structure of Mathematics Achievement 

  Using six subtests of the KeyMath-R (i.e., Numeration, Geometry, Addition, Subtraction, 

Measurement, Time/Money), the results of this study confirm the hypothesis that the structure (and 

therefore, nature) of mathematics achievement is equivalent in elementary aged children with MIDs and 

children with RDs. Specifically, the structure of mathematics achievement was evaluated in the combined 

group and joint group context. In the former context, the single combined group consisted of children 

from both special populations and intervention conditions, whereas in the latter context, groups were 

differentiated according to intervention condition participation (not disability status). Results for each 

model supported the hypothesis that the underlying factor structure of mathematics achievement was 

unidimensional. The unidimensional model provides a parsimonious and substantively meaningful model 

of mathematics achievement; that early mathematical development is comprised of a set of highly 

interrelated skills. Further, because the equal form model specification fit the data well in the combined 

group and the joint group context, it can be concluded that the structure of mathematics achievement is 

equivalent in children with MIDs and children with RDs. Had the equal form model specification not fit 

the data well (in either series of models), additional analyses would have been carried out to identify 
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sources of non-invariance. Such analyses may have led to differentiating students according to 

intervention condition assignment and disability status.  

 These present results are consistent with previous research (Parmar et al., 1994) that concluded 

that students with MR and students with LD are not qualitatively different despite, students with RDs, on 

average, demonstrating stronger performance than students with MIDs on several measures of 

mathematics achievement (see Appendix 1). Taken together, the results of the present study and those of 

Parmar et al. (1994) indicate that disability group differences are only quantitative in nature. Thus, 

mathematics achievement in these two special populations is fundamentally the same. It is not the case, 

for example, that the structure of mathematics achievement in children with MIDs is best described as 

consisting of one domain (e.g., global mathematics achievement), whereas for children with RDs, this 

conceptual domain is best described as consisting of two areas (e.g., basic concepts and problem 

solving/reasoning). Moreover, because of the longitudinal design employed in the present study, it can be 

concluded that children with MIDs are developing mathematics achievement in the same manner, with 

the same structure, as their peers with RDs; and given that children with RDs evidence mathematics 

development that is most closely related to typically achieving children (i.e., of children with MD, RD, 

and MDRD), children with MIDs and RDs likely are developing mathematics achievement with the same 

structure as their typically achieving peers.  

 Other measurement characteristics of mathematics achievement, metric and scalar invariance 

were also evaluated in the present study. With regard to the former, evaluation of the factor loadings 

established that the metric of measurement in mathematics achievement was largely equivalent. That is, 

factor-loading parameters (except for Time/Money) were in the same order of magnitude (i.e., 

monotonically invariant) and proportional between groups for each of the three time points. Non-

invariance that characterized the factor loading for the Time/Money subtest in the mathematics group may 

have been due to floor effects present at the pre-intervention time point. That is, students in the 

mathematics intervention condition, on average, performed below their peers at each of the three time 

points and a substantial number of students has a score of 0 at the baseline time point; however, as 
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students in the mathematics condition improved on the Time/Money subtest at mid- and post-intervention 

(i.e., the number of students with a score of 0 decreased; see Tables 1, 2, and 3), the factor loadings 

increased in strength and variability over time, despite students showing minimal improvement on this 

subtest.  

 With regard to scalar invariance, the lack of intercept non-invariance in the combined group 

model provided the impetus to evaluate ME/I in the joint group context. Within the latter model, students 

were differentiated by intervention condition participation. Partial ME/I was then pursued because 

instructional effects can show up as differences in measurement parameters, especially parameters 

concerned with mean achievement between groups (McArdle, 1996). The results of partial ME/I 

evaluation indicated that three of the six indicator’s intercepts (Numeration, Geometry, Subtraction) were 

invariant in the joint group context. Establishing intercept invariance (albeit, partial invariance) indicates 

that a unit change in the latent construct is associated with comparable changes in the invariant indicator 

between groups across time. Further, intercept invariance establishes that longitudinal change can be 

attributed to true change in mathematics achievement and not changes related to measurement of the 

conceptual construct. Thus, the Numeration, Geometry, and Subtraction subtests showed comparable 

temporal change between groups. 

 With respect to the three non-invariant intercepts, findings related to the Addition subtest may be 

in part be due to benefits derived from participating in a reading intervention. That is, reading intervention 

students may have benefitted from the sound-symbol associations they were learning as evidenced by the 

increased addition intercepts (of about 0.5 an item) characteristic of this group’s trajectory (see Figure 7). 

In particular, participation in a reading intervention may have improved students’ retrieval of information 

(e.g., counting knowledge, computational strategies, long-term memory representations of basic 

arithmetic facts) from semantic memory, which enables the development of more complex mathematical 

skills (Geary, 1993; Geary & Burlingham-Dubree, 1989; Kaye, 1986).  

 For the Measurement subtest, intercept non-invariance suggested that the mathematics group 

showed an advantage over the reading group at the pre-intervention time point. Despite this early group 
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difference, achievement on the Measurement subtest is similar at the mid- and post-intervention time 

points. This finding may indicate that different students differ on the average latent score at the pre-

intervention time point and that a pre-existing group difference existed despite randomization to study 

conditions. Because children were grouped in part according to reading achievement scores and then 

randomly assigned to intervention conditions, a language retrieval difference (i.e., rapid autonomized 

naming) between groups may be responsible for non-invariance that characterized the Measurement 

subtest as well as that exhibited by the Addition and Time/Money subtests.  

 In summary, some evidence of indicator non-invariance was identified; however, evaluation of 

ME/I between groups across the three time points established a strong, partially invariant model of 

mathematics achievement. Thus, the indicators in the present study (Numeration, Geometry, Addition, 

Subtraction, Measurement, Time/Money), reliably and validly assessed mathematics achievement in to 

groups of children with mild disabilities. Further, the establishment of longitudinal ME/I is crucial to 

evaluating temporal change in a construct; without longitudinal ME/I, inferences concerning longitudinal 

growth cannot be unambiguously interpreted (Brown, 2006; Horn & McArdle, 1992). Establishing that 

mathematics achievement in the present study was characterized by comparable psychometric properties 

(equivalent form, factor loadings and intercepts) between groups across time, satisfies necessary 

conditions for evaluation and inferences concerning group differences and longitudinal change 

meaningful (Bryne et al., 1989; Muthen & Christoffersson, 1981).  

4.2 Response to Mathematics Intervention 

 In the present study, it was projected that latent growth curves would be utilized to examine 

mathematics achievement growth. However, the data for the mathematics intervention group suggested 

that growth in mathematics achievement was curvilinear. It was therefore decided that latent growth 

models would not be estimated for a few reasons. To begin with, forcing the present curvilinear 

mathematics achievement data to fit a linear function would be model misspecification and evidenced by 

poor model fit test statistics. Further, the present data were limited to three time points. Without having 

data from four or more time points, the nature of change (or shape) that can be modeled is limited (Little, 
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2005). For instance, with data from four time points, change could be modeled as a quadratic function. 

Finally, although growth curves could have been investigated more generally, it was important to stay 

with the unbiased latent markers for mathematics achievement as this statistical methodology represents a 

strength in the present study compared to those that rely on traditional methods.  

 Although, latent growth models were not estimated, latent growth was examined through 

difference testing of mean achievement at mid- and post-intervention. As with modeling latent growth 

curves, difference testing of latent mean achievement is advantageous. This is because random error 

variance is separated out of the latent construct. In doing so, the biasing effects of random measurement 

errors can be accounted for (Medsker, Williams, & Holahan, 1994) and the distorting effects of 

measurement error on parameter estimates are mitigated (Chan, 1998; Vandenberg & Lance, 2000). 

Consequently, mean achievement represented in a latent variable is free of error. 

 Examination of differences in latent means at mid- and post-intervention indicated that the 

students in the mathematics group evidenced a small advantage over their peers who participated in a 

reading intervention. Although group differences at each of the time points were not statistically 

significant, these differences are in latent score units and therefore, can be interpreted as standard units 

relative to mathematics achievement in the reading intervention group at the pre-intervention time point. 

Thus, the 0.137 and 0.105 differences between the mathematics and reading group, at mid- and post-

intervention can be interpreted as a small treatment effect. In addition to these group differences, the 

reported growth parameters indicated that, on average, students in the mathematics group evidenced more 

growth (as defined by total change in latent score units) from the pre- to post-intervention time points 

(between group difference of 0.146 over the school year in favor of the mathematics group).  

 In comparing the treatment effects in the present study with those in the discussed literature (Van 

Luit & Naglieri, 1999; Van Luit & Schopman, 2000), the effect size for the present sample’s total 

mathematics achievement raw mean (and standard deviation) at the pre- and post-intervention time points, 

was computed as in the cited studies (i.e., using the Cohen’s d formula reported in Table 7). Although, the 

effect sizes reported in the present study are weaker in magnitude than those in Van Luit and Naglieri 
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(1999) and Van Luit and Schopman (2000), there are several explanations for this difference. The present 

study utilized a norm-referenced measure (the KeyMath-R) developed to assess mathematics skills across 

children in kindergarten through ninth grade. Consequently, the 18 or 24 items that characterize each 

subtest may lack sensitivity to measure subtle intervention effects in elementary aged children with mild 

disabilities. In contrast, Van Luit and Naglieri (1999) utilized parallel versions of a researcher designed 

measure that consisted of 40 items each (20 multiplication and 20 division). Consequently, it is not 

surprising that the effect sizes reported in Van Luit and Naglieri (1999) were stronger than in the present 

study as researcher designed measures are often more sensitive to treatment effects than norm-referenced 

measures (Berkeley, Scruggs, & Mastropieri, 2010). In Van Luit and Schopman (2000) parallel versions 

of a norm-referenced measure (Utrecht Test for Number Sense; Van Luit, Van de Rijt, & Pennings, 1994) 

that included 40 items measuring counting skills and mathematics prerequisites was utilized. This 

measure of early numeracy consisted of eight parts: concepts of comparison, classification, 

correspondence, seriation, counting skills (using numerals, synchronized and shortened counting, and 

resultative counting), and general understanding of number. Thus, in both of Van Luit’s studies, the 

criterion measure, whether researcher designed or norm-referenced mapped directly onto the skills 

targeted through the employed mathematics interventions. As a consequence, the outcome measures used 

by Van Luit and colleagues were sensitive to change in the target mathematics domain. It should be 

remembered, that the goal of the larger projects that made the present study possible, was to evaluate 

reading development. Given this focus, experimenter designed measures were not created to capture 

subtle changes in, for example, students’ arithmetic development. Had experimenter designed or 

curriculum-based criterion measures been employed, the effect size estimates in the present study would 

likely be stronger than those presently reported.  

 Another possible explanation for the differences in effects sizes reported in the present study 

compared to the cited literature, is that there were differences between the present sample and that of Van 

Luit and colleagues. Specifically, the mean IQ of the children with MMR in the experimental group and 

the comparison group (70 and 71, respectively) of Van Luit and Naglieri (1999) was substantially higher 
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than that of the children in the present study (63.03). This difference is likely due to the criteria for MMR 

school placement, which at the time of their study, included, “intellectual functioning below average (IQ 

range = 55-80)” (p. 99). In the Van Luit and Schopman’s (2000) study, mean IQ was provided in terms of 

the experimental conditions, which combined children with MMR and LD. For the experimental and 

comparison groups, mean IQ (and standard deviation) was 74.9 (13.10) and 79.1 (14.30). For the present 

study, the mean IQ (and standard deviation) for the mathematics and reading intervention groups was 

74.80 (16.90) and 70.59 (16.07), respectively. Thus, as a group, the average IQ for the participants in the 

present study and those in Van Luit and Schopman (2000) appear to be similar; however, there appears to 

be more variability around IQ in the present study and consequently, more participants with lower IQ 

scores than in Van Luit and Schopman (2000). 

 In addition to the previous explanations, differences in the effect sizes between the present study 

and those of Van Luit and colleagues may be attributed to the interventions employed. To begin with, the 

comparison group in the present study was active. That is, the students in the comparison group 

participated in a rigorous reading intervention condition that was the focus of the larger projects as 

opposed to business as usual. Consequently, participants in the reading intervention condition may have 

benefitted from and perhaps, transferred reading gains to the mathematics context. Evidence from early 

research supports this view. In Gilmary (1967) elementary aged children with learning disabilities 

participated in a six-week summer school program. One group (MIQ = 92.42) received instruction in 

reading and arithmetic, while the other (MIQ = 98.5) received instruction in arithmetic only. The results 

indicated that the former group significantly outperformed the latter and that when IQ was accounted for 

the group difference was even more pronounced. Although there are apparent limitations (e.g., lack of 

ME/I evaluation and not including details related to the type of learning disability evidenced by each 

child) in Gilmary (1967), the results suggest that the addition of the reading component provided a boost 

to arithmetic instruction resulting in improved arithmetic achievement. 

 Besides the active comparison group, another notable difference between the mathematics 

intervention employed in the present study and those in the studies by Van Luit and colleagues, is that the 
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mathematics intervention in the present study taught children multiple strategies to facilitate the 

development of skills related to several areas of mathematics (e.g., place value, number families, 

arithmetic facts, number relationships, measurement, regrouping in column addition and subtraction, 

problems solving). In contrast, interventions in Van Luit and colleagues focused on a particular skill set. 

For instance, the intervention in Van Luit and Naglieri (1999) concentrated on helping children use the 

results of simple multiplication and division problems in more complex related problems, while in Van 

Luit and Schopman (2000) the intervention focused on facilitating early numeracy skills and in particular, 

counting skill development. Concentrating on a particular skill area may be advantageous; however, it 

may also be advantageous to include multiple skills within a mathematics intervention, skills that are 

reviewed daily. Perhaps over time, the latter could support flexibility in students’ mathematical thinking 

and strategy use. Taken together, the results concerning intervention effects in the present study are 

promising and suggest that students with MIDs and students with RDs benefitted from the intervention 

program.  

4.3 Language Concerns in the Measurement of Mathematics Achievement 

 Measuring mathematics achievement in children that have a high incidence of speech and 

language disabilities, which are commonly associated with MIDs (Abbeduto, 2003) and RDs (Fletcher et 

al., 2007), is difficult. Although norm-referenced measures of mathematics achievement such as the 

KeyMath-R do not require reading on the students’ part and the writing demands are minimal, such 

measures depend on expressive language skills. That is, in order to demonstrate competence on items 

within such measures, students must understand the examiner provided verbal prompt and then provide an 

expressive (oral) response for the solution. Thus, such measures rely heavily on oral responses from 

students in order to evaluate a student’s competence on a particular task (Barker, 2010; Iacono & 

Cupples, 2004). All six subtests of the KeyMath-R used in the present study heavily rely on students’ oral 

responses. Further, written computation is only permitted on the Addition and Subtraction subtests 

beginning with item seven of each subtest. Additionally, examination of the descriptive statistics 

displayed in Tables 1, 2, and 3, indicate that the median score on the Addition and Subtraction subtests 
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did not exceed six. Thus, half of the students in each intervention condition did not have the opportunity 

to solve written problems on these two subtests because they reached the ceiling (i.e., three consecutive 

incorrect items). Despite dependence on relying on students’ oral responses to evaluate mathematics 

achievement, the influence of this characteristic is minimal in the present study since mathematics 

achievement was measured reliably and validly between both interventions groups across three time 

points. The results of this study therefore suggest that the KeyMath-R subtests, as presently utilized, 

provide a reliable and valid measurement of mathematics achievement for children with MIDs and 

children with RDs. However, it may be best to use a global indicator rather than a marker of change for 

specific interventions due to reduced sensitivity. 

4.4 Instructional Implications 

 This study demonstrated that the structure of mathematics achievement is equivalent in children 

with MIDs and children with RDs and that both groups of children show similar, positive responses to 

mathematics intervention. The present results and those of other randomized control studies (i.e., Van 

Luit and colleagues) indicate that students with MIDs and students with LDs similarly benefit from 

effective mathematics interventions. Thus, although IQ distinguishes between students from each special 

population, differential instruction should not be provided on basis of IQ alone. Instead, effective 

instruction is likely characterized by instructional groupings based on students’ present levels of 

performance and intervention (or curriculum) that is designed that addresses student learning 

characteristics. For instance, ongoing assessment of students’ mathematics proficiency may suggest that 

students who were previously grouped together (due to their previous levels of performance) are 

responding at different rates to intervention. Differing intervention response rates, however, may be 

attributed to a number of causes (e.g., absenteeism, attention, motivation, etc.) aside from IQ. Regardless, 

occasional regrouping of students (as in multitiered interventions), based on their individual rates of 

mathematic skills development, may be beneficial (Fletcher et al., 2007). When regrouping is not a 

feasible option, differentiated instruction could provide accommodations to lower performing students, 

while higher performing students complete more challenging (or enriching) work. In doing so, 
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mathematics achievement of lower and higher skilled students can be fostered to the greatest extent 

possible.  

 As mentioned, designing instruction (or intervention) to address student learning characteristics 

may promote mathematics achievement. Design features of the intervention utilized in the present study, 

CMC and Base Ten Blocks, likely addresses important learner characteristics. For instance, providing 

students with frequent opportunities to respond (and requiring students to respond) during instruction 

likely increases student attention; while teaching to mastery through appropriate diagnosis and 

remediation of errors, improves mathematics proficiency (see Stein et al., 1997). Additionally, both the 

present intervention and those employed in Van Luit and Schopman (2000) and Miller and Mercer (1993) 

utilized concrete (i.e., objects) and semiconcrete (i.e., pictures) representations of number. Using concrete 

and semiconcrete representations of number may improve children’s arithmetic calculation skills by 

supporting the development of procedural skills. Further, through repeated practice of connecting objects 

and pictures with abstract numbers, children can strengthen their memory of associations between 

arithmetic facts and their solution. One likely result of repeated practice with concrete and semiconcrete 

representations of number is transitioning children from the use of counting based arithmetic procedures 

to retrieval from memory (Van Luit & Schopman, 2000). Moreover, as children internalize arithmetic 

facts, it is probable that their conceptual understanding for number improves. Finally, given the high 

incidence of speech difficulties evidenced by students with MIDs (Abbeduto, 2003) and students with 

RDs (Fletcher et al., 2007), it could be beneficial to provide children from these special populations with 

a multi-component (or integrated) intervention that supports language development while facilitating 

mathematics achievement. Children with language delays or deficits, in particular, may benefit from such 

an approach.  

4.5 Limitations and Future Directions 

 The design of this study answered questions about the structure of mathematics achievement, its 

measurement and response to mathematics intervention in children with MIDs and children with RDs. 

Some limitations, however, should be considered. To begin with, the present data were collected through 



68 

two separate randomized control reading efficacy projects. As a result, the number of intervention (or 

contact) hours differed across the two projects. Specifically, second through fifth graders with MIDs 

participated in up to 120 hours of a given intervention, while second and third graders with RDs 

participated in up to 70 hours of a given intervention. Had children in both of the larger studies received 

the same number of intervention hours and the group with RDs included fourth and fifth graders, it is 

possible that the results of ME/I analyses would have been different. Of the three ME/I equality tests (i.e., 

form, loadings, and intercepts), non-invariance most likely would have manifested as intercept non-

invariance between children with MIDs and children with RDs due to group mean differences on the six 

KeyMath-R subtests.  

 In addition to the difference in intervention hours between the two larger projects, the focus on 

reading development led to more children with MID (about two-thirds) being assigned to a reading 

intervention condition than the mathematics intervention condition. As a consequence, the reading 

intervention group is represented by a greater proportion of children with MID compared to RD, while the 

mathematics intervention group is closer to an equal representation of students from both special 

populations. Subsequently, future research should systematically evaluate the structure of mathematics 

achievement and its measurement longitudinally between additional special populations of children as in 

the present study. However, careful attention should be given to ensure that students from the respective 

populations represent the same grade level(s) in school, the number of intervention hours is more similar 

between populations, and intervention groups are more equally represented by the target special 

populations compared to the present study. 

 In regard to response to intervention, the present study was unable to accurately model change 

through latent growth models because growth in the mathematics intervention group was curvilinear and 

because mathematics achievement data were not available from a fourth time point. Subsequently, the 

data were not forced to fit a linear growth model. Longitudinal work is expensive and time intensive; 

however, future research could benefit from collecting mathematics achievement data across four time 

points. In doing so, latent growth could be estimated using linear and curvilinear model specifications and 
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the tenability of each model can be evaluated.    

 Finally, the two larger projects that made the present study possible, focused on reading 

development. As such, instructional grouping procedures were based in part on measures of students’ 

reading achievement. In some instances, this may have resulted in intervention groups that were 

heterogeneous with respect to students’ mathematics skills. Consequently, it may have been difficult to 

maximize learning for all students within an overly heterogeneous group and may have mitigated learning 

in a small number of cases. It would be beneficial for future studies to group students with respect to their 

arithmetic skill development as mastery of basic arithmetic skills is crucial to the development of more 

complex mathematical skills (Geary, 1993; Geary & Burlingham-Dubree, 1989; Kaye, 1986). 

4.6 Conclusion 

 In conclusion, the findings from the present study indicate that the form of the latent mathematics 

achievement factor was unidimensional and the pattern of indicator-factor loadings between groups across 

time are equivalent. Because of the longitudinal nature of this study, it can be concluded that the nature 

(or structure) of mathematics achievement in children with MIDs and children with RDs is fundamentally 

the same and temporally stable. The results therefore support the assumption that students with MIDs and 

students with RDs move through similar, if not the same, steps as typically developing children in 

acquiring mathematics proficiency. In addition, despite a few sources of non-invariance, the present 

results indicate that the measurement of mathematics achievement was equivalent between intervention 

groups and consequently, populations across time. Because equivalent form and measurement between 

groups across time was established, prerequisites to evaluating group differences and change, students’ 

response to a mathematics intervention was evaluated. It was demonstrated that students randomly 

assigned to a mathematics intervention condition evidenced a small advantage over students randomly 

assigned to a reading intervention condition with respect to latent mathematics achievement at the mid- 

and post-intervention time points. Evidence also was provided that indicated that students in the former 

group displayed more growth than that shown by the latter group. Thus, the findings suggest that students 
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with MID and students with RD benefited from the same mathematics intervention; however, the 

treatment effects were small. 
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APPENDICES 

 

Appendix 1 

 

Descriptive Statistics by Disability Group: Pre-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

MID only          

 

 NUM 265 4.99 2.69 4.0 0 13 3 1.01 (0.15) 0.98 (0.30) 

 

 GEO 265 3.69 3.09 4.0 0 14 51 0.60 (0.15) -0.30 (0.30) 

 

 ADD 265 3.15 2.76 2.0 0 14 34 1.25 (0.15) 1.30 (0.30) 

 

 SUB 265 1.22 1.57 1.0 0 10 115 1.74 (0.15) 3.96 (0.30) 

 

 MST 265 2.63 2.29 2.0 0 13 39 1.54 (0.15) 2.86 (0.30) 

 

 TIMO 265 2.20 2.25 2.0 0 12 60 1.62 (0.15) 3.17 (0.30) 

 

RD only          

 

 NUM 132 8.34 3.00 8.0 3 19 2 0.74 (0.21) 0.74 (0.42) 

 

 GEO 131 8.34 3.29 8.0 0 15 1 -0.23 (0.21) -0.50 (0.42) 

 

 ADD 132 6.13 2.36 6.0 1 13 2 0.45 (0.21) 0.35 (0.42) 

 

 SUB 132 3.52 1.95 3.0 0 9 1 0.53 (0.21) -0.37 (0.42) 

 

 MST 131 7.37 2.82 8.0 1 12 3 -0.29 (0.21) -0.75 (0.42) 

 

 TIMO 131 3.96 2.56 4.0 0 12 12 0.65 (0.21) 0.36 (0.42) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. 

MID = Mild intellectual disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 
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Appendix 1 

 

Descriptive Statistics by Disability Group: Mid-point 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

MID only          

 

 NUM 253 5.84 2.94 5.0 0 15 1 0.97 (0.15) 0.65 (0.31) 

 

 GEO 253 4.70 3.37 5.0 0 13 31 0.33 (0.15) -0.75 (0.31) 

 

 ADD 253 4.37 3.22 3.0 0 14 19 0.77 (0.15) -0.07 (0.31) 

 

 SUB 253 1.56 1.85 1.0 0 10 90 1.62 (0.15) 2.96 (0.31) 

 

 MST 253 3.21 2.69 3.0 0 12 25 1.15 (0.15) 0.59 (0.31) 

 

 TIMO 253 2.81 2.52 2.0 0 13 36 1.26 (0.15) 1.35 (0.31) 

 

RD only          

 

 NUM 132 10.16 3.11 10 4 19 0 0.21 (0.21) -0.47 (0.42) 

 

 GEO 132 10.16 3.30 10.5 2 16 0 -0.36 (0.21) -0.59 (0.42) 

 

 ADD 133 7.31 2.47 7.0 1 13 0 -0.15 (0.21) -0.52 (0.42) 

 

 SUB 132 4.48 2.23 4.0 1 11 0 0.46 (0.21) -0.35 (0.42) 

 

 MST 132 8.24 2.83 9.0 1 16 0 -0.41 (0.21) 0.28 (0.42) 

 

 TIMO 132 5.52 2.86 5.0 1 16 0 1.13 (0.21) 2.36 (0.42) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. 

MID = Mild intellectual disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 
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Appendix 1 

 

Descriptive Statistics by Disability Group: Post-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

MID only          

 

 NUM 245 6.38 3.04 6.0 0 15 1 0.72 (0.16) 0.07 (0.31) 

 

 GEO 245 5.42 3.33 5.0 0 15 18 0.27 (0.16) -0.32 (0.31) 

 

 ADD 245 5.03 3.51 5.0 0 14 15 0.57 (0.16) -0.47 (0.31) 

 

 SUB 245 2.05 2.06 1.0 0 10 61 1.09 (0.16) 0.64 (0.31) 

 

 MST 245 3.66 2.83 3.0 0 14 23 0.96 (0.16) 0.37 (0.31) 

 

 TIMO 245 3.44 2.81 3.0 0 14 26 1.10 (0.16) 1.01 (0.31) 

 

RD only          

 

 NUM 136 10.96 3.24 11.0 5 20 0 0.24 (0.21) -0.42 (0.41) 

 

 GEO 136 10.96 3.02 11.0 4 17 0 -0.17 (0.21) -0.78 (0.41) 

 

 ADD 136 8.07 2.52 8.0 2 14 0 0.05 (0.21) -0.58 (0.41) 

 

 SUB 136 4.90 2.47 4.5 0 11 3 0.41 (0.21) -0.33 (0.41) 

 

 MST 136 8.88 2.99 9.0 1 16 0 0.42 (0.21) 0.48 (0.41) 

 

 TIMO 136 6.55 3.56 6.0 0 21 1 1.40 (0.21) 2.72 (0.41) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. MID 

= Mild intellectual disability, RD = Reading Disability. NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = 

Subtraction, MST = Measurement, TIMO = Time/Money. 
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Appendix 2 

Descriptive Statistics for Combined Disability Groups: Pre-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

 NUM 397 6.10 3.21 5.0 0 19 3 0.80 (0.12) 0.51 (0.24) 

 

 GEO 396 5.23 3.84 5.0 0 15 52 0.36 (0.12) -0.76 (0.25) 

 

 ADD 397 4.14 2.98 4.0 0 14 34 0.65 (0.12) -0.16 (0.24) 

 

 SUB 397 1.99 2.01 1.0 0 10 116 1.06 (0.12) 0.63 (0.24) 

 

 MST 396 4.20 3.34 3.0 0 13 39 0.72 (0.12) -0.59 (0.25) 

 

 TIMO 396 2.78 2.51 2.0 0 12 72 1.16 (0.12) 1.28 (0.25) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. 

NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = Measurement, TIMO = Time/Money. 
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Appendix 2 

 

Descriptive Statistics for Combined Disability Groups: Mid-point 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

 NUM 385 7.32 3.63 7.0 0 19 1 0.56 (0.12) -0.43 (0.25) 

 

 GEO 385 6.57 4.23 6.0 0 16 31 0.18 (0.12) -0.90 (0.25) 

 

 ADD 386 5.38 3.29 5.0 0 14 19 0.26 (0.12) -0.82 (0.25) 

 

 SUB 385 2.56 2.43 2.0 0 11 90 0.95 (0.12) 0.25 (0.25) 

 

 MST 385 4.93 3.64 3.0 0 16 25 0.48 (0.12) -0.92 (0.25) 

 

 TIMO 385 3.74 2.93 3.0 0 16 36 1.06 (0.12) 1.43 (0.25) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. 

NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = Measurement, TIMO = Time/Money. 
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Descriptive Statistics for Combined Groups: Post-intervention 

 

Variable N M SD Median Min Max #0’s Skew (SE) Kurtosis (SE) 

 

 NUM 381 8.01 3.81 7.0 0 20 1 0.47 (0.13) -0.43 (0.25) 

 

 GEO 381 7.39 4.17 7.0 0 17 18 0.12 (0.13) -0.74 (0.25) 

 

 ADD 381 6.12 3.51 6.0 0 14 15 0.13 (0.13) -0.83 (0.25) 

 

 SUB 381 3.07 2.60 3.0 0 11 64 0.77 (0.13) -0.07 (0.25) 

 

 MST 381 5.52 3.82 5.0 0 16 23 0.41 (0.13) -0.86 (0.25) 

 

 TIMO 381 4.55 3.44 4.0 0 21 27 1.24 (0.13) 2.34 (0.25) 
Note. N = Number of participants. M = Mean, SD = Standard deviation, #0’s = Number of scores of 0, SE = Standard error. 

NUM = Numeration, GEO = Geometry, ADD = Addition, SUB = Subtraction, MST = Measurement, TIMO = Time/Money. 
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Appendix 3 

 

Within Group Longitudinal Measurement Invariance Evaluation: Reading Group 

  

2
SB (df) 2

SBdiff ∆df CFI RMSEA (90% CI) PRMSEA ≤ .05 SRMR 

 

Step 1.  

Equal Form 175.05 (114)***   .984 .046 (.032, .059) .67 .028 

 

Step 2.  

Equal Factor Loadings 183.85 (124)*** 8.29 10 .984 .044 (.030, .057) .77 .031 

 

Step 3.  

Equal Intercepts 210.69 (134)
***

 26.31
**

 10 .980 .048 (.035, .063) .61 .039 

 

Step 4. 

Equal Intercept: Numeration 183.85 (124)***   .984 .044 (.030, .057) .78 .031 

 

Step5. 

Equal Intercept: Geometry 190.07 (126)
*** 

6.37
* 

2 .983 .045 (.031, .058) .73 .033 

 

Step 6. 

Equal Intercept: Addition 193.07 (126)
*** 

8.96
* 

2 .982 .046 (.032, .058) .69 .035 

 

Step 7. 

Equal Intercept: Subtraction 186.05 (126)*** 1.90 2 .984 .043 (.029, .056) .79 .031 

 

Step 8. 

Equal Intercept: Measurement 187.87 (128)*** 1.77 2 .984 .043 (.029, .056) .80 .032 

 

Step 9. 

Equal Intercept: Time/Money 192.61 (130)*** 4.64 2 .984 .044 (.030, .056) .78 .034 

Note. 2
SB = Satorra-Bentler scaled 2; 2

SBdiff = difference test; ∆df = change in degrees of freedom; CFI = Comparative fit 

index, RMSEA = Root mean square error of approximation, PRMSEA ≤ .05 = Test of close fit, SRMR = Standardized root mean 

square residual. Bold identifies non-invariance via difference testing. 
*p < .05, **p < .01,  ***p < .001. 
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Within Group Longitudinal Measurement Invariance Evaluation: Mathematics Group 

  

2
SB (df) 2

SBdiff ∆df CFI RMSEA (90% CI) PRMSEA ≤ .05 SRMR 

 

Step 1.  

Equal Form 183.46 (114)***   .976 .064 (.046, .081) .09 .026 

 

Step 2.  

Equal Factor Loadings 220.31 (124)
***

 39.44
*** 

10
 

.967 .072 (.057, .088) .01 .043 

 

Step 3.  

Equal Factor Loadings: 

Numeration 183.46 (114)*** 0 0 .976 .064 (.046, .081) .09 .026 

 

Step 4. 

Equal Factor Loadings: Geometry 184.89 (116)*** 1.57 2 .976 .063 (.046, .080) .10 .026 

 

Step5. 

Equal Factor Loadings: Addition 185.12 (118)*** .19 2 .977 .062 (.044, .079) .13 .027 

 

Step 6. 

Equal Factor Loadings: 

Subtraction 189.44 (120)*** 5.53 2 .976 .063 (.045, .079) .11 .030 

 

Step 7. 

Equal Factor Loadings: 

Measurement 192.34 (122)*** 2.55 2 .976 .062 (.045, .079) .11 .031 

 

Step 8. 

Equal Factor Loadings: 

Time/Money 220.31 (124)
*** 

39.62
*** 

2 .967 .072 (.057, .088) .01 .043 

 

Step 9. 

Equal Intercepts 220.76 (130)
*** 

204.79
*** 

2 .969 .069 (.053, .084) .03 .043 

 

Step 10. 

Equal Intercept: Numeration 192.34 (122)*** 0 0 .976 .062 (.045, .079) .114 .031 

 

Step 11. 

Equal Intercept: Geometry 195.88 (124)*** 3.49 2 .975 .063 (.045, .079) .11 .031 

 

Step 12. 

Equal Intercept: Addition 196.94 (126)*** .99 2 .976 .062 (.044, .078) .13 .031 

 

Step 13.  

Equal Intercept: Subtraction 198.79 (128)*** 1.94 2 .976 .061 (.044, .077) .14 .031 

 

Step 14. 

Equal Intercept: Measurement 220.76 (130)
*** 

17.31
*** 

2 .969 .069 (.053, .084) .03 .041 

Note. 2
SB = Satorra-Bentler scaled 2; 2

SBdiff = difference test; ∆df = change in degrees of freedom; CFI = Comparative fit 

index, RMSEA = Root mean square error of approximation, PRMSEA ≤ .05 = Test of close fit, SRMR = Standardized root mean 

square residual. Bold identifies non-invariance via difference testing. 
*p < .05, **p < .01,  ***p < .001. 
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Appendix 4   

Unstandardized Latent and Residual Correlations (with Standard Deviations): Reading Group 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

 

1. MATH1 --        

   

 

 

2. MATH2 1.09 (0.03)
*** 

--       

   

 

 

3. MATH3 1.16 (0.03)
*** 

1.31 (0.07)
*** 

--      

   

 

 

4. NUM1    --     

   

 

 

5. NUM2 
 

  0.58 (0.19)
** 

--    

   

 

 

6. NUM3    0.19 (0.26)
 

0.19 (0.23)
** 

--   

   

 

 

7. GEO1       --  

   

 

 

8. GEO2       1.61 (0.56)
** 

-- 

   

 

 

9. GEO3       1.57 (0.48)
** 

1.60 (0.48)
** 

--    

 

10. ADD1         
 

--   

 

11. ADD2          1.29 (0.33)
***

 --  

 

12. ADD3          1.56 (0.38)
*** 

2.21 (0.34)
*** 

-- 

Note. 
*
p < .05,

 **
p < .01,

 ***
p < .001; MATH = Mathematics achievement latent factor; NUM = Numeration, GEO = Geometry, ADD = Addition. 1 = Pre-intervention 

time point, 2 = Mid-intervention time point, 3 = Post-intervention time point. 
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Unstandardized Residual Correlations (with Standard Deviations): Reading Group 

 

 13. 14. 15. 16. 17. 18. 19. 20. 21. 

 

13. SUB1 --         

 

14. SUB2 0.38 (0.17)
* 

--  
 

     

 

15. SUB3 0.28 (0.17) 0.37 (0.20) -- 
  

    

 

16. MST1    --      

 

17. MST2    1.20 (0.33)
***

 --  
 

  

 

18. MST3    1.22 (0.31)
***

 1.70 (0.30)
***

 -- 
  

 

 

19. TIMO1       -- 
 

 

 

20. TIMO2        1.02 (0.24)
*** 

--  

 

21. TIMO3       1.22 (0.24)
*** 

1.82 (0.31)
*** 

-- 

Note.
 *
p < .05,

 **
p < .01,

 ***
p < .001; SUB = Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention time 

point, 2 = Mid-intervention time point, 3 = Post-intervention time point. 
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Unstandardized Latent and Residual Correlations (with Standard Deviations): Mathematics Group 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

 

1. MATH1 --            

 

2. MATH2 1.25 (0.17)
*** 

--           

 

3. MATH3 1.28 (0.18)
*** 

1.50 (0.20)
*** 

--          

 

4. NUM1    --         

 

5. NUM2 
 

  0.38 (0.17) --        

 

6. NUM3    1.00 (0.28)
*** 

0.69 (0.22)
** 

--       

 

7. GEO1       --      

 

8. GEO2       1.72 (0.65)
** 

--     

 

9. GEO3       1.03 (0.54)
 

2.01 (0.54)
*** 

--    

 

10. ADD1          --   

 

11. ADD2          0.22 (0.20) --  

 

12. ADD3          0.38 (0.26) 1.31 (0.28) -- 

Note. 
*
p < .05,

 **
p < .01,

 ***
p < .001; MATH = Mathematics achievement latent factor; NUM = Numeration, GEO = Geometry, ADD = Addition. 1 = Pre-intervention 

time point, 2 = Mid-intervention time point, 3 = Post-intervention time point. 
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Unstandardized Residual Correlations (with Standard Deviations): Mathematics Group 

 

 13. 14. 15. 16. 17. 18. 19. 20. 21. 

 

13. SUB1 --         

 

14. SUB2 0.23 (0.13)
 

--        

 

15. SUB3 0.23 (0.17) 0.35 (0.20) -- 
  

    

 

16. MST1    --      

 

17. MST2    1.85 (0.35)
**

 --  
 

  

 

18. MST3    1.78 (0.39)
***

 2.51 (0.48)
***

 -- 
  

 

 

19. TIMO1       -- 
 

 

 

20. TIMO2       0.40 (0.19)* 
--

 
 

 

21. TIMO3       0.64 (0.26)* 
0.98 (0.44)* 

 

Note. 
*
p < .05,

 **
p < .01,

 ***
p < .001; SUB = Subtraction, MST = Measurement, TIMO = Time/Money. 1 = Pre-intervention 

time point, 2 = Mid-intervention time point, 3 = Post-intervention time point. 
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