
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

8-11-2015

On Regularized Newton-type Algorithms and A
Posteriori Error Estimates for Solving Ill-posed
Inverse Problems
Hui Liu

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State
University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Liu, Hui, "On Regularized Newton-type Algorithms and A Posteriori Error Estimates for Solving Ill-posed Inverse Problems."
Dissertation, Georgia State University, 2015.
https://scholarworks.gsu.edu/math_diss/25

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

ON REGULARIZED NEWTON-TYPE ALGORITHMS AND A POSTERIORI

ERROR ESTIMATES FOR SOLVING ILL-POSED INVERSE PROBLEMS

by

HUI LIU

Under the Direction of Professor Alexandra Smirnova

ABSTRACT

Ill-posed inverse problems have wide applications in many fields such as oceanogra-

phy, signal processing, machine learning, biomedical imaging, remote sensing, geophysics,

and others. In this dissertation, we address the problem of solving unstable operator e-

quations with iteratively regularized Newton-type algorithms. Important practical ques-

tions such as selection of regularization parameters, construction of generating (filtering)

functions based on a priori information available for different models, algorithms for stop-

ping rules and error estimates are investigated with equal attention given to theoretical

study and numerical experiments.

INDEXWORDS: irregular operator equation, nonlinear ill-posed problem, iterative regu-
larization, stopping rule, image restoration, inverse scattering problem,
a posteriori error estimate, inverse magnetometry problem.

ON REGULARIZED NEWTON-TYPE ALGORITHMS AND A POSTERIORI

ERROR ESTIMATES FOR SOLVING ILL-POSED INVERSE PROBLEMS

by

HUI LIU

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2015

Copyright by

HUI LIU

2015

ON REGULARIZED NEWTON-TYPE ALGORITHMS AND A POSTERIORI

ERROR ESTIMATES FOR SOLVING ILL-POSED INVERSE PROBLEMS

by

HUI LIU

Committee Chair: Alexandra Smirnova

Committee: Vladimir Bondarenko

Zhongshan Li

Michael Stewart

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2015

iv

To my Mother and Father>z�µ4X²§���

v

ACKNOWLEDGEMENTS

I have the deepest gratitude to my advisor, Professor Alexandra Smirnova. I

still vividly remember our first seminar about a magnetometric problem in her research

group. I was very impressed by the passion for her work and her vision. It has been

a great pleasure to work with her, and I have definitely benefited from her expertise

and patience over the past years. I thank her for giving me the problems investigated

in this dissertation, for her continuous and insightful guidance during my studies, and

for her understanding and encouragements. Her demands for high quality and attention

to details have set an exceptional standard. I would not have written this dissertation

without discussion with her. It is my great fortune to be one of her graduate students

and to work under her supervision.

I am particularly grateful to the members of my committee, Professor Vladimir

Bondarenko, Professor Zhongshan Li, and Professor Michael Stewart for their help on

my dissertation and support of my defense.

Professor Vladimir Bondarenko: Professor Bondarenko is a very nice professor

who is willing to help all the time. I very much enjoyed his Applied Mathematics and

Biostatistics classes. I was fortunate to work with him on a bioinformatic problem.

Although it was a short experience, I leant a lot from him.

Professor Zhongshan Li: I am especially thankful to Professor Li. He has a great

heart. He treats his students as part of his family. I still remember his help on purchasing

my first cell phone in the US and the little translation book he has lent to me. He hosts

Thanksgiving parties, New Year parties, Spring Festival parties so his foreign graduate

students would not feel home sick and he always makes sure all his students have enough

financial support. Without his help, my life at Georgia State would not be this easy.

Of course, he is also a great professor. I am still using the knowledge learnt from his

Advanced Matrix Analysis class.

Professor Michael Stewart: Professor Stewart inspires my interest in numerical

analysis, and I am a super fan of his numerical analysis series. Over the past years I was

vi

in his Numerical Analysis I class, Numerical Analysis II class, Numerical Linear Algebra

class, and Advanced Numerical Analysis class. I am very impressed by his logical mind.

He is well organized and never lose the big picture. Moreover, I appreciate his sense of

humor and very much enjoy talking to him.

Among many other people that helped me at Georgia State, I am particularly thank-

ful to Professor Guantao Chen, Professor Frank Hall, and Professor Gengsheng

Qin for their continuous support and concern from time to time. I am grateful to Dr.

Changyong Zhong who is my teaching coordinator and the instructor of my Real

Analysis classes, for his great help on my teaching questions and studies.

Besides the above people who have made our department like a big family, I am

also thankful to Ms. Sandra Ahuama-Jonas, Ms. Earnestine Collier, and Ms.

Yvonne Pierce for their prompt help and continuous support on multifarious paper-

work.

I have many people to thank for making my fantastic experience at Georgia State,

and I always lack words with which to express my thanks. I thank you all!

The research led to this dissertation was partially supported by NSF grant DMS-

1112897.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

Chapter 1 ILL-POSED INVERSE PROBLEMS 1

1.1 Regularization of Ill-posed Inverse Problems 1

1.2 Nonlinear Ill-posed Models . 2

Chapter 2 ITERATIVE METHODS FOR ILL-POSED OPERA-

TOR EQUATIONS 4

2.1 Mathematical Preliminaries and Optimality of the Modified

Truncation . 5

2.2 Prior Convergence Results for the Iteratively Regularization

Gauss-Newton Algorithm . 8

2.3 The Undetermined Reverse Connection and Basic Estimates 10

2.4 A Novel A Posteriori Stopping Rule 12

2.5 Numerical Aspect: Linear Image Reconstruction Problem . . 18

2.6 Computational Study of Nonlinear Inverse Scattering Model 22

2.7 Conclusion . 27

Chapter 3 THEORETICAL AND NUMERICAL STUDY OF IT-

ERATIVELY TRUNCATED NEWTON’S ALGORITH-

M 29

3.1 Introduction . 29

3.2 Convergence Analysis. Noise-Free Data 31

3.3 Stability and Stopping Rule . 34

viii

3.4 Numerical Experiments . 36

Chapter 4 A POSTERIORI ERROR ANALYSIS FOR UNSTABLE

MODELS 45

4.1 Introduction . 45

4.2 Theoretical Background . 46

4.3 Further Discussion . 50

4.4 Numerical Simulations . 54

4.5 Analysis of the Results . 62

REFERENCES 64

APPENDICES . 71

Appendix A MATLAB CODE 71

A.1 MATLAB CODE 1 . 71

A.2 MATLAB CODE 2 . 89

A.3 MATLAB CODE 3 . 111

ix

LIST OF TABLES

Table 2.1 Noise-free reconstruction . 19

Table 2.2 Reconstruction with relative noise 0.1 % 21

Table 2.3 Reconstruction with relative noise 0.5 % 23

Table 2.4 Noise-free reconstruction of a peanut-shaped object 24

Table 2.5 Noise-free reconstruction of a pillow-shaped object 25

Table 2.6 Reconstruction of a peanut-shaped object in the presence of 1%

noise . 25

Table 2.7 Reconstruction of a pillow-shaped object in the presence of 1%

noise . 26

Table 2.8 Reconstruction of a peanut-shaped object in the presence of 5%

noise . 27

Table 2.9 Reconstruction of a pillow-shaped object in the presence of 5%

noise . 27

Table 3.1 Convergence rate for α(n) = α(0)

n0.5 36

Table 3.2 Convergence rate for α(n) = α(0)

n
. 38

Table 3.3 Truncation details for x(0) = 1 38

Table 3.4 Truncation details for x(0) = 0.1 40

Table 4.1 Experiments for different levels of noise 60

Table 4.2 Parameter values and error estimates 61

x

LIST OF FIGURES

Figure 1.1 Well-posed and ill-posed problems 2

Figure 2.1 Blurred image and three reconstructed images. Noise-free case 20

Figure 2.2 Blurred image and three reconstructed images. Relative noise

0.1% . 21

Figure 2.3 Blurred image and three reconstructed images. Relative noise

0.5% . 22

Figure 2.4 Reconstruction with Tikhonov-type algorithm 23

Figure 2.5 Reconstruction with TSVD algorithm 24

Figure 2.6 Reconstruction with MTSVD algorithm 25

Figure 3.1 Reconstructed Solutions for ξ = x(0) = 0.5 37

Figure 3.2 Cross-Sectional Comparison 1 for ξ = x(0) = 0.5 39

Figure 3.3 Cross-Sectional Comparison 2 for ξ = x(0) = 0.5 39

Figure 3.4 Exact and Noisy Data . 40

Figure 3.5 Numerical Solutions for ξ = x(0) = 0.1 41

Figure 3.6 Cross-Sectional Comparison 1 for ξ = x(0) = 0.1 42

Figure 3.7 Cross-Sectional Comparison 2 for ξ = x(0) = 0.1 42

Figure 3.8 Truncated Singular Values for ξ = x(0) = 1.0 43

Figure 3.9 Truncated Singular Values for ξ = x(0) = 0.1 44

Figure 4.1 Numerical Solutions for the First Data Set 55

Figure 4.2 Cross-Sectional Comparison for the First Data Set 56

Figure 4.3 Exact and Noisy Data for the First Experiment 57

Figure 4.4 Numerical Solution for the Second Data Set 58

Figure 4.5 Cross-Sectional Comparison for the Second Data Set 59

Figure 4.6 Exact and Noisy Data for the Second Experiment 61

xi

LIST OF ABBREVIATIONS

• SVD - Singular Value Decomposition

• TSVD - Truncated SVD

• MTSVD - Modified Truncated SVD

• ITN - Iteratively Truncated Newton

• IRGN - Iteratively Regularized Gauss-Newton

• GCV - Generalized Cross Validation

1

Chapter 1

ILL-POSED INVERSE PROBLEMS

According to [1], an inverse problem is the process of calculating the causal factors

from a set of observations. For example, image restoration in computer tomography,

source estimation in acoustics, or computation of the Earth density from measurements

of its gravitational field. Inverse problems have wide applications in optics, radar de-

sign, acoustics, communication theory, signal processing, medical imaging, oceanogra-

phy, computer vision, geophysics, astronomy, remote sensing, natural language process-

ing, machine learning, nondestructive testing, and many other fields. They can provide

information about important system parameters that we cannot directly observe. As

opposed to the corresponding forward problems, inverse problems deduce causes from

results, and they are often unstable and/or not uniquely solvable. Such inverse problems

are called ill-posed or improperly-posed.

1.1 Regularization of Ill-posed Inverse Problems

If an inverse problem is ill-posed, then even small noise in the data may cause a

substantial error in the computed solution. Therefore, techniques known as regularization

need to be incorporated in computational algorithms for ill-posed problems. In many

cases, the reason for instability is the lack of information in the original model. This can

be illustrated by the following simple example.

Consider a linear system of two equations with two unknowns, Ax = b, where A is

a 2× 2 matrix, and b is the data, which is measured with some level of noise. That is, a

different system, Ax = bδ, is solved instead.

In Figure 1.1, the red dot represents the exact solution of the original linear system,

and the navy dot represents the computed solution of the noisy system. As one can see,

the graph on the left in Figure 1.1 corresponds to a well-posed problem, and the graph

on the right corresponds to an ill-posed problem, where small noise in the data results in

2

Figure 1.1: Well-posed and ill-posed problems

a large error in the computed solution. Intuitively, one can understand why the second

problem is unstable: the two equations in this system are not “entirely different”, and

the information they provide is almost the same. On the contrary, the two equations in

the first system are “very different”. Therefore, small noise in the data does not cause

any substantial damage to the computed solution.

This trivial observation brings us to the main aspect of the regularization theory. Its

goal is to incorporate some extra (a priori) information into the model in order to make

it more stable. Since a priori information may not be completely reliable, it is usually

weighted by a relatively small regularization parameter. By choosing a “near optimal”

value of this parameter, one is trying to strike the best possible balance between accuracy

and stability.

1.2 Nonlinear Ill-posed Models

Nonlinearity of some ill-posed inverse problems adds an extra layer of difficulty to

the construction of a regularization procedure, since for a nonlinear model regularization

3

often needs to be incorporated into some iterative numerical solver. One of the most used

computational methods, which combines both regularization and iterative approximation

of the solution is the iteratively regularized Gauss-Newton scheme.

In Chapter 2 of this dissertation, we look at different ways of regularizing Gauss-

Newton steps based on a priori information available for particular models. We also

study an iterative approach to the selection of a regularization parameter and propose

a new a posteriori stopping rule to terminate Gauss-Newton iterations “just in time”

before the noise propagation can potentially destroy an approximate solution. Numer-

ical experiments for both linear and nonlinear models are conducted to illustrate this

technique.

In Chapter 3, we continue our analysis of iteratively regularized algorithms for solv-

ing (non)linear irregular operator equations. We focus on iteratively truncated Newton’s

scheme, and illustrate practical aspects of this algorithm with a 2D nonlinear inverse

problem in magnetometry. Specifically, we observe the behavior of truncated singular

values as iterations progress.

In Chapter 4, the possibility of a posteriori error estimates for linear and nonlinear

inverse problems is investigated. This is a critical aspect in the analysis of regularized

computational methods, since discrepancy alone cannot guarantee the accuracy of an

approximate solution when the model is ill-posed. A posteriori estimates for the solution

of a 2D nonlinear magnetometry equation are studied numerically in order to illustrate

the theoretical findings.

4

Chapter 2

ITERATIVE METHODS FOR ILL-POSED OPERATOR EQUATIONS

In this chapter, we address the problem of solving a nonlinear unstable operator

equation on a pair of Hilbert spaces using iteratively regularized Gauss-Newton (IRGN)

scheme. We begin by considering three basic groups of generating functions and by look-

ing into the possibility of nonstandard approximation of the pseudoinverse through a

“gentle” iterative truncation. Its optimality on the class of generating functions with the

same correctness coefficient is proven. In the second part of Chapter 2, we introduce and

justify a novel a posteriori stopping rule, designed to accommodate noise in both the data

and the source condition. In conclusion, we illustrate practical aspects of the regularized

algorithm with numerical simulations for a large-scale linear image de-blurring system

as well as a nonlinear inverse scattering model. Presentation in this chapter follows [2].

Consider the following inverse problem

F (x) = y, F : X → Y , (2.1)

where a nonlinear operator F is mapping between two Hilbert spaces X , Y , and the

exact data y is contaminated by noise

||y − y(δ)|| ≤ δ. (2.2)

Assume, for now, that F is Fréchet differentiable with a Lipschitz continuous deriva-

tive, i.e., there exist N,L ≥ 0 for any x̃(1), x̃(2) ∈ X such that

||F ′(x̃(1))|| ≤ N, ||F ′(x̃(1))− F ′(x̃(2))|| ≤ L||x̃(1) − x̃(2)||. (2.3)

One of the best known numerical algorithms for solving minimization problem (2.1) is

5

the Gauss-Newton scheme [3]:

x(n+1) = ξ − [F ′∗(x(n))F ′(x(n))]−1F ′∗(x(n)){F (x(n))− y(δ) − F ′(x(n))(x(n) − ξ)},

x(0), ξ ∈ X . (2.4)

It can be viewed as a simplified version of the full Newton method applied to the nor-

mal equation, which avoids evaluation of the second derivative operator to get a linear

equation with a self-adjoint operator at every step of the iterative process.

Suppose that x̂ is a solution to F (x) = y, maybe nonunique. In the case when

F ′∗(x̂)F ′(x̂) is not boundedly invertible, A. Bakushinsky [4] suggested to regularize (2.4)

iteratively

x(n+1) = ξ − θ[F ′∗(x(n))F ′(x(n)), α(n)]F ′∗(x(n)){F (x(n))− y(δ) − F ′(x(n))(x(n) − ξ)},

x(0), ξ ∈ X , α(n) > 0, lim
n→∞

α(n) = 0, (2.5)

with θ = θ(σ, α) being a filtering function of a spectral variable σ ∈ [0, N2] and a

regularization parameter α > 0. In [4] and later in [5], the following conditions on

θ = θ(σ, α) have been used for the convergence analysis of (2.5):

sup
σ∈[0,N2]

|θ(σ, α)√σ| ≤ C1α
−1/2, (2.6)

sup
σ∈[0,N2]

|θ(σ, α)σ − 1|σp ≤ C2(p)α
p, p ≥ 1

2
, (2.7)

sup
σ∈[0,N2]

|θ(σ, α)σ − 1| ≤ C3, (2.8)

where C1, C2(p), and C3 are nonnegative constants.

2.1 Mathematical Preliminaries and Optimality of the Modified Truncation

Considering the most used types of generating functions, one can divide IRGN

algorithms (2.5) in three basic groups.

1. The first group includes algorithms formed through Tikhonov’s regularization [1].

6

For example, M-times iterated Tikhonov method [6], where

θ(σ, α) =
M−1∑

k=0

(σ + α)−(k+1)αk, M ∈ N, (2.9)

and the iteratively regularized scheme is a combination of inner and outer iterations

for the corresponding discrete problem. For every n, x(n) is changed over the course

of M inner steps.

The qualification order of this algorithm is M, which means that the best conver-

gence rate that can be achieved here is O([α(n)]M) provided we have the same or

higher order of the Hölder-type source condition:

x̂− ξ = (F ′∗(x̂)F ′(x̂))νω, ω ∈ X , ν ≥ M. (2.10)

At p = M (see (2.7)), the so-called saturation occurs, and after that the conver-

gence rate is no longer improving.

2. The second group consists of procedures where the operator F ′∗(·)F ′(·) is viewed

as an infinite series and the regularization is carried out by truncating its tail. The

generating function below corresponds to the Newton-Landweber method [4]

θ(σ, α) :=







1−(1−µσ)1/α
σ

, σ 6= 0,

µ
α
, σ = 0,

, 0 < µ ≤ 2

N2
.

In practice, it is executed as a sequence of outer Newton steps with a growing

number of inner Landweber iterations to solve each subproblem. The qualification

order of this method is infinity, i.e., it is saturation free. Apart from Landweber’s

algorithm, the conjugate gradient scheme has also been used for inner iterations

[7]. For methods in this group, the regularization parameter can be viewed as the

reciprocal of the number of inner iterations.

3. Last but not least are the methods constructed through iterative truncation. The

7

best known approach here is to fully truncate the small elements of the spectrum:

θ(σ, α) :=







1
σ
, σ ≥ α,

0, 0 ≤ σ < α.
(2.11)

The function θ = θ(σ, α) in (2.11) regularizes [F ′∗(·)F ′(·)]−1, the inverse to

F ′∗(·)F ′(·). The less aggressive approach is to truncate continuously

θ(σ, α)
√
σ :=







1√
σ
, σ ≥ α,

1√
α
, 0 ≤ σ < α.

(2.12)

In case of a linear operator, it has been studied in [8]. As one can see, the function

θ = θ(σ, α) in (2.12) regularizes [F ′∗(·)F ′(·)]−1F ′∗(·), the pseudo-inverse to F ′(·).

The modified truncation has a very nice optimal property, which we illustrate here for

the linear case. Consider a linear operator equation Ax = y, and define an approximate

solution as follows:

xα,δ = θ(A∗A, α)A∗y(δ) := Rαy
(δ).

Here θ = θ(σ, α) with σ ∈ [0, ||A||2] and α > 0. The well-known estimate for the relative

error shows the trade-off between accuracy and stability for the regularizing strategy

||x̂− xα,δ||
||x̂|| ≤ ||x̂− xα||

||x̂|| + ||A|| ||Rα||
︸ ︷︷ ︸

condα(A)

||y − y(δ)||
||y|| , xα = Rαy. (2.13)

The first term ||x̂−xα||
||x̂|| in (2.13) gives the accuracy of the regularization algorithm, and

||A|| ||Rα|| can be viewed as the regularized condition number. Basically, inequality

(2.13) generalizes the well-known formula

||x̂− xδ||
||x̂|| ≤ ||A|| ||A−1||

︸ ︷︷ ︸

cond(A)

||y − y(δ)||
||y|| , xδ = A−1y(δ). (2.14)

Estimate (2.14) can be obtained from (2.13) if one passes to the limit as α → 0. We

consider the following problem: among all regularizing strategies with the same regular-

ized condition number, find the one whose accuracy is the best. In other words, among

8

regularizing strategies, where α is selected to provide the same regularized condition

number, find the strategy that minimizes ||x̂− xα||/||x̂||. One can easily verify that an

answer to the above question is continuous truncation defined in (2.12) with α = 1
K2 and

K := condα(A)/||A|| :

θ

(

σ,
1

K2

)√
σ :=







1√
σ
, σ ≥ 1

K2 ,

K, 0 ≤ σ < 1
K2 .

(2.15)

Indeed, for any Rα(θ), one has

||x̂− xα||
||x̂|| =

||x̂− θ(A∗A, α)A∗Ax̂||
||x̂|| ≤ sup

σ∈S(A∗A)

|1− θ(σ, α)σ|,

where S(B) denotes the spectrum of an operator B. Suppose there is some other strategy

θ̄ = θ̄(σ, ᾱ) with some choice of the parameter ᾱ, whose accuracy is better:

sup
σ∈S(A∗A)

|1− θ̄(σ, ᾱ)σ| < sup
σ∈S(A∗A)

∣
∣
∣
∣
1− θ

(

σ,
1

K2

)

σ

∣
∣
∣
∣
.

Then at least for some σ̄ ∈ S(A∗A),

|1− θ̄(σ̄, ᾱ)σ̄| <
∣
∣
∣
∣
1− θ

(

σ̄,
1

K2

)

σ̄

∣
∣
∣
∣
=







0, σ̄ ≥ 1
K2 ,

1−K
√
σ̄, 0 ≤ σ̄ < 1

K2 .

Thus K < θ̄(σ̄, ᾱ)
√
σ̄, which means K < ||Rᾱ(θ̄)||, and we arrive at a contradiction with

the fact that the two strategies have the same condition number.

2.2 Prior Convergence Results for the Iteratively Regularization Gauss-

Newton Algorithm

Since after A. Bakushinsky proposed the original IRGN scheme in 1991 and then

the generalized scheme in 1995, the algorithm has been studied by many authors ([4],

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]) both theoretically

and numerically. As opposed to the linear case, where the convergence analysis can be

carried out without any source conditions and the source conditions are used to derive

9

the convergence rates, in the nonlinear case the source conditions are generally needed

for both, convergence analysis and justification of the convergence rates, and the higher

the nonlinearity the stronger the source condition has to be. In general, the source

conditions take the form

x̂− ξ = ϕ(F ′∗(x̂)F ′(x̂))ω, ω ∈ X , ||ω|| ≤ ρ. (2.16)

They can be viewed as structural assumptions on the solution that reflect the level of ill-

posedness of a particular problem. These conditions are, in fact, necessary for justifying

convergence rates as was shown in [23]. The function ϕ : [0, ||F ′(x̂)||2] → [0,∞) in (2.16)

is assumed to be continuous and increasing with ϕ(0) = 0. Initially, method (2.5) was

investigated under Hölder source condition for ν ≥ 0 ([4], [9]):

ϕ(t) := tν . (2.17)

For ν ≥ 1
2
, the convergence analysis has been carried out first, for an a priori stopping

rule [4], and later for an a posteriori one [24]. When F is moderately nonlinear ([9], [10],

[12]), such that for some linear operators R and Q

F ′(x̃(1)) = R(x̃(1), x̃(2))F ′(x̃(2)) +Q(x̃(1), x̃(2)), ||I −R(x̃(1), x̃(2))|| ≤ CR,

||Q(x̃(1), x̃(2))|| ≤ CQ||F ′(x̂)(x̃(1) − x̃(2))||, x̃(1), x̃(2) ∈ Bσ(x̂), (2.18)

with σ, CR, CQ being sufficiently small, ν can be reduced to 0 ≤ ν < 1
2
[9] and, at

expense of lower convergence rates, the source condition can be changed to a logarithm

[10]

ϕ(t) :=







(− ln t)−ν , if 0 < t < e−1, ν > 0

0, if t = 0,
(2.19)

or to a general monotonically increasing function ϕ, for which the following function

Φ(t) := t(ϕ · ϕ)−1(t) (2.20)

10

is convex and twice differentiable. In (2.20), the expression (ϕ·ϕ)−1 stands for the inverse

of ϕ ·ϕ and (ϕ ·ϕ)(t) := ϕ2(t) (see [12], p.320). As an alternative to the source conditions

based on the classical spectral theory, approximate source conditions have been inves-

tigated recently by Hofmann and co-authors both in Banach and Hilbert spaces ([18],

[25], [26], [27]). Some of the most recent developments in the theory of IRGN have been

motivated by a number of specific large-scale applications, which required a more sophis-

ticated implementation of the original IRGN procedure and a more careful convergence

analysis. For example, in [19], it has been shown how to construct and update a spectral

preconditioner for exponentially ill-posed parameter identification problems.

2.3 The Undetermined Reverse Connection and Basic Estimates

The accurate convergence analysis of IRGN scheme (2.5) ([23], [28]) indicates that

its convergence rates are, in general, in agreement with the type of the source condition.

Numerical experiments, for the most part, confirm the theoretical findings (see ([10],

[22]) for details), which means that the special structure, imposed by a source-type

condition, is essential for the behavior of the sequence {x(n)}. At the same time, practical

implementation of the iterative process (2.5) with various choices of ξ suggests that the

requirement for ||ω|| in (2.16) to be small is not that critical and can possibly be relaxed.

This observation motivated further research on Gauss-Newton-type iterations. In [29],

[30], and [31], a regularized version of (2.4) has been investigated in the following form:

x(n+1) = ξ(n) − θ(F ′∗(x(n))F ′(x(n)), α(n))F ′∗(x(n)){F (x(n))− y(δ) − F ′(x(n))(x(n) − ξ(n))},

x(0), ξ(n) ∈ X . (2.21)

The noise-free case has been analyzed in [29], an a priori and a posteriori stopping rules

for algorithm (2.21) have been justified in [30] and [31], respectively. In [29], [30], and

[31], the modified source condition

x̂− ξ(n) = (F ′∗(x(n))F ′(x(n)))pω(n), p ≥ 1

2
, ω(n) ∈ X , (2.22)

11

which depends on the current iteration point x(n), plays the part of assumption (2.16) and

(2.17). We call condition (2.22) the undetermined reverse connection. It has been shown

in [29], [30], and [31] that even though (2.22) still contains the unknown solution x̂, the

norm of ω(n) in (2.22) is greater than the norm of ω in (2.16) and (2.17). Moreover, the

norm of ω(n) can even tend to infinity as n → ∞. Specifically, at every step of iterative

process (2.21), the element ξ(n) may be such that

||ω(n)|| ≤ ε

[α(n)]k
,

1

2
≤ p− k, ε ≥ 0. (2.23)

The main disadvantage of undetermined reverse connection (2.22) is the need to

find ξ(n) satisfying (2.22) in each step of the iteration. How can such a ξ(n) be selected

in practice? Well, the problem is similar to the one with single ξ in (2.16): no general

recipe is known and we just hope to get lucky after trying different ξ’s. In case of (2.22),

one can argue that the set of potential candidates for the test function is larger due to

(2.23). Still, with n source conditions in place of one, it is unlikely that (2.22) will hold

at every step “by chance”. Therefore, we look into the convergence analysis of algorithm

(2.21) under a more realistic “noisy” source condition:

x̂− ξ(n) = (F ′∗(x(n))F ′(x(n)))pω(n) + ζ (n), p ≥ 1

2
, ||ω(n)|| ≤ ε

[α(n)]k
,

1

2
≤ p− k,

ε ≥ 0, ||ζ (n)|| ≤ ∆. (2.24)

Let F be Fréchet differentiable with a Lipschitz continuous derivative satisfying (2.3).

Like in [4] and [5], suppose that estimates (2.6)-(2.8) hold for the generating function

θ = θ(σ, α). Choose the regularizing sequence {α(n)} in (2.21) so that it approaches zero

monotonically and

1 ≤ [α(n)]p−k

[α(n+1)]p−k
≤ R, n = 0, 1, 2, (2.25)

Let x(0) ∈ X satisfy the condition

||x(0) − x̂|| ≤ η := l[α(0)]p−k ≤ 1 (2.26)

12

with l to be specified below. By (2.21), it follows that

x(n+1) − x̂ = −θ(F ′∗(x(n))F ′(x(n)), α(n))F ′∗(x(n)){F (x(n))− y(δ) − F ′(x(n))(x(n) − x̂)}

− θ(F ′∗(x(n))F ′(x(n)), α(n))F ′∗(x(n))F ′(x(n))(ξ(n) − x̂)− (x̂− ξ(n)). (2.27)

From (2.27) and modified source condition (2.24), one derives

x(n+1)−x̂ = −θ(F ′∗(x(n))F ′(x(n)), α(n))F ′∗(x(n)){(y−y(δ))+F (x(n))−y−F ′(x(n))(x(n)−x̂)}

− [I−θ(F ′∗(x(n))F ′(x(n)), α(n))F ′∗(x(n))F ′(x(n))]{(F ′∗(x(n))F ′(x(n)))pω(n)+ζ (n)}. (2.28)

The second inequality in (2.3) yields

||F (x(n))− y − F ′(x(n))(x(n) − x̂)|| ≤ L

2
||x(n) − x̂||2. (2.29)

Taking into consideration (2.24), we can now find an upper bound for ||x(n+1) − x̂||.
Assumptions (2.6)-(2.8) on the generating function along with polar decomposition

for the linear operator F ′(x(n)) and spectral theorem for the self-adjoint operator

F ′∗(x(n))F ′(x(n)) imply

||x(n+1) − x̂|| ≤ C1√
α(n)

{

δ +
L||x(n) − x̂||2

2

}

+ C2(p)ε[α
(n)]p−k + C3∆

=
C1√
α(n)

(

δ +
C3∆

√
α(n)

C1

)

+
C1L

2
√
α(n)

||x(n) − x̂||2 + C2(p)ε[α
(n)]p−k. (2.30)

2.4 A Novel A Posteriori Stopping Rule

Introduce the following stopping rule for iterations (2.21). Let N = N (δ,∆, y(δ)) be

the number of the first transition of ||F (x(n)) − y(δ)|| through the level σµn ,
1
2
≤ µ < 1,

i.e.,

||F (x(N (δ,∆,y(δ))))− y(δ)|| ≤ σµN and σµn < ||F (x(n))− y(δ)||, 0 ≤ n < N (δ,∆, y(δ)),

(2.31)

13

where

σn := δ +
C3∆

√
α(n)

C1

. (2.32)

The constant ∆ in (2.32) is usually harder to estimate than the noise level δ. However

for the asymptotic behavior of the approximate solution x = x(N (δ,∆,y(δ))) as δ and ∆

tend to zero, this is not relevant. It follows from (2.32) that due to the factor
√
α(n),

the contribution of ∆ to the total error of the model approaches zero as n → ∞. In

other words, error in the source condition disappears in the overall noise as we iterate.

Notice that if F ′∗(·)F ′(·) is compact and the null space of F ′∗(·)F ′(·) is {0}, then the

range of F ′∗(·)F ′(·) is dense in X , so in any neighborhood of x(n) there are points ξ(n) for

which (2.24) holds with ∆ = 0. On the other hand, since the range of F ′∗(·)F ′(·) is not
closed, in the same neighborhood there are also points ξ(n) for which (2.24) holds with

∆ 6= 0. In practice, one can try different ξ(n)’s and choose those for which the iterative

scheme works better, that is convergence is more rapid and the algorithm is more stable.

Suppose n < N (δ,∆, y(δ)). One has

σµn < ||F (x(n))−y(δ)|| ≤ ||F (x(n))−y||+ ||y−y(δ)|| ≤ N ||x(n)− x̂||+δ ≤ N ||x(n)− x̂||+σn.
(2.33)

Hence

σµn − σn ≤ N ||x(n) − x̂||.

Without loss of generality, assume that σ0 < 1, which yields σn < 1 for any n = 1, 2, ...

due to our assumptions on {α(n)}. Then

σµn(1− σ1−µ
n) ≤ N ||x(n) − x̂|| and σµn ≤ N

1− σ1−µ
n

||x(n) − x̂||.

The last inequality implies that combined noise level σn can be estimated as follows

σn ≤
(

N

1− σ1−µ
0

) 1
µ

||x(n) − x̂|| 1µ := C||x(n) − x̂|| 1µ .

14

One derives from the above that

||x(n+1) − x̂|| ≤ C1C√
α(n)

||x(n) − x̂|| 1µ +
C1L

2
√
α(n)

||x(n) − x̂||2 + C2(p)ε[α
(n)]p−k. (2.34)

By (2.26), ||x(0) − x̂|| ≤ 1. If one assumes that for any m, 0 ≤ m ≤ n < N (δ,∆, y(δ)),

||x(m) − x̂|| ≤ 1, then since 1
2
≤ µ

||x(n) − x̂||2 ≤ ||x(n) − x̂|| 1µ . (2.35)

Estimate (2.34) combined with (2.35) yield

||x(n+1) − x̂|| ≤
{
C1C√
α(n)

+
C1L

2
√
α(n)

}

||x(n) − x̂|| 1µ + C2(p)ε[α
(n)]p−k. (2.36)

Consider a new variable

γn :=
||x(n) − x̂||
[α(n)]p−k

. (2.37)

Inequalities (2.25) for {α(n)} imply

γn+1 ≤ C1R

{

C +
L

2

}

γ
1
µ
n [α

(n)](p−k)(
1
µ
−1)− 1

2 + C2(p)Rε.

Let parameters in the source condition be restricted as follows:

(p− k)

(
1

µ
− 1

)

≥ 1

2
. (2.38)

Take

l :=
C2(p)Rε

1− C1R
{
C + L

2

}
[α(0)](p−k)(

1
µ
−1)− 1

2

:=
b

1− a
, with a+ b ≤ 1.

Under these assumptions

l =
b

1− a
≤ 1.

According to (2.26), the initial guess x0 is chosen in such a way that γ0 ≤ l. Suppose by

induction that γm ≤ l for any m: 0 ≤ m ≤ n < N (δ,∆, y(δ)). Then by monotonicity of

15

the sequence {α(n)}

γn+1 ≤ al
1
µ + b ≤ al+ b = l, and ||x(n+1) − x̂|| ≤ l[α(n+1)]p−k ≤ l[α(0)]p−k ≤ 1. (2.39)

From (2.39) it follows that ||x(n) − x̂|| ≤ l[α(n)]p−k for any n ≤ N (δ,∆, y(δ)).

Now let us show that for any noise levels δ and ∆ with 0 ≤ σ0 < 1, there exists a

value N = N (δ,∆, y(δ)) such that condition (2.31) holds. Indeed, if this were not the

case, then for some σ̃n := δ̃ + C3∆̃
√
α(n)

C1
,

σ̃µn < ||F (x(n))− y(δ̃)|| for any n = 0, 1, 2.... (2.40)

Provided that x(0) is chosen according to (2.26), estimates (2.30) and (3.11) (along with

the above choice of l) imply

||x(n) − x̂|| ≤ l[α(n)]p−k for all n ≥ 0 and lim
n→∞

||x(n) − x̂|| = 0. (2.41)

If one passes to the limit in (3.11) as n approaches infinity, one gets by (2.2) and (2.41)

σ̃n ≥ δ̃ ≥ σ̃µn ,
1

2
≤ µ < 1,

which means σ̃1−µ
n ≥ 1, and σ̃n ≥ 1. We arrive at a contradiction. Hence N =

N (δ,∆, y(δ)) exists.

Suppose X̂ := {x ∈ X : F (x) = y}. We now verify that if the control sequence {ξ(n)}
satisfies source condition (2.24), then x(N (δ,∆,y(δ))) converges to X̂ as

√
δ2 +∆2 → 0, and

the function N (δ,∆, y(δ)) is, therefore, admissible. Indeed, assume the converse: there

exists ǫ > 0 and {δm}, {∆m}, limm→∞
√
δ2m +∆2

m = 0, such that

dist
(

x(N (δm,∆m,y(δm))), X̂
)

> ǫ. (2.42)

Two cases are possible.

1. The sequence N = N (δm,∆m, y
(δm)) is bounded, i.e., N (δm,∆m, y

(δm)) ≤ N0 for any

16

m ≥ 0. Then there is a subsequence {mz}, limz→∞mz = ∞, such that

lim
z→∞

N (δmz ,∆mz , y
(δmz)) = Ñ ≤ N0.

By stopping rule (2.31),

||F (x(N (δmz ,∆mz ,y
(δmz))))− y(δmz)|| ≤ σµN (δmz ,∆mz ,y

(δmz))
. (2.43)

Taking the limit in both sides of (2.43) as z → ∞, one concludes that

||F (x(Ñ))− y|| = 0.

Thus, x(Ñ) is a solution to F (x) = y, i.e., x(Ñ) ∈ X̂ , which indicates that inequality

(2.42) is not fulfilled.

2. For some {δmj
}, {∆mj

}, limj→∞mj = ∞,

N (δmj
,∆mj

, y(δmj
)) −→ ∞ as j → ∞.

Then by the above argument,

||x(N (δmj
,∆mj

,y
(δmj

)
)) − x̂|| ≤ l τ p−k

N (δmj ,∆mj ,y
(δmj)

)
−→ 0 as j → ∞.

Once again, we arrive at a contradiction. Hence lim√
δ2+∆2→0 dist

(

xN (δ,∆,y(δ)), X̂
)

= 0.

One can see from the above analysis that by extending the a posteriori stopping

rule for the iteratively regularized numerical process (2.21) with an undetermined reverse

connection, we considerably weaken the source condition (through letting it hold with a

certain level of noise) without imposing any additional restrictions on the nonlinearity

of the operator F . We now formulate this result as a theorem.

Theorem 2.1.

Let the following conditions hold:

1. Suppose that a nonlinear operator F is acting between two Hilbert spaces X and

Y , i.e., F : X → Y , and x̂ ∈ X is a solution (not necessarily unique) to the equation

17

with exact data F (x) = y. The right-hand side y is given by its δ-approximation such

that ||y − y(δ)|| ≤ δ.

2. Assume that F is Fréchet differentiable and its derivative F ′ is bounded and

Lipschitz continuous in the following region

B̄η(x̂) = {x ∈ X : ||x− x̂|| ≤ η}, η := l[α(0)]p−k, (2.44)

so that conditions (2.3) hold. In (2.44), p is defined in (2.24) and (2.7). The two

remaining parameters k and l are defined in (2.24) and (2.45), respectively.

3. For every n ∈ N, the sequence {x(n)} is generated according to (2.21) and the

control elements ξ(n) ∈ X are chosen by means of undetermined reverse connection (2.24),

which is fulfilled with the level of noise ∆.

4. The generating function θ = θ(σ, α), σ ∈ [0, N2] and α ∈ (0,∞), satisfies

inequalities (2.6)-(2.8), while the regularizing sequence {α(n)} satisfies (2.25).

5. For the initial value of the regularization parameter α(0), condition (2.26) is

fulfilled with

l :=
C2(p)Rε

1− C1R
{
C + L

2

}
[α(0)](p−k)(

1
µ
−1)− 1

2

:=
b

1− a
, and a+ b ≤ 1. (2.45)

Here C1 and C2(p) are defined in (2.6) and (2.7), ε is defined in (2.24) and

C :=

(
N

1− σ1−µ
0

) 1
µ

,
1

2
≤ µ < 1, (p− k)

(
1

µ
− 1

)

≥ 1

2
.

Then

1) the extended discrepancy principle is well-defined, i.e., there exists N = N (δ,∆, yδ)

such that

||F (x(N (δ,∆,y(δ))))− y(δ)|| ≤ σµN and σµn < ||F (x(n))− y(δ)||, 0 ≤ n < N (δ,∆, y(δ));

2) the function N (δ,∆, y(δ)) is admissible, that is, lim√
δ2+∆2→0 dist

(

x(N (δ,∆,y(δ))), X̂
)

= 0

for X̂ := {x ∈ X : F (x) = y};

18

3) the following estimate holds

||x(n) − x̂|| ≤ l[α(n)]p−k, n = 0, 1, 2...,N (δ,∆, y(δ)). (2.46)

2.5 Numerical Aspect: Linear Image Reconstruction Problem

To illustrate various aspects of numerical implementation of algorithm (2.21), we

examine a highly important image restoration problem, where the purpose is to obtain

the image of the original scene from an output that is blurred and noise contaminated.

This problem is often modeled as a large-scale linear system, Ax = b, with A and b

representing the blurring matrix and the blurred output, respectively. In most cases,

the right-hand side b is given by its δ-approximation b(δ), ||b− b(δ)|| ≤ δ. As it has been

pointed out in [32], the blur is generally more significant than the additive noise, b(δ)− b.
Thus the emphasis of image restoration is on removing the blur, which can occur for a

variety of reasons, such as camera shake and/or misfocus, atmospheric turbulence, and

other sources.

To simulate this linear inverse problem, we utilize RestoreTools Matlab software

developed by J. Nagy and his group [33], which provides a subfunction generating A

from a given point spread function PSF , i.e., a function that specifies how points in the

image are distorted.

With RestoreTools [33], we load the point spread image, which is a 256-by-256

matrix called PSF in our program, and use the function psfMatrix() to create the

blurring matrix A. After that, we read in a true image, x true large, and resize it to

a 256-by-256 matrix. The blurring matrix and the true image are used to generate the

blurred output, b. Then we add random, normally distributed, noise to the result in order

to simulate the data, b(δ), for the underlying inverse problem. Since our image is colorful,

we actually have an 256-by-256-by-3 array for x true 3. The goal is to reconstruct the

exact image, x, from a blurred/noisy image, b(δ), by solving the equation Ax = b(δ). For

colorful images, we reconstruct the red, green, and blue images separately.

The linear system under consideration is large-scale and severely ill-posed. There-

fore, a regularized algorithm needs to be implemented. Since this problem is linear, given

19

Table 2.1: Noise-free reconstruction

||b− b(δ)||/||b(δ)|| = 0, x initial = b(δ), α(n) = 0.75n

Mountain Produce

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 4.247× 10−7 51 8.249× 10−5

TSVD 2.386× 10−6 45 1.440× 10−4

MTSVD 3.182× 10−6 44 8.755× 10−5

Tea Leaves

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 4.247× 10−7 51 9.140× 10−5

TSVD 2.386× 10−6 45 1.826× 10−4

MTSVD 2.386× 10−6 45 9.929× 10−5

a proper value of α one can solve the regularized equation directly and obtain an approx-

imate solution in the form xα,δ = θ(A∗A, α)A∗y(δ) := Rαy
(δ). However, the large size of

matrix A makes this approach very difficult. Moreover, to implement a direct method,

one has to find a “nearly optimal” regularization parameter, which may result in solving

an extra (sometimes nonlinear) problem. Additionally, in cases like L-curve, the param-

eter selection procedure would only provide an insight into the choice of α rather than a

justified algorithm. So, instead of using a direct solver, we apply iteratively regularized

algorithm (2.21) with three different generating functions

• θ1(σ, α) =
1

σ+α
, the original iteratively regularized Tikhonov scheme;

• θ2(σ, α) :=







1
σ
, σ ≥ α,

0, 0 ≤ σ < α
, the classical iteratively truncated procedure;

• θ3(σ, α)
√
σ :=







1√
σ
, σ ≥ α,

1√
α
, 0 ≤ σ < α

, the modified iterative truncation.

For (2.21), there is no question of “optimal parameter”. In place of “optimal parameter”,

one needs a reliable stopping rule to get an accurate result in case of noisy data. The

application of stopping rule (2.31)-(2.32) for the image restoration problem is simplified

by the fact that, as we have already mentioned in section 2.2, for a linear problem the

convergence analysis can be carried out without any source conditions. Therefore we are

20

Given blurred image Tikhonov image

TSVD image MTSVD image

Given blurred image Tikhonov image

TSVD image MTSVD image

Figure 2.1: Blurred image and three reconstructed images. Noise-free case

free to use constants C1, C3, µ, and ∆ in (2.31)-(2.32) as control parameters and select

the values for which the stopping time is most accurate. In fact, the same approach can

also be used for nonlinear problems, since source condition (2.24) is not algorithmically

verifiable, in general.

Our method for choosing C1, C3, µ, and ∆ is as follows. Let ||b− b(δ)|| ≤ δ. Assume

that ∆ ≈ δ in (2.32). Then

σn =

(

1 +
C3

√
α(n)

C1

)

δ ≤
(

1 +
C3

√
α(0)

C1

)

δ := c δ.

The constant c is used as a control parameter, i.e., the experiment for a test image and

for a test value of δ/||b(δ)|| is conducted with c = 1, 2, ..., 10. The best result is achieved

for c = 8. The constant µ in (2.31) is viewed as another control parameter. Even

though the stopping rule is justified for 0.5 ≤ µ < 1, for the test experiment we try

µ = 0.5, 0.75, 1, 1.25, 1.5 . The best accuracy is attained for µ = 1. With c = 8 and

µ = 1, we perform simulations for all other images and values of δ, and stop iterations

when
∣
∣
∣
∣

||Ax(N) − b(δ)||
||b(δ)|| − cδ

||b(δ)||

∣
∣
∣
∣
< 10−4. (2.47)

Since A is a 2562 × 2562 matrix and both exact image, x, and blurred image, b, are

256 × 256 matrices, x must be compressed into a 2562 × 1 vector for the multiplication

of A by x to be carried out. Still, considering the size of A, it is too large to be stored.

21

Table 2.2: Reconstruction with relative noise 0.1 %

||b− b(δ)||/||b(δ)|| = 0.001, x initial = b(δ), α(n) = 0.75n, c = 8, µ = 1
Mountain Produce

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 2.381× 10−4 29 8.050× 10−3

TSVD 3.175× 10−4 28 8.035× 10−3

MTSVD 1.338× 10−3 23 8.025× 10−3

Tea Leaves

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 1.786× 10−4 30 8.067× 10−3

TSVD 2.381× 10−4 29 8.015× 10−3

MTSVD 1.003× 10−3 24 8.019× 10−3

Given blurred image Tikhonov image

TSVD image MTSVD image

Given blurred image Tikhonov image

TSVD image MTSVD image

Figure 2.2: Blurred image and three reconstructed images. Relative noise 0.1%

In the object oriented Matlab package RestoreTools [33], matrix vector multiplication

is done using the two dimensional discrete Fourier transform provided that the blur is

spatially invariant and the boundary conditions are periodic. Thus, the right hand side,

b, is generated as b = A ∗ x true by overloading the ∗ operator. Then algorithm (2.21)

is implemented with the use of the singular value decomposition.

For all three generating functions, the blurred/noisy image, b(δ) is used as an initial

approximation, x initial, and the regularization sequence is set to be α(n) = 0.75n.

While x initial = b(δ) is by far the best choice of the initial guess we have tried, the

choice of α(n) does not seem to be that important as long as assumption of Theorem 2.1

are fulfilled, i.e., the change of α(n) would only change the stopping time but not the

22

Given blurred image Tikhonov image

TSVD image MTSVD image

Given blurred image Tikhonov image

TSVD image MTSVD image

Figure 2.3: Blurred image and three reconstructed images. Relative noise 0.5%

accuracy of reconstruction.

The experiment has been conducted for multiple images and different values of δ in

order to make sure that the choice of control parameters depends neither on the image

to be recovered nor on the noise level. Figures 2.1, 2.2, and 2.3 along with Tables 2.1,

2.2, and 2.3 illustrate numerical results for two images, “Mountain Produce” and “Tea

Leaves”. The original pictures, used to simulated blurred/noisy data, have been taken

from [34] and [35], respectively.

Figure 2.1 shows a nearly perfect reconstruction in the noise-free case. In the ab-

sence of noise, iterations were not stopped until the discrepancy started to get worse

due to rounding errors. The values of the regularization parameters and the relative

discrepancies at the stopping time are displayed in Table 2.1.

In the presence of 0.1% relative noise in the right-hand side, the reconstruction is

still rather accurate (see Figure 2.2 and Table 2.2 for details). For both images, the

iterations were stopped by the practical method (2.47). As the noise level goes up to

0.5%, one can observe a reduction in the approximate image quality, but even in that

case it is acceptable.

2.6 Computational Study of Nonlinear Inverse Scattering Model

In this section, we consider an inverse problem of identifying the shape of a 2D

obstacle from far-field scattering data [36]. By parameterizing the boundary with polar

23

Table 2.3: Reconstruction with relative noise 0.5 %

||b− b(δ)||/||b(δ)|| = 0.005, x initial = b(δ), α(n) = 0.75n, c = 8, µ = 1
Mountain Produce

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 2.378× 10−3 21 3.994× 10−2

TSVD 1.784× 10−3 22 3.993× 10−2

MTSVD 1.782× 10−2 14 4.008× 10−2

Tea Leaves

Algorithm α(N) N ||Ax(N) − b(δ)||/||b(δ)||
Tikhonov 1.338× 10−3 23 3.990× 10−2

TSVD 1.003× 10−3 24 3.995× 10−2

MTSVD 1.002× 10−2 16 4.009× 10−2

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

Figure 2.4: Reconstruction with Tikhonov-type algorithm

coordinates, this problem may be reduced to nonlinear integral equation of the first kind,

F (r) = y, where ([37], [38], [39])

F (r) :=

∫ 2π

0

Q(ψ, φ, r(ψ)) dψ, F : X → Y , (2.48)

and

Q(ψ, φ, r) = [exp(βr)(βr − 1) + 1]/β2, β = −i2k0 cos(φ− ψ). (2.49)

In the above, k0 is a single fixed wave-number, where data is available. The noisy

data, y(δ), is such that ||y−y(δ)|| ≤ δ, and the noise is due to Born approximation as well

as due to imperfect measurements. As in [37], it is assumed that y = y(φ) has a 120o

24

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

Figure 2.5: Reconstruction with TSVD algorithm

Table 2.4: Noise-free reconstruction of a peanut-shaped object

r0(ψ) = 1, α(n) = 10−5/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 10 1.0× 10−6 6.46× 1017 7.460× 10−4 3.775× 10−2

TSVD 30 3.3× 10−7 4.44× 1017 7.128× 10−3 7.071× 10−2

MTSVD 32 3.1× 10−7 4.84× 1017 1.220× 10−4 1.902× 10−2

aperture, i.e., φ ∈ [0, 2π/3]. Set X = L2[0, 2π] and Y = L2[0, 2π/3]. In order to compare

strengths and weaknesses of generating functions θj , j = 1, 2, 3, and to investigate the

efficiency of stopping rule (2.31)-(2.32), we simulate exact scattering data for two model

solutions:

• “Peanut”: rmod(ψ) :=
(
cos2

(
ψ − π

4

)
+ 0.25 sin2

(
ψ − π

4

))1/2
,

• “Pillow”: rmod(ψ) := 1.25 + 0.25 cos(4ψ), ψ ∈ [0, 2π],

using a high-accuracy built-in Matlab integration subfunction. Notice that because the

kernel of the equation is complex valued and the exact solution is real, the simulated

right-hand side, y, (the exact data) is complex valued. Hence, when certain percentage of

noise is added to the data, the noise is randomly distributed between real and imaginary

parts of y(δ). The reconstructed solution, rN , is, in general, complex valued. This is the

case even when the error in the right-hand side is due to discretization only. However,

since for this particular application it is known a priori that the true solution is real, we

25

Table 2.5: Noise-free reconstruction of a pillow-shaped object

r0(ψ) = 1.5, α(n) = 10−5/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 200 5.0× 10−8 3.56× 1017 4.922× 10−4 5.376× 10−2

TSVD 99 1.0× 10−7 2.45× 1017 2.276× 10−3 5.888× 10−2

MTSVD 200 5.0× 10−8 2.20× 1017 7.271× 10−4 5.541× 10−2

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

Exact
Noise−Free
Initial
1% Noise
5% Noise

Figure 2.6: Reconstruction with MTSVD algorithm

view the real part of rN as the approximate shape of the object once the iterations have

been terminated. In Figures 2.4-2.6, it is the real part of rN that is compared to rmod. As

in the previous section, the first set of experiments has been conducted for the noise-free

case, i.e., in the presence of discretization error of order 10−6 only. Due to instability

and the lack of data, even for δ = 0, the scheme still needs to be regularized. In the

noise-free case, we use α(n) = 10−5/(n + 1) and stop iterations when the discrepancy

starts increasing.

Table 2.6: Reconstruction of a peanut-shaped object in the presence of 1% noise

r0(ψ) = 1, α(n) = 102/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 26 3.85 5.737× 1017 1.004× 10−2 5.381× 10−2

TSVD 100 1.00 6.340× 1017 1.005× 10−2 5.289× 10−2

MTSVD 16 6.25 4.758× 1017 1.013× 10−2 4.503× 10−2

26

Table 2.7: Reconstruction of a pillow-shaped object in the presence of 1% noise

r0(ψ) = 1.5, α(n) = 102/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 100 1.000 2.715× 1017 1.013× 10−2 7.371× 10−2

TSVD 100 1.000 2.567× 1017 1.187× 10−2 8.151× 10−2

MTSVD 100 1.000 2.566× 1017 2.268× 10−2 1.792× 10−1

For all three generating functions, we set ξ(n) = rn. For θ1, this results in a well-

known Iteratively Regularized Levenberg-Marquardt (IRLM) algorithm. For this par-

ticular nonlinear inverse problem, that choice of ξ(n) was by far the best among those

we tried. For both model solutions rmod(ψ), no a priori information on the shape of the

object was assumed to be available. In each case, an outer circle was used as initial guess

(see Figures 2.4-2.6).

The next two experiments were carried out in the presence of random noise. When

the data is corrupted, the initial value of the regularization parameter α(0) needs to be

substantially increased (even more so due to the fact that ξ(n) = rn). For the levels

of noise 1% and 5%, α(0) = 102 and α(0) = 103 are used, respectively. Thus, the term

C3

√
α(n)

C1
in stopping rule (2.31)-(2.32) becomes very important. Taking that into account,

we modify our strategy for choosing C1, C3, µ, and ∆ as follows. Once again, we assume

∆ ≈ δ and µ = 1. Define

σn =

(

1 +
C3

√
α(n)

C1

)

δ := (1 + c̃
√
α(n)) δ.

The constant c̃ is viewed as a control parameter, and tests are conducted for c̃ ∈
[10−3, 10−1]. Based on the tests, c̃ = 0.002 is taken. With c̃ = 0.002 and µ = 1,

simulations are performed for all other data sets and values of δ, and iterations are

terminated when the condition

||F (rn)− y(δ)||
||y(δ)|| <

(1 + c̃
√
α(n))δ

||y(δ)|| (2.50)

27

Table 2.8: Reconstruction of a peanut-shaped object in the presence of 5% noise

r0(ψ) = 1, α(n) = 103/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 36 2.8× 101 6.64× 1017 5.083× 10−2 6.377× 10−2

TSVD 100 1.0× 101 5.35× 1017 9.210× 10−2 1.404× 10−1

MTSVD 17 5.9× 101 5.34× 1017 5.089× 10−2 6.894× 10−2

Table 2.9: Reconstruction of a pillow-shaped object in the presence of 5% noise

r0(ψ) = 1.5, α(n) = 103/(n+ 1), ξ(n)(ψ) = rn(ψ)

Algorithm N α(N) cond(F ′) ||F (rN)−y(δ)||
||y(δ)||

||rN−rmod||
||rmod||

Tikhonov 62 1.6× 101 2.53× 1017 5.043× 10−2 9.976× 10−2

TSVD 100 1.0× 101 4.23× 1017 6.782× 10−2 1.552× 10−1

MTSVD 58 1.7× 101 2.20× 1017 5.055× 10−2 1.618× 10−1

is fulfilled for the first time, or when the number of iterations reaches 100.

In the noise-free case, IRML and MTSVD algorithms were equally accurate with

the second one being a bit more reliable, as Tables 2.4 and 2.5 illustrate. For noise

contaminated data, both IRLM and MTSVD have their advantages and disadvantages.

While IRLM method definitely does a great job of producing stable and smooth solutions,

it is not capable of actually approximating a peanut for the first rmod(ψ) and returns

an ellipse instead. MTSVD regularizes too “gently”, but the approximate curves follow

the shape of a peanut more closely, even when the noise is 5%. The same happens with

the second rmod(ψ): its shape is reproduced by MTSVD much better though the IRLM

curve is more smooth and stable.

2.7 Conclusion

Numerical simulations conducted for a large-scale image restoration system, indicate

that our practical stopping rule (2.47) is efficient. For this particular problem, it allows

selection of the control parameters using a test image and a test value of δ. Afterwards,

the selected parameters can be used on multiple other images and noise levels. From

28

our experience, it has been easier to adjust the control parameters in the stopping rule

rather than to find an “optimal” value of α to be used with a direct solver. Besides, the

direct solver is hard to implement in case of the above example considering the matrix

size.

For the nonlinear inverse scattering problem, the stopping rule also proved to work

well. Its successful implementation confirms that one does not need to derive a very

accurate estimate for the constants C3∆/C1 and µ in order to terminate generalized

Gauss-Newton iterations with our proposed stopping rule. What is more important,

is the knowledge that the coefficient with ∆ in (2.32) is O(
√
α(n)). Hence, as α(n) →

0, the contribution of the noise due to the source condition is dwindling. For mildly

unstable ill-posed problems, when α(0) can be small and α(n) can be driven to zero pretty

fast, the value of ∆ is practically irrelevant. At the same time, for severely ill-posed

problems, ∆ becomes more “dangerous”, and therefore the choice of initial guess gets

more complicated.

To summarize, the main difference between the new stopping rule and the classical

discrepancy principle ([28], [24]) is that in the classical discrepancy principle the transi-

tion moment is cδ with c > 1. In our stopping rule, the transition time is (δ+C
√
α(n))µ,

where C can (and should) be viewed as a control parameter. So, asymptotically, for

µ ≈ 1, the new rule is less aggressive while it allows for extra noise: noise due to the

violation of the source condition.

29

Chapter 3

THEORETICAL AND NUMERICAL STUDY OF ITERATIVELY

TRUNCATED NEWTON’S ALGORITHM

As shown in the previous chapter, the modified truncation method (MTSVD) tends

to stabilize too “gently”, and the solution turns out to be under-regularized. While this

solution follows the shape of the model curves more closely compared to Tikhonov’s and

classical truncated method (TSVD), it appears less stable and less noise resistant.

In Chapter 3, we focus on another method of regularizing Quasi-Newton iterations.

This method is based on spectral cut off and gives rise to Iteratively Truncated Newton’s

(ITN) scheme, which can be used for solving nonlinear irregular operator equations and

unstable minimization problems. This algorithm is, in fact, a special case of a general

procedure developed in [23]. However, convergence and stability analysis conducted in

[23] is not applicable here since the generating function is not analytic. Therefore, this

chapter presents an independent study of ITN method, which is carried out under the

source condition that is the weakest possible if no restrictions on the structure of the

operator are imposed. As a practical example, a 2D nonlinear inverse magnetometry

problem ([40], [41], [42]) is considered to illustrate advantages and limitations of the

proposed algorithm. Presentation in this chapter follows [43].

3.1 Introduction

Consider a nonlinear inverse problem in the form of the operator equation

F (x) = y, F : DF ⊂ X → Y , (3.1)

on a pair of two real Hilbert spaces X and Y . Suppose that problem (3.1) is known to

be solvable, maybe non-uniquely, and x̂ ∈ DF is a solution of interest. Let F be Fréchet

differentiable in a neighborhood of x̂, and its derivative be a compact operator between

30

X and Y . In case when X is infinite dimensional, this indicates that the problem is

necessarily ill-posed, and classical Newton-type iterations are generally undefined. To

overcome the lack of stability, we regularize Newton’s step as follows:

x(n+1) = P (n)x(n) + (I − P (n))ξ −Q(n)
[
F (x(n))− y

]
, ξ, x(0) ∈ DF ⊂ X . (3.2)

Here Q(n) is an iteratively regularized pseudo-inverse to F ′(x(n)) defined by means of the

truncation function ν(α(n), µ
(n)
j)

Q(n) :=

∞∑

j=1

ν(α(n), µ
(n)
j)

µ
(n)
j

(· , v(n)j)u
(n)
j , and ν(α(n), µ

(n)
j) :=







1, µ
(n)
j ≥ α(n),

0, µ
(n)
j < α(n),

(3.3)

with (µ
(n)
j , u

(n)
j , v

(n)
j), j = 1, 2, ..., being the singular system of F ′(x(n)). If one assumes

that J (n) is the number of singular values exceeding the threshold α(n) > 0, then

P (n) :=

J(n)
∑

j=1

(· , u(n)j)u
(n)
j

is the orthogonal projector into the subspace spanned by the first J (n) eigenvectors of

the operator F ′∗(x(n))F ′(x(n)).

From a practical standpoint, it has been observed that algorithm (3.2) is very robust

and regularization in (3.2) is more accurate in the sense that only “small” singular values

that essentially magnify noise get regularized (truncated), while other singular values

remain unchanged (unlike the case of iteratively regularized Gauss-Newton scheme, for

example). As always, the definition of “small” depends on the amount of noise in the

model. In this dissertation, the choice of a threshold level α(n) based on various types of

error-perturbation is investigated.

In the next section, the convergence analysis of the iteratively regularized algorithm

(3.2) is carried out, and the main convergence result Theorem 3.1 is formulated. The

influence of instrumental errors on measured data y, as well as the error in the smoothness

assumption on the initial guess, is investigated in section 3.3. To illustrate theoretical

31

findings, Newton-type method (3.2) is used to solve an inverse problem in gravitational

sounding, which takes the form of a 2D integral equation of the first kind. Our conclusions

based on numerical simulations are presented in section 3.4.

3.2 Convergence Analysis. Noise-Free Data

Suppose that Fréchet derivative F ′ is Lipschitz continuous in a neighborhood of x̂

||F ′(u)− F ′(v)|| ≤ M||u− v|| for any u, v ∈ B(x̂), (3.4)

and some M ≥ 0. Here B(x̂) is the ball of radius l̂α(0) centered at x̂ with l̂ and α(0)

specified in (3.12) and (3.15) below. From identity (3.2), one concludes

x(n+1) − x̂ = P (n)x(n) + (I − P (n))ξ −Q(n)F ′(x(n))(x(n) − x̂)

−Q(n)
{
F (x(n))− y − F ′(x(n))(x(n) − x̂)

}
− x̂.

Under assumption (3.4),

||F (x(n))− y − F ′(x(n))(x(n) − x̂)|| ≤ M
2
||x(n) − x̂||2. (3.5)

Clearly,

Q(n)F ′(x(n)) =
J(n)
∑

j=1

1

µ
(n)
j

(F ′(x(n))· , v(n)j)u
(n)
j =

J(n)
∑

j=1

1

µ
(n)
j

(· , F ′∗(x(n))v(n)j)u
(n)
j

=
J(n)
∑

j=1

1

µ
(n)
j

(· , µ(n)
j u

(n)
j)u

(n)
j = P (n), (3.6)

and therefore

x(n+1) − x̂ = (I − P (n))(ξ − x̂)−Q(n)
{
F (x(n))− y − F ′(x(n))(x(n) − x̂)

}
.

32

Let the source-type condition be satisfied for the test value ξ in the following form

F ′∗(x̂)w = ξ − x̂, w ∈ Y , (3.7)

which is equivalent to the Hölder source condition

(F ′∗(x̂)F ′(x̂))pω = ξ − x̂, ω ∈ X ,

with p = 1
2
and ||w|| = ||ω||. This is the least value of the exponent that would guarantee

convergence of a generalized Newton-type scheme without further assumptions on the

nonlinearity of the operator F . Then

(I − P (n))(ξ − x̂) = (I − P (n))[F ′(x̂)− F ′(x(n))]∗w + (I − P (n))F ′∗(x(n))w. (3.8)

The last term in (3.8) is, in fact,

(I − P (n))F ′∗(x(n))w =

∞∑

j=J(n)+1

(F ′∗(x(n))w, u(n)j)u
(n)
j =

∞∑

j=J(n)+1

µ
(n)
j (w, v

(n)
j)u

(n)
j .

Hence its norm is o(α(n)):

||(I − P (n))F ′∗(x(n))w||2 ≤ (α(n))2
∞∑

j=J(n)+1

|(w, v(n)j)|2 ≤ (α(n))2||w||2. (3.9)

In a similar manner, one can estimate

||Q(n)v||2 =

∥
∥
∥
∥
∥
∥

J(n)
∑

j=1

1

µ
(n)
j

(v, v
(n)
j)u

(n)
j

∥
∥
∥
∥
∥
∥

≤ 1

(α(n))2

J(n)
∑

j=1

|(v, v(n)j)|2 ≤ 1

(α(n))2
||v||2, (3.10)

where α(n) is the threshold level. Combining (3.4), (3.5), (3.8), (3.9), and (3.10), one

derives

||x(n+1) − x̂|| ≤ M||x(n) − x̂|| ||w||+ α(n)||w||+ M||x(n) − x̂||2
2α(n)

. (3.11)

33

Assume that the regularization sequence {α(n)} is defined in such a way that for some

constant r > 0,

α(n) > 0, lim
n→∞

α(n) = 0,
α(n)

α(n+1)
≤ r for any n = 0, 1, 2, (3.12)

We now prove that for sufficiently small ||w||, the sequence {β(n)},

β(n) :=
||x(n) − x̂||

α(n)
, (3.13)

is bounded by l̂ ≥ 0 (see (3.15) below), if β(0) ≤ l̂. Indeed, if for some l ≥ 0, one has

β(k) ≤ l, k = 0, 1, 2, ..., n, then (3.11) yields

β(n+1) ≤ Mβ(n)r||w||+ r||w||+ M
2
(β(n))2r ≤ Mr

2
l2 +Mr||w||l+ r||w||. (3.14)

Take

l̂ :=
2r||w||

1−Mr||w||, (3.15)

and suppose that

1 ≥ Mr||w||+ r
√

2M||w||. (3.16)

Conditions (3.14) and (3.16), and definition (3.15) imply

β(n+1) − l̂ ≤ r||w||
{

2Mr2||w||
(1−Mr||w||)2 − 1

}

≤ 0 =⇒ β(n+1) ≤ l̂. (3.17)

Our observations can be summarized in the following

Theorem 3.1.

Let F be a nonlinear operator between two real Hilbert spaces X and Y , that is,

F : DF ⊂ X → Y . Assume that F is Fréchet differentiable in B(x̂), the ball centered at

x̂ with radius l̂α(0), and F ′ is compact and Lipschitz continuous. Let the regularization

sequence {α(n)} converge to zero at the rate limited by (3.12), and the solution x̂ satisfy

source condition (3.7), while ||x(0) − x̂|| ≤ l̂α(0).

34

Then, if inequality (3.16) is fulfilled, one has

||x(n) − x̂|| ≤ l̂α(n), n = 0, 1, ..., (3.18)

where {x(n)} is generated by (3.2) and l̂ is introduced in (3.15).

3.3 Stability and Stopping Rule

In case of practical implementation, the problem is inevitably contaminated by var-

ious types of noise. First of all, there is noise in the measured data y. Secondly, the

operator equation F(x) = 0, F(x) := F (x)− y, is usually the product of approximate

modeling under simplifying assumptions. In addition to that, when it comes to numerical

simulations, one may have to deal with a discrete analog of the original operator. As

a result, instead of problem (3.1), the iterative scheme is actually applied to some dif-

ferent equation Fδ(x) = 0, where the operator Fδ accumulates discretization, modeling,

measurement, and other sources of error, and the singular value decomposition is done

for the Jacobian of Fδ:

x(n+1) = P (n)x(n) + (I − P (n))ξ −Q(n)Fδ(x
(n)), ξ, x(0) ∈ DF ⊂ X . (3.19)

Finally, source condition (3.7) is not algorithmically verifiable for the majority of inverse

problems, and, in general, one would have

F ′∗(x̂)w + η = ξ − x̂, w ∈ Y , η ∈ X . (3.20)

In this section, we assume that Fδ approximates F to the following level of accuracy

||Fδ(x̂)|| ≤ δ1 ||F ′(x̂)− F ′
δ(x̂)|| ≤ δ2, and ||η|| ≤ δ3, (3.21)

35

where η satisfies (3.20). If iteratively regularized algorithm (3.19) is terminated according

to the a priori stopping rule

δ1
(α(n))2

+
δ2 + δ3
α(n)

≤ ||w|| < δ1
(α(K))2

+
δ2 + δ3
α(K)

, 0 ≤ n < K = K(δ1, δ2, δ3), (3.22)

then for any n ≤ K(δ1, δ2, δ3),

||x(n+1) − x̂|| ≤ M||x(n) − x̂|| ||w||+ α(n)||w||+ M||x(n) − x̂||2
α(n)

+
δ1
α(n)

+ δ2 + δ3. (3.23)

From (3.23) and (3.13), one concludes

β(n+1) ≤ Mr

2
l2 +Mr||w||l+ 2r||w||, n ≤ K(δ1, δ2, δ3). (3.24)

If we set

l∗ :=
4r||w||

1−Mr||w||, (3.25)

and choose ξ ∈ X in such a way that

1 ≥ Mr||w||+ 2r
√

M||w||, (3.26)

then

||x(n) − x̂|| ≤ l∗α(n), n = 0, 1, ...,K(δ1, δ2, δ3). (3.27)

Moreover, the following convergence rate is guaranteed under (3.22) and (3.26):

||x(K) − x̂|| = O(δ1/2), where δ = max(δ1, δ1, δ3). (3.28)

Remark 3.1. Even though condition (3.22) may be hard to verify for the majority

of inverse problems, the above analysis clearly illustrates that as opposed to iteratively

regularized algorithms using different assumptions on the location of the spectrum of

F ′(x) and/or various restrictions on the nonlinearity of F ′(x), iterative methods based on

the source-type conditions are stable with respect to small violations in these conditions.

Inequalities (3.22) are similar to the assumptions of Theorem 4.2 in [23].

36

Table 3.1: Convergence rate for α(n) = α(0)

n0.5

ξ = x(0) = 0.5, α(n) = α(0)

n0.5

Noise α(0) Relative error Relative discrepancy n
0% 0.5 4.5943E-002 6.3828E-003 5
2.5% 0.8 6.0168E-002 1.9015E-002 5
5% 1.0 7.9092E-002 4.7690E-002 3
7.5% 1.1 8.3718E-002 6.6720E-002 3
10% 1.3 9.1591E-002 7.5625E-002 5

Remark 3.2. In place of (3.22), one can use a posteriori stopping rule developed in [5].

The a posteriori rule is more practical, but it does not imply (3.28) without additional

assumptions on the structure of the nonlinear operator F [28].

3.4 Numerical Experiments

In order to examine numerical efficiency of ITN method (3.2), we consider a nonlin-

ear inverse magnetometry problem ([40], [41], [42]) in the form of a 2D Fredholm integral

equation of the first kind F(x) = 0, where

F(x) := ∆J
∫ b

a

∫ d

c







x(s, u)
[
(t− s)2 + (v − u)2 + x2(s, u)

]3
2

(3.29)

− H
[
(t− s)2 + (v − u)2 +H2

] 3
2






du ds− y(t, v), t ∈ [ã, b̃], v ∈ [c̃, d̃].

The goal here is to reconstruct the interface x = x(s, u) between two media of differ-

ent densities from the anomalous magnetic data. The function y = y(t, v) is a measured

magnetic field caused by the deviation of the unknown surface S from a horizontal plane

x = −H , which is assumed to be given along with ∆J , the averaged jump of the vertical

component of the magnetization vector.

To simulate y = y(t, v) for inverse magnetometry problem (4.32), one solves the

corresponding forward problem for some model solution x = x̂(s, u) using a very fine

37

Figure 3.1: Reconstructed Solutions for ξ = x(0) = 0.5

38

Table 3.2: Convergence rate for α(n) = α(0)

n

ξ = x(0) = 0.1, α(n) = α(0)

n

Noise α(0) Relative error Relative discrepancy n
0% 0.5 2.1657E-002 3.1968E-004 24
2.5% 1.0 7.7084E-002 1.2272E-002 12
5% 1.5 1.1371E-001 4.2078E-002 6
7.5% 2.0 1.2383E-001 5.1370E-002 9
10% 2.5 1.6765E-001 8.2277E-002 6

Table 3.3: Truncation details for x(0) = 1

Relative noise 5%, x(0) = 1

n 1 2 3 4 5
of trunctd sv 762 659 670 663 654

α(n) 9.00E-001 7.57E-001 6.84E-001 6.36E-001 6.02E-001

n 6 7 8 9 10
of trunctd sv 646 639 634 629 624

α(n) 5.75E-001 5.53E-001 5.35E-001 5.20E-001 5.06E-001

grid on [ã, b̃] × [c̃, d̃] and a high accuracy composite integration scheme. This yields

exact measurement values of y = y(t, v). Then random noise is added to the solution of

forward problem to get the noise-contaminated observables y = y(δ)(t, v). In order to

solve equation (4.32) given y(δ)(t, v), we discretize independent variables t and v on an

M = I×K grid with fewer grid points, and replace the double integral with a convergent

quadrature formula

J∑

j=1

L∑

l=1

K(ti, vk, sj, ul, xj,l)µj,l − y
(δ)
i,k = 0, i = 1, ..., I, k = 1, ..., K, (3.30)

where

K(t, v, s, u, x) = ∆J







x
[
(t− s)2 + (v − u)2 + x2

] 3
2

− H
[
(t− s)2 + (v − u)2 +H2

] 3
2







In our experiments, a uniform grid over the rectangular domain [0.0, 8.0]× [4.0, 20.0]

39

0 1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

s = 10.00

exact solution
noise−free reconstr
2.5% noise
5% noise
7.5% noise
10% noise
initial guess

Figure 3.2: Cross-Sectional Comparison 1 for ξ = x(0) = 0.5

4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

t = 4.00

exact solution
noise−free reconstr
2.5% noise
5% noise
7.5% noise
10% noise
initial guess

Figure 3.3: Cross-Sectional Comparison 2 for ξ = x(0) = 0.5

40

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s = 10.0

noise−free right−hand side
2.5% relative noise
5% relative noise
7.5% relative noise
10% relative noise

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 4.0

noise−free right−hand side
2.5% relative noise
5% relative noise
7.5% relative noise
10% relative noise

Figure 3.4: Exact and Noisy Data

Table 3.4: Truncation details for x(0) = 0.1

Relative noise 5%, x(0) = 0.1

n 1 2 3 4 5 6
trunctd sv 0 0 0 0 24 402

α(n) 1.50E+000 7.50E-001 5.0E-001 3.75E-001 3.00E-001 2.50E-001

(km2) is generated with mesh widths of hs = hu = 0.1 (km) for data simulation and

hs = hu = 0.4 (km) for solving the inverse problem; ∆J = 1. The two-dimensional

analog of the composite trapezoidal quadrature rule is used to approximate the integral

operator. The ground surface height is taken to be H = 2.0 (km). The model solution

used to simulate the data is of the following form

x̂1(s, u) = − sin(|10s̃− 5| − |10ũ− 5|)/3 + 1; (3.31)

where s̃ and ũ are the re-scaled values of s and u, respectively, i.e.,

s̃ =
s− a

b− a
∈ [0, 1], ũ =

u− c

d− c
∈ [0, 1], s ∈ [a, b], u ∈ [c, d].

We use J = I = 41 and L = K = 21. Thus M = N = 861, and the size of the Jacobian

is 861×861. The role of the test function ξ in (3.2) is two-fold. On one hand, one makes

the process stable by holding x(n) rigid (unchanged) on a subspace that corresponds to

singular values truncated at the n-th step. On the other hand, the use of ξ allows to

41

Figure 3.5: Numerical Solutions for ξ = x(0) = 0.1

42

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

s = 10.00

exact solution
noise−free reconstr
2.5% noise
5% noise
7.5% noise
10% noise
initial guess

Figure 3.6: Cross-Sectional Comparison 1 for ξ = x(0) = 0.1

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

t = 4.00

exact solution
noise−free reconstr
2.5% noise
5% noise
7.5% noise
10% noise
initial guess

Figure 3.7: Cross-Sectional Comparison 2 for ξ = x(0) = 0.1

43

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 Relative level of noise 2.5%

1st iteration
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
7th iteration
8th iteration
9th iteration
10th iteration

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
 Relative level of noise 5%

1st iteration
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
7th iteration
8th iteration
9th iteration
10th iteration

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 Relative level of noise 7.5%

1st iteration
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
7th iteration
8th iteration
9th iteration
10th iteration

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 Relative level of noise 10%

1st iteration
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
7th iteration
8th iteration
9th iteration
10th iteration

Figure 3.8: Truncated Singular Values for ξ = x(0) = 1.0

incorporate an a priori information available regarding the true solution. To study how

the accuracy of numerical solutions depends on ξ, we conduct our experiments for three

different choices of ξ: ξ = 1.0, ξ = 0.5, ξ = 0.1. In each case, ξ also serves as the initial

approximation, i.e., x(0) = ξ.

For ξ = 1.0, the best results are achieved when α(n) is nearly constant: α(n) = n−1/4.

The value of α(0) is increased from 0.7 to 1.2 as the relative noise level in our data goes

up from 2.5% to 10%, see Figure 3.8. Table 3.3 reveals how the number of truncated

singular values is changing.

However, as the norm of x̂ − ξ is growing, we have to drive α(n) to zero at a faster

rate to make sure that stability does not take over accuracy. In general, it is becoming

more and more difficult to strike the balance between accuracy and stability as the test

function is getting worse. For ξ = x(0) = 0.5, the regularization sequence α(n) = n−1/2.

44

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2
 Relative level of noise 2.5%

5th iteration
6th iteration
7th iteration
8th iteration
9th iteration

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
 Relative level of noise 5%

5th iteration
6th iteration
7th iteration
8th iteration
9th iteration

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4
 Relative level of noise 7.5%

5th iteration
6th iteration
7th iteration
8th iteration
9th iteration

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
 Relative level of noise 10%

5th iteration
6th iteration
7th iteration
8th iteration
9th iteration

Figure 3.9: Truncated Singular Values for ξ = x(0) = 0.1

The accuracy of reconstructions is still very high, see it is shown in Figures 3.1, 3.2, and

3.3, as well as in Table 3.1.

For ξ = x(0) = 0.1, one has to take α(n) = n−1 and increase α(0). But even that does

not prevent the accuracy of the computed solutions from going down as it is evident from

Figures 3.5, 3.6, 3.7, and Table 3.2. In all experiments, the iterations are terminated by

the discrepancy principle [5].

Figures 3.8 and 3.9 present singular values truncated at every step of the iterative

process in order to show what regularization actually does. Figure 3.9 and Table 3.4

illustrate that until x(n) gets close to the solution, singular values do not accumulate at

zero, and truncation is not needed.

45

Chapter 4

A POSTERIORI ERROR ANALYSIS FOR UNSTABLE MODELS

In Chapters 2 and 3, we have investigated iteratively regularized Newton-type algo-

rithms for solving linear and nonlinear operator equations.

In this chapter, we consider the possibility of a posteriori error estimates, which

is an important aspect in the analysis of numerical solutions to inverse problems. Un-

like the well-posed case, discrepancy alone cannot guarantee that the approximate solu-

tion of an ill-posed problem is accurate. Given an auxiliary finite-dimensional problem

Φ(w) = 0, Φ : DΦ ⊂ EN → EM , that approximates the original infinite model F(x) = 0,

F : DF ⊂ X → Y , with a certain level of accuracy, we try to estimate the distance

between z, an approximate solution to Φ(w) = 0, and x̂, the exact solution to F(x) = 0.

The problem Φ(w) = 0 is assumed to accumulate different sources of error (discretiza-

tion, measurements, etc), and the computed solution z is assumed to satisfy the equation

Φ(w) = 0 within a nonzero tolerance β. Both theoretical and numerical study of a pos-

teriori error analysis is conducted. Presentation in this chapter follows [44].

4.1 Introduction

Our basic model takes the form of a nonlinear operator equation

F(x) = 0, F : DF ⊂ X → Y , (4.1)

on a pair of two normed spaces X and Y over the field R or C. Suppose that problem

(4.1) is known to be solvable, maybe non-uniquely, and x̂ ∈ DF is a solution of interest.

We do not require F in (4.1) to be differentiable or even continuous, nor do we assume

here that the operator is stable with respect to noise in the input data.

46

In the numerical analysis of equation (4.1), some finite dimensional problem

Φ(w) = 0, Φ : DΦ ⊂ EN → EM , (4.2)

is used, which approximates equation (4.1) in a certain sense. The operator Φ act-

s between Euclidian spaces EN and EM and N 6= M , in general. Normally, Φ would

accumulate different sources of error: due to measurements, approximate modeling, dis-

cretization, etc.

Assume that an element z ∈ DΦ ⊂ EN , such that

||Φ(z)|| = β, (4.3)

with β being rather small, has been computed by means of some numerical procedure.

Here || · || denotes the norm of a space, to which the element under the norm belongs.

Let p be a connecting operator between X and EN [45] and ẑ := px̂. The goal of this

chapter is to answer the following question:

How can one estimate ||z − ẑ|| based on condition (4.3)?

In section 4.2, our main theoretical result, a posteriori error estimate (4.17) is es-

tablished. In section 4.3, we consider possible application of estimate (4.17) to a 2D

nonlinear integral operator equation of the first kind with noisy data. In section 4.4,

the numerical algorithm for solving a nonlinear magnetometry problem is outlined, and

the simulation results are presented. We provide comparison of estimated and actual

error bounds in section 4.5 followed by the discussion on advantages and limitations of

a posteriori accuracy assessment by formula (4.17).

4.2 Theoretical Background

Suppose that the operator Φ of problem (4.2) is differentiable and its Jacobian Φ′

is Lipschitz continuous in a neighborhood of z:

||Φ′(u)− Φ′(v)|| ≤ M||u− v|| for any u, v ∈ B(z), (4.4)

47

and some M ≥ 0. Under assumption (4.4), the following identity holds:

Φ′(z)(ẑ − z) = Φ(ẑ)− Φ(z) +G(z, ẑ), ||G(z, ẑ)|| ≤ M
2
||z − ẑ||2. (4.5)

Consider the operator Φ′(z). This is a matrix that can be directly computed. A careful

analysis of Φ′(z) results in the construction of various operators, which make it possible

to transform equality (4.5) in such a way that the desired estimate is obtained under

certain a priori assumptions. Specifically, let Φ′(z) have singular values

λ1 ≥ λ2 ≥ ... ≥ λK̄−1 ≥ λK̄ ≥ 0, K̄ := min(M,N), (4.6)

and (λn, un, vn), n = 1, 2, ..., K̄, be the singular system. For any v ∈ EM , the solution u

of the equation Φ′(z)u = v, if exists, is given by Picard’s theorem

u =
K̄∑

n=1

1

λn
(v, vn)un (4.7)

as long as v ∈ Φ(z)(DΦ). This result suggests the way to construct a pseudoinverse [1]

to the Jacobian Φ′(z)

Qr :=

K̄∑

n=1

ν(α, λn)

λn
(· , vn)un, where

ν(α, 0)

0
:= 0 and ν(α, λ) :=







1, λ ≥ α,

0, λ < α,

(4.8)

Let r be the number of singular values exceeding the threshold α > 0. Then

QrΦ
′(z) =

K̄∑

n=1

ν(α, λn)

λn
(Φ′(z) · , vn)un =

r∑

n=1

1

λn
(· ,Φ′∗(z)vn)un =

r∑

n=1

(· , un)un = Pr

is the orthogonal projector into the subspace spanned by the first r eigenvectors of the

operator Φ′∗(z)Φ′(z). In particular for r = K̄,

QrΦ
′(z)u =

K̄∑

n=1

(u, un)un = u and Qr = (Φ′∗(z)Φ′(z))−1Φ′∗(z).

48

Application of the operator Qr to both sides of identity (4.5) yields

Pr(ẑ − z) = Qr(Φ(ẑ)− Φ(z)) +QrG(z, ẑ), ||G(z, ẑ)|| ≤ M
2
||z − ẑ||2 (4.9)

From the above, one concludes

||Pr(ẑ − z)|| ≤ ||Qr||
{

||Φ(ẑ)− Φ(z)|| + M
2

(

||(I − Pr)(z − ẑ)||2 + ||Pr(z − ẑ)||2
)}

Suppose

||Qr|| = κ, ||(I − Pr)(z − ẑ)|| = σ and ||Φ(ẑ)|| = ||Φ(px̂)|| = ε. (4.10)

Clearly, for r = K̄ the value of σ is zero. Inequality (4.3) implies the estimate

||Pr(ẑ − z)|| ≤ κ

{

ε+ β +
M
2

(

σ2 + ||Pr(z − ẑ)||2
)}

, (4.11)

which immediately gives us an upper bound for ||Pr(z − ẑ)|| and, by virtue of this, for

the norm of (z − ẑ) itself:

||ẑ − z|| = ||(I − Pr + Pr)(z − ẑ)|| =
{

σ2 + ||Pr(z − ẑ)||2
}1/2

. (4.12)

Indeed, suppose that combined noise in our problem satisfies the assumption

κ2M
[
2(ε+ β) +Mσ2

]
< 1. (4.13)

Then two cases are possible

||Pr(z − ẑ)|| ≤
1−

{

1− κ2M [2(ε+ β) +Mσ2]
}1/2

κM , (4.14)

or

||Pr(z − ẑ)|| ≥
1 +

{

1− κ2M [2(ε+ β) +Mσ2]
}1/2

κM . (4.15)

49

To rule out the second option, introduce the following (very reasonable) condition:

||Pr(z − ẑ)|| ≤ 1

κM . (4.16)

Notice that under assumption (4.13), estimate (4.14) is a guaranteed improvement over

(4.16). We can summarize our observations in the following

Theorem 4.1. Under assumptions (4.3), (4.4), (4.13), and (4.16), the error in the

computed solution z to equation (4.1) satisfies the following a posteriori estimate

||z − ẑ|| ≤

√
√
√
√
√
√σ2 +






1−
{

1− κ2M [2(ε+ β) +Mσ2]
}1/2

κM






2

. (4.17)

Here ẑ := px̂, x̂ ∈ DF ⊂ X is the exact solution to (4.1), p : X → EN is a connecting

operator, and the constants κ, σ, and ε are defined in (4.10).

Remark 4.2. Notice that if λK̄ > 0 in (4.6), and we choose not to cut off, then κ = 1
λK̄

.

In general, κ ≤ 1
α
[1]:

||Qrv||2 =
K̄∑

n=1

ν2(α, λn)

λ2n
|(v, vn)|2 ≤

1

α2

K̄∑

n=1

|(v, vn)|2 =
1

α2
||v||2, (4.18)

where α is the threshold level in (4.8).

Remark 4.3. In a linear case, the operator G(z, ẑ) is zero. From (4.11), it follows that

||Pr(ẑ − z)|| ≤ κ (ε+ β) , (4.19)

and in place of (4.17), one obtains a very simple estimate

||z − ẑ|| ≤
√

σ2 + κ2 (ε+ β)2. (4.20)

The reader may consult ([46], [47], [48]), and references therein for a detailed study of

a posteriori error estimation in case of linear ill-posed problems under various a priori

assumptions on the exact solution. An alternative approach aimed at obtaining order

50

optimal a posteriori estimates for solutions to linear operator equations solved by varia-

tional regularization method is presented in [49].

Remark 4.4. A special case of (4.17), when r = K̄ (σ = 0) has been previously

considered by A. B. Bakushinsky in [50]. An a priori version of estimate (4.11) for the

class of methods with a spectral cut off has been derived in [51].

4.3 Further Discussion

Generally, the operator Φ in (4.2) would accumulate at least two sources of error:

due to noise in the measured data and due to discretization. Suppose F in (4.1) takes

the form F(x) := A(x) − y, where A is a nonlinear operator from DF ⊂ X into Y , and

Fδ(x) := A(x)−y(δ) with y(δ) being the noise contaminated right-hand side, ||y−y(δ)|| ≤
δ. Then it is natural to assume that Φ is a discrete analog of Fδ, i.e.,

Φ(w) := AN,M(w)− y
(δ)
M , AN,M : DΦ ⊂ EN → EM , (4.21)

y
(δ)
M := qy(δ), and q is a connecting operator between Y and EM . For example, it can

be a discrete approximation of a nonlinear integral operator by a mechanical quadrature

method [45]. In that case,

||Φ(ẑ)|| = ||AN,M(ẑ)− y
(δ)
M || ≤ ||AN,M(px̂)− qA(x̂)||+ ||q(y − y(δ))||. (4.22)

The first error term in the right-hand side of (4.22) is solely due to discretization and

can be estimated for each particular quadrature formula. The second error is coming

from noise contaminated measurements and should be known a priori.

To illustrate application of (4.22), consider a 2D nonlinear Fredholm integral equa-

tion of the first kind F(x) := A(x)− y = 0,

A(x) :=

∫ b

a

∫ d

c

K(t, v, s, u, x(s, u)) du ds, t ∈ [ã, b̃], v ∈ [c̃, d̃], (4.23)

A : X =W 1
2 ([a, b]×[c, d]) → Y = L2([ã, b̃]×[c̃, d̃]). Let it be known a priori from physical

51

considerations that |x̂| ≤ γ for some γ > 0 and the kernel K(t, v, s, u, x) is continuous in

S := {a ≤ s ≤ b, c ≤ u ≤ d, ã ≤ t ≤ b̃, c̃ ≤ v ≤ d̃, |x| ≤ γ}. (4.24)

We partition the intervals [a, b], [c, d], [ã, b̃], and [c̃, d̃] with mesh points {sj}J1 , {ul}L1 ,
{ti}I0, and {vk}K0 , respectively. Take a convergent quadrature formula

∫ b

a

∫ d

c

f(s, u) du ds =

J∑

j=1

L∑

l=1

µj,lf(sj, ul) +R(f), µj,l ≥ 0, (4.25)

and use (4.25) to define the approximating operator Φ(w) := AN,M(w)−y(δ)M with AN,M :

DΦ ⊂ EN → EM ,

[AN,M(w)]i,k :=

J∑

j=1

L∑

l=1

µj,lK(t̄i, v̄k, sj, ul, wj,l), i = 1, 2, ..., I, k = 1, 2, ..., K, (4.26)

N = J × L, M = I ×K, while w = [w1,1w1,2 ... w1,Lw2,1w2,2 ... w2,L ... wJ,1wJ,2 ... wJ,L]
T ,

t̄i =
ti−1+ti

2
, and v̄k =

vk−1+vk
2

. Then one has

J∑

j=1

L∑

l=1

µj,lK(t, v, sj, ul, x̂(sj, ul))−
∫ b

a

∫ d

c

K(t, v, s, u, x̂(s, u)) du ds = R(ψt,v),

where the set of functions

Ψ := {ψt,v(s, u) : ψt,v(s, u) = K(t, v, s, u, x̂(s, u)), ã ≤ t ≤ b̃, c̃ ≤ v ≤ d̃}

is relatively compact in C([a, b]× [c, d]) [45] and, since (4.25) is convergent,

sup
ψt,v∈Ψ

|R(ψt,v)| −→ 0 as J, L −→ ∞.

The actual value of the supremum will depend on a particular quadrature formula as

well as a specific expression for K(t, v, s, u, x). Let the connecting operators p : X → EN

52

and q : Y → EM be introduced as follows

p : x(s, u) → [x(s1, u1) x(s1, u2) ... x(s1, uL) ... x(sJ , u1) x(sJ , u2) ... x(sJ , uL)]
T ,

q : g(t, v) →
[

1

△ t1 △ v1

∫ t1

t0

∫ v1

v0

g(t, v) dv dt ...
1

△ t1 △ vK

∫ t1

t0

∫ vK

vK−1

g(t, v) dv dt

...
1

△ tI △ v1

∫ tI

tI−1

∫ v1

v0

g(t, v) dv dt ...
1

△ tI △ vK

∫ tI

tI−1

∫ vK

vK−1

g(t, v) dv dt

]T

.

In order to estimate ||Φ(ẑ)|| = ||Φ(px̂)||, we first consider

[AN,M(px̂)− qA(x̂)]i,k =
1

△ ti △ vk

∫ ti

ti−1

∫ vk

vk−1

(
J∑

j=1

L∑

l=1

µj,lK(t̄i, v̄k, sj , ul, x̂(sj, ul))

−
∫ b

a

∫ d

c

K(t̄i, v̄k, s, u, x̂(s, u)) du ds

)

dv dt+
1

△ ti △ vk

∫ b

a

∫ d

c

∫ ti

ti−1

∫ vk

vk−1

{

K(t̄i, v̄k, s, u, x̂(s, u))−K(t, v, s, u, x̂(s, u))

}

dv dt du ds. (4.27)

Assuming that K(t, v, s, u, x) is Lipschitz continuous in variables t and v, and the cor-

responding Lipschitz constants, which depend on other variables as on parameters, are

bounded with respect to these parameters in set S (4.24) by values Lt and Lv respectively,
one derives

∣
∣[AN,M(px̂)− qA(x̂)]i,k

∣
∣ ≤ |R(ψt̄i,v̄k)|+

CK(b− a)(d− c)

4
[△ ti+ △ vk], (4.28)

where CK = max {Lt,Lv}. Let the norm in EM , the discrete analog of the continuous

space Y = L2([ã, b̃] × [c̃, d̃]), be defined by means of quadrature coefficients {ζi,k} with

ζi,k ≥ 0,

||r|| :=
(

I∑

i=1

K∑

k=1

ζi,k|ri,k|2
)1/2

, M = I ×K. (4.29)

If the kernel K(t, v, s, u, x̂) is sufficiently smooth in S, the grid is uniform in both di-

rections, i.e., △ ti =△ vk := hY , i = 1, 2, ..., I, k = 1, 2, ..., K, △ sj =△ ul := hX ,

j = 1, 2, ..., J , l = 1, 2, ..., L, and {µj,l} correspond to the composite trapezoidal rule, one

53

obtains

||AN,M(px̂)− qA(x̂)||2 ≤
I∑

i=1

K∑

k=1

ζi,k

[
(b− a)(d− c)

2

(AKh2X
6

+ CKhY
)]2

.

Here AK = supS |K′′
ss(t, v, s, u, x̂)|+supS |K′′

uu(t, v, s, u, x̂)| . Provided the last quadrature

formula is exact for g(t, v) := 1, we conclude

||AN,M(px̂)− qA(x̂)|| ≤
(b− a)(d− c)

√

(b̃− ã)(d̃− c̃)

2

(AKh
2
X

6
+ CKhY

)

. (4.30)

We now evaluate the second norm in (4.22)

‖q(y − y(δ))‖2 =
I∑

i=1

K∑

k=1

ζi,k

(

1

△ ti △ vk

∫ ti

ti−1

∫ vk

vk−1

(y(t, v)− y(δ)(t, v)) dv dt

)2

By Hölder’s inequality, one derives

‖q(y − y(δ))‖2 ≤
I∑

i=1

K∑

k=1

ζi,k
(△ ti △ vk)2

∫ ti

ti−1

∫ vk

vk−1

(y(t, v)− y(δ)(t, v))2 dv dt

∫ ti

ti−1

∫ vk

vk−1

dv dt.

So whenever ζi,k =△ ti △ vk, the last expression is equal to ‖y − y(δ)‖, that is

‖q(y − y(δ))‖ ≤ ‖y − y(δ)‖,

and

ε := ||Φ(ẑ)|| ≤
(b− a)(d− c)

√

(b̃− ã)(d̃− c̃)

2

(AKh2X
6

+ CKhY
)

+ δ. (4.31)

One can see that the main part of estimate (4.31) (the one that cannot be changed) is

δ, noise in the measurements. The discretization error can technically be reduced to any

tolerance level as long as machine memory and accuracy allow that, and as long as the

corresponding derivatives of K = K(t, v, s, u, x̂(s, u)) are finite.

54

4.4 Numerical Simulations

To illustrate the above a posteriori estimates, we consider the 2D nonlinear Fredholm

integral equation in the following form ([40], [41], [42]):

A(x) :=△ J
∫ b

a

∫ d

c







x(s, u)
[
(t− s)2 + (v − u)2 + x2(s, u)

]3
2

(4.32)

− H
[
(t− s)2 + (v − u)2 +H2

] 3
2

du ds






= y(t, v), t ∈ [ã, b̃], v ∈ [c̃, d̃].

Here one is to reconstruct the interface x = x(s, u) between two media from the anoma-

lous magnetic data. The right-hand side y = y(t, v) is a measured magnetic field caused

by the deviation of the unknown surface S from a horizontal plane x = −H , and △ J
is a given averaged jump of the vertical component of the magnetization vector. The

operator A in (4.32) is a special case of (4.23) with

K(t, v, s, u, x) =△ J







x
[
(t− s)2 + (v − u)2 + x2

] 3
2

− H
[
(t− s)2 + (v − u)2 +H2

] 3
2







To simulate data for inverse magnetometry problem (4.32), we solve the corresponding

forward problem for some model solution x = x̂(s, u) using a very fine grid on [ã, b̃]×[c̃, d̃]

and a high accuracy numerical integration scheme. This yields exact measurement values

of y = y(t, v). Then random noise is added to the solution of forward problem to get the

noise-contaminated observables y = y(δ)(t, v).

In order to solve equation (4.32) given y(δ)(t, v), we discretize independent variables

t and v on an M = I ×K grid, and replace the double integral with quadrature formula

(4.25):

[Φ(x)]i,k :=

J∑

j=1

L∑

l=1

K(ti, vk, sj, ul, xj,l)µj,l − y
(δ)
i,k = 0, i = 1, ..., I, k = 1, ..., K. (4.33)

This results in a system of M nonlinear equations with N = J ×L unknowns. Provided

M = N , nonlinear system (4.33) can be solved by some regularized version of the classical

55

Figure 4.1: Numerical Solutions for the First Data Set

56

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

s = 2.00

exact solution
noise−free solution
1% relative noise
5% relative noise
10% relative noise
25% relative noise
initial guess

Figure 4.2: Cross-Sectional Comparison for the First Data Set

Newton-Kantorovich method [52], [53]

Φ′(x(ν))τ (ν) = −Φ(x(ν)), τ (ν) = x(ν+1) − x(ν), x(0) ∈ DΦ, (4.34)

which can be written as

J∑

j=1

L∑

l=1

K′
x(ti, vk, sj, ul, x

(ν)
j,l)τ

(ν)
j,l µj,l = −

[
J∑

j=1

L∑

l=1

K(ti, vk, sj, ul, x
(ν)
j,l)µj,l − y

(δ)
i,k

]

,

τ
(ν)
j,l = x

(ν+1)
j,l − x

(ν)
j,l , i = 1, 2, ..., I, k = 1, 2, ..., K, M = I ×K. (4.35)

Denote

g
(ν)
i,k := K(ti, vk, sj , ul, x

(ν)
j,l)µj,l − y

(δ)
i,k .

To evaluate τ
(ν)
j,l from (4.35), we compress the 4D array K′

x(ti, vk, sj, ul, x
(ν)
j,l)µj,l to an M

by N matrix K
(ν)
m,n, and 2D arrays τ

(ν)
j,l and g

(ν)
i,k to N by 1 and M by 1 column-vectors

57

0 0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s = 1.0

noise−free right−hand side
1% relative noise
5% relative noise
10% relative noise
25% relative noise

Figure 4.3: Exact and Noisy Data for the First Experiment

Γ
(ν)
n and G

(ν)
m , respectively. Then (4.35) is equivalent to the linear system

N∑

n=1

K
(ν)
m,nΓ

(ν)
n = −G(ν)

m , Γ(ν)
n = X(ν+1)

n −X(ν)
n . (4.36)

Upon convergence of a Newton - type method, we uncompress the solution to get a 2D

approximation of x = x̂(s, u).

The 2D to 1D compression is organized as follows: if the 2D array is J by L,

then the first row of the matrix becomes the first L elements of the vector, the second

row becomes the second L elements, etc. Consequently, to uncompress a vector with

N = J × L coordinates, the first L elements of the vector form the first row of the

matrix, the second L elements form the second row, etc.

Using the above rule one can also compress a 4D array to a 2D matrix. Indeed,

fix i = 1 and k = 1. Then K′
x(t1, v1, sj, ul, x

(ν)
j,l)µj,l is 2D, and we may apply the 2D to

1D compression rule to convert K′
x(t1, v1, sj , ul, x

(ν)
j,l)µj,l to the first row of K

(ν)
m,n. Next,

fix i = 1 and k = 2 to convert K′
x(t1, v2, sj , ul, x

(ν)
j,l)µj,l to the second row of K

(ν)
m,n, etc.

58

Figure 4.4: Numerical Solution for the Second Data Set

59

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s = 2.00

exact solution
noise−free solution
1% relative noise
5% relative noise
10% relative noise
25% relative noise
initial guess

Figure 4.5: Cross-Sectional Comparison for the Second Data Set

Finally, we fix i = I and k = K to convert K′
x(tI , vK , sj, ul, x

(ν)
j,l)µj,l to the Mth row

of K
(ν)
m,n. For our numerical simulations we use the following regularized adaptation of

method (4.35)

(
K

∗(ν)
K

(ν) + α(ν)
I
)
Γ(ν) = −

{
K

∗(ν)G(ν) + α(ν)(X(ν) −X(0))
}
, Γ(ν) = X(ν+1) −X(ν),

known as iteratively regularized Gauss-Newton (IRGN) algorithm, which was proposed

by A. Bakushinnsky in [54], and further studied in [9], [10], [23], [11], [13], [28], [16] and

many other papers. Here the stabilizing sequence {α(ν)} is such that

α(ν) ≥ 0, lim
ν→0

α(ν) = 0, 0 ≤ α(ν)

α(ν+1)
≤ const. (4.37)

As opposed to (4.35), IRGN can still be executed in more general case when M 6= N ,

and the compression procedure is the same.

In our experiments, a uniform grid over the rectangular domain [0.0, 4.0]× [0.0, 2.0]

(km2) is generated with mesh widths of hs = hu = 0.0125 (km) for data simulation and

60

Table 4.1: Experiments for different levels of noise

a = 0.0, b = 4.0, c = 0.0, d = 2.0, L = 41, J = 81
Rel Noise Iter Rel Error 1 Discrepancy 1 Iter Rel Error 2 Discrepancy 2

0 13 3.92 · 10−2 4.38 · 10−4 11 3.64 · 10−2 4.53 · 10−4

0.01 8 5.30 · 10−2 8.39 · 10−3 8 5.31 · 10−2 7.06 · 10−3

0.05 6 6.71 · 10−2 3.94 · 10−2 7 8.12 · 10−2 3.45 · 10−2

0.1 6 8.86 · 10−2 1.32 · 10−1 5 8.22 · 10−2 8.61 · 10−2

0.25 6 1.92 · 10−1 3.11 · 10−1 2 2.27 · 10−1 8.93 · 10−1

hs = hu = 0.05 (km) for solving the inverse problem; △ J = 1. The two-dimensional

analog of the composite trapezoidal quadrature rule is used to approximate the integral

operator. The ground surface height is taken to be H = 2.0 (km). The constant hori-

zontal plane x(0)(s, u) = 0.1 (km) serves as the initial guess for all the simulations. The

model solutions used to simulate the data are of the following form

x̂1(s, u) =
1

4
cos((4s̃− 2)2 + (4ũ− 2)2) + 1, (4.38)

and

x̂2(s, u) = − exp[−(3s̃− 1.5)2 − (3ũ− 1.5)2] + 1.5 (4.39)

where s̃ and ũ are the re-scaled values of s and u, respectively, i.e.,

s̃ =
s− a

b− a
∈ [0, 1], ũ =

u− c

d − c
∈ [0, 1], s ∈ [a, b], u ∈ [c, d].

The regularization sequence {α(ν)} is chosen to be α(ν) = α(0) exp(−ν) and α(ν) = α(0)ν−1

with α(0) = 0.5 or 1. The sequence α(ν) = exp(−ν) gives the most aggressive convergence

rate for both model solutions and noise levels shown in Table 4.1. The iterations are

terminated by the discrepancy principle.

In our calculations, J = I = 81 and L = K = 41, and therefore M = N = 3321.

The condition number of 3321 by 3321 Jacobian at the last step of the iterative process

is of order 1019 - 1023.

61

Table 4.2: Parameter values and error estimates

a = 0.0, b = 4.0, c = 0.0, d = 2.0, L = 41, J = 81
Subregion M AK CK δ β κ Act Er Est Err

[1.75, 2]× [0.75, 1] 4.74 216.0 0.248 0.00062 0.000649 6.81 0.00349 0.0151
[2, 2.25]× [1, 1.25] 4.74 216.0 0.152 0.00144 0.000780 6.81 0.00353 0.0281
[1.75, 2]× [1, 1.25] 4.74 216.0 0.200 0.00207 0.001068 5.73 0.00360 0.0359

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s = 1.0

noise−free right−hand side
1% relative noise
5% relative noise
10% relative noise
25% relative noise

Figure 4.6: Exact and Noisy Data for the Second Experiment

The reader can see the error estimates for numerical solutions obtained from x =

x̂1(s, u) in column 9 compared to the accurate error in column 8 of Table 4.2. The

reconstructed surfaces are illustrated in Figures 4.1 and 4.4. Figures 4.2 and 4.5 give

cross-sectional comparison between numerical solutions computed for different levels of

noise. The corresponding exact and noisy right-hand sides are presented in Figures 4.3

and 4.6.

62

4.5 Analysis of the Results

Our numerical study revealed both advantages and limitations of a posteriori error

estimate (4.17). First, for estimate (4.17) to be applicable, the step size for a numerical

integration formula needs to be rather small, especially if the reconstruction is done over

a large region and AK is large. Moreover, since x = x̂(s, u) is unknown, only an upper

bound for AK is available, which may considerably exceed the actual value. However,

from numerical standpoint, decreasing hs and hu too much is not beneficial, because it

results in a loss of stability that is not compensated by the gain in accuracy. Besides,

CPU computer time goes up as the size of Jacobian increases, and eventually computer

runs out of memory.

Secondly, the value of σ in estimate (4.17) is unknown for most practically important

cases. If one integrates with a relatively large step size (hs = hu = 0.4 over the region

[2.4, 20.0]×[0.0, 8.0], for example), then the Jacobian is more or less well-conditioned and

||(Φ′∗(z)Φ′(z))−1Φ′∗(z)|| ∼ 103. Hence, one can use r = K̄ (κ = ||(Φ′∗(z)Φ′(z))−1Φ′∗(z)||)
for the estimate, and then σ = 0. But inequality (4.13) is not satisfied for the above

values of hs, hu, a, b, c, and d (ε ≫ 1), and (4.17) is not applicable. If one takes

a smaller region and uses hs = hu = 0.05 with the same size of the Jacobian, then

||(Φ′∗(z)Φ′(z))−1Φ′∗(z)|| ∼ 1020 (or even 1023). For this reason, one can no longer use

κ = ||(Φ′∗(z)Φ′(z))−1Φ′∗(z)||. After spectral cut off, the value of κ goes down, but then

σ 6= 0, in general.

Taking into consideration all of the above, we choose three small subregions of the

domain [0.0, 4.0] × [0.0, 2.0], and estimate the accuracy of the computed solution over

these subregions only. Specifically, we get the first error bound by restricting the domain

of our computed solution from [0.0, 4.0]× [0.0, 2.0] to [1.75, 2]× [0.75, 1] and evaluating
√

σ2 +

((

1−
{

1− κ2M [2(ε+ β) +Mσ2]
}1/2

)

/[κM]

)2

for this new domain. The

same idea is used for two other estimates. The value of ε is found by (4.31), while β

is computed numerically. We use α = α(ν̃), the value of the regularization parameter

at the last iteration of IRGN method, for spectral cut off required to evaluate ||Qr||.
For the first two subregions, ν̃ = 7 and α(7) = 1/7; for the last subregion ν̃ = 6 and

63

α(6) = 1/6. When α = 1/7, λr = 0.146842..., and κ = ||Qr|| = 1/λr = 6.81.... If α = 1/6,

λr = 0.174520..., and κ = ||Qr|| = 1/λr = 5.73.... The value of σ is assumed to be at

most 10−2 for all three subregions.

To find M, we first notice that in our case G(z, ẑ) defined in (4.5) is as follows

[G(z, ẑ)]i,k =
1

2

J∑

j=1

L∑

l=1

K′′
xx(ti, vk, sj, ul, z̃j,l)(z − ẑ)2j,l µj,l

=
△ J
2

J∑

j=1

L∑

l=1

3z̃j,l
(
2z̃2j,l − 3

[
(ti − sj)

2 + (vk − ul)
2
])

[
(ti − sj)2 + (vk − ul)2 + z̃2j,l

] 7
2

(z − ẑ)2j,l µj,l, (4.40)

i = 1, ..., I, k = 1, ..., K. From (4.40), one concludes

∣
∣[G(z, ẑ)]i,k

∣
∣ ≤ U

2

J∑

j=1

L∑

l=1

(z − ẑ)2j,l µj,l ≤
U
2
||z − ẑ||2.

Here U = supS |K′′
xx(t, v, s, u, x(s, u))|. Since by our assumption the quadrature formula

in (4.29) is exact for g(t, v) = 1, one derives

||G(z, ẑ)|| ≤ U
2
||z − ẑ||2

(
I∑

i=1

K∑

k=1

ζi,k

)1/2

=
U
2

√

(b̃− ã)(d̃− c̃)||z − ẑ||2, (4.41)

which means M = U
√

(b̃− ã)(d̃− c̃). To get the value of M from (4.41), we use an

upper bound for U rather than the actual supremum. For the partial derivatives required

to compute AK and CK we also use upper bounds instead of suprema. The results are

summarized in Table 4.2.

So at least for small subregions, the estimated errors can be computed by formula

(4.17). However, in our opinion the significance of estimate (4.17) is not in its ability

to give the precise numerical value of the error bound, but in revealing all sources of

this error and their respective weights. Thus it provides important guidance on how to

balance accuracy and stability in the construction of numerical algorithms for nonlinear

irregular operator equations.

64

REFERENCES

[1] A. Kirsch, An introduction to the mathematical theory of inverse problems, ser.

Applied Mathematical Sciences. Springer-Verlag, New York, 1996, vol. 120.

[Online]. Available: http://dx.doi.org/10.1007/978-1-4612-5338-9

[2] A. B. Bakushinsky, A. Smirnova, and H. Liu, “A nonstandard approximation of

pseudoinverse and a new stopping criterion for iterative regularization,” J. Inverse

Ill-Posed Probl., 2014. [Online]. Available: http://dx.doi.org/10.1515/jiip-2013-0086

[3] J. M. Ortega and W. C. Rheinboldt, “Local and global convergence of generalized

linear iterations,” in Studies in Numerical Analysis, 2: Numerical Solutions of Non-

linear Problems (Symposia, SIAM, Philadelphia, Pa., 1968). Soc. Indust. Appl.

Math., Philadelphia, Pa., 1970, pp. 122–143.

[4] A. B. Bakushinsky, “Iterative methods without saturation for solving degenerate

nonlinear operator equations,” Dokl. Akad. Nauk, vol. 344, no. 1, pp. 7–8, 1995.

[5] A. Bakushinsky and A. Smirnova, “On application of generalized discrepancy

principle to iterative methods for nonlinear ill-posed problems,” Numer.

Funct. Anal. Optim., vol. 26, no. 1, pp. 35–48, 2005. [Online]. Available:

http://dx.doi.org/10.1081/NFA-200051631

[6] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, ser.

Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht,

1996, vol. 375. [Online]. Available: http://dx.doi.org/10.1007/978-94-009-1740-8

[7] M. Hanke, “Regularizing properties of a truncated Newton-CG algorithm for

nonlinear inverse problems,” Numer. Funct. Anal. Optim., vol. 18, no. 9-10, pp.

971–993, 1997. [Online]. Available: http://dx.doi.org/10.1080/01630569708816804

[8] A. B. Bakushinsky, “A general method of constructing regularizing algorithms for

a linear incorrect equation in Hilbert space,” Ž. Vyčisl. Mat. i Mat. Fiz., vol. 7, pp.

672–677, 1967.

http://dx.doi.org/10.1007/978-1-4612-5338-9
http://dx.doi.org/10.1515/jiip-2013-0086
http://dx.doi.org/10.1081/NFA-200051631
http://dx.doi.org/10.1007/978-94-009-1740-8
http://dx.doi.org/10.1080/01630569708816804

65

[9] B. Blaschke, A. Neubauer, and O. Scherzer, “On convergence rates for the iteratively

regularized Gauss-Newton method,” IMA J. Numer. Anal., vol. 17, no. 3, pp.

421–436, 1997. [Online]. Available: http://dx.doi.org/10.1093/imanum/17.3.421

[10] T. Hohage, “Logarithmic convergence rates of the iteratively regularized Gauss-

Newton method for an inverse potential and an inverse scattering problem,”

Inverse Problems, vol. 13, no. 5, pp. 1279–1299, 1997. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/13/5/012

[11] A. Smirnova, R. A. Renaut, and T. Khan, “Convergence and applica-

tion of a modified iteratively regularized Gauss-Newton algorithm,” In-

verse Problems, vol. 23, no. 4, pp. 1547–1563, 2007. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/23/4/011

[12] S. Langer and T. Hohage, “Convergence analysis of an inexact iteratively

regularized Gauss-Newton method under general source conditions,” J. Inverse

Ill-Posed Probl., vol. 15, no. 3, pp. 311–327, 2007. [Online]. Available:

http://dx.doi.org/10.1515/jiip.2007.017

[13] Q. Jin, “A convergence analysis of the iteratively regularized Gauss-Newton method

under the Lipschitz condition,” Inverse Problems, vol. 24, no. 4, pp. 045 002, 16,

2008. [Online]. Available: http://dx.doi.org/10.1088/0266-5611/24/4/045002

[14] D. Langemann and M. Tasche, “Phase reconstruction by a multilevel iteratively

regularized Gauss-Newton method,” Inverse Problems, vol. 24, no. 3, pp. 035 006,

26, 2008. [Online]. Available: http://dx.doi.org/10.1088/0266-5611/24/16/035006

[15] A. Smirnova and R. A. Renaut, “A family of preconditioned iteratively regularized

methods for nonlinear minimization,” J. Inverse Ill-Posed Probl., vol. 17, no. 4, pp.

405–418, 2009. [Online]. Available: http://dx.doi.org/10.1515/JIIP.2009.027

[16] F. Bauer, T. Hohage, and A. Munk, “Iteratively regularized Gauss-Newton

method for nonlinear inverse problems with random noise,” SIAM J.

Numer. Anal., vol. 47, no. 3, pp. 1827–1846, 2009. [Online]. Available:

http://dx.doi.org/10.1137/080721789

http://dx.doi.org/10.1093/imanum/17.3.421
http://dx.doi.org/10.1088/0266-5611/13/5/012
http://dx.doi.org/10.1088/0266-5611/23/4/011
http://dx.doi.org/10.1515/jiip.2007.017
http://dx.doi.org/10.1088/0266-5611/24/4/045002
http://dx.doi.org/10.1088/0266-5611/24/16/035006
http://dx.doi.org/10.1515/JIIP.2009.027
http://dx.doi.org/10.1137/080721789

66

[17] P. Mahale and M. T. Nair, “A simplified generalized Gauss-Newton method for

nonlinear ill-posed problems,” Math. Comp., vol. 78, no. 265, pp. 171–184, 2009.

[Online]. Available: http://dx.doi.org/10.1090/S0025-5718-08-02149-2

[18] B. Kaltenbacher and B. Hofmann, “Convergence rates for the iterative-

ly regularized Gauss-Newton method in Banach spaces,” Inverse Prob-

lems, vol. 26, no. 3, pp. 035 007, 21, 2010. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/26/3/035007

[19] T. Hohage and S. Langer, “Acceleration techniques for regularized Newton

methods applied to electromagnetic inverse medium scattering problems,”

Inverse Problems, vol. 26, no. 7, pp. 074 011, 15, 2010. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/26/7/074011

[20] A. B. Bakushinsky, M. Y. Kokurin, and A. Smirnova, Iterative methods for ill-posed

problems, ser. Inverse and Ill-posed Problems Series. Walter de Gruyter GmbH &

Co. KG, Berlin, 2011, vol. 54, an introduction.

[21] O. P. Ferreira, M. L. N. Gonçalves, and P. R. Oliveira, “Local conver-

gence analysis of the Gauss-Newton method under a majorant condition,”

J. Complexity, vol. 27, no. 1, pp. 111–125, 2011. [Online]. Available:

http://dx.doi.org/10.1016/j.jco.2010.09.001

[22] A. Smirnova, “On convergence rates for iteratively regularized procedures with

linear penalty terms,” Inverse Problems, vol. 28, no. 8, pp. 085 005, 19, 2012.

[Online]. Available: http://dx.doi.org/10.1088/0266-5611/28/8/085005

[23] A. B. Bakushinsky and M. Y. Kokurin, Iterative methods for Ill-Posed Operator

Equations with Smooth Operators. Springer, Dordrecht, 2004.

[24] Q. Jin and U. Tautenhahn, “On the discrepancy principle for some Newton type

methods for solving nonlinear inverse problems,” Numer. Math., vol. 111, no. 4, pp.

509–558, 2009. [Online]. Available: http://dx.doi.org/10.1007/s00211-008-0198-y

http://dx.doi.org/10.1090/S0025-5718-08-02149-2
http://dx.doi.org/10.1088/0266-5611/26/3/035007
http://dx.doi.org/10.1088/0266-5611/26/7/074011
http://dx.doi.org/10.1016/j.jco.2010.09.001
http://dx.doi.org/10.1088/0266-5611/28/8/085005
http://dx.doi.org/10.1007/s00211-008-0198-y

67

[25] J. Flemming and B. Hofmann, “A new approach to source conditions in regulariza-

tion with general residual term,” Numer. Funct. Anal. Optim., vol. 31, no. 1-3, pp.

254–284, 2010. [Online]. Available: http://dx.doi.org/10.1080/01630561003765721

[26] A. Neubauer, T. Hein, B. Hofmann, S. Kindermann, and U. Tautenhahn,

“Improved and extended results for enhanced convergence rates of Tikhonov

regularization in Banach spaces,” Appl. Anal., vol. 89, no. 11, pp. 1729–1743, 2010.

[Online]. Available: http://dx.doi.org/10.1080/00036810903517597

[27] J. Flemming and B. Hofmann, “Convergence rates in constrained Tikhonov

regularization: equivalence of projected source conditions and variational

inequalities,” Inverse Problems, vol. 27, no. 8, pp. 085 001, 11, 2011. [Online].

Available: http://dx.doi.org/10.1088/0266-5611/27/8/085001

[28] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative regularization methods

for nonlinear ill-posed problems, ser. Radon Series on Computational and Applied

Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6. [Online].

Available: http://dx.doi.org/10.1515/9783110208276

[29] A. B. Bakushinsky, “Iterative methods with fuzzy feedback for solving irregular

operator equations,” Dokl. Akad. Nauk, vol. 428, no. 5, pp. 583–585, 2009. [Online].

Available: http://dx.doi.org/10.1134/S1064562409050263

[30] A. Bakushinsky and A. Smirnova, “Irregular operator equations by iterative method-

s with undetermined reverse connection,” J. Inverse Ill-Posed Probl., vol. 18, no. 2,

pp. 147–165, 2010. [Online]. Available: http://dx.doi.org/10.1515/JIIP.2010.005

[31] ——, “Discrepancy principle for generalized GN iterations combined with the

reverse connection control,” J. Inverse Ill-Posed Probl., vol. 18, no. 4, pp. 421–431,

2010. [Online]. Available: http://dx.doi.org/10.1515/JIIP.2010.019

[32] J. G. Nagy, K. Palmer, and L. Perrone, “Iterative methods for

image deblurring: a Matlab object-oriented approach,” Numer. Al-

gorithms, vol. 36, no. 1, pp. 73–93, 2004. [Online]. Available:

http://dx.doi.org/10.1023/B:NUMA.0000027762.08431.64

http://dx.doi.org/10.1080/01630561003765721
http://dx.doi.org/10.1080/00036810903517597
http://dx.doi.org/10.1088/0266-5611/27/8/085001
http://dx.doi.org/10.1515/9783110208276
http://dx.doi.org/10.1134/S1064562409050263
http://dx.doi.org/10.1515/JIIP.2010.005
http://dx.doi.org/10.1515/JIIP.2010.019
http://dx.doi.org/10.1023/B:NUMA.0000027762.08431.64

68

[33] J. Nagy, “Restoretools: An object oriented matlab package for image restoration

(2002),” http://www.mathcs.emory.edu/∼nagy/RestoreTools.

[34] T. M. P. Market, “http://www.tmbb.com.au/tamborine-mountain-produce-

market.”

[35] C. tea supplier, “http://www.chinese-tea-supplier.com/organic-tie-guan-yin–wu-

long–high-quality-285.html.”

[36] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory,

3rd ed., ser. Applied Mathematical Sciences. Springer, New York, 2013, vol. 93.

[Online]. Available: http://dx.doi.org/10.1007/978-1-4614-4942-3

[37] C. R. Vogel, “Numerical solution of a nonlinear ill-posed problem arising in inverse

scattering,” Inverse Problems, vol. 1, no. 4, pp. 393–403, 1985. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/1/4/010

[38] K.-M. Lee, “Inverse scattering via nonlinear integral equations for a Neumann

crack,” Inverse Problems, vol. 22, no. 6, pp. 1989–2000, 2006. [Online]. Available:

http://dx.doi.org/10.1088/0266-5611/22/6/005

[39] H.-H. Qin and F. Cakoni, “Nonlinear integral equations for shape reconstruction in

the inverse interior scattering problem,” Inverse Problems, vol. 27, no. 3, pp. 035 005,

17, 2011. [Online]. Available: http://dx.doi.org/10.1088/0266-5611/27/3/035005

[40] E. N. Akimova and V. V. Vasin, “Stable parallel algorithms for solving the inverse

gravimetry and magnitimetry problems,” in CD Proceedings of the 9th Internation-

al Conference on Numerical Methods in Continuum Mechanics, Zilina, Slovakia,

September 9-12,, 2002.

[41] V. V. Vasin, E. N. Akimova, G. Y. Perestoronina, P. S. Martyshko, and V. A.

P’yankov, “Methods for solving an inverse magnetometry problem,” Sib. Èlektron.

Mat. Izv., vol. 5, pp. 620–631, 2008.

[42] V. Vasin and G. Skorik, “Iterative processes of gradient type with ap-

plications to gravimetry and magnetometry inverse problems,” J. Inverse

http://www.mathcs.emory.edu/~nagy/RestoreTools
http://dx.doi.org/10.1007/978-1-4614-4942-3
http://dx.doi.org/10.1088/0266-5611/1/4/010
http://dx.doi.org/10.1088/0266-5611/22/6/005
http://dx.doi.org/10.1088/0266-5611/27/3/035005

69

Ill-Posed Probl., vol. 18, no. 8, pp. 855–876, 2010. [Online]. Available:

http://dx.doi.org/10.1515/JIIP.2011.007

[43] A. B. Bakushinsky, A. Smirnova, and H. Liu, “Theoretical and numerical study of

iteratively truncated newton’s algorithm,” Applied Inverse Problems, vol. 48, pp.

1–14, 2013. [Online]. Available: http://dx.doi.org/10.1007/978-1-4614-7816-4 1

[44] ——, “A posteriori error analysis for unstable models,” J. Inverse Ill-

Posed Probl., vol. 20, no. 4, pp. 411–428, 2012. [Online]. Available:

http://dx.doi.org/10.1515/jip-2012-0006

[45] V. V. Vasin and A. L. Ageev, Ill-posed problems with a priori information, ser.

Inverse and Ill-posed Problems Series. VSP, Utrecht, 1995. [Online]. Available:

http://dx.doi.org/10.1515/9783110900118

[46] Y. Gaponenko and V. Vinokurov, “A posteriori solution estimates for ill-posed in-

verse problems,” Dokl. Russian Acad. Sci., vol. 263, no. N2, pp. 277–280, 1982.

[47] A. G. Yagola and V. N. Titarenko, “A posteriori error estimation for ill-posed prob-

lems on some sourcewise represented or compact sets,” in Ill-posed and inverse

problems. VSP, Zeist, 2002, pp. 425–442.

[48] K. Y. Dorofeev, V. N. Titarenko, and A. G. Yagola, “Algorithms for constructing

a posteriori errors of solutions to ill-posed problems,” Zh. Vychisl. Mat. Mat. Fiz.,

vol. 43, no. 1, pp. 12–25, 2003.

[49] A. Leonov, “On a posteriori accuracy estimates for solutions of linear ill-posed prob-

lems and extra-optimal regularizing algorithms,” Internet-journal ”Numerical Meth-

ods and Programming”, vol. 11, pp. 14–24, 2010.

[50] A. B. Bakushinsky, “A posteriori error estimates for approximate solutions of

irregular operator equations,” Dokl. Akad. Nauk, vol. 437, no. 4, pp. 439–440, 2011.

[Online]. Available: http://dx.doi.org/10.1134/S1064562411020190

http://dx.doi.org/10.1515/JIIP.2011.007
http://dx.doi.org/10.1007/978-1-4614-7816-4_1
http://dx.doi.org/10.1515/jip-2012-0006
http://dx.doi.org/10.1515/9783110900118
http://dx.doi.org/10.1134/S1064562411020190

70

[51] M. Y. Kokurin, “Approximations of solutions to general irregular nonlinear operator

equations and equations with quadratic operators,” Comput. Math. Math. Phys.,

vol. 50, pp. 1783–1792, 2010.

[52] L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed. Pergamon Press,

Oxford-Elmsford, N.Y., 1982, translated from the Russian by Howard L. Silcock.

[53] J. Nocedal and S. J. Wright, Numerical optimization, ser. Springer Series in

Operations Research. Springer-Verlag, New York, 1999. [Online]. Available:

http://dx.doi.org/10.1007/b98874

[54] A. B. Bakushinsky, “Iterative methods for nonlinear operator equations without

regularity. new approach,” Dokl. Russian Acad. Sci., vol. 330, pp. 282–284, 1993.

http://dx.doi.org/10.1007/b98874

71

Appendix A

MATLAB CODE

A.1 MATLAB CODE 1

% THIS FUNCTION APPLIES GENERALIZED IRGN METHOD

% TO THE INVERSE SCATTERING PROBLEM

function ipi paper svd pictures

global k0

% PARAMETERS

a = 0; b = 2*pi; c = 0; d = 2*pi/3; % limits of integration

step = 0.01; % step of integration

% First experiment

nmax = 100; % number of iterations

%tau0 = 10ˆ(2); % initial regularization parameter with noise 0.005

%tau0 = 10ˆ(2); % initial regularization parameter with noise 0.01 FIRST EXPERI-

MENT

%tau0 = 10ˆ(3); % initial regularization parameter with noise 0.03

%tau0 = 10ˆ(3); % initial regularization parameter with noise 0.05 SECOND EXPERI-

MENT

tau0 = 10ˆ(-5); % initial regularization parameter without noise

beta = 1; % auxiliary regularization parameter

perc = 0.0; % percentage of noise

k0 = 1; % parameter of the model

% Compute the quadrture elements

[th, w,m] = quadrature(′midpt′, a, b, step);

step phi = 0.001;

phi=c:step phi:d;

k = length(phi);

72

% ———————————————–%

% DIRECT PROBLEM

% ———————————————–%

rhs = zeros(k,1);

for j = 1:k

rhs(j,1) = quad(@(theta)kernel(theta, phi(j),’pillow’),a,b);

end;

% Load noise from the file ’ns’

load ns rdm

nrhs = norm(rhs);

nrdm = norm(rdm);

delta = perc*nrhs/nrdm;

noise rhs = delta*rdm’ + rhs;

% ———————————————–%

% INVERSE PROBLEM

% ———————————————–%

% Compute model solution

rmod = model(th,’pillow’);

% Initial guess

%r0 = 1*ones(m,1); %Peanut

%xi = 1*ones(m,1); %Peanut

r0 = 1.5*ones(m,1); %Pillow

xi = 1.5*ones(m,1); %Pillow

rn = r0;

disp(’—————————————————————————————’)

disp(’ n tau condFP discrepancy relative error ’)

disp(’—————————————————————————————’)

% The beginning of ITERATIVE REGULARIZATION SCHEME

for n = 1:nmax

tau = tau0*(nˆ-beta);

73

%tau = tau0/exp(beta*n);

f = F(th,m,rn,phi,w,k);

f = f-noise rhs;

discrep = norm(f)/norm(noise rhs);

FP=Fprime(th,phi,rn,m,w,k);

condFP = cond(FP);

[U, S, V] = svd(FP);

rt = Tikhonov(U,S,V,tau,rn,xi,f);

%rt = TSVD(U,S,V,tau,rn,xi,f);

%rt = MTSVD(U,S,V,tau,rn,xi,f);

rt = real(rt);

relerr = norm(rt-rmod)/norm(rmod);

f = F(th,m,rt,phi,w,k);

f = f-noise rhs;

discrept = norm(f)/norm(noise rhs);

discrep = discrept;

rn = rt;

xi = rn;

fprintf(′%6.2f %8.6e %8.6e %8.6e %8.6e \n′, n, tau, condFP, discrep, relerr);

end % End of For - loop

% PLOT THE OUTPUT

c=polar(th’,rmod,’-’);

set(c,’linewidth’,[2],’color’,’b’);

c=gca;

hold on

c=polar(th’,rn,’-’);

set(c,’linewidth’,[2],’color’,’r’);

c=gca;

hold on

c=polar(th’,r0,’-’);

74

set(c,’linewidth’,[2],’color’,’c’);

c=gca;

hold on

%%

nmax = 40; % number of iterations

%tau0 = 10ˆ(2); % initial regularization parameter with noise 0.005

tau0 = 10ˆ(2); % initial regularization parameter with noise 0.01 FIRST EXPERIMENT

%tau0 = 10ˆ(3); % initial regularization parameter with noise 0.03

%tau0 = 10ˆ(3); % initial regularization parameter with noise 0.05 SECOND EXPERI-

MENT

%tau0 = 10ˆ(-5); % initial regularization parameter without noise

beta = 1; % auxiliary regularization parameter

perc = 0.01; % percentage of noise

C = .002; % parameter of the stopping rule

% ———————————————–%

% DIRECT PROBLEM

% ———————————————–%

delta = perc*nrhs/nrdm;

noise rhs = delta*rdm’ + rhs;

% ———————————————–%

% INVERSE PROBLEM

% ———————————————–%

% Compute model solution

rmod = model(th,’pillow’);

% Initial guess

%r0 = 1*ones(m,1); %Peanut

%xi = 1*ones(m,1); %Peanut

r0 = 1.5*ones(m,1); %Pillow

xi = 1.5*ones(m,1); %Pillow

rn = r0;

75

disp(’—————————————————————————————’)

disp(’ n tau condFP discrepancy relative error value’)

disp(’—————————————————————————————’)

% The beginning of ITERATIVE REGULARIZATION SCHEME

for n = 1:nmax

tau = tau0*(nˆ-beta);

%tau = tau0/exp(beta*n);

f = F(th,m,rn,phi,w,k);

f = f-noise rhs;

discrep = norm(f)/norm(noise rhs);

FP=Fprime(th,phi,rn,m,w,k);

condFP = cond(FP);

[U, S, V] = svd(FP);

rt = Tikhonov(U,S,V,tau,rn,xi,f);

%rt = TSVD(U,S,V,tau,rn,xi,f);

%rt = MTSVD(U,S,V,tau,rn,xi,f);

rt = real(rt);

relerr = norm(rt-rmod)/norm(rmod);

f = F(th,m,rt,phi,w,k);

f = f-noise rhs;

discrept = norm(f)/norm(noise rhs);

value = (1+C*sqrt(tau))*perc;

check = discrept - value;

% STOP IF DIVERGENCE DETECTED OR DISCREPANCY INCREASED

if check < 0

fprintf(′T ime to Stop!\n′);

break;

else

if relerr > 2

fprintf(′Divergence Detected!\n′);

76

break;

end

end

discrep = discrept;

rn = rt;

xi = rn;

fprintf(′%6.2f %8.6e %8.6e %8.6e %8.6e %8.6e\n′, n, tau, condFP, discrep, relerr, value);

end % End of For - loop

% PLOT THE OUTPUT

c=polar(th’,rn,’-’);

set(c,’linewidth’,[2],’color’,’k’);

c=gca;

hold on

%%

nmax = 40; % number of iterations

%tau0 = 10ˆ(2); % initial regularization parameter with noise 0.005

%tau0 = 10ˆ(2); % initial regularization parameter with noise 0.01 FIRST EXPERI-

MENT

tau0 = 10ˆ(3); % initial regularization parameter with noise 0.03

%tau0 = 10ˆ(3); % initial regularization parameter with noise 0.05 SECOND EXPERI-

MENT

%tau0 = 10ˆ(-5); % initial regularization parameter without noise

beta = 1; % auxiliary regularization parameter

perc = 0.05; % percentage of noise

C = .002; % parameter of the stopping rule

% Compute the quadrture elements

[th, w,m] = quadrature(′midpt′, a, b, step);

delta = perc*nrhs/nrdm;

noise rhs = delta*rdm’ + rhs;

% ———————————————–%

77

% INVERSE PROBLEM

% ———————————————–%

% Compute model solution

rmod = model(th,’pillow’);

% Initial guess

%r0 = 1*ones(m,1); %Peanut

%xi = 1*ones(m,1); %Peanut

r0 = 1.5*ones(m,1); %Pillow

xi = 1.5*ones(m,1); %Pillow

rn = r0;

disp(’—————————————————————————————’)

disp(’ n tau condFP discrepancy relative error value’)

disp(’—————————————————————————————’)

% The beginning of ITERATIVE REGULARIZATION SCHEME

for n = 1:nmax

tau = tau0*(nˆ-beta);

%tau = tau0/exp(beta*n);

f = F(th,m,rn,phi,w,k);

f = f-noise rhs;

discrep = norm(f)/norm(noise rhs);

FP=Fprime(th,phi,rn,m,w,k);

condFP = cond(FP);

[U, S, V] = svd(FP);

rt = Tikhonov(U,S,V,tau,rn,xi,f);

%rt = TSVD(U,S,V,tau,rn,xi,f);

%rt = MTSVD(U,S,V,tau,rn,xi,f);

rt = real(rt);

relerr = norm(rt-rmod)/norm(rmod);

f = F(th,m,rt,phi,w,k);

f = f-noise rhs;

78

discrept = norm(f)/norm(noise rhs);

value = (1+C*sqrt(tau))*perc;

check = discrept - value;

% STOP IF DIVERGENCE DETECTED OR DISCREPANCY INCREASED

if check < 0

fprintf(′T ime to Stop!\n′);

break;

else

if relerr > 2

fprintf(′Divergence Detected!\n′);

break;

end

end

discrep = discrept;

rn = rt;

xi = rn;

fprintf(′%6.2f %8.6e %8.6e %8.6e %8.6e %8.6e\n′, n, tau, condFP, discrep, relerr, value);

end % End of For - loop

% PLOT THE OUTPUT

c=polar(th’,rn,’-’);

set(c,’linewidth’,[2],’color’,’m’);

c=gca;

legend(’Exact’,’Noise-Free’,’Initial’,’1% Noise’,’5% Noise’)

load gong;

sound(y,Fs);

fprintf(′Done! Press Any Key to Continue...\n′);

pause;

close all;

format;

% ———————————————–%

79

% FUNCTION DEFINITIONS

% ———————————————–%

function y = kernel(theta,phi,modeltype)

global k0

switch (modeltype)

case ’peanut’

radius = ((cos(theta-pi/4)).ˆ2.+.25.*(sin(theta-pi/4)).ˆ2).ˆ(.5);

case ’peach’

radius = 1.2 - 1/3*sin(theta) - 1/7*sin(3*theta);

case ’pear’

radius = 1.2 + 0.25*cos(3*theta);

case ’pillow’

radius = 1.25 + 0.25*cos(4*theta);

end

b=-2.*1i.*k0.*cos(phi-theta);

y = (exp(b.*radius).*(b.*radius-1)+1)./b.ˆ2;

function radius = model(theta,modeltype)

switch (modeltype)

case ’peanut’

radius = ((cos(theta-pi/4)).ˆ2.+.25.*(sin(theta-pi/4)).ˆ2).ˆ(.5)’;

case ’peach’

radius = 1.2 - 1/3*sin(theta) - 1/7*sin(3*theta)’;

case ’pear’

radius = 1.2 + 0.25*cos(3*theta)’;

case ’pillow’

radius = 1.25 + 0.25*cos(4*theta)’;

end

function vect = K(theta,radius,phi)

global k0

b = -2.*1i.*k0.*cos(phi-theta);

80

vect = (exp(b*radius).*(b*radius-1)+1)./b.ˆ2;

function matr = Kprime(theta,phi,radius)

global k0

b = -2.*1i.*k0.*cos(phi-theta);

matr = radius.*exp(b*radius);

function f = F(theta,m,radius,phi,w,k)

f = zeros(k,1);

for j = 1:m

f(:,1) = f(:,1) + (K(theta(j),radius(j),phi).*w(j))’;

end

function fp = Fprime(theta,phi,radius,m,w,k)

fp = zeros(k,m);

for j = 1:m

fp(:,j) = fp(:,j) + (Kprime(theta(j),phi,radius(j)).*w(j))’;

end

function [theta,w,m] = quadrature(quadtype,a,b,step)

switch (quadtype)

case ’trap’

theta = a:step:b;

m = length(theta);

h = (b-a)/(m-1);

w = ones(1,m);

w(1) = 0.5;

w(m) = 0.5;

w = w*h;

case ’simp’

theta = a:step:b;

m = length(theta);

if (mod(m,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

81

end

h = (b-a)/(m-1);

w = 2*ones(1,m);

for k = 2:2:m-1

w(k) = 4;

end

w(1) = 1;

w(m) = 1;

w = w*h/3;

case ’midpt’

theta = a+step/2:step:b-step/2;

m = length(theta);

h = (b-a)/m;

w = h*ones(1,m);

case ’gauss’

theta = a:step:b;

m = length(theta);

u = 1:m-1;

u = u ./ sqrt(4*u.ˆ2 - 1);

A = zeros(m,m);

A(2:m+1:m*(m-1)) = u;

A(m+1:m+1:mˆ2-1) = u;

[v, theta] = eig(A);

[theta, k] = sort(diag(theta));

w = 2 * v(1,k)’.ˆ2;

theta = (b-a)/2 * theta + (a+b)/2;

w = (b-a)/2 * w;

end

function x1 = Tikhonov(U,S,V, alpha,x,x initial,f)

Q1 = S ′ ∗ S./((S ′ ∗ S == 0) + S ′ ∗ S + alpha);

82

Q2 = eye(size(V))./((eye(size(V)) == 0) + S ′ ∗ S + alpha) ∗ S ′;

x1 = V ∗ ((eye(size(V))−Q1) ∗ V ′ ∗ x initial +Q1 ∗ V ′ ∗ x−Q2 ∗ U ′ ∗ f);
function x2 = TSVD(U,S,V, alpha,x,x initial,f)

Q1 = (S ′ ∗ S > alpha);

Q2 = (S ′ ∗ S > alpha)./((S ′ ∗ S ≤ alpha) + S ′ ∗ S) ∗ S ′;

x2 = V ∗ ((eye(size(V))−Q1) ∗ V ′ ∗ x initial +Q1 ∗ V ′ ∗ x−Q2 ∗ U ′ ∗ f);
function x3 = MTSVD(U,S,V, alpha,x,x initial,f)

if alpha > 0

Q1 = (S ′ ∗ S > alpha) + ((S ′ ∗ S ≤ alpha)&(S ′ ∗ S > 0)). ∗ sqrt(S ′ ∗ S)/sqrt(alpha);
Q2 = Q1./((Q1 == 0) + S ′ ∗ S) ∗ S ′;

x3 = V ∗ ((eye(size(V))−Q1) ∗ V ′ ∗ x initial +Q1 ∗ V ′ ∗ x−Q2 ∗ U ′ ∗ f);
else

x3 = TSVD(U,S,V, alpha,x,x initial,f);

end

%——————————————————%

%OUTPUT

%——————————————————%

>> ipi paper svd pictures

————————————————————————————

n tau condFP discrepancy relative error

————————————————————————————

1.00 1.000000e-05 4.172758e+17 1.064699e-01 1.906265e-01

2.00 5.000000e-06 3.968754e+17 8.461777e-02 1.654506e-01

3.00 3.333333e-06 3.947039e+17 6.945104e-02 1.496108e-01

4.00 2.500000e-06 3.649768e+17 5.869065e-02 1.383317e-01

5.00 2.000000e-06 3.550779e+17 5.060410e-02 1.297258e-01

6.00 1.666667e-06 2.542985e+17 4.431824e-02 1.228629e-01

7.00 1.428571e-06 2.825516e+17 3.931439e-02 1.172196e-01

8.00 1.250000e-06 2.671250e+17 3.525092e-02 1.124732e-01

9.00 1.111111e-06 3.271916e+17 3.189328e-02 1.084107e-01

83

10.00 1.000000e-06 2.346281e+17 2.907655e-02 1.048849e-01

11.00 9.090909e-07 2.708658e+17 2.668231e-02 1.017897e-01

12.00 8.333333e-07 3.181833e+17 2.462379e-02 9.904641e-02

13.00 7.692308e-07 3.630155e+17 2.283619e-02 9.659503e-02

14.00 7.142857e-07 2.916202e+17 2.127019e-02 9.438900e-02

15.00 6.666667e-07 2.758940e+17 1.988770e-02 9.239146e-02

16.00 6.250000e-07 2.589157e+17 1.865881e-02 9.057279e-02

17.00 5.882353e-07 3.144060e+17 1.755974e-02 8.890886e-02

18.00 5.555556e-07 3.443417e+17 1.657134e-02 8.737980e-02

19.00 5.263158e-07 2.928321e+17 1.567804e-02 8.596909e-02

20.00 5.000000e-07 2.623987e+17 1.486705e-02 8.466283e-02

21.00 4.761905e-07 2.725642e+17 1.412774e-02 8.344929e-02

22.00 4.545455e-07 2.577826e+17 1.345124e-02 8.231844e-02

23.00 4.347826e-07 2.444738e+17 1.283008e-02 8.126168e-02

24.00 4.166667e-07 3.248478e+17 1.225791e-02 8.027161e-02

25.00 4.000000e-07 2.775851e+17 1.172931e-02 7.934179e-02

26.00 3.846154e-07 3.417919e+17 1.123961e-02 7.846660e-02

27.00 3.703704e-07 2.994056e+17 1.078479e-02 7.764112e-02

28.00 3.571429e-07 2.856020e+17 1.036135e-02 7.686103e-02

29.00 3.448276e-07 2.492863e+17 9.966229e-03 7.612248e-02

30.00 3.333333e-07 3.540624e+17 9.596754e-03 7.542210e-02

31.00 3.225806e-07 3.113255e+17 9.250561e-03 7.475686e-02

32.00 3.125000e-07 3.468285e+17 8.925562e-03 7.412405e-02

33.00 3.030303e-07 3.372025e+17 8.619905e-03 7.352125e-02

34.00 2.941176e-07 2.994399e+17 8.331940e-03 7.294629e-02

35.00 2.857143e-07 3.300415e+17 8.060193e-03 7.239719e-02

36.00 2.777778e-07 3.377787e+17 7.803347e-03 7.187218e-02

37.00 2.702703e-07 3.583612e+17 7.560216e-03 7.136965e-02

38.00 2.631579e-07 2.564656e+17 7.329734e-03 7.088813e-02

39.00 2.564103e-07 2.895489e+17 7.110940e-03 7.042628e-02

84

40.00 2.500000e-07 2.829836e+17 6.902964e-03 6.998288e-02

41.00 2.439024e-07 3.001817e+17 6.705020e-03 6.955681e-02

42.00 2.380952e-07 3.430567e+17 6.516393e-03 6.914704e-02

43.00 2.325581e-07 2.800737e+17 6.336433e-03 6.875263e-02

44.00 2.272727e-07 2.623542e+17 6.164550e-03 6.837271e-02

45.00 2.222222e-07 3.486253e+17 6.000205e-03 6.800648e-02

46.00 2.173913e-07 2.952412e+17 5.842905e-03 6.765319e-02

47.00 2.127660e-07 2.838876e+17 5.692199e-03 6.731216e-02

48.00 2.083333e-07 3.147181e+17 5.547676e-03 6.698275e-02

49.00 2.040816e-07 2.614544e+17 5.408956e-03 6.666436e-02

50.00 2.000000e-07 2.850056e+17 5.275691e-03 6.635645e-02

51.00 1.960784e-07 3.117330e+17 5.147561e-03 6.605850e-02

52.00 1.923077e-07 2.717882e+17 5.024272e-03 6.577003e-02

53.00 1.886792e-07 2.914612e+17 4.905550e-03 6.549060e-02

54.00 1.851852e-07 3.419683e+17 4.791144e-03 6.521978e-02

55.00 1.818182e-07 2.603948e+17 4.680822e-03 6.495718e-02

56.00 1.785714e-07 3.244850e+17 4.574366e-03 6.470243e-02

57.00 1.754386e-07 3.113161e+17 4.471577e-03 6.445520e-02

58.00 1.724138e-07 2.487163e+17 4.372268e-03 6.421515e-02

59.00 1.694915e-07 2.607306e+17 4.276266e-03 6.398197e-02

60.00 1.666667e-07 2.800289e+17 4.183409e-03 6.375539e-02

61.00 1.639344e-07 3.052787e+17 4.093547e-03 6.353512e-02

62.00 1.612903e-07 2.438589e+17 4.006538e-03 6.332092e-02

63.00 1.587302e-07 3.092931e+17 3.922250e-03 6.311254e-02

64.00 1.562500e-07 2.836918e+17 3.840560e-03 6.290974e-02

65.00 1.538462e-07 2.910509e+17 3.761352e-03 6.271233e-02

66.00 1.515152e-07 2.647448e+17 3.684517e-03 6.252008e-02

67.00 1.492537e-07 2.579317e+17 3.609952e-03 6.233280e-02

68.00 1.470588e-07 3.833041e+17 3.537562e-03 6.215031e-02

69.00 1.449275e-07 3.120587e+17 3.467254e-03 6.197244e-02

85

70.00 1.428571e-07 2.562627e+17 3.398945e-03 6.179901e-02

71.00 1.408451e-07 3.556867e+17 3.332552e-03 6.162987e-02

72.00 1.388889e-07 2.708776e+17 3.267999e-03 6.146487e-02

73.00 1.369863e-07 3.240601e+17 3.205214e-03 6.130386e-02

74.00 1.351351e-07 2.747644e+17 3.144128e-03 6.114671e-02

75.00 1.333333e-07 3.041537e+17 3.084676e-03 6.099328e-02

76.00 1.315789e-07 2.902871e+17 3.026797e-03 6.084346e-02

77.00 1.298701e-07 3.094201e+17 2.970432e-03 6.069711e-02

78.00 1.282051e-07 3.531358e+17 2.915525e-03 6.055414e-02

79.00 1.265823e-07 3.070662e+17 2.862024e-03 6.041442e-02

80.00 1.250000e-07 3.357713e+17 2.809878e-03 6.027785e-02

81.00 1.234568e-07 3.276178e+17 2.759039e-03 6.014434e-02

82.00 1.219512e-07 3.381402e+17 2.709461e-03 6.001380e-02

83.00 1.204819e-07 3.526932e+17 2.661101e-03 5.988611e-02

84.00 1.190476e-07 2.889435e+17 2.613918e-03 5.976121e-02

85.00 1.176471e-07 3.217209e+17 2.567871e-03 5.963901e-02

86.00 1.162791e-07 2.407772e+17 2.522923e-03 5.951942e-02

87.00 1.149425e-07 2.823983e+17 2.479037e-03 5.940237e-02

88.00 1.136364e-07 3.088887e+17 2.436179e-03 5.928779e-02

89.00 1.123596e-07 3.279013e+17 2.394316e-03 5.917560e-02

90.00 1.111111e-07 3.027763e+17 2.353416e-03 5.906573e-02

91.00 1.098901e-07 2.998306e+17 2.313447e-03 5.895812e-02

92.00 1.086957e-07 2.982107e+17 2.274382e-03 5.885270e-02

93.00 1.075269e-07 2.790644e+17 2.236193e-03 5.874942e-02

94.00 1.063830e-07 2.781357e+17 2.198851e-03 5.864821e-02

95.00 1.052632e-07 2.932521e+17 2.162332e-03 5.854902e-02

96.00 1.041667e-07 2.483180e+17 2.126611e-03 5.845179e-02

97.00 1.030928e-07 2.883230e+17 2.091665e-03 5.835647e-02

98.00 1.020408e-07 3.210273e+17 2.057469e-03 5.826302e-02

99.00 1.010101e-07 3.157231e+17 2.024003e-03 5.817137e-02

86

100.00 1.000000e-07 3.251040e+17 1.991245e-03 5.808149e-02

—————————————————————————————-

n tau condFP discrepancy relative error value

—————————————————————————————-

1.00 1.000000e+02 4.172758e+17 1.234523e-01 2.332520e-01 1.020000e-02

2.00 5.000000e+01 3.825896e+17 1.035868e-01 2.216895e-01 1.014142e-02

3.00 3.333333e+01 3.361013e+17 8.827032e-02 2.101989e-01 1.011547e-02

4.00 2.500000e+01 3.192411e+17 7.633794e-02 1.994606e-01 1.010000e-02

5.00 2.000000e+01 3.699447e+17 6.688533e-02 1.896696e-01 1.008944e-02

6.00 1.666667e+01 3.803425e+17 5.931079e-02 1.808399e-01 1.008165e-02

7.00 1.428571e+01 3.335209e+17 5.317432e-02 1.729137e-01 1.007559e-02

8.00 1.250000e+01 3.477186e+17 4.814699e-02 1.658086e-01 1.007071e-02

9.00 1.111111e+01 3.783361e+17 4.398472e-02 1.594372e-01 1.006667e-02

10.00 1.000000e+01 3.384950e+17 4.050590e-02 1.537153e-01 1.006325e-02

11.00 9.090909e+00 2.434713e+17 3.757292e-02 1.485652e-01 1.006030e-02

12.00 8.333333e+00 2.771826e+17 3.507905e-02 1.439165e-01 1.005774e-02

13.00 7.692308e+00 2.687392e+17 3.293984e-02 1.397067e-01 1.005547e-02

14.00 7.142857e+00 3.462757e+17 3.108779e-02 1.358807e-01 1.005345e-02

15.00 6.666667e+00 2.743516e+17 2.946887e-02 1.323905e-01 1.005164e-02

16.00 6.250000e+00 2.437219e+17 2.804003e-02 1.291948e-01 1.005000e-02

17.00 5.882353e+00 3.183261e+17 2.676723e-02 1.262581e-01 1.004851e-02

18.00 5.555556e+00 2.723825e+17 2.562380e-02 1.235502e-01 1.004714e-02

19.00 5.263158e+00 3.059973e+17 2.458888e-02 1.210452e-01 1.004588e-02

20.00 5.000000e+00 2.707266e+17 2.364622e-02 1.187211e-01 1.004472e-02

21.00 4.761905e+00 3.274699e+17 2.278312e-02 1.165590e-01 1.004364e-02

22.00 4.545455e+00 2.963298e+17 2.198949e-02 1.145425e-01 1.004264e-02

23.00 4.347826e+00 3.144238e+17 2.125730e-02 1.126577e-01 1.004170e-02

24.00 4.166667e+00 2.731039e+17 2.057997e-02 1.108922e-01 1.004082e-02

25.00 4.000000e+00 3.071595e+17 1.995202e-02 1.092353e-01 1.004000e-02

26.00 3.846154e+00 2.830223e+17 1.936885e-02 1.076776e-01 1.003922e-02

87

27.00 3.703704e+00 2.773620e+17 1.882644e-02 1.062106e-01 1.003849e-02

28.00 3.571429e+00 3.541009e+17 1.832132e-02 1.048270e-01 1.003780e-02

29.00 3.448276e+00 2.762170e+17 1.785037e-02 1.035201e-01 1.003714e-02

30.00 3.333333e+00 2.371461e+17 1.741084e-02 1.022839e-01 1.003651e-02

31.00 3.225806e+00 3.513015e+17 1.700023e-02 1.011131e-01 1.003592e-02

32.00 3.125000e+00 2.216735e+17 1.661627e-02 1.000027e-01 1.003536e-02

33.00 3.030303e+00 3.031272e+17 1.625691e-02 9.894853e-02 1.003482e-02

34.00 2.941176e+00 2.675750e+17 1.592030e-02 9.794649e-02 1.003430e-02

35.00 2.857143e+00 3.901123e+17 1.560471e-02 9.699299e-02 1.003381e-02

36.00 2.777778e+00 2.474517e+17 1.530861e-02 9.608474e-02 1.003333e-02

37.00 2.702703e+00 2.621143e+17 1.503056e-02 9.521875e-02 1.003288e-02

38.00 2.631579e+00 3.068063e+17 1.476928e-02 9.439226e-02 1.003244e-02

39.00 2.564103e+00 3.090935e+17 1.452357e-02 9.360275e-02 1.003203e-02

40.00 2.500000e+00 4.195955e+17 1.429234e-02 9.284793e-02 1.003162e-02

—————————————————————————————-

n tau condFP discrepancy relative error value

—————————————————————————————-

1.00 1.000000e+03 4.172758e+17 1.493007e-01 2.411702e-01 5.316228e-02

2.00 5.000000e+02 7.250062e+17 1.427437e-01 2.385607e-01 5.223607e-02

3.00 3.333333e+02 5.171690e+17 1.350246e-01 2.351204e-01 5.182574e-02

4.00 2.500000e+02 4.089583e+17 1.272103e-01 2.311332e-01 5.158114e-02

5.00 2.000000e+02 6.541351e+17 1.198823e-01 2.268141e-01 5.141421e-02

6.00 1.666667e+02 4.537081e+17 1.132446e-01 2.223145e-01 5.129099e-02

7.00 1.428571e+02 2.852355e+17 1.072937e-01 2.177383e-01 5.119523e-02

8.00 1.250000e+02 3.171461e+17 1.019509e-01 2.131576e-01 5.111803e-02

9.00 1.111111e+02 3.239210e+17 9.713253e-02 2.086231e-01 5.105409e-02

10.00 1.000000e+02 3.784011e+17 9.277286e-02 2.041710e-01 5.100000e-02

11.00 9.090909e+01 4.695933e+17 8.882474e-02 1.998267e-01 5.095346e-02

12.00 8.333333e+01 3.578964e+17 8.525277e-02 1.956074e-01 5.091287e-02

13.00 7.692308e+01 3.659629e+17 8.202718e-02 1.915241e-01 5.087706e-02

88

14.00 7.142857e+01 5.673544e+17 7.912017e-02 1.875828e-01 5.084515e-02

15.00 6.666667e+01 3.278490e+17 7.650448e-02 1.837861e-01 5.081650e-02

16.00 6.250000e+01 2.734522e+17 7.415324e-02 1.801337e-01 5.079057e-02

17.00 5.882353e+01 3.116315e+17 7.204045e-02 1.766236e-01 5.076696e-02

18.00 5.555556e+01 3.491766e+17 7.014144e-02 1.732522e-01 5.074536e-02

19.00 5.263158e+01 3.665586e+17 6.843334e-02 1.700152e-01 5.072548e-02

20.00 5.000000e+01 3.055799e+17 6.689528e-02 1.669080e-01 5.070711e-02

21.00 4.761905e+01 3.562748e+17 6.550846e-02 1.639253e-01 5.069007e-02

22.00 4.545455e+01 3.376410e+17 6.425612e-02 1.610620e-01 5.067420e-02

23.00 4.347826e+01 3.821333e+17 6.312344e-02 1.583129e-01 5.065938e-02

24.00 4.166667e+01 2.765196e+17 6.209734e-02 1.556730e-01 5.064550e-02

25.00 4.000000e+01 2.810676e+17 6.116634e-02 1.531373e-01 5.063246e-02

26.00 3.846154e+01 3.189172e+17 6.032033e-02 1.507010e-01 5.062017e-02

27.00 3.703704e+01 2.931593e+17 5.955048e-02 1.483598e-01 5.060858e-02

28.00 3.571429e+01 3.295283e+17 5.884899e-02 1.461091e-01 5.059761e-02

29.00 3.448276e+01 3.247685e+17 5.820901e-02 1.439449e-01 5.058722e-02

30.00 3.333333e+01 2.863090e+17 5.762446e-02 1.418632e-01 5.057735e-02

31.00 3.225806e+01 3.365979e+17 5.708999e-02 1.398604e-01 5.056796e-02

32.00 3.125000e+01 3.674327e+17 5.660082e-02 1.379326e-01 5.055902e-02

33.00 3.030303e+01 3.066352e+17 5.615268e-02 1.360767e-01 5.055048e-02

34.00 2.941176e+01 3.312647e+17 5.574177e-02 1.342892e-01 5.054233e-02

35.00 2.857143e+01 2.839444e+17 5.536465e-02 1.325671e-01 5.053452e-02

36.00 2.777778e+01 3.121810e+17 5.501823e-02 1.309074e-01 5.052705e-02

37.00 2.702703e+01 3.020804e+17 5.469972e-02 1.293072e-01 5.051988e-02

38.00 2.631579e+01 2.501730e+17 5.440659e-02 1.277638e-01 5.051299e-02

39.00 2.564103e+01 2.947907e+17 5.413655e-02 1.262747e-01 5.050637e-02

40.00 2.500000e+01 2.936434e+17 5.388752e-02 1.248373e-01 5.050000e-02

Done! Press Any Key to Continue...

89

A.2 MATLAB CODE 2

ITERATIVELY TRUNCATED NEWTON

function output = test truncated 1

global H

format long;

warning off;

% PARAMETERS

a = 3.2; b = 20.0;

c = 0; d = 8.0;

m = 21; n = 41; %grid for inverse problem

md = 81; nd = 161; %grid for direct problem

H = 2.0;

kmax =30;

delta set = [0 0.05 0.1 0.15 0.2];

[sd, td, Sd, Td, wnd, wmd] = quadrature2d(′trap′, a, b, c, d, nd,md);

[s, t, S, T, wn, wm] = quadrature2d(′trap′, a, b, c, d, n,m);

% ———————————————–%

% DIRECT PROBLEM

% ———————————————–%

% SET X TO SOME KNOWN FUNCTION ON A FINE GRID

TTd = (Td-c)/(d-c); % domain normalization

SSd = (Sd-a)/(b-a); % domain normalization

Xd = -sin(abs(10*TTd-5)-abs(10*SSd-5))/3 + 1;

Xk delta = ones(m,n,5);

Fk delta = zeros(md,nd,5);

kk = 0;

na=1;

fexact = F(Td,Sd,td,sd,wmd,wnd,Xd);

svalues = zeros(m*n,kmax,4);

90

delta k = 0;

for delta = delta set

alpha0 = alphavector(na);

kk = kk+1;

fprintf(′Delta = %1.4E\n′, delta);

fd = fexact+ delta*(rand(md*nd,1)-rand(md*nd,1));

Fd = VtoM(fd,md,nd);

Fk delta(:,:,kk) = Fd;

abs err rhs = norm(delta*rand(md*nd,1),’fro’)*sqrt((b-a)/(n-1));

fprintf(′Absolute Error on the right− hand side = %1.4E\n′, abs err rhs);

rel err rhs = norm(delta*rand(md*nd,1),’fro’)/norm(fexact,’fro’);

fprintf(′Relative Error on the right− hand side = %1.4E\n′, rel err rhs);

% SET X TO SOME KNOWN FUNCTION ON A COARSE GRID

Fm = zeros(m,n);

for i = 1:m

for j = 1:n

Fm(i,j) = Fd(4*i-3,4*j-3);

end

end

f = MtoV(Fm,m,n);

TT = (T-c)/(d-c); % domain normalization

SS = (S-a)/(b-a); % domain normalization

X = -sin(abs(10*TT-5)-abs(10*SS-5))/3 + 1;

x = MtoV(X,m,n);

% ———————————————–%

% INVERSE PROBLEM

% ———————————————–%

% INITIAL APPROXIMATION

X0 = 0.1*ones(m,n);

Xk = X0;

91

x0 = MtoV(X0,m,n);

xk=x0;

relerr = norm(x0-x,’fro’)/norm(x,’fro’);

fprintf(′Relative Error = %1.4E\n′, relerr);

for k = 1:kmax

fprintf(′Iteration k = %d′, k);

Xklast = xk;

discreplast = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

% ITERATIVELY REGULARIZED SCHEME

beta = 1;

alpha = alpha0*(kˆ-beta);

% CALCULATE THE MATRIX G := F(Xk)-f

G = F(T,S,t,s,wm,wn,Xk) - f;

% APPLY THE LINEAR OPERATOR F’*(Xk) TO G

FP = Fprime(t,s,T,S,wm,wn,Xk);

if delta ≥ 0

[UM,SM, VM] = svd(FP);

sv = diag(SM);

I=ones(m*n,1);

sinv = 1./sv;

fprintf(′alpha = %1.4E\n′, alpha);

count=0; %for counting singular values which are less than alpha.

for i = 1:m*n

if sv(i) < alpha

sinv(i) = 0;

I(i)=0;

count=count+1;

end

end

fprintf(′# of singular values which are cut off : %1.4E\n′, count);

92

num = zeros(m*n,1);

svco = zeros(m*n,1);

for i=1:count

num(i)=m*n-count+i;

svco(i)=sv(m*n-count+i);

end

if delta k ≥ 1 && delta k < 5

svalues(:,2*k-1,delta k) = num; %store the cut off singular values of each iteration.

svalues(:,2*k,delta k) = svco;

end

PIS = diag(sinv);

PIFP = VM*PIS*UM’;

IS = diag(I);

PIP = UM*IS*UM’;

PIPC = UM*(diag(ones(m*n,1))-IS)*UM’;

end

Pk = - PIFP*G;

xk = PIP*xk + PIPC*x0 + Pk;

Xk = VtoM(xk,m,n);

% COMPUTE THE RELATIVE ERROR

relerr = norm(x-xk,’fro’)/norm(x,’fro’);

disp(sprintf(′Relative Error = %1.4E ′, relerr));

output(k+1,:) = [k relerr];

% STOP IF CONVERGENCE OR DIVERGENCE DETECTED

if ((norm(xk −Xklast,′ fro′) < 1E − 5) | (relerr < 1E − 10))

disp(sprintf(′Convergence Detected!′));

break;

else

if ((norm(xk −Xklast,′ fro′) > 100) | (relerr > 2))

fprintf(′Divergence Detected!′);

93

xk = Xklast;

Xk = VtoM(xk,m,n);

break;

end

end

discrep = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

if (discreplast < discrep)

xk = Xklast;

Xk = VtoM(xk,m,n);

discrep = discreplast;

break;

end

end

Xk delta(:,:,kk) = Xk;

discrep = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

fprintf(′Discrepancy = %1.4E\n′, discrep);

singular = svd(FP);

minimum = min(singular);

maximum = max(singular);

fprintf(′Minimum singular value = %1.4E\n′, minimum);

fprintf(′Maximum singular value = %1.4E\n′, maximum);

na=na+1; %move to next alpha0 for higher level of noise.

delta k = delta k+1;

end %delta

%———————————————%

fig6 = figure;

subplot(2,2,1)

plot(svalues(:,9,1),svalues(:,10,1),’co’,svalues(:,11,1),svalues(:,12,1),’b+’,svalues(:,13,1),

svalues(:,14,1),’k*’,svalues(:,15,1),svalues(:,16,1),’mo’,svalues(:,17,1),svalues(:,18,1),’g.’)

title(’Relative level of noise 2.5%’);

94

legend(’5th iteration’, ’6th iteration’,’7th iteration’,’8th iteration’,’9th iteration’,0);

subplot(2,2,2)

plot(svalues(:,9,2),svalues(:,10,2),’co’,svalues(:,11,2),svalues(:,12,2),’b+’,svalues(:,13,2),

svalues(:,14,2),’k*’,svalues(:,15,2),svalues(:,16,2),’mo’,svalues(:,17,2),svalues(:,18,2),’g.’)

title(’Relative level of noise 5%’);

legend(’5th iteration’, ’6th iteration’,’7th iteration’,’8th iteration’,’9th iteration’,0);

subplot(2,2,3)

plot(svalues(:,9,3),svalues(:,10,3),’co’,svalues(:,11,3),svalues(:,12,3),’b+’,svalues(:,13,3),

svalues(:,14,3),’k*’,svalues(:,15,3),svalues(:,16,3),’mo’,svalues(:,17,3),svalues(:,18,3),’g.’)

title(’Relative level of noise 7.5%’);

legend(’5th iteration’, ’6th iteration’,’7th iteration’,’8th iteration’,’9th iteration’,0);

subplot(2,2,4)

plot(svalues(:,9,4),svalues(:,10,4),’co’,svalues(:,11,4),svalues(:,12,4),’b+’,svalues(:,13,4),

svalues(:,14,4),’k*’,svalues(:,15,4),svalues(:,16,4),’mo’,svalues(:,17,4),svalues(:,18,4),’g.’)

title(’Relative level of noise 10%’);

legend(’5th iteration’, ’6th iteration’,’7th iteration’,’8th iteration’,’9th iteration’,0);

print ex4s.eps

figure(fig6);

% PLOT THE OUTPUT

wantInterp = 0;

transparency = .9;

fig1 = figure;

subplot(3,2,1);

surf(T,S,X,’FaceAlpha’,transparency,’FaceLighting’,’phong’);

hold on

surf(T,S,X0,’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

95

xlabel(’t’);

ylabel(’s’);

title(’Exact Solution and Initial Guess’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,2);

surf(T,S,Xk delta(:,:,1),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’Noise-free reconstruction’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,3);

surf(T,S,Xk delta(:,:,2),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’Relative level of noise 2.5%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,4);

surf(T,S,Xk delta(:,:,3),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

96

xlabel(’t’);

ylabel(’s’);

title(’Relative level of noise 5%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,5);

surf(T,S,Xk delta(:,:,4),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’Relative level of noise 7.5%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,6);

surf(T,S,Xk delta(:,:,5),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’Relative level of noise 10%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

print ex1s.eps

figure(fig1);

fig2 = figure;

axisName = ’s’;

axisValue = 10.0;

switch (axisName)

97

case {’s’, ’x’}
indx = find(abs(s-axisValue) == min(abs(s-axisValue)));

c=plot(t,X(:,indx),’s-’,t,Xk delta(:,indx,1),’ˆ-’,t,Xk delta(:,indx,2),’*-’,

t,Xk delta(:,indx,3),’p-’,t,Xk delta(:,indx,4),’d-’,t,Xk delta(:,indx,5),’o-’,t,X0(:,indx),’k–’);

set(c,’linewidth’,[2]);

case {’t’, ’y’}
indx = find(abs(t-axisValue) == min(abs(t-axisValue)));

c=plot(s,X(indx,:),’s-’,s,Xk delta(indx,:,1),’ˆ-’,s,Xk delta(indx,:,2),’*-’,

s,Xk delta(indx,:,3),’p-’,s,Xk delta(indx,:,4),’d-’,s,Xk delta(indx,:,5),’o-’,s,X0(indx,:),’k–’);

set(c,’linewidth’,[2]);

end

xlabel(sprintf(’%c = %.2f’,axisName,axisValue));

title(’Cross-Sectional Comparison’);

legend(’exact solution’, ’noise-free reconstr’,’2.5% noise’, ’5% noise’,’7.5% noise’, ’10%

noise’,’initial guess’,0);

print ex2s.eps

figure(fig2);

fig3 = figure;

axisName = ’t’;

axisValue =4.0;

switch (axisName)

case {’s’, ’x’}
indx = find(abs(s-axisValue) == min(abs(s-axisValue)));

c=plot(t,X(:,indx),’s-’,t,Xk delta(:,indx,1),’ˆ-’,t,Xk delta(:,indx,2),’*-’,

t,Xk delta(:,indx,3),’p-’,t,Xk delta(:,indx,4),’d-’,t,Xk delta(:,indx,5),’o-’,t,X0(:,indx),’k–’);

set(c,’linewidth’,[2]);

case {’t’, ’y’}
indx = find(abs(t-axisValue) == min(abs(t-axisValue)));

c=plot(s,X(indx,:),’s-’,s,Xk delta(indx,:,1),’ˆ-’,s,Xk delta(indx,:,2),’*-’,

s,Xk delta(indx,:,3),’p-’,s,Xk delta(indx,:,4),’d-’,s,Xk delta(indx,:,5),’o-’,s,X0(indx,:),’k–’);

98

set(c,’linewidth’,[2]);

end

xlabel(sprintf(’%c = %.2f’,axisName,axisValue));

title(’Cross-Sectional Comparison’);

legend(’exact solution’, ’noise-free reconstr’,’2.5% noise’, ’5% noise’,’7.5% noise’, ’10%

noise’,’initial guess’,0);

print ex2s.eps

figure(fig3);

fig4 = figure;

axisName = ’sd’;

axisValue = 10.0;

switch (axisName)

case {’sd’, ’x’}
indx = find(abs(sd-axisValue) == min(abs(sd-axisValue)));

c=plot(td,Fk delta(:,indx,1),’ˆ-’,td,Fk delta(:,indx,2),’*-’,td,Fk delta(:,indx,3),’p-’,

td,Fk delta(:,indx,4),’d-’,td,Fk delta(:,indx,5),’o-’);

set(c,’linewidth’,[2]);

case {’td’, ’y’}
indx = find(abs(t-axisValue) == min(abs(t-axisValue)));

c=plot(sd,Fk delta(indx,:,1),’ˆ-’,sd,Fk delta(indx,:,2),’*-’,sd,Fk delta(indx,:,3),’p-’,

sd,Fk delta(indx,:,4),’d-’,sd,Fk delta(indx,:,5),’o-’);

set(c,’linewidth’,[2]);

end

xlabel(sprintf(’%c = %.2f’,axisName,axisValue));

legend(’noise-free right-hand side’,’2.5% relative noise’, ’5% relative noise’,’7.5% relative

noise’, ’10% relative noise’,0);

print ex3s.eps

figure(fig4);

fig5 = figure;

axisName = ’td’;

99

axisValue = 4.0;

switch (axisName)

case {’sd’, ’x’}
indx = find(abs(sd-axisValue) == min(abs(sd-axisValue)));

c=plot(td,Fk delta(:,indx,1),’ˆ-’,td,Fk delta(:,indx,2),’*-’,td,Fk delta(:,indx,3),’p-’,

td,Fk delta(:,indx,4),’d-’,td,Fk delta(:,indx,5),’o-’);

set(c,’linewidth’,[2]);

case {’td’, ’y’}
indx = find(abs(td-axisValue) == min(abs(td-axisValue)));

c=plot(sd,Fk delta(indx,:,1),’ˆ-’,sd,Fk delta(indx,:,2),’*-’,sd,Fk delta(indx,:,3),’p-’,

sd,Fk delta(indx,:,4),’d-’,sd,Fk delta(indx,:,5),’o-’);

set(c,’linewidth’,[2]);

end

xlabel(sprintf(’%c = %.2f’,axisName,axisValue));

legend(’noise-free right-hand side’,’2.5% relative noise’, ’5% relative noise’, ’7.5% rela-

tive noise’, ’10% relative noise’,0);

print ex3s.eps

figure(fig5);

load gong;

sound(y,Fs);

fprintf(’Done! Press Any Key to Continue...’);

pause;

close all;

format;

% ———————————————–%

% FUNCTION DEFINITIONS

% ———————————————–%

function vect = K(T,S,xsi,nu,x)

global H

vect = x*(((T-xsi).ˆ2+(S-nu).ˆ2+xˆ2).ˆ(-1.5))- ...

100

H*(((T-xsi).ˆ2+(S-nu).ˆ2+Hˆ2).ˆ(-1.5));

function vect = Kprime(t,s,XSI,NU,X)

vect = ((t-XSI).ˆ2+(s-NU).ˆ2-2*X.ˆ2).*(((t-XSI).ˆ2+(s-NU).ˆ2+X.ˆ2).ˆ(-5/2));

function f = F(T,S,xsi,nu,wm,wn,X)

m = length(xsi);

n = length(nu);

f matr = zeros(m,n);

for i = 1:m

sum = zeros(m,n);

for j = 1:n

sum = sum + K(T,S,xsi(i),nu(j),X(i,j)).*wn(j);

end

f matr = f matr + sum.*wm(i);

end

f=MtoV(f matr,m,n);

function fp = Fprime(t,s,XSI,NU,wm,wn,X)

m = length(t);

n = length(s);

fp = zeros(m*n,m*n);

w=wm’*wn;

for i = 1:m

for j = 1:n

g=Kprime(t(i),s(j),XSI,NU,X).*w;

fp((i-1)*n+j,:)=(MtoV(g,m,n))’;

end

end

function vect = MtoV(A,m,n)

vect = zeros(m*n,1);

for i = 1:m

for j = 1:n

101

vect((i-1)*n+j,1)=A(i,j);

end

end

function matr = VtoM(x,m,n)

matr = zeros(m,n);

for i = 1:m

for j = 1:n

matr(i,j)=x((i-1)*n+j,1);

end

end

function map = makecolormap(c1, c2, n)

for i = 0:n-1

for j = 1:3

map(i+1,j) = c1(j) + i*(c2(j)-c1(j))/(n-1);

end

end

function [x,w] = quadrature1d(quadtype,a,b,n)

switch (quadtype)

case ’trap’

h = (b-a)/(n-1);

x = linspace(a,b,n);

w = ones(1,n);

w(1) = 0.5;

w(n) = 0.5;

w = w*h;

case ’simp’

if (mod(n,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

end

h = (b-a)/(n-1);

102

x = linspace(a,b,n);

w = 2*ones(1,n);

for i = 2:2:n-1

w(i) = 4;

end

w(1) = 1;

w(n) = 1;

w = w*h/3;

case ’midpt’

h = (b-a)/n;

x = linspace(a+h/2,b-h/2,n);

w = h*ones(1,n); case ’gauss’

u = 1:n-1;

u = u ./ sqrt(4*u.ˆ2 - 1);

% Same as A = diag(u,-1) + diag(u,1), but faster (no addition).

A = zeros(n,n);

A(2:n+1:n*(n-1)) = u;

A(n+1:n+1:nˆ2-1) = u;

% Find the base points and weight factors for the interval [-1,1].

[v, x] = eig(A);

[x, k] = sort(diag(x));

w = 2 * v(1,k)’.ˆ2;

% Linearly transform from [-1,1] to [a,b].

x = (b-a)/2 * x + (a+b)/2;

w = (b-a)/2 * w;

end

function [x,y,X,Y,wx,wy] = quadrature2d(quadtype,a,b,c,d,m,n)

[x, wx] = quadrature1d(quadtype, a, b,m);

[y, wy] = quadrature1d(quadtype, c, d, n);

[X, Y] = meshgrid(x, y);

103

%———————————————–%

%OUTPUT

%———————————————–%

>> test truncated 1

Delta = 0.0000E+00

Absolute Error on the right - hand side = 0.0000E+00

Relative Error on the right - hand side = 0.0000E+00

Relative Error = 9.0530E-01

Iteration k = 1 alpha = 5.0000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 8.6329E-01

Iteration k = 2 alpha = 2.5000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 8.0344E-01

Iteration k = 3 alpha = 1.6667E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 7.0541E-01

Iteration k = 4 alpha = 1.2500E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 4.8339E-01

Iteration k = 5 alpha = 1.0000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 1.3443E-01

Iteration k = 6 alpha = 8.3333E-02

of singular values which are cut off: 2.5100E+02

Relative Error = 4.5948E-02

Iteration k = 7 alpha = 7.1429E-02

of singular values which are cut off: 3.1800E+02

Relative Error = 4.5232E-02

Iteration k = 8 alpha = 6.2500E-02

104

of singular values which are cut off: 3.0800E+02

Relative Error = 3.9372E-02

Iteration k = 9 alpha = 5.5556E-02

of singular values which are cut off: 2.9200E+02

Relative Error = 3.5406E-02

Iteration k = 10 alpha = 5.0000E-02

of singular values which are cut off: 2.8100E+02

Relative Error = 3.4042E-02

Iteration k = 11 alpha = 4.5455E-02

of singular values which are cut off: 2.7000E+02

Relative Error = 2.7715E-02

Iteration k = 12 alpha = 4.1667E-02

of singular values which are cut off: 2.6400E+02

Relative Error = 2.6408E-02

Iteration k = 13 alpha = 3.8462E-02

of singular values which are cut off: 2.5900E+02

Relative Error = 2.5053E-02

Iteration k = 14 alpha = 3.5714E-02

of singular values which are cut off: 2.5000E+02

Relative Error = 2.5191E-02

Iteration k = 15 alpha = 3.3333E-02

of singular values which are cut off: 2.4700E+02

Relative Error = 2.4786E-02

Iteration k = 16 alpha = 3.1250E-02

of singular values which are cut off: 2.4000E+02

Relative Error = 2.3115E-02

Iteration k = 17 alpha = 2.9412E-02

of singular values which are cut off: 2.3000E+02

Relative Error = 2.1900E-02

Iteration k = 18 alpha = 2.7778E-02

105

of singular values which are cut off: 2.2700E+02

Relative Error = 2.1914E-02

Iteration k = 19 alpha = 2.6316E-02

of singular values which are cut off: 2.2000E+02

Relative Error = 2.1683E-02

Iteration k = 20 alpha = 2.5000E-02

of singular values which are cut off: 2.1400E+02

Relative Error = 2.1618E-02

Iteration k = 21 alpha = 2.3810E-02

of singular values which are cut off: 2.1000E+02

Relative Error = 2.1787E-02

Iteration k = 22 alpha = 2.2727E-02

of singular values which are cut off: 2.0800E+02

Relative Error = 2.1528E-02

Iteration k = 23 alpha = 2.1739E-02

of singular values which are cut off: 2.0200E+02

Relative Error = 2.1709E-02

Iteration k = 24 alpha = 2.0833E-02

of singular values which are cut off: 2.0100E+02

Relative Error = 2.1657E-02

Iteration k = 25 alpha = 2.0000E-02

of singular values which are cut off: 1.9700E+02

Relative Error = 2.0407E-02

Discrepancy = 3.1968E-04

Minimum singular value = 3.2064E-04

Maximum singular value = 3.1531E+00

Delta = 5.0000E-02

Absolute Error on the right - hand side = 2.1374E+00

Relative Error on the right - hand side = 2.5906E-02

Relative Error = 9.0530E-01

106

Iteration k = 1 alpha = 1.0000E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.6329E-01

Iteration k = 2 alpha = 5.0000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 8.0344E-01

Iteration k = 3 alpha = 3.3333E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 7.0538E-01

Iteration k = 4 alpha = 2.5000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 4.8329E-01

Iteration k = 5 alpha = 2.0000E-01

of singular values which are cut off: 1.0000E+01

Relative Error = 1.3759E-01

Iteration k = 6 alpha = 1.6667E-01

of singular values which are cut off: 3.4200E+02

Relative Error = 9.0253E-02

Iteration k = 7 alpha = 1.4286E-01

of singular values which are cut off: 3.9800E+02

Relative Error = 7.4815E-02

Iteration k = 8 alpha = 1.2500E-01

of singular values which are cut off: 3.8500E+02

Relative Error = 7.5435E-02

Iteration k = 9 alpha = 1.1111E-01

of singular values which are cut off: 3.7200E+02

Relative Error = 6.9148E-02

Iteration k = 10 alpha = 1.0000E-01

of singular values which are cut off: 3.5900E+02

Relative Error = 7.0647E-02

107

Iteration k = 11 alpha = 9.0909E-02

of singular values which are cut off: 3.5200E+02

Relative Error = 7.4626E-02

Discrepancy = 1.4704E-02

Minimum singular value = 2.5501E-04

Maximum singular value = 3.1807E+00

Delta = 1.0000E-01

Absolute Error on the right - hand side = 4.2585E+00

Relative Error on the right - hand side = 5.1638E-02

Relative Error = 9.0530E-01

Iteration k = 1 alpha = 1.5000E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.6329E-01

Iteration k = 2 alpha = 7.5000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 8.0345E-01

Iteration k = 3 alpha = 5.0000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 7.0544E-01

Iteration k = 4 alpha = 3.7500E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 4.8359E-01

Iteration k = 5 alpha = 3.0000E-01

of singular values which are cut off: 2.4000E+01

Relative Error = 1.4783E-01

Iteration k = 6 alpha = 2.5000E-01

of singular values which are cut off: 4.0200E+02

Relative Error = 1.3322E-01

Iteration k = 7 alpha = 2.1429E-01

of singular values which are cut off: 4.5500E+02

108

Relative Error = 1.0278E-01

Discrepancy = 3.9158E-02

Minimum singular value = 1.3915E-04

Maximum singular value = 3.3371E+00

Delta = 1.5000E-01

Absolute Error on the right - hand side = 6.4047E+00

Relative Error on the right - hand side = 7.7415E-02

Relative Error = 9.0530E-01

Iteration k = 1 alpha = 2.0000E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.6330E-01

Iteration k = 2 alpha = 1.0000E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.0348E-01

Iteration k = 3 alpha = 6.6667E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 7.0553E-01

Iteration k = 4 alpha = 5.0000E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 4.8400E-01

Iteration k = 5 alpha = 4.0000E-01

of singular values which are cut off: 4.9000E+01

Relative Error = 1.5745E-01

Iteration k = 6 alpha = 3.3333E-01

of singular values which are cut off: 4.4800E+02

Relative Error = 1.5135E-01

Iteration k = 7 alpha = 2.8571E-01

of singular values which are cut off: 4.9300E+02

Relative Error = 1.2326E-01

Discrepancy = 5.8913E-02

109

Minimum singular value = 1.3825E-04

Maximum singular value = 5.4886E+00

Delta = 2.0000E-01

Absolute Error on the right - hand side = 8.5650E+00

Relative Error on the right - hand side = 1.0291E-01

Relative Error = 9.0530E-01

Iteration k = 1 alpha = 2.5000E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.6328E-01

Iteration k = 2 alpha = 1.2500E+00

of singular values which are cut off: 0.0000E+00

Relative Error = 8.0341E-01

Iteration k = 3 alpha = 8.3333E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 7.0525E-01

Iteration k = 4 alpha = 6.2500E-01

of singular values which are cut off: 0.0000E+00

Relative Error = 4.8284E-01

Iteration k = 5 alpha = 5.0000E-01

of singular values which are cut off: 7.5000E+01

Relative Error = 1.6492E-01

Iteration k = 6 alpha = 4.1667E-01

of singular values which are cut off: 4.8900E+02

Relative Error = 1.8881E-01

Iteration k = 7 alpha = 3.5714E-01

of singular values which are cut off: 5.0400E+02

Relative Error = 1.5551E-01

Discrepancy = 1.3363E-01

Minimum singular value = 1.1180E-04

Maximum singular value = 2.0368E+01

110

Done! Press Any Key to Continue...

ans =

0 0

1.0000 0.8633

2.0000 0.8034

3.0000 0.7053

4.0000 0.4828

5.0000 0.1649

6.0000 0.1888

7.0000 0.1555

8.0000 0.0754

9.0000 0.0691

10.0000 0.0706

11.0000 0.0746

12.0000 0.0264

13.0000 0.0251

14.0000 0.0252

15.0000 0.0248

16.0000 0.0231

17.0000 0.0219

18.0000 0.0219

19.0000 0.0217

20.0000 0.0216

21.0000 0.0218

22.0000 0.0215

23.0000 0.0217

24.0000 0.0217

25.0000 0.0204

111

A.3 MATLAB CODE 3

%THIS FUNCTION TESTS THE ITERATIVELY REGULARIZEDGAUSS-NEWTON

% ALGORITHM FOR SOLVING THE NONLINEAR MAGNETOMETRY PROBLEM.

function output = test19

global H

format long;

warning off;

% PARAMETERS

a = 2.8; b = 20.0;

c = 0; d = 8.0;

m = 40; n = 86;

H = 2.0;

kmax =50;

delta = 0.1;

alpha0 = 0.1;

% COMPUTE THE QUADRATURE ELEMENTS

[s, t, S, T, wn, wm] = quadrature2d(′midpt′, a, b, c, d, n,m);

% ———————————————–%

% DIRECT PROBLEM

% ———————————————–%

% SET X TO SOME KNOWN FUNCTION

TT = (T − c)/(d− c); % domain normalization

SS = (S − a)/(b− a); % domain normalization

X = cos((4*TT-2).ˆ2 + (4*SS-2).ˆ2)/4 + 1;

x =MtoV (X,m, n);

disp(sprintf(′Delta = %1.4E ′, delta))

% CALCULATE f DIRECTLY FROM X

f = F (T, S, t, s, wm,wn,X) + delta ∗ rand(m ∗ n, 1);
RHS = V toM(f,m, n);

112

F0 = V toM(F (T, S, t, s, wm,wn,X), m, n);

rel err rhs = norm(delta*rand(m*n,1),’fro’)/norm(F(T,S,t,s,wm,wn,X),’fro’);

disp(sprintf(’Relative Error on the right hand side = %1.4E’, rel err rhs))

% ———————————————–%

% INVERSE PROBLEM

% ———————————————–%

% INITIAL SOLUTION

X0 = 0.1 ∗ ones(m,n);
x0 =MtoV (X0, m, n);

relerr = norm(x0-x,’fro’)/norm(x,’fro’);

disp(sprintf(’Relative Error = %1.4E’, relerr));

output(1, :) = [0relerr];

Xk = X0;

xk = x0;

for k = 1:kmax

disp(sprintf(’Iteration k = %d’, k));

Xklast = xk;

discreplast = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’);

% ITERATIVE REGULARIZATION SCHEME

alpha = alpha0*log(1+kˆ-0.25);

% CALCULATE THE MATRIX G := F(Xk)-f

G = F (T, S, t, s, wm,wn,Xk)− f ;

% APPLY THE LINEAR OPERATOR F’*(Xk) TO G

FP = Fprime(t, s, T, S, wm,wn,Xk);

% FINISH THE ITERATION

Pk = −(FP + alpha ∗ eye(m ∗ n,m ∗ n))\(G+ alpha ∗ (xk − x0));

xk = xk + Pk;

Xk = VtoM(xk,m,n);

% COMPUTE THE RELATIVE ERROR

relerr = norm(x-xk,’fro’)/norm(x,’fro’);

113

disp(sprintf(’Relative Error = %1.4E’, relerr));

output(k+1,:) = [k relerr];

% STOP IF CONVERGENCE OR DIVERGENCE DETECTED

if ((norm(xk −Xklast,′ fro′) < 1E − 5) | (relerr < 0.01))

disp(sprintf(’Convergence Detected!’));

break;

else

if ((norm(xk −Xklast,′ fro′) > 100) | (relerr > 2))

disp(sprintf(’Divergence Detected!’));

break;

end;

end;

discrep = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’);

if (discreplast < discrep)

xk = Xklast;

Xk = VtoM(xk,m,n);

discrep = discreplast;

break;

end

end;

disp(sprintf(’Discrepancy = %1.4E’, discrep));

fig1 = figure;

subplot(2,2,1);

surf(s,t,X);

subplot(2,2,2);

surf(s,t,Xk);

subplot(2,2,3)

surf(s,t,F0);

subplot(2,2,4)

surf(s,t,RHS);

114

figure(fig1);

disp(sprintf(′Done! Press Any Key to Continue...′));

pause;

close all;

format;

% ———————————————–%

% FUNCTION DEFINITIONS

% ———————————————–%

function vect = K(T,S,xsi,nu,x)

global H

vect = x*(((T-xsi).ˆ2+(S-nu).ˆ2+xˆ2).ˆ(-1.5))- ...

H*(((T-xsi).ˆ2+(S-nu).ˆ2+Hˆ2).ˆ(-1.5));

function vect = Kprime(t,s,XSI,NU,X)

vect = ((t-XSI).ˆ2+(s-NU).ˆ2-2*X.ˆ2).*(((t-XSI).ˆ2+(s-NU).ˆ2+X.ˆ2).ˆ(-5/2));

function f = F(T,S,xsi,nu,wm,wn,X)

m = length(xsi);

n = length(nu);

f matr = zeros(m,n);

for i = 1:m

sum = zeros(m,n);

for j = 1:n

sum = sum + K(T,S,xsi(i),nu(j),X(i,j)).*wn(j);

end

f matr = f matr + sum.*wm(i);

end

f=MtoV(f matr,m,n);

function fp = Fprime(t,s,XSI,NU,wm,wn,X)

m = length(t);

n = length(s);

fp = zeros(m*n,m*n);

115

w=wm’*wn;

for i = 1:m

for j = 1:n

g=Kprime(t(i),s(j),XSI,NU,X).*w;

fp((i-1)*n+j,:)=(MtoV(g,m,n))’;

end

end

function vect = MtoV(A,m,n)

vect = zeros(m*n,1);

for i = 1:m

for j = 1:n

vect((i-1)*n+j,1)=A(i,j);

end

end

function matr = VtoM(x,m,n)

matr = zeros(m,n);

for i = 1:m

for j = 1:n

matr(i,j)=x((i-1)*n+j,1);

end

end

function map = makecolormap(c1, c2, n)

for i = 0:n-1

for j = 1:3

map(i+1,j) = c1(j) + i*(c2(j)-c1(j))/(n-1);

end;

end;

function [x,w] = quadrature1d(quadtype,a,b,n)

switch (quadtype)

case ’trap’

116

h = (b-a)/(n-1);

x = linspace(a,b,n);

w = ones(1,n);

w(1) = 0.5;

w(n) = 0.5;

w = w*h;

case ’simp’

if (mod(n,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

end

h = (b-a)/(n-1);

x = linspace(a,b,n);

w = 2*ones(1,n);

for i = 2:2:n-1

w(i) = 4;

end

w(1) = 1;

w(n) = 1;

w = w*h/3;

case ’midpt’

h = (b-a)/n;

x = linspace(a+h/2,b-h/2,n);

w = h*ones(1,n);

case ’gauss’

u = 1:n-1;

u = u ./ sqrt(4*u.2̂ - 1);

A = zeros(n,n);

A(2:n+1:n*(n-1)) = u;

A(n+1:n+1:nˆ2-1) = u;

[v,x] = eig(A);

117

[x,k] = sort(diag(x));

w = 2 * v(1,k)’.ˆ2;

x = (b-a)/2 * x + (a+b)/2;

w = (b-a)/2 * w;

end

function[x, y,X, Y, wx, wy] = quadrature2d(quadtype, a, b, c, d,m, n)

[x, wx] = quadrature1d(quadtype, a, b,m);

[y, wy] = quadrature1d(quadtype, c, d, n);

[X, Y] = meshgrid(x, y);

%———————————————–%

%OUTPUT

%———————————————–%

>> test19

Delta = 1.0000E-01

Relative Error on the right - hand side= 4.9932E-02

Relative Error = 9.0068E-01

Iteration k = 1

Relative Error = 8.4837E-01

Iteration k = 2

Relative Error = 6.9552E-01

Iteration k = 3

Relative Error = 3.8027E-01

Discrepancy = 5.8545E+01

Done! Press Any Key to Continue...

ans =

0 0.9007

1.0000 0.8484

2.0000 0.6955

3.0000 0.3803

	Georgia State University
	ScholarWorks @ Georgia State University
	8-11-2015

	On Regularized Newton-type Algorithms and A Posteriori Error Estimates for Solving Ill-posed Inverse Problems
	Hui Liu
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Ill-posed Inverse Problems
	Regularization of Ill-posed Inverse Problems
	Nonlinear Ill-posed Models

	Iterative Methods for Ill-posed operator equations
	Mathematical Preliminaries and Optimality of the Modified Truncation
	Prior Convergence Results for the Iteratively Regularization Gauss-Newton Algorithm
	The Undetermined Reverse Connection and Basic Estimates
	A Novel A Posteriori Stopping Rule
	Numerical Aspect: Linear Image Reconstruction Problem
	Computational Study of Nonlinear Inverse Scattering Model
	Conclusion

	Theoretical and Numerical Study of Iteratively Truncated Newton's Algorithm
	Introduction
	Convergence Analysis. Noise-Free Data
	Stability and Stopping Rule
	Numerical Experiments

	A Posteriori error analysis for unstable models
	Introduction
	Theoretical Background
	Further Discussion
	Numerical Simulations
	Analysis of the Results

	References
	APPENDICES
	Matlab Code
	MATLAB CODE 1
	MATLAB CODE 2
	MATLAB CODE 3

