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PERFECT MATCHINGS, TILINGS AND HAMILTON CYCLES IN HYPERGRAPHS

JIE HAN

Under the Direction of Yi Zhao, PhD

ABSTRACT

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect
matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs,
which are natural generalizations of the matching problems. We give new proofs of the
multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases.

Second, we consider Hamilton cycles in hypergraphs. In particular, we determine the
minimum codegree thresholds for Hamilton /-cycles in large k-uniform hypergraphs for ¢ <

k/2. We also determine the minimum vertex degree threshold for loose Hamilton cycle in



large 3-uniform hypergraphs. These results generalize the well-known theorem of Dirac for
graphs.

Third, we determine the minimum codegree threshold for near perfect matchings in large
k-uniform hypergraphs, thereby confirming a conjecture of Rodl, Rucinski and Szemerédi.
We also show that the decision problem on whether a k-uniform hypergraph with certain
minimum codegree condition contains a perfect matching can be solved in polynomial time,
which solves a problem of Karpiniski, Rucinski and Szymanska completely.

At last, we determine the minimum vertex degree threshold for perfect tilings of C3 in
large 3-uniform hypergraphs, where C3 is the unique 3-uniform hypergraph on four vertices

with two edges.

INDEX WORDS:  Absorbing method, Hypergraph, Perfect matching, Graph tiling, Graph
packing, Hamilton cycle, Minimum degree condition.
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PART 1

INTRODUCTION

One of the most fundamental problems in every branch of mathematics is describing
the structures of its objects. There are several way to understand the structure of graphs.
An easy and obvious way is to find the substructures, the subgraphs. Given an n-vertex
graph H and a g-vertex graph G, a natural question to ask is: when does a graph H contain
a fixed graph G? The celebrated Mantel’s Theorem [53] says that if H has more than n?/4
edges, then H contains a K3. This result has been generalized by Turan [70] for G = K. In
general, the Turdan number for a graph G is the maximum number of edges in an n-vertex
graph H such that H does not contain a copy of G. Many work has been done on Turén
type problems for graphs and hypergraphs, see surveys [14, 29]. However, for example, we
still do not know the Turdan number for complete bipartite graphs.

Given a graph H, it is also natural to consider the spanning subgraphs F' in H. For
instance, for the case that F' is a perfect matching, the celebrated theorem from Tutte [71]
characterizes the graphs G that contain a perfect matching and Edmonds’s algorithm [11]
finds a perfect matching in polynomial time if one exists. However, for most graphs F, we
do not know such a nice characterization and the decision problem whether a graph H has a
spanning subgraph F' is NP-complete. Thus, it is natural to study the sufficient conditions
that force the existence of such spanning subgraphs.

A hypergraph is a natural generalization of a graph. Finding certain spanning subhy-
pergraphs in a hypergraph H is also a natural and desirable problem in hypergraph theory.
However, we know much less on hypergraphs than the graph case, and even finding a perfect
matching in a k-uniform hypergraph for & > 3 is NP-complete by Karp [26]. It is natural to
find sufficient conditions to guarantee such spanning subhypergraphs. In this thesis, we will

discuss spanning subhypergraphs such as perfect matchings, tilings and Hamilton cycles in



graphs and uniform hypergraphs.

1.1 Perfect tiling in multi-partite graphs

Graph/hypergraph packing (alternatively called tiling) is a natural extension of match-
ing problems and has received much attention in the last two decades (see [44] for a survey).
Given two (hyper)graphs G and H, a perfect G-tiling, or a G-factor, of H is a spanning
subgraph of H that consists of vertex-disjoint copies of G. Define t4(n, G) to be the smallest
integer ¢ such that every k-graph H of order n € gN with §4(H) > t contains a G-factor.

The celebrated theorem of Hajnal and Szemerédi [16] says that every n-vertex graph G
with 0(G) > (1 — 1/k)n contains a Kj-factor, namely, ¢(n, K;) = (1 — 1/k)n. (The case
when k = 3 was proved earlier by Corradi and Hajnal [5].) Komlés, Sarkozy and Szemerédi
[39] generalize this result to arbitrary graphs H by showing that there exists a constant
C = C(H) such that every graph G with §(G) > (1 —1/x(H))n + C contains an H-factor,
where x(H) is the chromatic number of H. This improves an earlier result of Alon and
Yuster [3]. As observed in [3], there are graphs H for which the above constant C' cannot
be omitted completely. Kiihn and Osthus [45] determined up to an additive constant the
minimum degree threshold that forces an H-factor for arbitrary graph H. The threshold can
be written as (1 —1/x*(H))n+ C, where the value of x*(H) depends on the relative sizes of
the color classes in the optimal colorings of H and satisfies x(H) — 1 < x*(H) < x(H).

Here we consider the analogues of the tiling results above in multipartite graphs. Let
Gn., denote the family of k-partite graphs with n vertices in each part. Given G € G, 4, let
0*(G) denote the minimum degree from a vertex in one part to any other part. Fischer [13]
conjectured a multipartite Hajnal-Szemerédi theorem, which says that every G € G, ; with
7 (G) > %n contains a Kj-factor. Magyar and Martin [52] noticed that Fischer’s conjecture
is false for odd k and proved that 6*(G) > 2n+1 suffices for k = 3. Martin and Szemerédi [55]
proved Fischer’s conjecture for k = 4. Both of these proofs used the Szemerédi’s Regularity
Lemma. With my advisor, Yi Zhao, in Chapter 3, we give new proofs of these results

in [52, 55] by the absorbing method (without the Regularity Lemma), thus extending the



results to more values of n. In fact, the absorbing lemma in [24] works for all £ > 3. Lo and
Markstrom [51] recently proved Fischer’s conjecture asymptotically by using the absorbing
method (but their absorbing lemma is weaker than ours). Very recently, Keevash and Mycroft
[33] proved the (modified) Fischer’s conjecture completely by using the hypergraph regularity

method.

1.2 Hamilton cycles in k-uniform hypergraphs

A Hamilton (also called Hamiltonian) cycle in a graph is a cycle that covers all vertices
of the graph. Hamilton cycles have been studied since 1857, when William Hamilton found a
Hamilton cycle in the graph of dodecahedron. It is well-known that finding a Hamilton cycle
in graphs is an NP-complete problem. Thus, finding sufficient conditions to guarantee the
existence of such cycles is a desirable work. In fact, it has been one of the central problems
in graph theory and received much attention for over one hundred years. The following
celebrated theorem was proved by Dirac in 1952. It is easy to see that its degree condition

is best possible.

Theorem 1.1. [10] Every graph G on n vertices with n > 3 and minimum degree §(G) > n/2

contains a Hamilton cycle.

Given k > 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V(H)
and an edge set E(H) C (V(kH )), where every edge is a k-element subset of V(H). A matching
in H is a collection of vertex-disjoint edges of H. A perfect matching M in H is a matching
that covers all vertices of H. Clearly a perfect matching in H exists only if k£ divides |V (H)]|.
When £ does not divide n = |V (H)|, we call a matching M in H a near perfect matching if
|M| = |n/k]. Given a k-graph H with a set S of d vertices (where 1 < d < k — 1) we define
degy (S) to be the number of edges containing S (the subscript H is omitted if it is clear
from the context). The minimum d-degree d4(H) of H is the minimum of degy(.S) over all
d-vertex sets S in H. We refer to d,_1(H) as the minimum codegree of H.

In recent years, researchers have worked on extending this classical result to k-uniform



Figure 1.1. A (3,1)-cycle

hypergraphs. There are several notions of cycles in hypergraphs. Besides the so-called Berge

cycle, another notion of cycle has become more and more popular in recent years.

Definition 1.2. For 0 < ¢ < k — 1, a (k,{)-cycle is a k-graph whose vertices can be
ordered cyclically in such a way that the edges are sets of consecutive k-vertices and every
two consecutive edges share exactly { vertices. A Hamilton {-cycle in a k-graph H is then

defined as a (k,{)-cycle in H that contains all vertices of H.

Since a (k,{)-cycle on n vertices contains n/(k — ¢) edges, it is necessary that k — ¢
divides n. Note that for ¢ = 0 the f-cycle reduces to a matching. We call the (k,k — 1)-
cycle a tight cycle. We refer a (k,{)-cycle as a loose cycle when ¢ < k — 1. Suppose that
0<d<k—1and k— ¢ divides n. Define h(k,n) to be the smallest integer h such that
every n-vertex k-graph H satisfying §4(H) > h contains a Hamilton ¢-cycle.

The first result on this trend was obtained by Katona and Kierstead who proved in [28]
that

V—TMJ < hF Yk, n) < (1 - %) n+O(1)

and conjectured the lower bound also suffices. Rddl, Rucinski and Szemerédi [60, 62] con-

firmed their conjecture asymptotically.

Theorem 1.3 ([62]). Let k > 3, v > 0, and let H be a k-graph on n vertices, where n is
sufficiently large. If 6p_1(H) > (1/2+~)n, then H contains a tight Hamilton cycle. In other

words, hy~}(k,n) ~ 2.



With long and involved arguments, the same authors [64] improved this to an exact
result for k£ = 3, namely, h%(3,n) = |n/2] for large n.

Other Hamilton cycles were first studied by Kiihn and Osthus [41], who proved that
h3(3,n) ~ n/4 for large (even) n. By a series of work [18, 32, 40], h_,(k,n) was determined
asymptotically for all £ such that = é Z. Note that for the divisible cases, the asymptotic
values of hi_,(k,n) are answered by Theorem 1.3. In fact, note that the (k, f)—cycle contains
a perfect matching. So it is clear that hf(k,n) > mgy(k,n) for k,¢ such that %, € Z. The
following conjecture was proposed in [58] for the case £ = k — 1, but we think it is also true

for other value of ¢ satisfying the divisibility condition.
Conjecture 1.4. For all 1 < d,{ <k — 1, such that % € Z, hy(k,n) =~ my(k,n).
Theorem 1.3 verifies this conjecture for d = ¢ =k — 1.

Theorem 1.5 ([40]). For 0 < { < k such that %, ¢ Z,

The following construction of k-graphs H = (V| E) shows that the degree condition in
Theorem 1.5 is asymptotically best possible. Let V' be partitioned into A U B of vertices in

V such that |A| = — 1. Let the edge set £ be all the k-sets intersecting at least

(527 1(k—0)

one vertex in A. Suppose H contains a Hamilton (k,¢)-cycle C. There are ;>

7 edges in C'
and every vertex in A is contained in at most f ;] edges in C. Thus, there are at least
(mw edges of C' whose vertices are completely from B. But due to the construction, B is
independent, so H contains no Hamilton (k, ¢)-cycle.

Recently, Czygrinow and Molla [9] determined h}(3,n) exactly. Independent from their

work, in Chapter 4, we show that h{_,(k,n) = for ¢ < k/2, thus improving the

b(k 0 |
results in [18, 32, 41].
As the first asymptotic result in the case when d < k — 1, Buf}, Han, and Schacht [4]

showed that h{(3,n) ~ = (5). In Chapter 5, we improve this to an exact result for large n



(Theorem 5.2). Theorem 5.2 is the first exact result on vertex degree conditions for Hamilton
cycles in hypergraphs.
It seems that the lower bound constructions designed for (k — 1)-degree cases still give

the best lower bounds. Thus, we propose the following conjecture.

Conjecture 1.6. For 1 <d,{ <k such that (%, ¢ Z, let a = [[], then

Bk, m) ~ (Z:Z) ~ ((1 _k@M)

for large n € (k — ()N.

Theorem 5.2 verifies the conjecture for (k,d,¢) = (3,1,1).

1.3 Perfect matchings in k-uniform hypergraphs

Over the last few years there has been a strong focus in establishing minimum d-degree
thresholds that force a perfect matching in a k-graph [1, 8, 17, 35, 36, 42, 47, 54, 57, 58,
61, 63, 68, 69]. Let mg(k,n) be the smallest integer m such that any k-graph H with
dq(H) > m contains a perfect matching. The story started from [60], in which R6dl, Rucinski
and Szemerédi proved an asymptotically best possible minimum (k — 1)-degree condition
of a k-graph H that forces the existence of a tight Hamilton cycle in H. Since such a
Hamilton cycle contains a perfect matching as a subhypergraph, as a corollary, this gives that
my_1(k,n) < n/2+ o(n). The upper bound of my_;(k,n) has been sharpened in a series of
papers by different authors [42, 61, 59]. Finally, the exact value of my_1(k, n) was determined
by Rodl, Rucinski and Szemerédi [63], which is § —k+C, where C' € {3/2,2,5/2,3} depends
on the values of n and k.

For other values of d, Pikhurko [57] proved that for d > k/2, mq(k,n) ~ %(2:3), which
is asymptotically best possible. Treglown and Zhao [68, 69] determined the exact values of
mq(k,n) when d > k/2 (independently Czygrinow and Kamat [8] determined the exact value

of my(4,n)). Kithn, Osthus and Treglown [47], and independently Khan [36] determined the

exact value of m;(3,n). Khan [35] also determined m;(4,n) exactly.



All known results and constructions (see Chapter 7) support the following conjecture.

Conjecture 1.7. Fork>3 and 1 <d <k —1,

ma(k,n) %max{%, = <%>k_d} <Z:Z>.

Note that the case when d > k/2 has been verified in [57]. Alon, Frankl, Huang, Rodl,
Rucinski and Sudakov [1] verified Conjecture 1.7 for the case k —4 < d < k — 1, which gives
(new) asymptotic values of my(5,n), ma(5,n), me(6,n) and ms(7,n).

For the general bound on my(k,n) for 1 < d < k/2, Han, Person and Schacht [17]

ma(k,n) < (% + 0(1)> (Z - ;l).

Markstrom and Rucinski lowered the bound slightly as

ma(k,n) < (k%d - % + 0(1)) (Z - 3).

Very recently, Kiithn, Osthus and Townsend [46] further improved the upper bound to

malk,n) < (k‘;d - k_kkd_; ! +o<1)) <Z:3).

by using fractional matchings. This is the current state of art by our knowledge, which is

showed that

still away from the bound in Conjecture 1.7.

In contrast, the author of [63] also proved that the minimum codegree threshold that
ensures a near perfect matching in a k-graph on n ¢ kN vertices is between 7| and 7 +
O(logn). This is a quite surprising phenomenon from the Dirac threshold perspective, that
a near perfect matching (almost perfect matching) appears much sooner than a perfect one.
It is conjectured, in [63] and [58, Problem 3.3], that this threshold should be [%]. In Chapter
6, we prove this conjecture for large n.

It is also natural to ask for the relation between the minimum codegree and the matching



number of k-graphs, which is, the size of a maximum matching. Let v(H) be the size of a
maximum matching in H. The authors of [63] showed that for every k-uniform hypergraph

H on n vertices, v(H) > 6p_1(H) if &_1(H) < [%] — k + 2. Note that for n € kN and

n

7 < 0p-1(H) < 5§ —k, H may not contain a perfect matching, namely, a matching of size }

(see [63]). So the only open cases are when |#| —k +3 < 6,_1(H) < %. In Chapter 6, we
close this gap for large n.

For k > 3, by the result of Karp [26], it is NP-complete to determine whether a k-graph
has a perfect matching. The result in [63] says that every k-graph with 0,1 (H) > n/2 has
a perfect matching. A k-graph with 6_1(H) € (0,n/2) may not contain a perfect matching.
So it is natural to know if there is an efficient algorithm determining if such k-graphs have
perfect matchings. For any v > 0, Szymariska [67] proved that for the class of k-graphs with
dk—1(H) < n/k — yn the problem is NP-complete by reducing the problem to the perfect
matching problem without degree restriction. Answering a question of Karpinski, Rucinski
and Szymanska, we show that the decision problem is in P when 0;_;(H) > n/k in Chapter
7. Previously Keevash, Knox and Mycroft [31] gave an asymptotic answer to this problem,
that is, for any v > 0, the decision problem is in P when 6;,_1(H) > n/k + yn. Moreover,
they also constructed a polynomial-time algorithm to find a perfect matching provided one

exists.

1.4 Perfect tiling in hypergraphs

For hypergraphs, only a few tiling results are known. Let K3 be the complete 3-graph
on four vertices, and let K3 — e be the (unique) 3-graph on four vertices with three edges.
Recently, Lo and Markstrom [49] proved that ta(n, K3) = (1+0(1))3n/4, and independently
Keevash and Mycroft [34] determined the exact value of t5(n, K3) for sufficiently large n. In
[50], Lo and Markstrom proved that to(n, K —¢) = (1 + o(1))n/2.

Let C3 be the unique 3-graph on four vertices with two edges (also denoted by D,) or
cherry in different papers). The perfect Ci-tiling was first studied by Kiihn and Osthus [41]
who showed that ¢3(n,C3) = (1 + o(1))n/4, and Czygrinow, DeBiasio and Nagle [7] recently
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Figure 1.2. C3

determined #5(n,C}) exactly for large n. In Chapter 8, we determine the exact value of
t1(n,C3) for large n. Our result is one of the first (exact) results on the vertex degree for
hypergraph packing problems. Independently, Czygrinow [6] proved a similar result.

For general k-graphs, Mycroft [56] determined t;_;(n, K) asymptotically for many k-

partite k-graphs using hypergraph blow-up lemma (instead of absorbing method).

The content of Chapters 3, 4, 5 and 8 is based on the joint work [24, 22, 23, 25] with

my advisor, Yi Zhao. The content of Chapters 6 and 7 contains the work in [20, 19].

1.5 Notations

Given an integer k£ > 0, a k-set is a set with k elements. For a set X, we denote by ()k( )
the family of all k-subsets of X. We write [r] to denote the set of integers from 1 to r. For
two sets X and Y, we write AUB for AU B when sets A, B are disjoint.

Given a k-graph H with a set S of at most k — 1 vertices, the link (hyper)graph of S is
the (k —|S|)-graph with vertex set V/(H) \ S and edge set {e \ S :e € E(H),S C e}.

Given a k-graph H = (V, E) and a set £ of (k—1)-sets in (k‘jl) (which can be viewed as
a (k — 1)-graph), let degy (v, &) = |[Ng(v) N E|]. When &€ = (131) for some X C V| we write
degy (v, (X,)) as degy (v, X) for short. Let degy(v,€) =|€N (Vk\jqf})| — degy (v, E). When
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k = 3, given not necessarily disjoint subsets X,Y, Z of V', define

Ey(XYZ)={zyz€ E(H):z e X,yeY,z€ Z}

EH(XYZ):{xyze (‘; \E(H):a:EX,yEY,zEZ},

and ey (XY Z) = |Eg(XY Z)|, eu(XY Z) = |[Ex(XY Z)|. We often omit the subscript H if
it is clear from the context.

We use bold font for vectors and normal fonts for their coordinates, e.g., v =
(v1,v9,...,04). We write £ < y means that for any y > 0 there exists xo > 0 such that
for any x < x( the following statement holds. Similar statements with more constants are
defined similarly. Throughout this thesis we omit floor and ceiling symbols where they do

not affect the argument.
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PART 2

HYPERGRAPH REGULARITY METHOD AND ABSORBING METHOD

2.1 Weak Hypergraph Regularity Lemma

Szemerédi’s Regularity Lemma [66] has been proved to be an incredibly powerful and
useful tool in graph theory as well as in Ramsey theory, combinatorial number theory and
other areas of mathematics and theoretical computer science. The lemma essentially says
that large dense graphs can be approximated by a random-like graph. The lemma has many
powerful variations and in particular, in this thesis, we use the so-called Weak Hypergraph
Regularity Lemma, which is a straightforward extension of Szemerédi’s regularity lemma for
graphs.

Let H = (V, E) be a k-graph and let Ay, ..., Ay be mutually disjoint non-empty subsets
of V. We define e(Ay, ..., Ax) to be the number of edges with one vertex in each A;, i € [k],

and the density of H with respect to (Ay,..., Ax) as

. G(Al,...,Ak)

d(Al,...7Ak> — m.

We say a k-tuple (V1, ..., Vi) of mutually disjoint subsets Vi, ..., Vi C V is (€, d)-regular, for
e>0andd >0, if
’d(AhuAk) _d‘ <e

for all k-tuples of subsets A; C V;, i € [k], satisfying |A;| > €|Vi|. We say (V4,..., V) is
e-reqular if it is (e, d)-regular for some d > 0. It is immediate from the definition that in
an (e, d)-regular k-tuple (V4,...,Vy), if V/ C V; has size |V/| > c|V;| for some ¢ > ¢, then

(Vi,..., V) is (max{e/c, 2¢}, d)-regular.

Theorem 2.1 (Weak Regularity Lemma). Given ty > 0 and € > 0, there ezist Ty = Ty(to, €)

and ng = ny(to, €) so that for every k-graph H = (V, E) on n > ng vertices, there exists a
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partition V =V U Vi U --- UV, such that
(i) to <t < Ty,
(i) Vil = Vel = - = [Vil and [Vi] < en,
(#i) for all but at most e(,i) k-subsets {iy, ... ,ix} C [t], the k-tuple (V;,, ..., Vi,) is e-regular.

The partition given in Theorem 2.1 is called an e-regular partition of H. Given an
e-regular partition of H and d > 0, we refer to V;,i € [t] as clusters and define the cluster
hypergraph K = K(e,d) with vertex set [t] and {iy,...,ix} C [t] is an edge if and only if
(Viy, ..., Vi) is eregular and d(V,,...,V;,) > d.

The following corollary shows that the cluster hypergraph inherits the minimum degree
of the original hypergraph. Its proof is almost the same as in [18, Proposition 16] after we

replace ﬁ + 7 by ¢ — we thus omit the proof.

Corollary 2.2. [18] Given c,e,d > 0 and integers k > 3,ty such that 0 < ¢ < d*/4 and
to > 2k/d, there exist Ty and ng such that the following holds. Let H be a k-graph onn > ng
vertices such that op_1(H) > en. If H has an e-reqular partition Vo U Vi U -+ UV, with
to <t < Ty and K = K(e,d) is the cluster hypergraph, then at most \/et*=1 (k — 1)-subsets
S of [t] violate deg,(S) > (c — 2d)t.

We will use the Weak Hypergraph Regularity Lemma in Chapters 4 and 5.

2.2 Absorbing method

The absorbing method, initiated by Rédl, Rucinski, and Szemerédi [60], has been shown
to be effective handling extremal problems in graphs and hypergraphs. Roughly speaking,
the absorbing method reduces the task of finding a spanning structure to finding an almost
spanning structure. One example is the re-proof of Posa’s conjecture by Levitt, Sarkozy,
and Szemerédi [48], while the original proof of Komlés, Sarkozy, and Szemerédi [37] used the

Regularity Lemma.
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One crucial part of the absorbing method is the probabilistic arguments. We include

the well-known Chernoft’s bound and Markov’s bound [2] here.

Proposition 2.3 (Chernoft’s bound). Let 0 < p < 1 and let X3,..., X, be mutually inde-
pendent indicator random variables with P[X; = 1] = p for all i, and let X = > X;. Then
for all a > 0,

P[|X — E[X]| > a] < 2e%/?".

Proposition 2.4 (Markov’s bound). If X is any nonnegative random variable and a > 0,

then
E[X]
—-

P[X > a] <

To illustrate the absorbing method, we state and prove a typical component of the
absorbing method, which will be used in Chapter 8. Recall that C} is the unique 3-graph on
four vertices with two edges. For positive integer b € 4N, we say that a b-set F' absorbs a

4-set S if both H[F| and H[F U S] contain Cj-factors.

Lemma 2.5. Assume 1/n < f < 1/4 and b € AN. Suppose H is an n-vertex 3-graph such
that every 4-vertex set S has at least fn® b-sets F that absorb S. Then there is a vertex
set W' € V(H) with |W'| € 4N and |W'| < bB?n such that for any vertex subset U with
UNW' =0, |U| €4N and |U| < B*n both H[W'] and H[W' U U] contain C3-factors.

Proof of Lemma 2.5. We choose a family F C (‘g) of b-sets by selecting each b-set randomly
and independently with probability p = $?n!~%. Then |F| follows the binomial distribution
B((}),p) with expectation E(|F|) = p(}). Furthermore, for every 4-set S, let f(S) denote
the number of members of F that absorb S. Then f(S) follows the binomial distribution

B(N,p) with N > n® by the assumption of the lemma. Hence E(f(S)) > pBnb. Finally,

n

b—1> < %n%_l pairs of intersecting b-sets, the expected number

since there are at most (2) -b- (
of the intersecting pairs of b-sets in F is at most p? - sn?*~1 = g*n /2.
Applying Chernoft’s bound on the first two properties and Markov’s bound on the last

one, we know that, with positive probability, F satisfies the following properties:



14

o |Fl<2p(3) < n,
o for any 4-set S, f(S) > % - Bnb = B3n/2,
e the number of intersecting pairs of elements in F is at most 3n.

Thus, by deleting one member from each intersecting pair and the non-absorbing members
from F, we obtain a family F’ consisting of at most 5%n b-sets and for each 4-set S, at
least 3°n/2 — B*n > B*n members in F’ absorb S. So we get the desired absorbing set
W' = V(F') satisfying |[W’| < b5?n. O

We finish this section by giving a quick introductory on the newly-developed lattice-
based absorbing method. When the (hyper)graph is dense enough, the absorbing method
provides a powerful, global (small) absorbing structure that can absorb any (smaller) set of
leftover vertices. This reduces the job of finding a spanning structure into the one of finding
an almost spanning structure. Interestingly, when the minimum degree condition falls below
the critical threshold for which the absorbing structure exists, a partite structure appears in
the (hyper)graph (see [34, 31]). Instead, we may partition the vertex set of the graph into
a few parts and build the lattice-based absorbing structure on the partition. Our lattice-
based absorbing structure works under the subcritical degree conditions and gives enough

structural information in some applications (see Chapter 7).
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PART 3

ON MULTIPARTITE HAJNAL-SZEMEREDI THEOREM

3.1 Introduction

Let H be a graph on h vertices, and let G be a graph on n vertices. Packing (or tiling)
problems in extremal graph theory are investigations of conditions under which G must
contain many vertex disjoint copies of H (as subgraphs), where minimum degree conditions
are studied the most. An H-matching of G is a subgraph of G which consists of vertex-
disjoint copies of H. A perfect H-matching, or H-factor, of G is an H-matching consisting of
|n/h| copies of H. Let K} denote the complete graph on k vertices. The celebrated theorem
of Hajnal and Szemerédi [16] says that every n-vertex graph G with (G) > (k — 1)n/k
contains a Kj-factor (see [28] for another proof).

Using the Regularity Lemma of Szemerédi [66], researchers have generalized this theorem
for packing arbitrary H [3, 39, 65, 45]. Results and methods for packing problems can be
found in the survey of Kiihn and Osthus [44].

In this chapter we consider multipartite packing, which restricts G to be a k-partite
graph for k > 2. A k-partite graph is called balanced if its partition sets have the same size.
Given a k-partite graph G, it is natural to consider the minimum partite degree 6*(G), the
minimum degree from a vertex in one partition set to any other partition set. When k = 2,
0*(@) is simply 6(G). In most of the rest of this chapter, the minimum degree condition
stands for the minimum partite degree for short.

Let Gk(n) denote the family of balanced k-partite graphs with n vertices in each of its
partition sets. It is easy to see (e.g. using the Konig-Hall Theorem) that every bipartite
graph G € Ga(n) with 6*(G) > n/2 contains a 1-factor. Fischer [13] conjectured that if

G € Gi(n) satisfies
k—1

7 (G) > 3

n, (3.1)
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then G contains a Kj-factor and proved the existence of an almost Kj-factor for k = 3, 4.
Magyar and Martin [52] noticed that the condition (3.1) is not sufficient for odd k and instead
proved the following theorem for k = 3. (They actually showed that when n is divisible by 3,
there is only one graph in Gs(n), denoted by I'3(n/3), that satisfies (3.1) but fails to contain

a Kj-factor, and adding any new edge to I's(n/3) results in a Ks-factor.)

Theorem 3.1. [52] There exists an integer ng such that If n > ng and G € Gs(n) satisfies

0*(G) > 2n/3 + 1, then G contains a Ks-factor.

On the other hand, Martin and Szemerédi [55] proved the original conjecture holds for
k=4.

Theorem 3.2. [55] There exists an integer ng such that if n > ng and G € Gy4(n) satisfies
0*(G) > 3n/4, then G contains a K,-factor.

Recently Keevash and Mycroft [34] and independently Lo and Markstrom [51] proved
that Fischer’s conjecture is asymptotically true, namely, 0*(G) > £-n + o(n) guarantees a
Kj-factor for all k > 3. Very recently, Keevash and Mycroft [33] improved this to an exact
result.

In this chapter we give a new proof of Theorems 3.1 and 3.2 by the absorbing method.
Our approach is similar to that of [51] (in contrast, a geometric approach was employed
in [34]). However, in order to prove exact results by the absorbing lemma, one needs only
assume 6*(G) > (1 — 1/k)n, instead of 6*(G) > (1 — 1/k + a)n for some a > 0 as in [51]. In
fact, our absorbing lemma uses an even weaker assumption 0*(G) > (1 — 1/k — a)n and has
a more complicated absorbing structure.

The absorbing method, initiated by Rédl, Rucinski, and Szemerédi [60], has been shown
to be effective handling extremal problems in graphs and hypergraphs. One example is the
re-proof of Posa’s conjecture by Levitt, Sarkozy, and Szemerédi [48], while the original proof
of Komlés, Sarkozy, and Szemerédi [37] used the Regularity Lemma. Our proof is another

example of replacing the regularity method with the absorbing method. Compared with the
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threshold ng in Theorems 3.1 and 3.2 derived from the Regularity Lemma, the value of our
no is much smaller.

Before presenting our proof, let us first recall the approach used in [52, 55]. Given a
k-partite graph G € Gi(n) with parts Vi, ..., Vj, the authors said that G is A-extremal if
each V; contains a subset A; of size |n/k] such that the density d(A;, A;) < A for all i # j.
Using standard but involved graph theoretic arguments, they solved the extremal case for

k = 3,4 [52, Theorem 3.1], [55, Theorem 2.1].

Theorem 3.3. Let k = 3,4. There exists A and ngy such that the following holds. Let n > ng
and G € Gi(n) be a k-partite graph satisfying 6*(G) > (2/3)n + 1 when k = 3 and (3.1)

when k = 4. If G is A-extremal, then G contains a Kj-factor.

To handle the non-extremal case, they proved the following lemma ([52, Lemma 2.2]

and [55, Lemma 2.2]).

Lemma 3.4 (Almost Covering Lemma). Let k = 3,4. Given A > 0, there exists & > 0 such
that for every graph G € Gg(n) with 6*(G) > (1 — 1/k)n — an either G contains an almost

Ky-factor that leaves at most C = C(k) vertices uncovered or G is A-extremal.

To improve the almost Kj-factor obtained from Lemma 3.4, they used the Regularity
Lemma and Blow-up Lemma [38]. Here is where we need our absorbing lemma whose proof
is given in Section 3.2. Our lemma actually gives a more detailed structure than what is
needed for the extremal case when G does not satisfy the absorbing property.

We need some definitions. Given positive integers k and r, let O, denote the graph
with vertices a;;, i = 1,...,k, j = 1,...,r, and a;; is adjacent to a; ;s if and only if ¢ # ¢’
and j # j'. In addition, given a positive integer ¢, the graph Oy, (t) denotes the blow-up
of Okx,, obtained by replacing vertices a;; with sets A;; of size ¢, and edges a;;a;;; with
complete bipartite graphs between A;; and Ay ;. Given ¢, A > 0 and ¢t > 1 (not necessarily
an integer), we say that a k-partite graph G is (e, A)-approximate to Oy, (t) if each of its
partition sets V; can be partitioned into |J;_, Vi; such that ||V;;| —t| < et for all 4, j and
d(Vij, Virj) < A whenever i # 7.
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Figure 3.1. ©343: dotted lines stand for non-edges

Lemma 3.5 (Absorbing Lemma). Given k > 3 and A > 0, there exists o = a(k,A) > 0
and an integer ny > 0 such that the following holds. Let n > ny and G € Gi(n) be a k-partite
graph on Vi U --- UV such that 6*(G) > (1 — 1/k)n — an. Then one of the following cases
holds.

1. G contains a Ky-matching M of size | M| < 2(k — 1)a*~2n in G such that for every
W C VAV(M) with WNVy| = - = |WnNVi| <a®5n/4, there exists a Kj-matching

covering exactly the vertices in V(M) U W.

2. We may remove some edges from G so that the resulting graph G' satisfies §*(G') >
(1 —=1/k)n —an and is (A/6,A/2)-approzimate to Oy ().

The Kj-matching M in Lemma 3.5 has the so-called absorbing property: it can absorb

any balanced set with a much smaller size.

Proof of Theorems 3.1 and 3.2. Let k = 3,4. Let a < A, where A is given by Theorem 3.3
and « satisfies both Lemmas 3.4 and 3.5. Suppose that n is sufficiently large. Let G € Gy(n)
be a k-partite graph satisfying §*(G) > (2/3)n + 1 when k = 3 and (3.1) when k£ = 4. By
Lemma 3.5, either GG contains a subgraph which is (A/6, A/2)-approximate to Ogxx(}) or
G contains an absorbing Kj-matching M. In the former case, for i = 1,...,k, we add or

remove at most % vertices from Vj; to obtain a set A; C V; of size [n/k|. For ¢ # i, we
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have

e(Ai, Air) <e( u,V'1>+—<|A|+|A )
L
<S(1+5) (51
<al2][2].

which implies that d(A4;, Ay) < A. Thus G is A-extremal. By Theorem 3.3, G contains a
Kj-factor. In the latter case, G contains a Kj-matching M is of size |M| < 2(k — 1)a**~2n
such that for every W C V\V(M) with [W N V| = -+ = [W NV, < a®%n/4, there
exists a Kg-matching on V(M) UW. Let G' = G \ V(M) be the induced subgraph of G on
V(G)\ V(M), and n’ = |V(G")|. Clearly G’ is balanced. As a@ < 1, we have

5 (G > 6°(G) — |M] > (1 - %) n — 20k — Da*~2p > (1 - % - a) ",

By Lemma 3.4, G’ contains a Kj-matching M’ such that |V(G') \ V(M')] < C. Let W =
V(GY\V(M'). Clearly [WNV;|=---=|W NV Since C/k < a¥5n/4 for sufficiently
large n, by the absorbing property of M, there is a Kj-matching M” on V(M) U W. This
gives the desired Kj-factor M’ U M” of G. O]

Remarks.

e Since our Lemma 3.5 works for all £ > 3, it has the potential of proving a general
multipartite Hajnal-Szemerédi theorem. To do it, one only needs to prove Theorem 3.3

and Lemma 3.4 for £ > 5.

e Since our Lemma 3.5 gives a detailed structure of G when G does not have desired
absorbing Kj-matching, it has the potential of simplifying the proof of the extremal

case. Indeed, if one can refine Lemma 3.4 such that it concludes that GG either contains
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an almost Kj-factor or it is approximate to ©xx (%) and other extremal graphs, then in

Theorem 3.3 we may assume that G is actually approximate to these extremal graphs.

3.2 Proof of the Absorbing Lemma

In this section we prove the Absorbing Lemma (Lemma 3.5). We first introduce the

concepts of reachability.

Definition 3.6. In a graph G, a vertexr x is reachable from another vertex y by a set S C
V(G) if both Glx U S] and Gly U S| contain Ky-factors. In this case, we say S connects x

and y.

The following lemma plays a key role in constructing absorbing structures. We postpone

its proof to the end of the section.

Lemma 3.7 (Reachability Lemma). Given k > 3 and A > 0, there exists o = a(k,A) > 0
and an integer ny > 0 such that the following holds. Let n > ny and G € Gi(n) be a k-partite
graph on Vi U - - U Vy such that 6*(G) > (1 — 1/k)n — an. Then one of the following cases
holds.

1. For anyx andy inV;, i € k], z is reachable from y by either at least a*n*~! (k—1)-sets

or at least a’n?*=1 (2k — 1)-sets in G.

2. We may remove some edges from G so that the resulting graph G’ satisfies 0*(G') >
(1 =1/k)n —an and is (A/6,A/2)-approzimate to Oy (7).

With the aid of Lemma 3.7, the proof of Lemma 3.5 becomes standard counting and

probabilistic arguments, as shown in [17].

Proof of Lemma 3.5. We assume that G does not satisfy the second property stated in the
lemma.

For a crossing k-tuple T = (vy, -+ ,vg), with v; € V;, for i = 1,--- [k, we call a set A
an absorbing set for T if both G[A] and G[A U T contain Kj-factors. Let £(T") denote the
family of all 2k(k — 1)-sets that absorb 7.
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Claim 3.8. For every crossing k-tuple T, we have |L(T)| > a**—3p2kk-1),

Proof. Fix a crossing k-tuple T'. First we try to find a copy of K}, containing v; and avoiding

Vg, ...,U;. By the minimum degree condition, there are at least

Ji(n—l—(%—n<%+a>n>2

such copies of K. When n > 3k? and + > 3k?, we have (k — 1)an + 1 < n/(3k) and thus

n

<n—u—nk

: ((k — Dan + 1))

i

the number above is at least

TL(— -2 2> (2 when k23

=2

Fix such a copy of K} on {vy,us,us, -+ ,ux}. Consider us and ve. By Lemma 3.7 and
the assumption that G does not satisfy the second property of the lemma, we can find at
least a®nf~1 (k — 1)-sets or a3n?*~1 (2k — 1)-sets to connect uy and vy. If S is a (k — 1)-set
that connects u, and vy, then S U K also connects us and vy for any k-set K such that

GIK] = Kj, and K NS = (. There are at least
i ‘ 1 n /n\k-1

copies of K} in G avoiding uy, vy and S. If there are at least a®n*=! (k —1)-sets that connect

us and vy, then at least

2k—1

il ) times.

(2k — 1)-sets connect up and vy because a (2k — 1)-set can be counted at most (
Since 2a* < a?, we can assume that there are always at least 2a*n?*~1 (2k—1)-sets connecting
ug and vo. We inductively choose disjoint (2k—1)-sets that connects v; and u; fori = 2,... k.

For each i, we must avoid T, us, ..., ug, and i — 2 previously selected (2k — 1)-sets. Hence
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there are at least 2a'n? 1 — (2k — 1)(i — 1)n**~2 > o*n?*~! choices of such (2k — 1)-sets for
each ¢ > 2. Putting all these together, and using the assumption that « is sufficiently small,

we have

@) = (5)7 @ttt s gt
]

Every set S € L(T) is balanced because G[S] contains a Kj-factor and thus |[S N V;| =

o+ = 18NV, =2(k —1). Note that there are (,," * balanced 2k(k — 1)-sets in G. Let

(k—l))
F be the random family of 2k(k — 1)-sets obtained by selecting each balanced 2k(k — 1)-set
from V(G) independently with probability p := a**=3n!=2(:=1)  Then by Chernoff’s bound,
since n is sufficiently large, with probability 1 — o(1), the family F satisfies the following

properties:

71 207D < 2" ) <ot 52)

OéSk_G

1 1
|IL(T)NF| > §E(|£(T) NFl|) > 5p[ﬁ(T)| > " for every crossing k-tuple 7. (3.3)

Let Y be the number of intersecting pairs of members of F. Since each fixed balanced

2k(k — 1)-set intersects at most 2k(k — 1)(2(;__1;_1) (Q(kn_l))k_l other balanced 2k(k — 1)-sets

sy 25 ) )

By Markov’s bound, with probability at least 1, ¥ < a®~%n/4. Therefore, we can find a

in G,

8561 /4 intersecting pairs. Remove

family F satisfying (3.2), (3.3) and having at most «
one set from each of the intersecting pairs and the sets that have no Kj-factor from F, we
get a subfamily F’ consisting of pairwise disjoint absorbing 2k(k — 1)-sets which satisfies

| F'| <|F|] < a**~2p and for all crossing T,

8k76n a8k76n a8kf6n

(07
> — >
L@ nF| = gt -
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Since F' consists of disjoint absorbing sets and each absorbing set is covered by a
Kj-matching, V(F’) is covered by some Kj-matching M. Since |F'| < a**~2n, we have
| M| < 2k(k—1)a*2n/k = 2(k — 1)a**2n. Now consider a balanced set W C V(G)\V (F')
such that [W NV = - = [WNV,| < a¥%n/4. Arbitrarily partition W into at most
a® =6 /4 crossing k-tuples. We absorb each of the k-tuples with a different 2k(k — 1)-set
from £(T)NF'. As a result, V(F') UW is covered by a Kjp-matching, as desired. ]

The rest of the chapter is devoted to proving Lemma 3.7. First we prove a useful lemma.

A weaker version of it appears in [55, Proposition 1.4] with a brief proof sketch.

Lemma 3.9. Let k > 2 be an integer, t > 1 and ¢ < 1. Let H be a k-partite graph on
ViU~ UV such that |Vi| > (k—1)(1 — €)t for all i and each vertex is nonadjacent to at
most (1 + €)t vertices in each of the other color classes. Then either H contains at least e*t*

copies of Ky, or H is (16]€4€1/2k72, 16/{;461/2k72)—appr0ximate t0 Opx(k—1)(t).

Proof. First we derive an upper bound for |V;|, i € [k]. Suppose for example, that |Vj| >
(k—1)(1+¢€)t+et. Then if we greedily construct copies of K}, while choosing the last vertex

from Vi, by the minimum degree condition and € < 1, there are at least

Vil - (Ve = (T4 €)t) - (Ve | = (k = 2) (A + €)t) - (V] = (K = (1 + €)t)
>k—1)(1—et-(k—2—ke)t--- (1 —(2k —3)e)t - et
i

>k—1-3Hk—-2-1)--(1-1)eth >

[\elke)

copies of K}, in H, so we are done. We thus assume that for all i,

Vi < (k—1)(1+ e)t + et < (k — 1)(1 + 2e)t. (3.4)

Now we proceed by induction on k. The base case is k = 2. If H has at least €2t? edges,

then we are done. Otherwise e(H) < ¢?t*. Using the lower bound for |V;|, we obtain that

2t2 62
< < €.
D

€

e

d(Vi, V) <



24

2k72

Hence H is (2¢, ¢)-approximate to Oy (t). When k = 2, 16k*¢"/ = 2506¢, so we are done.
Now assume that k£ > 3 and the conclusion holds for £k — 1. Let H be a k-partite graph
satisfying the assumptions and assume that H contains less than €2t* copies of K.
For simplicity, write N;(v) = N(v) N'V; for any vertex v. Let V/ C Vi be the vertices
which are in at least et*~! copies of K in H, and let V; = Vi \ V/. Note that |V/| < et
24k

otherwise we get at least €2t* copies of K, in H. Fix vy € V;. For 2 < i < k, by the minimum

degree condition and k£ > 3,

k
INi(vo)| > (k—1)1—€e)t — (1 +€e)t = (k—2) (1 — 26) t>(k—2)(1—3e)t.
On the other hand, following the same arguments as we used for (3.4), we derive that
| Ni(vo)] < (k —2)(1 4+ 2et). (3.5)

The minimum degree condition implies that a vertex in N(vy) misses at most (1 + €)t
vertices in each N;(vg). We now apply induction with k—1, ¢ and 3¢ on H[N(vg)]. Because of

the definition of V}, we conclude that N(vg) is (¢, €')-approximate to ©_1)xk—2)(t), where
¢ = 16(k — 1)4(3¢)/2"".
This means that we can partition N;(vg) into A;; U -+ Ajp—g) for 2 <4 < k such that

Vo<i<hk 1<j<k-2 (1-ét<|Ay<O+é)t  and (3.6)

V2§Z<Z/§k, 1 S]Sk’—2, d(AijaAi’j) SE,. (37)

Furthermore, let A;—1) := V; \ N(v) for i = 2,--- k. By (3.5) and the minimum degree
condition, we get that

(1= (3k = 5))t < || < (1 + ), (3.5)

fori=2,--- k.
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Let Af; = Vi \ Aj; denote the complement of A;;. Let é(A,B) = [A|[B] — e(A, B)
denote the number of non-edges between two disjoint sets A and B, and d(A, B) =
e(A,B)/(JA||B|) = 1 —d(A, B). Given two disjoint sets A and B (with density close to

one) and o > 0, we call a vertex a € A is a-typical to B if degg(a) > (1 — «)|B].

Claim 3.10. Let2<i#i <k, 1<j+#j <k—1.
1. d<Aij7Ai’j’) Z 1-— 36/ and d(Aija A;-:/j) Z 1-— 36’.

2. All but at most v/ 3€' vertices in A;; are v/ 3€'-typical to Ayjr; at most /3¢ vertices in
Aij are v/ 3€'-typical to Ag;.

Proof. (1). Since A5, = U;.; Avj, the second assertion d(Aj;, Af;) > 1 — 3¢’ immedi-
ately follows from the first assertion d(A;;, Ai;;) > 1 — 3€¢’. Thus it suffices to show that
d(A

Apjr) > 1= 3¢, or equivalently that d(A;;, Ay;r) < 3¢

175 17

Assumej 2 2. By (37)7 we have e(Aiiji’j) S €,|AinAi’j‘- So é(Aij;Ai’j) 2 (]. -

€')|Ai;||Airj|. By the minimum degree condition and (3.6),

e(Aij, Ajy) < [(1+ )t — (1 =€) A ][ Aij]
< [T+ et — (1= €)1 = €)]| Ayl

< (E + 26/)t|AU‘,

which implies that e((A;;, Ayjr) < (e + 2€')t|A;;| for any 5 # j and 1 < 7' <k — 1. By (3.6)

R

and (3.8), we have |A; ;| > (1 — ¢')t. Hence

_ t t
d(A,LJ, Ai’j’) S (6 + 26,) |A, ‘,| S (6 + 26/)
(2]

where the last inequality holds because ¢ < € < 1.
(2) Given two disjoint sets A and B, if d(A, B) < « for some o > 0, then at most \/a|A|
vertices a € A satisfy degg(a) < (1—+/a)|B|. Hence Part (2) immediately follows from Part

(1). O
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We need a lower bound for the number of copies of K}, in a dense k-partite graph.

Proposition 3.11. Let G be a k-partite graph with vertex class Vy,--- ,Vi. Suppose for
every two vertex classes, the pairwise density d(V;,V;) > 1—« for some a < (k+1)~%, then

there are at least 5], |Vi| copies of Ky in G.

Proof. Given two disjoint sets V; and V}, if d(V;, V;) < a for some o > 0, then at most \/a|V]

vertices v € V; satisfy degy. (v) < (1 — y/a)|Vj|. Thus, by choosing typical vertices greedily

and the assumption o < (k +1)7%, there are at least
1
(1= Va)Vil(1 = 2v/a) |Vl -+ (1 = kv/a)|Vi| > (1 = (1 +--- + k)Va) [ ] Vil > 51—[ Vil

copies of K in G. O

Let ¢’ = 2kv/¢/. Now we want to study the structure of V5.

Claim 3.12. Given v € V; and 2 < i < k, there exists j € [k — 1], such that [N, (v)] < €'t

Proof. Suppose instead, that there exist v € V; and some 2 < iy < k, such that [Na,,;(v)] >
€'t for all j € [k —1]. By the minimum degree condition, for each 2 < i < k, there is at most
one j € [k — 1] such that | Ny, (v)| < t/3. Therefore we can greedily choose k — 2 distinct j;

for i # ig, such that [Ny, (v)| >t/3. Let j;, be the the (unique) unused index. Note that

. / A . /

.
S e T Ny, 01 o1 @

So for any i # i/, by Claim 3.10 and the definition of €, we have

_ 36/’A1’|Al’ ’ 2 6
d(N 4. Ny, < JilZ i <34 = = =¢". 3.9
W00 800, O S (R @)ING,, @ =2~ .

Since € < ¢ < 1, by Proposition 3.11, there are at least

7

1 N > 1 ”t t b _ € tk_l tk:—l
glINa, @) 25t (3) =gt >

%
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copies of K;_; in N(v), contradicting the assumption v € V;. ]

Note that if deg,, (v) < €"t, at least |A;;| — €”t vertices of Aj;; are not in N(v). By the

minimum degree condition, (3.6) and (3.8), it follows that
[AG\ N @) < (1 +e)t — (JAy| —€"t) < (T +e)t — (1 =€)t + "t <2 (3.10)

Fix a vertex v € V;. Given 2 < i < k, let £; denote the (unique) index such that [Ny, (v)| <

€"t (the existence of ¢; follows from Claim 3.12).

Claim 3.13. We have by =l3 = --- = (.

Proof. Otherwise, say ¢ # (3, then we set jo = ¢3 and for 3 < i < k, greedily choose distinct
Jky Jk—1s---5J3 € [k — 1] \ {€3} such that j; # ¢; (this is possible as j3 is chosen at last).

Let us bound the number of copies of Kj_; in |J_, Na,, (v). By 3.10, we get [Ny, (v)| >

|Aji| —2€"t > t/2 for all i. Asin (3.9), for any ¢ # i’, we derive that d(Na,, (v), Na,, (v)) <

3¢ -4 -4 =48¢". Since €’ < 1, by Proposition 3.11, we get at least 5 (%)#1 > eth=1 copies

of Kj—1 in N(v), a contradiction. O

We define Ay; == {v € V; : |Nay,; (v)] < €'t} for j € [k —1]. By Claims 3.12 and 3.13,

this yields a partition of Vi = Uj:ll Ay such that

€,lt|A1j‘ < EHt

d(Ars, Aiy) < < :
DA Al T (- et

< (1+2€)" for i>2 and j > 1. (3.11)

By (3.6), (3.8) and (3.10), as (3k — 5)e < ¢, we have

— |A1j|2€”t < 2€Ht ”

d(Ay;, Ajir) < < < 3" fori>2 and j # 7. 3.12
( 1j J) |A1j||Aij’| (1 —Gl)t J 7éj ( )

We claim |Ay;] < (1 + €)t + (1 + 2€')e”| Ay | for all j. Otherwise, by the minimum degree

condition, we have deg 4, (v) > (1+2¢')e"|Ay;| for all v € A;;, and consequently d(Ay;, Aj;) >



28

(14 2€')e”, contradicting (3.11). We thus conclude that

1+e€
(1 + 2€)e”

Since |V/| < et, we have |Uf;11 Ayl = Vi \ V]| > [Vi] — et. Using (3.13), we now obtain a

lower bound for Ay, j € [k —1]:
|A;] > (B —=1)(1 —e)t — (b —2)(1 + 2€")t — et > (1 — 2ke")t. (3.14)

It remains to show that for 2 < i # ¢ < K, d(Ajk-1), Avg—1)) is small. Write
N(vy - vm) = ﬂ1§z‘§m N (v;).

Claim 3.14. d(Ai(k—1)7 Ai’(k—l)) < 6¢” fOT’ 2 < i,i/ < k.

Proof. Suppose to the contrary, that say d(A—1)k-1), Ark-1)) > 6€”. Note that there are
(k — 2)! choices of the sets {A;, }icjr—g such that j; € [k — 2] and every pair of the sets
is dense. We construct copies of Kj;_o in such sets, for example, Ay, Aoy, -+, Apg—2)(k—2)-
Pick arbitrary v; € Ay, For 2 < i@ < k — 2, we select v; € Na,,(v1---v;—1) such that
v; is v/3e-typical to Ae—1y(h=1), Ar—1) and all Aj;, i < j < k — 2. By Claim 3.10 and
(3.10), there are at least (1 — (k — 2)Vv/3¢')|Ay| — 2€”t > t/2 choices for each v;. After
selecting vy, . .., vp_2, we select adjacent vertices vy_1 € Ag—1)—1) and vy, € Ag—_1) such that
Ug—1,Uk € N(vy---v5_2). For j € {k—1,k}, we know that N(v;) misses at most 2€”t vertices
in Ajg_1), and at most (k—3)v/3€/|Aj_1)| vertices of A;_1) are not in N (vy -+ vg_2). Since
d(Ag-1)1, A1) > 6€” and €’ = 2k\/€', there are at least

6€” | A1) (o—1) || Arge—1)] — 26"t (J A1y e—1) | + [Ar—1)|) — 2(k — 3)V3€'| A1y e—1) || Ak(o—1)|
Z (66” - 46” - 4(k‘ - 3)\/9)|A(k—1)(k—1)||Ak(k—1)|

= 12V | A1y o) | Ay | > 6V L2

such pairs vj,_1,v. In total, we obtain at least (k — 2)!(£)*26/€'t? > et* copies of Kj, a
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contradiction. O

In summary, by (3.6), (3.8), (3.13) and (3.14), we have (1 — 2ke”)t < |A;;| < (1+2€")t
for all + and j. In order to make Uf;ll A;; a partition of V;, we move the vertices of V] to
Ay, Since |V/| < et, we still have ||A;;| — t| < 2ke’t after moving these vertices. On the

other hand, by (3.7), (3.11), and Claim 3.14, we have d(A;;, Air;) < 6€” < 2ke” for i # ¢

R
and all j (we now have d(A;1, A;1) < 2€¢” for all i > 2 because |A1;| becomes slightly larger).

Therefore H is (2ke”, 2ke”)-approximate to Oy ,—1)(t). By the definitions of €’ and €,

ok—2

e = VT = 48160k — DIEI < 161

where the last inequality is equivalent to (%)2 32" <1 or 3Y/2 < %, which holds
because 3 < 1+ 2,:%11 < (1+ ﬁ)Qk*l for k > 2.

This completes the proof of Lemma 3.9. O]

We are ready to prove Lemma 3.7.

Proof of Lemma 3.7. First assume that G € G3(n) is minimal, namely, G satisfies the mini-
mum partite degree condition but removing any edge of GG will destroy this condition. Note
that this assumption is only needed by Claim 3.20.

Given 0 < A <1, let

—1

1 A

‘T ok (24k(k - 1)m>2k (3.15)

Without loss of generality, assume that z,y € V; and y is not reachable by an*~! (k—1)-sets

or a®n*~1 (2k — 1)-sets from .

For 2 <1 < k, define

A = Vi (N(@)\ N(y)), A =Vin(N(y)\ N(x)),

Bi =Vin(N(x) N N(y)), Ao = Vi\ (N(z) UN(y)).
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Let B = J,», Bi. If there are at least a®n*~! copies of Kj_; in B, then z is reachable

k=1 copies of

from y by at least a®n*~! (k — 1)-sets. We thus assume there are less than o’n
Kk,1 in B.
Clearly, for ¢ > 2, A;1, A, B; and A;q are pairwise disjoint. The following claim bounds

the sizes of A;;,, B; and Aj.
Claim 3.15. 1. (1 — kQOé)% < ‘Ailla ‘A’Lk’ S (1 + ka)%,

2 (k—2—2ka)™ <|Bi| < (k—2+k(k—1)a) 2,

=3

Proof. For v € V, and i € [k], write N;(v) := N(v) N'V;. By the minimum degree condition,
we have |A;1|, |Aix] < (1/k 4+ a)n. Since N;(x) = A;; U B;, it follows that

|Bi| > (5L — a)n — (£ + a)n. (3.16)
If some B;, say By, has at least (52 + (k — 1)a)n vertices, then there are at least
Hsz |Bi| — (i — 2) (3 + @) n copies of Kj_; in B. By (3.16) and |By| > (52 + (k — 1)a)n,

this is at least

an -

(
:an.H(’f;i_m)n
5

1=2
k—1 k—q_ 1
>an - 2 b 2k*a <1
an ]l 2 )TL ecause a1,
1 k—2
(2

This is a contradiction.
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We may thus assume that |B;| < (52 + (k — 1)a)n for 2 < i < k, as required for Part

(2). As N;(x) = Ay U B;, it follows that
|Ai| > (52 —a)n — (B2 + (k- )a)n = (3 — ka)n.
The same holds for |A;| thus Part (1) follows. Finally

|Aio| = |Vi| — |Ni(x)] — |Aig| <n — (% —a)n — (% — ka)n = (k + 1)an,

as required for Part (3). O

Let t = n/k and € = 2ka. By the minimum degree condition, every vertex u € B
is nonadjacent to at most (1 + ka)n/k < (1 + €)t vertices in other color classes of B. By
Claim 3.15, |B;| > (k —2 —2ka)} = (k —2 —€)t > (k —2)(1 — €)t. Thus G[B] is a (k — 1)-
partite graph that satisfies the assumptions of Lemma 3.9. We assumed that B contains
less than o®nf~1 < €%k~ copies of Kj_;, so by Lemma 3.9, B is (/, o/)-approximate to
O (k—1)x (k—2) (7 ), Where

o = 16(k — 1)*(2ka)/** .

This means that we can partition B;, 2 <14 <k, into ApU---U A1) such that (1—-a')7 <
|Aij| <(1+a)f for2<j<k—1and
V2<i<i' <k 2<j<k-—1, d(4; Ar)<d. (3.17)
Together with Claim 3.15 Part (1), we obtain that (using k*a < o)
V2<i<k1<j<k (1-do)F<|A;<(1+a)E (3.18)

Let A, =V, \ A;; denote the complement of A;;. The following claim is an analog of
Claim 3.10, and its proof is almost the same — after we replace (1 + €)t with (1 + ka)n/k

and ¢ with o (and we use o < o). We thus omit the proof.
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Claim 3.16. Let 2 <i#d <k, 1<j#j <k, and {j,j'} # {1,k}.
1. d(AijaAi’j’) Z 1-— 30[’ and d(Aij;Ag/j) Z 1-— 306/.

2. All but at most v/ 3o/ vertices in A;j are 3o/ -typical to Ayj; at most v/ 3o/ vertices in
Aij are v/ 3a/-typical to A;. O

Now let us study the structure of V;. Let o/ = 2kv/a’. Recall that N(zv) = N(2)NN(v).
Let V] be the set of the vertices v € Vj such that there are at least an®~! copies of Kj_
in each of N(zv) and N(yz). We claim that |V]/| < 2an. Otherwise, since a (k — 1)-set

intersects at most (k — 1)n*~2 other (k — 1)-sets, there are at least

2an - an*Han* Tt — (k — 1)n*7?) > o’n? !
copies of (2k — 1)-sets connecting = and y, a contradiction.
Let V; := V4 \ V/. The following claim is an analog of Claim 3.12 for Lemma 3.9 and
can be proved similarly. The only difference between their proofs is that here we find at

k-1

least an®~! copies of Kj_; in each of N(zv) and N(yv), and thus obtain a contradiction

with v € \71
Claim 3.17. Givenv € V; and 2 < i < k, there exists j € [k] such that |Na,; (v)] <a’t. O

Fix an vertex v € ‘71 Claim 3.17 implies that for each 2 < i < k, there exists ¢; such
that [Ny, (v)| < a”t. Our next claim is an analog of Claim 3.13 for Lemma 3.9 and can be

proved similarly.
Claim 3.18. We have by =15 =--- = (. ]
We now define Ay, := {v € Vj : |Na,,; (v)] < "t} for j € [k]. By Claims 3.17 and 3.18,

this yields a partition of Vi = U§:1 Ay such that

O[”t|A1j| Oé”t

< <
|Agjl[Ag] — (T —a/)t

d(Ayj, Aj) < (1+2d)a" fori>25>1. (3.19)
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For v € Ayj, we have [Ny, (v)] < o”t for ¢ > 2. By the minimum degree condition and
(3.18),
|AG\ N (v)] < (5 +a)n — (JA;| — at) < 22"t (3.20)

By (3.18) and (3.20), we derive that

: Ayl - 20"t _ 20"

d(Ay;, Ay) < < <3a" fori>2,j# 7. 3.21
A Aa) < TH LT < T=at 7 (3:21)

We claim |Ay;| < (1 + a)t + (1 +2a’)a"|Ay;| for all j. Otherwise, by the minimum degree
condition, we have deg 4, (v) > (14+2a/)a|Ay;| for all v € A;j, and consequently d(Ay;, Aj;) >

(1+2a’)a”, contradicting (3.19). We thus conclude that

1+«

it 2ajar < (120

(3.22)

n
|Ayy] < T T
Since |V/| < 2an, we have ]U?Zl Ayj| = Vi \ V{| > |Vi| — 2an. Using (3.22), we now obtain

a lower bound for |Ay,|, j € [k].

Al = 1= (k= 1)(1+ 20" — 200 > (1 - 2ka’)

p o (3.23)

It remains to show that d(A;;, Ay1) and d(Ap, Aig), 2 < 1,7 < k, are small. First we
show that if both densities are reasonably large then there are too many reachable (2k — 1)-

sets from x to y. The proof resembles the one of Claim 3.14.
Claim 3.19. For 2 <i# i <k, either d(A;1, Ain) < 60" or d(Ay, Apr) < 6.

Proof. Suppose instead, that say d(Ap—1)1, Ak1), d(Ag—1yk, Arx) > 6a”. Fix a vertex v; €
Ajz. We construct two vertex disjoint copies of Kj_; in N(xv;) and N(yv) as follows. Note
that there are (k — 3)! choices of the sets {A,;j, fa<i<k—2 such that 3 < j; < k — 1 and every
pair of the sets is dense. We construct copies of Ky_3 in N(zvy) or N(yv;) from such sets,
for example, Aas, ..., Awg—2)(k—1)-

First, we construct a copy of Kj_; in N(xv;) from A, ..., Ag—o)k-1). For 2 < i <
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k — 2, we select v; € Ny,

3

(i+1)(v1 c 'Ui—l) that is V 30/—typical to A(k—l)la Akl and Aj(j—i—l)u
i < j <k—2 By Claim 3.16 and (3.20), there are at least

(1= (k=2)V3ad)|Ajisy)| — (ka+a’ + o/’)% > %
such v;. After selecting vy, ..., vp_2, we select two adjacent vertices vy_; € Ap—1)1 and

vk € Ay such that vg_; and vy are in N(vq -+ vg_2). For j =k — 1, k, we know that N(v;)
misses at most (ka + o + o”')n/k vertices in Aj; and at most (k — 3)v/3a/|A;1| vertices of

Ajp are not in N(vy -+ vp_2). Since d(Ak-1)1, A1) > 60", there are at least

n
60[”|A(k,1)1||Ak1| — (k’Oé + Oll + O//)E(|A(k,1)1| + |Ak1|)

na 2
—2(k = 3)V/30/ | A1l [ A = 6V (T)
such pairs vg_1, vx. Hence, N(zv;) contains at least

e () () 2 () 2 v

copies of Kj_1. Let C be such a copy of Kj_;. Then we follow the same procedure and
construct a copy of Kj;_y on N(yvq) \ C. After fixing k — 3 sets A;; with 2 <47 <k —2 and
3 < j < k—1 such that no two of them are on the same row or column, still there are at least
s such v; for 2 <@ < k—2. Then, as d(A, Ayr) > 6", there are at least 6vVa! (%)2 choices
of vp_1 € A—1) and vy, € Ay, such that vy_q and vy, are in N (vy - - - vp_2). This gives at least
Vvan®~! copies of Kj_; in N(yvi). Then, since there are at least |Vi| — |A11| — |Aw| > an
choices of v, totally there are at least an(y/anf~1)? = a?n?*~1 reachable (2k — 1)-sets from

x to y, a contradiction. O

Next we show that if any of d(A;1, Ai1) or d( Ak, Aik), 2 < 1,7 < k, is sufficiently large,
then we can remove edges from G such that the resulting graph still satisfies the minimum

degree condition, which contradicts the assumption that G is minimal.
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Claim 3.20. For 2 S 1 7é 7V S k?, d(Ail, Ai’1)7 d(Azka Az’k) S 6]6\/ a’.

Proof. Without loss of generality, assume that d(Ag, As;) > 6kva”. By Claim 3.19, we
have d(Asi, A1) < 6¢”. Combining this with (3.17), we have d(Ay;, Asj) < 60" for all
j € [k —1]. Now fix j € [k — 1]. The number of non-edges between Ay; and Aj; satisfies
e(Agj, Azj) > (1 —6a)|Agj||As;|. By the minimum degree condition and (3.18),

n n
€( Ak, Ag) < (L4 k)| Ag] — (1= 6a")|Ag[| Az | < Ta" | Agy].

Using (3.18) again, we obtain that

7" 7| Asyl

d(Agy, Agi) > 1 —
(Ao, dyy) 2 1= P

>1—8d".

Consequently d(Ag, AS,) > 1 —8a”, which implies d(A;, AS,) > 1 —8a” for {i,7} = {2,3}
by symmetry. For {i,i'} = {2,3}, define Al as the set of the vertices in Ay, that are
V8a/-typical to A%,. Note that |A;, \ AL | < v/8a”| Al

Let AT' = {v € AL : degy,, (v) < V8| A% |} and Aj? = AL\ Ajl. For u € AR, we

have
degV3 (u) = degAgk (u) + degA?,k (u) > (1 —v 804">|A§k| + v Sa//|A§k| = ‘A§k|

Since |A§,| > degy,(z) and |Ag,| is an integer, we conclude that degy,(u) > degy,(z) + 1.
Similarly we can derive that degy, (v) > degy, (z) + 1 for every v € AL, If there is an edge
uv joining some u € AQT; and some v € Ag,i, then we can delete this edge and the resulting

graph still satisfies the minimum degree condition. Therefore we may assume that there is
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no edge between Ag’i and Afz Then

e( Ak, Agi) = e(Agy \ AGy, Asi) + e(Agg, Agi \ A3y) + e(A5, AR + e(Agy, AG))
< 2v8a”| Ayl | Asi| + [A3L[VBa"| A, | + | Agi|VBa”| A5,
< V8 (2| Agg|| Ask| + [Azk|[AGe] + [Ask|[AZ|)
= V8a” (| Azk||V3] + [Askl|[V2])

S 3va- 2k|A2k||A3k|

Therefore d(Ag, Asr) < 6kva”. n

In summary, by (3.18), (3.22) and (3.23), we have (1 — 2ka”)? < |A;] < (14 22")%
for all 7 and j. In order to make U§:1 A;; a partition of V;, we move the vertices of V
to Ay and the vertices of Ay to A;p for 2 < i < k. By |V/| < 2an and (3.18), we still
have [|A;| — 2| < 2ka”%. On the other hand, by (3.17), (3.19), and Claim 3.20, we have
d(Aij, Aij) < 6kv/a"” for i # i’ and all j (at present d(Aj;, A;y) < 2a” for i > 2 because we
added at most 2an vertices to Ajy. Similarly d(A;e, Ays) < 2a for 4,7 > 2). Therefore after
deleting edges, G is (2ka”, 6k+v/o/)-approximate to Oy (n/k). By (3.15), and the definitions

of o and o/, G is (A/6, A/2)-approximate to Oy (n/k). O
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PART 4

MINIMUM CODEGREE THRESHOLD FOR HAMILTON /-CYCLES IN
K-UNIFORM HYPERGRAPHS

4.1 Introduction

A well-known result of Dirac [10] states that every graph G on n > 3 vertices with
minimum degree 0(G) > n/2 contains a Hamilton cycle. In recent years, researchers have
extended this result to hypergraphs in various ways (see [58] for a survey). In order to state
these results, we need to define degrees and Hamilton cycles for hypergraphs.

Given k > 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V' and
an edge set £ C (‘;), where every edge is a k-element subset of V. Given a k-graph H with
a set S of d vertices (where 1 < d < k — 1) we define degy(S) to be the number of edges
containing S (the subscript H is omitted if it is clear from the context). The minimum d-
degree 64(H) of H is the minimum of degy (S) over all d-vertex sets S in H. We refer to 6, (H)
as the minimum vertex degree and dy_1(H) the minimum codegree of H. For 1 < ¢ < k,
a k-graph is a called an f-cycle if its vertices can be ordered cyclically such that each of
its edges consists of k consecutive vertices and every two consecutive edges (in the natural
order of the edges) share exactly ¢ vertices. In k-graphs, a (k—1)-cycle is often called a tight
cycle while a 1-cycle is often called a loose cycle. We say that a k-graph contains a Hamilton
(-cycle if it contains an f-cycle as a spanning subhypergraph. Note that a k-uniform ¢-cycle
on n vertices contains exactly n/(k — ¢) edges, implying that k — ¢ divides n.

Confirming a conjecture of Katona and Kierstead [28], Rodl, Rucinski and Szemerédi
[60, 62] showed that for any fixed k, every k-graph H on n vertices with dx_1(H) > n/2+o0(n)
contains a tight Hamilton cycle. When k —/ divides k, a (k—1)-cycle on V trivially contains
an (-cycle on V (provided k — ¢ divides |V|). Thus the result in [62] implies that for all

1 < ¢ < k such that k — ¢ divides k, every k-graph H on n € (k — ()N vertices with
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dk—1(H) > n/2 + o(n) contains a Hamilton ¢-cycle. It is not hard to see that these results
are best possible up to the o(n) term. With long and involved arguments, R6dl, Rucinski
and Szemerédi [64] determined the minimum codegree threshold for tight Hamilton cycles
in 3-graphs.

Loose Hamilton cycles were first studied by Kiithn and Osthus [41], who proved that
every 3-graph on n vertices with d2(H) > n/4 4 o(n) contains a loose Hamilton cycle. It
is easy to see that this is asymptotically best possible. It was generalized to arbitrary k by
Keevash, Kiithn, Mycroft, and Osthus [32] and to arbitrary k& and arbitrary ¢ < k/2 by Han
and Schacht [18].

Theorem 4.1. [18] Fiz integers k > 3 and 1 < ¢ < k/2. Assume thaty > 0 andn € (k—()N
is sufficiently large. If H = (V, E) is a k-graph on n vertices such that d,_1(H) > (m +

y)n, then H contains a Hamilton (-cycle.

Later Kiithn, Mycroft, and Osthus [40] proved that whenever k& — ¢ does not divide k,

every k-graph on n vertices with dy_1(H) > + o(n) contains a Hamilton [-cycle.

G0
Since [k/(k — )] = 2 when ¢ < k/2, this generalizes Theorem 4.1 and is best possible up to
the o(n) term.

R6dl and Rucinski [58, Problem 2.9] asked for the exact minimum codegree threshold

for Hamilton /-cycles in k-graphs. The k£ = 3 and ¢ = 1 case was answered by Czygrinow

and Molla [9] recently. In this chapter we determine this threshold for all k > 3 and ¢ < k/2.

Theorem 4.2. Fix integers k > 3 and 1 < { < k/2. Assume that n € (k— ()N is sufficiently

large. If H = (V, E) is a k-graph on n vertices such that

dp—1(H) >

2(k —10)’
then H contains a Hamilton (-cycle.

A simple well-known construction shows that Theorem 4.2 is best possible — in fact, it

works for all ¢ < k. Let Hy = (V, E) be an n-vertex k-graph in which V is partitioned into
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[ 1(k—0)
intersect A. It is easy to see (e.g. [40, Proposition 2.2]) that d;_1(Hy) = |A| and Hy contains

sets A and B such that |A| = [#—‘ — 1. The edge set E consists of all k-sets that

no Hamilton /-cycle.

Using the typical approach of obtaining exact results, our proof of Theorem 4.2 consists

of an extremal case and a nonextremal case.

Definition 4.3. Let A > 0, a k-graph H on n vertices is called A-extremal if there is a set

B C V(H), such that |B| = L%nj and e(B) < An*.

Theorem 4.4 (Nonextremal Case). For any integer k > 3,1 < { < k/2 and0 < A < 1 there
exists v > 0 such that the following holds. Suppose that H is a k-graph on n vertices such that
n € (k—0)N is sufficiently large. If H is not A-extremal and satisfies 01 (H) > (m—y)n,

then H contains a Hamilton (-cycle.

Theorem 4.5 (Extremal Case). For any integer k > 3, 1 < ¢ < k/2 there exists A > 0
such that the following holds. Suppose H is a k-graph on n vertices such that n € (k — ()N
is sufficiently large. If H is A-extremal and satisfies (4.1), then H contains a Hamilton

(-cycle.

Theorem 4.2 follows from Theorem 4.4 and 4.5 immediately by choosing A from Theo-
rem 4.5.

Let us compare our proof with those in aforementioned papers. There is no extremal
case in [18, 32, 40, 41] because only asymptotic results were proved. Our Theorem 4.5 is new
and more general than [9, Theorem 3.1]. Following previous work [60, 62, 64, 18, 40], we prove
Theorem 4.4 by using the absorbing method. More precisely, we find the desired Hamilton
(-cycle by applying the Absorbing Lemma (Lemma 4.6), the Reservoir Lemma (Lemma 4.7),
and the Path-cover Lemma (Lemma 4.8). In fact, when ¢ < k/2, the Absorbing Lemma and
the Reservoir Lemma are not very difficult and already proven in [18] (in contrast, when
¢ > k/2, the Absorbing Lemma in [40] is more difficult to prove). Thus the main step is to

prove the Path-cover Lemma. As shown in [18, 40], after the Regularity Lemma is applied, it
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suffices to prove that the cluster k-graph K can be tiled almost perfectly by the k-graph F g,
whose vertex set consists of disjoint sets Ay, ..., A,_1, B of size k — 1, and whose edges are
all the k-sets of the form A;U{b} fori=1,...,a—1and all b € B, where a = [ £;](k — ().
In this chapter we reduce the problem to tile K with a much simpler k-graph Y o0, which
consists of two edges sharing 2¢ vertices. Because of the simple structure of Vj o/, we can
easily find an almost perfect Y o.-tiling unless K is in the extremal case (thus the original
k-graph H is in the extremal case). Interestingly )so-tiling was studied in the very first
paper [41] on loose Hamilton cycles but as a separate problem. Our recent project indeed
used Vs o-tiling as a tool to prove the corresponding path-cover lemma (see Chapter 5). On
the other hand, the authors of [9] used a different approach (without the Regularity Lemma)
to prove the Path-tiling Lemma (though they did not state such lemma explicitly).

We prove Theorem 4.4 in Section 4.2 and Theorem 4.5 in Section 4.3.

Extra notations. Given a k-graph H with two vertex sets S, R such that |S| < k, we
denote by degy (S, R) the number of (k — |S|)-sets " C R such that S UT is an edge of H
(in this case T is called a neighbor of S). We define deg (S, R) = (lﬂg") —deg(S, R) as the
number of non-edges on S U R that contain S. When R = V(H) (and H is obvious), we
simply write deg(S) and deg(S). When S = {v}, we use deg(v, R) instead of deg({v}, R).

A k-graph P is an (-path if there is an ordering (vq,...,v;) of its vertices such that
every edge consists of k consecutive vertices and two consecutive edges intersect in exactly

¢ vertices. Note that this implies that k£ — ¢ divides t — £. In this case we write P = vy --- vy

and call two (-sets {vy,..., v} and {v;_py1,..., v} ends of P.

4.2 Proof of Theorem 4.4
In this section we prove Theorem 4.4 by following the same approach as in [18].

4.2.1 Auxiliary lemmas and Proof of Theorem 4.4

We need [18, Lemma 5] and [18, Lemma 6] of Han and Schacht, in which any linear

codegree is sufficient.
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Lemma 4.6 (Absorbing lemma,[18]). For all integers k > 3 and 1 < £ < k/2 and every
v1 > 0 there exist n > 0 and an integer ng such that the following holds. Let H be a k-graph
on n > ng vertices with dy_1(H) > yin. Then there is an (-path P with |V (P)| < vin such
that for all subsets U C V '\ V(P) of size [U| < nn and |U| € (k — ()N there exists an (-path
Q C H with V(Q) = V(P)UU such that P and Q have exactly the same ends (we say P

absorbs U in this case).

Lemma 4.7 (Reservoir lemma, [18]). For all integers k > 3 and 1 < { < k/2 and every
d,v2 > 0 there exists an ng such that the following holds. Let H be a k-graph on n > ng
vertices with 6x_1(H) > dn, then there is a set R of size at most yon such that for all

(k—1)-sets S € (k‘jl) we have deg(S, R) > dyan/2.

The main step in our proof of Theorem 4.4 is the following lemma, which is stronger

than [18, Lemma 7).

Lemma 4.8 (Path-cover lemma). For all integers k > 3, 1 < ¢ < k/2, and every vys3,a > 0
there exist integers p and ng such that the following holds. Let H be a k-graph on n > ng
vertices with 0p_1(H) > (m — y3)n, then there is a family of at most p vertex disjoint

C-paths that together cover all but at most an vertices of H, or H is 14~y3-extremal.

We can now prove Theorem 4.4 in a similar way as in [18].

Proof of Theorem 4.4. Given k > 3,1 </{ < k/2and 0 < A < 1, let v = min{%, ﬁ} and
n € (k — ¢)N be sufficiently large. Suppose that H = (V, F) is a k-graph on n vertices with
Ok—1(H) > (ﬁ — v)n. Since ﬁ — v > 7, we can apply Lemma 4.6 with v, = v and
obtain 7 > 0 and an absorbing path Py, with ends Sy, Ty such that Py can absorb any u
vertices outside Py if u < nn and u € (k — ¢)N.

Let V; = (V\ V(Py)) U SoUTy and H; = H[V;]. Note that |V (Py)| < +°n implies that
dp—1(Hy) > (ﬁ —¥)n —~°n > 2—1kn since v < ﬁ and ¢ > 1. We next apply Lemma

4.7 with d = 5= and 7, = min{n/2,~7} to H; and get a reservoir R C V; such that for any

2
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(k —1)-set S C V4, we have

deg(S, R) > dye|Vi|/2 > dyan/4. (4.2)

Let Vo = V' \ (V(Py) UR), ny = |Va|, and Hy = H[V;]. Note that [V (Po) UR| < yin+von <

29n, so

st > (g5 =) =3 (g =9

Applying Lemma 4.8 to Hy with v3 = 37 and a = 1/2, we obtain at most p vertex disjoint
(-paths that cover all but at most any vertices of Hy, unless Hy is 147s-extremal. In the
latter case, there exists B’ C V, such that |B'| = ng(’,ff;)lnﬂ and e(B’) < 42yn%. Then we

add at most n — ny < 2yn vertices from V' \ B’ to B’ and obtain a vertex set B C V(H)

such that |B| = 2’;(_,92_£€_)an and

e(B) < 42ynk + 2yn - (Z 1) < 42yn* + yn* < A,

which means that H is A-extremal, a contradiction. In the former case, denote these ¢-paths
by {P;}icyp for some p’ < p, and their ends by {S;, T;}icp). Note that both S; and T; are
(-sets for £ < k/2. We arbitrarily pick disjoint (k—2¢—1)-sets Xo, X1, ..., X,y C R\ (SoUTp)
(note that k —2¢ —1>0). Let T4 = Tp. By (4.2), we get for 0 <i < p/,

deg (SZ-UTZ-HUXZ-,R\ U (SZ-UTZ-UXZ-)> >dyn/4— (P +1)(k—1)>p+1,

0<i<p’

as n is large enough. So we can connect Py, Py, ..., Py by using vertices from R and get an
(-cycle C. Note that |[V(H)\ V(C)| < |R| + any < y9n + an < nn and since n € (k — ()N,
|[V\ V(C)] is also a multiple of & — £. So we can use Py to absorb all unused vertices in R

and uncovered vertices in V5 thus obtaining a Hamilton ¢-cycle in H. O

The rest of this section is devoted to the proof of Lemma 4.8.
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4.2.2 Proof of Lemma 4.8

Let H be a k-partite k-graph with partition classes Vi,...,Vi. Then we call an ¢-path
P of H with edges {E,..., Ei} canonical with respect to (Vi,..., V) if

EiNEi C U Vi or E;NE C U Vi
€kl JE2A\]
fori=1,...,t — 1. Note that a canonical ¢-path with an odd length ¢ contains % vertices
of V; for i € [2(] and t vertices of V; for i > 2/.

We also need the following proposition from [18].

Proposition 4.9. [18, Proposition 19] Suppose H is a k-partite, k-graph with partition
classes Vi, ..., Vi, |Vil = m for all i € [k], and |E(H)| > dmF. Then there exists a canonical

C-path in H with t > 2(61@@) edges.

In [18] the authors used Proposition 4.9 to cover an (e, d)-regular tuple (Vi,..., V) of
sizes |Vi| =+ = |Vi_1]| = (2k — 20 — 1)m and |V}| = (k — 1)m with vertex disjoint ¢-paths.
Our next lemma shows that an (¢, d)-regular tuple (Vi,..., Vy) of sizes |[Vi| = -+ = |Voy| = m

and |V;| = 2m for i > 2¢ can be covered with ¢-paths.

Lemma 4.10. Fiz k > 3, 1 < { < k/2 and €,d > 0 such that d > 2¢. Let m > 22

e2(d—e) "

Suppose V = (V1,Va, ..., Vi) is an (€,d)-reqular k-tuple with

4(k—0)
(d—e)e

Then there are at most vertex disjoint (-paths that together cover all but at most 2kem

vertices of V.

Proof. We greedily find disjoint canonical ¢-paths of odd length by Proposition 4.9 in V
until less than em vertices are uncovered in V. Suppose that we have obtained odd ¢-paths
P1, ..., Py by Proposition 4.9 for some p > 0. Let t = > 7, (P;). Since all ¢(P;) are odd,

_, Pi contains B2 vertices of V; for i € [2(] and ¢ vertices of V; for i > 2(. For i € [k], let
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U; be the set of uncovered vertices of V; and assume that |U;| > em. Using (4.3), we derive

that |Uy| = -+ = |Uy| > em and

We pick an arbitrary k-partite subhypergraph V' with |U;| vertices in each U; for i € [k]. By

regularity, V' contains at least (d — €)|U;|* edges so that we can apply Proposition 4.9 and

find an ¢-path of odd length at least (g(k?jf)” — 1 (dismiss one edge if needed). We continue

this process until |U;| < em. Let Py, ..., P, be the ¢-paths obtained in V after the iteration

stops. Since [V NV (P;)| > (Z(_,;_)ZT for every j, we have
c_m__ Ak —0)
P> (d—e)em (d—E)E'
A(k—10)

Since m > %, we further have
4k — 0)(k —20) 4k

(d— o) <(d—e)e<2€m'

p(k —20) <
By (4.4), the total number of uncovered vertices in V is

k
D U = |Uh[20 + (2|Ur] + p)(k — 2¢) = 2(k — 0)[Uy] + p(k — 2¢)
i=1

< 2(k — 1)em + 2em = 2kem. O

Given £ > 3 and 1 < b < k, recall that Yy, is a k-graph with two edges that share
exactly b vertices. The following lemma is the main step in our proof of Lemma 4.8 and
we prove it in the next subsection. Note that it generalizes [7, Lemma 3.1] of Czygrinow,

DeBiasio, and Nagle.

Lemma 4.11 (Y ,-tiling Lemma). Given integers k > 3, 1 < b < k and constants v, 8 > 0,

there exist 0 < € < 0 and an integer ng such that the following holds. Suppose H is a k-
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Y)n for all but at most €n*~1 sets S € ( v ),

graph on n > ng vertices with deg(S) > (52 o1

2k—b

then there is a YVip-tiling that covers all but at most Sn vertices of H unless H contains a

vertez set B such that |B| = |%2=n| and e(B) < 6yn".

Now we are ready to prove Lemma 4.8.

Proof of Lemma 4.8. Fix such integers k, ¢, 0 < v3,a < 1. Let ¢ be the constant returned

from Lemma 4.11 with b = 2¢, v = 2v3, and § = «/2. So € < v8 = 73a. Furthermore,

4Ty
—e)e’

e = (€)?/16, and d = ~3/2.

let p = ( where T is the constant returned from Corollary 2.2 with ¢ = 2(k—17£) — Y3,

Let n be a sufficiently large integer and let H be a k-graph on n vertices with §_1(H) >
(m — 7v3)n. By applying Corollary 2.2 with the constants chosen above we obtain an e-
regular partition and a cluster hypergraph K = K(e, d) such that for all but at most /et*!

(k—1)-sets S € (k[t_]l),

degy(5) = (m — V3 — Qd) t= (m - 273) t,

because d = 73/2. Let m be the size of each cluster except Vo, then (1 —¢€)7 <m < %
Applying Lemma 4.11 with the constants chosen above, we derive that either there is a yk,%-

tiling % of I which covers all but at most St vertices of IC or there exists a set B C V(K),

such that |B| = Qg(k% Lt] and ex(B) < 12vstk. In the latter case, let B’ C V(H) be the

union of the clusters in B. By regularity,

eH<B’)§e;c(B)-m’“+(,i> demf e (/i) 'mu(n;) (kg)

where the right-hand side bounds the number of edges from regular k-tuples with high
density, edges from regular k-tuples with low density, edges from irregular k-tuples and

edges that lie in at most k — 1 clusters. Since m < %, € <73, d = 73/2, and 2 < t52 < s,



46
we obtain that

en(B') < 1245t* - (%)k + (Z)d (%)k + e(Z) (%)k + ("Q/t) (k " 2) < 13ysn*.

Note that |B'| = Lm;(k%e)lﬂm < Qk(k%g)lt = 25@2}4)171 and consequently |B’| < LQS(;ZZ an,

On the other hand,

2k — —2@ n
B'| = t—1)(1=e=
1= [ ez (Bt 09
(2k 20— 1 >n 2k 26—1
> ——t—¢t Pl v T

2(k = 0)

n — en.

2(k = 0)

By adding at most en vertices from V' \ B’ to B’, we get a set B” C V(H) of size exactly

ng(’]ff;)lnj, with e(B") < e(B’) + en - nF~t < 14y3n*. Hence H is 1473-extremal.

In the former case, the union of the clusters covered by ¢ contains all but at most Stm+
Vo] < an/2 + en vertices. We apply Lemma 4.10 to each member )’ € #. Suppose that )’
has the vertex set [2k—2¢] with edges {1, ..., k} and {k—20+1,...,2k—2¢}. Fori € [2k—2/],
let W; denote the corresponding cluster in H. We split each W;, 7 = k—20+1, ...k, into two
disjoint sets W' and W7 of equal size. Then the k-tuples (W}_op 1, ..., Wi, Wi, ..., Wi_o)

m

and (W2 501, W2, Wiy, ..., Wag_og) are (2¢, d)-regular and of sizes 2, ..., 2,

My ..., M.
m

5, we find a family of disjoint loose

Applying Lemma 4.10 to these two k-tuples with m' =
paths in each k-tuple covering all but at most 2kem’ = kem vertices.
Since |#| < Ak—D)

we obtain a path-tiling that consists of at most 2% 5 (e =

_t
2k—207

4Ty
(d—e)e

= p paths and covers all but at most

2kem - +an/2+en < 3en+ an/2 < an

t
2k — 20

vertices, where we use 2k — 20 > k and ¢ = (¢/)?/16 < (y3)?/16 < «/6. This completes the

proof. O



47

4.2.3 Proof of Lemma 4.11

We first give an upper bound on the size of k-graphs containing no copy of V. Through-
out the rest of the chapter, we frequently use the simple identity (T:) (ZL__: ) = (TZ) ('Z), which

holds for all integers 1 < b < k < m.

Fact 4.12. Let 1 <b < k <m. If H is a k-graph on m wvertices containing no copy of Vi,
then e(H) < (™).
Proof. Fix any b-set S C V(H) and consider its link graph Lg. Since H contains no copy of

Vip, any two edges of Lg intersect. By the Erdés-Ko-Rado Theorem [12], |Lg| < (707)).

s 06760
:(ki”bl)k;bm k+1 ( ) .

Proof of Lemma 4.11. Given 7,3 > 0, let € = (,fkfl, and n € N be sufficiently large. Let

Thus,

1

H be a k-graph on n vertices that satisfies deg(S) > — 7)n for all but at most ¢n*-

=
(k —1)-sets S. Fix a largest Y p-tiling & = {1, ..., Y} and write V; = V() for i € [m].
Let V' = U;cpy Vi and U = V(H) \ V'. Assume that [U| > Sn — otherwise we are done.
Let C be the set of vertices v € V'’ such that deg(v,U) > (2k — b)z(k‘[ig) We will
show that |C| < 5% and C' covers almost all the edges of H, which implies that H[V \ C]
is sparse and H is in the extremal case. We first observe that every ); € % contains
at most one vertex in C'. Suppose instead, two vertices z,y € V; are both in C. Since
deg(z,U) > (2k—b)? (‘U‘) > (|U|) by Fact 4.12, there is a copy of Vy_1 -1 in the link graph
of z on U, which gives rise to ), a copy of Yy, on {x} U U. Since the link graph of y on

U\ V()') has at least

() a7 (17
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edges, we can find another copy of Vg, on {y} U (U\V()')) by Fact 4.12. Replacing Y; in &

with these two copies of YV, creates a Yy p-tiling larger than %/, contradiction. Consequently,

Y deg(s,V") < [C] (,ﬂ'l) +|V'\ C|(2k — b)Q(lJ[ilz)

se(,2)
U] e :
<|C\(k_1 + (2k —b)°n k9 because |[V'\ C| < n
U] (2k — b)?n(k — 1)
= ) 4.
(k—l e T (4:5)
Second, by Fact 4.12, e(U) < (k“f'l) since H[U] contains no copy of Yy, which implies
U]
> deg(S.U) <k L) (4.6)
se(,Y))

By the definition of €', we have

k-1 LA S e 1124 ke U]
S c— 2L 29
N e IV &

since |U]| is large enough. At last, by the degree condition, we have

3 s (1)) (g )

(4.7)
Since deg(S) = deg(S,U) + deg(S, V'), we combine (4.5), (4.6) and (4.7) and get

1 (2k — b)2n(k — 1)

Since |U| > 16k3 /v, we get

(2k — b)*n(k — 1) _ 4k3n
\U| -k +2 \U/2

< yn/2,
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As 29°n > k and 2k — b > 4, it follows that |C| > (52 — 27) n.
Let I be the set of all ¢ € [m] such that V;NC # (). Since each V;, i € I, contains one
vertex of ', we have

1
|Ic| = |C| > (m — 2’}/) n >m— 2yn. (4.8)

Let A= (., . V;,\C)UU.

iclo

Claim 4.13. H[A] contains no copy of Vi, thus e(A) < (,",).

Proof. The first half of the claim implies the second half by Fact 4.12. Suppose instead,
HJ[A] contains a copy of Vi, denoted by ),. Note that V() € U because H[U] contains
no copy of Vip. Without loss of generality, suppose that Vi,...,V; contain the vertices of
Vo for some j < 2k —b. For i € [j], let ¢; denote the unique vertex in V; N C. We greedily
construct vertex-disjoint copies of Vi, on {¢;} U U, ¢ € [j] as follows. Suppose we have
found )i, ..., V! (copies of V) for some i < j. Let Uy denote the set of the vertices of U
covered by Vo, V;,..., V.. Then |Up| < (i +1)(2k —b—1) < (2k — b)(2k — b — 1). Since
deg(ciy1,U) > (2k — b)? (k‘:g), the link graph of ¢;.; on U \ Uy has at least

(%_b)z(k“i'?) - |U°|<k:|li|2) g (/K’z)

edges. By Fact 4.12, there is a copy of Vg on {cip1} U (U \ Up). Let Vi, ..., Y] denote the
copies of Yy, constructed in this way. Replacing Vi, ...,Y; in & with V, Vi, ...,V gives a

Vi p-tiling larger than %, contradiction. ]

Note that the edges not incident to C' are either contained in A or intersect some V;,

i ¢ Ic. By (4.8) and Claim 4.13,

e(V\C) <e(A)+ (2k—b)- 27”(2:1) < (;:1) +(4k - Qb)m(k i 1)

n 4k
4 k < k
< k’yn(k_ 1) < = 1)!771 < 6vn”,
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where the last inequality follows from k > 3. Since |C| < 5%, we can pick aset B C V \ C

of order | 2-2=1n] such that e(B) < 6yn*. O

4.3 The Extremal Theorem

In this section we prove Theorem 4.5. Assume that £ > 3,1 </ < k/2and 0 < A < 1.

Let n € (k — ¢)N be sufficiently large. Let H be a k-graph on V of n vertices such that

p_1(H) > ﬁ Furthermore, assume that H is A-extremal, namely, there is a set B C
V(H), such that |B| = L%J and e(B) < An*. Let A=V \ B. Then |A| = [55].

Let us give an outline of our proof first. We denote by A" and B’ the sets of “typical”
vertices of A and B, respectively. Let Vo = V' \ (A’ U B’). It is not hard to see that A’ =~ A,
B’ = B, and thus Vj = (. In the ideal case when Vj = () and |B'| = (2k — 2¢ — 1)|A’|, we
assign a cyclic order to the vertices of A’, construct |A’| copies of YV, such that each copy
contains one vertex of A" and 2k — ¢ — 1 vertices of B’, and any two consecutive copies of
k¢ share exactly ¢ vertices of B’. This gives rise to the desired Hamilton ¢-cycle of H. In
the general case, we first construct an ¢-path Q with ends Lo and L; such that V5 C V(Q)
and |By| = (2k — 20 — 1)|A;| + ¢, where A; = A"\ V(Q) and B; = (B\ V(Q))U Ly U L.
Next we complete the Hamilton /-cycle by constructing an ¢-path on A; U By with ends Ly
and L.

For the convenience of later calculations, we let ¢y = 2kleA < 1 and claim that e(B) <

60('5'). Indeed, since 2(k — ¢) — 1 > k, we have

e(B) < 2 pk <o (1- ! kn—k< 3] (4.9)
= oKl =0 2k—0)) 261 =\ k ) '

In general, given two disjoint vertex sets X and Y and two integers ¢,7 > 0, a set

Thus we get

S C XUY is called an X"Y7-set if [SNX| = ¢ and [SNY| = j. When X,Y are two
disjoint subsets of V(H) and i + j = k, we denote by H(X'Y7) the family of all edges
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of H that are X'Y7/-sets, and let ey (X'Y7) = |H(X'Y7)| (the subscript may be omitted
if it is clear from the context). We use ey (X*Y* %) to denote the number of non-edges
among X'Y* igets. Given aset L C X UY with [LNX| =1 <iand [LNY| = I, <
k — i, we define deg(L, X"Y*7%) as the number of edges in H(XY*™) that contain L, and
deg(L, X'Y*) = (IXHl) ('YHZ) — deg(L, X?Y*%). Our earlier notation deg(S, R) may be

i—l k—i—la

viewed as deg(S, SI*I(R\ S)*~151).

4.3.1 Classification of vertices

Let ¢; = €'/3 and e; = 2¢2. Assume that the partition V(H) = A U B satisfies that

|B| _ L(Qk—?é—l)n

50 0) | and (4.9). In addition, assume that e(B) is the smallest among all such

partitions. We now define

A= {v €V :deg(v,B) > (1—«) (If’l) } :

B = {v €V :deg(v,B) < ¢ (ku—g‘l) } :

Vo=V \ (A UB).

Claim 4.14. AN B’ # () implies that B C B’, and BN A’ # () implies that A C A’.

Proof. First, assume that AN B’ # (). Then there is some u € A such that deg(u, B) <

|B

k_‘l), then we can switch

€1 (]E‘l) If there exists some v € B\ B, namely, deg(v, B) > € (
w and v and form a new partition A” U B” such that |B”| = |B| and e(B”) < e(B), which
contradicts the minimality of e(B).

Second, assume that B N A" # (). Then some u € B satisfies that deg(u, B) > (1 —
€1) (k‘ﬂ) Similarly, by the minimality of e(B), we get that for any vertex v € A, deg(v, B) >
(1 —e)(/P)), which implies that A C A’. O

Claim 4.15. {|A\ A'|,|B\ B'|,|A’'\ A|,|B'\ B|} < e2| B| and |Vo| < 22| B|.
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Proof. First assume that |B \ B'| > ¢;|B|. By the definition of B’, we get that

1 B B
e(B) > 7 (k:|—|1) - €| B| > 2¢ (|k|>’

which contradicts (4.9).
Second, assume that |A\ A’| > e|B|. Then by the definition of A’, for any vertex

v ¢ A, we have that deg(v, B) > ¢ (,E'l) So we get

B B
e¢4BkU:>62uﬂ.el<k{Jl>:zgaﬂ3|(;_Jl>.

Together with (4.9), this implies that

> deg(S) = ke(B) + e(AB*)

Se(,fl)
o (2) an()

= ((1—€)(|B| — k+ 1) + 2¢| B|) (k:’?‘l) > |B| (/{‘?’1)‘

where the last inequality holds because n is large enough. By the pigeonhole principle, there

exists a set S € (,7,), such that deg(S) > |B| = [%J, contradicting (4.1).

Consequently,

[A"\ Al = [A'N B| < |B\ B'| < &|B|,
[B'\B| = [ANB| <|A\ A'| < &|B|,

Vol = [A\ A+ [B\ B'| < e B| + €| B| = 265 B|. u

4.3.2 Classification of f-sets in B’

In order to construct our Hamilton ¢-cycle, we need to connect two ¢-paths. To make
this possible, we want the ends of our /-paths to be f-sets in B’ that have high degree in

H[A'B’*7'. Formally, we call an f-set L C V typical if deg(L,B) < € (,E‘Z), otherwise
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atypical. We prove several properties related to typical ¢-sets in this subsection.
. . . . B
Claim 4.16. The number of atypical (-sets in B is at most €g (|€|).

Proof. Let m be the number of atypical ¢-sets in B. By (4.9), we have

meile) _ ) SEO('f'),

co(F)(1B]
which gives that m < O(l()gk)) = %2(|B|—ek+4) < 62(“?‘)' 0
1\k—t
Claim 4.17. Every typical (-set L C B’ satisfies deg(L, A'B*~') < 4ke (]E/ltf) |A'|.

Proof. Fix a typical f-set L C B’, consider the following sum,

Z deg(D) = Z (deg(D, A") + deg(D, B") + deg(D, Vp)).

LCDCB',|D|=k-1 LCDCB',|D|=k-1

By (4.1), the left hand side is at least (,‘Eltf) |Al. On the other hand,

S (e, B) +dee(D. ) < (- ez, )+ [ Yl

k—0—1
LCDCPHB',|D|=k—-1

Since L is typical and |B"\ B| < &|B| (Claim 4.15), we have

/ p—
deg(L. 5 < degz. 5) + 157517

| B| B —1
< .
—El(k—e TalBlly 4

Since € < €1 and ||B| — | B'|| < €] B, it follows that

/ |B’_1 ’B/’_l ‘B,‘_E
— B < B — B < B .
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Putting these together and using Claim 4.15, we obtain that

: |B'| - ¢ |B'| ¢
> — —
E deg(D, A") > (k;—f— ) (|A] = [Vo]) — 2€1|B] k01

LCDCPHB,|D|=k—-1

B|—¢
> (2 01 = sall - 2al).

Note that deg(L, A’B*~1) = > rcpep | pl=k_1 deg(D, A'). Since [B| < (2k —2¢ — 1)|A| <
(2k — 20)| A’|, we finally derive that

|B'| — ¢

d LA/BIIC—I >

)(1 — (2k — 20)(3e3 + 26))|A'| > (1 — 4key) Q%‘_ﬂ) |A|.

as desired. O

We next show that we can connect any two disjoint typical f-sets of B’ with an ¢-path

of length two while avoiding any given ﬁ vertices of V.

Claim 4.18. Given two disjoint typical (-sets Ly, Ly in B’ and a vertex set U C V' with
\U| < Gp there exist a verter a € A\U and a (2k — 30 — 1)-set C C B"\ U such that
LyULyU{a} UC spans an (-path (of length two) ended at Ly, Lo.

Proof. Fix two disjoint typical ¢-sets Ly, Ly in B’. Using Claim 4.15, we obtain that |U| <

n \A| 2 /
1(k—0) < -5 < §|A| and

! /
n__ |B| +1 <(1+262)’B’<‘B‘.
Ak—20) — 22k —20—-1) — 2k k
Thus |A"\ U| > |‘3—/‘ and |B'\ U| > 21|B'|. Consider a (k — ¢)-graph G on (A’ U B')\ U
such that an A’B*~*l.set T is an edge of G if and only if TNU = () and T is a common
neighbor of L; and Ly in H. By Claim 4.17, we have

_ [BT=L 4 B\ :
<2- .
e(g) <2 4]€61(k_€_1 |A"| < 8ke PR 3|A"\ U]

L \""'/|B\U|
< - ! .
_24/€61(k_1) <k—£—1)|A\U|
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Consequently e(G) > %(E ,Z\Z'HA' \ Ul]. Hence there exists a vertex a € A"\ U such that
degg(a) > (Eé\—UD > (E}ﬂ) By Fact 4.12, the link graph of a contains a copy of Vy_¢—1,¢-1
(two edges of the link graph sharing /—1 vertices). In other words, there exists a (2k—3¢—1)-
set C'C B’ \ U such that C'U {a} contains two edges of G sharing ¢ vertices. Together with

Ly, Lo, this gives rise to the desired ¢-path (in H) of length two ended at Lj, Lo. O

The following claim shows that we can always extend a typical /-set to an edge of H by
adding one vertex from A’ and k — ¢ — 1 vertices from B’ such that every ¢ new vertices form

a typical £-set. This can be done even when at most (k 0 vertices of V' are not available.

Claim 4.19. Given a typical (-set L € B" and a set U C V with |U| < ;7% , there ewists
an A'B**1.set C C V\ U such that LU C is an edge of H and every f-subset of CN B

18 typical.

Proof. First, since L is typical in B’, by Claim 4.17, deg(L, A'B’*7!) < 4]€61(|B/|_€)|All.

Second, note that a vertex in A’ is contained in (k‘i/ 1) A'B*t=1_gets, while a vertex in B’

is contained in |A’|(|lﬂ:1) A'B*l.gets. It is easy to see that \A/\(Llil,:;) < (,J_i_'l) (as
|A'| =

and |B'| ~ 2£-201n). We thus derive that at most

(B ) s s ()

A'B'* =1 gets intersect U. Finally, by Claim 4.16, the number of atypical /-sets in B is at

2k 20

most €y ('? |). Using Claim 4.15, we derive that the number of atypical (-sets in B’ is at most

62(|l€3|> +|B,\B|(IB’I 1 >§2€2<|i’|) |B|<|B’|—11) <3£€2(|le).

Hence at most 3/le, ('Bﬂ) | A’ |(k|§ ;'[fl) A'B*=*1_gsets contain an atypical f-set. In summary,

| '|—€ : n | B'| B\ ( 1B'=¢,,
4 A A
kel(k o ) e e m sy T ) ) A

at most
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A’'B**1lgets fail some of the desired properties. Since €, €6, < 1 and |A/| =~ the

2(1:4) )

desired A’ B’*~*~1_set always exists. O

4.3.3 Building a short path Q

The following claim is the only place where we used the exact codegree condition (4.1).

Claim 4.20. Suppose that |[ANB'| = q > 0. Then there exists a family Py of vertex-disjoint

2q edges in B', each of which contains two disjoint typical £-sets.

Proof. Let [JANB'| = ¢ > 0. Since AN B" # ), by Claim 4.14, we have B C B’, and

consequently |B’| = L%affalnj + ¢. By Claim 4.15, we have ¢ < |A\ A'| < e B].

Let B denote the family of the edges in B’ that contain two disjoint typical f-sets. We
derive a lower bound for |B| as follows. We first pick a (k — 1)-subset of B (recall that
B C B’) that contains no atypical ¢-subset. Since 2¢ < k— 1, such a (k — 1)-set contains two
disjoint typical ¢-sets. By Claim 4.16, there are at most 62(“?‘) atypical (-sets in BNB' = B
and in turn, there are at most € ('? |) (k‘f ‘[_el) (k — 1)-subsets of B that contain an atypical

f-subset. Thus there are at least

(2) (O EE) =0 00)) ()

(k—1)-subsets of B that contain no atypical ¢-subset. After picking such a (k—1)-set S C B,

we find a neighbor of S by the codegree condition. Since |B'| = LQS(_]CQ_Z;)IHJ +q, by (4.1), we

have deg (S, B") > q. We thus derive that

e (7)) ()1

in which we divide by k because every edge of B is counted at most k times.

We claim that B contains 2¢q disjoint edges. Suppose instead, a maximum matching in



57

B has i < 2q edges. By the definition of B, for any vertex b € B’, we have

k—2
| B| |B'| —1 |B|
<
_€1<k‘—1 +62|B| k—9 < 2€; E—1) (410)

Thus at most 2gk - 2¢; (k“f |1) edges of B’ intersect the 7 edges in the matching. Hence, the

B'l—1
dog (0.8) < deg 0.5+ 15\ 51 (1))

number of edges of B that are disjoint from these i edges is at least

(- (7)) () - (w7

as €5 < €7 < 1. We may thus obtain a matching of size ¢ + 1, a contradiction. O
Claim 4.21. There exists a non-empty {-path Q in H with the following properties:

o 15 CV(Q),

e |V(Q)| < 10keq| B|,

e two ends Lo, L1 of Q@ are typical (-sets in B,

o |By| =2k —20—1)|A1]| + ¢, where Ay = A\ V(Q) and By = (B"\ V(Q))U Ly U L;.
Proof. We split into two cases here.
Case 1. ANB' #10.

By Claim 4.14, AN B’ # 0 implies that B C B’. Let ¢ = |[AN B’|. We first apply
Claim 4.20 and find a family P; of vertex-disjoint 2¢ edges in B’. Next we associate each
vertex of Vy with 2k — ¢ — 1 vertices of B (so in B’) forming an f-path of length two such
that these |Vy| paths are pairwise vertex-disjoint, and also vertex-disjoint from the paths in
P1, and all these paths have typical ends. To see it, let Vi = {x1,..., 2, }. Suppose that

we have found such (-paths for xy,...,z; 1 with i < |Vp]|. Since B C B’ it follows that

A\ A= (AN B')UV,. Hence |Vo| +q=|A\ A'| < €&|B| by Claim 4.15. Therefore

(2k — 0= 1)(i — 1) + [V(Py)| < 2k|Vo| + 2kq < 2kes| B
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and consequently at most 2kes| B ('f:;) < 2k%ey (,E'l) (k—1)-sets of B intersect the existing

paths (including P;). By the definition of Vg, deg(x;, B) > € (]Ell) Let G, be the (k — 1)-

graph on B such that e € G,, if
o {r;}Uec E(H),
e ¢ does not contain any vertex from the existing paths,
e ¢ does not contain any atypical (-set.

By Claim 4.16, the number of (k — 1)-sets in B containing at least one atypical ¢-set is at

most 62(“?') (]E‘[_el) = €9 (171) (llljll) Thus, we have

a2 o) —a(* T () (P - (),

because €2 < € and |B| is sufficiently large. By Fact 4.12, G,, contains a copy of Vi_1_1,
which gives the desired ¢-path of length two containing x;.

Denote by P, the family of /-paths we obtained so far. Now we need to connect paths of
P, together to a single ¢-path. For this purpose, we apply Claim 4.18 repeatedly to connect
the ends of two f-paths while avoiding previously used vertices. This is possible because
\V(P2)| = (2k — £)|Vo| + 2kq and (2k — 30)(|Vo| + 2q — 1) vertices are needed to connect all

the paths in Py — the set U (when we apply Claim 4.18) thus satisfies
|U| < (4k — 40)|Vo| + (6k — 60)q — 2k + 3¢ < 6(k — )& B| — 2k + 3C.
Let P denote the resulting ¢-path. We have |V(P) N A’'| = |Vy| + 2¢ — 1 and

V(P)NB| =k -2q+ (2k — € — 1)|Vp| + (2k — 3¢ — 1)(|Vo| + 2¢ — 1)

= 2(2k — 20 — 1)|Vp| + 2(3k — 3¢ — 1)q — (2k — 3¢ — 1).
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Let s = (2k — 20 — 1)|A’\ V(P)| — |B"\ V(P)|. We have

s=(2k — 20— 1)(|A'| = |Vo| = 2q + 1) — | B'| + 2(2k — 20 — 1)|Vy| + 2(3k — 30 — 1)qg — (2k — 3¢ — 1)

= (2k — 20— 1)|A'| — |B'| + (2k — 20 — 1) [V + (2k — 20)q + ¢.

Since |A’'| 4+ |B'| + |Vo| = n, we have

s = (2k = 20)(JA'| + |Vo| + @) — n+ . (4.11)

Note that |A'| + |V + ¢ = |A] and

oo
0, if -7 is even

(2k — 20)|A| —n = (4.12)
k—¢, if ;75 is odd.

Thus s = ¢ or s = k. If s = k, then we extend P to an f-path Q by applying Claim 4.19,
otherwise let @ = P. Then

VI < [V(P)| + (k — ) < Gkeo| B,

and Q has two typical ends Lo, L; C B’. We claim that

(2k — 20 — D)|A'\ V(Q)| - |B'\ V(Q)| = ¢. (4.13)

Indeed, when s = ¢, this is obvious; when s = k, V(Q) \ V(P) contains one vertex of A" and

k — ¢ — 1 vertices of B’ and thus

(2k — 20— DA\ V(Q)| = |B\V(Q)| =5 — 2k —20— 1)+ (k— (- 1) = £,

Let Ay = A\V(Q) and By = (B'\V(Q))ULyUL;. We derive that |B;| = (2k—20—1)|A;|+¢
from (4.13).
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Case 2. ANB = 0.

Note that A N B’ = () means that B’ C B. Then we have
(A + Vo = [V\ B'| = [A| +|B\ B|. (4.14)

If Vy # 0, we handle this case similarly as in Case 1 except that we do not need to

construct P;. By Claim 4.15, |B\ B’| < €|B| and thus for any vertex x € Vj,

deg(fL‘,B’) > deg(z, B) — | B\ B/| . (’B| - 1)

k—2
| B | B] e ( |B
> (k-1 a ‘
_El(k—l h=Dely 1) > 2 k-1
Asin Case 1, we let Vi = {x1,..., 2y} and cover them with vertex-disjoint /-paths of length

two. Indeed, for each i < |Vy|, we construct G, as before and show that e(G,,) > %(,'fi ,1|)
We then apply Fact 4.12 to G,, obtaining a copy of Vi_; o1, which gives an ¢-path of length
two containing x;. As in Case 1, we connect these paths to a single /-path P by applying
Claim 4.18 repeatedly. Then |[V(P)| = (2k — €)|Vo| + (2k — 30)(|Vo| — 1). Define s as in

Case 1. Thus (4.11) holds with ¢ = 0. Applying (4.14) and (4.12), we derive that

(+2(k—0)|B\ B, if % iseven
s=2k—-0(Al+|B\B|)—n+{= (4.15)

k+2(k—0)|B\ B, if 2 is odd,

which implies that s = ¢ mod (k — ¢). We extend P to an ¢-path Q by applying Claim 4.19

Z—:g times. Then

V(Q)| = |V(P)| +5— £ < (4k — 40)|[Vy| — 2k + 30+ k — £+ 2(k — 0)| B\ B'| < 10kes| B|

by Claim 4.15. Note that Q has two typical ends Lg, L1 C B’. Since V(Q) \ V(P) contains
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(2k—2€—1)|A’\V(Q)|—|B’\V(Q)|:s—Z:i(%—%—l)Jr 5!

Gk —0=1)
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= /.

We define A; and B in the same way and similarly we have |By| = (2k — 20 — 1)|Ay| + £.

When V, = 0, we pick an arbitrary vertex v € A" and form an ¢-path P of length two

with typical ends such that v is in the intersection of the two edges. This is possible by the

definition of A’. Define s as in Case 1. It is easy to see that (4.15) still holds. We then

extend P to Q by applying Claim 4.19 =% times. Then |V (Q)| = 2k — { + s — { < 2kes|B]

because of (4.15). The rest is the same as in the previous case.

]

Claim 4.22. The Ay, By and Lg, L1 defined in Claim 4.21 satisfy the following properties:

1 1B > (1-e)|B,
2. for any verter v € Ay, deg(v, B) < 3¢, (Lle'),
3. for any verter v € By, deg(v, A\ B ) < 3ke ('Bl)

4. deg(Lo, Ay B¥ ") < 5key (1PY)), deg(Ly, AiBf ™) < 5kei ((21)).

Proof. Part (1): By Claim 4.15, we have |B; \ B| < |B’'\ B| < €|B|. Furthermore,

|Bi| = [B| = [V(Q)| 2 |B| — €| B| = 10ke| B| = (1 — e1)[ B|.
Part (2): For a vertex v € Ay, since deg(v, B) < ¢ (k‘f‘l), we have

degv. By) < davBmwB\B(W”2)

<o) e (35)
o) vel() <2 (20,

where the last inequality follows from Part (1).
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Part (3): Consider the sum ) deg(SU{v}) taken over all S € (B,;\f{;}). Since 0;_1(H) >

|Al, we have ) deg(S U{v}) > (‘Zlfl)|A|. On the other hand,

2
Z deg(S U {v}) = deg(v, A’B*) + deg(v, VoB* ') + (k — 1) deg(v, B').

By (4.10), deg(v, B") < 2¢ (,E'l) We thus derive that

|B'| -1

AIB/k:—l >
oo, a5 = (111

) |A| — deg(v, VoB™ 1) — (k — 1) deg(v, B)

BI-1Y B -1 B
> A'| — 6|B|) — 26| B —2(k—-1
> (N0 ) = 2al (1)) <20 va

B[ = 1Y, | B|
> A'| = 2k .
_(k—Z AT = 2kal 4

Thus, by Part (1), we have

. o 5 .
deg(v, A1 By™) < deg(v, A'B"™) < 2ke; <k|—|1> < 3key (k| N |1>.

Part (4): By Claim 4.17, for any typical L C B’, we have deg(L,A’B* 1) <

4keq (Ljﬂj) |A’|. Thus,

Toe k—1 T I rk—1 |B/| - / |B1|
deg(Lo, AlBl ) S deg(LO, A'B ) S 4]{361 |A | S 5]661 s

k—t¢—1 k—1¢

where the last inequality holds because |B’| < |Bi| 4+ |V(Q)| < (1+ ¢€1)|Bi|. The same holds

for L.

4.3.4 Completing the Hamilton cycle

[]

We finally complete the proof of Theorem 4.5 by applying the following lemma with

X = Al, Y = Bl, P = 5]{761, and Lo,Ll.

Lemma 4.23. Fiz 1 < { < k/2. Let 0 < p < 1 and n be sufficiently large. Suppose that H

is a k-graph with a partition V(H) = X UY and the following properties:
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o [V|=(2k—20—1)|X]|+¢,

o for every vertexr v € X, deg(v,Y) < p()Y|

deg(v, XY*1) < p(J1).

) and for every verter v € Y,

e there are two disjoint (-sets Ly, L1 CY such that

- _ Y
deg(Lo, XY*71) deg(Ly, XY* 1) < p<k|_|£>. (4.16)

Then H contains a Hamilton (-path with Ly and Ly as ends.

In order to prove Lemma 4.23, we apply two results of Glebov, Person, and Weps [15].

Given 1 <l <k—1and 0 < p <1, an ordered set (z1,...,x;) is p-typical in a k-graph G if

Jogg ({1, a}) < p"?‘i(‘vfj| N Z)

It was shown in [15] that every k-graph G with very large minimum vertex degree contains

for every i € [I]

a tight Hamilton cycle. The proof of [15, Theorem 2] actually shows that we can obtain a
tight Hamilton cycle by extending any fixed tight path of constant length with two typical

ends. This implies the following theorem that we will use.

Theorem 4.24. [15] Given 1 < I < k and 0 < o < 1, there exists an mqy such that
the following holds. Suppose that G is a k-graph on V with |V| = m > mg and 6:(G) >
(1—a) (Z:ll) Then given any two (22a)ﬁ-typical ordered l-sets (xq,...,x;) and (y1,. .., ),

there exists a tight Hamilton path P = xjx;_q-- a1+ - VY2 -y in G.

We also use [15, Lemma 3], in which V?72 denotes the set of all (2k — 2)-tuples

(v1,...,v9_2) such that v; € V' (v;’s are not necessarily distinct).

Lemma 4.25. [15] Let G be the k-graph given in Lemma 4.24. Suppose that (x1, ..., ZTor_2)
is selected uniformly at random from V2=2. Then the probability that all z;’s are pairwise

distinct and (xq,...,x5_1), (Tk, ..., Top_2) are (22a)ﬁ—typz‘cal is at least <.



64

Proof of Lemma 4.23. In this proof we often write the union AU B U {z} as ABz, where
A, B are sets and x is an element.

Let t = |X|. Our goal is to write X as {xi,...,2;} and partition Y as {L;, R;, S;, R, :
i € [t]} with |L;| = ¢, |R;| = |R;| = k — 2¢, and |S;| = ¢ — 1 such that

for all i € [t], where L;y1 = Ly. Consequently
L1 R1 Sl I Rll LQ RQ SQ ) R/2 e Lt Rt St Tt R; Lt+1

is the desired Hamilton /-path of H.

Let G be the (k — 1)-graph on Y whose edges are all (kK — 1)-sets S C Y such that
degy(S,X) > (1 — y/p)t. The following is an outline of our proof. We first find a small
subset Yy C Y with a partition {L;, R;, S;, R. : i € [to]} such that for every z € X, we have
L;R;S;x, S;xR.L; 11 € E(H) for many ¢ € [tg]. Next we apply Theorem 4.24 to G[Y"\ Y] and
obtain a tight Hamilton path, which, in particular, partitions Y\ Yy into {L;, R;, S, R} : to <
i <t} such that L;R;S;, S;R/L;y1 € E(G) for tyg < ¢ < t. Finally we apply the Marriage
Theorem to find a perfect matching between X and [¢] such that (4.17) holds for all matched
z; and 7.

We now give details of the proof. First we claim that

wor=a-2m( ), (4.18)

and consequently,
Y
w0 <2v5(," ) (4.19)

[Y]—1

Suppose instead, some vertex v € Y satisfies degg(v) > 2,/p(

) . Since every non-neighbor

S" of v in G satisfies degy, (S'v, X) > \/pt, we have degy (v, XY*1) > 2\/ﬁ(|y|_1) V/pt. Since

k—2
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Y| = (2k — 20 — 1)t 4+ £, we have

- - Yi—¢ (lY]-1 Y1 (IY[-1 Y]
d Xy*F 1 > 2 Y= —_— =
8 (v, )> p2k—2£—1(k—2)>pk—1 k—2) " P\k-1)
contradicting our assumption (the second inequality holds because |Y| is sufficiently large).
Let @ be a (2k—¢—1)-subset of Y. We call ) good (otherwise bad) if every (k—1)-subset
of @) is an edge of G and every (-set L C () satisfies

_ Y|—¢
degg(L) < p'/* (k|_|€_ 1)- (4.20)

Furthermore, we say @ is suitable for a vertex x € X if t UT € E(H) for every (k — 1)-set
T C Q. Note that if a (2k — ¢ — 1)-set is good, by the definition of G, it is suitable for at

least (1 — (%ijl) V/P)t vertices of X. Let Y/ =Y \ (Lo U Ly).

Claim 4.26. For any v € X, at least (1 — p'/%)(,"") ) (2k — € — 1)-subsets of Y are good

and suitable for x.

Proof. Since p + p¥/2 + 3(**7/7")p'/* < p'/3, the claim follows from the following three

assertions:

e At most 26(22/_';_12) < p(gk‘_yg‘_l) (2k — ¢ — 1)-subsets of Y are not subsets of Y.

Y]

e Given z € X, at most p'/? (%_6_1

) (2k — € — 1)-sets in Y are not suitable for z.

e At most 3(2’“7;71)p1/4 (%‘_Yy_l) (2k — € — 1)-sets in Y are bad.

The first assertion holds because |Y \ Y’/| = 2¢. The second assertion follows from the
degree condition of H, namely, for any € X, the number of (2k — ¢ — 1)-sets in Y that are

not suitable for x is at most p(,l)_/‘l) ('Ylk__l?rl) < \/ﬁ(gk‘_yg‘_l)'

To see the third one, let m be the number of f-sets L C Y that fail (4.20). By (4.19),

P ()

£8) <o <aa([1)
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which implies that m < 2p1/4(|§2|). Thus at most

(VN (Y-
2 (E) (2k—2€—1

(2k — £ — 1)-subsets of Y contain an ¢-set L that fails (4.20). On the other hand, by (4.19),

oMt () ()

(2k — ¢ — 1)-subsets of Y contain a non-edge of G. Putting these together, the number of

at most

bad (2k — ¢ — 1)-sets in Y is at most

YN/ [Y]-¢ Y\ (Y] - k41 oh—l—1 v
21/4 | 2) < 1/4
P <£)<2k—2£—1>+ \/ﬁ(k—l k—e )P0 0 )P \ak—e—1)

as p < 1. O

We will pick a family of disjoint good (2k — ¢ — 1)-sets in Y such that for any z € X,
many members of this family are suitable for x. To achieve this, we pick a family F by
selecting each good (2k — ¢ — 1)-subsets of Y’ randomly and independently with probability
p = 6\/ﬁ|Y|/(2k‘féLl) Since there are at most (%5'71) 2k —0-1)- (zmz;lz) pairs of
intersecting (2k — ¢ — 1)-sets in Y, the expected number of intersecting pairs of (2k — ¢ — 1)-
sets in F is at most

of 1Y on oy [ YT=10 _ e
p(2k—€—1> 2k — € —1) (%_E_Q = 36(2k — £ — 1)%p|Y.

By applying Chernoff’s bound on the first two properties and Markov’s bound on the
last one below, we can find, with positive probability, a family F of good (2k — ¢ — 1)-subsets

of Y’ that satisfies

o |71 <2p(,)", ) <120V,

2k—¢—1
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e for any vertex x € X, because of Claim 4.26, at least

Py 15 Y| >
0=y ) Z 2w

members of F are suitable for x.
e the number of intersecting pairs of (2k — ¢ —1)-sets in F is at most 72(2k — £ —1)?p|Y|.

After deleting one (2k — ¢ — 1)-set from each of the intersecting pairs from F, we obtain a
family " C F consisting of at most 12,/p|Y| disjoint good (2k — ¢ — 1)-subsets of ¥ and

for each x € X, at least
3
21V |~ T2(2k — €~ 1PplY] > 5 /AlY ] (4.21)

members of F’ are suitable for z.

Denote F' by {Q2,Qu, ..., Qz} for some ¢ < 12,/p|Y|. We arbitrarily partition each
Q2; into Lg; U Py; U Lo;yq such that |Lo;| = |Loir1| = ¢ and |Py;| = 2k — 3¢ — 1. Since Qo
is good, both Ly; and Lo,y satisfy (4.20). We claim that Ly and L, satisfy (4.20) as well.
Let us show this for Ly. By the definition of G, the number of XY*~“~l.sets T such that
TULy ¢ E(H) is at least degg(Lo)/pt. Using (4.16), we derive that degg(Lg),/pt < p(,?i'é)
Since |Y| < (2k — 20)t, it follows that degg(Lg) < 2@():1'[_11) < pt/t (ilil[_a)'

Next we find disjoint (2k — 3¢ — 1)-sets Py, P, ..., Py_y from Y\ |J!_, Q2 such that
for i € [q], every (k — ¢ — 1)-subset of Py;_; is a common neighbor of Lg; 1 and Lg; in G.

Since Ly, Lo, . .., Ly, all satisfy (4.20), at most

5. i/ Y| —¢ Y|—-k+(+1
k—0—1 k—2¢0
(2k — 3¢ — 1)-subsets of Y contain a non-neighbor of Ly;_1 or Ly;. Since ¢ < 12,/p|Y| and

p < 1, we can greedily find desired Py, Ps ..., Pag_1.
Let V1 = Y/ \ UL, (P21 U Q) and G’ = G[Y1]. Then V1] = |Y'| — (2k — 2¢ — 1)2q.
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Since degg (v) < degg(v) for every v € Y, we have, by (4.18),
Vi -1 v] -1 ¥l -1
sig) > (M —2 > (1- :
@)= (N -2 () 2 e (1

Let a = 3,/p and py = (22a)ﬁ. We want to find two disjoint py-typical ordered subsets

(x1,...,2k—¢—1) and (y1,...,Yg_¢—1) of Y7 such that

Logn U{x1, . sk}, LoU{yr, .. yk—e1} € E(G). (4.22)
To achieve this, we choose (x1,..., Tk 1,Y1,--.,Yr_1) from Y1272 uniformly at random. By
Lemma 4.25, with probability at least 18—1, (x1,...,xp—p—1) and (y1, ..., Yp—¢—1) are two disjoint

ordered po-typical (k — € — 1)-sets. Since Ly satisfies (4.20), at most (k — £ — 1)1p"/4([Y17)
ordered (k—/{—1)-subsets of Y are not neighbors of Ly (the same holds for Ly,.1). Thus (4.22)
fails with probability at most 2(k — ¢ — 1)!p/4, provided that @1, ..., Ts_s—1, Y1, - Yr—t—1
are all distinct. Therefore the desired (xy,...,25_¢—1) and (y1,...,Yg_r—1) €xist.

Next we apply Theorem 4.24 to G’ and obtain a tight Hamilton path
P=xp g 1T Ty Yz Yg—r—-1-
Following the order of P, we partition Y] into
Rogi1, Sog+1s Rogi1s Logra, - - -, Ly, Ry, Sy, Ry

such that |L;| = ¢, |R;| = |R}| = k — 2¢, and |S;| = ¢ — 1. Since P is a tight path in G, we
have

for 2g +2 <i <t — 1. Letting L1 = Ly, by (4.22), we also have (4.23) for i = 2¢g + 1 and
1 =1.
We now arbitrarily partition P;, 1 < i < 2¢into R;US;UR;, such that |R;| = |R;| = k—2¢,
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and |S;| = ¢ — 1. By the choice of P;, (4.23) holds for 1 <i < 2q.

Consider the bipartite graph I" between X and Z := {21, 29,..., 2} such that x € X
and z; € Z are adjacent if and only if L;R;S;x,2S;R,L;+1 € E(H). For every i € [t], since
(4.23) holds, we have degp(z;) > (1 — 2,/p)t by the definition of G. Let Z" = {2941, ..., 2}
and Xy be the set of © € X such that degp(z, Z") < |Z’|/2. Then

Z/
|X0|‘ 2’

<Y degp(x, Z') < 2/pt - | 2],

zeX

which implies that | Xo| < 4,/pt = 4\/52113_/'2;: < 3/0|Y] (note that 2k —20 — 1>k > 3).

We now find a perfect matching between X and Z as follows.

Step 1: Each x € X is matched to some zy;, i € [g] such that the corresponding Q; € F' is

suitable for  (thus x and zy; are adjacent in I') — this is possible because of (4.21) and

| Xo| < ‘g‘\/ﬁ\Yl

Step 2: Each of the unused z;, i € [2¢] is matched to a vertex in X \ Xy — this is possible
because degr(z;) > (1 —2/p)t > | Xo| + 2q.

Step 3: Let X’ be the set of the remaining vertices in X. Then |X'| =t — 2¢ = |Z'|. Now
consider the induced subgraph IV of I" on X’ U Z'. Since 6(I"") > |X’|/2, the Marriage

Theorem provides a perfect matching in I".

The perfect matching between X and Z gives rise to the desired Hamilton path of H. [
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PART 5

MINIMUM VERTEX DEGREE THRESHOLD FOR LOOSE HAMILTON
CYCLES IN 3-UNIFORM HYPERGRAPHS

5.1 Introduction

The study of Hamilton cycles is an important topic in graph theory. In recent years,
researchers have worked on extending the classical theorem of Dirac on Hamilton cycles to
hypergraphs (see [58] for a survey and also Chapter 4).

Recently, Bu, Han, and Schacht [4] studied the minimum vertex degree that guarantees

a loose Hamilton cycle in 3-graphs and obtained the following result.

Theorem 5.1. [4, Theorem 3] For ally > 0 there exists an integer ng such that the following

holds. Suppose H is a 3-graph on n > ng with n € 2N and

5\(H) > (% +7> (’;)

Then H contains a loose Hamilton cycle.
In this chapter we improve Theorem 5.1 as follows.

Theorem 5.2. There exists an nso € N such that the following holds. Suppose that H is a

3-graph on n > nso with n € 2N and

51(H) > (” ) 1) - (%"J) Y, (5.1)

where ¢ = 2 if n € AN and ¢ = 1 otherwise. Then H contains a loose Hamilton cycle.

The following construction shows that Theorem 5.2 is best possible. It is slightly

stronger than [4, Fact 4].
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Proposition 5.3. For every n € 2N there exists a 3-graph on n wvertices with minimum
vertex degree (";1) — (L%;J) +c—1, where ¢ is defined as in Theorem 5.2, and which contains

no loose Hamilton cycle.

Proof. Let Hy = (V4, Ey) be the 3-graph on n € 2N \ 4N vertices such that V; = AUB with
|Al = [2] — 1 and |B] = [%] + 1, and E; consists of all triples intersecting A. Note that

0n(Hy) = (”;1) — (L%J). Suppose that H; contains a loose Hamilton cycle C. There are n/2

edges in C and every vertex in A is contained in at most two edges in C. Since 2|A| = "7_2,
there is at least one edge of C' whose vertices are completely from B. This is a contradiction
because B is independent. So H; contains no loose Hamilton cycle.

Let Hy = (V3, E) be a 3-graph on n € 4N vertices such that V5 = AUB with |[A| = 2 -1
and |B| = %n + 1, and E, consists of all triples intersecting A and those containing both b,
and by, where by, by are two fixed vertices in B. Then 6;(Hs) = (";1) — (%2”) + 1. Suppose
that Hy contains a loose Hamilton cycle C'. There are n/2 edges in C' and every vertex in
A is contained in at most two edges in C'. Thus, there are at least two edges of C' whose
vertices are completely from B. But due to the construction, every two edges in B share

two vertices so they can not both appear in one loose cycle. This contradiction shows that

H, contains no loose Hamilton cycle. O

As a typical approach of obtaining exact results, we distinguish the extremal case from

the noneztremal case and solve them separately.

Definition 5.4. Given A > 0, a 3-graph H on n vertices is called A-extremal if there is a

set B C V(H), such that |B| = |3n/4] and e(B) < An3.

Theorem 5.5 (Extremal Case). There exist A > 0 and nss € N such that the following
holds. Let n > nss5 be an even integer. Suppose that H is a 3-graph on n vertices satisfying

(5.1). If H is A-extremal, then H contains a loose Hamilton cycle.

Theorem 5.6 (Nonextremal Case). For any A > 0, there exist v > 0 and ns¢ € N such

that the following holds. Let n > nss5 be an even integer. Suppose that H is a 3-graph on
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Figure 5.1. Constructions in Proposition 5.3

n vertices satisfying 6,(H) > (% — ’y) (’;) If H is not A-extremal, then H contains a loose

Hamilton cycle.

Theorem 5.2 follows from Theorems 5.5 and 5.6 immediately by choosing A from The-
orem 5.5 and letting ns o = max{nss, ns¢}-

Let us briefly discuss our proof ideas here. Since the proof of Theorem 5.5 is somewhat
routine, the main task is to prove Theoreom 5.6. Following previous work [60, 63, 64, 18, 40,
4], we use the absorbing method. More precisely, we find the desired loose Hamilton cycle by
applying the Absorbing Lemma (Lemma 5.7), the Reservoir Lemma (Lemma 5.8), and the
Path-tiling Lemma (Lemma 5.9). In fact, the Absorbing Lemma and the Reservoir Lemma
are not very difficult and already proven in [4]. Thus the main step is to prove the Path-

7

tiling Lemma, under the assumption §;(H) > (1—6 — 7) (g) and that H is not A-extremal

(in contrast, §;(H) > (% + 'y)(g) is assumed in [4]). As shown in [18, 4], after applying the
(weak) Regularity Lemma, it suffices to prove that the cluster 3-graph K can be tiled almost
perfectly by some particular 3-graph. For example, the 3-graph M given in [4] has the
vertex set [8] = {1,2,...,8} and edges 123,345,456, 678 (throughout this chapter, we often

represent a set {v1, Vg, ..., Uk} as v1vy - - - vg). Since it is hard to find an M-tiling directly, the

authors of [4] found a fractional M-tiling instead and converted it to an (integer) M-tiling
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by applying the Regularity Lemma again. We consider C3, a much simpler 3-graph, and
obtain an almost perfect C3-tiling in K directly. Interestingly, C3-tiling was studied (via the
codegree condition) in the very first paper on loose Hamilton cycles [41].

As far as we know, Theorem 5.2 is the second exact result on Hamilton cycles in hy-
pergraphs (the one in [64] was the first). Comparing with [64], our proof is much shorter
because their Absorbing and Reservoir Lemmas are much harder to prove.

We will prove Theorem 5.6 in Section 5.2 and Theorem 5.5 in Section 5.3.

5.2 Proof of Theorem 5.6
In this section we prove Theorem 5.6 by following the same approach as in [4].

5.2.1 Auxiliary lemmas and Proof of Theorem 5.6

A loose path P = wjvg -+ wopy1 18 a 3-graph on {vy,va, ..., U9 1} with edges
U9i—109;U2;41 for all ¢ € [k]. The vertices v; and vgx4; are called the ends of P. For conve-

nience, we rephrase the Absorbing Lemma [4, Lemma 7] as follows.!

Lemma 5.7 (Absorbing Lemma). For any 0 < v, < 107 there exists an integer ns; such
that the following holds. Let H be a 3-graph on n > nsy vertices with 61(H) > %(g) Then
there is a loose path P with |V (P)| < vin such that for every subset U C V' \ V(P) with
\U| < y3n and |U| € 2N there exists a loose path Q with V(Q) = V(P)UU such that P and

Q have the same ends.
We also need the Reservoir Lemma [4, Lemma 6.

Lemma 5.8 (Reservoir Lemma). For any 0 < v < 1/4 there exists an integer nsg such

that for every 3-graph H on n > nsg vertices satisfying

i) = (/143 ).

'Lemma 7 in [4] assumes that &;(H) > (3 4+ 7)%(}) and returns |V(P)| < 7"n with |U] < %n. We

7
simply take their 47 as our ; and thus vy; < ( :13—3 — %) ~ 10714,
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there is a set R of size at most yon with the following property: for every k < v3n/12 mutually
disjoint pairs {a;, b;}icpy of vertices from V(H) there are 3k vertices w;, v;, w;, i € [k| from

R such that a;uv;, viwb; € H for alli € [k].

The main step in our proof of Theorem 5.6 is the following lemma, which is stronger

than Lemma 10 in [4].

Lemma 5.9 (Path-tiling lemma). For any 0 < 73, a < 1 there exist integers p and nsg such

that the following holds for n > nsg. Suppose H is a 3-graph on n vertices with minimum

son= (54) )

then there are at most p vertex disjoint loose paths in H that together cover all but at most

vertex degree

an vertices of H unless H is 2050y3-extremal.

Proof of Theorem 5.6. Given A > 0, let v = min{ﬁ, 10714}, We choose ns¢ = max{ns.r,
2ns5.8, 2ns5.9, 192(p+1)/(v/3)°}, where p is the constant returned from Lemma 5.9 with 3 = 2y
and a = (7/3)3/2. Let n > ns6 be an even integer.

Suppose that H = (V, E) is a 3-graph on n vertices with 6;(H) > (&% — ) (3). Since
1—76 -y > ;—2’, we can apply Lemma 5.7 with v; = /3 and obtain an absorbing path P, with
ends ag, by. We next apply Lemma 5.8 with 75 = (v/3)3/2 to H[(V \ V(Py)) U {ao, by }] and
obtain a reservoir R. Let V' = V' \(V(Py)UR) and n’ = |V’|. Note that n—n’ < yyn+9n <

yn/2. The induced subhypergraph H' = H[V'] satisfies

= () () o (5-2) ()

Applying Lemma 5.9 to H' with 3 = 27 and a = (7/3)3/2, we obtain at most p vertex
disjoint loose paths that cover all but at most an’ vertices of H', unless H' is 205073-extremal.
In the latter case, there exists B’ C V’ such that |B'| = [2n/] and e(B’) < 4100y(n’)3. Then

we add |3n] — [3n/| < yn/2 arbitrary vertices from V' \ B’ to B’ to get a vertex set B such
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that |B| = [3n] and

n—1
2

e(B) < 41007(n')? + ﬂ(

5 ) < 4101yn® < An?,

which means that H is A-extremal, a contradiction. In the former case, denote these loose
paths by {P;}icp for some p' < p, and their ends by {a;,b;}icpy). The choice of nsg
guarantees that p’+1 < p+1 < v3n/24. We can thus connect {a;, b;1 1 }o<i<p—1U{ay,bo} by
using vertices from R obtaining a loose cycle C. Since |V \C| < |R|+an’ < yon+yen’ < in,

we can use Py to absorb all unused vertices in R and uncovered vertices in V. O

The rest of this section is devoted to the proof of Lemma 5.9.

5.2.2 Proof of Lemma 5.9

Following the approach in [4], we will use the weak regularity lemma and the cluster
hypergraph introduced in Chapter 2. The following corollary of the weak regularity lemma
(Theorem 2.1) shows that the cluster hypergraph inherits the minimum vertex degree of the
original hypergraph. Its proof is the same as that of [4, Proposition 15] after we replace

7/16 + v by ¢ (we thus omit the proof).

Corollary 5.10. For ¢ > d > € > 0 and ty > 0 there exist Ty and ng such that the
following holds. Suppose H 1is a 3-graph on n > ngy vertices which has minimum vertex
degree 51(H) > c(3). Then there exists an (e, t)-reqular partition Q with to < t < Ty such

that the cluster hypergraph K = K(e, d, Q) has minimum vertex degree 5;(K) > (c—e—d)(}).

In 3-graphs, a loose path is 3-partite with partition sizes about m, m, 2m for some integer
m. Proposition 5.11 below shows that every regular triple with partition sizes m,m,2m
contains an almost spanning loose path as a subhypergraph. In contrast, [4, Proposition
25] (more generally [18, Lemma 20]) shows that every regular triple with partition sizes
3m, 3m, 2m contains finitely many vertex disjoint loose paths. The proof of Proposition 5.11

uses the standard approach handling regularity.
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For a vertex v and disjoint vertex sets S, T in a 3-graph, we denote by deg(v, S) the
number of edges that contain v and two vertices from S, and denote by deg(v, ST) the

number of edges that contain v, one vertex from S and one vertex from 7.

Proposition 5.11. Fiz any € > 0, d > 2¢, and an integer m > ﬁ. Suppose that

V(H) = ViUVaUVs and (V1, Vi, V3) is (€, d)-reqular with |V;| = m fori = 1,3 and |V5| = 2m.

Then there is a loose path P omitting at most 8em/d + 3 vertices of H.

Proof. We will greedily construct the loose path P = vvg---wv9riq such that vy € V5,
vgiy1 € Vi and vg45 € Vi until [V; \ V(P)| < Z|Vj| for some i € [3]. For j € [3], let U =V

and U = V; \ {v1,...,v5_1} for i € [k]. In addition, we require that for i =0,... k,
deg(vai1, UsUy) = (d — €)|Us||U7], (5:2)

where r = 2¢ — 1 mod 4. We proceed by induction on i. First we pick a vertex vy € V; such
that deg(vy, VaV3) > (d—¢€)|Va|| V3| (thus (5.2) holds for @ = 0). By regularity, all but at most
€|V1| vertices can be chosen as v;. Suppose that we have selected vy, ..., v9; 1. Without loss

of generality, assume that vy;_1 € Vi. Our goal is to choose vy; € Uzi, Vojr1 € U§ such that
(i) voi—1V2V2i11 € E(H),
(i) deg(vair1, UiUs) = (d — €)|Ui]|U3).

In fact, the induction hypothesis implies that deg(vy;_1, Us 'Us™") > (d—e)|Us||UL.
Since Ui = Ui\ {vy;_o} and Ui = Ui, we have

deg(vsi_1, UiUY) > (d — U |UEY — [USY = ((d — |UE = D)UY,
By regularity, at most €|V5] vertices in V3 does not satisfy (ii). So, at least

deg(vzi—1, UyUs) — €|Vs| - [U3 7] = ((d = )|U;7' | = DIU5™| — el V] - U7 (5.3)
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_4

pairs of vertices can be chosen as vy, vo;11. Since |UZ™!| > %|V3| and |U;71 > %|V2| > 5

(using m > ﬁ), the right side of (5.3) is at least

i 2e i i € 2e
(d= U5 = )= Vsl — elVal - 15| = ((d = 20[U5| - 2) S[Va| = [V,

thus the selection of vg;, v9;1 1 satisfying (i) and (ii) is guaranteed.

To calculate the number of the vertices omitted by P = vjvy - - - vgg41, note that |V; N
V(P)| = [E], VanV(P)| = k, and |[V5 N V(P)] = [%]. Our greedy construction of P
stops as soon as |V; \ V(P)| < %|V;| for some i € [3]. As |Vi| = |V3| = m = |V4|/2, one of
the following three inequalities holds:

TR 2 s [EEY 2
m 5 dm, m dm, m 5 dm

Thus we always have m — (’“—;1} < %m, which implies that % > (1 — %) m or k >

2 ( — %) m — 2. Consequently,

VH)\V(P)| = 4m — (2 + 1) < 4m — (4(1—%)771—44—1) :%m+3. =

Recall that C} is the unique 3-graph with four vertices and two edges. Throughout this
chapter, we call it as C for short. The following lemma is the main step in our proof of
Lemma 5.9. In general, given two (hyper)graphs F and G, an F-tiling is a sub(hyper)graph
of G that consists of vertex disjoint copies of F. The F-tiling is perfect if it is a spanning

sub(hyper)graph of G.

Lemma 5.12 (C-tiling Lemma). For any v > 0, there exists an integer ns12 such that the

following holds. Suppose H is a 3-graph on n > ns1o vertices with

s = (15-2) (5):

then there is a C-tiling covering all but at most 2'° /v vertices of H unless H is 2'%y-extremal.
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Now we are ready to prove Lemma 5.9 using the same approach as in [4].

Proof of Lemma 5.9. Given 0 < 73, < 1, let n59 = max{ng, 47y /e} and p = Ty/2, where Tj

ad

and n( are the constants returned from Corollary 5.10 with ¢ = 1—76 — 3, d="3/2, € = Bra

and to = max{ns;2, %}

Suppose that H is a 3-graph on n > ns 9 vertices with 6;(H) > (£ —73)(5). By applying
Corollary 5.10 with the constants chosen above, we obtain an (e, t)-regular partition Q. The
cluster hypergraph K = K(e, d, Q) satisfies 6;(K) > (& — 273)(5). Let m be the size of each
cluster except Vp, then (1 —€)® < m < 2. By Lemma 5.12, either K is 210(2~3)-extremal,
or there is a C-tiling 4 of K that covers all but at most 2'9/(273) vertices of K. In the first
case, there exists a set B C V/(K) such that |B] = [3| and e(B) < 2''5t3. Let B' C V(H)

be the union of the clusters in B. By regularity,

e(B') <e(B)-m?+ (;) cd-m® e (;) -m® + <T;)n

where the right-hand side bounds the number of edges from regular triples with high density,
edges from regular triples with low density, edges from irregular triples and edges that are

from at most two clusters. Since m < %, € < d < 73, and t72 < ty? < 73, we get

e(B') < 2M st (?)3 + d(g) (%)3 - e(é) (?)3 + (ngt)n < 2049y5n3.

Note that |B'| = [2|m < 3.2 = 30 implies that |B’| < [22]. On the other hand,

3t 3t n 3t n 3n
N=|Zlm> (2 = A A
| B| {4Jm_<4 1)(1 E)t_(4 et)t T

by adding at most en vertices from V' \ B’ to B’, we get a set B” C V(H) of size exactly
|3n/4], with e(B”) < e(B') + en - n? < 2050y3n>. Hence H is 205073-extremal.

In the second case, the union of the clusters covered by % contains all but at most

919
273

5.11 to each member C' € €. Suppose that C' has the vertex set [4] with edges 123,234.

m+ |Vo| < an/4+ en < 3an/8 vertices (here we use ¢ > %) We will apply Proposition
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For i € [4], let V; denote the corresponding cluster in H. We split V;, i = 2,3, into two
disjoint sets V! and V? of equal sizes. Then the triples (V;,V)!, Vi) and (Vy, V2, V) are

3 3

(2¢,d — ¢)-regular and of sizes m, %, %. Applying Proposition 5.11 to these two triples with
m' = %, we find a loose path in each triple covering all but at most %m’ +3=am+3

vertices (here we need € = %).
Since || < t/4, we obtain a path tiling that consists of at most 2¢t/4 < T;,/2 = p paths

and covers all but at most

t 3o o 3t 3a
2(am+3)1+§n§§n+§+§n<an

vertices. This completes the proof. O

5.2.3 Proof of C-tiling Lemma (Lemma 5.12)

Fact 5.13. Let H be a 3-graph on m vertices which contains no copy of C, then e(H) < %(ZL)

Proof. Since there is no copy of C, then given any u,v € V(H), we have that deg(uv) < 1,
which implies e(H) < 1(3) - 1=%(%). O
Proof of Lemma 5.12. Fix v > 0 and let n € N be sufficiently large. Let H be a 3-graph on
n vertices that satisfies 6, (H) > (% —7)(3). Fix a largest C-tiling ¢ = {Ci,...,Cp,} and let
Vi =V(C) for i € [m]. Let V' = U,y Vi and U = V(H) \ V'. Assume that U] > 2% /v -
otherwise we are done.

Our goal is to find a set C' of vertices in V' of size at most n/4 that covers almost all
the edges, which implies that H is extremal.

Let A; be the set of all edges with exactly ¢ vertices in V', for i = 0,1,2,3. Note that

|Ao] < (")) by Fact 5.13. We may assume that |U| < 3n and consequently
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Indeed, if |U| > 3n, then taking U" C U of size [3n], we get that e(U’) < e(U) < 1(1) <

in? < yn?. Thus H is y-extremal and we are done.

Claim 5.14. [A;| < m("Y)) + 12m|U|.

Proof. Let D be the set of vertices v € V' such that deg(v,U) > 4|U|. First observe that
every C; € € contains at most one vertex in D. Suppose instead, two vertices xz,y € V; are
both in D. Since deg(z,U) > 4|U| > |U|/2, the link graph of  on U contains a path ujusus
of length two. The link graph of y on U \ {uy, ug, us} has size at least 4|U| — 3|U| > |U]|/2,
so it also contains a path of length two, with vertices denoted by wuy4,us,ug. Note that
{z,u1,uz,u3} and {y,uy, us,ug} span two vertex disjoint copies of C. Replacing C; in &
with them creates a larger C-tiling, contradicting the maximality of 4. So we conclude that
|D| < m. Consequently,

U]
2

U U
|A| < |D]< )+|V’\D]-4|U|:m(’2|) +3m - 4|U| Sm(’2|> + 12m|U]|.

[]

Fix w € U, i # j € [m], denote L; ;(u) as the link graph of u on [V, V}], namely the
bipartite link graph of u between V; and Vj. Let T<¢ be the set of all triples wij, u € U,
i,j € [m] such that e(L; ;(u)) < 6. Let T;' be the set of all triples uij, u € U, i,j € [m] such
that L; ;(u) contains exactly seven edges, and a vertex cover of two vertices with one from
V; and the other from Vj. Let 7’227 be the set of all triples uij, u € U, i,j € [m] such that
L; j(u) contains at least seven edges, and a vertex cover of two vertices both from V; or Vj.
Let 72; be the set of all triples uij, u € U, i,j € [m] such that L; j(u) contains at least seven
edges, and a matching of size three. Since a bipartite graph either contains a matching of

size three or a vertex cover of size two (by the Konig-Egervary theorem), T<4, T, 7‘227 and

7'237 form a partition of U x ([7;])‘

Fact 5.15. 1. H does not contain i # j € [m| and siz vertices uy, ..., us € U such that

uy, ..., ug have the same (labeled) link graph on [V;, V;] and wyij € T2;.
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2. H does not contain distinct i, j, k € [m] and eight vertices uy, . ..,us € U such that the
following holds. First, uy,...,us share the same link graph on [V;,V}], and us, ..., us
share the same link graph on [V;,Vi]. Second, uyij € T2, with the vertex cover in V;

and usik € TZ; with the vertex cover in Vj.

Proof. To see Part (1), since there is a matching of size three in the (same) link graph of
U, ..., Ug, say, a1b1, asbs, agbs, then ujusa by, usugasbs and usugasbs span three copies of C.
Replacing C;,C; by them gives a C-tiling larger than ¢, a contradiction.

To see Part (2), assume that V; = {a, b, ¢, d}. Suppose that the vertex cover of L; ;(uy)
is {z1,11} C V; and the vertex cover of L;x(us) is {z2,92} C Vj. Since wyij € 7'227, at
most one pair from {z;,y1} X {a,b} is not in L, j(u;). Analogously at most one pair from
{2,192} x {c,d} is not in L, ;(us). Thus, without loss of generality, we may assume that
z1a,1b € L, j(u1) and xoc,yod € Lip(us). Since uy,...,uy share the same link graph on
Vi, Vi], wquszia, ususyrb span two copies of C. Similarly, usugroc and urusysd span two
copies of C. Replacing C;,C;,C, by these four copies of C gives a C-tiling larger than %, a

contradiction. ]
We next show that all but at most yn?|U| triples uij, u € U, 7,7 € [m] are in T3
Claim 5.16. |T'| > () |U| — yn?|U].

Proof. First, we claim that
|'T§’7| < (ZL) 165 |7§7| < 756(7;1) +m-|U]|. (5.5)

To see the first inequality, by Part (1) of Fact 5.15, given 7,5 € [m] and a bipartite
graph on [V}, V;] containing a matching of size three, at most five vertices in U can share
this link graph on [V;, Vj]. Since there are 2'® (labeled) bipartite graphs on [V;, V;], we get
that |72, < (%) - 2 - 5.

To see the second inequality in (5.5), let D denote the digraph on [m| such that (i, j) €

E(D) if and only if at least eight vertices uy, ..., us € U share the same link graph on [V}, V}]
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such that ujij € TZ;, and the vertex cover is in V;. We claim that dp(i) < 1 for every

i € [m] and consequently e(D) < m. Suppose instead, there are i,j,k € [m] such that

(4,7), (k,i) € E(D), then eight vertices of U share the same link graph on [V}, V}], and (not

necessarily different) eight vertices of U share the same link graph on [V}, Vi]. Thus we can
pick four distinct vertices for each of [V, V;] and [V}, V}] and obtain a structure forbidden by
Part (2) of Fact 5.15, a contradiction. Note that there are 2 (3) -8 +2- (3) = 108 (labeled)
bipartite graphs on [V;, V;] with at least seven edges and a vertex cover of two vertices both
from V; or V;. Furthermore, fixing one of these bipartite graphs, if (¢, 7), (4,7) ¢ D, then at

most seven vertices in U share this link graph by the definition of D. So we get that
T2 < (g‘) 108 - 7+ m|U| = 756 @‘) +m|U].
Recall that A, is the set of all edges of H with exactly two vertices in V’. Then
Aal < O1Teal + 117+ 8172+ 10173+ (3 )0
Together with |Tze| + 77| + [T27| + [T2;| = () |U], we get,

m
[ As| < 7(2)!U! — | Tz6| + [T2:] + 9| T2;| + 6m|U]|
< 7@) U[ = [T<e| + (”;) (21845 4 756) + Tm|U| by (5.5)

< 7(7;)|U| — | T<s| +222<7;> + Tm|U]. (5.6)

We know that >°, ., deg(u) = 3| Ag| + 2| Ai| + |As|. Thus, by |Ao| < 1('Y)), Claim 5.14
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and (5.6), we have

Y deg(u) < ('g') —|—2m(|[2]|> + 24m|U]| +7( >|U| || +222(7;) + 7m|U|

U
_ (‘;) +m|U|2—|—30m|U|+7( >|U| |T<6|+222(77;)
|U]| 2 7 4m 0o (M
(5w fmiwr+ 5 () 101= 17l 422(75) w5 015 20

5 (o)1= 17+ 22(75), 57)

where the last inequality is due to (|U|) +4m|U|+ () = (|U|”2L4m) =(3).

On the other hand, §;(H) > (5% — ) (}) implies that >, deg(u) > (& —7)(5)|U].

16

Tl < V(Z) U] + 22 (Z‘) (5.8)

Note that (5.4) implies that |U| < 3n < 316m = 12m. By (5.5) and (5.8), we have

712 (3= ()@ 54750+ mion) - (301 - 22
> (D)1= (5)iw1-22(7 ) as ] < 12m
> (3)io1-4(3)1o1-22(3) asm<t

>(2>|U\—fyn2|U| as |U| > 2"/~. O

/\

Together with (5.7), this gives

For a triple uij € T;', we call v; € V; and vy € V; a pair of centers (in short, centers) for
w if {vy,ve} is the vertex cover of L; ;(u). Define G as the graph on the vertex set V' such
that two vertices vy, v € V' are adjacent if and only if there are at least 16 vertices u € U
such that vy, vy are centers for u. Let C be the set of vertices v € V' such that deg.(v) > 7

and degg(v") > 2 for some v' € Ng(v), where Ng(v) denotes the neighborhood of v in G.

Fact 5.17. For every i € [m], at most one vertex v € V; satisfies degq(v) > 0.
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Proof. Suppose to the contrary, some V; = {a,b,c,d} satisfies degq(a),degq(b) > 0. Let
a' € Ng(a),t € Ng(b). First, assume that both ¢’ and b are in V; for some j € [m] \ i.
Furthermore, assume o’ # b" and say V; = {a/, ', ¢, d'}. Then by the definition of G, we can
find uy, ..., uq4,uy, ..., uy € U such that a,a’ are centers for w; and b, b" are centers for u; for
[ =1,...,4. This gives four copies of C on ac'ujusy, a’'cusuy, bd'vjuy, b'dusu)y. Replacing C;,C;
by them in & gives a larger C-tiling, a contradiction. Otherwise, assume that a’ = 0’ and
say V; = {d’,z,c,d'}. Then by the definition of G, we can find uy, ..., uy, v}, uy € U such
that a,a’ are centers for u;, [ = 1,...,4 and b, a’ are centers for u} and uj. This gives three
copies of C on ac'ujug, @' cusuy, bd'uius. Replacing C;,C; by them in € gives a larger C-tiling,
a contradiction.

Second, assume that o’ € V; and b € V}, for distinct j, k € [m] \ i. Let ¢ € V; \ @’ and
d € Vi, \V'. Then by the definition of G, we can find uy, ..., uq4, v}, ..., u) € U such that a,a’
are centers for u; and b, b’ are centers for wj, for { = 1,...,4. This gives four copies of C on
ac'uyug, @' cuguy, bd'ujuh, b'dufuly. Replacing C;, C;j, Ci, by them in & gives a larger C-tiling, a

contradiction. 0
Claim 5.18. (1 —2''y)m < |C| < m.

Proof. The upper bound follows from Fact 5.17 immediately.

To see the lower bound, we first show that

()2 (1-2) (7). (5.9)

To see this, let M be the set of pairs 7,7 € ([’g]) such that there are at most 240 vertices
u € U satisfying that wij € 77. By Claim 5.16, the number of triples uwij € T (u € U,

i # j € [m]) is at most yn?|U|. Thus

2 2 2 2
v < UL o lUL_ 3ym? 3y(16m) <210,y<7;)'

= <
U] —240 = 2|U] 2 2

where the second last inequality follows from (5.4). Fix a pair i,j € ([Tg]) \ M. There are
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at least 241 = 16 - 15 + 1 vertices u € U satisfying that uij € T;'. Since V; x V; contains
16 pairs of vertices, by the pigeonhole principle, some pair of vertices v; € V;,v, € V; are
centers for at least 16 vertices u € U, namely, vjv € G. Thus (5.9) follows.

By Fact 5.17, there are at most m vertices with positive degree in G. For convenience,
define V" C V' as an arbitrary set of m vertices that contains all the vertices with positive
degree in GG. Furthermore, for any integer ¢t < m, let D, C V" denote the set of vertices v

such that degg(v) < t. Let D) C (V”\ D;) denote the set of vertices v such that Ng(v) C D;.

We have
2e(G) < t|Dy| + (m —1)(m — |Dy¢|]) = m(m — 1) — (m —t — 1)| Dy/.
Together with (5.9), it gives |Dy| < 2107%. By definition, each vertex v € D) satisfies

deg(v) > 2, and its neighborhood is contained in D; (thus the vertices in D} have disjoint
neighborhoods). This implies that |D}| < |D;|/2. Recall that C' = V" \ (DgU D}). Since Dg

and D) are not necessarily disjoint,

m(m—1) _,, m(m—1)

C|>m —|Dg| — | D5 > m — 2% — 7
|Cl > m — [Dg| — [D5] > m Ra— To(m —2)

> (1 —2"y)m.

as claimed. O

Let Ic be the set of all @ € [m] such that V;NC # 0. Fact 5.17 and Claim 5.18 together

imply that |Ic| =|C| > (1 —2"y)m. Let A= (U,.,. V;\C)UU.

i€l

Claim 5.19. H[A] contains no copy of C, thus e(A) < %(g)

Proof. The first half of the claim implies the second half by Fact 5.13. Suppose instead,
HJ[A] contains a copy of C, denoted by Cy, on V. Since H|[U| contains no copy of C, V; must
intersect some V; with ¢ € Io. Without loss of generality, suppose that Vi,...,V; contain

the vertices of V5 \ U for some 1 < j < 4. Here we separate two cases.

Case 1. For any ¢ € [j], |V; N V| < 2.
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For i € [j], let ¢; = V; N C, and suppose that d; € V; \ (Vo U¢;). For each i € [j], since
degq(c;) > 7, we can pick distinct v; € Ng(e;) \ (Vi U ---UV;). By Fact 5.17, vy,..., v,
are contained in different members of ¢ (also different from Cy,...,C;). Let vf,... v} be
arbitrary vertices in these members of €, respectively, which are different from vy, ..., v;.
For every i € [j], since ¢;, v; are centers for at least 16 vertices of U, we find a different set of
four vertices u;, ..., u; € U\ Vp such that ¢;, v; are centers for them. This is possible because
Vo N U| < 4 — j and the number of available vertices in U is thus at least 16 — (4 — j) =
12+ j > 4.

Note that for i € [J], civiulu?, dyv;udul span two copies of C. Together with Cp, this gives

27 + 1 copies of C while using vertices from 2j members of €, contradicting the maximality

of €.
Case 2. There exists iy € [j], such that |V;, N V| = 3.

Note that j = 1 or 2 in this case. Without loss of generality, assume that |V; NV;| = 3.
First assume that j = 1 (then [V NU| = 1). Let ¢, = Vi N C. By the definition of C,
there exists co € Ng(c1) such that degy(c2) > 2. Let ¢3 # ¢; be a neighbor of ¢y in G.
Assume that C;,,C;, € € contains cg, c3, respectively. By the definition of GG, we can find
uy,...,ug € U\Vp such that ¢;, co are centers for uy, ug, and cg, c3 are centers for ug, uy, us, ug.
Thus, ciwiuius, cowsusuy, c3wousug span three copies of C, where wy, wo are two vertices in
Vi, \{c2} and w3 € Vi, \ {c3}. Together with Cy, it gives four copies of C while using vertices
from three members of €, contradicting the maximality of €.

Now assume that j = 2, that is, [VoN V3| = 1. We pick ¢, ¢3,uq, . . ., ug in the same way
as in the j = 1 case. If ¢y € V5, then this gives four copies of C by using vertices from three
members of @, a contradiction. Otherwise, let ¢y = Vo N C and pick ¢5 € Ng(eq) \ {c1, 2,3}
(this is possible because degq(cs) > 7). Suppose that C;, contains c¢5. We pick four new
vertices uz,...,u;g € U for whom cy4,c5 are centers. Thus, we can form two copies of C
by using vertices from Co, C;, and uz, ..., u;9. Together with the four copies of C given in
the previous case, we obtain six copies of C while using vertices from five members of &, a

contradiction. O
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Note that the edges not incident to C' are either contained in A or incident to some V;,

i ¢ Io. By Claim 5.19, C is incident to all but at most

-1 1
e(A) +4-2"ym (n 5 ) <3 (Z) + 2% (4m)n?

1
< 2107712 <—2107 + 4m) < 210’yn3,

edges, where the last inequality holds because |U| > ﬁ Since |C] < m < n/4, we can
pick a set B C V '\ C of order [2n]. Then e(B) < 2'%n?, which implies that H is 2'%-

extremal. O

In Claim 5.19 we proved that H[A] contains no copy of C, where, by Claim 5.18,

3
|A|:n—m—3(m—|C’|)2n—%—3~2117m2(1—2117)Z—Ln.

We summarize this in the following lemma. It is easy to see this lemma is equivalent to

Lemma 8.7.

Lemma 5.20. For any v > 0, there exists an integer ng such that the following holds.

Suppose H 1s a 3-graph on n > ng vertices with

san= (1) (2).

then there is a C-tiling covering all but at most 2'° /v vertices of H unless H contains a set

of order at least (1 — 2"~)3n that contains no copy of C.

5.3 The Extremal Theorem

In this section we prove Theorem 5.5. Let n be sufficiently large and H be a 3-graph on
n vertices satisfying (5.1). Assume that H is A-extremal, namely, there is a set B C V(H),

such that |B| = [3n] and e(B) < An®. For the convenience of later calculations, we let
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€p = 18A and derive that

e(B) < eo<|§|). (5.10)

Let A=V(H)\ B. We write Eg(XY Z) as XY Z for short.

5.3.1 Classifying vertices

Let €; = 8,/€y. Assume that the partition A and B satisfies that |B| = [2n| and (5.10).
In addition, assume that e(B) is the smallest among all the partitions satisfying the first two

conditions. We now define

A= {u €V |deg(v, B) > (1 — m('?') } :

B = {v €V | deg(v,B) < 61('?') } ;

Vo=V \(A'UB).

Claim 5.21. AN B’ # () implies that B C B, and BN A" # () implies that A C A’.

Proof. First, assume that AN B’ # (). Then there is some u € A satisfies that deg(u, B) <
el(lgl). If there exists some v € B\ B’, namely, deg(v, B) > el(lgl), then we can switch u
and v and form a new partition A” U B” such that |B"”| = |B| and e(B”) < e(B), which
contradicts the minimality of e(B).

Second, assume that BNA’ # (). Then some u € B satisfies that deg(u, B) > (1—61)(“3').
Similarly, by the minimality of e(B), we get that for any vertex v € A, deg(v,B) > (1 —
61)(“23'), which implies that A C A’. ]

Claim 5.22. {|{A\ 4|, |B\ B'|,|A'\ A|,|B'\ B|} < 2|B| and |Vy| < &|B|.

Proof. First assume that |B \ B'| > &|B|. By the definition of B’ and the assumption

€1 = 8,/€p, we get that

1 ([Bl\ & ei (1B | B
B)> - B> & -
el )>361(2> 6P 751l s )=l s )
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which contradicts (5.10).
Second, assume that |A\ A’| > &|B|. Then by the definition of A’, for any vertex
v ¢ A, we have that deg(v, B) > 61(‘5‘). So we get

_ €1 | B| | B| |B|
ABB) > —|B| - =¢|B .
el )>64‘ | 61(2) ol |(2 > 36 3

Together with (5.10), this implies that

> " deg(b) > 3e(B) + 2e(ABB) > 3(1 — €)) (’?') + 660(|§|> = 3(1+¢) (”;').

By the pigeonhole principle, there exists b € B, such that

where the last inequality follows from the assumption that n is large enough. This contradicts
(5.1).

Consequently,

AN\Al= AN Bl <[B\B| < £|Bl,
B\ B| = |AN B < |A\ A| < Z|B],

€ €
Vol = AN A+ B\ B'| < Z|B| + 1Bl =

€1
—|BJ.
~ 64 32| ’

We next show that we can connect any two vertices of B’ with a loose path of length

two without using any fixed ¢ vertices of V.

Claim 5.23. For every pair of vertices u,v € B’ and every vertex set S C V with |S| < n/8,

there exist a € A'\ S and by, by € B'\ S such that ubja,abyv € E(H).

Proof. For any x € B’, by (5.1), we have that deg(z) < (L%;J) = ('g'). So by the definition
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of B,

e, AB) < ogto) - B3 < (15 ) (1= ) (15 ) = (151),

By Claim 5.22, we get that

deg(z, A'B’) < deg(x, AB) + |A"\ A| - |B'| + |B"\ B| - |A'|
|B| €1 |B|
< — < . .

Consider a bipartite graph G on A\ S and B \ S with pairs ab € E(G) if and only if

uab,vab € E(H). Since |S| < g, we have [A\ S| > IA;' > % and |B\ S| > @, SO

|A\ S|-|B\ S| > %(I?I) > 861(”;'). Consequently,

«(6) 2 1A\ 8115\ S| - e (5 ) 2 1A\ S|- 1B\ 5] > |4\ 51

Hence there exists a vertex a € A\ S such that degg(a) > 2. By picking by, by € Ng(a) we
finish the proof. [

5.3.2 Building a short path

Claim 5.24. Suppose that |[ANB'| = q > 0. Then there exists a family Py of vertex disjoint

loose paths in B’, where

/

one edge ifg=1 andn ¢ 4N

P consists of { two edges ey, es with leyNeg| <1 ifqg=1andn € 4N

\2q disjoint edges ifq>2

Proof. Let |ANB’| =¢q > 0. Since AN B’ # (), by Claim 5.21, we get B C B’, which implies
|B'| = Lin] +q.
By Claim 5.22, we get that ¢ = [AN B'| < |A\ A’| < &|B|. Hence for any vertex b in
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B

deg (b, B') < deg (b, B) + |B"\ B|(|B'| — 1)
<q ('f') (B =1) < 26 <|§’). (5.12)

Now we assume that ¢ =1, so |B'| —1 = [3n]. By (5.1), for any b € B/,

s (7)-(4) (037 )

where ¢ = 1 if n ¢ 4N and ¢ = 2 otherwise. The n ¢ 4N case is trivial since B’ actually
contains at least |B’|/3 > 1 edges. If n € 4N, then we have deg(b, B') > 2. Assume that B’
does not contain the desired structure. Then any two distinct edges of B’ share exactly two
vertices. Fix an edge eg = vjvgvs of B’ and two vertices u,u’ € B'\ 5. Then every edge of
B’ containing « must have its two other vertices in eq. Since deg(u, B') > 2, the link graph
of u contains at least two pairs of vertices of eg. So does the link graph of /. We thus find
a loose path of length two from u to u’ because two distinct pairs on ey share exactly one
vertex.

Second, assume that ¢ > 1. In this case we construct 2q disjoint edges greedily. By

0]

(5.1) and |B'| = [3n] + ¢, for any b € B’,

deg (b, B') > (”; 1) _ (L%QHJ) .
)9
> (¢—1) EHJ :

which implies that e(B’) > §|B’|(q - 1) L%n] Suppose we have found i < 2¢ disjoint edges
of B'. By (5.12), there are at most 3(2¢ — 1) - 2¢; ('g') edges of B’ intersecting these i edges.
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Hence, there are at least

e(B') —3(2¢ — 1) - 261 (“23') > %IB’I(q - 1) BnJ —6(2g — ey ('f')

222(1) o ()

fta—1 920 - el (1))

C»-'JI[\.')

edges not intersecting the existing 7 edges. This quantity is positive provided that ¢; <

Thus, € < 5- sufﬁces since the minimum of 5 ,q>11s o attalned by q=2. [

9(2q 1) 2q 1)

Remark 5.25. Claim 5.2/ is the only place where the constant ¢ from (5.1) is used.
The goal of this subsection is to prove the following claim.
Claim 5.26. There exists a loose path P in H with the following properties:
o Vo CV(P),
o |[V(P)| < %IB,
o [BA\V(P)| <3A\V(P)] -1,
e two ends of P are in B'.

Proof. We split into two cases here.

Case 1. AN B # .

By Claim 5.21, AN B’ # () implies that B C B’, which implies that Vj C A. Let
q = |AN B'|. We first apply Claim 5.24 and find a family P; of vertex disjoint loose paths
on at most 6¢ vertices of B’. Next we put each vertex of V4 into a loose path of length two
with four vertices from B (so in B’) such that these paths are pairwise vertex disjoint and
also vertex disjoint from the paths in P;. Let Vo = {x1,..., 2 }. Suppose that we have
found loose paths for xy,...,z; with i < |Vp|. Since A\ A" = VU(A N B’), by Claim 5.22,
we have

0+ Vil = A\ 4] < 1Bl (5.13)
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Thus,
. 3
41464 < 4Vh| + 6 < 6(|V| +q) < T |B]

3&(\3\

TR ) pairs of B intersect the existing paths.

and consequently at most 32| B|(|B| — 1) =
By the definition of V, deg(z;i1, B) > 61(‘5‘). Since every graph on n > 4 vertices and
m > n edges contains two vertex disjoint edges, we can find two vertex disjoint pairs in the
link graph of z;,; in B.

Denote by Ps the family of the loose paths that we obtained so far. Now we want to
glue paths of P, together to a single loose path. For this purpose, we apply Claim 5.23
repeatedly to connect the ends of two loose paths while avoiding previously used vertices.

This is possible because |V(Py)| < 5|Vo| + 6¢ and at most 3(|Vy| + 2¢ — 1) vertices will be

used to connect the paths in P,. By (5.13), the resulting loose path P satisfies
€1 €1
VP <8IVl +12¢ — 3 < 12 1B < 2B

We next show that |B"\ V(P)| < 3|A"\ V(P)| — 1. To prove this, we split into three cases
according to the structure of P;. Note that |B'| = [2*] 4+ ¢ and |4'| = [2] — [Vi| — ¢

First, assume that ¢ > 1. Our construction shows that P; consists of 2¢ disjoint edges
in B'. So |[V(P)NA| = |Vo| +2¢ — 1 and |V(P) N B'| = 4|V + 3 - 2¢ + 2(|Vo| +2¢ — 1) =
6|Vo| + 10g — 2. Thus,

BA\V(P)| = m g (6] + 100 2)
3

m —9Ve| — 3¢ + 1) _1=3|A\V(P)| - 1.
Second, assume that ¢ = 1 and n € 4N. Then P; consists of a loose path of length two

or two disjoint edges. For the first case, we have that |V (P) N A'| = |V,| and |V(P) N B'| =
4ol + 2|Vo| + 5 = 6]Vp| + 5. Thus,

BAVP) = 20 41— (6] +5) =3 (% — 206~ 1) — 1= 84\ V(P) - 1.
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In the second case, we have that |V (P)NA| = |Vy|4+1 and |V (P)NB'| = 4|Vp|+2(|Vo|+1)+6 =
6|Vo| + 8. Thus,

BAV(P) =2 1 %] +8) =3 (7 — 21~ 2) ~1 =34\ V(P)| -1

Third, assume that ¢ = 1 and n ¢ 4N, so P, contains only one edge. We have |V(P)NA’| =
[Vo| and |V (P) N B'| = 4|V| + 2|Vo| + 3 = 6|V4| + 3. Let n = 4k + 2 with some k € Z, so
|Al=k+1, |B|=3k+1, |B| =3k+2and |A'| =k — |V|. Thus,

B\ V(P)] =3k 42— (6[Vo| +3) = 3(k = 2[Vo|) -1 =3[A\ V(P)| — 1.

Case 2. ANB' =1.
Note that AN B’ = () means that B’ C B. The difference from the first case is that we
do not need to construct P;.

First we will put every vertex in Vj into a loose path of length two together with four

vertices from B’. By Claim 5.22, |B\ B'| < &|B| and thus for any vertex z € 4,

B B
deg(z, B") > deg(z,B) — |B\ B'| - (|B| — 1) > ¢ ('2 |) - ;—12(| 5 |) (5.14)
Similar as in Case 1, let Vy = {1,..., 2y} and suppose that we have found loose paths for

Ty, ..., x; with @ < [Vg[. By Claim 5.22, [Vg| < g|B|. Thus, we have 4i < 4|V5| < $|B| and
consequently at most ¢|B[(|B'| —1) < ¢ (Ug‘) pairs of B’ intersect the existing i loose paths.
Then by (5.14), we may find two vertex disjoint pairs in the link graph of z;,; in B’

As in Case 1, we connect the paths that we obtained to a single loose path by applying

Claim 5.23 repeatedly. The resulting loose path P satisfies that
[V(P)| =5Vl +3(V6| — 1) < 8- o2 |B| = 7B

We next show that |B'\ V(P)| < 3|A”\ V(P)| — 1. Note that |[V(P)n A'| = |V, — 1 and



95

V(P)NB'| = 4|Vy|+2(|Vo|~1) = 6|Vo|—2. Since B' C B, we have |A'| > |A'NA| = [2]—|Vi|.

n
4

Thus,

n
[BAV(P) = B - (6Vel = 2) <3| | — 6]Vp| +2
<3(14 + [Vl = 21V +1) = 1

= 3(|A| — |V(P)n A|) — 1 = 3|4\ V(P)| — 1. O

5.3.3 Completing a Hamilton cycle

Let P be the loose path given by Claim 5.26. Suppose that |B"\V(P)| = 3|A"\V(P)| -1
for some integer [ > 1. Since P is a loose path, |V (P)| is odd. Since V = A"U B’ UV} and
Vo C V(P), we have

V(P) + B\ V(P)| + |4\ V(P) = n. (5.15)

Since n is even, it follows that |B'\ V(P)| + |A"\ V(P)| is odd, which implies that | =
A"\ V(P)| —|B"\ V(P)] is odd.

If I > 1, then we extend P as follows. Starting from an end w of P (note that u € B’), we
add an edge by using one vertex from A" and one from B’. This is guaranteed by Claim 5.23,
which actually provides a loose path starting from u. We repeat this 1_71 times. The resulting
loose path P’ satisfies |B'\ V(P’)| = 3|A’\ V(P')| — 1. We claim that [V (P’)| < 22|B] (thus
Claim 5.23 can be applied repeatedly). Indeed, by (5.15) and |V (P)| < ¢|B|,

[=3lAN\V(P)] = [B\V(P)| = 4[A\V(P)| = (n = [V(P)])

<4A| —n+ %|B|.

Since |A'| < |A| +|B\ B'| < [4] + &|B]| from Claim 5.22, we have [ < $[B|. Since
[V(P')| = |V(P)| +1—1, we derive that [V (P)] < 2¢|B|.
Finally, since both ends of P’ are vertices in B’, we extend P’ by one more ABB edge

from each end, respectively. Denote the ends of the resulting path @ be zg,xz; € A’. Let
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A = (A\V(Q))U{xg,z1} and B; = B"\ V(Q). Note that we have |B;| = 3(|A;| — 1). By
Claim 5.22, we have |B; \ B| < |B’\ B| < ¢|B|. Furthermore,

e 3e
IBl\Z!B'!——1|B|>|B| !BI——1!B|—2>(1—61)|B| (5.16)

For a vertex v € Ay, since deg(v, B) < 61(‘]3'), we have

Tz (v, By) < eg(v, B) + By \ B (Bl 1)
<a(l5) + sxim (14 ) 1
(D))

where the last inequality follows from (5.16). In addition, (5.11) and (5.16) imply that for

any vertex v € By,
_ S B
deg(v, A1 By) < deg(v, A'B") < 2¢; <| 5 ’) < €|B? < de1|Ay|| Byl

We finally complete the proof of Theorem 5.5 by applying the following lemma with X = Ay,
Z = By, and p = 4e;.

Lemma 5.27. Suppose that 0 < p < 1078 and n is sufficiently large. Let H be a 3-graph on
n wvertices with V(H) = XUZ such that |Z| = 3(|X| — 1). Further, assume that for every
verter v € X, deg(v, Z) < p(%') and for every verter v € Z, deg(v,XZ) < p|X||Z|. Then

given any two vertices xo,r1 € X, there is a loose Hamilton path from xq to ;.

Let us introduce some terminology. A bipartite graph G = (A, B, F) with |A| = |B| =n

is called (d, €)-regular if for any two subsets A’ C A, B’ C B with |A'|, |B’| > en,

e(A', B') B’)

1—ed<
=94 < THBT

< (1+€)d,

and G is called (d, €)-super-regular if in addition for every v € AU B, (1 — ¢€)dn < deg(v) <
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(1+ €)dn.
We use the following result of Kiithn and Osthus in [43] in the proof of Lemma 5.27.

Lemma 5.28. [43] For all positive constants d,vo,n < 1 there is a positive € = €(d, vy, n)
and an integer No = No(d,vg,n) such that the following holds for all n > Ny and all v > vy.
Let G = (A, B, E) be a (d, €)-super-reqular bipartite graph whose vertex classes both have size
n and let F be a subgraph of G with |F| = v|E|. Choose a perfect matching M uniformly at

random in G. Then with probability at least 1 — e~ we have

(I —=n)on < |MNEF)| <(1+n)ovn.

Proof of Lemma 5.27. Let G be the graph of all pairs uv in Z such that deg(uv, X) >
(1 —4/p)|X|. We claim that for any vertex v € Z,

dega(v) < v/7l2] (5.17)

Otherwise, some vertex v € Z satisfies deg(v) > /p|Z]. As each u ¢ Ng(v) satisfies
degyy(wv, X) > /p|X|, we have

degy (v, X2) > Al Z| - VBIX| = plZ] X,

contradicting our assumption.

Arbitrarily partition Z into three sets Z;, Zs, Z3, each of order | X |—1. By (5.17), we have
degg(v) < /plZ| = 3/p(IX| 1) and 6(G[Z1, Zs)), 6(G[Z2, Zs]) > (1—3,/p)(]X|—1). Thus,
G|Zy, Z,) and G[Z,, Z3] are both (1,3/p)-super-regular. For any z € X, let F} := {22 €
E(G[Z1,Z5]) : {x,2,2'} € E(H)} and let F? := {22/ € E(G[Zy,73]) : {x,2,2'} € E(H)}.
Since deg(z, Z) < p(‘?) < 5p|X|?, we have |E}|,|FZ| > (1 —3/p)(|X| —1)* = 5p|X* >
(1 —4y/p)(JX|—1)>. By applying Lemma 5.28 with v = 1 —4,/p and = p, then for any
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x € X, with probability at least 1 — e~<*! we have

(M0 E(F)] Mz N E(F7)] = (1= n)o(|X] = 1) = (1= 5/p)|X].

Thus, there is a matching M; in G[Z;, Z5] and a matching My in G[Zy, Z3] such that |M; \
F}| <5,/p|X| and |M, \ F2| < 5,/p|X]| for every vertex € X. Label the vertices of Z so
that 7y = {a1,...,a;x|-1}, Z2 = {b1,...,bx)-1} and Zs = {c1,...,¢|x|-1} such that M; =
{aiby, ... ajx|—1bxj—1} and My = {bicy, ..., bx|—1¢/x|-1}. Let I be a bipartite graph with
one part X and the other part {aibici, ..., a;x|-1bx|-1¢/x)-1} such that {z,a;b;c;} € E(I)
if and only if xa;b;, xb;c; € E(H). For every 1 < i < |X| — 1, since a;b;,b;c; € E(G), so
degr(a;bic;) > (1 —2,/p)|X| in T'. On the other hand, by assumptions, we have degp(z) >
(1—-10,/p)|X| for any x € X. Thus it is easy to see that there is a Hamilton path in I' with
ends xg, ;. Since for each 1 < i < |X| — 1, {z;, a;bic; }, {xig1, a;bic;} € E(I') implies that

ria;b;, bic;viy € E(H) (let zx) = x0), we get a loose Hamilton path of H as

Trarbiciagazbycy - T\ x)-10|x|-1 b|X|—1 C\X|—1I\X|(: iUo) O
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PART 6

NEAR PERFECT MATCHINGS IN K-UNIFORM HYPERGRAPHS

6.1 Introduction

Given k > 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V(H)
and an edge set E(H) C (V(kH )), where every edge is a k-element subset of V(H). A matching
in H is a collection of vertex-disjoint edges of H. A perfect matching M in H is a matching
that covers all vertices of H. Clearly a perfect matching in H exists only if k divides |V (H)]|.
When £ does not divide n = |V (H)|, we call a matching M in H a near perfect matching if
| M| = [n/k].

Given a k-graph H with a set S of d vertices (where 1 < d < k — 1) we define degy(.S)
to be the number of edges containing S (the subscript H is omitted if it is clear from the
context). The minimum d-degree 04(H) of H is the minimum of degy(S) over all d-vertex
sets S in H. We refer to 0,_1(H) as the minimum codegree of H.

Over the last few years there has been a strong focus in establishing minimum d-degree
thresholds that force a perfect matching in a k-graph [1, 8, 17, 35, 36, 42, 47, 54, 57, 58, 61,
63, 69]. In particular, Rédl, Ruciniski and Szemerédi [63] determined the minimum codegree

threshold that ensures a perfect matching in a k-graph on n vertices for all £ > 3 and

sufficiently large n € kN. The threshold is § — k + C, where C' € {3/2,2,5/2,3} depends

on the values of n and k. In contrast, they proved that the minimum codegree threshold
that ensures a near perfect matching in a k-graph on n ¢ kN vertices is between |7 | and

74 O(logn). It is conjectured, in [63] and [58, Problem 3.3], that this threshold should be

| %] In this chapter we verify this conjecture.

Theorem 6.1. For any integer k > 3, let n be a sufficiently large integer which is not

divisible by k. Suppose H is a k-uniform hypergraph on n vertices with 6,_(H) > [7].

Then H contains a matching of size | 7].
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It is also natural to ask for the minimum codegree threshold for the matching number
of k-graphs, namely, the size of a maximum matching. The following theorem [63, Fact 2.1]

is obtained by a greedy algorithm. Let v(H) be the size of a maximum matching in H.
Theorem 6.2. [63] Let n > k > 2. For every k-uniform hypergraph H on n vertices,

V(H) > 8,1 (H) if 51 (H) < {%J — k2.

Note that for n € kN and 7 < d;_1(H) < § —k, H may not contain a perfect matching,

namely, a matching of size % (see [63]). So the only open cases are when |%| — &k + 3 <

0p—1(H) < . In this note, we close this gap for large n.

Corollary 6.3. For any integer k > 3, let n be a sufficiently large integer. For every

k-uniform hypergraph H on n wvertices,
. n
v(H) = 0,1 (H) if 6-1(H) < 7

Proof. Let 6p_1(H) = L%J —c. We only prove Corollary 6.3 in the cases when 1 < ¢ < k—3,

since Theorem 6.2 covers the cases when ¢ > k — 2 and Theorem 6.1 covers the case when

p1(H) = L%J < #. Let  =n mod k such that 0 <r < k — 1. Note that L%J = V”T“J
if r4+c¢ < k and L%J +1= L%CHJ otherwise. For the first case, we add c vertices to H
and get H' such that H' contains all edges of H and all k-sets containing any of these new

vertices. Note that H' has n+ ¢ vertices and 6,1 (H') = L”T*CJ Moreover, k does not divide
n+csince 1 <r+c < k. We apply Theorem 6.1 on H' and get a near perfect matching M
of H'. Deleting up to ¢ edges from M that contain the new vertices, we get a matching in
H of size [%J —c.

In the second case, we add ¢ + 1 vertices to H and get H’ such that H' contains all
edges of H and all k-sets containing any of these new vertices. Note that H has n +c¢+ 1

vertices and 6,1 (H') = %] + 1 = |*=EL]. Moreover, k does not divide n + ¢ + 1 since

k+1<r+c+1<2k—3. Similarly we apply Theorem 6.1 on H' and get a near perfect
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L e — .

n/kf 1 zn/Q‘ Ok—1(H)

Figure 6.1. dx_1(H) and v(H)

matching M of H'. Deleting up to ¢+ 1 edges from M that contain the new vertices, we get

a matching in H of size %] +1— (c+1)=|%] —c. O

It is easy to see that Theorem 6.1 and Corollary 6.3 are best possible. For an integer
0 <d < %, let H be a k-graph with a partition AU B of the vertex set V(H) such that
|A| = d and E(H) consists of all k-tuples that intersect A. Since every edge intersects A, we
have v(H) = 6p_1(H) = |A] = d.

Let us describe this interesting phenomenon by the following dynamic process (see
Figure 6.1). Consider a k-graph H on n vertices with E(H) = () at the beginning and add
edges to E(H) gradually. Corollary 6.3 says v(H) > 03—1(H) when 6,_1(H) < 7. In order

to guarantee a perfect matching, dx_(H) needs to be about n/2 [63].

As a typical approach to obtain exact results, our proof of Theorem 6.1 consists of an
extremal case and a nonextremal case. We say that H is y-extremal if V(H) contains an
k-1

independent subset B of order at least (1 —~)%—=n.

Theorem 6.4 (Nonextremal case). For any integer k > 3 and constant v > 0, there is an
integer ng such that the following holds. Let n > ng be an integer not divisible by k and let
H be an n-vertex k-graph with 6, (H) > % —~n. If H is not 5ky-extremal, then H contains

a near perfect matching.
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Theorem 6.5 (Extremal case). For any integer k > 3, there exist an € > 0 and an integer
n1 such that the following holds. Let n > ny be an integer not divisible by k and let H be
an n-vertex k-graph with 6p_1(H) > |7|. If H is e-extremal, then H contains a near perfect

matching.

Theorem 6.1 follows from Theorem 6.4 and Theorem 6.5 immediately.

We prove Theorem 6.4 by the absorbing method, initiated by Rodl, Rucinski and Sze-
merédi [60]. Given a set S of k + 1 vertices, we call an edge e € E(H) disjoint from S
S-absorbing if there are two disjoint edges e; and ey in E(H) such that |e; 0S| = k — 1,
lesNe| =1, leaN S| =2, and |ea Ne| = k — 2. Note that this is not the absorbing in the
usual sense because e; U e; misses one vertex of S Ue. Let us explain how such absorbing
works. Let S be a (k+1)-set and M be a matching, where V (M)NS = (), which contains an
S-absorbing edge e. Then M can “absorb” S by replacing e in M by e; and es (one vertex
of e becomes uncovered). The following absorbing lemma was proved in [63, Fact 2.3] with
the conclusion that the number of S-absorbing edges in M is at least k — 2. However, its
proof shows that k — 2 can be replaced by any constant. Note that we do not require that

k does not divide n in Lemma 6.6 and Lemma 6.7.

Lemma 6.6. /63, Absorbing lemma] For all ¢,y > 0 there exist C' > 0 and ny such that if
H is a k-graph with n > ny vertices and 6x_1(H) > cn, then there exists a matching M' in
H of size |M'| < C'logn and such that for every (k+1)-tuple S of vertices of H, the number

of S-absorbing edges in M’ is at least k/~.

We also need the following lemma, which provides a matching that covers all but a

constant number of vertices when H is not extremal.

Lemma 6.7 (Almost perfect matching). For any integer k > 3 and constant v > 0 the
following holds. Let H be an n-vertez k-graph such that n is sufficiently large and o1 (H) >
T —an. If H is not 2kvy-extremal, then H contains a matching that covers all but at most

K%/~ wvertices.
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Now let us compare our proof with the proof in [63], which showed that 0y, (H) >
7+ 0O(log n) guarantees a near perfect matching. In [63], the authors first build an absorbing
matching of size C'logn and then apply Theorem 6.2 in the remaining k-graph. Finally,
they absorb the leftover vertices and get the near perfect matching. In our proof, instead
of Theorem 6.2, we apply Lemma 6.7 after building the absorbing matching. Lemma 6.7
only requires a weaker degree condition d;_1(H) > 7 — yn and the condition that H is not

extremal. We then handle the extremal case separately.

6.2 Proof of Theorem 6.4

In this section we prove Theorem 6.4 with the help of Lemma 6.6 and Lemma 6.7.

Proof of Lemma 6.7. Let M = {ej,ey,...,e,} be a maximum matching of size m in H.
Let V' be the set of vertices covered by M and let U be the set of vertices which are not
covered by M. We assume that H is not 2ky-extremal and |U| > k*/vy. Note that U is
an independent set by the maximality of M. We arbitrarily partition all but at most £ — 2
vertices of U as disjoint (k — 1)-sets Ay,..., A; where t = L%J > %

Let D be the set of vertices v € V' such that {v} U A; € E(H) for at least k sets A,
i € [t]. We claim that |e; N D| < 1 for any ¢ € [m]. Otherwise, assume that =,y € e;N D. By
the definition of D, we can pick A;, A; for some distinct 4, j € [t] such that {z} UA; € E(H)
and {y} UA; € E(H). We obtain a matching of size m + 1 by replacing e; in M by {z} U A4;
and {y} U A;, contradicting the maximality of M.

Next we show that |[D| > (3 — 2vy)n. By the minimum degree condition, we have

1 t
t(E—v)nS ;deg(Ai) <|D|t+n-k,

where we use the fact that U is an independent set. So we get

1 nk 1
|D| > (E—'y)n—7> (E—Qv)n,
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where we use t > k/~.
Let Vp := U{ei,e; N D # 0}. Note that |Vp\ D| = (k—1)|D| > (k—1)(; — 27)n. Since
H is not 2k~y-extremal, H[Vp \ D] contains at least one edge, denoted by eg. We assume

that ey intersects e;,, ..., e; in M for some 2 < [ < k. Suppose {v;,} = e;, N D for all j € [I].

1
By the definition of D, we can greedily pick Ay, ..., A; such that {v;;} U A;; € E(H) for
all j € [l]. Let M" be the matching obtained from replacing the edges e;,,...,e; by ey and

{vi,} UA;, for j € [I[]. Thus, M" has m + 1 edges, contradicting the maximality of M. [
Now we prove Theorem 6.4.

Proof of Theorem 6.4. Suppose H is a k-graph on n ¢ kN vertices with é;_1(H) > n/k—~n

n

o> e first apply Lemma

and H is not 5kv-extremal. In particular, v < 2. Since d;_(H) >
6.6 on H with ¢ = ﬁ and find the absorbing matching M’ of size at most C'logn such that
for every set S of k+ 1 vertices of H, the number of S-absorbing edges in M’ is at least k/~.

Let H = H[V(H)\ V(M’')] and n' = |V(H')|. Note that é,_1(H') > 0p_1(H) —
kClogn > (3 —2y)n'. If H' is 4k~y-extremal, namely, V/(H’) contains an independent set B

of order at least (1 — 4kv)52n’, then since

kE—1 kE—1

(1 — 4ky) ' 2 (1= 5ky)—

n,

we get that H is bkvy-extremal, a contradiction. Thus, H' is not 4kvy-extremal and we can
apply Lemma 6.7 on H' with parameter 2y and get a matching M"” in H' that covers all but
at most k?/(27) vertices. Since for every (k+1)-tuple S in V(H), the number of S-absorbing
edges in M’ is at least k/v, we can repeatedly absorb the leftover vertices (at most k/(27)
times, each time the number of leftover vertices is reduced by k) until the number of leftover
vertices is at most k (strictly less than k by the assumption). Let M denote the absorbing

matching after the absorption. Then M U M?” is the desired near perfect matching in H. [
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6.3 Proof of Theorem 6.5

We prove Theorem 6.5 in this section. We use the following result of Pikhurko [57],

stated here in a less general form.

Theorem 6.8. [57, Theorem 3] Let H be a k-partite k-graph with k-partition V(H) =
ViuVoU--- UV, such that |Vi| = m for all i € [k]. Let 6;1y(H) = min{|N(v1)| : v1 € Vi}
and

Oy () = min{|N(vy, ..., v)| : v; € V; for every 2 < i < k}.

For sufficiently large integer m, if

5{1} (H)m + 5[1€]\{1}(H)mk71 >

DN o
ey

then H contains a perfect matching.

Proof of Theorem 6.5. Fix a sufficiently small € > 0. Suppose n is sufficiently large and not

divisible by k. Let H be a k-graph on n vertices satisfying 6,1 (H) > |%]. Assume that H

is e-extremal, namely, there is an independent set S C V(H) with S| > (1 — €)% 2n.

We partition V(H) as follows. Let a@ = €'/2. Let C be a maximum independent set of

V(H). Define
A= {:L‘EV\C:deg(x,C’) > (l—a)(k’?|1)}, (6.1)

and B =V \ (AUC). We first observe the following bounds of |A|, | B, |C|.

Proposition 6.9. |[A| > [%]| — an, |B| < an, and (1 —¢) (k*kl)” <|C| < ((k*kl)nw

Proof. The lower bound for |C| follows from our hypothesis immediately. For any S C C' of

order k — 1, we have N(S) C AU B. By the minimum degree condition, we have

(k—1)n

n n
2] SIv@) < 1A1+1Bl = n— 0] < T+ =22,

k
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which gives the upper bound for |C|. By the definitions of A and B, we have

H (k|(j|l> <e((AUB)CTH < (1 -0) (k‘€|1>|B| ' <k'|€|1>|A|’

where e((A U B)C*!) denotes the number of edges that contains k — 1 vertices in C' and
one vertex in AU B. Thus, we get |%| < |A] + |B| — «|B|, which gives that a|B| <

|A| +|B| — |%| <enby (6.2). So |B| < anand [A| > |%| — |B| > |%]| — an. O

We will build four disjoint matchings M;, My, M3, and M, in H, whose union gives
the desired near perfect matching in H. Let r =n mod k and 1 < r < k — 1. Note that

7] = 5. Fori e [3], let A; = A\ V(UjeM;) and C; = C'\ V(UjeM;) be the sets of

uncovered vertices of A and C, respectively. Let n; = |V(H) \ V(UcM;)| and note that

n; =r mod k.

Step 1. Small matchings My and My covering B.

We build the first matching M; on vertices of B U C of size ¢ only if ¢ := |}] — |A] >
0. Note that it is possible that ¢ < 0 — in this case M; = (). By Proposition 6.9, we
know that t = [7] — |A] < an. Since 6x_1(H) > [7]| and by the definition of ¢, we have
k1 (H[BUC]) > t. Since |C| < [@L we have |B| = n — |C| —|A] > |}] — |4] =t
We pick arbitrary ¢ disjoint (k — 1)-sets from C. Since C' is an independent set, each of the
(k — 1)-sets has at least ¢ neighbors in B, so we can choose a matching M of size t.

Next we build the second matching M, that covers all the vertices in B\ V(M;). For
each v € B\ V(M;), we pick k — 2 arbitrary vertices from C not covered by the existing
matching, and an uncovered vertex v € V to complete an edge and add it to Ms. Since

Op—1(H) > |%] and the number of vertices covered by the existing matching is at most

k|B| < kan <[], such an edge always exists.

Our construction guarantees that each edge in M; U M, contains at least one vertex

from B and thus |[M; U M| < |B|. We claim that |A;[ > "~ and [Ay| > "~". To see the
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bound for |A;|, we separate two cases depending on t. When ¢ > 0, since |M;| = t, we have

n—r n—r—klM| mng—r
Al = —t= = )

Otherwise ¢ < 0, we have n; = n and |A;| = |A| > ®F = "=, For the bound for |A;|, since

each edge of M, contains at most one vertex of A, we have

ny—r

Nog — T

|Ag| > |Ay] — [ M| > r

— [My] =

Let s := [Ay] — "3+ > 0. Since ny = n — k|M; U M| > n — k|B| > n — kan and
IC] > (1— e)@ (Proposition 6.9), we get
n—kan—r (k—1)

s<n-—|C| - k: <e ’ " Lan+1<2an.

Step 2. A small matching Ms.

Starting with M3 = ), we will greedily add at most 2an edges to M3 from A, U Cy until

nz—r

we have [As| — %= € {0,1}. Indeed, throughout the process, denote by n’ the number of

uncovered vertices of H and denote by A’, C’ the set of uncovered vertices in A, C, respec-

’

tively. Let ¢ = [A'| — *. If ¢ > k — 1, then we arbitrarily pick k& — 1 vertices from A’
and a vertex from A’ U C’ to form an edge. As a result, |A'| — “=* decreases by k — 1 or
k—2. If ¢ < k — 1, then we pick ¢ vertices from A’, k — ¢ — 1 vertices from C’, and form an

edge with some vertex from A’ U C’. In this case, |A’| — % decreases by ¢ or ¢ — 1. The

iteration stops when |A’| — % becomes 0 or 1 after at most [ 5] < s < 2an steps. Note

that we can always form an edge in each step because the number of covered vertices is at

most k|B| + k- 2an < 3kan < §x_1(H). So we get a matching Mj; of at most 2an edges.

Step 3. The last matching My.
Now we have two cases, |As| — "2~ = 0 or 1. In the first case, we will find a matching

M, of size |A3| which leaves r vertices in C5. In the second case, we will find a matching My
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of size |As| — 1 which leaves one vertex in Az and r — 1 vertices in C5. Note that in either
case we are done since M = M; U My U M3 U M, is a matching that covers all but r vertices
of V(H).

We define A and C} as follows. If |A3| — = 0, we let A, = A3 and obtain Cj
by deleting arbitrary r vertices from Cs. Otherwise, we obtain A} by deleting one arbitrary
vertex from Az and obtain CY by deleting r — 1 arbitrary vertices from Cj. Note that in both

cases, we have |Af| — LZIC{,I = 0, which implies |C%| = (k — 1)|A%|. Furthermore, we have
, n n
|A5| > |A] — |[My U My| — M3 —1> L%J —an—an—2an—12> {EJ — ban,

because |M; U Ms| < |B| < an and |M;] < 2an.

Let m := |A}|. Next, we partition C4 arbitrarily into k — 1 parts C*,C?, ... C*!
of the same size m. We want to apply Theorem 6.8 on the k-partite k-graph H' :=
H[AL, CY ... C* 1. Let us verify the assumptions. First, since C% is independent, for
any set of k — 1 vertices vy,...,v;_; such that v; € C? for i € [k — 1], the number of its

non-neighbors in AU B is at most

(k—1)n

Al +1Bl - | 7| < T+

— L%J < en < 2kem,

where we use (6.2) and the last inequality follows from m = [4}] > [ %] — 5an > £tn. So

we have 613 (H') > m — 2kem = (1 — 2ke)m. Next, by (6.1), for any v € A5, we have

o €l i (i) m)*! k1
d < < < =
egH(v,C)_oz<k_1 _a(k_l)!_oz k= 1) _a(k—l)! acpm™
where ¢ = ( —;. This implies that d;13(H') > (1 — ac,)m*~!. Thus, we have
Sy (HYm + Spppy (H )M 1 > (1 — aeg)m*'m + (1 — 2ke)mm* ™! > gmk

By Theorem 6.8, we find a perfect matching My on V(H') = A5 U CY. O
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PART 7

DECISION PROBLEM FOR PERFECT MATCHINGS IN DENSE
K-UNIFORM HYPERGRAPHS

7.1 Introduction

The question of whether a given k-graph H contains a perfect matching is one of the
most fundamental questions of combinatorics. In the graph case k = 2, Tutte’s Theorem [71]
gives necessary and sufficient conditions for H to contain a perfect matching, and Edmonds’
Algorithm [11] finds such a matching in polynomial time. However, for & > 3 this problem
was one of Karp’s celebrated 21 NP-complete problems [26]. Since the general problem is
intractable provided P # NP, it is natural to ask conditions on H which make the problem
tractable or even guarantee that a perfect matching exists. One well-studied class of such

conditions are minimum degree conditions.

7.1.1 Perfect matchings under minimum degree conditions

Given a k-graph H with a set S of d vertices (where 1 < d < k — 1) we define degy(.S)
to be the number of edges containing S (the subscript H is omitted if it is clear from the
context). The minimum d-degree 64(H) of H is the minimum of degy(S) over all d-vertex
sets S in H. We refer to 0,1 (H) as the minimum codegree of H.

Over the last few years there has been a strong focus in establishing minimum d-degree
thresholds that force a perfect matching in a k-graph. In particular, Rodl, Rucinski and
Szemerédi [63] determined the minimum codegree threshold that ensures a perfect matching
in a k-graph on n vertices for large n and all £ > 3. The threshold is n/2 — k + C, where
C € {3/2,2,5/2,3} depends on the values of n and k. In contrast, they proved that a
k-graph H on n vertices satisfying 051 (H) > n/k + O(logn) contains a matching of size

n/k — 1 (one edge away from a perfect matching). We improved this result in Chapter 6 by
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Figure 7.1. Space Barrier for k = 3

showing that d,_1(H) > n/k — 1 suffices. The following construction, usually called space

barrier, shows that this is best possible.

Construction 7.1 (Space Barrier). Let V' be a set of size n and fix S C'V with |S| < n/k.

Let H be the k-graph whose edges are all k-sets that intersect S.

Note that the minimum codegree of H is |S| and any matching in Construction 7.1 has

at most |S| edges.

Let PM(k,0) be the decision problem of determining whether a k-graph H with
dk—1(H) > on contains a perfect matching. Given the result of [63], a natural question
to ask is the following: For which values of § can PM(k, d) be decided in polynomial time?
This holds for PM(k, 1/2) by the main result of [63]. On the other hand, PM(k, 0) includes
no degree restriction on H at all, so is NP-complete by the result of Karp [26]. Szymariska
[67] proved that for § < 1/k the problem PM(k,d) admits a polynomial-time reduction to
PM(k,0) and hence PM(k, ) is also NP-complete. Karpinski, Ruciriski and Szymariska
showed that there exists € > 0 such that PM(k,1/2 — ¢€) is in P and asked the complexity
of PM(k,d) for § € [1/k,1/2).

Problem 7.2. [27] What is the computational complexity of PM(k, ) for 6 € [1/k,1/2)?

Recently, Keevash, Knox and Mycroft [31] gave a long and involved proof that shows
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PM(k,0) is in P for any 6 > 1/k that leaves only PM(k, 1/k) unknown. Moreover, they
also constructed a polynomial-time algorithm to find a perfect matching provided one exists.
They [30] also expected that it would be difficult to solve the decision problem for § = 1/k, as
n/k is the minimum codegree threshold at which a perfect fractional matching is guaranteed,

so there is a clear behavioral change at this point. In this chapter, we give a short proof that

shows PM(k, d) is in P for all § > 1/k and thus solve Problem 7.2 completely.

Theorem 7.3. Fiz k > 3. Let H be an n-vertex k-graph with 6;_1(H) > n/k. Then there is
an algorithm with running time O(n3k2*5k), which determines whether H contains a perfect

matching.

The proof of Theorem 7.3 follows the approach of [31], from which we use several
definitions and results. The heart of the algorithm in that paper was a structural theorem
[31, Theorem 1.10], which was proved by partitioning the k-graph H into a number of k-
partite k-graphs, before finding a perfect matching in each of these k-partite k-graphs by
using a theorem of Keevash and Mycroft [34]. Our main improvement is to replace this
by a new structural theorem (Theorem 7.12) which significantly simplifies the argument in
[31], and which applies in the exact case dy_1(H) > n/k (the structural theorem of [31]
only applied for é;_1(H) > n/k + o(n)). This already provides a polynomial-time algorithm
deciding the existence of perfect matchings, and a faster algorithm as claimed in Theorem
7.3 is obtained by combining Theorem 7.12 with ideas from [31]. Our proof of Theorem 7.12
uses a lattice-based absorbing method which does not need the hypergraph regularity lemma
or the main result of [34]. This novel approach, which combines the powerful absorbing
technique with the ‘divisibility barrier’ structures considered in [34], may well be useful for

other matching problems in hypergraphs.

7.1.2 Lattice-based constructions

It is shown in [34] that a k-graph H has a perfect matching or is close to a family of
lattice-based constructions termed “divisibility barriers”. The following examples of divisi-

bility barriers were given in [63].
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Figure 7.2. Constructions 7.4 and 7.5 coincide when k = 3

Construction 7.4. Let X and Y be disjoint sets such that | X UY| = n and |X]| is odd,
and let H be the k-graph on X UY whose edges are all k-sets which intersect X in an even

number of vertices.

Construction 7.5. Let X and Y be disjoint sets such that | X UY| =n and | X|—n/k is
odd, and let H be the k-graph on X UY whose edges are all k-sets which intersect X in an

odd number of vertices.

To see why there is no perfect matching in Construction 7.5, note that a perfect matching
has n/k edges, intersecting X in n/k (mod 2) number of vertices. Since |X|# n/k (mod 2),
a perfect matching does not exist. To describe divisibility barriers in general, we make the

following definition. In this chapter, every partition has an implicit order on its parts.

Definition 7.6. Let H be a k-graph and let P be a partition of V(H) into d parts. Then
the index vector ip(S) € Z¢ of a subset S C V(H) with respect to P is the vector whose

coordinates are the sizes of the intersections of S with each part of P, namely, ip(S)x =

SN X| for X € P. Furthermore,
(i) Ip(H) denotes the set of index vectors ip(e) of edges e € H, and

(i1) Lp(H) denotes the lattice (i.e. additive subgroup) in Z¢ generated by Ip(H).
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A dwvisibility barrier is a k-graph H which admits a partition P of its vertex set V'
such that ip(V) ¢ Lp(H); To see that such an H contains no perfect matching, let M
be a matching in H. Then ip(V(M)) = > .\ ir(e) € Lp(H). But ip(V) ¢ Lp(H), so
V(M) # V', namely, M is not perfect. For example, to see that this generates Construction
7.4, let P be the partition into parts X and Y; then Lp(H) is the lattice of vectors (x,y) in
Z? for which z is even and k divides x + y, and |X| being odd implies that ip(V) & Lp(H).

7.2 The Main structural theorem

We need the following definitions from [31] before giving the statement of our structural

theorem.
Definition 7.7. [31] Suppose L is a lattice in 7.

(i) We say that i € Z¢ is an r-vector if it has non-negative coordinates that sum to r. We

write w; for the ‘unit’ 1-vector that is 1 in coordinate j and 0 in all other coordinates.
(i) We say that L is an edge-lattice if it is generated by a set of k-vectors.

for the lattice generated by all k-vectors. So L%, = {x € Z¢ :

(i1i) We write L2 € ax

k divides 3 ;g i}
(iv) We say that L is complete if L = L% . otherwise it is incomplete.
(v) A transferral is a non-zero difference u; —u; of 1-vectors.

(vi) We say that L is transferral-free if it does not contain any transferral.

(vit) We say that a set I of k-vectors is tull if for every (k—1)-vector v there is some i € [d]

such that v+u; € I.
(viii) We say that L is full if it contains a full set of k-vectors and is transferral-free.

We recall the following construction [31, Construction 1.6] in the case when k = 4.
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Construction 7.8. [31] Let P = {Vi, V4, V3} be a partition of vertex set |V| = n, with
Vil = n/3 =2, [Va| = n/3 and |V3] = n/3 4+ 2. Fiz some vertex x € V,, and let H be the
4-graph such that E(H) consists of all k-sets e with ip(e) = (3,0,1),(0,3,1),(0,0,4),(2,2,0)

or (1,1,2) and all k-sets e containing x with ip(e) = (0,1, 3).

Note that 63(H) = n/3 — 4. It is not hard to see that ip(V) € Lp(H) but H does not
contain a perfect matching. Indeed, if a matching M in H does not contain any edge e with
index vector (0,1, 3), then |V(M)N V| — |[V(M)NVi| =0 (mod 3). Otherwise M contains
an edge with index vector (0,1, 3), thus we have |V (M)NV,| —|V(M)NVi| =1 (mod 3). In
either case, M is not perfect since |V5| — |V4| = 2. In fact, as shown in [31], ip(V) € Lp(H)
holds for any P of V(H). Thus, having a divisibility barrier is not a necessary condition for
H not containing a perfect matching.

Note that when we determine if ip(V) € Lp(H), we are free to use any multiple of
any vectors i € Ip(H). But in Construction 7.8, all edges e with ip(e) = (0,1,3) contain
x, thus a matching in H can only contain one edge with index vector (0, 1,3). So although
ip(V) € Lp(H), there is no perfect matching. Thus, it is natural to consider the following

robust edge-lattice such that for every k-vector i € I;;(H), there are many edges e such that
i'p(@) =1i.
Definition 7.9 (Robust edge-lattices). Let H be a k-graph and P be a partition of V(H)

into d parts. Then for any u > 0,

i) I5(H) denotes the set of all i € Z% such that at least u|V(H)|* edges e € H have
P
ip(e) =1.
(i) L5 (H) denotes the lattice in 2 generated by Ih(H).
We will show that there exists a partition P of V(H) and p > 0, such that if ip(V) €
L%(H), then H contains a perfect matching. Indeed, even a weaker condition suffices. If we

can find a small matching M such that ip(V\V(M)) € LL(H[V\V(M)]) = L% (H), then we

can apply our proof above to show that H[V \ V(M)] contains a perfect matching M’. Thus
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M UM’ is a perfect matching of H. Note that we can guarantee L'y (H[V \V(M)]) = L (H)
by selecting p ‘wisely’” and requiring that M is small. The following definitions are essentially

from [31]. The only difference is that a full pair defined in [31] has at most k& — 1 parts.
Definition 7.10. [31] Let H be a k-graph.

(i) A full pair (P, L) for H consists of a partition P of V(H) into d < k parts and a full

edge-lattice L C Zg.

(i) A (possibly empty) matching M of size at most |P| — 1 is a solution for (P,L) (in H)
if ip(V(H) \ V(M)) € L; we say that (P, L) is soluble if it has a solution, otherwise

insoluble.

The following lemma provides a partition Py such that we can develop the absorbing
lemma on the pair (Py, Lip,(H)) for some p > 0. For a small enough p > 0, I, (H) is full.
However, the pair (Py, L, (H)) may not be full because it may contain transferrals. Then
we will obtain a full pair (P, Lé;(,) (H)) from the pair (Py, Lp (H)) by iteratively merging
parts that contain transferrals.

We call that a vertex u is (3,1)-reachable to a vertex v if there are at least Bn~1
(tk — 1)-sets S such that both H[S U u] and H[S U v] have perfect matchings. We say a
vertex set U is (f3,1)-closed if any two vertices u,v € U are (f,i)-reachable to each other.

For two partitions P, P’ of a set V', we say P refines P’ if every vertex class of P is a subset

of some vertex class of P’.

Lemma 7.11. Given an integer k > 3, for any 0 < v < 1/k, suppose that 1/n < {B, p} <
v. Then for each k-graph H on n vertices with 0y_1(H) > n/k —~n, we find partitions Py =
(Vi,....Va} and Py = {V{,..., VY of V(H) in time O(n® ¥ satisfying the following

properties:
(i) Po refines Py and (P, L%(,)(H)) is a full pair,

(i) each partition set of Py or P} has size at least n/k — 2yn,
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(iii) for each D C V(H) such that ip; (D) € L’;)(,)(H), we have ip,(D) € Ly (H),
(i) for each i € [d], V; is (8,2%1)-closed.

Given integers n > k > 3, let H,,, be the collection of k-graphs H such that there is a
partition of V(H) = X UY with n/k — | X| is odd and all edges of H intersect X at an odd
number of vertices. Note that the members of H,, ; are subhypergraphs of the k-graphs in
Construction 7.5 and thus none of them has a perfect matching.

Now we are ready to state our main structural theorem.

Theorem 7.12. Fiz an integer k > 3. Suppose
I/ng < {B, p} < v < 1/k.

Let H be a k-graph on n > ng vertices such that 0,_1(H) > n/k with Py and P}, found by
Lemma 7.11. Then H contains a perfect matching if and only if the full pair (P, L%(,)(H))
is soluble and H ¢ H,, k.

We first prove the forward implication. The following lemma from [31] says that we can
omit the condition on the size of M when considering solubility. Although the definition of

full pairs is slightly different in [31], the same proof works in our case.

Lemma 7.13. [31, Lemma 6.9] Let (P, L) be a full pair for a k-graph H, where k > 3. Then
(P, L) is soluble if and only if there exists a matching M in H such that ip(V(H)\V(M)) €
L.

Proof of the forward implication of Theorem 7.12. If H contains a perfect matching M, then
ip (V(H)\V(M)) =0 ¢ L%(,)(H). Since (Pé,L%(,)(H)) is a full pair, by Lemma 7.13, it is

soluble. Furthermore, H ¢ #,,; because no member of H,, ;, contains a perfect matching. [

The proof of the backward implication is more involved. For this purpose, we develop
a lattice-based absorbing method. In order to use the absorbing method, we need to reserve

O(logn) vertices for our absorbing matching and then look for an almost perfect matching
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in the remaining k-graph H’. But an almost perfect matching may not exist if H’ is close
to the space barrier (Construction 7.1). This means that our absorbing technique works
only if H is not extremal (not close to the space barrier). So we separate the proof into an
extremal case and a non-extremal case and then handle the extremal case separately. More
precisely, we say that H is y-extremal if V(H) contains an independent subset of order at
least (1 —~)%2n. By picking constants 0 < 7, < 1/k such that e = 11k~, the backward

implication follows from the following two theorems immediately.

Theorem 7.14. For any 0 < v < 1/k, suppose that 1/n < {B,u} < ~v. Let H be a
k-graph on n vertices such that 6x—1(H) > n/k — yn with Py and P} found by Lemma 7.11.
Moreover, assume H is not 11ky-extremal and (Pé,L%(,)(H)) is soluble, then H contains a

perfect matching.

Theorem 7.15. For any 0 < € < 1/k and sufficiently large integer n the following holds.
Suppose H is a k-graph on n wvertices such that 6y_1(H) > n/k and H is e-extremal. If

H ¢ M, then H contains a perfect matching.

Note that we only need that (P, L’;(,)(H )) is soluble in the non-extremal case and H ¢
H, 1 in the extremal case.

Let us compare our method and the traditional absorbing method and outline our proof
of Theorem 7.14. The absorbing method, initialed by Rodl, Ruciiski and Szemerédi [60], has
been shown efficient in finding spanning structures in graphs and hypergraphs. For example,
in order to get a perfect matching in a k-graph H, it is first shown that any k-set has many
absorbing sets in H. Then we apply the probabilistic method to find a small matching that
can absorb any (much smaller) collection of k-vertex sets.

However, with potential divisibility barriers, we cannot guarantee that every k-vertex
set can be absorbed in general unless the minimum codegree is at least (1/2 + y)n. In
this chapter, we develop a lattice-based absorbing method to overcome this difficulty. More
precisely, we first find a partition Py = {V4,...,Vy} of V(H) such that any two vertices from

the same V; are reachable to each other (property (iv) of Lemma 7.11). Then we build our
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absorbing matching that can absorb any k-set S with index vector ip,(S) € Ip (H). After
applying the almost perfect matching theorem (Theorem 7.16), we will have only & vertices
left unmatched. Then the solubility condition guarantees that we can release some edges
from the partial matching such that the set of unmatched vertices can be partitioned into
k-sets Si,...,Sq for some constant d” such that ip,(S;) € I (H), so we can absorb them
by the absorbing matching and get a perfect matching of H.

The rest of the chapter is organized as follows. We prove Theorem 7.14 in Section 7.3
and prove Theorem 7.15 in Section 7.4, respectively. We show the algorithms and prove

Theorem 7.3 in Section 7.5.

7.3 The Non-extremal Case
In this section we prove Theorem 7.14.

7.3.1 Tools
Theorem 6.4 easily implies the following theorem.

Theorem 7.16. Suppose that 1/n < v < 1/k and n € kN. Let H be a k-graph on n
vertices with 6p_1(H) > n/k —~yn. If H is not 5ky-extremal, then H contains a matching

that leaves k vertices uncovered.

Although we are one step away from a perfect matching after applying Theorem 7.16, it
is not easy to finish the last edge (in many cases impossible). Let us introduce the following

definition and result in [31].
Definition 7.17. Suppose L is an edge-lattice in Z/F!, where P is a partition of a set V.
(i) The coset group of (P, L) is G = G(P,L) = LI /L.

(i) For any i € L7l the residue of i in G is Rg(i) =i+ L. For any A C 'V of size
divisible by k, the residue of A in G is Rg(A) = Ra(ip(A)).

Lemma 7.18. [31, Lemma 6.4] If k > 3 and L is a full lattice, then |G(P,L)| = |P]|.
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Suppose [ is a set of k-vectors of Z% and i is an I-vector with & < [ < k? such that i can

be written as a linear combination of vectors in I, namely,

i= Zavv. (7.1)

We denote by C' = C(d, k, I) as the maximum of |ay|, v € I over all possible i.
Fix an integer ¢« > 0. For a k-vertex set S, we say a set T is an absorbing i-set for S
if |T'| =i and both H[T| and H[T U S] contain perfect matchings. Now we may state our

absorbing lemma.

Lemma 7.19 (Absorbing Lemma). Suppose
I/n< /e {B,u} < 1/k,1/t,

and define C' as above. Suppose that Py = {V1,...,V4} is a partition of V(H) such that
for i € [d], Vi is (B,t)-closed. Then there is a family Fups of disjoint tk*-sets with size at
most clogn such that H[V (F)] contains a perfect matching and every k-vertex set S with
ip,(S) € Ip, (H) has at least 2k*C" absorbing th*-sets in Fops.

We postpone the proof of the absorbing lemma to the end of this section and prove the

main goal of this section, Theorem 7.14 first.

7.3.2 Proof of Theorem 7.14

Proof of Theorem 7.14. Fix 0 < v < 1/k. Suppose
I/n <1/e <A{B, pn} <.

Let H be a k-graph on n vertices such that d;_i(H) > n/k — yn with Py and P}, found by
Lemma 7.11 satisfying properties (i)-(iv). Moreover, assume that H is not 11ky-extremal
and (Pé,L;éé(H)) is soluble. Let Py = {V4,...,V4} and Py = {V/,..., V) } and note that
d < d <k by (ii). We first apply Lemma 7.19 on H with ¢t = 2*~! and get a family F,s of
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281 k-sets with size at most clogn such that every k-set S of vertices with ip,(S) € I, (H)
has at least 2k*C absorbing 2¥~1k%-sets in Fps.

Since (P, L;‘D(,) (H)) is soluble, there exists a matching M; of size at most d’ — 1 such that
ip (V(H)\ V(M) € L“(,)(H). Note that V' (M;) may intersect V(Fups), but M; can only
intersect at most k(k — 1) absorbing sets of Fg;s. Let Fy be the subfamily of F;s obtained
from removing the 2 1k2%-sets that intersect V(M;). Let My be the perfect matching on
V' (Fo) that consists of perfect matchings on each member of Fy. Note that every k-set S of
vertices with ip,(S) € Ip (H) has at least 2k*C' — k(k — 1) absorbing sets in Fy.

Now we switch to Py. We want to ‘store’ some edges for each k-vector in I, (H) for
future use. More precisely, we find a matching M, in V/(H) \ V(Mo U M;) which contains C
edges e with ip,(e) = i for every i € I, (H). So |Ms| < (**4=1)C and the process is possible
because H contains at least un® edges for each k-vector i € I3 (H) and |V (MyUM;UM,)| <

2-1k2clogn + k(k — 1) + ("1 C < pn.

Let H := H[V(H) \ V(MyU M; U M,)]. Note that |V(H')| > n — un. So
Op—1(H') Z 6p1(H) — pn 2 n/k —2yn = (1/k — 27)|V(H')].

Moreover, if H' is 10kvy-extremal, namely, V (H'’) contains an independent subset of order at

least

-1 -1
) > (1 1)

(1= 10k LV (H)| 2 (1 10k)

then H is 11k~y-extremal, a contradiction. Now we can apply Theorem 7.16 on H' with
parameter 2 in place of v and find a matching Mj; covering all but a set Sy of k vertices of
V(H’). Note that we can absorb Sy by Fy and get a perfect matching of H immediately if

ip,(S0) € Ip,(H) (however, this may not be the case).

Now we step back to the full pair (P, L%(,)(H )). Instead of index vectors, we consider

the residues of Sy and all edges in the matching My U M3 with respect to Pj. Recall
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that ip, (V(H) \ V(M,)) € L%(,)(H). Note that, since Py refines Pf, the index vectors of
all edges in M, are in I“(,)(H). So we have ip, (V(H) \ V(M; U My)) € L%(,)(H), namely,
Ra(V(H)\ V(My U My)) = 0+ Ly, (H). Thus,

Y. Rale) + Ra(So) = 0+ Ly, (H).

e€ MoUMs3

Suppose R (Sp) = vo + L“(,)(H) for some vo € L%, and we get

Y Rale) = —vo+ Li, (H).

e€c MoUM3

Claim 7.20. There exist edges eq, . ..,eq € My U Ms for some d” < d — 1 such that

> Rales) = —vo+ Ly, (H).

ic[d”]
Proof. We follow the proof of [31, Lemma 6.10]. Fix any set of edges ej,...,e; € My U Mj
for [ > d’, consider [ + 1 partial sums Ziem Rg(e;) for 7 =0,1,...,1, where the sum equals
0+ L“(,)(H) when 7 = 0. Since G = G(P, L) is a group, the sums are still in G. By Lemma
7.18, |G| = |Pj| = d', then by the pigeonhole principle two of the partial sums must be equal,
that is, there exist 0 <1y <ly <Isuch that }, _,.; Ra(e;) = 0+L“6(H). So we can delete

them from the equation. We can repeat this process until there are at most d’ — 1 edges. [

So we have >, ipy(€:) +ipy(So) € L“é(H). Let D :=J
|D| = kd" + k < k(d' — 1)+ k < k*. At last, we switch to (P, L} (H)) again and finish

iefar € Y Sp satisfying that

the perfect matching by absorption. Since ip (D) € L%é(H ), by Lemma 7.11 (iii), we have

ip, (D) € Lip (H). Thus, we have the following equation

iPo (D) = Z ayVv,

VEI7’;O (H)

where a, € Z for all v € I;; (H). Since the equation above is a special case of equation (7.1),



122

we have |ay| < C for all v € Ij, (H). Noticing that a, may be negative, we can assume
ay = by — ¢y such that one of by, c, is a nonnegative integer and the other is zero for all

v € I (H). So, we have

Z eV +ip, (D) = Z byv.

veI;;O (H) vel;;o (H)

This equation means that given any family J consisting of disjoint ) ¢, k-sets eY, ... ey C
V(H)\ D for v € Iy, (H) such that ip,(e}’) = v for all i € [c,], we can regard V(F) U D as
the union of b, k-sets SY,..., Sy, such that ip,(SY) = v, j € [by] for all v € I}, (H). Since
¢y < C for all vand V(M) N D = (), we can pick the family F as a subset of M. Thus, we
regard V(F)UD as at most (Hj:_l)Cij: < kFC k-sets S with ip, (S) € I, (H). Note that by
definition, D may intersect at most £—1 absorbing sets in F;, which cannot be used to absorb
those sets we obtained above. Since each k-set S has at least 2k*C — k(k—1) > k*C' +k—1
absorbing sets in Fy, we can absorb them by F; greedily and get a perfect matching of

H. [l

7.3.3 Proof of the Absorbing Lemma

Claim 7.21. Suppose V; is (3,t)-closed for alli € [d]. Then any k-set S with ip,(S) € I (H)

has at least é’%nt’# absorbing tk?-sets.

Proof. For a k-set S = {y1,...,yx} with ip,(S) € I} (H), we construct absorbing tk*-sets for
S as follows. We first fix an edge e = {z1,...,2;} in H such that ip,(e) = ip,(S) € Ip (H)
and e N S = (). Note that we have at least un® — kn*=t > %nk choices for such e. Without
loss of generality, we may assume that for all i € [k], z;,y; are in the same partition set of
Py. Since w; is (8, t)-reachable to y;, there are at least Sn'*~! (tk — 1)-sets T; such that both
H[T;Ux;] and H|[T; Uy;] have perfect matchings. We pick disjoint reachable (tk — 1)-sets for
each x;,y;, © € [k] greedily, while avoiding the existing vertices. Since the number of existing
vertices is at most tk? + k, we have at least gntk_l choices for such (tk — 1)-sets in each

step. Note that each of eUT; U---UT} is an absorbing set for S. First, it contains a perfect
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matching because each T;Ux; for i € [k] spans t disjoint edges. Second, H[eUT U---UT,US]
also contains a perfect matching because e is an edge and each T; U y; for i € [k] spans ¢

disjoint edges. So we find at least %ntk? absorbing tk2-sets for S. m

Proof of Lemma 7.19. We pick a family F of tk2-sets by including every tk?-set with prob-
ability p = cn log n independently, uniformly at random. Then the expected number of

) < ;= logn and the expected number of intersecting pairs of tk%-sets

2 2

of M 9 n c*(logn)
. . < —————=90(1).
b (tk?) th (tk2 - 1) ="y o(1)

Then by Markov’s inequality, with probability 1 — 1/(tk?) — o(1), F contains at most clogn

elements in F is p(tZ?

1s at most

sets and they are pairwise vertex-disjoint.
For every k-set S with ip,(S) € I (H), let X5 be the number of absorbing sets for S
in F. Then by Claim 7.21,

pB* e pBclogn
Ok+1 o Ok+1

E(Xs) > p
By Chernoft’s bound,

P (s < 380X ) < o {18000 | < o {000 = o

because 1/c < {3, u}. Thus, with probability 1—o(1), for each k-set S with ip,(S) € I, (H),

there are at least

uBkclogn

Sirs > 2kFC

1
§]E(XS) >

absorbing sets for S in F. We obtain F, s by deleting the elements of F that are not

absorbing sets for any k-set S and thus |Fus| < |F| < clogn. O

7.3.4 Proof of Lemma 7.11

In this subsection we prove Lemma 7.11. Our main goal is to build a partition P =

{Vi,...,Vq} of V(H) for some d < k such that every V; is (3,2%!)-closed for some 3 > 0.
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For any v € V(H), let Ns;(v) be the set of vertices in V (H) that are (f,7)-reachable to v.

Proposition 7.22. Suppose H is a k-graph on n vertices satisfying 6p—1(H) > (1/k — v)n.
For >0 and any v € V(H), |Na1(v)| > (1/k — v — 2kla)n.

Proof. First note that &,_1(H) > (1/k — v)n implies that & (H) > (1/k —v)(7-}). Fix a

vertex v € V/(H), note that for any vertex u, u € Ny, (v) if and only if | Ny (u) N Ny (v)| >

an®~1. By double counting, we have

INg ()0 (H) < > degyg(S) < [Naa(v)] - [Nu(v)] +n - an® .
SGNH( )
Thus, [Nai(v)] > Gt (H) — 25 > (1/k — 7 — 2Kla)n as [N (v)] > 6i(H) > (1/k -
(). 0

The following lemma provides the partition Py in Lemma 7.11. Note that it does not

require the minimum codegree condition.

Lemma 7.23. Given 0 < a < 6,0, there exists constant > 0 satisfying the following.
Assume an n-vertex k-graph H satisfies that |Na,(v)| > 0'n for any v € V(H) and 6,(H) >
§(7~1). Then we can find a partition Py of V(H) into Vi, ..., Vg withd < min{[1/5], |1/¢']}
such that for any i € [d], |Vi| > (8’ — a)n and V; is (B,21/%17Y)-closed in H, in time

O(n26*1k+1)'
We will use the following simple result from [49] to prove Lemma 7.23.

Proposition 7.24. [49, Proposition 2.1] For €, > 0 and integer i > 1, there exists Sy > 0
and an integer ng satisfying the following. Suppose H is a k-graph of order n > ng and there
exists a vertex x € V(H) with |Ng,;(z)| > en. Then for all0 < B’ < Bo, Ngi(x) € Nar i1 ().

Proof of Lemma 7.23. Let ¢ = |1/6] (then (¢ +1)6 —1 > 0) and ¢ = «a/c. We choose

constants satisfying the following hierarchy

In<f=PF1 KPer<< << Po<e(c+1)d—1.
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Throughout this proof, given v € V(H) and i € [c — 1], we write Ny, oi(v) as Ny(v)
for short. Note that for any v € V(H), |No(v)| = |Ng1(v)| > [Naa(v)| > 6'n because
Bo < a. We also say 2-reachable (or 2'-closed) for (8;,2%)-reachable (or (f;,2")-closed).
By Proposition 7.24 and the choice of f5;’s, we may assume that NZ<U) C NZ'_H(U) for all
0<i<c—1andallveV(H). Hence, if W C V(H) is 2'-closed in H for some i < ¢ — 1,
then W is 2¢"-closed.

Recall that two vertices u and v are l-reachable to each other if |Ny(u) N Ng(v)| >
Bon*~1. We first note that any set of ¢ + 1 vertices in V(H) contains two vertices that are
I-reachable to each other because §;(H) > 5(2:}) and (c+1)0 — 1 > 2k!5,. Also we can
assume that there are two vertices that are not 2¢~!'-reachable to each other, as otherwise
V(H) is 2¢!-closed and we get a trivial partition Py = {V(H)}.

Let d be the largest integer such that there exist vy,...,vq4 € V(H) such that no pair
of them are 2°t1~“-reachable to each other. Note that d exists by our assumption and
2 <d<c¢=11/d] by our observation. Fix such vy,...,vs € V(H), by Proposition 7.24, we
can assume that any two of them are not 2 ?-reachable to each other. Consider Nc_d(vi)

for all i € [d]. Then we have the following facts.

(i) Any v € V(H) \ {v1,...,v4} must be in N._y4(v;) for some i € [d], as otherwise

v,v1,...,0y contradicts the definition of d.

(il) |Ne_a(vi)NNe_a(v;)| < en because v;, v; are not 2¢+1~%-reachable to each other. Indeed,

otherwise we get at least

1

c—dk_ c—dk_ c—dk_ —d c—dk_ c+1—dk_
mﬁn(ﬁc—dHQ ' ) (B gn® T =27 k™ ) > B gn? !

reachable (2¢7179k — 1)-sets for v;, v;, which means that they are 2¢"'~%reachable, a
contradiction.

Note that (i) and [Ne_g(v;)| > |No(v;)| > 6'n for i € [d] imply dé'n — (9Yen < n. So we have
d < (14 d*)/d'. Since € < a < ¢, we have d < |[1/¢’] and thus, d < min{|1/4], [1/']}.
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For i € [d], let U; = (No_g(v;) U {v:}) \ Ujean i N,_4(v;). Note that for i € [d], Uj is
2¢=4_closed. Indeed, if there exist u;,us € U; that are not 2°~%reachable to each other, then
{ug,ug} U ({v1,...,v4} \ {v;}) contradicts the definition of d.

Let Uy =V (H)\ (U U---UUy). By (i) and (ii), we have |Up| < (g)en. We will move
vertices of Uy greedily to U; for some i € [d]. For any v € Uy, since |No(v)\Uy| > 6'n—|Uy| >
den, there exists i € [d] such that v is 1-reachable to at least en vertices in U;. In this case
we add v to U; (we add v to an arbitrary U; if there are more than one such 7). Let the
resulting partition of V (H) be V4, ..., Vy. Note that we have |V;| > |U;| > | Ne_q(v;)| — den >
|No(v)| — cen > (8’ — a)n. Observe that in each V;, the “farthest’ possible pairs are those
two vertices both from U, which are (2°~¢ 4 2)-reachable to each other. Thus, each V; is

(267 + 2)-closed, so 2¢~!-closed because d > 2.

We estimate the running time as follows. First, for every two vertices u,v € V(H), we
determine if they are 2i-reachable for 0 < i < ¢ — 1. This can be done by testing if any
(2°k — 1)-set S € (V(ZL\E’”}) is a reachable set for u and v, namely, if both H[S U {u}] and
H[S U {v}] have perfect matchings or not, which can be checked by listing every set of 2°
edges on them, in constant time. If there are at least ﬁinQik_l reachable (2°k — 1)-sets for
v; and v;, then they are 2i-reachable. Since we need time O(n>” '*~1) to list all 2°"'k — 1
sets for all pairs u, v of vertices, this can be done in time O(nzc_lkﬂ). Second, we search the
set of vertices vy, ..., v such that no pair of them are 2¢t1~%-reachable to each other for all
2 < d < ¢. With the reachable information at hand, this can be done in time O(n¢). We
then fix the largest d as in the proof. If such d does not exist, then we get Py = {V(H)}
and output Py. Otherwise, we fix any d-set vy, ..., vq such that no pair of them are 2¢+'—-
reachable to each other. We find the partition {Uy, Uy, ...,Us} by identifying Nc,d(vi) for
i € [d], in time O(n). Finally we move vertices in Uy to Uy, . . ., Uy, depending on | No(v) NUj|
for v € Uy and i € [d], which can be done in time O(n?). Thus, the running time for finding

a desired partition is O(n2" k1), O

Proof of Lemma 7.11. Fix 0 < v < 1/k. We apply Lemma 7.23 with o < v, § = 1/k — 7,
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and ¢’ = 1/k — v — 2kla and get § > 0. Suppose

1/n < {f po} <7, 27",

Let H be a k-graph on n vertices satisfying d,_1(H) > (1/k —v)n. By Proposition 7.22, for
any v € V(H), Ny1(v) > (1/k —~ — 2kla)n = &'n. Since we also have d,(H) > (5(2:1), we
apply Lemma 7.23 on H and get a partition Py = {V4,...,Vy} of V(H) in time O(n?" 'F+1).
Note that |V;| > (6’ — a)n > (1/k — 2)n for all ¢ € [d] because o < . Also we know that
d < |1/8§] =k and each Vj is (3, 281)-closed.

k+d—1

Let K = (k+1)%!. We pick a constant u such that K- )Mo < pu < pp and
K
Ly (H) = Ly ™ (H). (7.2)

Indeed, it suffices to pick such a p so that Iy (H) = I;;é K(H). This means that we will not
‘witness’ more vectors even if we loosen our selection parameter y by a factor K. Note that

1L¢ .| = ("Hh). So if I (H) # Igg/K(H), we pick po/K as the new candidate, check it

and repeat until we get the desired pu. Note that in each intermediate step for some p’, we

witness at least one new vector in 17‘;;/ K(H ). So the process will terminate in at most (Hfj_l)

steps and the resulting value p satisfying p > K 7(“571);10. Note that we find p in constant
time and we have the same hierarchy of constants after replacing py by .

It is possible that (P, L, (H)) contains transferrals. We merge V; and V; into one
vertex set if the transferral u;, —u; appears in L‘f,o (H) and repeat until there is no transferral
in the resulting pair, denoted by (P, L%(,)(H)), where P) = {V/,...,V,} for some d < d < k.
Note that we get P}, from Py in time O(n¥). Indeed, we merge parts at most d — 1 times
and in each step, we identify the set of robust edge vectors by visiting all edges of H and

then determine if any transferral appears in the lattice in constant time. Thus, overall, we

find the pair (P}, L%(,)(H)) in time O(n*).

Claim 7.25. Fiz 1 > 0. Given a partition Py = {V1,...,Vip,|} such that u; —uy € LY, (H)
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and let Py be the partition obtained from merging Vi, Vs of Py. Then for any D C V(H)
such that ip; (D) € L%i(H), we have ip, (D) € L%(k’“)(H).

Proof. For any vector v with respect to Py, let v|p/ be the projection of v on Pj, which is
a vector with respect to Pj. Let D C V(H) be any vertex set such that ip/ (D) € L%1<H)'
So we have the equation ip/ (D) = ZV,EI;%(H) ayVv', where ay, € Z for all v/ € [7‘;{([{).
Note that for each v € I {(H ), there exist at most k + 1 vectors v; € LIP such that
vilp; = v'. Thus, by the pigeonhole principle, there exists v € 17’;{ (k1) (H) such that
vlpr = v Let iy = ZV,GI;;{(H) ayv, which is a |D|-vector in L‘f)/l(kﬂ)(H). Note that
ip, (D)|p; = ip/(D) = ig|p;. This implies that ip, (D) = iy or ip, (D) — iy equals a multiple
of u; —uy. Since w; —uy € L (H), we have ip, (D) — iy € L (H) and thus ip, (D) =

ip, (D) — g + g € L& "V (H). 0

Now let us show Lemma 7.11 (iii). Fix any D C V(H) such that ip (D) € L%(,)(H).
We apply Claim 7.25 d — d' times and get that ip (D) € L%(Hl)dﬂl (H). Since pu/K <
K
H) = Ly (H) = Ly, (H).

d—d’(

) (k + 1) < i, by (7.2), we get ip, (D) € L+

It remains to show that (7P, L;;(/)(H )) is a full pair for H. Indeed, since (P, L;;(/)(H )
is transferral-free, it remains to show that Ig(,)(H ) is full. Assume to the contrary, that
there exists a (k — 1)-vector v such that v + u; ¢ I“(,)(H) for all ¢ € [d']. Note that since
v+u; ¢ ]“6(H), there are less than pun” edges e in H with ip;(e) = v + u;. So there are
less than d'un® edges that contain some (k — 1)-set with index vector v. But since there

are at least (minjg[_d'l] |VJ{|) (k — 1)-sets with index vector v and &y 1(H) > n/k — yn, the

n/k—2yn
k—1

number of such edges is at least + (% — yn) (minjlf[_d’l] |Vf/|) > (2 —n) (

: ) > d'un*, a

contradiction. O

7.4 The Extremal Case

Our goal of this section is to prove Theorem 7.15. We remark that the k-graphs in
Construction 7.4 do not appear in our proof because they achieve smaller minimum codegrees

than those k-graphs in Construction 7.5 if k is even and Construction 7.4 and Construction
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7.5 are the same if k is odd. A main ingredient of our proof is Theorem 6.8, a result of

Pikhurko (see Chapter 6).

7.4.1 Preliminary and the proof of Theorem 7.15

Fix a sufficiently small ¢ > 0. Let n be a sufficiently large integer. Suppose H is a
k-graph on n vertices such that dx_1(H) > n/k and H ¢ H,, . Assume that H is e-extremal,
namely, there is an independent subset S C V/(H) with |S] > (1 — €)% n. Let o = €'/3. We

partition V' (H) as follows. Let C' be a maximum independent subset of V(H). Define

A= {xe V\C : deg(z,C) > (1—@)(k|?|1)}, (7.3)

and B=V(H)\ (AUC). We first observe the following bounds of |A|, |B|, |C].

Claim 7.26. |A| > n/k — o®n, |B| < a’n, and (1 —¢) (k‘—kl)n <ol < (k—kl)n.

Proof. The lower bound for |C| follows from our hypothesis immediately. For any S C C' of
order k — 1, we have N(S) C AU B. By the minimum degree condition, we have

(k—1)n

R (7.4)

L <IN <A +1Bl=n—|C] < T +¢

which gives the upper bound for |C|. By the definitions of A and B, we have

%(]J(i'l) <e((AUB)CH Y < (1-a) (,J(i'l) | B| + (,f'l) Al

where e((AU B)C*~1) denotes the number of edges that contain k — 1 vertices in C' and one
vertex in AUB. Thus, we get n/k < |A|+|B|—«|B|, which gives that «|B| < |A|+|B|—n/k <
en by (7.4). So |B|] < o?n and by (7.4) again, |A| > n/k — |B| > n/k — o*n. O

The partition which we will work on in this section is P = (AU B, C). For 0 <i < k,
we say an edges e is an i-edge if [eN (AU B)| = i. We remark that as mentioned before, since

H is close to the space barrier, it is rather ‘fragile’ — even the bad choice of one edge may
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lead the remaining k-graph into the space barrier, so we cannot use the robust edge-lattice
and apply the discussions in Section 7.3.

Let us list our auxiliary lemmas.

Lemma 7.27. Fiz any even 2 <i < k. Assume that |[AUB| > n/k+1i—1 and H contains
no j-edge for all even 0 < j < i —2. If H contains an i-edge, then H contains a perfect

matching.

Lemma 7.28. Fiz any even 0 <i < k. If |[AUB| =n/k+1 and H contains no j-edge for

all even 0 < 7 <1, then H contains a perfect matching.

Lemma 7.29. If H contains no j-edge for all even 0 < j < k and H ¢ H,, then H

contains a perfect matching.

We postpone the proofs of these lemmas to the following subsections and prove Theorem

7.15 first.

Proof of Theorem 7.15. The proof of Theorem 7.15 runs in an algorithmic way as follows.
The case when |[AU B| = n/k is covered by Lemma 7.28 with i = 0. Next by Lemma 7.27, if
|AUB| > n/k+1 and there is a 2-edge in H, then H contains a perfect matching. So we may
assume that H contains no 2-edge. Consider any (k — 1)-set S with |S N (AU B)| = 2, since
there is no 2-edge, we get N(S) C AU B and thus |[AUB| > n/k+2. By Lemma 7.28 again,
if |AU B| = n/k + 2 and H contains no 2-edge, then H contains a perfect matching. So we
can assume that |[AU B| > n/k + 3 and H contains no 2-edge. If H contains one 4-edge,
then by Lemma 7.27, H has a perfect matching. After |k/2] iterations, we can assume that
H contains no j-edge for all even 0 < j < k. In this case, by Lemma 7.29, we find a perfect

matching provided that H ¢ H,, . O

7.4.2 Proof of Lemma 7.27

Fix any even 2 < i < k. Assume that |[AU B| > n/k+i— 1 and H contains no j-edge

for all even 0 < 5 < i — 2. Assume that H contains an i-edge.
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Let us first outline our proof. Our main goal is to remove a small matching M that
covers every vertex in B such that the sets of remaining vertices A\ V(M) and C' \ V(M)
satisfy |C'\ V(M)| = (kK —1)|A\ V(M)|. Then we partition C'\ V(M) into k — 1 parts
and apply Theorem 6.8 and get a perfect matching on V(H) \ V(M). So we get a perfect
matching of H.

Roughly speaking, since |P| = 2, the ‘divisibility’ is reduced to ‘parity’, which means
that if we need to ‘repair’ the divisibility, one edge is enough. An i-edge ey will be such
edge for repairing — we will add ey to our matching at the very beginning of our proof. But
the divisibility barrier may not appear, in which case, choosing ey, makes the parity bad.
However, we cannot foresee this at the beginning. So at some intermediate step, if we find
out that we made the wrong decision, we just free ey from our partial matching and the
parity will be good again (in this case, the parity was good at the beginning).

Now we start our proof. We separate two cases.
Case 1. i = 2 and there is a 2-edge ey such that |eg N A| = |eg N B| = 1.

Let x = egN B. Since C' is a maximum independent set, there exists a (k—1)-set S, C C
such that e, := x U S, € E(H). Note that S, \ eg may intersect ey N C. We reserve S, for
future use, which means, we will not use its vertices later until the very last step.

We will build four disjoint matchings My, My, M3, and M, in H, whose union gives the
desired perfect matching in H. Fori € [3], let A; = A\V (UjcM;) and C; = C'\V (UjepM;)

be the sets of uncovered vertices of A and C, respectively. Let n; = |V(H) \ V(U;e3M;)|.

Step 1. Small matchings My and My covering B.

Let t :=n/k —|A|. We let M; = {eg} if t < 0. Otherwise, we build the first matching
M; of size t + 1 as follows. By Claim 7.26, we know that ¢t = n/k — |A] < a’n. By
dk—1(H) > n/k and the definition of ¢, we have d;_1(H[B UC]) > t. Since |C| < @ -1,
we have |B| =n—|C| = |A| >n/k—|A|+1=t+ 1.

We claim that we can find a matching of ¢ 1-edges in (BUC) \ (egU S,). Let M; be the

union of these edges and ey. Indeed, we pick ¢ arbitrary disjoint (k — 1)-sets S, ..., S; from
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C\ (egUS,). Since C' is an independent set, each of S; has at least ¢t — 1 neighbors in B\
for ¢ € [t]. Consider the bipartite graph between B\ z and {51, ..., S;}, in which we put an
edgeif vUS; € E(H) for v € B\ z and i € [t]. By the Konig-Egervary Theorem, either we
have a matching of size ¢ (then we are done), or there is a vertex cover of order ¢ — 1. Since
the degree of any 51, ..., S; is at least £ — 1 in the auxiliary bipartite graph, the vertex cover
must be in B\ x, denoted by B’ (of order ¢ — 1), and every vertex in B’ is adjacent to all S;
for i € [t]. Now consider (k — 1)-sets in C'\ (U, Si U €0 U Sy). If our claim does not hold,
namely, there is no ¢ disjoint 1-edges, then all these (k — 1)-sets are adjacent to all vertices

in B’. Note that |C'\ (U,ciqSi Ueo USy)| > |C] — (K — 1)t — 2k > (1 — 2ka?)|C|, because

1€t

t < a’n < 2a?|C]. So for any v € B’, we have

aes,) (1 _kzzia12>|0|> > (- 2n oy () > -0 (),

as « is small enough. This contradicts the fact that v ¢ A. So the claim holds.

Next we build the second matching M, that covers all vertices in B \ V(M;). For each
v € B\ V(M,), we pick k — 2 arbitrary vertices from C'\ S, not covered by the existing
matching, and an uncovered vertex in V' to complete an edge and add it to Ms. Since
dx—1(H) > n/k and the number of vertices covered by the existing matching is at most

k|B| < ka?n < 6,_1(H), such edge always exists.

Our construction guarantees that each edge in M; U M, contains at least one vertex
from B and thus |M; U M,| < |B|. We claim that |A;| > ny/k and |As| > na/k. To see the
bound for |A;|, we separate two cases depending on t. When ¢ > 0, by the definition of M,

we have

n TL—]{?|M1| 1
A= —t—1=——A 11
Al == k .

Otherwise t < 0, we have n; =n — k and |A;| =|A| —1 > n/k —1 =n,y/k. For the bound

for |As|, since each edge of M contains at most one vertex of A, we have

ny

k

no

|Ag| > |Ay| — | M| > .

|My| =
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Let s := |Ay| — no/k > 0. Since ny = n — k|M; U My| > n — k|B| > n — ka*n and
IC| > (1— e)(k_Tl)" (Claim 7.26), we get
n—ka*n _ (k—1)

s<n-—|C| - ’ <e€ ? n+a2n§2a2n.

Step 2. A small matching Ms.

We will construct a matching M3 of size at most 2a’n on Ay U (Cy \ S;) such that
|As| — n3/k € {0,—1}. To see that this is possible, at some intermediate step, denote by
n' as the number of uncovered vertices of H and denote by A’, C’ as the sets of uncovered
vertices in A, C'\ S, respectively. Let ¢ = |A'| —n'/k. If ¢ > 0, then we arbitrarily pick
two vertices from A’, k — 3 vertices from C” and one vertex from A’ U C’ to form an edge.
Note that we pick a 2-edge or a 3-edge in each step. As a result, ¢ decreases by 1 or 2.
The iteration stops when ¢ becomes 0 or —1 after at most s < 2a%n steps. Note that we
can always form an edge in each step because the number of covered vertices is at most

k|B| + k- 2an < 3ka’n < §;_1(H). So we get a matching M; of at most 2a’n edges.

Step 3. The last matching M.

Now we have two cases, |As| — ng/k = —1 or 0. In the former case, we delete the
edge ey from M; and add e, to M;. Note that this is possible because S, C C3. Let the
resulting sets of uncovered vertices be Aj, C%, respectively. Also let nj := |A5| 4+ |CY| = ns.
So |A;| = |As| + 1 and we have |A5| — ni/k = 0, that is, |Cf] = (K — 1)|A}]. In the latter
case we let A, = A3 and Cf = C5. We have |C4| = (k — 1)|A}| immediately. By definition,

we have

|AL| > |A] — [My U My| — 3|Ms| > n/k — o®n — o®n — 6a*n > n/k — 8a’n,

as |M; U M| < |B| < a?n and |M;| < 2a%n.
Let m := |A}|. Next, we partition C4 arbitrarily into k — 1 parts C*,C?, ... C*!

of the same size m. We want to apply Theorem 6.8 on the k-partite k-graph H' :=
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H[AL, C, ... C* . Let us verify the assumptions. First, since C} is independent, for
any set of k — 1 vertices vy,...,vx_1 such that v; € C? for i € [k — 1], the number of its
non-neighbors in AU B is at most

Al +|Bl —n/k <n k—l—&w—n k < kem,
| k

where we use (7.4) in the first inequality and the last inequality follows from m = |A}| >
n/k — 8a’n > £ln. So we have djp1y(H') > m — kem = (1 — ke)m. Next, by (7.3), for

any v € A}, we have

k-1
= o e (k)"
d < < < < =
egH(U’C)—O‘(k—1 S S oy S ey T o
where ¢, = % This implies that d;13(H') > (1 — ac,)m*. Thus, we have

m*,

N o

Sy (HYm + Sy (H)m ™ > (1 — aep)m*'m + (1 — ke)mmF~ >

as € is small enough. By Theorem 6.8, we find a perfect matching in H’, which gives the

perfect matching M, on A5 U CY%. So My U My U M3 U My gives a perfect matching of H.

Case 2. i = 2, there is a 2-edge ¢y and there is no 2-edge e such that |[e N A| = |[eN B| = 1;

or ¢ is even with 4 < ¢ < k and there is an 7-edge ey.

We first observe the following fact.

Fact 7.30. Assume that H contains no 2-edge e such that e N A| = |e N B| = 1, then for
any (k — 1)-tuple S with |SN B] =1 and |SNC| =k — 2, we have deg(S,C) > n/k — a’n.

Proof. Since there is no such 2-edge, N(S) C BUC. By the minimum degree condition and
|B] < a?n by Claim 7.26, we have deg(S,C) > n/k — o’n. O

Note that Fact 7.30 works under either assumption in this case. This simplifies Step 1

— we only need to build one matching. But for uniformness, we set M, = () in this case.
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Step 1. A small matching My covering B.

We build M as follows. First we add the i-edge ey to M;. By Fact 7.30 and |B| < o’n,
we greedily pick a matching M’ of | B| 1-edges from BU(C'\ ). Assume that |egNB| = j < i.
If j > 0, denote the vertices by x1,...,2; € egN B and let S, ..., S, be the (k —1)-sets in
C that form edges ey, ...,€,; With x1,...,7; in the matching M’, respectively. As in Case
1, we will reserve S;, \ e, ..., Sz, \ €o for future use. If j = 0, we add all edges of M’ to M;.
Otherwise, we add the |B| — j edges of M’ that do not contain zy,...,z; to M;. So we have
|My| =|B|+1—3j.

We claim that |A;| > ny/k. Recall that

|JAUB|>n/k+i—1=m/k+|M|+i—1=ny/k+|B|+i—}j.

Since |eg N A| =i — j, we have,

[ A = Al = (1 = 7) = [AU B| = |B] = (i = j) = m/F.

Since My = (), we have |Ay| > ny/k.

So s :=|Ay| — ny/k > 0 and as in the previous case, s < 2a’n.

Step 2. A small matching Ms.

We will construct a matching Ms of 2-edges and 3-edges with size at most 2a’n on
Ay U (Co\ (Sg U---US,;)) such that |Az] —ng/k € {0,1 —i}. Similar as in Case 1, if we
add a 2-edge (or a 3-edge) to Mj, then the value of ¢ decreases by 1 (or 2), respectively. So
if there is one 2-edge, we can construct Mj; of size at most s such that |As| — ng/k =0 (we
can choose to include or exclude this 2-edge in Mj). So if we cannot have |As| — n3/k =0,
then there is no 2-edge in H[A; U (Cy \ (S, U---US,,))] and s is odd. In this case we add
(s +1i—1)/2 disjoint 3-edges to M3 and therefore |A3| — n3/k = 1 —i. Note that we always
can form 2-edges or 3-edges similarly as in Case 1. So we get a matching M3 of at most

s < 2a’n edges.
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Step 3. The last matching M.

Now we have two cases, |A3] —n3/k = 1 — i or 0. In the former case, we delete the
i-edge eg from M and add the edges e,,,...,e,; to My (if j > 0). Let the resulting sets
of uncovered vertices be Aj, C4, respectively. Also let njy := |A5| + |C4| = ns + k — jk. So
|AL] = |As| + i — j and we have |A5| — ns/k = 0, namely, |C}| = (K — 1)|A}]. In the latter
case we let A, = A3 and Cf = C5. We have |C4| = (k — 1)|A}| immediately. By definition,

we have
|A5| > |A| = |My| = 3|Ms| > n/k — a®*n — (a’n+ 1) — 6a’n > n/k — 9a’n,

as |[M;| < |B|+1 < a’n+1and |M;| < 2a%n.

Let m := |A}]. We partition C% arbitrarily into k — 1 parts C*,C?, ... C*1 of the
same size m. We apply Theorem 6.8 on the k-partite k-graph H' := H[A}, Ct, ... CF1]
and get a perfect matching in H’, which gives the perfect matching M, on A5 U C%. So

My U My U Ms U My gives a perfect matching of H. We omit the similar calculations.

7.4.3 Proofs of Lemma 7.28 and Lemma 7.29

Proof of Lemma 7.28. Fix any even 0 < i < k. Assume that |AU B| = n/k + i and H
contains no j-edge for all even 0 < j < ¢. If i = 0, then we have |[AU B| = n/k and
|IC| = %n By the minimum degree condition, every k-set containing exactly k — 1 vertices
in C' is an edge of H. Thus, we partition V(H) into n/k such k-sets and get a perfect
matching of H. So we may assume ¢ > 2.

Since there is no i-edge, we can take an (i+ 1)-edge e such that |egNA| =i+ 1. Indeed,
we take i vertices from A and k —i — 1 vertices from C' and another vertex to form an edge.
Since H contains no i-edge and |B| < a?n < n/k, we can pick the last vertex from A and
get the desired (i + 1)-edge eo.

Next by Fact 7.30, we find a matching of |B| 1-edges that covers all vertices of B. Let

A’ and ' be the set of uncovered vertices of A and C, respectively. Note that we have
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|A'|=n/k+i—|B|—(i+1)=n/k—|B|—1and

kE—1

1C'| = n—i—(k—i—1)—(k—1)|B|=(k—1)|A".
So as in the previous proofs, we partition C” arbitrarily into & — 1 parts, apply Theorem 6.8

and get a perfect matching on A’ U C’. Thus, we get a perfect matching of H. O

Proof of Lemma 7.29. Assume that H contains no j-edge for all even 0 < j < k and H ¢
H, k. Since there is no 2-edge, by Fact 7.30, we find a matching M; of |B| 1-edges that
covers all vertices of B. Let C” be the set of uncovered vertices of C. Let n’ = |A|+ |C’| and

note that n'/k =n/k — |B|. Let

s:=|Al—n'/k =]A|+|B|—n/k=|AUB| —n/k.

So 0 < s < en by (7.4). Moreover, we claim that s is even. Indeed, since all edges of H
intersect A U B in an odd number of vertices, if s is odd, then H € H,,, a contradiction.
We greedily pick a matching M, of s/2 disjoint 3-edges, which is possible because s < en
and 0,_1(H) > n/k. Let Ay and C5 be the set of vertices not covered by M; U Ms. As in
the previous proofs, we have |Cy| = (k —1)|A2|. We partition Cy arbitrarily into k — 1 parts,
apply Theorem 6.8 and get a perfect matching M3 on A, UC5. So we get a perfect matching
My U My U M; of H. O

7.5 Algorithms and the proof of Theorem 7.3

7.5.1 A straightforward but slower algorithm

Let L,qq be the lattice generated by all two dimensional k-vectors with first coordinate
odd, that is, (1,k—1),(3,k—3),...,(k—1,1)if kis even, and (1,k—1),(3,k—3),...,(k,0)
if k is odd. It is easy to see that L,y is full. To check if a k-graph H € H,,j, we find the
bipartitions P of V(H) such that ip(e) € Lyqq for every e € H. We use the algorithm Proce-

dure ListPartitions in [31]. The following lemma [31, Lemma 2.2] estimates the computation
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complexity of Procedure ListPartitions (although [31, Lemma 2.2] was proved under the
codegree condition d;_1(H) > n/k+ yn, we can weaken the codegree condition as explained

in [31, Remark 2.3]).

Lemma 7.31. [31] Suppose H is an n-vertex k-graph with dx_1(H) > n/k — 2k(k —2). For
any d € [k] and full edge-lattice L C Z%, there are at most d**~! partitions P of V(H) such

that ip(e) € L for every e € H, and Procedure ListPartitions lists them in time O(n**1).

By Theorem 7.12, the straightforward way to determine the existence of a perfect match-

ing is to check if (P}, L;;(,)(H)) is soluble and if H ¢ H,, .

Theorem 7.32. Fiz k > 3. Let H be an n-vertex k-graph with dx_1(H) > n/k. Then
there is an algorithm with running time O(n2k_lk+1), which determines whether H contains

a perfect matching.

Proof. Let H be an n-vertex k-graph with 6;_1(H) > n/k. Note that it is trivial to determine
the existence of a perfect matching if n < ng given by Theorem 7.12. Our algorithm contains
two parts when n > ng. First we find the partition Py and P} and check if (P}, L;‘%(H )) is
soluble. Second, we check if H ¢ H,, ;. If both answers are ‘true’, then H contains a perfect
matching by Theorem 7.12.

By Lemma 7.11, we find Py and P} in time O(n?" "#*1). To check the solubility, we
check if ip, (V(H)\V(M)) € L#,(,)(H)) for each matching M of size at most k — 1, which can
be done in time O(n**~V). To check if H € H,, 1, by Lemma 7.31 with d = 2 and L = Lo,
we find the bipartitions for Lo4q in time O(n**1). Then for each bipartition P = {V, V5}, we

check if n/k—|V4| is odd in constant time. Thus, the overall running time is O(n2" *+1). [

7.5.2 A faster algorithm

An s-certificate for H is an insoluble full pair (P, L) for which some set of s vertices
intersects every edge e € H with ip(e) ¢ L. Note that if a full pair (P, L) is soluble, then it

is not an s-certificate for any s. Recall that we allow the partition of a full pair to have &
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parts and in contrast, the partition of a full pair in [31] has at most k£ — 1 parts. Modifying

the proof of [31, Lemma 8.14], we can get the following lemma.

Lemma 7.33. [31] Suppose that k > 3 and H is a k-graph such that there is no 2k(k — 2)-

certificate for H. Then every full pair for H is soluble.
Now we give the following structural theorem.

Theorem 7.34. Suppose 1/ny < {f,u} < v < 1/k. Let H be a k-graph on n > ng
vertices such that 6p_1(H) > n/k with Py and P} found by Lemma 7.11. Then the following

properties are equivalent.
(i) H contains a perfect matching.
(i1) There is no 2k(k — 2)-certificate for H.
(1ii) The full pair (P}, L%(,)(H)) is soluble and H ¢ Hp .

Proof. We will show that (i) = (it) = (i7i) = (i). Note that the proof of (i) = (i7) is the
same as the forward implication of proof of Theorem 7.12 and (#ii) = (i) by Theorem 7.12.
It remains to show (ii) = (4i7). Assume that there is no 2k(k — 2)-certificate for H, then by
Lemma 7.33, every full pair for H is soluble.

Since (P, L%(,)(H )) is a full pair, it is soluble. Second, assume to the contrary, that H €
Hn k. Then there is a partition Py = {X, Y} of V(H ) such that Lp, (H) C Lygq and | X|—n/k
is odd. Consider any (k—1)-set S with |SNX| = a for some even 0 < a < k, since H contains
no even edge and dx_1(H) > 0, we have (a+ 1,k —a—1) € Ip (H) and thus Lp,(H) = Lodq-
Also, Lp,(H) = Lyqgq is transferral-free and thus (P, Lp,(H)) is a full pair. Note that by
definition, the first coordinate of each i € Ip,(H) is odd and thus for any (z,y) € Lp, (H),
we have k | (x +y) and 2 = (z + y)/k (mod 2). So ip, (V) = (|X|,|Y]) ¢ Lp,(H) because
| X|—n/k is odd. Moreover, fix any edge e of H with ip,(e) = (a, k—a) for some odd a € [k],
then ip, (V\e) = (|X|—a, |Y|—k+a) ¢ Lp, (H) because | X|—a—(n—k)/k = |X|—-n/k—a+1
is odd. So for any matching M of size at most 1, ip, (V(H) \ V(M)) ¢ Lp,(H). Thus,

(Py, Lp,(H)) is an insoluble full pair, a contradiction. O



140

Proof of Theorem 7.3. Let H be an n-vertex k-graph with dx_1(H) > n/k. Note that it is
trivial to determine the existence of a perfect matching if n < ngy given by Theorem 7.34.
If n > ng, by Theorem 7.34, to determine if H contains a perfect matching, we only need
to search the existence of a 2k(k — 2)-certificate for H. This can be done by Procedure
DeterminePM constructed in [31]. We estimate the running time as follows. There are at

2k(k=2) choices of sets S, and these can be generated in time O(n?*®*=2)). Also, there

most n
are only a constant number of choices for d and L, and these can be generated in constant
time. For each choice of S,d and L, we apply Procedure ListPartitions on H[V \ S] and
then add the vertices of S arbitrarily to the partition we obtained. This generates the list
of partitions P in time O(nf*1) by Lemma 7.31. Furthermore, the number of choices for P
is constant, and for each one it takes time O(n**~1) to check the existence of the matching

M of size at most d — 1 such that ip(V(H) \ V(M)) € Lp(H). Note that k(k —1) > k+ 1

for all k£ > 3 and the total running time is O(n2**-2+kk=1)) — O (p3k*~5k) O
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PART 8

MINIMUM VERTEX DEGREE THRESHOLD FOR C;-TILING

8.1 Introduction

As a natural extension of the matching problem, tiling has been an active area in the
past two decades (see surveys [44, 58]). Much work has been done on the problem for graphs
(k = 2), see e.g., [16, 3, 39, 45]. In particular, Kithn and Osthus [45] determined ¢;(n, G),
for any graph G, up to an additive constant. Tiling problems become much harder for
hypergraphs. For example, despite much recent progress [1, 8, 35, 36, 47, 63, 69], we still do
not know the 1-degree threshold for a perfect matching in k-graphs for arbitrary k.

Other than the matching problem, only a few tiling thresholds are known. Let K} be
the complete 3-graph on four vertices, and let K3 —e be the (unique) 3-graph on four vertices
with three edges. Recently Lo and Markstrom [49] proved that to(n, K3) = (1 + o(1))3n/4,
and independently Keevash and Mycroft [34] determined the exact value of ty(n, K3) for
sufficiently large n. In [50], Lo and Markstrom proved that to(n, K3 —¢e) = (1 + o(1))n/2.
Let C3 be the unique 3-graph on four vertices with two edges. This 3-graph was denoted by
K3} —2ein [7], and by Y in [23]. Here we follow the notation in [41] and view it as a cycle on
four vertices. Kiithn and Osthus [41] showed that t5(n,C}) = (1 + o(1))n/4, and Czygrinow,
DeBiasio and Nagle [7] recently determined t5(n,C?) exactly for large n. In this chapter we
determine t;(n, C3) for sufficiently large n. From now on, we simply write C3 as C.

Previously we only knew ¢,(n, K3) [36, 47] and ¢,(n, K}) [35] exactly, and ¢, (n, K3) [1],
t1(n, K3(m)) and t;(n, Ki(m)) [49] asymptotically, where K} denotes a single k-edge, and
KF(m) denotes the complete k-partite k-graph with m vertices in each part. So Theorem 8.1

below is one of the first (exact) results on vertex degree conditions for hypergraph tiling.

Theorem 8.1. Suppose H is a 3-graph on n vertices such that n € 4N is sufficiently large
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and

5, (H) > (" ) 1) - (22”) + §n+c(n), (8.1)

where ¢(n) = 1 if n € 8N and c¢(n) = —1/2 otherwise. Then H contains a perfect C-tiling.

Proposition 8.2 below shows that Theorem 8.1 is best possible. Theorem 8.1 and Propo-

sition 8.2 together imply that ¢1(n,C) = (") — (%2") + 2n+c(n).

Proposition 8.2. For every n € AN there exists a 3-graph of order n with minimum vertex

degree (";1) — (%2") + %n + ¢(n) — 1, which does not contain a perfect C-tiling.

Proof. We give two constructions similar to those in [7]. Let V = AUB with [A] = & —1
and |B| = 2% 4+ 1. A Steiner system S(2,3,m) is a 3-graph S on n vertices such that every
pair of vertices has degree one — so S(2,3,m) contains no copy of C. It is well-known that
an S(2,3,m) exists if and only if m = 1,3 mod 6.

Let Hy = (V, Ep) be the 3-graph on n € 8N vertices as follows. Let Ey be the set of all
triples intersecting A plus a Steiner system S(2, 3, %n +1) in B. Since for the Steiner system
S(2,3, 2n+1), each vertex is in exactly 2n/2 = 2n edges, we have & (Hy) = (",") — (%n) +3n.
Furthermore, since B contains no copy of C, the size of the largest C-tiling in Hy is |A| = §—1.
So Hj does not contain a perfect C-tiling.

On the other hand, let H; = (V, E4) be the 3-graph on n € 4N\ 8N vertices as follows.
Let G be a Steiner system of order %n + 4. This is possible since %n +4=1 mod 6. Then
pick an edge abc in G and let G’ be the induced subgraph of G on V(G) \ {a,b,c}. Finally
let E; be the set of all triples intersecting A plus G’ induced on B. Since G is a regular

graph with vertex degree 2(3n+4—1) = 3n+ 2, we have that 6,(G') = n+2 -3 =3n—

[\

Thus, 6;(H,) = (”;1) - (%n) + %n — % As in the previous case, H; does not contain a perfect

C-tiling. O]

As a typical approach of obtaining exact results, we distinguish the extremal case from
the nonexrtremal case and solve them separately. Given a 3-graph H of order n, we say that

H is C-free if H contains no copy of C. In this case, clearly, every pair of vertices has degree
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at most one. Every vertex has degree at most ”T_l because its link graph contains no vertex

of degree two.

Definition 8.3. Given € > 0, a 3-graph H on n vertices is called e-extremal if there is a set

S CV(H), such that |S| > (1 — €)2* and H|[S] is C-free.

Theorem 8.4 (Extremal Case). There exists € > 0 such that for every 3-graph H on n
vertices, where n € 4N is sufficiently large, if H is e-extremal and satisfies (8.1), then H

contains a perfect C-tiling.

Theorem 8.5 (Nonextremal Case). For any e > 0, there exists v > 0 such that the following
holds. Let H be a 3-graph on n vertices, where n € 4N 1is sufficiently large. If H is not e-

extremal and satisfies 61(H) > (1—76 — 7) (g), then H contains a perfect C-tiling.

Theorem 8.1 follows Theorems 8.4 and 8.5 immediately by choosing € from Theorem 8.4.
The proof of Theorem 8.4 is somewhat routine and will be presented in Section 8.3.

The proof of Theorem 8.5, as the one of [7, Theorem 1.5], uses the absorbing method.
More precisely, we find the perfect C-tiling by applying the Absorbing Lemma below and the

C-tiling Lemma [23, Lemma 2.15] together.

Lemma 8.6 (Absorbing Lemma). For any v > 0, there exist 8’ > 0 and an integer ng > 0
such that the following holds. Suppose H is a 3-graph on n > ngy vertices and 0,(H) >
(1/3+7)(5). Then there exists a vertez set W C V(H) with |W| < yn/2 such that for any
vertex set U C V. \ W with |U| < 'n and |U| € 4N, both H[W| and H[U U W] have perfect

C-tilings.

Lemma 8.7 (C-tiling Lemma). For any 0 < v < 1, there exists an integer ng 7 such that the

following holds. Suppose H is a 3-graph on n > ngr vertices with

() )

then H contains a C-tiling covering all but at most 2'° /v vertices or H is 2" ~y-extremal.
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We postpone the proof of lemmas later and prove Theorem 8.5 first.

Proof of Theorem 8.5. Without loss of generality, assume 0 < ¢ < 1. Let v = 2713¢. We
find 8’ by applying Lemma 8.6. Choose n € 4N which is large enough. Let H = (V, E) be a
3-graph on n vertices. Suppose that H is not e-extremal and 6,(H) > (% — 7) (Z) First we
apply Lemma 8.6 to H and find the absorbing set W with |W| < yn/2. Let H' = H[V \ W]

and n’ = n — |W/|. Note that,

Su(H) > 6,(H) — [W](n — 1) > (% - 27) (Z) > (% - 27) (’;)

Second we apply Lemma 8.7 to H' with parameter 2+ in place of v and derive that either
H' is 2"2~-extremal or H' contains a C-tiling covering all but at most 2!8 /v vertices. In the

former case, since

3n/ 3 n 3n 3n
1— 2122 o (1 — 912 —( ——) 1— 2320 (o2
( M > Myn—5)>( My =A-e
H is e-extremal, a contradiction. In the latter case, let U be the set of uncovered vertices
in H'. Then we have |U| € 4N and |U] < 2'8/y < 'n as n is large enough. By Lemma 8.6,
H[W U U] contains a perfect C-tiling. Together with the C-tiling provided by Lemma 8.7,

this gives a perfect C-tiling of H. m

The Absorbing Lemma and C-tiling Lemma in [7] are not very difficult to prove because
of the co-degree condition. In contrast, our corresponding lemmas are harder. We have
proved Lemma 8.7 in Chapter 5 (as a key step for finding a loose Hamilton cycle in 3-
graphs). In order to prove Lemma 8.6, we will use a baby version of the lattice-based
absorbing method (for a full strength of this argument, see [21]).

We prove Lemma 8.6 in Section 8.2, and prove Theorem 8.4 in Section 8.3.
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8.2 Proof of Lemma 8.6

We remark that the absorbing lemma for C-tiling can be proved under a weaker condition
01 (H) > (1/4+7)(5), which is best possible (see [22, 21]). Since the main purpose of the
proof here is to give an expository of our method, we prove it under the stronger condition
which shortens the argument and the case analysis.

For > 0, integer ¢ > 1 and two vertices u,v € V(H), we call that u is (8, 1)-reachable
to v if and only if there are at least Sn*~! (4i — 1)-sets W such that both H[u U W] and
H[v U W] contain C-factors. In this case, we call W a reachable set for u and v. A vertex
set A is (B,1)-closed if every pair of vertices in A are (3, i)-reachable. Similar definitions for

the absorbing method can be found in [49, 50].

Proposition 8.8. Suppose z,y € V' such that |Ng(z) N Ny (y)| > ’y(g), then x and y are
(7v2/9,1)-reachable to each other.

Proof. Let G = Ny(z) N Ng(y) be a graph on V, then since e(G) > ~(3), the number of

paths of length 3 in G is at least

3 (degGw)) 1 <Z degGw)) S 1 (27(2)) > 22033,
2 n 2 n 2
veV
Since each path of length 3 in G is a reachable 3-set for x and y, then the number of reachable

3-sets for z and y is at least v*n3/9, which implies that z and y are (7?/9, 1)-reachable to

each other. 0

Lemma 8.9. Suppose H is an n-vertex 3-graph. Let V| and V5 be disjoint vertex subsets of
V(H) such that both Vi and Vs are (3,c)-closed. Suppose there exist at least nn? copies F of
C such that |[V(F)NVi| = |V(F) N Vy| =2 and there exist at least nqn* copies F' of C such
that |V (F" YNV =3 and |[V(F")NVy| =1. Then Vy U Vs is (0?65, 5¢ + 1)-closed in H.

Proof. Fix vertex-disjoint F, F’ in H which are copies of K satisfying the assumptions in

the lemma. Pick any vertex x € V(F')NV; and y € V(F)NVa, and note that V(F)\{y} and
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V(F")\ {z} both have two vertices in V] and one vertex in V5. Label them as V(F)\ {y} =
{v1,v9,v3} and V(F) \ {y} = {v], v}, v4} such that vy, ve,v], vy € V] and vs,v§ € V4. Since
each V; is (3, ¢)-closed, there are at least 3n’“~! reachable (4c—1)-sets for (v;,v!) and i € [3].
We pick vertex-disjoint reachable sets S; for (v;, v}) and i € [3] such that they are also vertex-
disjoint with V(F') and V(F’). Let S = {vy, va,v3, v}, v, v5} U S; U Sy US; and note that
each S is a reachable set for x and y. Indeed, H[z U S| has a C-factor as the union of zv|vhv}
and v; U S; for ¢ € [3], and H[y U S] has a C-factor as the union of yv,vov3 and v, U S; for
i€ 3]

Now fix any two vertices 2’ € V; and y' € V5. Since 2/ and x are (f, ¢)-reachable,

4e=l_reachable (4¢ — 1)-sets and the same holds for 3’ and y. We pick

they have at least fn
reachable sets X and Y for them such that X,Y,S are pairwise disjoint. Observe that
Z=XUY USU/{z,y} is a reachable set for 2’ and y/. Indeed, H[Z U 2'] has a C-factor as
the union of X U {2}, SU {z} and Y U {y}, and H[Z U ¢/] has a C-factor as the union of
YU{y'}, SU{y} and X U{x}.

Note that we have at least

1N\ 5
1 — nnt . Bt S 77256n4(5c+1)_1
(4(3c+ 1)+ 1)! 2 2 -

reachable (4(5c+1)—1)-sets for 2’ and 3/, as 3 is small enough. Thus, V;UV3 is (n?3%, 5c+1)-
closed in H. O

Let H be a 3-graph on n vertices with 6;(H) > (1/3 4 ~)(;). A pair of vertices (z,y)
is called a-good if the number of pairs p € N(z) N N(y) with deg(p) > an is at least o(3).
Fix € > 0. If an edge e € H contains a pair p € (V(QH)) with deg(p) < €%n, it is called weak,

otherwise called strong. Note that the number of weak edges in H is at most (g) e2n. Let
Ve = {v € V(H) : v is contained in at least E(Z) weak edges} :

We observe that |V.| < 3en, as otherwise there are more than 3ene(})/3 = (})en weak
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edges in H, a contradiction. For any u € V' \ V,, it is adjacent to at most 3en(n — 2) edges
containing v € V., so & (H[V \ Vi]) > 61(H) — 6¢(}). Every u € V \ V. is contained in at
most E(Z) weak edges. Define subhypergraph H. on V' \ V. with E(H,.) consisting of only

strong edges. Then

51(H.) > 6,(H) — Te (Z) > (1/3+7/2) (Z)
For any v € V(H,), let Nj;(v) be the set of vertices in V(H,) that are (3,4)-reachable

to v. We have the following proposition.

Proposition 8.10. For a > 0 and any x € V(H,), |Na4(z)] > 3en.

100

Proof. Let t be the number of pairs (p,y) where p € Ny (z) and y € Ng_(p), and obviously

n

2) common neighbors

t > degy (z)-€®n. Suppose there are m vertices who have at least 1—1262(

with x. Then by double counting, we get

degy (z)-€n<t<(n—m)  —¢€ (Z) +m - degy ().

Together with §;(H,) > £ (%), we have m > 2¢2n. Therefore, there are at least 2e?n vertices

5
y with [Ny (z) N Ny (y)| > 5€*(5). Then for each such pair z and y, by Proposition 8.8,

they are (€3, 1)-reachable to each other as € is small enough. O

Lemma 8.11. There exists 3 > 1/n and a vertex set Vi of size at most €’n such that

V(H:) \ Vo is (8,6)-closed.

Proof. By 61(H.) > (1/3+7/2)(3), any three vertices z,y, z contain two vertices, say, = and
y, such that [Ny (z) N Ny(y)| > v(3), which implies that = and y are (v%/9, 1)-reachable to
each other by Proposition 8.8.

Suppose 0 < K [y <€ 1 < € < . By Proposition 7.24 and § < f < (1, we may
assume that Ng, ;(v) € Ng,2(v) € Ngg(v) for every v € V(H,). This implies that if X is
(Bi,1)-closed for ¢ =1 or 2, then X is (f3, 6)-closed.
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First if all pairs of vertices are (32, 2)-reachable, then we are done as V(H) is (fs,2)-
closed. So we may assume that there are x,y € V which are not (f,,2)-reachable to each
other. Let A and B be the set of vertices which are (31, 1)-reachable to x and y, respectively.
By Proposition 7.24, we may assume that y ¢ Ng, i(z), that is, z and y are not (3, 1)-
reachable to each other. Thus, for any vertex z € V(H,) \ {z,y}, we have z € A or z € B,
by our observation at the beginning of the proof.

For any pair u,v € A\ B, since neither u,v are (3, 1)-reachable to y, u and v must be
(B8, 1)-reachable to each other. The same holds for any pair of vertices in B\ A. Furthermore,
we have |AN B| < €3n, as otherwise there are ¢3n vertices that are (31, 1)-reachable to both
x and y, which implies that the number of reachable 7-sets for x and y is at least
e (B2 2 B
that is, z and y are (fs, 2)-reachable, a contradiction.

Let Vi = {z}U(A\ B), Vo ={y} U (B\ A) and Vo =V \ (V; UV2) = AN B. We have
showed that [Vy| < €3n. By Proposition 8.10, we know that [V, |Va| > |Ns,1(z)| — [Vo| >
|Nes 1 (2)] — €n > $e2n. Observe that both Vi and Vs are (81, 1)-closed. Next we will show
that in fact V3 U V5 is (3, 6)-closed.

Note that since 8;(H.) > (1/3+~/2)(}), there must be at least 2¢3n® edges e of H that
are crossing, namely, e NV} # () and e N V3 # ). Indeed, otherwise, note that the smaller set

of V1 and V5 has at most n/2 vertices and by averaging, it contains a vertex v that is in at

2e3n3 2¢3n3
min{|V1],|Va]|} — €2n/2

most = 4en? crossing edges. So we have that

n/2

degp, (v) < < 5

1
) + 4den® + |Vy|n < Z(Z) + 5en® < 6;(H.,),

a contradiction, where we used |Vy| < e3n. Without loss of generality, we can assume that
e, (ViViVa) > €nd.
We want to conclude the proof by applying Lemma 8.9. So let us show that we indeed

have such copies of C. First, note that four vertices zq,xs € V7 and y,y2 € V5 form a copy
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of Cif y1,y2 € Ny (z122). So the number of copies of C with exactly two vertices in V; is at

least

3 (degHe(CCQ1l'2,V2))Z 1 (Zdegm;xm,vz))

Vi
T1,72€V] ( 2 )
1 fen, (ViViVa) 6, 4
_(vll)( 2 )Zen’
2

where we used the convexity in the first inequality. Second, note that four vertices z, x|, zo €
Vi and y € V, form a copy of C if 1,29 € Ny (zy). Similarly, the number of copies of C

with exactly three vertices in V; is at least

() g ()

zeVy,yeVs
_ 1 (2€H6(V1V1V2)) > b,
[Vil[Val 2
Thus, by Lemma 8.9, VUV, = V(H,) \ V; is (B, 6)-closed as (€5)?3¢ > 3. O

Now we are ready to prove Lemma 8.6.

Proof of Lemma 8.6. Suppose we have the constants 1/n < ' < f < € < 7. Let H be a 3-
graph on n vertices with 6;(H) > (1/34v)n. We first apply the arguments at the beginning
of this section and find V.. Then we apply Lemma 8.11 and get V,. Let V' = V5 UV, and
thus |V’| < 4en. There are two steps in our proof. In the first step, we build an absorbing
family F’ such that for any small portion of vertices in V(H)\ V', we can absorb them using
members of F'. In the second step, we put the vertices in V’ not covered by any member of
F' into a set A of copies of C. Thus, the union of 7" and A gives the desired absorbing set.

We say that a set A absorbs another set B if AN B = and both H[A] and H[AU B]
contains C-factors. Fix any 4-set S = {v;,v9,v3,04} € V \ V', we will show that there
are many 72-sets absorbing S. First, we find vertices usq, us, us such that viusuzuy spans
a copy of C. Indeed, consider the link graph H,, of v; on V' \ V', which contains at least

(3+7)(G) = [VIn = (3 +7/2)(5) edges. By convexity, the number of paths of length two
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in H,, is

5 <degHU1 (x)) > (n—den— 1) (ﬁ 2. degp,, <x>>

zeV\(V'U{v1}) 2 2
1 2 1
(3 + 7/ )n) > 3

2(n—4en—1)( 5 I

where the last inequality holds because € < . Since vjususuy spans a copy of C if uguguy is

L
18

a path of length two in H,,, then there are at least -=n® choices for such usuzu,.

Second, we find reachable 23-sets C; for u; and wv;, for ¢ = 2,3,4, which is possible
because u; is (3, 6)-reachable to v;, for i = 2,3,4. Since in each step we need to avoid at
most 59 previously selected vertices, there are at least §n23 choices for each C;. In total, we
get &0 (5n?)% > Bin™ T2sets F = C,UC,UCsU{uz, uz, us} (because 3 is small enough).
It is easy to see that F' absorbs S. Indeed, H[F| has a C-factor since C; U {u;} spans six
copies of C for ¢ = 2,3,4. In addition, H[F U S] has a C-factor since vjususuy spans a copy
of C and C; U {w;} six two copies of C for i = 2,3, 4.

Let n’ = n — |V'|. We apply Lemma 2.5 with b = 72 and 3% on H[V \ V'] and get a set
W’ with [W’| € 4N and |[W’| < 723%n’ such that for any vertex subset U with U N W' = (),
|U| € 4N and |U] < 80’ both H[W’] and H[W’U U] contain C-factors.

At last, we will greedily build A, a collection of copies of C to cover the vertices in V'
only using vertices in V' \ W’. Indeed, assume that we have built a < |V'| < 4en copies of
C. Together with the vertices in W', there are at most 4a + 723%n’ < yn/2 vertices already

selected. Then at most yn?/2 pairs of vertices intersect these vertices. So for any remaining

vertex v € V', there are at least

deg(v) — yn2/2 > G + 7) (Z) —An2/2 > n)2

edges containing v and not intersecting the existing vertices. So there is a path of length
two in the link graph of v not intersecting the existing vertices, which gives a copy of C

containing v.
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We get the desired absorbing set W = V (A)UW’ satisfying |W| < 4-4en+725%n" < yn/2

which can be used to absorb a vertex set U with |U| € 4N and |U| < f'n as ' < f. O

8.3 Proof of Theorem 8.4

In this section we prove Theorem 8.4. Our proof is similar to the one of [7, Theorem

1.4]. The following fact is the only place where we need the ezact degree condition (8.1).

Fact 8.12. Let H be a 3-graph on n vertices with n € 4N satisfying (8.1). If S C V(H)

spans no copy of C, then |S| < %n.
Proof. Assume to the contrary, that S C V(H) spans no copy of C and is of size at least

%n—l— 1. Take Sy C S with size exactly %n+ 1. Then for any v € Sy, deg(v, Sp) < % = %n.

We split into two cases.
Case 8.1. n € 8N.

In this case, for any v € Sy, since deg(v, Sp) < gn, we have that

deg(v) = deg(v, Sy) + deg <v, (Z) \ (5;0)) < gn + (" ) 1) _ (%”) < 61(H),

contradicting (8.1).
Case 8.2. n € 4N\ 8N.

In this case, for any v € Sy, deg(v, Sp) < %n implies that deg(v, Sp) < %n — % because
n € 4N\ 8N. So we have

3 1 3 3n—4 3n+4

vESH

deg(v, Sp) < 22 . 384 “wwhich

However, neither 3%=% or 3”4—+4 is a multiple of 3. Thus > S i

8 vESH

implies that there exists vy € Sy such that deg(vg, Sp) < gn — % Consequently,

deg(vy) = deg(vp, Sy) + des (UO, <‘2/> \ (‘92‘))) < 271 - % + (”; 1> _ (%2”) < 5.(H),



152

contradicting (8.1). O

Proof of Theorem 8.4. Take e = 107'% and let n be sufficiently large. We write a = €'/ =
1075, Let H = (V, E) be a 3-graph of order n satisfying (8.1) which is e-extremal, namely,
there exists a set S C V(H) such that [S| > (1 — €)% and H[S] is C-free.

Let C' C V be a maximum set for which H|[C] is C-free. Define

A= {x eV \C : deg(z,C) > (1-@('2')}, (8.2)

and B=V\ (AUC). We first claim the following bounds of |A],|B|,|C].
Claim 8.13. |A| > 2(1 — 4a?),|B| < a’n and 2*(1 —¢) < |C] < 22,

Proof. The estimate on |C] follows from our hypothesis and Fact 8.12. We now estimate

|B|. For any v € C, we have deg(v,C) < ‘C|271, deg(v,C) > (|C|2—1> \CI ! By

(8.1), deg(v) < (%2") — 2n+ 4. Thus

(0 () 9)< (1) -od- (05 22
< (%2n> — (|C|2_ 1) because |C| < zn
(Zn— |o|+1) 3 <Zn+!0l —2) -

The estimate on |C| gives 3n < % < (1+2¢)(|]C| —1). Hence

dor (0. () (5)) < (Guetc141) (s 2aer- v + 1y -1)

— (—n— |O|+1> -(1+e(|C] =1) (8.3)

w

< (Zen—l—l) 1+e(]C|—1) <en-(|C|—1). (8.4)

Consequently e(CC(AUB)) < 3|C|-en- (|IC] = 1) =en- (‘g'). Together with the definition
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of A and B, we have

gaus) - e (1) <ccoavny <a-a (s ()l

so that [AU B| —en < |A| + |B| — a|B|. Since A and B are disjoint, we get that |B| < a®n.
Finally, [A| =n — |B| = |C| > n— a’n — 3n = 2(1 — 4a?). O

In the rest of the section, we will build four vertex-disjoint C-tilings Q,R,S,T whose
union is a perfect C-tiling of H. In particular, when |A| = n/4, B = 0 and |C| = 3n/4, we
have @ = R =S = () and the perfect C-tiling 7 of H will be provided by Lemma 3.9. The
purpose of C-tilings Q, R, S is covering the vertices of B and adjusting the sizes of A and C

such that we can apply Lemma 3.9 after Q, R, S are removed.

The C-tiling Q. Let Q be a largest C-tiling in H on BU C and ¢ = |Q|. We claim that
|B|/4 < q < |B|. Since C contains no copy of C, every element of Q contains at least one
vertex of B and consequently ¢ < |B|. On the other hand, suppose that ¢ < |B|/4, then
(BUC)\ V(Q) spans no copy of C and has order

Bl +1C|] —4q > |B| +|C| - [B] = |C].

which contradicts the assumption that C' is a maximum C-free subset of V(H).
Claim 8.14. ¢+ |A] > 7.

Proof. Let | = 2 —|A|. There is nothing to show if { < 0. If | = 1, we have [BUC| = 3n+1,
and thus Fact 8.12 implies that H[B U C] contains a copy of C. Thus ¢ > 1 = and we are
done. We thus assume [ > 2 and | > ¢ > |B|/4, which implies that |B| < 4({ —1). In this
case |B| > 2 because |C| < 3n.

For any v € C, by (8.3), we have deg(v, BC) < (3n —|C|+1) - (1 +¢€)(|C| — 1). By
definition, 3n —|C| = |A] + |B| — 2 = |B| — I. So we get

e(BCC) < %IC| G” — 10+ 1) (1+e(C]=1) =1 +e)(|B] -1+ 1)('3').
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Together with |B| < 4(1 — 1), this implies

e(BCC) > (1B — (1 +¢)(|B| — 1 + 1))('2')

~ (-1 - ('3

> (1+e)(l—1) —4e(i — 1)) ('g') —(1-3)(—1) (’g'). (8.5)

On the other hand, we want to bound e(BCC') from above and then derive a contra-
diction. Assume that @’ is the maximum C-tiling of size ¢’ such that each element of Q'
contains exactly one vertex in B and three vertices in C'. Note that ¢’ > 1 because C' is a
maximum C-free set and B # (). Write Bg for the set of vertices of B covered by Q" and Cg
for the set of vertices of C' covered by Q'. Clearly, |Bo/| = ¢, |Co| =3¢ and ¢ < ¢ <1—1.
For any vertex v € B\ Bg, deg(v,C) < 3¢(|C| — 1) + :|C| < 4¢'|C|. Together with the
definition of B and Claim 8.13, we get

G(BCC) = G(BQ/CC) + 6((B \ BQ/)CC)
iir_ A (1C] : i1 (1€ 2
<qd(1-a) 5 +|B|-4¢'|C| < ¢'(1 — a) 5 + 4a”nd'|C. (8.6)
Putting (8.5) and (8.6) together and using ¢’ <[ —1 and |C| > n/2, we get
8a’n

(@]
1-3a2=1-3e<1— — < 1- 160 <1——
« € a+|C|_1 a + 1ba 5

which is a contradiction since o« = 1076, O

Let B; and C be the vertices in B and C not covered by Q, respectively. By Claim 8.13,

3 3
|C1] > |C| =3¢ > |C| - 3|B| > Zn(l —€) — 3a’n > i 4a’n + 1. (8.7)

The C-tiling R. Next we will build our C-tiling R which covers B; such that every element

in R contains one vertex from A, one vertex from B; and two vertices from C;. Since Q
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is a maximum C-tiling on B U C| for every vertex v € By, we have that deg(v, Cy) < %

Together with (8.7), this implies that

|Cl|) _la] GG -2) (n —4a®n)® —1

deg >

Together with (8.1), we get that for every v € By,

= - (;n — 4a2n) 40°n — zn +1 < 3a*n?.
By Claim 8.13 and (8.7), we have that |A||Ci] > (1 —4a?)% - (2 — 40®)n > Zn?. Thus,
deg(v, AC}) < 3a®n? < 17a?|A||Cy], equivalently, deg(v, ACy) > (1 — 17a?)|A||Cy|. For
every v € By, we greedily pick a copy of C containing v by picking a path of length two with
center in A and two ends in C from the link graph of v. Suppose we have found i < |B|
copies of C, then for any remaining vertex v € By, by Claim 8.13, the number of pairs not

intersecting the existing vertices is at least
deg(v, ACy) — 3i - (|A] +|C1|) > (1 — 17a?)|A||Cy] — 3|By| - 2|C1| > |A],

which guarantees a path of length two centered at A, so a copy of C containing v.

Now all vertices of B are covered by Q or R. Let As denote the set of vertices of A
not covered by Q@ or R and define (5 similarly. By the definition of Q and R, we have
|As| = |Al — | By] and |Cy] = |B| + |C| — 4q — 3|By|. Define s = i(3|A2| —|C%]). Then

1 1 n
s = 1(3|A\ —3|By| = |B| — |C| 4+ 4q + 3| By|) = 4_1(4|A’ —n+4q) =q+|A| — 1

Thus s € Z, and s > 0 by Claim 8.14. Since ¢ < |B|, by Claim 8.13,

n n 3 3
SZQ+|A|_ZS|B|+|A’_Z:é_ln_|c|§1m' (8.8)
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The definition of Q@ and R also implies that |C'\ Cs| < 3|B| and
|Col > |C| = 3|B] > |C] = 3 2a%|C] = (1 - 607)|C], (8.9)

where the second inequality follows from |B| < a*n < 2a2|C|.

The C-tiling S. Next we will build our C-tiling § of size s such that every element of &

contains two vertices in Ay and two vertices in Cy. Note that for any vertex v € As, by (8.2)

1
.0 < ') <a (T4 <oa (1)),

Suppose that we have found 7 < s copies of C of the desired type. We next select two vertices

and (8.9),

ai,as in Ay and note that they have at least (1 — 4«) ('C;‘) common neighbors in Cy. By

(8.8) and(8.9),

(1 4a) ('2”) —2|Cy] > (1 — 4a) (’C;') _ gen|C'2| > (1 = 50) (’C;‘) - 0.

So we can pick a common neighbor c¢;cy of a; and as from unused vertices of Cy such that

{a1, as,c1,co} spans a copy of C.

Let Aj be the set of vertices of A not covered by Q, R, S and define C similarly. Then
|[As| = [Az| — 25 = 5(|Co| = |As]) and |G| = [Cof — 25 = 5(|Ca| — [As]), s0 |Cy] = 3|As].
Furthermore, by (8.8) and (8.9), we have

1C5] = |Ca| — 25 > (1 — 62)[C] — gen > (1 - 602)[C| - 3¢|C| > (1 — Ta?)|C).

Hence, for every vertex v € As,

1
deg(v, C3) < a(‘i’) < a(l—M;'C?”) - 20‘(@3!).
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Since |C5| > (1—7a?)|C| > (1—"T7a2)(1—¢€)2n, by (8.4), we know that for any vertex v € Cj,

d_eg(U,A;gOg) < €en - (|O| — 1) < 2€|C3|2 = 6€|A3||03|

The C-tiling 7. Finally we use the following lemma to find a C-tiling 7 covering Az and
C3 such that every element of 7 contains one vertex in As and three vertices in C3. Note
that in [7], this was done by applying a general theorem of Pikhurko [57, Theorem 3] (but

impossible here because we do not have the co-degree condition).

Lemma 8.15. Suppose that 0 < p < 2-107% and n is sufficiently large. Let H be a 3-graph
on n vertices with V(H) = XUZ such that |Z| = 3|X|. Further, assume that for every
verter v € X, deg(v, Z) < p('i') and for every vertex v € Z, deg(v,XZ) < p|X||Z|. Then
H contains a perfect C-tiling.

Applying Lemma 8.15 with X = A3, Z = (3, p = 2« finishes the proof of Theorem

8.4. [l

Proof of Lemma 8.15. Let G be the graph of all pairs uv in Z such that deg(uv, X) >
(1 —=4/p)|X|. We claim that for any vertex v € Z,

dega(v) < Vo121 (8.10)

Otherwise, some vertex v € Z satisfies degg(v) > /p|Z|. As each u ¢ Ng(v) satisfies
degpy(wv, X) > /p|X|, we have

degy (v, X2) > AlZI - VoI X| = plZ]|X],

contradicting our assumption.
Arbitrarily partition Z into three sets Z;, Zs, Z3, each of order |X|. By (8.10), we
have degs(v) < /p|Z| = 3\/p|X| and §(G[Z1, Z2)),6(G[Z2, Z5]) > (1 — 3,/p)|X|. Thus,
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G(Zy, Z,) and G[Z,, Zs] are both (1,3/p)-super-regular. For any z € X, let F} := {22 €
E(G|Zy,2Z5]) : {x,2,2'} € E(H)} and let F? := {22/ € E(G[Zy,73]) : {x,2,2'} € E(H)}.
Since deg(z, Z) < p("%)) < 5p|X|2, we have |F|,|F2| > (1 - 3,/p)|X|> = 5p|X | > (1 —
4,/p)|X|?. By applying Lemma 5.28 with v = 1 —4,/p and 1 = p, then for any = € X, with

probability at least 1 — e~X! we have
|My N E(F,)|, [Mz 0 E(F7)] > (1= n)v]X] > (1 - 5y/p)|X].

Thus, there is a matching M; in G[Z;, Z5] and a matching M; in G[Zs, Zs] such that |M; \
F}| < 5\/p|X| and [M; \ F2| < 5,/p|X| for every vertex # € X. Label the vertices of Z
so that Zy = {ai1,...,ax}, Zo = {b1,...,bx|} and Zs = {c1,..., x|} such that M; =
{aiby, ... axbx|} and My = {bic1,...,bx|cx|}. Let I be a bipartite graph with one part
X and the other part {aibici,...,axbx|cx|} such that {z,a;bic;} € E(I') if and only if
xagb;, xbic; € E(H). For every 1 < i < |X|, since a;b;,b;c; € E(G), so degp(a;bic;) >
(1-2/p)|X|in . On the other hand, by assumptions, we have degp(z) > (1 — 10,/p)|X|
for any x € X. Thus we can find a perfect matching in I', which gives a perfect C-tiling in

H. [l
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