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PERFECT MATCHINGS, TILINGS AND HAMILTON CYCLES IN HYPERGRAPHS

by

JIE HAN

Under the Direction of Yi Zhao, PhD

ABSTRACT

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect

matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs,

which are natural generalizations of the matching problems. We give new proofs of the

multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases.

Second, we consider Hamilton cycles in hypergraphs. In particular, we determine the

minimum codegree thresholds for Hamilton `-cycles in large k-uniform hypergraphs for ` <

k/2. We also determine the minimum vertex degree threshold for loose Hamilton cycle in



large 3-uniform hypergraphs. These results generalize the well-known theorem of Dirac for

graphs.

Third, we determine the minimum codegree threshold for near perfect matchings in large

k-uniform hypergraphs, thereby confirming a conjecture of Rödl, Ruciński and Szemerédi.

We also show that the decision problem on whether a k-uniform hypergraph with certain

minimum codegree condition contains a perfect matching can be solved in polynomial time,

which solves a problem of Karpiński, Ruciński and Szymańska completely.

At last, we determine the minimum vertex degree threshold for perfect tilings of C3
4 in

large 3-uniform hypergraphs, where C3
4 is the unique 3-uniform hypergraph on four vertices

with two edges.

INDEX WORDS: Absorbing method, Hypergraph, Perfect matching, Graph tiling, Graph
packing, Hamilton cycle, Minimum degree condition.
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PART 1

INTRODUCTION

One of the most fundamental problems in every branch of mathematics is describing

the structures of its objects. There are several way to understand the structure of graphs.

An easy and obvious way is to find the substructures, the subgraphs. Given an n-vertex

graph H and a g-vertex graph G, a natural question to ask is: when does a graph H contain

a fixed graph G? The celebrated Mantel’s Theorem [53] says that if H has more than n2/4

edges, then H contains a K3. This result has been generalized by Turán [70] for G = Kg. In

general, the Turán number for a graph G is the maximum number of edges in an n-vertex

graph H such that H does not contain a copy of G. Many work has been done on Turán

type problems for graphs and hypergraphs, see surveys [14, 29]. However, for example, we

still do not know the Turán number for complete bipartite graphs.

Given a graph H, it is also natural to consider the spanning subgraphs F in H. For

instance, for the case that F is a perfect matching, the celebrated theorem from Tutte [71]

characterizes the graphs G that contain a perfect matching and Edmonds’s algorithm [11]

finds a perfect matching in polynomial time if one exists. However, for most graphs F , we

do not know such a nice characterization and the decision problem whether a graph H has a

spanning subgraph F is NP-complete. Thus, it is natural to study the sufficient conditions

that force the existence of such spanning subgraphs.

A hypergraph is a natural generalization of a graph. Finding certain spanning subhy-

pergraphs in a hypergraph H is also a natural and desirable problem in hypergraph theory.

However, we know much less on hypergraphs than the graph case, and even finding a perfect

matching in a k-uniform hypergraph for k ≥ 3 is NP-complete by Karp [26]. It is natural to

find sufficient conditions to guarantee such spanning subhypergraphs. In this thesis, we will

discuss spanning subhypergraphs such as perfect matchings, tilings and Hamilton cycles in
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graphs and uniform hypergraphs.

1.1 Perfect tiling in multi-partite graphs

Graph/hypergraph packing (alternatively called tiling) is a natural extension of match-

ing problems and has received much attention in the last two decades (see [44] for a survey).

Given two (hyper)graphs G and H, a perfect G-tiling, or a G-factor, of H is a spanning

subgraph of H that consists of vertex-disjoint copies of G. Define td(n,G) to be the smallest

integer t such that every k-graph H of order n ∈ gN with δd(H) ≥ t contains a G-factor.

The celebrated theorem of Hajnal and Szemerédi [16] says that every n-vertex graph G

with δ(G) ≥ (1 − 1/k)n contains a Kk-factor, namely, t1(n,Kk) = (1 − 1/k)n. (The case

when k = 3 was proved earlier by Corrádi and Hajnal [5].) Komlós, Sárközy and Szemerédi

[39] generalize this result to arbitrary graphs H by showing that there exists a constant

C = C(H) such that every graph G with δ(G) ≥ (1− 1/χ(H))n + C contains an H-factor,

where χ(H) is the chromatic number of H. This improves an earlier result of Alon and

Yuster [3]. As observed in [3], there are graphs H for which the above constant C cannot

be omitted completely. Kühn and Osthus [45] determined up to an additive constant the

minimum degree threshold that forces an H-factor for arbitrary graph H. The threshold can

be written as (1− 1/χ∗(H))n+C, where the value of χ∗(H) depends on the relative sizes of

the color classes in the optimal colorings of H and satisfies χ(H)− 1 < χ∗(H) ≤ χ(H).

Here we consider the analogues of the tiling results above in multipartite graphs. Let

Gn,k denote the family of k-partite graphs with n vertices in each part. Given G ∈ Gn,k, let

δ∗(G) denote the minimum degree from a vertex in one part to any other part. Fischer [13]

conjectured a multipartite Hajnal-Szemerédi theorem, which says that every G ∈ Gn,k with

δ∗(G) ≥ k−1
k
n contains a Kk-factor. Magyar and Martin [52] noticed that Fischer’s conjecture

is false for odd k and proved that δ∗(G) ≥ 2
3
n+1 suffices for k = 3. Martin and Szemerédi [55]

proved Fischer’s conjecture for k = 4. Both of these proofs used the Szemerédi’s Regularity

Lemma. With my advisor, Yi Zhao, in Chapter 3, we give new proofs of these results

in [52, 55] by the absorbing method (without the Regularity Lemma), thus extending the



3

results to more values of n. In fact, the absorbing lemma in [24] works for all k ≥ 3. Lo and

Markström [51] recently proved Fischer’s conjecture asymptotically by using the absorbing

method (but their absorbing lemma is weaker than ours). Very recently, Keevash and Mycroft

[33] proved the (modified) Fischer’s conjecture completely by using the hypergraph regularity

method.

1.2 Hamilton cycles in k-uniform hypergraphs

A Hamilton (also called Hamiltonian) cycle in a graph is a cycle that covers all vertices

of the graph. Hamilton cycles have been studied since 1857, when William Hamilton found a

Hamilton cycle in the graph of dodecahedron. It is well-known that finding a Hamilton cycle

in graphs is an NP-complete problem. Thus, finding sufficient conditions to guarantee the

existence of such cycles is a desirable work. In fact, it has been one of the central problems

in graph theory and received much attention for over one hundred years. The following

celebrated theorem was proved by Dirac in 1952. It is easy to see that its degree condition

is best possible.

Theorem 1.1. [10] Every graph G on n vertices with n ≥ 3 and minimum degree δ(G) ≥ n/2

contains a Hamilton cycle.

Given k ≥ 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V (H)

and an edge set E(H) ⊆
(
V (H)
k

)
, where every edge is a k-element subset of V (H). A matching

in H is a collection of vertex-disjoint edges of H. A perfect matching M in H is a matching

that covers all vertices of H. Clearly a perfect matching in H exists only if k divides |V (H)|.

When k does not divide n = |V (H)|, we call a matching M in H a near perfect matching if

|M | = bn/kc. Given a k-graph H with a set S of d vertices (where 1 ≤ d ≤ k− 1) we define

degH(S) to be the number of edges containing S (the subscript H is omitted if it is clear

from the context). The minimum d-degree δd(H) of H is the minimum of degH(S) over all

d-vertex sets S in H. We refer to δk−1(H) as the minimum codegree of H.

In recent years, researchers have worked on extending this classical result to k-uniform
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Figure 1.1. A (3,1)-cycle

hypergraphs. There are several notions of cycles in hypergraphs. Besides the so-called Berge

cycle, another notion of cycle has become more and more popular in recent years.

Definition 1.2. For 0 ≤ ` ≤ k − 1, a (k, `)-cycle is a k-graph whose vertices can be

ordered cyclically in such a way that the edges are sets of consecutive k-vertices and every

two consecutive edges share exactly ` vertices. A Hamilton `-cycle in a k-graph H is then

defined as a (k, `)-cycle in H that contains all vertices of H.

Since a (k, `)-cycle on n vertices contains n/(k − `) edges, it is necessary that k − `

divides n. Note that for ` = 0 the `-cycle reduces to a matching. We call the (k, k − 1)-

cycle a tight cycle. We refer a (k, `)-cycle as a loose cycle when ` < k − 1. Suppose that

0 ≤ d ≤ k − 1 and k − ` divides n. Define h`d(k, n) to be the smallest integer h such that

every n-vertex k-graph H satisfying δd(H) ≥ h contains a Hamilton `-cycle.

The first result on this trend was obtained by Katona and Kierstead who proved in [28]

that ⌊
n− k + 3

2

⌋
≤ hk−1

k−1(k, n) ≤
(

1− 1

2k

)
n+O(1)

and conjectured the lower bound also suffices. Rödl, Ruciński and Szemerédi [60, 62] con-

firmed their conjecture asymptotically.

Theorem 1.3 ([62]). Let k ≥ 3, γ > 0, and let H be a k-graph on n vertices, where n is

sufficiently large. If δk−1(H) ≥ (1/2 +γ)n, then H contains a tight Hamilton cycle. In other

words, hk−1
k−1(k, n) ≈ n

2
.
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With long and involved arguments, the same authors [64] improved this to an exact

result for k = 3, namely, h2
2(3, n) = bn/2c for large n.

Other Hamilton cycles were first studied by Kühn and Osthus [41], who proved that

h1
2(3, n) ≈ n/4 for large (even) n. By a series of work [18, 32, 40], h`k−1(k, n) was determined

asymptotically for all ` such that k
k−` /∈ Z. Note that for the divisible cases, the asymptotic

values of h`k−1(k, n) are answered by Theorem 1.3. In fact, note that the (k, `)-cycle contains

a perfect matching. So it is clear that h`d(k, n) ≥ md(k, n) for k, ` such that k
k−` ∈ Z. The

following conjecture was proposed in [58] for the case ` = k − 1, but we think it is also true

for other value of ` satisfying the divisibility condition.

Conjecture 1.4. For all 1 ≤ d, ` ≤ k − 1, such that k
k−` ∈ Z, h`d(k, n) ≈ md(k, n).

Theorem 1.3 verifies this conjecture for d = ` = k − 1.

Theorem 1.5 ([40]). For 0 < ` < k such that k
k−` /∈ Z,

h`k−1(k, n) ≈ n

d k
k−`e(k − `)

.

The following construction of k-graphs H = (V,E) shows that the degree condition in

Theorem 1.5 is asymptotically best possible. Let V be partitioned into A ∪B of vertices in

V such that |A| = n
d k
k−` e(k−`)

− 1. Let the edge set E be all the k-sets intersecting at least

one vertex in A. Suppose H contains a Hamilton (k, `)-cycle C. There are n
k−` edges in C

and every vertex in A is contained in at most d k
k−`e edges in C. Thus, there are at least

d k
k−`e edges of C whose vertices are completely from B. But due to the construction, B is

independent, so H contains no Hamilton (k, `)-cycle.

Recently, Czygrinow and Molla [9] determined h1
2(3, n) exactly. Independent from their

work, in Chapter 4, we show that h`k−1(k, n) = d n
2(k−`)e for ` < k/2, thus improving the

results in [18, 32, 41].

As the first asymptotic result in the case when d < k − 1, Buß, Hàn, and Schacht [4]

showed that h1
1(3, n) ≈ 7

16

(
n
2

)
. In Chapter 5, we improve this to an exact result for large n
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(Theorem 5.2). Theorem 5.2 is the first exact result on vertex degree conditions for Hamilton

cycles in hypergraphs.

It seems that the lower bound constructions designed for (k − 1)-degree cases still give

the best lower bounds. Thus, we propose the following conjecture.

Conjecture 1.6. For 1 ≤ d, ` ≤ k such that k
k−` /∈ Z, let a = d k

k−`e, then

h`d(k, n) ≈
(
n− d
k − d

)
−
(

(1− 1
a(k−`))n

k − d

)

for large n ∈ (k − `)N.

Theorem 5.2 verifies the conjecture for (k, d, `) = (3, 1, 1).

1.3 Perfect matchings in k-uniform hypergraphs

Over the last few years there has been a strong focus in establishing minimum d-degree

thresholds that force a perfect matching in a k-graph [1, 8, 17, 35, 36, 42, 47, 54, 57, 58,

61, 63, 68, 69]. Let md(k, n) be the smallest integer m such that any k-graph H with

δd(H) ≥ m contains a perfect matching. The story started from [60], in which Rödl, Ruciński

and Szemerédi proved an asymptotically best possible minimum (k − 1)-degree condition

of a k-graph H that forces the existence of a tight Hamilton cycle in H. Since such a

Hamilton cycle contains a perfect matching as a subhypergraph, as a corollary, this gives that

mk−1(k, n) ≤ n/2 + o(n). The upper bound of mk−1(k, n) has been sharpened in a series of

papers by different authors [42, 61, 59]. Finally, the exact value of mk−1(k, n) was determined

by Rödl, Ruciński and Szemerédi [63], which is n
2
−k+C, where C ∈ {3/2, 2, 5/2, 3} depends

on the values of n and k.

For other values of d, Pikhurko [57] proved that for d ≥ k/2, md(k, n) ≈ 1
2

(
n−d
k−d

)
, which

is asymptotically best possible. Treglown and Zhao [68, 69] determined the exact values of

md(k, n) when d ≥ k/2 (independently Czygrinow and Kamat [8] determined the exact value

of m2(4, n)). Kühn, Osthus and Treglown [47], and independently Khan [36] determined the

exact value of m1(3, n). Khan [35] also determined m1(4, n) exactly.
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All known results and constructions (see Chapter 7) support the following conjecture.

Conjecture 1.7. For k ≥ 3 and 1 ≤ d ≤ k − 1,

md(k, n) ≈ max

{
1

2
, 1−

(
k − 1

k

)k−d}(
n− d
k − d

)
.

Note that the case when d ≥ k/2 has been verified in [57]. Alon, Frankl, Huang, Rödl,

Ruciński and Sudakov [1] verified Conjecture 1.7 for the case k− 4 ≤ d ≤ k− 1, which gives

(new) asymptotic values of m1(5, n),m2(5, n),m2(6, n) and m3(7, n).

For the general bound on md(k, n) for 1 ≤ d < k/2, Hàn, Person and Schacht [17]

showed that

md(k, n) ≤
(
k − d
k

+ o(1)

)(
n− d
k − d

)
.

Markström and Ruciński lowered the bound slightly as

md(k, n) ≤
(
k − d
k
− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

Very recently, Kühn, Osthus and Townsend [46] further improved the upper bound to

md(k, n) ≤
(
k − d
k
− k − d− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

by using fractional matchings. This is the current state of art by our knowledge, which is

still away from the bound in Conjecture 1.7.

In contrast, the author of [63] also proved that the minimum codegree threshold that

ensures a near perfect matching in a k-graph on n /∈ kN vertices is between bn
k
c and n

k
+

O(log n). This is a quite surprising phenomenon from the Dirac threshold perspective, that

a near perfect matching (almost perfect matching) appears much sooner than a perfect one.

It is conjectured, in [63] and [58, Problem 3.3], that this threshold should be bn
k
c. In Chapter

6, we prove this conjecture for large n.

It is also natural to ask for the relation between the minimum codegree and the matching
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number of k-graphs, which is, the size of a maximum matching. Let ν(H) be the size of a

maximum matching in H. The authors of [63] showed that for every k-uniform hypergraph

H on n vertices, ν(H) ≥ δk−1(H) if δk−1(H) ≤
⌊
n
k

⌋
− k + 2. Note that for n ∈ kN and

n
k
≤ δk−1(H) ≤ n

2
− k, H may not contain a perfect matching, namely, a matching of size n

k

(see [63]). So the only open cases are when
⌊
n
k

⌋
− k + 3 ≤ δk−1(H) < n

k
. In Chapter 6, we

close this gap for large n.

For k ≥ 3, by the result of Karp [26], it is NP-complete to determine whether a k-graph

has a perfect matching. The result in [63] says that every k-graph with δk−1(H) ≥ n/2 has

a perfect matching. A k-graph with δk−1(H) ∈ (0, n/2) may not contain a perfect matching.

So it is natural to know if there is an efficient algorithm determining if such k-graphs have

perfect matchings. For any γ > 0, Szymańska [67] proved that for the class of k-graphs with

δk−1(H) < n/k − γn the problem is NP-complete by reducing the problem to the perfect

matching problem without degree restriction. Answering a question of Karpiński, Ruciński

and Szymańska, we show that the decision problem is in P when δk−1(H) ≥ n/k in Chapter

7. Previously Keevash, Knox and Mycroft [31] gave an asymptotic answer to this problem,

that is, for any γ > 0, the decision problem is in P when δk−1(H) ≥ n/k + γn. Moreover,

they also constructed a polynomial-time algorithm to find a perfect matching provided one

exists.

1.4 Perfect tiling in hypergraphs

For hypergraphs, only a few tiling results are known. Let K3
4 be the complete 3-graph

on four vertices, and let K3
4 − e be the (unique) 3-graph on four vertices with three edges.

Recently, Lo and Markström [49] proved that t2(n,K3
4) = (1+o(1))3n/4, and independently

Keevash and Mycroft [34] determined the exact value of t2(n,K3
4) for sufficiently large n. In

[50], Lo and Markström proved that t2(n,K3
4 − e) = (1 + o(1))n/2.

Let C3
4 be the unique 3-graph on four vertices with two edges (also denoted by D,Y or

cherry in different papers). The perfect C3
4 -tiling was first studied by Kühn and Osthus [41]

who showed that t2(n, C3
4) = (1 + o(1))n/4, and Czygrinow, DeBiasio and Nagle [7] recently
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Figure 1.2. C3
4

determined t2(n, C3
4) exactly for large n. In Chapter 8, we determine the exact value of

t1(n, C3
4) for large n. Our result is one of the first (exact) results on the vertex degree for

hypergraph packing problems. Independently, Czygrinow [6] proved a similar result.

For general k-graphs, Mycroft [56] determined tk−1(n,K) asymptotically for many k-

partite k-graphs using hypergraph blow-up lemma (instead of absorbing method).

The content of Chapters 3, 4, 5 and 8 is based on the joint work [24, 22, 23, 25] with

my advisor, Yi Zhao. The content of Chapters 6 and 7 contains the work in [20, 19].

1.5 Notations

Given an integer k ≥ 0, a k-set is a set with k elements. For a set X, we denote by
(
X
k

)
the family of all k-subsets of X. We write [r] to denote the set of integers from 1 to r. For

two sets X and Y , we write A∪̇B for A ∪B when sets A, B are disjoint.

Given a k-graph H with a set S of at most k − 1 vertices, the link (hyper)graph of S is

the (k − |S|)-graph with vertex set V (H) \ S and edge set {e \ S : e ∈ E(H), S ⊆ e}.

Given a k-graph H = (V,E) and a set E of (k−1)-sets in
(
V
k−1

)
(which can be viewed as

a (k − 1)-graph), let degH(v, E) = |NH(v) ∩ E|. When E =
(
X
k−1

)
for some X ⊆ V , we write

degH(v,
(
X
k−1

)
) as degH(v,X) for short. Let degH(v, E) = |E ∩

(
V \{v}
k−1

)
| − degH(v, E). When
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k = 3, given not necessarily disjoint subsets X, Y, Z of V , define

EH(XY Z) = {xyz ∈ E(H) : x ∈ X, y ∈ Y, z ∈ Z}

EH(XY Z) =

{
xyz ∈

(
V

3

)
\ E(H) : x ∈ X, y ∈ Y, z ∈ Z

}
,

and eH(XY Z) = |EH(XY Z)|, eH(XY Z) = |EH(XY Z)|. We often omit the subscript H if

it is clear from the context.

We use bold font for vectors and normal fonts for their coordinates, e.g., v =

(v1, v2, . . . , vd). We write x � y means that for any y ≥ 0 there exists x0 ≥ 0 such that

for any x ≤ x0 the following statement holds. Similar statements with more constants are

defined similarly. Throughout this thesis we omit floor and ceiling symbols where they do

not affect the argument.
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PART 2

HYPERGRAPH REGULARITY METHOD AND ABSORBING METHOD

2.1 Weak Hypergraph Regularity Lemma

Szemerédi’s Regularity Lemma [66] has been proved to be an incredibly powerful and

useful tool in graph theory as well as in Ramsey theory, combinatorial number theory and

other areas of mathematics and theoretical computer science. The lemma essentially says

that large dense graphs can be approximated by a random-like graph. The lemma has many

powerful variations and in particular, in this thesis, we use the so-called Weak Hypergraph

Regularity Lemma, which is a straightforward extension of Szemerédi’s regularity lemma for

graphs.

Let H = (V,E) be a k-graph and let A1, . . . , Ak be mutually disjoint non-empty subsets

of V . We define e(A1, . . . , Ak) to be the number of edges with one vertex in each Ai, i ∈ [k],

and the density of H with respect to (A1, . . . , Ak) as

d(A1, . . . , Ak) =
e(A1, . . . , Ak)

|A1| · · · |Ak|
.

We say a k-tuple (V1, . . . , Vk) of mutually disjoint subsets V1, . . . , Vk ⊆ V is (ε, d)-regular, for

ε > 0 and d ≥ 0, if

|d(A1, . . . , Ak)− d| ≤ ε

for all k-tuples of subsets Ai ⊆ Vi, i ∈ [k], satisfying |Ai| ≥ ε|Vi|. We say (V1, . . . , Vk) is

ε-regular if it is (ε, d)-regular for some d ≥ 0. It is immediate from the definition that in

an (ε, d)-regular k-tuple (V1, . . . , Vk), if V ′i ⊂ Vi has size |V ′i | ≥ c|Vi| for some c ≥ ε, then

(V ′1 , . . . , V
′
k) is (max{ε/c, 2ε}, d)-regular.

Theorem 2.1 (Weak Regularity Lemma). Given t0 ≥ 0 and ε > 0, there exist T0 = T0(t0, ε)

and n0 = n0(t0, ε) so that for every k-graph H = (V,E) on n > n0 vertices, there exists a
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partition V = V0 ∪ V1 ∪ · · · ∪ Vt such that

(i) t0 ≤ t ≤ T0,

(ii) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,

(iii) for all but at most ε
(
t
k

)
k-subsets {i1, . . . , ik} ⊂ [t], the k-tuple (Vi1 , . . . , Vik) is ε-regular.

The partition given in Theorem 2.1 is called an ε-regular partition of H. Given an

ε-regular partition of H and d ≥ 0, we refer to Vi, i ∈ [t] as clusters and define the cluster

hypergraph K = K(ε, d) with vertex set [t] and {i1, . . . , ik} ⊂ [t] is an edge if and only if

(Vi1 , . . . , Vik) is ε-regular and d(Vi1 , . . . , Vik) ≥ d.

The following corollary shows that the cluster hypergraph inherits the minimum degree

of the original hypergraph. Its proof is almost the same as in [18, Proposition 16] after we

replace 1
2(k−`) + γ by c – we thus omit the proof.

Corollary 2.2. [18] Given c, ε, d > 0 and integers k ≥ 3, t0 such that 0 < ε < d2/4 and

t0 ≥ 2k/d, there exist T0 and n0 such that the following holds. Let H be a k-graph on n > n0

vertices such that δk−1(H) ≥ cn. If H has an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with

t0 ≤ t ≤ T0 and K = K(ε, d) is the cluster hypergraph, then at most
√
εtk−1 (k − 1)-subsets

S of [t] violate degK(S) ≥ (c− 2d)t.

We will use the Weak Hypergraph Regularity Lemma in Chapters 4 and 5.

2.2 Absorbing method

The absorbing method, initiated by Rödl, Ruciński, and Szemerédi [60], has been shown

to be effective handling extremal problems in graphs and hypergraphs. Roughly speaking,

the absorbing method reduces the task of finding a spanning structure to finding an almost

spanning structure. One example is the re-proof of Posa’s conjecture by Levitt, Sárközy,

and Szemerédi [48], while the original proof of Komlós, Sárközy, and Szemerédi [37] used the

Regularity Lemma.
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One crucial part of the absorbing method is the probabilistic arguments. We include

the well-known Chernoff’s bound and Markov’s bound [2] here.

Proposition 2.3 (Chernoff’s bound). Let 0 < p < 1 and let X1, . . . , Xn be mutually inde-

pendent indicator random variables with P[Xi = 1] = p for all i, and let X =
∑
Xi. Then

for all a > 0,

P[|X − E[X]| > a] ≤ 2e−a
2/2n.

Proposition 2.4 (Markov’s bound). If X is any nonnegative random variable and a > 0,

then

P[X ≥ a] ≤ E[X]

a
.

To illustrate the absorbing method, we state and prove a typical component of the

absorbing method, which will be used in Chapter 8. Recall that C3
4 is the unique 3-graph on

four vertices with two edges. For positive integer b ∈ 4N, we say that a b-set F absorbs a

4-set S if both H[F ] and H[F ∪ S] contain C3
4 -factors.

Lemma 2.5. Assume 1/n � β < 1/4 and b ∈ 4N. Suppose H is an n-vertex 3-graph such

that every 4-vertex set S has at least βnb b-sets F that absorb S. Then there is a vertex

set W ′ ∈ V (H) with |W ′| ∈ 4N and |W ′| ≤ bβ2n such that for any vertex subset U with

U ∩W ′ = ∅, |U | ∈ 4N and |U | ≤ β4n both H[W ′] and H[W ′ ∪ U ] contain C3
4-factors.

Proof of Lemma 2.5. We choose a family F ⊂
(
V
b

)
of b-sets by selecting each b-set randomly

and independently with probability p = β2n1−b. Then |F| follows the binomial distribution

B(
(
n
b

)
, p) with expectation E(|F|) = p

(
n
b

)
. Furthermore, for every 4-set S, let f(S) denote

the number of members of F that absorb S. Then f(S) follows the binomial distribution

B(N, p) with N ≥ βnb by the assumption of the lemma. Hence E(f(S)) ≥ pβnb. Finally,

since there are at most
(
n
b

)
·b·
(
n
b−1

)
< 1

2
n2b−1 pairs of intersecting b-sets, the expected number

of the intersecting pairs of b-sets in F is at most p2 · 1
2
n2b−1 = β4n/2.

Applying Chernoff’s bound on the first two properties and Markov’s bound on the last

one, we know that, with positive probability, F satisfies the following properties:
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• |F| ≤ 2p
(
n
b

)
< β2n,

• for any 4-set S, f(S) ≥ p
2
· βnb = β3n/2,

• the number of intersecting pairs of elements in F is at most β4n.

Thus, by deleting one member from each intersecting pair and the non-absorbing members

from F , we obtain a family F ′ consisting of at most β2n b-sets and for each 4-set S, at

least β3n/2 − β4n > β4n members in F ′ absorb S. So we get the desired absorbing set

W ′ = V (F ′) satisfying |W ′| ≤ bβ2n.

We finish this section by giving a quick introductory on the newly-developed lattice-

based absorbing method. When the (hyper)graph is dense enough, the absorbing method

provides a powerful, global (small) absorbing structure that can absorb any (smaller) set of

leftover vertices. This reduces the job of finding a spanning structure into the one of finding

an almost spanning structure. Interestingly, when the minimum degree condition falls below

the critical threshold for which the absorbing structure exists, a partite structure appears in

the (hyper)graph (see [34, 31]). Instead, we may partition the vertex set of the graph into

a few parts and build the lattice-based absorbing structure on the partition. Our lattice-

based absorbing structure works under the subcritical degree conditions and gives enough

structural information in some applications (see Chapter 7).
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PART 3

ON MULTIPARTITE HAJNAL-SZEMERÉDI THEOREM

3.1 Introduction

Let H be a graph on h vertices, and let G be a graph on n vertices. Packing (or tiling)

problems in extremal graph theory are investigations of conditions under which G must

contain many vertex disjoint copies of H (as subgraphs), where minimum degree conditions

are studied the most. An H-matching of G is a subgraph of G which consists of vertex-

disjoint copies of H. A perfect H-matching, or H-factor, of G is an H-matching consisting of

bn/hc copies of H. Let Kk denote the complete graph on k vertices. The celebrated theorem

of Hajnal and Szemerédi [16] says that every n-vertex graph G with δ(G) ≥ (k − 1)n/k

contains a Kk-factor (see [28] for another proof).

Using the Regularity Lemma of Szemerédi [66], researchers have generalized this theorem

for packing arbitrary H [3, 39, 65, 45]. Results and methods for packing problems can be

found in the survey of Kühn and Osthus [44].

In this chapter we consider multipartite packing, which restricts G to be a k-partite

graph for k ≥ 2. A k-partite graph is called balanced if its partition sets have the same size.

Given a k-partite graph G, it is natural to consider the minimum partite degree δ∗(G), the

minimum degree from a vertex in one partition set to any other partition set. When k = 2,

δ∗(G) is simply δ(G). In most of the rest of this chapter, the minimum degree condition

stands for the minimum partite degree for short.

Let Gk(n) denote the family of balanced k-partite graphs with n vertices in each of its

partition sets. It is easy to see (e.g. using the König-Hall Theorem) that every bipartite

graph G ∈ G2(n) with δ∗(G) ≥ n/2 contains a 1-factor. Fischer [13] conjectured that if

G ∈ Gk(n) satisfies

δ∗(G) ≥ k − 1

k
n, (3.1)
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then G contains a Kk-factor and proved the existence of an almost Kk-factor for k = 3, 4.

Magyar and Martin [52] noticed that the condition (3.1) is not sufficient for odd k and instead

proved the following theorem for k = 3. (They actually showed that when n is divisible by 3,

there is only one graph in G3(n), denoted by Γ3(n/3), that satisfies (3.1) but fails to contain

a K3-factor, and adding any new edge to Γ3(n/3) results in a K3-factor.)

Theorem 3.1. [52] There exists an integer n0 such that If n ≥ n0 and G ∈ G3(n) satisfies

δ∗(G) ≥ 2n/3 + 1, then G contains a K3-factor.

On the other hand, Martin and Szemerédi [55] proved the original conjecture holds for

k = 4.

Theorem 3.2. [55] There exists an integer n0 such that if n ≥ n0 and G ∈ G4(n) satisfies

δ∗(G) ≥ 3n/4, then G contains a K4-factor.

Recently Keevash and Mycroft [34] and independently Lo and Markström [51] proved

that Fischer’s conjecture is asymptotically true, namely, δ∗(G) ≥ k−1
k
n + o(n) guarantees a

Kk-factor for all k ≥ 3. Very recently, Keevash and Mycroft [33] improved this to an exact

result.

In this chapter we give a new proof of Theorems 3.1 and 3.2 by the absorbing method.

Our approach is similar to that of [51] (in contrast, a geometric approach was employed

in [34]). However, in order to prove exact results by the absorbing lemma, one needs only

assume δ∗(G) ≥ (1− 1/k)n, instead of δ∗(G) ≥ (1− 1/k + α)n for some α > 0 as in [51]. In

fact, our absorbing lemma uses an even weaker assumption δ∗(G) ≥ (1− 1/k− α)n and has

a more complicated absorbing structure.

The absorbing method, initiated by Rödl, Ruciński, and Szemerédi [60], has been shown

to be effective handling extremal problems in graphs and hypergraphs. One example is the

re-proof of Posa’s conjecture by Levitt, Sárközy, and Szemerédi [48], while the original proof

of Komlós, Sárközy, and Szemerédi [37] used the Regularity Lemma. Our proof is another

example of replacing the regularity method with the absorbing method. Compared with the
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threshold n0 in Theorems 3.1 and 3.2 derived from the Regularity Lemma, the value of our

n0 is much smaller.

Before presenting our proof, let us first recall the approach used in [52, 55]. Given a

k-partite graph G ∈ Gk(n) with parts V1, . . . , Vk, the authors said that G is ∆-extremal if

each Vi contains a subset Ai of size bn/kc such that the density d(Ai, Aj) ≤ ∆ for all i 6= j.

Using standard but involved graph theoretic arguments, they solved the extremal case for

k = 3, 4 [52, Theorem 3.1], [55, Theorem 2.1].

Theorem 3.3. Let k = 3, 4. There exists ∆ and n0 such that the following holds. Let n ≥ n0

and G ∈ Gk(n) be a k-partite graph satisfying δ∗(G) ≥ (2/3)n + 1 when k = 3 and (3.1)

when k = 4. If G is ∆-extremal, then G contains a Kk-factor.

To handle the non-extremal case, they proved the following lemma ([52, Lemma 2.2]

and [55, Lemma 2.2]).

Lemma 3.4 (Almost Covering Lemma). Let k = 3, 4. Given ∆ > 0, there exists α > 0 such

that for every graph G ∈ Gk(n) with δ∗(G) ≥ (1 − 1/k)n − αn either G contains an almost

Kk-factor that leaves at most C = C(k) vertices uncovered or G is ∆-extremal.

To improve the almost Kk-factor obtained from Lemma 3.4, they used the Regularity

Lemma and Blow-up Lemma [38]. Here is where we need our absorbing lemma whose proof

is given in Section 3.2. Our lemma actually gives a more detailed structure than what is

needed for the extremal case when G does not satisfy the absorbing property.

We need some definitions. Given positive integers k and r, let Θk×r denote the graph

with vertices aij, i = 1, . . . , k, j = 1, . . . , r, and aij is adjacent to ai′j′ if and only if i 6= i′

and j 6= j′. In addition, given a positive integer t, the graph Θk×r(t) denotes the blow-up

of Θk×r, obtained by replacing vertices aij with sets Aij of size t, and edges aijai′j′ with

complete bipartite graphs between Aij and Ai′j′ . Given ε,∆ > 0 and t ≥ 1 (not necessarily

an integer), we say that a k-partite graph G is (ε,∆)-approximate to Θk×r(t) if each of its

partition sets Vi can be partitioned into
⋃r
i=1 Vij such that ||Vij| − t| ≤ εt for all i, j and

d(Vij, Vi′j) ≤ ∆ whenever i 6= i′.
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Figure 3.1. Θ3×3: dotted lines stand for non-edges

Lemma 3.5 (Absorbing Lemma). Given k ≥ 3 and ∆ > 0, there exists α = α(k,∆) > 0

and an integer n1 > 0 such that the following holds. Let n ≥ n1 and G ∈ Gk(n) be a k-partite

graph on V1 ∪ · · · ∪ Vk such that δ∗(G) ≥ (1− 1/k)n− αn. Then one of the following cases

holds.

1. G contains a Kk-matching M of size |M | ≤ 2(k − 1)α4k−2n in G such that for every

W ⊂ V \V (M) with |W ∩V1| = · · · = |W ∩Vk| ≤ α8k−6n/4, there exists a Kk-matching

covering exactly the vertices in V (M) ∪W .

2. We may remove some edges from G so that the resulting graph G′ satisfies δ∗(G′) ≥

(1− 1/k)n− αn and is (∆/6,∆/2)-approximate to Θk×k(
n
k
).

The Kk-matching M in Lemma 3.5 has the so-called absorbing property: it can absorb

any balanced set with a much smaller size.

Proof of Theorems 3.1 and 3.2. Let k = 3, 4. Let α� ∆, where ∆ is given by Theorem 3.3

and α satisfies both Lemmas 3.4 and 3.5. Suppose that n is sufficiently large. Let G ∈ Gk(n)

be a k-partite graph satisfying δ∗(G) ≥ (2/3)n + 1 when k = 3 and (3.1) when k = 4. By

Lemma 3.5, either G contains a subgraph which is (∆/6,∆/2)-approximate to Θk×k(
n
k
) or

G contains an absorbing Kk-matching M . In the former case, for i = 1, . . . , k, we add or

remove at most ∆n
6k

vertices from Vi1 to obtain a set Ai ⊂ Vi of size bn/kc. For i 6= i′, we
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have

e(Ai, Ai′) ≤ e(Vi1, Vi′1) +
∆n

6k
(|Ai|+ |Ai′|)

≤ ∆

2
|Vi1||Vi′1|+ 2

∆n

6k

⌊n
k

⌋
≤ ∆

2

(
1 +

∆

6

)2 (n
k

)2

+
∆n

3k

⌊n
k

⌋
≤ ∆

⌊n
k

⌋ ⌊n
k

⌋
,

which implies that d(Ai, Ai′) ≤ ∆. Thus G is ∆-extremal. By Theorem 3.3, G contains a

Kk-factor. In the latter case, G contains a Kk-matching M is of size |M | ≤ 2(k − 1)α4k−2n

such that for every W ⊂ V \V (M) with |W ∩ V1| = · · · = |W ∩ Vk| ≤ α8k−6n/4, there

exists a Kk-matching on V (M) ∪W . Let G′ = G \ V (M) be the induced subgraph of G on

V (G) \ V (M), and n′ = |V (G′)|. Clearly G′ is balanced. As α� 1, we have

δ∗(G′) ≥ δ∗(G)− |M | ≥
(

1− 1

k

)
n− 2(k − 1)α4k−2n ≥

(
1− 1

k
− α

)
n′.

By Lemma 3.4, G′ contains a Kk-matching M ′ such that |V (G′) \ V (M ′)| ≤ C. Let W =

V (G′) \ V (M ′). Clearly |W ∩ V1| = · · · = |W ∩ Vk|. Since C/k ≤ α8k−6n/4 for sufficiently

large n, by the absorbing property of M , there is a Kk-matching M ′′ on V (M) ∪W . This

gives the desired Kk-factor M ′ ∪M ′′ of G.

Remarks.

• Since our Lemma 3.5 works for all k ≥ 3, it has the potential of proving a general

multipartite Hajnal-Szemerédi theorem. To do it, one only needs to prove Theorem 3.3

and Lemma 3.4 for k ≥ 5.

• Since our Lemma 3.5 gives a detailed structure of G when G does not have desired

absorbing Kk-matching, it has the potential of simplifying the proof of the extremal

case. Indeed, if one can refine Lemma 3.4 such that it concludes that G either contains
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an almost Kk-factor or it is approximate to Θk×k(
n
k
) and other extremal graphs, then in

Theorem 3.3 we may assume that G is actually approximate to these extremal graphs.

3.2 Proof of the Absorbing Lemma

In this section we prove the Absorbing Lemma (Lemma 3.5). We first introduce the

concepts of reachability.

Definition 3.6. In a graph G, a vertex x is reachable from another vertex y by a set S ⊆

V (G) if both G[x ∪ S] and G[y ∪ S] contain Kk-factors. In this case, we say S connects x

and y.

The following lemma plays a key role in constructing absorbing structures. We postpone

its proof to the end of the section.

Lemma 3.7 (Reachability Lemma). Given k ≥ 3 and ∆ > 0, there exists α = α(k,∆) > 0

and an integer n2 > 0 such that the following holds. Let n ≥ n2 and G ∈ Gk(n) be a k-partite

graph on V1 ∪ · · · ∪ Vk such that δ∗(G) ≥ (1− 1/k)n− αn. Then one of the following cases

holds.

1. For any x and y in Vi, i ∈ [k], x is reachable from y by either at least α3nk−1 (k−1)-sets

or at least α3n2k−1 (2k − 1)-sets in G.

2. We may remove some edges from G so that the resulting graph G′ satisfies δ∗(G′) ≥

(1− 1/k)n− αn and is (∆/6,∆/2)-approximate to Θk×k(
n
k
).

With the aid of Lemma 3.7, the proof of Lemma 3.5 becomes standard counting and

probabilistic arguments, as shown in [17].

Proof of Lemma 3.5. We assume that G does not satisfy the second property stated in the

lemma.

For a crossing k-tuple T = (v1, · · · , vk), with vi ∈ Vi, for i = 1, · · · , k, we call a set A

an absorbing set for T if both G[A] and G[A ∪ T ] contain Kk-factors. Let L(T ) denote the

family of all 2k(k − 1)-sets that absorb T .
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Claim 3.8. For every crossing k-tuple T, we have |L(T )| > α4k−3n2k(k−1).

Proof. Fix a crossing k-tuple T . First we try to find a copy of Kk containing v1 and avoiding

v2, . . . , vk. By the minimum degree condition, there are at least

k∏
i=2

(
n− 1− (i− 1)

(
1

k
+ α

)
n

)
≥

k∏
i=2

(
n− (i− 1)

n

k
− ((k − 1)αn+ 1)

)

such copies of Kk. When n ≥ 3k2 and 1
α
≥ 3k2, we have (k − 1)αn + 1 ≤ n/(3k) and thus

the number above is at least

k∏
i=2

(
n− (i− 1)

n

k
− n

3k

)
≥
(n
k

)k−1

, when k ≥ 3.

Fix such a copy of Kk on {v1, u2, u3, · · · , uk}. Consider u2 and v2. By Lemma 3.7 and

the assumption that G does not satisfy the second property of the lemma, we can find at

least α3nk−1 (k − 1)-sets or α3n2k−1 (2k − 1)-sets to connect u2 and v2. If S is a (k − 1)-set

that connects u2 and v2, then S ∪ K also connects u2 and v2 for any k-set K such that

G[K] ∼= Kk and K ∩ S = ∅. There are at least

(n− 2)
k∏
i=2

(
n− 1− (i− 1)

(
1

k
+ α

)
n

)
≥ n

2

(n
k

)k−1

copies of Kk in G avoiding u2, v2 and S. If there are at least α3nk−1 (k−1)-sets that connect

u2 and v2, then at least

α3nk−1 · n
2

(n
k

)k−1 1(
2k−1
k−1

) ≥ 2α4n2k−1

(2k − 1)-sets connect u2 and v2 because a (2k − 1)-set can be counted at most
(

2k−1
k−1

)
times.

Since 2α4 < α3, we can assume that there are always at least 2α4n2k−1 (2k−1)-sets connecting

u2 and v2. We inductively choose disjoint (2k−1)-sets that connects vi and ui for i = 2, . . . , k.

For each i, we must avoid T , u2, . . . , uk, and i − 2 previously selected (2k − 1)-sets. Hence
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there are at least 2α4n2k−1− (2k− 1)(i− 1)n2k−2 > α4n2k−1 choices of such (2k− 1)-sets for

each i ≥ 2. Putting all these together, and using the assumption that α is sufficiently small,

we have

|L(T )| ≥
(n
k

)k−1

· (α4n2k−1)k−1 > α4k−3n2k(k−1).

Every set S ∈ L(T ) is balanced because G[S] contains a Kk-factor and thus |S ∩ V1| =

· · · = |S ∩ Vk| = 2(k − 1). Note that there are
(

n
2(k−1)

)k
balanced 2k(k − 1)-sets in G. Let

F be the random family of 2k(k− 1)-sets obtained by selecting each balanced 2k(k− 1)-set

from V (G) independently with probability p := α4k−3n1−2k(k−1). Then by Chernoff’s bound,

since n is sufficiently large, with probability 1 − o(1), the family F satisfies the following

properties:

|F| ≤ 2E(|F|) ≤ 2p

(
n

2(k − 1)

)k
≤ α4k−2n, (3.2)

|L(T ) ∩ F| ≥ 1

2
E(|L(T ) ∩ F|) ≥ 1

2
p|L(T )| ≥ α8k−6n

2
for every crossing k-tuple T. (3.3)

Let Y be the number of intersecting pairs of members of F . Since each fixed balanced

2k(k − 1)-set intersects at most 2k(k − 1)
(

n−1
2(k−1)−1

)(
n

2(k−1)

)k−1
other balanced 2k(k − 1)-sets

in G,

E(Y ) ≤ p2

(
n

2(k − 1)

)k
2k(k − 1)

(
n− 1

2k − 3

)(
n

2(k − 1)

)k−1

≤ 1

8
α8k−6n.

By Markov’s bound, with probability at least 1
2
, Y ≤ α8k−6n/4. Therefore, we can find a

family F satisfying (3.2), (3.3) and having at most α8k−6n/4 intersecting pairs. Remove

one set from each of the intersecting pairs and the sets that have no Kk-factor from F , we

get a subfamily F ′ consisting of pairwise disjoint absorbing 2k(k − 1)-sets which satisfies

|F ′| ≤ |F| ≤ α4k−2n and for all crossing T ,

|L(T ) ∩ F ′| ≥ α8k−6n

2
− α8k−6n

4
≥ α8k−6n

4
.
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Since F ′ consists of disjoint absorbing sets and each absorbing set is covered by a

Kk-matching, V (F ′) is covered by some Kk-matching M . Since |F ′| ≤ α4k−2n, we have

|M | ≤ 2k(k− 1)α4k−2n/k = 2(k− 1)α4k−2n. Now consider a balanced set W ⊆ V (G)\V (F ′)

such that |W ∩ V1| = · · · = |W ∩ Vk| ≤ α8k−6n/4. Arbitrarily partition W into at most

α8k−6n/4 crossing k-tuples. We absorb each of the k-tuples with a different 2k(k − 1)-set

from L(T ) ∩ F ′. As a result, V (F ′) ∪W is covered by a Kk-matching, as desired.

The rest of the chapter is devoted to proving Lemma 3.7. First we prove a useful lemma.

A weaker version of it appears in [55, Proposition 1.4] with a brief proof sketch.

Lemma 3.9. Let k ≥ 2 be an integer, t ≥ 1 and ε � 1. Let H be a k-partite graph on

V1 ∪ · · · ∪ Vk such that |Vi| ≥ (k − 1)(1 − ε)t for all i and each vertex is nonadjacent to at

most (1 + ε)t vertices in each of the other color classes. Then either H contains at least ε2tk

copies of Kk, or H is (16k4ε1/2
k−2
, 16k4ε1/2

k−2
)-approximate to Θk×(k−1)(t).

Proof. First we derive an upper bound for |Vi|, i ∈ [k]. Suppose for example, that |Vk| ≥

(k−1)(1 + ε)t+ εt. Then if we greedily construct copies of Kk while choosing the last vertex

from Vk, by the minimum degree condition and ε� 1, there are at least

|V1| · (|V2| − (1 + ε)t) · · · (|Vk−1| − (k − 2)(1 + ε)t) · (|Vk| − (k − 1)(1 + ε)t)

≥(k − 1)(1− ε)t · (k − 2− kε)t · · · (1− (2k − 3)ε)t · εt

≥(k − 1− 1
2
)(k − 2− 1

2
) · · · (1− 1

2
)εtk ≥ ε

2
tk

copies of Kk in H, so we are done. We thus assume that for all i,

|Vi| ≤ (k − 1)(1 + ε)t+ εt < (k − 1)(1 + 2ε)t. (3.4)

Now we proceed by induction on k. The base case is k = 2. If H has at least ε2t2 edges,

then we are done. Otherwise e(H) < ε2t2. Using the lower bound for |Vi|, we obtain that

d(V1, V2) <
ε2t2

|V1| · |V2|
≤ ε2

(1− ε)2
< ε.
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Hence H is (2ε, ε)-approximate to Θ2×1(t). When k = 2, 16k4ε1/2
k−2

= 256ε, so we are done.

Now assume that k ≥ 3 and the conclusion holds for k− 1. Let H be a k-partite graph

satisfying the assumptions and assume that H contains less than ε2tk copies of Kk.

For simplicity, write Ni(v) = N(v) ∩ Vi for any vertex v. Let V ′1 ⊂ V1 be the vertices

which are in at least εtk−1 copies of Kk in H, and let Ṽ1 = V1 \ V ′1 . Note that |V ′1 | < εt

otherwise we get at least ε2tk copies of Kk in H. Fix v0 ∈ Ṽ1. For 2 ≤ i ≤ k, by the minimum

degree condition and k ≥ 3,

|Ni(v0)| ≥ (k − 1)(1− ε)t− (1 + ε)t = (k − 2)

(
1− k

k − 2
ε

)
t ≥ (k − 2)(1− 3ε)t.

On the other hand, following the same arguments as we used for (3.4), we derive that

|Ni(v0)| ≤ (k − 2)(1 + 2εt). (3.5)

The minimum degree condition implies that a vertex in N(v0) misses at most (1 + ε)t

vertices in each Ni(v0). We now apply induction with k−1, t and 3ε on H[N(v0)]. Because of

the definition of V ′1 , we conclude that N(v0) is (ε′, ε′)-approximate to Θ(k−1)×(k−2)(t), where

ε′ := 16(k − 1)4(3ε)1/2k−3

.

This means that we can partition Ni(v0) into Ai1 ∪ · · ·Ai(k−2) for 2 ≤ i ≤ k such that

∀ 2 ≤ i ≤ k, 1 ≤ j ≤ k − 2, (1− ε′)t ≤ |Aij| ≤ (1 + ε′)t and (3.6)

∀ 2 ≤ i < i′ ≤ k, 1 ≤ j ≤ k − 2, d(Aij, Ai′j) ≤ ε′. (3.7)

Furthermore, let Ai(k−1) := Vi \ N(v0) for i = 2, · · · , k. By (3.5) and the minimum degree

condition, we get that

(1− (3k − 5)ε)t ≤ |Ai(k−1)| ≤ (1 + ε)t, (3.8)

for i = 2, · · · , k.
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Let Acij = Vi \ Aij denote the complement of Aij. Let ē(A,B) = |A||B| − e(A,B)

denote the number of non-edges between two disjoint sets A and B, and d̄(A,B) =

ē(A,B)/(|A||B|) = 1 − d(A,B). Given two disjoint sets A and B (with density close to

one) and α > 0, we call a vertex a ∈ A is α-typical to B if degB(a) ≥ (1− α)|B|.

Claim 3.10. Let 2 ≤ i 6= i′ ≤ k, 1 ≤ j 6= j′ ≤ k − 1.

1. d(Aij, Ai′j′) ≥ 1− 3ε′ and d(Aij, A
c
i′j) ≥ 1− 3ε′.

2. All but at most
√

3ε′ vertices in Aij are
√

3ε′-typical to Ai′j′; at most
√

3ε′ vertices in

Aij are
√

3ε′-typical to Aci′j.

Proof. (1). Since Aci′j =
⋃
j′ 6=j Ai′j′ , the second assertion d(Aij, A

c
i′j) ≥ 1 − 3ε′ immedi-

ately follows from the first assertion d(Aij, Ai′j′) ≥ 1 − 3ε′. Thus it suffices to show that

d(Aij, Ai′j′) ≥ 1− 3ε′, or equivalently that d̄(Aij, Ai′j′) ≤ 3ε′.

Assume j ≥ 2. By (3.7), we have e(Aij, Ai′j) ≤ ε′|Aij||Ai′j|. So ē(Aij, Ai′j) ≥ (1 −

ε′)|Aij||Ai′j|. By the minimum degree condition and (3.6),

ē(Aij, A
c
i′j) ≤ [(1 + ε)t− (1− ε′)|Ai′j|]|Aij|

≤ [(1 + ε)t− (1− ε′)(1− ε′)t]|Aij|

< (ε+ 2ε′)t|Aij|,

which implies that ē((Aij, Ai′j′) ≤ (ε+ 2ε′)t|Aij| for any j′ 6= j and 1 ≤ j′ ≤ k − 1. By (3.6)

and (3.8), we have |Ai′j′| ≥ (1− ε′)t. Hence

d̄(Aij, Ai′j′) ≤ (ε+ 2ε′)
t

|Ai′j′|
≤ (ε+ 2ε′)

t

(1− ε′)t
≤ 3ε′,

where the last inequality holds because ε� ε′ � 1.

(2) Given two disjoint sets A and B, if d̄(A,B) ≤ α for some α > 0, then at most
√
α|A|

vertices a ∈ A satisfy degB(a) < (1−
√
α)|B|. Hence Part (2) immediately follows from Part

(1).



26

We need a lower bound for the number of copies of Kk in a dense k-partite graph.

Proposition 3.11. Let G be a k-partite graph with vertex class V1, · · · , Vk. Suppose for

every two vertex classes, the pairwise density d(Vi, Vj) ≥ 1−α for some α ≤ (k+ 1)−4, then

there are at least 1
2

∏
i |Vi| copies of Kk in G.

Proof. Given two disjoint sets Vi and Vj, if d̄(Vi, Vj) ≤ α for some α > 0, then at most
√
α|Vi|

vertices v ∈ Vi satisfy degVj(v) < (1 −
√
α)|Vj|. Thus, by choosing typical vertices greedily

and the assumption α ≤ (k + 1)−4, there are at least

(1−
√
α)|V1|(1− 2

√
α)|V2| · · · (1− k

√
α)|Vk| > (1− (1 + · · ·+ k)

√
α)
∏
i

|Vi| >
1

2

∏
i

|Vi|

copies of Kk in G.

Let ε′′ = 2k
√
ε′. Now we want to study the structure of Ṽ1.

Claim 3.12. Given v ∈ Ṽ1 and 2 ≤ i ≤ k, there exists j ∈ [k− 1], such that |NAij(v)| < ε′′t.

Proof. Suppose instead, that there exist v ∈ Ṽ1 and some 2 ≤ i0 ≤ k, such that |NAi0j
(v)| ≥

ε′′t for all j ∈ [k−1]. By the minimum degree condition, for each 2 ≤ i ≤ k, there is at most

one j ∈ [k − 1] such that |NAij(v)| < t/3. Therefore we can greedily choose k − 2 distinct ji

for i 6= i0, such that |NAiji
(v)| ≥ t/3. Let ji0 be the the (unique) unused index. Note that

∀ i 6= i0,
|Aiji |
|NAiji

(v)|
≤ (1 + ε′)t

t/3
< 4, and

|Ai0ji0 |
|NAi0ji0

(v)|
≤ (1 + ε′)t

ε′′t
<

2

ε′′

So for any i 6= i′, by Claim 3.10 and the definition of ε′′, we have

d̄(NAiji
(v), NAi′ji′

(v)) ≤
3ε′|Aiji ||Ai′ji′ |

|NAiji
(v)||NAi′ji′

(v)|
≤ 3ε′ · 4 · 2

ε′′
=

6

k2
ε′′. (3.9)

Since ε� ε′′ � 1, by Proposition 3.11, there are at least

1

2

∏
i

NAiji
(v) ≥ 1

2
· ε′′t

(
t

3

)k−2

=
ε′′

2 · 3k−2
tk−1 > εtk−1
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copies of Kk−1 in N(v), contradicting the assumption v ∈ Ṽ1.

Note that if degAij(v) < ε′′t, at least |Aij| − ε′′t vertices of Aij are not in N(v). By the

minimum degree condition, (3.6) and (3.8), it follows that

|Acij \N(v)| ≤ (1 + ε)t− (|Aij| − ε′′t) ≤ (1 + ε)t− (1− ε′)t+ ε′′t ≤ 2ε′′t. (3.10)

Fix a vertex v ∈ Ṽ1. Given 2 ≤ i ≤ k, let `i denote the (unique) index such that |NAi`i
(v)| <

ε′′t (the existence of `i follows from Claim 3.12).

Claim 3.13. We have `2 = `3 = · · · = `k.

Proof. Otherwise, say `2 6= `3, then we set j2 = `3 and for 3 ≤ i ≤ k, greedily choose distinct

jk, jk−1, . . . , j3 ∈ [k − 1] \ {`3} such that ji 6= `i (this is possible as j3 is chosen at last).

Let us bound the number of copies of Kk−1 in
⋃k
i=2NAiji

(v). By 3.10, we get |NAiji
(v)| ≥

|Aiji |−2ε′′t ≥ t/2 for all i. As in (3.9), for any i 6= i′, we derive that d̄(NAiji
(v), NAi′ji′

(v)) ≤

3ε′′ · 4 · 4 = 48ε′′. Since ε′′ � 1, by Proposition 3.11, we get at least 1
2

(
t
2

)k−1
> εtk−1 copies

of Kk−1 in N(v), a contradiction.

We define A1j := {v ∈ Ṽ1 : |NA2j
(v)| < ε′′t} for j ∈ [k − 1]. By Claims 3.12 and 3.13,

this yields a partition of Ṽ1 =
⋃k−1
j=1 A1j such that

d(A1j, Aij) <
ε′′t|A1j|
|A1j||Aij|

≤ ε′′t

(1− ε′)t
< (1 + 2ε′)ε′′ for i ≥ 2 and j ≥ 1. (3.11)

By (3.6), (3.8) and (3.10), as (3k − 5)ε ≤ ε′, we have

d̄(A1j, Aij′) <
|A1j|2ε′′t
|A1j||Aij′ |

≤ 2ε′′t

(1− ε′)t
< 3ε′′ for i ≥ 2 and j 6= j′. (3.12)

We claim |A1j| ≤ (1 + ε)t + (1 + 2ε′)ε′′|A1j| for all j. Otherwise, by the minimum degree

condition, we have degA1j
(v) > (1+2ε′)ε′′|A1j| for all v ∈ Aij, and consequently d(A1j, Aij) >
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(1 + 2ε′)ε′′, contradicting (3.11). We thus conclude that

|A1j| ≤
1 + ε

1− (1 + 2ε′)ε′′
t < (1 + 2ε′′)t. (3.13)

Since |V ′1 | ≤ εt, we have |
⋃k−1
j=1 A1j| = |V1 \ V ′1 | ≥ |V1| − εt. Using (3.13), we now obtain a

lower bound for |A1j|, j ∈ [k − 1]:

|A1j| ≥ (k − 1)(1− ε)t− (k − 2)(1 + 2ε′′)t− εt ≥ (1− 2kε′′)t. (3.14)

It remains to show that for 2 ≤ i 6= i′ ≤ k, d(Ai(k−1), Ai′(k−1)) is small. Write

N(v1 · · · vm) =
⋂

1≤i≤mN(vi).

Claim 3.14. d(Ai(k−1), Ai′(k−1)) ≤ 6ε′′ for 2 ≤ i, i′ ≤ k.

Proof. Suppose to the contrary, that say d(A(k−1)(k−1), Ak(k−1)) > 6ε′′. Note that there are

(k − 2)! choices of the sets {Aiji}i∈[k−2] such that ji ∈ [k − 2] and every pair of the sets

is dense. We construct copies of Kk−2 in such sets, for example, A11, A22, · · · , A(k−2)(k−2).

Pick arbitrary v1 ∈ A11. For 2 ≤ i ≤ k − 2, we select vi ∈ NAii(v1 · · · vi−1) such that

vi is
√

3ε′-typical to A(k−1)(k−1), Ak(k−1) and all Ajj, i < j ≤ k − 2. By Claim 3.10 and

(3.10), there are at least (1 − (k − 2)
√

3ε′)|Aii| − 2ε′′t ≥ t/2 choices for each vi. After

selecting v1, . . . , vk−2, we select adjacent vertices vk−1 ∈ A(k−1)(k−1) and vk ∈ Ak(k−1) such that

vk−1, vk ∈ N(v1 · · · vk−2). For j ∈ {k−1, k}, we know that N(v1) misses at most 2ε′′t vertices

in Aj(k−1), and at most (k−3)
√

3ε′|Aj(k−1)| vertices of Aj(k−1) are not in N(v2 · · · vk−2). Since

d(A(k−1)1, Ak1) > 6ε′′ and ε′′ = 2k
√
ε′, there are at least

6ε′′|A(k−1)(k−1)||Ak(k−1)| − 2ε′′t(|A(k−1)(k−1)|+ |Ak(k−1)|)− 2(k − 3)
√

3ε′|A(k−1)(k−1)||Ak(k−1)|

≥ (6ε′′ − 4ε′′ − 4(k − 3)
√
ε′)|A(k−1)(k−1)||Ak(k−1)|

= 12
√
ε′|A(k−1)(k−1)||Ak(k−1)| ≥ 6

√
ε′t2

such pairs vk−1, vk. In total, we obtain at least (k − 2)!( t
2
)k−2 6

√
ε′t2 > εtk copies of Kk, a
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contradiction.

In summary, by (3.6), (3.8), (3.13) and (3.14), we have (1− 2kε′′)t ≤ |Aij| ≤ (1 + 2ε′′)t

for all i and j. In order to make
⋃k−1
j=1 A1j a partition of V1, we move the vertices of V ′1 to

A11. Since |V ′1 | < εt, we still have ||Aij| − t| ≤ 2kε′′t after moving these vertices. On the

other hand, by (3.7), (3.11), and Claim 3.14, we have d(Aij, Ai′j) ≤ 6ε′′ ≤ 2kε′′ for i 6= i′

and all j (we now have d(A11, Ai1) ≤ 2ε′′ for all i ≥ 2 because |A11| becomes slightly larger).

Therefore H is (2kε′′, 2kε′′)-approximate to Θk×(k−1)(t). By the definitions of ε′′ and ε′,

2kε′′ = 4k2
√
ε′ = 4k2

√
16(k − 1)4(3ε)1/2k−3 ≤ 16k4ε1/2

k−2

,

where the last inequality is equivalent to (k−1
k

)2 31/2k−2 ≤ 1 or 31/2k−1 ≤ k
k−1

, which holds

because 3 ≤ 1 + 2k−1

k−1
≤ (1 + 1

k−1
)2k−1

for k ≥ 2.

This completes the proof of Lemma 3.9.

We are ready to prove Lemma 3.7.

Proof of Lemma 3.7. First assume that G ∈ G3(n) is minimal, namely, G satisfies the mini-

mum partite degree condition but removing any edge of G will destroy this condition. Note

that this assumption is only needed by Claim 3.20.

Given 0 < ∆ ≤ 1, let

α =
1

2k

(
∆

24k(k − 1)
√

2k

)2k−1

. (3.15)

Without loss of generality, assume that x, y ∈ V1 and y is not reachable by α3nk−1 (k−1)-sets

or α3n2k−1 (2k − 1)-sets from x.

For 2 ≤ i ≤ k, define

Ai1 = Vi ∩ (N(x) \N(y)), Aik = Vi ∩ (N(y) \N(x)),

Bi = Vi ∩ (N(x) ∩N(y)), Ai0 = Vi \ (N(x) ∪N(y)).
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Let B =
⋃
i≥2Bi. If there are at least α3nk−1 copies of Kk−1 in B, then x is reachable

from y by at least α3nk−1 (k − 1)-sets. We thus assume there are less than α3nk−1 copies of

Kk−1 in B.

Clearly, for i ≥ 2, Ai1, Aik, Bi and Ai0 are pairwise disjoint. The following claim bounds

the sizes of Aik, Bi and Ai0.

Claim 3.15. 1. (1− k2α)n
k
< |Ai1|, |Aik| ≤ (1 + kα)n

k
,

2. (k − 2− 2kα)n
k
≤ |Bi| < (k − 2 + k(k − 1)α) n

k
,

3. |Ai0| < (k + 1)αn.

Proof. For v ∈ V , and i ∈ [k], write Ni(v) := N(v) ∩ Vi. By the minimum degree condition,

we have |Ai1|, |Aik| ≤ (1/k + α)n. Since Ni(x) = Ai1 ∪Bi, it follows that

|Bi| ≥ (k−1
k
− α)n− ( 1

k
+ α)n. (3.16)

If some Bi, say Bk, has at least (k−2
k

+ (k − 1)α)n vertices, then there are at least∏k
i=2 |Bi| − (i− 2)

(
1
k

+ α
)
n copies of Kk−1 in B. By (3.16) and |Bk| ≥ (k−2

k
+ (k − 1)α)n,

this is at least

αn ·
k−1∏
i=2

(
k − 1

k
− α

)
n− (i− 1)

(
1

k
+ α

)
n

=αn ·
k−1∏
i=2

(
k − i
k
− iα

)
n

≥αn ·
k−1∏
i=2

(
k − i− 1

2

k

)
n because 2k2α ≤ 1,

≥αn · 1

2

(n
k

)k−2

≥α2nk−1 because 2kk−2α ≤ 1.

This is a contradiction.
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We may thus assume that |Bi| < (k−2
k

+ (k − 1)α)n for 2 ≤ i ≤ k, as required for Part

(2). As Ni(x) = Ai1 ∪Bi, it follows that

|Ai1| > (k−1
k
− α)n− (k−2

k
+ (k − 1)α)n = ( 1

k
− kα)n.

The same holds for |Aik| thus Part (1) follows. Finally

|Ai0| = |Vi| − |Ni(x)| − |Aik| < n− (k−1
k
− α)n− ( 1

k
− kα)n = (k + 1)αn,

as required for Part (3).

Let t = n/k and ε = 2kα. By the minimum degree condition, every vertex u ∈ B

is nonadjacent to at most (1 + kα)n/k < (1 + ε)t vertices in other color classes of B. By

Claim 3.15, |Bi| ≥ (k − 2− 2kα)n
k

= (k − 2− ε)t ≥ (k − 2)(1− ε)t. Thus G[B] is a (k − 1)-

partite graph that satisfies the assumptions of Lemma 3.9. We assumed that B contains

less than α3nk−1 < ε2tk−1 copies of Kk−1, so by Lemma 3.9, B is (α′, α′)-approximate to

Θ(k−1)×(k−2)(
n
k
), where

α′ := 16(k − 1)4(2kα)1/2k−3

.

This means that we can partition Bi, 2 ≤ i ≤ k, into Ai2∪· · ·∪Ai(k−1) such that (1−α′)n
k
≤

|Aij| ≤ (1 + α′)n
k

for 2 ≤ j ≤ k − 1 and

∀ 2 ≤ i < i′ ≤ k, 2 ≤ j ≤ k − 1, d(Aij, Ai′j) ≤ α′. (3.17)

Together with Claim 3.15 Part (1), we obtain that (using k2α ≤ α′)

∀ 2 ≤ i ≤ k, 1 ≤ j ≤ k, (1− α′)n
k
≤ |Aij| ≤ (1 + α′)n

k
. (3.18)

Let Acij = Vi \ Aij denote the complement of Aij. The following claim is an analog of

Claim 3.10, and its proof is almost the same – after we replace (1 + ε)t with (1 + kα)n/k

and ε′ with α′ (and we use α� α′). We thus omit the proof.
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Claim 3.16. Let 2 ≤ i 6= i′ ≤ k, 1 ≤ j 6= j′ ≤ k, and {j, j′} 6= {1, k}.

1. d(Aij, Ai′j′) ≥ 1− 3α′ and d(Aij, A
c
i′j) ≥ 1− 3α′.

2. All but at most
√

3α′ vertices in Aij are
√

3α′-typical to Ai′j′; at most
√

3α′ vertices in

Aij are
√

3α′-typical to Aci′j.

Now let us study the structure of V1. Let α′′ = 2k
√
α′. Recall thatN(xv) = N(x)∩N(v).

Let V ′1 be the set of the vertices v ∈ V1 such that there are at least αnk−1 copies of Kk−1

in each of N(xv) and N(yx). We claim that |V ′1 | < 2αn. Otherwise, since a (k − 1)-set

intersects at most (k − 1)nk−2 other (k − 1)-sets, there are at least

2αn · αnk−1(αnk−1 − (k − 1)nk−2) > α3n2k−1

copies of (2k − 1)-sets connecting x and y, a contradiction.

Let Ṽ1 := V1 \ V ′1 . The following claim is an analog of Claim 3.12 for Lemma 3.9 and

can be proved similarly. The only difference between their proofs is that here we find at

least αnk−1 copies of Kk−1 in each of N(xv) and N(yv), and thus obtain a contradiction

with v ∈ Ṽ1.

Claim 3.17. Given v ∈ Ṽ1 and 2 ≤ i ≤ k, there exists j ∈ [k] such that |NAij(v)| < α′′t.

Fix an vertex v ∈ Ṽ1. Claim 3.17 implies that for each 2 ≤ i ≤ k, there exists `i such

that |NAi`i
(v)| < α′′t. Our next claim is an analog of Claim 3.13 for Lemma 3.9 and can be

proved similarly.

Claim 3.18. We have `2 = `3 = · · · = `k.

We now define A1j := {v ∈ Ṽ1 : |NA2j
(v)| < α′′t} for j ∈ [k]. By Claims 3.17 and 3.18,

this yields a partition of Ṽ1 =
⋃k
j=1A1j such that

d(A1j, Aij) <
α′′t|A1j|
|A1j||Aij|

≤ α′′t

(1− α′)t
< (1 + 2α′)α′′ for i ≥ 2, j ≥ 1. (3.19)
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For v ∈ A1j, we have |NAij(v)| < α′′t for i ≥ 2. By the minimum degree condition and

(3.18),

|Acij \N(v)| ≤ ( 1
k

+ α)n− (|Aij| − α′′t) < 2α′′t. (3.20)

By (3.18) and (3.20), we derive that

d̄(A1j, Aij′) <
|A1j| · 2α′′t
|A1j||Aij′|

≤ 2α′′t

(1− α′)t
< 3α′′ for i ≥ 2, j 6= j′. (3.21)

We claim |A1j| ≤ (1 + α)t + (1 + 2α′)α′′|A1j| for all j. Otherwise, by the minimum degree

condition, we have degA1j
(v) > (1+2α′)α′′|A1j| for all v ∈ Aij, and consequently d(A1j, Aij) >

(1 + 2α′)α′′, contradicting (3.19). We thus conclude that

|A1j| ≤
1 + α

1− (1 + 2α′)α′′
t < (1 + 2α′′)

n

k
. (3.22)

Since |V ′1 | ≤ 2αn, we have |
⋃k
j=1A1j| = |V1 \ V ′1 | ≥ |V1| − 2αn. Using (3.22), we now obtain

a lower bound for |A1j|, j ∈ [k].

|A1j| ≥ n− (k − 1)(1 + 2α′′)
n

k
− 2αn ≥ (1− 2kα′′)

n

k
. (3.23)

It remains to show that d(Ai1, Ai′1) and d(Aik, Ai′k), 2 ≤ i, i′ ≤ k, are small. First we

show that if both densities are reasonably large then there are too many reachable (2k− 1)-

sets from x to y. The proof resembles the one of Claim 3.14.

Claim 3.19. For 2 ≤ i 6= i′ ≤ k, either d(Ai1, Ai′1) ≤ 6α′′ or d(Aik, Ai′k) ≤ 6α′′.

Proof. Suppose instead, that say d(A(k−1)1, Ak1), d(A(k−1)k, Akk) > 6α′′. Fix a vertex v1 ∈

A12. We construct two vertex disjoint copies of Kk−1 in N(xv1) and N(yv1) as follows. Note

that there are (k − 3)! choices of the sets {Aiji}2≤i≤k−2 such that 3 ≤ ji ≤ k − 1 and every

pair of the sets is dense. We construct copies of Kk−3 in N(xv1) or N(yv1) from such sets,

for example, A23, . . . , A(k−2)(k−1).

First, we construct a copy of Kk−1 in N(xv1) from A23, . . . , A(k−2)(k−1). For 2 ≤ i ≤
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k − 2, we select vi ∈ NAi(i+1)
(v1 · · · vi−1) that is

√
3α′-typical to A(k−1)1, Ak1 and Aj(j+1),

i < j ≤ k − 2. By Claim 3.16 and (3.20), there are at least

(1− (k − 2)
√

3α′)|Ai(i+1)| − (kα + α′ + α′′)
n

k
≥ n

2k

such vi. After selecting v2, . . . , vk−2, we select two adjacent vertices vk−1 ∈ A(k−1)1 and

vk ∈ Ak1 such that vk−1 and vk are in N(v1 · · · vk−2). For j = k − 1, k, we know that N(v1)

misses at most (kα + α′ + α′′)n/k vertices in Aj1 and at most (k − 3)
√

3α′|Aj1| vertices of

Aj1 are not in N(v2 · · · vk−2). Since d(A(k−1)1, Ak1) > 6α′′, there are at least

6α′′|A(k−1)1||Ak1| − (kα + α′ + α′′)
n

k
(|A(k−1)1|+ |Ak1|)

−2(k − 3)
√

3α′|A(k−1)1||Ak1| ≥ 6
√
α′
(n
k

)2

such pairs vk−1, vk. Hence, N(xv1) contains at least

(k − 3)!
( n

2k

)k−3

6
√
α′
(n
k

)2

≥
√
α′
(n
k

)k−1

≥
√
αnk−1

copies of Kk−1. Let C be such a copy of Kk−1. Then we follow the same procedure and

construct a copy of Kk−1 on N(yv1) \ C. After fixing k − 3 sets Aij with 2 ≤ i ≤ k − 2 and

3 ≤ j ≤ k−1 such that no two of them are on the same row or column, still there are at least

n
2k

such vi for 2 ≤ i ≤ k−2. Then, as d(Aik, Ai′k) > 6α′′, there are at least 6
√
α′
(
n
k

)2
choices

of vk−1 ∈ A(k−1)k and vk ∈ Akk such that vk−1 and vk are in N(v1 · · · vk−2). This gives at least
√
αnk−1 copies of Kk−1 in N(yv1). Then, since there are at least |V1| − |A11| − |A1k| ≥ αn

choices of v1, totally there are at least αn(
√
αnk−1)2 = α2n2k−1 reachable (2k− 1)-sets from

x to y, a contradiction.

Next we show that if any of d(Ai1, Ai′1) or d(Aik, Ai′k), 2 ≤ i, i′ ≤ k, is sufficiently large,

then we can remove edges from G such that the resulting graph still satisfies the minimum

degree condition, which contradicts the assumption that G is minimal.
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Claim 3.20. For 2 ≤ i 6= i′ ≤ k, d(Ai1, Ai′1), d(Aik, Ai′k) ≤ 6k
√
α′′.

Proof. Without loss of generality, assume that d(A2k, A3k) > 6k
√
α′′. By Claim 3.19, we

have d(A21, A31) < 6α′′. Combining this with (3.17), we have d(A2j, A3j) < 6α′′ for all

j ∈ [k − 1]. Now fix j ∈ [k − 1]. The number of non-edges between A2j and A3j satisfies

ē(A2j, A3j) > (1− 6α′′)|A2j||A3j|. By the minimum degree condition and (3.18),

ē(A2k, A3j) < (1 + kα)
n

k
|A3j| − (1− 6α′′)|A2j||A3j| ≤ 7α′′

n

k
|A3j|.

Using (3.18) again, we obtain that

d(A2k, A3j) ≥ 1−
7α′′ n

k
|A3j|

|A2k||A3j|
≥ 1− 8α′′.

Consequently d(A2k, A
c
3k) ≥ 1− 8α′′, which implies d(Aik, A

c
i′k) ≥ 1− 8α′′ for {i, i′} = {2, 3}

by symmetry. For {i, i′} = {2, 3}, define ATik as the set of the vertices in Aik that are
√

8α′′-typical to Aci′k. Note that |Aik \ ATik| ≤
√

8α′′|Aik|.

Let AT1ik = {v ∈ ATik : degAjk(v) ≤
√

8α′′|Acjk|} and AT2ik = ATik \ A
T1
ik . For u ∈ AT22k, we

have

degV3(u) = degAc3k(u) + degA3k
(u) > (1−

√
8α′′)|Ac3k|+

√
8α′′|Ac3k| = |Ac3k|.

Since |Ac3k| ≥ degV3(x) and |Ac3k| is an integer, we conclude that degV3(u) ≥ degV3(x) + 1.

Similarly we can derive that degV2(v) ≥ degV2(x) + 1 for every v ∈ AT23k. If there is an edge

uv joining some u ∈ AT22k and some v ∈ AT23k, then we can delete this edge and the resulting

graph still satisfies the minimum degree condition. Therefore we may assume that there is
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no edge between AT22k and AT23k. Then

e(A2k, A3k) = e(A2k \ AT2k, A3k) + e(A2k, A3k \ AT3k) + e(AT12k, A
T
3k) + e(AT2k, A

T1
3k)

≤ 2
√

8α′′|A2k||A3k|+ |AT12k|
√

8α′′|Ac3k|+ |A
T1
3k|
√

8α′′|Ac2k|

≤
√

8α′′ (2|A2k||A3k|+ |A2k||Ac3k|+ |A3k||Ac2k|)

=
√

8α′′ (|A2k||V3|+ |A3k||V2|)

≤ 3
√
α′′ · 2k|A2k||A3k|.

Therefore d(A2k, A3k) ≤ 6k
√
α′′.

In summary, by (3.18), (3.22) and (3.23), we have (1 − 2kα′′)n
k
≤ |Aij| ≤ (1 + 2α′′)n

k

for all i and j. In order to make
⋃k
j=1 Aij a partition of Vi, we move the vertices of V ′1

to A11 and the vertices of Ai0 to Ai2 for 2 ≤ i ≤ k. By |V ′1 | < 2αn and (3.18), we still

have ||Aij| − n
k
| ≤ 2kα′′ n

k
. On the other hand, by (3.17), (3.19), and Claim 3.20, we have

d(Aij, Ai′j) ≤ 6k
√
α′′ for i 6= i′ and all j (at present d(A11, Ai1) ≤ 2α′′ for i ≥ 2 because we

added at most 2αn vertices to A11. Similarly d(Ai2, Ai′2) ≤ 2α′ for i, i′ ≥ 2). Therefore after

deleting edges, G is (2kα′′, 6k
√
α′′)-approximate to Θk×k(n/k). By (3.15), and the definitions

of α′′ and α′, G is (∆/6,∆/2)-approximate to Θk×k(n/k).
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PART 4

MINIMUM CODEGREE THRESHOLD FOR HAMILTON `-CYCLES IN

K-UNIFORM HYPERGRAPHS

4.1 Introduction

A well-known result of Dirac [10] states that every graph G on n ≥ 3 vertices with

minimum degree δ(G) ≥ n/2 contains a Hamilton cycle. In recent years, researchers have

extended this result to hypergraphs in various ways (see [58] for a survey). In order to state

these results, we need to define degrees and Hamilton cycles for hypergraphs.

Given k ≥ 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and

an edge set E ⊆
(
V
k

)
, where every edge is a k-element subset of V . Given a k-graph H with

a set S of d vertices (where 1 ≤ d ≤ k − 1) we define degH(S) to be the number of edges

containing S (the subscript H is omitted if it is clear from the context). The minimum d-

degree δd(H) of H is the minimum of degH(S) over all d-vertex sets S in H. We refer to δ1(H)

as the minimum vertex degree and δk−1(H) the minimum codegree of H. For 1 ≤ ` < k,

a k-graph is a called an `-cycle if its vertices can be ordered cyclically such that each of

its edges consists of k consecutive vertices and every two consecutive edges (in the natural

order of the edges) share exactly ` vertices. In k-graphs, a (k−1)-cycle is often called a tight

cycle while a 1-cycle is often called a loose cycle. We say that a k-graph contains a Hamilton

`-cycle if it contains an `-cycle as a spanning subhypergraph. Note that a k-uniform `-cycle

on n vertices contains exactly n/(k − `) edges, implying that k − ` divides n.

Confirming a conjecture of Katona and Kierstead [28], Rödl, Ruciński and Szemerédi

[60, 62] showed that for any fixed k, every k-graph H on n vertices with δk−1(H) ≥ n/2+o(n)

contains a tight Hamilton cycle. When k−` divides k, a (k−1)-cycle on V trivially contains

an `-cycle on V (provided k − ` divides |V |). Thus the result in [62] implies that for all

1 ≤ ` < k such that k − ` divides k, every k-graph H on n ∈ (k − `)N vertices with
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δk−1(H) ≥ n/2 + o(n) contains a Hamilton `-cycle. It is not hard to see that these results

are best possible up to the o(n) term. With long and involved arguments, Rödl, Ruciński

and Szemerédi [64] determined the minimum codegree threshold for tight Hamilton cycles

in 3-graphs.

Loose Hamilton cycles were first studied by Kühn and Osthus [41], who proved that

every 3-graph on n vertices with δ2(H) ≥ n/4 + o(n) contains a loose Hamilton cycle. It

is easy to see that this is asymptotically best possible. It was generalized to arbitrary k by

Keevash, Kühn, Mycroft, and Osthus [32] and to arbitrary k and arbitrary ` < k/2 by Hàn

and Schacht [18].

Theorem 4.1. [18] Fix integers k ≥ 3 and 1 ≤ ` < k/2. Assume that γ > 0 and n ∈ (k−`)N

is sufficiently large. If H = (V,E) is a k-graph on n vertices such that δk−1(H) ≥ ( 1
2(k−`) +

γ)n, then H contains a Hamilton `-cycle.

Later Kühn, Mycroft, and Osthus [40] proved that whenever k − ` does not divide k,

every k-graph on n vertices with δk−1(H) ≥ n
d k
k−` e(k−`)

+ o(n) contains a Hamilton l-cycle.

Since dk/(k− `)e = 2 when ` < k/2, this generalizes Theorem 4.1 and is best possible up to

the o(n) term.

Rödl and Ruciński [58, Problem 2.9] asked for the exact minimum codegree threshold

for Hamilton `-cycles in k-graphs. The k = 3 and ` = 1 case was answered by Czygrinow

and Molla [9] recently. In this chapter we determine this threshold for all k ≥ 3 and ` < k/2.

Theorem 4.2. Fix integers k ≥ 3 and 1 ≤ ` < k/2. Assume that n ∈ (k−`)N is sufficiently

large. If H = (V,E) is a k-graph on n vertices such that

δk−1(H) ≥ n

2(k − `)
, (4.1)

then H contains a Hamilton `-cycle.

A simple well-known construction shows that Theorem 4.2 is best possible – in fact, it

works for all ` < k. Let H0 = (V,E) be an n-vertex k-graph in which V is partitioned into
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sets A and B such that |A| =

⌈
n

d k
k−` e(k−`)

⌉
− 1. The edge set E consists of all k-sets that

intersect A. It is easy to see (e.g. [40, Proposition 2.2]) that δk−1(H0) = |A| and H0 contains

no Hamilton `-cycle.

Using the typical approach of obtaining exact results, our proof of Theorem 4.2 consists

of an extremal case and a nonextremal case.

Definition 4.3. Let ∆ > 0, a k-graph H on n vertices is called ∆-extremal if there is a set

B ⊂ V (H), such that |B| = b2(k−`)−1
2(k−`) nc and e(B) ≤ ∆nk.

Theorem 4.4 (Nonextremal Case). For any integer k ≥ 3, 1 ≤ ` < k/2 and 0 < ∆ < 1 there

exists γ > 0 such that the following holds. Suppose that H is a k-graph on n vertices such that

n ∈ (k−`)N is sufficiently large. If H is not ∆-extremal and satisfies δk−1(H) ≥ ( 1
2(k−`)−γ)n,

then H contains a Hamilton `-cycle.

Theorem 4.5 (Extremal Case). For any integer k ≥ 3, 1 ≤ ` < k/2 there exists ∆ > 0

such that the following holds. Suppose H is a k-graph on n vertices such that n ∈ (k − `)N

is sufficiently large. If H is ∆-extremal and satisfies (4.1), then H contains a Hamilton

`-cycle.

Theorem 4.2 follows from Theorem 4.4 and 4.5 immediately by choosing ∆ from Theo-

rem 4.5.

Let us compare our proof with those in aforementioned papers. There is no extremal

case in [18, 32, 40, 41] because only asymptotic results were proved. Our Theorem 4.5 is new

and more general than [9, Theorem 3.1]. Following previous work [60, 62, 64, 18, 40], we prove

Theorem 4.4 by using the absorbing method. More precisely, we find the desired Hamilton

`-cycle by applying the Absorbing Lemma (Lemma 4.6), the Reservoir Lemma (Lemma 4.7),

and the Path-cover Lemma (Lemma 4.8). In fact, when ` < k/2, the Absorbing Lemma and

the Reservoir Lemma are not very difficult and already proven in [18] (in contrast, when

` > k/2, the Absorbing Lemma in [40] is more difficult to prove). Thus the main step is to

prove the Path-cover Lemma. As shown in [18, 40], after the Regularity Lemma is applied, it
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suffices to prove that the cluster k-graph K can be tiled almost perfectly by the k-graph Fk,`,

whose vertex set consists of disjoint sets A1, . . . , Aa−1, B of size k − 1, and whose edges are

all the k-sets of the form Ai ∪ {b} for i = 1, . . . , a− 1 and all b ∈ B, where a = d k
k−`e(k− `).

In this chapter we reduce the problem to tile K with a much simpler k-graph Yk,2`, which

consists of two edges sharing 2` vertices. Because of the simple structure of Yk,2`, we can

easily find an almost perfect Yk,2`-tiling unless K is in the extremal case (thus the original

k-graph H is in the extremal case). Interestingly Y3,2-tiling was studied in the very first

paper [41] on loose Hamilton cycles but as a separate problem. Our recent project indeed

used Y3,2-tiling as a tool to prove the corresponding path-cover lemma (see Chapter 5). On

the other hand, the authors of [9] used a different approach (without the Regularity Lemma)

to prove the Path-tiling Lemma (though they did not state such lemma explicitly).

We prove Theorem 4.4 in Section 4.2 and Theorem 4.5 in Section 4.3.

Extra notations. Given a k-graph H with two vertex sets S,R such that |S| < k, we

denote by degH(S,R) the number of (k − |S|)-sets T ⊆ R such that S ∪ T is an edge of H

(in this case T is called a neighbor of S). We define degH(S,R) =
(|R\S|
k−|S|

)
− deg(S,R) as the

number of non-edges on S ∪ R that contain S. When R = V (H) (and H is obvious), we

simply write deg(S) and deg(S). When S = {v}, we use deg(v,R) instead of deg({v}, R).

A k-graph P is an `-path if there is an ordering (v1, . . . , vt) of its vertices such that

every edge consists of k consecutive vertices and two consecutive edges intersect in exactly

` vertices. Note that this implies that k − ` divides t− `. In this case we write P = v1 · · · vt

and call two `-sets {v1, . . . , v`} and {vt−`+1, . . . , vt} ends of P .

4.2 Proof of Theorem 4.4

In this section we prove Theorem 4.4 by following the same approach as in [18].

4.2.1 Auxiliary lemmas and Proof of Theorem 4.4

We need [18, Lemma 5] and [18, Lemma 6] of Hàn and Schacht, in which any linear

codegree is sufficient.
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Lemma 4.6 (Absorbing lemma,[18]). For all integers k ≥ 3 and 1 ≤ ` < k/2 and every

γ1 > 0 there exist η > 0 and an integer n0 such that the following holds. Let H be a k-graph

on n ≥ n0 vertices with δk−1(H) ≥ γ1n. Then there is an `-path P with |V (P)| ≤ γ5
1n such

that for all subsets U ⊂ V \ V (P) of size |U | ≤ ηn and |U | ∈ (k− `)N there exists an `-path

Q ⊂ H with V (Q) = V (P) ∪ U such that P and Q have exactly the same ends (we say P

absorbs U in this case).

Lemma 4.7 (Reservoir lemma, [18]). For all integers k ≥ 3 and 1 ≤ ` < k/2 and every

d, γ2 > 0 there exists an n0 such that the following holds. Let H be a k-graph on n > n0

vertices with δk−1(H) ≥ dn, then there is a set R of size at most γ2n such that for all

(k − 1)-sets S ∈
(
V
k−1

)
we have deg(S,R) ≥ dγ2n/2.

The main step in our proof of Theorem 4.4 is the following lemma, which is stronger

than [18, Lemma 7].

Lemma 4.8 (Path-cover lemma). For all integers k ≥ 3, 1 ≤ ` < k/2, and every γ3, α > 0

there exist integers p and n0 such that the following holds. Let H be a k-graph on n > n0

vertices with δk−1(H) ≥ ( 1
2(k−`) − γ3)n, then there is a family of at most p vertex disjoint

`-paths that together cover all but at most αn vertices of H, or H is 14γ3-extremal.

We can now prove Theorem 4.4 in a similar way as in [18].

Proof of Theorem 4.4. Given k ≥ 3, 1 ≤ ` < k/2 and 0 < ∆ < 1, let γ = min{∆
43
, 1

4k2
} and

n ∈ (k − `)N be sufficiently large. Suppose that H = (V,E) is a k-graph on n vertices with

δk−1(H) ≥ ( 1
2(k−`) − γ)n. Since 1

2(k−`) − γ > γ, we can apply Lemma 4.6 with γ1 = γ and

obtain η > 0 and an absorbing path P0 with ends S0, T0 such that P0 can absorb any u

vertices outside P0 if u ≤ ηn and u ∈ (k − `)N.

Let V1 = (V \ V (P0)) ∪ S0 ∪ T0 and H1 = H[V1]. Note that |V (P0)| ≤ γ5n implies that

δk−1(H1) ≥ ( 1
2(k−`) − γ)n − γ5n ≥ 1

2k
n since γ < 1

4k2
and ` ≥ 1. We next apply Lemma

4.7 with d = 1
2k

and γ2 = min{η/2, γ} to H1 and get a reservoir R ⊂ V1 such that for any
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(k − 1)-set S ⊂ V1, we have

deg(S,R) ≥ dγ2|V1|/2 ≥ dγ2n/4. (4.2)

Let V2 = V \ (V (P0)∪R), n2 = |V2|, and H2 = H[V2]. Note that |V (P0)∪R| ≤ γ5
1n+ γ2n ≤

2γn, so

δk−1(H2) ≥
(

1

2(k − `)
− γ
)
n− 2γn ≥

(
1

2(k − `)
− 3γ

)
n2.

Applying Lemma 4.8 to H2 with γ3 = 3γ and α = η/2, we obtain at most p vertex disjoint

`-paths that cover all but at most αn2 vertices of H2, unless H2 is 14γ3-extremal. In the

latter case, there exists B′ ⊆ V2 such that |B′| = b2k−2`−1
2(k−`) n2c and e(B′) ≤ 42γnk2. Then we

add at most n − n2 ≤ 2γn vertices from V \ B′ to B′ and obtain a vertex set B ⊆ V (H)

such that |B| = b2k−2`−1
2(k−`) nc and

e(B) ≤ 42γnk2 + 2γn ·
(
n− 1

k − 1

)
≤ 42γnk + γnk ≤ ∆nk,

which means that H is ∆-extremal, a contradiction. In the former case, denote these `-paths

by {Pi}i∈[p′] for some p′ ≤ p, and their ends by {Si, Ti}i∈[p′]. Note that both Si and Ti are

`-sets for ` < k/2. We arbitrarily pick disjoint (k−2`−1)-sets X0, X1, . . . , Xp′ ⊂ R\(S0∪T0)

(note that k − 2`− 1 ≥ 0). Let Tp′+1 = T0. By (4.2), we get for 0 ≤ i ≤ p′,

deg

(
Si ∪ Ti+1 ∪Xi, R \

⋃
0≤i≤p′

(Si ∪ Ti ∪Xi)

)
≥ dγ2n/4− (p′ + 1)(k − 1) ≥ p+ 1,

as n is large enough. So we can connect P0,P1, . . . ,Pp′ by using vertices from R and get an

`-cycle C. Note that |V (H) \ V (C)| ≤ |R| + αn2 ≤ γ2n + αn ≤ ηn and since n ∈ (k − `)N,

|V \ V (C)| is also a multiple of k − `. So we can use P0 to absorb all unused vertices in R

and uncovered vertices in V2 thus obtaining a Hamilton `-cycle in H.

The rest of this section is devoted to the proof of Lemma 4.8.
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4.2.2 Proof of Lemma 4.8

Let H be a k-partite k-graph with partition classes V1, . . . , Vk. Then we call an `-path

P of H with edges {E1, . . . , Et} canonical with respect to (V1, . . . , Vk) if

Ei ∩ Ei+1 ⊆
⋃
j∈[`]

Vj or Ei ∩ Ei+1 ⊆
⋃

j∈[2`]\[`]

Vj

for i = 1, . . . , t− 1. Note that a canonical `-path with an odd length t contains t+1
2

vertices

of Vi for i ∈ [2`] and t vertices of Vi for i > 2`.

We also need the following proposition from [18].

Proposition 4.9. [18, Proposition 19] Suppose H is a k-partite, k-graph with partition

classes V1, . . . , Vk, |Vi| = m for all i ∈ [k], and |E(H)| ≥ dmk. Then there exists a canonical

`-path in H with t > dm
2(k−`) edges.

In [18] the authors used Proposition 4.9 to cover an (ε, d)-regular tuple (V1, . . . , Vk) of

sizes |V1| = · · · = |Vk−1| = (2k − 2`− 1)m and |Vk| = (k − 1)m with vertex disjoint `-paths.

Our next lemma shows that an (ε, d)-regular tuple (V1, . . . , Vk) of sizes |V1| = · · · = |V2`| = m

and |Vi| = 2m for i > 2` can be covered with `-paths.

Lemma 4.10. Fix k ≥ 3, 1 ≤ ` < k/2 and ε, d > 0 such that d > 2ε. Let m > 2k2

ε2(d−ε) .

Suppose V = (V1, V2, . . . , Vk) is an (ε, d)-regular k-tuple with

|V1| = · · · = |V2`| = m and |V2`+1| = · · · = |Vk| = 2m. (4.3)

Then there are at most 4(k−`)
(d−ε)ε vertex disjoint `-paths that together cover all but at most 2kεm

vertices of V.

Proof. We greedily find disjoint canonical `-paths of odd length by Proposition 4.9 in V

until less than εm vertices are uncovered in V1. Suppose that we have obtained odd `-paths

P1, . . . ,Pp by Proposition 4.9 for some p ≥ 0. Let t =
∑p

j=1 e(Pj). Since all e(Pj) are odd,⋃p
j=1Pi contains t+p

2
vertices of Vi for i ∈ [2`] and t vertices of Vi for i > 2`. For i ∈ [k], let
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Ui be the set of uncovered vertices of Vi and assume that |U1| ≥ εm. Using (4.3), we derive

that |U1| = · · · = |U2`| ≥ εm and

|U2`+1| = · · · = |Uk| = 2|U1|+ p. (4.4)

We pick an arbitrary k-partite subhypergraph V ′ with |U1| vertices in each Ui for i ∈ [k]. By

regularity, V ′ contains at least (d − ε)|U1|k edges so that we can apply Proposition 4.9 and

find an `-path of odd length at least (d−ε)εm
2(k−`) − 1 (dismiss one edge if needed). We continue

this process until |U1| < εm. Let P1, . . . ,Pp be the `-paths obtained in V after the iteration

stops. Since |V1 ∩ V (Pj)| ≥ (d−ε)εm
4(k−`) for every j, we have

p ≤ m
(d−ε)εm
4(k−`)

=
4(k − `)
(d− ε)ε

.

Since m > 2k2

ε2(d−ε) , we further have

p(k − 2`) ≤ 4(k − `)(k − 2`)

(d− ε)ε
<

4k2

(d− ε)ε
< 2εm.

By (4.4), the total number of uncovered vertices in V is

k∑
i=1

|Ui| = |U1|2`+ (2|U1|+ p)(k − 2`) = 2(k − `)|U1|+ p(k − 2`)

< 2(k − 1)εm+ 2εm = 2kεm.

Given k ≥ 3 and 1 ≤ b < k, recall that Yk,b is a k-graph with two edges that share

exactly b vertices. The following lemma is the main step in our proof of Lemma 4.8 and

we prove it in the next subsection. Note that it generalizes [7, Lemma 3.1] of Czygrinow,

DeBiasio, and Nagle.

Lemma 4.11 (Yk,b-tiling Lemma). Given integers k ≥ 3, 1 ≤ b < k and constants γ, β > 0,

there exist 0 < ε′ < γβ and an integer n0 such that the following holds. Suppose H is a k-
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graph on n > n0 vertices with deg(S) ≥ ( 1
2k−b−γ)n for all but at most ε′nk−1 sets S ∈

(
V
k−1

)
,

then there is a Yk,b-tiling that covers all but at most βn vertices of H unless H contains a

vertex set B such that |B| = b2k−b−1
2k−b nc and e(B) < 6γnk.

Now we are ready to prove Lemma 4.8.

Proof of Lemma 4.8. Fix such integers k, `, 0 < γ3, α < 1. Let ε′ be the constant returned

from Lemma 4.11 with b = 2`, γ = 2γ3, and β = α/2. So ε′ < γβ = γ3α. Furthermore,

let p = 4T0
(d−ε)ε , where T0 is the constant returned from Corollary 2.2 with c = 1

2(k−`) − γ3,

ε = (ε′)2/16, and d = γ3/2.

Let n be a sufficiently large integer and let H be a k-graph on n vertices with δk−1(H) ≥

( 1
2(k−`) − γ3)n. By applying Corollary 2.2 with the constants chosen above we obtain an ε-

regular partition and a cluster hypergraph K = K(ε, d) such that for all but at most
√
εtk−1

(k − 1)-sets S ∈
(

[t]
k−1

)
,

degK(S) ≥
(

1

2(k − `)
− γ3 − 2d

)
t =

(
1

2(k − `)
− 2γ3

)
t,

because d = γ3/2. Let m be the size of each cluster except V0, then (1 − ε)n
t
≤ m ≤ n

t
.

Applying Lemma 4.11 with the constants chosen above, we derive that either there is a Yk,2`-

tiling Y of K which covers all but at most βt vertices of K or there exists a set B ⊆ V (K),

such that |B| = b2k−2`−1
2(k−`) tc and eK(B) ≤ 12γ3t

k. In the latter case, let B′ ⊆ V (H) be the

union of the clusters in B. By regularity,

eH(B′) ≤ eK(B) ·mk +

(
t

k

)
· d ·mk + ε ·

(
t

k

)
·mk +

(
m

2

)(
n

k − 2

)
,

where the right-hand side bounds the number of edges from regular k-tuples with high

density, edges from regular k-tuples with low density, edges from irregular k-tuples and

edges that lie in at most k − 1 clusters. Since m ≤ n
t
, ε < γ3, d = γ3/2, and t−2 < t−2

0 < γ3,
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we obtain that

eH(B′) ≤ 12γ3t
k ·
(n
t

)k
+

(
t

k

)
d
(n
t

)k
+ ε

(
t

k

)(n
t

)k
+

(
n/t

2

)(
n

k − 2

)
< 13γ3n

k.

Note that |B′| = b2k−2`−1
2(k−`) tcm ≤

2k−2`−1
2(k−`) t ·

n
t

= 2k−2`−1
2(k−`) n, and consequently |B′| ≤ b2k−2`−1

2(k−`) nc.

On the other hand,

|B′| =
⌊

2k − 2`− 1

2(k − `)
t

⌋
m ≥

(
2k − 2`− 1

2(k − `)
t− 1

)
(1− ε)n

t

≥
(

2k − 2`− 1

2(k − `)
t− εt

)
n

t
=

2k − 2`− 1

2(k − `)
n− εn.

By adding at most εn vertices from V \ B′ to B′, we get a set B′′ ⊆ V (H) of size exactly

b2k−2`−1
2(k−`) nc, with e(B′′) ≤ e(B′) + εn · nk−1 < 14γ3n

k. Hence H is 14γ3-extremal.

In the former case, the union of the clusters covered by Y contains all but at most βtm+

|V0| ≤ αn/2 + εn vertices. We apply Lemma 4.10 to each member Y ′ ∈ Y . Suppose that Y ′

has the vertex set [2k−2`] with edges {1, . . . , k} and {k−2`+1, . . . , 2k−2`}. For i ∈ [2k−2`],

let Wi denote the corresponding cluster in H. We split each Wi, i = k−2`+1, . . . , k, into two

disjoint sets W 1
i and W 2

i of equal size. Then the k-tuples (W 1
k−2`+1, . . . ,W

1
k ,W1, . . . ,Wk−2`)

and (W 2
k−2`+1, . . . ,W

2
k ,Wk+1, . . . ,W2k−2`) are (2ε, d)-regular and of sizes m

2
, . . . , m

2
, m, . . . ,m.

Applying Lemma 4.10 to these two k-tuples with m′ = m
2

, we find a family of disjoint loose

paths in each k-tuple covering all but at most 2kεm′ = kεm vertices.

Since |Y | ≤ t
2k−2`

, we obtain a path-tiling that consists of at most 2 t
2k−2`

4(k−`)
(d−ε)ε ≤

4T0
(d−ε)ε = p paths and covers all but at most

2kεm · t

2k − 2`
+ αn/2 + εn < 3εn+ αn/2 < αn

vertices, where we use 2k − 2` > k and ε = (ε′)2/16 < (γ3α)2/16 < α/6. This completes the

proof.
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4.2.3 Proof of Lemma 4.11

We first give an upper bound on the size of k-graphs containing no copy of Yk,b. Through-

out the rest of the chapter, we frequently use the simple identity
(
m
b

)(
m−b
k−b

)
=
(
m
k

)(
k
b

)
, which

holds for all integers 1 ≤ b ≤ k ≤ m.

Fact 4.12. Let 1 ≤ b < k ≤ m. If H is a k-graph on m vertices containing no copy of Yk,b,

then e(H) <
(
m
k−1

)
.

Proof. Fix any b-set S ⊆ V (H) and consider its link graph LS. Since H contains no copy of

Yk,b, any two edges of LS intersect. By the Erdős–Ko–Rado Theorem [12], |LS| ≤
(
m−b−1
k−b−1

)
.

Thus,

e(H) ≤ 1(
k
b

)(m
b

)
·
(
m− b− 1

k − b− 1

)
=

1(
k
b

)(m
b

)(
m− b
k − b

)
k − b
m− b

=

(
m

k

)
k − b
m− b

=

(
m

k − 1

)
k − b
k

m− k + 1

m− b
<

(
m

k − 1

)
.

Proof of Lemma 4.11. Given γ, β > 0, let ε′ = γβk−1

(k−1)!
and n ∈ N be sufficiently large. Let

H be a k-graph on n vertices that satisfies deg(S) ≥ ( 1
2k−b − γ)n for all but at most ε′nk−1

(k − 1)-sets S. Fix a largest Yk,b-tiling Y = {Y1, . . . ,Ym} and write Vi = V (Yi) for i ∈ [m].

Let V ′ =
⋃
i∈[m] Vi and U = V (H) \ V ′. Assume that |U | > βn – otherwise we are done.

Let C be the set of vertices v ∈ V ′ such that deg(v, U) ≥ (2k − b)2
( |U |
k−2

)
. We will

show that |C| ≤ n
2k−b and C covers almost all the edges of H, which implies that H[V \ C]

is sparse and H is in the extremal case. We first observe that every Yi ∈ Y contains

at most one vertex in C. Suppose instead, two vertices x, y ∈ Vi are both in C. Since

deg(x, U) ≥ (2k−b)2
( |U |
k−2

)
>
( |U |
k−2

)
, by Fact 4.12, there is a copy of Yk−1,b−1 in the link graph

of x on U , which gives rise to Y ′, a copy of Yk,b on {x} ∪ U . Since the link graph of y on

U \ V (Y ′) has at least

(2k − b)2

(
|U |
k − 2

)
− (2k − b− 1)

(
|U |
k − 2

)
>

(
|U \ V (Y ′)|

k − 2

)
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edges, we can find another copy of Yk,b on {y}∪ (U \V (Y ′)) by Fact 4.12. Replacing Yi in Y

with these two copies of Yk,b creates a Yk,b-tiling larger than Y , contradiction. Consequently,

∑
S∈( U

k−1)

deg(S, V ′) ≤ |C|
(
|U |
k − 1

)
+ |V ′ \ C|(2k − b)2

(
|U |
k − 2

)

< |C|
(
|U |
k − 1

)
+ (2k − b)2n

(
|U |
k − 2

)
because |V ′ \ C| < n

=

(
|U |
k − 1

)(
|C|+ (2k − b)2n(k − 1)

|U | − k + 2

)
. (4.5)

Second, by Fact 4.12, e(U) ≤
( |U |
k−1

)
since H[U ] contains no copy of Yk,b, which implies

∑
S∈( U

k−1)

deg(S, U) ≤ k

(
|U |
k − 1

)
. (4.6)

By the definition of ε′, we have

ε′nk−1 =
γβk−1

(k − 1)!
nk−1 <

γ|U |k−1

(k − 1)!
< 2γ

(
|U |
k − 1

)
,

since |U | is large enough. At last, by the degree condition, we have

∑
S∈( U

k−1)

deg(S) ≥
((
|U |
k − 1

)
− ε′nk−1

)(
1

2k − b
− γ
)
n > (1− 2γ)

(
|U |
k − 1

)(
1

2k − b
− γ
)
n,

(4.7)

Since deg(S) = deg(S, U) + deg(S, V ′), we combine (4.5), (4.6) and (4.7) and get

|C| > (1− 2γ)

(
1

2k − b
− γ
)
n− k − (2k − b)2n(k − 1)

|U | − k + 2
.

Since |U | > 16k3/γ, we get

(2k − b)2n(k − 1)

|U | − k + 2
<

4k3n

|U |/2
< γn/2,
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As 2γ2n > k and 2k − b ≥ 4, it follows that |C| >
(

1
2k−b − 2γ

)
n.

Let IC be the set of all i ∈ [m] such that Vi ∩C 6= ∅. Since each Vi, i ∈ IC , contains one

vertex of C, we have

|IC | = |C| ≥
(

1

2k − b
− 2γ

)
n ≥ m− 2γn. (4.8)

Let A = (
⋃
i∈IC Vi \ C) ∪ U .

Claim 4.13. H[A] contains no copy of Yk,b, thus e(A) ≤
(
n
k−1

)
.

Proof. The first half of the claim implies the second half by Fact 4.12. Suppose instead,

H[A] contains a copy of Yk,b, denoted by Y0. Note that V (Y0) 6⊆ U because H[U ] contains

no copy of Yk,b. Without loss of generality, suppose that V1, . . . , Vj contain the vertices of

Y0 for some j ≤ 2k − b. For i ∈ [j], let ci denote the unique vertex in Vi ∩ C. We greedily

construct vertex-disjoint copies of Yk,b on {ci} ∪ U , i ∈ [j] as follows. Suppose we have

found Y ′1, . . . ,Y ′i (copies of Yk,b) for some i < j. Let U0 denote the set of the vertices of U

covered by Y0,Y ′1, . . . ,Y ′i. Then |U0| ≤ (i + 1)(2k − b − 1) ≤ (2k − b)(2k − b − 1). Since

deg(ci+1, U) ≥ (2k − b)2
( |U |
k−2

)
, the link graph of ci+1 on U \ U0 has at least

(2k − b)2

(
|U |
k − 2

)
− |U0|

(
|U |
k − 2

)
>

(
|U |
k − 2

)

edges. By Fact 4.12, there is a copy of Yk,b on {ci+1} ∪ (U \ U0). Let Y ′1, . . . ,Y ′j denote the

copies of Yk,b constructed in this way. Replacing Y1, . . . ,Yj in Y with Y0,Y ′1, . . . ,Y ′j gives a

Yk,b-tiling larger than Y , contradiction.

Note that the edges not incident to C are either contained in A or intersect some Vi,

i /∈ IC . By (4.8) and Claim 4.13,

e(V \ C) ≤ e(A) + (2k − b) · 2γn
(
n− 1

k − 1

)
<

(
n

k − 1

)
+ (4k − 2b)γn

(
n

k − 1

)
< 4kγn

(
n

k − 1

)
<

4k

(k − 1)!
γnk ≤ 6γnk,
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where the last inequality follows from k ≥ 3. Since |C| ≤ n
2k−b , we can pick a set B ⊆ V \C

of order b2k−b−1
2k−b nc such that e(B) < 6γnk.

4.3 The Extremal Theorem

In this section we prove Theorem 4.5. Assume that k ≥ 3, 1 ≤ ` < k/2 and 0 < ∆� 1.

Let n ∈ (k − `)N be sufficiently large. Let H be a k-graph on V of n vertices such that

δk−1(H) ≥ n
2(k−`) . Furthermore, assume that H is ∆-extremal, namely, there is a set B ⊆

V (H), such that |B| = b (2k−2`−1)n
2(k−`) c and e(B) ≤ ∆nk. Let A = V \B. Then |A| = d n

2(k−`)e.

Let us give an outline of our proof first. We denote by A′ and B′ the sets of “typical”

vertices of A and B, respectively. Let V0 = V \ (A′ ∪B′). It is not hard to see that A′ ≈ A,

B′ ≈ B, and thus V0 ≈ ∅. In the ideal case when V0 = ∅ and |B′| = (2k − 2` − 1)|A′|, we

assign a cyclic order to the vertices of A′, construct |A′| copies of Yk,` such that each copy

contains one vertex of A′ and 2k − ` − 1 vertices of B′, and any two consecutive copies of

Yk,` share exactly ` vertices of B′. This gives rise to the desired Hamilton `-cycle of H. In

the general case, we first construct an `-path Q with ends L0 and L1 such that V0 ⊆ V (Q)

and |B1| = (2k − 2` − 1)|A1| + `, where A1 = A′ \ V (Q) and B1 = (B \ V (Q)) ∪ L0 ∪ L1.

Next we complete the Hamilton `-cycle by constructing an `-path on A1 ∪ B1 with ends L0

and L1.

For the convenience of later calculations, we let ε0 = 2k!e∆� 1 and claim that e(B) ≤

ε0
(|B|
k

)
. Indeed, since 2(k − `)− 1 ≥ k, we have

1

e
≤
(

1− 1

2(k − `)

)2(k−`)−1

≤
(

1− 1

2(k − `)

)k
.

Thus we get

e(B) ≤ ε0
2k!e

nk ≤ ε0

(
1− 1

2(k − `)

)k
nk

2k!
≤ ε0

(
|B|
k

)
. (4.9)

In general, given two disjoint vertex sets X and Y and two integers i, j ≥ 0, a set

S ⊂ X ∪ Y is called an X iY j-set if |S ∩ X| = i and |S ∩ Y | = j. When X, Y are two

disjoint subsets of V (H) and i + j = k, we denote by H(X iY j) the family of all edges
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of H that are X iY j-sets, and let eH(X iY j) = |H(X iY j)| (the subscript may be omitted

if it is clear from the context). We use eH(X iY k−i) to denote the number of non-edges

among X iY k−i-sets. Given a set L ⊆ X ∪ Y with |L ∩ X| = l1 ≤ i and |L ∩ Y | = l2 ≤

k − i, we define deg(L,X iY k−i) as the number of edges in H(X iY k−i) that contain L, and

deg(L,X iY k−i) =
(|X|−l1
i−l1

)( |Y |−l2
k−i−l2

)
− deg(L,X iY k−i). Our earlier notation deg(S,R) may be

viewed as deg(S, S|S|(R \ S)k−|S|).

4.3.1 Classification of vertices

Let ε1 = ε0
1/3 and ε2 = 2ε21. Assume that the partition V (H) = A ∪ B satisfies that

|B| = b (2k−2`−1)n
2(k−`) c and (4.9). In addition, assume that e(B) is the smallest among all such

partitions. We now define

A′ :=

{
v ∈ V : deg(v,B) ≥ (1− ε1)

(
|B|
k − 1

)}
,

B′ :=

{
v ∈ V : deg(v,B) ≤ ε1

(
|B|
k − 1

)}
,

V0 := V \ (A′ ∪B′).

Claim 4.14. A ∩B′ 6= ∅ implies that B ⊆ B′, and B ∩ A′ 6= ∅ implies that A ⊆ A′.

Proof. First, assume that A ∩ B′ 6= ∅. Then there is some u ∈ A such that deg(u,B) ≤

ε1
( |B|
k−1

)
. If there exists some v ∈ B \ B′, namely, deg(v,B) > ε1

( |B|
k−1

)
, then we can switch

u and v and form a new partition A′′ ∪ B′′ such that |B′′| = |B| and e(B′′) < e(B), which

contradicts the minimality of e(B).

Second, assume that B ∩ A′ 6= ∅. Then some u ∈ B satisfies that deg(u,B) ≥ (1 −

ε1)
( |B|
k−1

)
. Similarly, by the minimality of e(B), we get that for any vertex v ∈ A, deg(v,B) ≥

(1− ε1)
( |B|
k−1

)
, which implies that A ⊆ A′.

Claim 4.15. {|A \ A′|, |B \B′|, |A′ \ A|, |B′ \B|} ≤ ε2|B| and |V0| ≤ 2ε2|B|.
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Proof. First assume that |B \B′| > ε2|B|. By the definition of B′, we get that

e(B) >
1

k
ε1

(
|B|
k − 1

)
· ε2|B| > 2ε0

(
|B|
k

)
,

which contradicts (4.9).

Second, assume that |A \ A′| > ε2|B|. Then by the definition of A′, for any vertex

v /∈ A′, we have that deg(v,B) > ε1
( |B|
k−1

)
. So we get

e(ABk−1) > ε2|B| · ε1
(
|B|
k − 1

)
= 2ε0|B|

(
|B|
k − 1

)
.

Together with (4.9), this implies that

∑
S∈( B

k−1)

deg(S) = ke(B) + e(ABk−1)

> k(1− ε0)

(
|B|
k

)
+ 2ε0|B|

(
|B|
k − 1

)
= ((1− ε0)(|B| − k + 1) + 2ε0|B|)

(
|B|
k − 1

)
> |B|

(
|B|
k − 1

)
.

where the last inequality holds because n is large enough. By the pigeonhole principle, there

exists a set S ∈
(
B
k−1

)
, such that deg(S) > |B| = b (2k−2`−1)n

2(k−`) c, contradicting (4.1).

Consequently,

|A′ \ A| = |A′ ∩B| ≤ |B \B′| ≤ ε2|B|,

|B′ \B| = |A ∩B′| ≤ |A \ A′| ≤ ε2|B|,

|V0| = |A \ A′|+ |B \B′| ≤ ε2|B|+ ε2|B| = 2ε2|B|.

4.3.2 Classification of `-sets in B′

In order to construct our Hamilton `-cycle, we need to connect two `-paths. To make

this possible, we want the ends of our `-paths to be `-sets in B′ that have high degree in

H[A′B′k−1]. Formally, we call an `-set L ⊂ V typical if deg(L,B) ≤ ε1
( |B|
k−`

)
, otherwise
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atypical. We prove several properties related to typical `-sets in this subsection.

Claim 4.16. The number of atypical `-sets in B is at most ε2
(|B|
`

)
.

Proof. Let m be the number of atypical `-sets in B. By (4.9), we have

mε1
( |B|
k−`

)(
k
`

) ≤ e(B) ≤ ε0

(
|B|
k

)
,

which gives that m ≤ ε0(kl)(
|B|
k )

ε1( |B|k−`)
= ε2

2

(|B|−k+`
`

)
< ε2

(|B|
`

)
.

Claim 4.17. Every typical `-set L ⊂ B′ satisfies deg(L,A′B′k−1) ≤ 4kε1
(|B′|−`
k−`−1

)
|A′|.

Proof. Fix a typical `-set L ⊂ B′, consider the following sum,

∑
L⊂D⊂B′,|D|=k−1

deg(D) =
∑

L⊂D⊂B′,|D|=k−1

(deg(D,A′) + deg(D,B′) + deg(D, V0)).

By (4.1), the left hand side is at least
(|B′|−`
k−`−1

)
|A|. On the other hand,

∑
L⊂D⊂B′,|D|=k−1

(deg(D,B′) + deg(D, V0)) ≤ (k − `) deg(L,B′) +

(
|B′| − `
k − `− 1

)
|V0|.

Since L is typical and |B′ \B| ≤ ε2|B| (Claim 4.15), we have

deg(L,B′) ≤ deg(L,B) + |B′ \B|
(
|B′| − 1

k − `− 1

)
≤ ε1

(
|B|
k − `

)
+ ε2|B|

(
|B′| − 1

k − `− 1

)
.

Since ε2 � ε1 and ||B| − |B′|| ≤ ε2|B|, it follows that

(k − `) deg(L,B′) ≤ ε1|B|
(
|B| − 1

k − `− 1

)
+ (k − `)ε2|B|

(
|B′| − 1

k − `− 1

)
≤ 2ε1|B|

(
|B′| − `
k − `− 1

)
.
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Putting these together and using Claim 4.15, we obtain that

∑
L⊂D⊂B′,|D|=k−1

deg(D,A′) ≥
(
|B′| − `
k − `− 1

)
(|A| − |V0|)− 2ε1|B|

(
|B′| − `
k − `− 1

)

≥
(
|B′| − `
k − `− 1

)
(|A′| − 3ε2|B| − 2ε1|B|) .

Note that deg(L,A′B′k−1) =
∑

L⊂D⊂B′,|D|=k−1 deg(D,A′). Since |B| ≤ (2k − 2` − 1)|A| ≤

(2k − 2`)|A′|, we finally derive that

deg(L,A′B′k−1) ≥
(
|B′| − `
k − `− 1

)
(1− (2k − 2`)(3ε2 + 2ε1))|A′| ≥ (1− 4kε1)

(
|B′| − `
k − `− 1

)
|A′|.

as desired.

We next show that we can connect any two disjoint typical `-sets of B′ with an `-path

of length two while avoiding any given n
4(k−`) vertices of V .

Claim 4.18. Given two disjoint typical `-sets L1, L2 in B′ and a vertex set U ⊆ V with

|U | ≤ n
4(k−`) , there exist a vertex a ∈ A′ \ U and a (2k − 3` − 1)-set C ⊂ B′ \ U such that

L1 ∪ L2 ∪ {a} ∪ C spans an `-path (of length two) ended at L1, L2.

Proof. Fix two disjoint typical `-sets L1, L2 in B′. Using Claim 4.15, we obtain that |U | ≤
n

4(k−`) ≤
|A|
2
< 2

3
|A′| and

n

4(k − `)
≤ |B|+ 1

2(2k − 2`− 1)
≤ (1 + 2ε2)|B′|

2k
<
|B′|
k
.

Thus |A′ \ U | > |A′|
3

and |B′ \ U | > k−1
k
|B′|. Consider a (k − `)-graph G on (A′ ∪ B′) \ U

such that an A′B′k−`−1-set T is an edge of G if and only if T ∩ U = ∅ and T is a common

neighbor of L1 and L2 in H. By Claim 4.17, we have

e(G) ≤ 2 · 4kε1
(
|B′| − `
k − `− 1

)
|A′| < 8kε1

( k
k−1
|B′ \ U |

k − `− 1

)
· 3|A′ \ U |

≤ 24kε1

(
k

k − 1

)k−1( |B′ \ U |
k − `− 1

)
|A′ \ U |.
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Consequently e(G) > 1
2

(|B′\U |
k−`−1

)
|A′ \ U |. Hence there exists a vertex a ∈ A′ \ U such that

degG(a) > 1
2

(|B′\U |
k−`−1

)
>
(|B′\U |
k−`−2

)
. By Fact 4.12, the link graph of a contains a copy of Yk−`−1,`−1

(two edges of the link graph sharing `−1 vertices). In other words, there exists a (2k−3`−1)-

set C ⊂ B′ \ U such that C ∪ {a} contains two edges of G sharing ` vertices. Together with

L1, L2, this gives rise to the desired `-path (in H) of length two ended at L1, L2.

The following claim shows that we can always extend a typical `-set to an edge of H by

adding one vertex from A′ and k− `−1 vertices from B′ such that every ` new vertices form

a typical `-set. This can be done even when at most n
4(k−`) vertices of V are not available.

Claim 4.19. Given a typical `-set L ⊆ B′ and a set U ⊆ V with |U | ≤ n
4(k−`) , there exists

an A′B′k−`−1-set C ⊂ V \ U such that L ∪ C is an edge of H and every `-subset of C ∩ B′

is typical.

Proof. First, since L is typical in B′, by Claim 4.17, deg(L,A′B′k−1) ≤ 4kε1
(|B′|−`
k−`−1

)
|A′|.

Second, note that a vertex in A′ is contained in
( |B′|
k−`−1

)
A′B′k−`−1-sets, while a vertex in B′

is contained in |A′|
(|B′|−1
k−`−2

)
A′B′k−`−1-sets. It is easy to see that |A′|

(|B′|−1
k−`−2

)
<
( |B′|
k−`−1

)
(as

|A′| ≈ n
2k−2`

and |B′| ≈ 2k−2`−1
2k−2`

n). We thus derive that at most

|U |
(
|B′|

k − `− 1

)
≤ n

4(k − `)

(
|B′|

k − `− 1

)

A′B′k−`−1-sets intersect U . Finally, by Claim 4.16, the number of atypical `-sets in B is at

most ε2
(|B|
`

)
. Using Claim 4.15, we derive that the number of atypical `-sets in B′ is at most

ε2

(
|B|
`

)
+ |B′ \B|

(
|B′| − 1

`− 1

)
≤ 2ε2

(
|B′|
`

)
+ ε2|B|

(
|B′| − 1

`− 1

)
< 3`ε2

(
|B′|
`

)
.

Hence at most 3`ε2
(|B′|
`

)
|A′|
( |B′|−`
k−2`−1

)
A′B′k−`−1-sets contain an atypical `-set. In summary,

at most

4kε1

(
|B′| − `
k − `− 1

)
|A′|+ n

4(k − `)

(
|B′|

k − `− 1

)
+ 3`ε2

(
|B′|
`

)(
|B′| − `
k − 2`− 1

)
|A′|
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A′B′k−`−1-sets fail some of the desired properties. Since ε1, ε2 � 1 and |A′| ≈ n
2(k−`) , the

desired A′B′k−`−1-set always exists.

4.3.3 Building a short path Q

The following claim is the only place where we used the exact codegree condition (4.1).

Claim 4.20. Suppose that |A∩B′| = q > 0. Then there exists a family P1 of vertex-disjoint

2q edges in B′, each of which contains two disjoint typical `-sets.

Proof. Let |A ∩ B′| = q > 0. Since A ∩ B′ 6= ∅, by Claim 4.14, we have B ⊆ B′, and

consequently |B′| = b2k−2`−1
2(k−`) nc+ q. By Claim 4.15, we have q ≤ |A \ A′| ≤ ε2|B|.

Let B denote the family of the edges in B′ that contain two disjoint typical `-sets. We

derive a lower bound for |B| as follows. We first pick a (k − 1)-subset of B (recall that

B ⊆ B′) that contains no atypical `-subset. Since 2` ≤ k−1, such a (k−1)-set contains two

disjoint typical `-sets. By Claim 4.16, there are at most ε2
(|B|
`

)
atypical `-sets in B ∩B′ = B

and in turn, there are at most ε2
(|B|
`

)( |B|−`
k−`−1

)
(k − 1)-subsets of B that contain an atypical

`-subset. Thus there are at least

(
|B|
k − 1

)
− ε2

(
|B|
`

)(
|B| − `
k − `− 1

)
=

(
1−

(
k − 1

`

)
ε2

)(
|B|
k − 1

)

(k−1)-subsets of B that contain no atypical `-subset. After picking such a (k−1)-set S ⊂ B,

we find a neighbor of S by the codegree condition. Since |B′| = b2k−2`−1
2(k−`) nc+ q, by (4.1), we

have deg (S,B′) ≥ q. We thus derive that

|B| ≥
(

1−
(
k − 1

`

)
ε2

)(
|B|
k − 1

)
q

k
,

in which we divide by k because every edge of B is counted at most k times.

We claim that B contains 2q disjoint edges. Suppose instead, a maximum matching in
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B has i < 2q edges. By the definition of B, for any vertex b ∈ B′, we have

deg (b, B′) ≤ deg (b, B) + |B′ \B|
(
|B′| − 1

k − 2

)
≤ ε1

(
|B|
k − 1

)
+ ε2|B|

(
|B′| − 1

k − 2

)
< 2ε1

(
|B|
k − 1

)
. (4.10)

Thus at most 2qk · 2ε1
( |B|
k−1

)
edges of B′ intersect the i edges in the matching. Hence, the

number of edges of B that are disjoint from these i edges is at least

q

k

(
1−

(
k − 1

`

)
ε2

)(
|B|
k − 1

)
− 4kε1q

(
|B|
k − 1

)
≥
(

1

k
− (4k + 1)ε1

)
q

(
|B|
k − 1

)
> 0,

as ε2 � ε1 � 1. We may thus obtain a matching of size i+ 1, a contradiction.

Claim 4.21. There exists a non-empty `-path Q in H with the following properties:

• V0 ⊆ V (Q),

• |V (Q)| ≤ 10kε2|B|,

• two ends L0, L1 of Q are typical `-sets in B′,

• |B1| = (2k − 2`− 1)|A1|+ `, where A1 = A′ \ V (Q) and B1 = (B′ \ V (Q)) ∪ L0 ∪ L1.

Proof. We split into two cases here.

Case 1. A ∩B′ 6= ∅.

By Claim 4.14, A ∩ B′ 6= ∅ implies that B ⊆ B′. Let q = |A ∩ B′|. We first apply

Claim 4.20 and find a family P1 of vertex-disjoint 2q edges in B′. Next we associate each

vertex of V0 with 2k − ` − 1 vertices of B (so in B′) forming an `-path of length two such

that these |V0| paths are pairwise vertex-disjoint, and also vertex-disjoint from the paths in

P1, and all these paths have typical ends. To see it, let V0 = {x1, . . . , x|V0|}. Suppose that

we have found such `-paths for x1, . . . , xi−1 with i ≤ |V0|. Since B ⊆ B′, it follows that

A \ A′ = (A ∩B′) ∪ V0. Hence |V0|+ q = |A \ A′| ≤ ε2|B| by Claim 4.15. Therefore

(2k − `− 1)(i− 1) + |V (P1)| < 2k|V0|+ 2kq ≤ 2kε2|B|
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and consequently at most 2kε2|B|
(|B|−1
k−2

)
< 2k2ε2

( |B|
k−1

)
(k−1)-sets of B intersect the existing

paths (including P1). By the definition of V0, deg(xi, B) > ε1
( |B|
k−1

)
. Let Gxi be the (k − 1)-

graph on B such that e ∈ Gxi if

• {xi} ∪ e ∈ E(H),

• e does not contain any vertex from the existing paths,

• e does not contain any atypical `-set.

By Claim 4.16, the number of (k − 1)-sets in B containing at least one atypical `-set is at

most ε2
(|B|
`

)( |B|−`
k−`−1

)
= ε2

(
k−1
`

)( |B|
k−1

)
. Thus, we have

e(Gxi) ≥ ε1

(
|B|
k − 1

)
− 2k2ε2

(
|B|
k − 1

)
− ε2

(
k − 1

`

)(
|B|
k − 1

)
>
ε1
2

(
|B|
k − 1

)
>

(
|B|
k − 2

)
,

because ε2 � ε1 and |B| is sufficiently large. By Fact 4.12, Gxi contains a copy of Yk−1,`−1,

which gives the desired `-path of length two containing xi.

Denote by P2 the family of `-paths we obtained so far. Now we need to connect paths of

P2 together to a single `-path. For this purpose, we apply Claim 4.18 repeatedly to connect

the ends of two `-paths while avoiding previously used vertices. This is possible because

|V (P2)| = (2k − `)|V0|+ 2kq and (2k − 3`)(|V0|+ 2q − 1) vertices are needed to connect all

the paths in P2 – the set U (when we apply Claim 4.18) thus satisfies

|U | ≤ (4k − 4`)|V0|+ (6k − 6`)q − 2k + 3` ≤ 6(k − `)ε2|B| − 2k + 3`.

Let P denote the resulting `-path. We have |V (P) ∩ A′| = |V0|+ 2q − 1 and

|V (P) ∩B′| = k · 2q + (2k − `− 1)|V0|+ (2k − 3`− 1)(|V0|+ 2q − 1)

= 2(2k − 2`− 1)|V0|+ 2(3k − 3`− 1)q − (2k − 3`− 1).
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Let s = (2k − 2`− 1)|A′ \ V (P)| − |B′ \ V (P)|. We have

s = (2k − 2`− 1)(|A′| − |V0| − 2q + 1)− |B′|+ 2(2k − 2`− 1)|V0|+ 2(3k − 3`− 1)q − (2k − 3`− 1)

= (2k − 2`− 1)|A′| − |B′|+ (2k − 2`− 1)|V0|+ (2k − 2`)q + `.

Since |A′|+ |B′|+ |V0| = n, we have

s = (2k − 2`)(|A′|+ |V0|+ q)− n+ `. (4.11)

Note that |A′|+ |V0|+ q = |A| and

(2k − 2`)|A| − n =


0, if n

k−` is even

k − `, if n
k−` is odd.

(4.12)

Thus s = ` or s = k. If s = k, then we extend P to an `-path Q by applying Claim 4.19,

otherwise let Q = P . Then

|V (Q)| ≤ |V (P)|+ (k − `) ≤ 6kε2|B|,

and Q has two typical ends L0, L1 ⊂ B′. We claim that

(2k − 2`− 1)|A′ \ V (Q)| − |B′ \ V (Q)| = `. (4.13)

Indeed, when s = `, this is obvious; when s = k, V (Q) \ V (P) contains one vertex of A′ and

k − `− 1 vertices of B′ and thus

(2k − 2`− 1)|A′ \ V (Q)| − |B′ \ V (Q)| = s− (2k − 2`− 1) + (k − `− 1) = `.

Let A1 = A′\V (Q) and B1 = (B′\V (Q))∪L0∪L1. We derive that |B1| = (2k−2`−1)|A1|+`

from (4.13).
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Case 2. A ∩B′ = ∅.

Note that A ∩B′ = ∅ means that B′ ⊆ B. Then we have

|A′|+ |V0| = |V \B′| = |A|+ |B \B′|. (4.14)

If V0 6= ∅, we handle this case similarly as in Case 1 except that we do not need to

construct P1. By Claim 4.15, |B \B′| ≤ ε2|B| and thus for any vertex x ∈ V0,

deg(x,B′) ≥ deg(x,B)− |B \B′| ·
(
|B| − 1

k − 2

)
≥ ε1

(
|B|
k − 1

)
− (k − 1)ε2

(
|B|
k − 1

)
>
ε1
2

(
|B′|
k − 1

)
.

As in Case 1, we let V0 = {x1, . . . , x|V0|} and cover them with vertex-disjoint `-paths of length

two. Indeed, for each i ≤ |V0|, we construct Gx as before and show that e(Gxi) ≥ ε1
4

(|B′|
k−1

)
.

We then apply Fact 4.12 to Gxi obtaining a copy of Yk−1,`−1, which gives an `-path of length

two containing xi. As in Case 1, we connect these paths to a single `-path P by applying

Claim 4.18 repeatedly. Then |V (P)| = (2k − `)|V0| + (2k − 3`)(|V0| − 1). Define s as in

Case 1. Thus (4.11) holds with q = 0. Applying (4.14) and (4.12), we derive that

s = 2(k − `)(|A|+ |B \B′|)− n+ ` =


`+ 2(k − `)|B \B′|, if n

k−` is even

k + 2(k − `)|B \B′|, if n
k−` is odd,

(4.15)

which implies that s ≡ ` mod (k− `). We extend P to an `-path Q by applying Claim 4.19

s−`
k−` times. Then

|V (Q)| = |V (P)|+ s− ` ≤ (4k − 4`)|V0| − 2k + 3`+ k − `+ 2(k − `)|B \B′| ≤ 10kε2|B|

by Claim 4.15. Note that Q has two typical ends L0, L1 ⊂ B′. Since V (Q) \ V (P) contains
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s−`
k−` vertices of A′ and s−`

k−`(k − `− 1) vertices of B′, we have

(2k − 2`− 1)|A′ \ V (Q)| − |B′ \ V (Q)| = s− s− `
k − `

(2k − 2`− 1) +
s− `
k − `

(k − `− 1) = `.

We define A1 and B1 in the same way and similarly we have |B1| = (2k − 2`− 1)|A1|+ `.

When V0 = ∅, we pick an arbitrary vertex v ∈ A′ and form an `-path P of length two

with typical ends such that v is in the intersection of the two edges. This is possible by the

definition of A′. Define s as in Case 1. It is easy to see that (4.15) still holds. We then

extend P to Q by applying Claim 4.19 s−`
k−` times. Then |V (Q)| = 2k − ` + s− ` ≤ 2kε2|B|

because of (4.15). The rest is the same as in the previous case.

Claim 4.22. The A1, B1 and L0, L1 defined in Claim 4.21 satisfy the following properties:

1. |B1| ≥ (1− ε1)|B|,

2. for any vertex v ∈ A1, deg(v,B1) < 3ε1
(|B1|
k−1

)
,

3. for any vertex v ∈ B1, deg(v, A1B
k−1
1 ) ≤ 3kε1

(|B1|
k−1

)
,

4. deg(L0, A1B
k−1
1 ) ≤ 5kε1

(|B1|
k−`

)
, deg(L1, A1B

k−1
1 ) ≤ 5kε1

(|B1|
k−`

)
.

Proof. Part (1): By Claim 4.15, we have |B1 \B| ≤ |B′ \B| ≤ ε2|B|. Furthermore,

|B1| ≥ |B′| − |V (Q)| ≥ |B| − ε2|B| − 10kε2|B| ≥ (1− ε1)|B|.

Part (2): For a vertex v ∈ A1, since deg(v,B) ≤ ε1
( |B|
k−1

)
, we have

deg(v,B1) ≤ deg(v,B) + |B1 \B|
(
|B1| − 1

k − 2

)
≤ ε1

(
|B|
k − 1

)
+ ε2|B|

(
|B1| − 1

k − 2

)
< ε1

(
|B|
k − 1

)
+ ε1

(
|B1|
k − 1

)
< 3ε1

(
|B1|
k − 1

)
,

where the last inequality follows from Part (1).
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Part (3): Consider the sum
∑

deg(S∪{v}) taken over all S ∈
(
B′\{v}
k−2

)
. Since δk−1(H) ≥

|A|, we have
∑

deg(S ∪ {v}) ≥
(|B′|−1
k−2

)
|A|. On the other hand,

∑
deg(S ∪ {v}) = deg(v,A′B′k−1) + deg(v, V0B

′k−1) + (k − 1) deg(v,B′).

By (4.10), deg(v,B′) ≤ 2ε1
( |B|
k−1

)
. We thus derive that

deg(v, A′B′k−1) ≥
(
|B′| − 1

k − 2

)
|A| − deg(v, V0B

′k−1)− (k − 1) deg(v,B′)

≥
(
|B′| − 1

k − 2

)
(|A′| − ε2|B|)− 2ε2|B|

(
|B′| − 1

k − 2

)
− 2(k − 1)ε1

(
|B|
k − 1

)
≥
(
|B′| − 1

k − 2

)
|A′| − 2kε1

(
|B|
k − 1

)
.

Thus, by Part (1), we have

deg(v,A1B
k−1
1 ) ≤ deg(v,A′B′k−1) ≤ 2kε1

(
|B|
k − 1

)
≤ 3kε1

(
|B1|
k − 1

)
.

Part (4): By Claim 4.17, for any typical L ⊆ B′, we have deg(L,A′B′k−1) ≤

4kε1
(|B′|−`
k−`−1

)
|A′|. Thus,

deg(L0, A1B
k−1
1 ) ≤ deg(L0, A

′B′k−1) ≤ 4kε1

(
|B′| − `
k − `− 1

)
|A′| ≤ 5kε1

(
|B1|
k − `

)
,

where the last inequality holds because |B′| ≤ |B1|+ |V (Q)| ≤ (1 + ε1)|B1|. The same holds

for L1.

4.3.4 Completing the Hamilton cycle

We finally complete the proof of Theorem 4.5 by applying the following lemma with

X = A1, Y = B1, ρ = 5kε1, and L0, L1.

Lemma 4.23. Fix 1 ≤ ` < k/2. Let 0 < ρ� 1 and n be sufficiently large. Suppose that H

is a k-graph with a partition V (H) = X ∪ Y and the following properties:



63

• |Y | = (2k − 2`− 1)|X|+ `,

• for every vertex v ∈ X, deg(v, Y ) ≤ ρ
( |Y |
k−1

)
and for every vertex v ∈ Y ,

deg(v,XY k−1) ≤ ρ
( |Y |
k−1

)
,

• there are two disjoint `-sets L0, L1 ⊂ Y such that

deg(L0, XY
k−1), deg(L1, XY

k−1) ≤ ρ

(
|Y |
k − `

)
. (4.16)

Then H contains a Hamilton `-path with L0 and L1 as ends.

In order to prove Lemma 4.23, we apply two results of Glebov, Person, and Weps [15].

Given 1 ≤ l ≤ k − 1 and 0 ≤ ρ ≤ 1, an ordered set (x1, . . . , xl) is ρ-typical in a k-graph G if

for every i ∈ [l]

degG({x1, . . . , xi}) ≤ ρk−i
(
|V (G)| − i
k − i

)
.

It was shown in [15] that every k-graph G with very large minimum vertex degree contains

a tight Hamilton cycle. The proof of [15, Theorem 2] actually shows that we can obtain a

tight Hamilton cycle by extending any fixed tight path of constant length with two typical

ends. This implies the following theorem that we will use.

Theorem 4.24. [15] Given 1 ≤ l ≤ k and 0 < α � 1, there exists an m0 such that

the following holds. Suppose that G is a k-graph on V with |V | = m ≥ m0 and δ1(G) ≥

(1−α)
(
m−1
k−1

)
. Then given any two (22α)

1
k−1 -typical ordered l-sets (x1, . . . , xl) and (y1, . . . , yl),

there exists a tight Hamilton path P = xlxl−1 · · ·x1 · · · · · · y1y2 · · · yl in G.

We also use [15, Lemma 3], in which V 2k−2 denotes the set of all (2k − 2)-tuples

(v1, . . . , v2k−2) such that vi ∈ V (vi’s are not necessarily distinct).

Lemma 4.25. [15] Let G be the k-graph given in Lemma 4.24. Suppose that (x1, . . . , x2k−2)

is selected uniformly at random from V 2k−2. Then the probability that all xi’s are pairwise

distinct and (x1, . . . , xk−1), (xk, . . . , x2k−2) are (22α)
1

k−1 -typical is at least 8
11

.
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Proof of Lemma 4.23. In this proof we often write the union A ∪ B ∪ {x} as ABx, where

A,B are sets and x is an element.

Let t = |X|. Our goal is to write X as {x1, . . . , xt} and partition Y as {Li, Ri, Si, R
′
i :

i ∈ [t]} with |Li| = `, |Ri| = |R′i| = k − 2`, and |Si| = `− 1 such that

LiRiSixi, SixiR
′
iLi+1 ∈ E(H) (4.17)

for all i ∈ [t], where Lt+1 = L0. Consequently

L1R1 S1 x1R
′
1 L2R2 S2 x2R

′
2 · · · LtRt St xtR

′
t Lt+1

is the desired Hamilton `-path of H.

Let G be the (k − 1)-graph on Y whose edges are all (k − 1)-sets S ⊆ Y such that

degH(S,X) > (1 − √ρ)t. The following is an outline of our proof. We first find a small

subset Y0 ⊂ Y with a partition {Li, Ri, Si, R
′
i : i ∈ [t0]} such that for every x ∈ X, we have

LiRiSix, SixR
′
iLi+1 ∈ E(H) for many i ∈ [t0]. Next we apply Theorem 4.24 to G[Y \Y0] and

obtain a tight Hamilton path, which, in particular, partitions Y \Y0 into {Li, Ri, Si, R
′
i : t0 <

i ≤ t} such that LiRiSi, SiR
′
iLi+1 ∈ E(G) for t0 < i ≤ t. Finally we apply the Marriage

Theorem to find a perfect matching between X and [t] such that (4.17) holds for all matched

xi and i.

We now give details of the proof. First we claim that

δ1(G) ≥ (1− 2
√
ρ)

(
|Y | − 1

k − 2

)
, (4.18)

and consequently,

e(G) ≤ 2
√
ρ

(
|Y |
k − 1

)
. (4.19)

Suppose instead, some vertex v ∈ Y satisfies degG(v) > 2
√
ρ
(|Y |−1
k−2

)
. Since every non-neighbor

S ′ of v in G satisfies degH(S ′v,X) ≥ √ρt, we have degH(v,XY k−1) > 2
√
ρ
(|Y |−1
k−2

)√
ρt. Since
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|Y | = (2k − 2`− 1)t+ `, we have

degH(v,XY k−1) > 2ρ
|Y | − `

2k − 2`− 1

(
|Y | − 1

k − 2

)
> ρ

|Y |
k − 1

(
|Y | − 1

k − 2

)
= ρ

(
|Y |
k − 1

)
,

contradicting our assumption (the second inequality holds because |Y | is sufficiently large).

Let Q be a (2k−`−1)-subset of Y . We call Q good (otherwise bad) if every (k−1)-subset

of Q is an edge of G and every `-set L ⊂ Q satisfies

degG(L) ≤ ρ1/4

(
|Y | − `
k − `− 1

)
. (4.20)

Furthermore, we say Q is suitable for a vertex x ∈ X if x ∪ T ∈ E(H) for every (k − 1)-set

T ⊂ Q. Note that if a (2k − ` − 1)-set is good, by the definition of G, it is suitable for at

least (1−
(

2k−`−1
k−1

)√
ρ)t vertices of X. Let Y ′ = Y \ (L0 ∪ L1).

Claim 4.26. For any x ∈ X, at least (1− ρ1/5)
( |Y |

2k−`−1

)
(2k − `− 1)-subsets of Y ′ are good

and suitable for x.

Proof. Since ρ + ρ1/2 + 3
(

2k−`−1
`

)
ρ1/4 ≤ ρ1/5, the claim follows from the following three

assertions:

• At most 2`
( |Y |−1

2k−`−2

)
≤ ρ
( |Y |

2k−`−1

)
(2k − `− 1)-subsets of Y are not subsets of Y ′.

• Given x ∈ X, at most ρ1/2
( |Y |

2k−`−1

)
(2k − `− 1)-sets in Y are not suitable for x.

• At most 3
(

2k−`−1
`

)
ρ1/4

( |Y |
2k−`−1

)
(2k − `− 1)-sets in Y are bad.

The first assertion holds because |Y \ Y ′| = 2`. The second assertion follows from the

degree condition of H, namely, for any x ∈ X, the number of (2k− `− 1)-sets in Y that are

not suitable for x is at most ρ
( |Y |
k−1

)(|Y |−k+1
k−`

)
≤ √ρ

( |Y |
2k−`−1

)
.

To see the third one, let m be the number of `-sets L ⊆ Y that fail (4.20). By (4.19),

m
ρ1/4

( |Y |−`
k−`−1

)(
k−1
`

) ≤ e(G) ≤ 2
√
ρ

(
|Y |
k − 1

)
,
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which implies that m ≤ 2ρ1/4
(|Y |
`

)
. Thus at most

2ρ1/4

(
|Y |
`

)
·
(
|Y | − `

2k − 2`− 1

)

(2k − `− 1)-subsets of Y contain an `-set L that fails (4.20). On the other hand, by (4.19),

at most

e(G)

(
|Y | − k + 1

k − `

)
≤ 2
√
ρ

(
|Y |
k − 1

)(
|Y | − k + 1

k − `

)
(2k − ` − 1)-subsets of Y contain a non-edge of G. Putting these together, the number of

bad (2k − `− 1)-sets in Y is at most

2ρ1/4

(
|Y |
`

)(
|Y | − `

2k − 2`− 1

)
+2
√
ρ

(
|Y |
k − 1

)(
|Y | − k + 1

k − `

)
≤ 3

(
2k − `− 1

`

)
ρ1/4

(
|Y |

2k − `− 1

)
,

as ρ� 1.

We will pick a family of disjoint good (2k − `− 1)-sets in Y ′ such that for any x ∈ X,

many members of this family are suitable for x. To achieve this, we pick a family F by

selecting each good (2k− `− 1)-subsets of Y ′ randomly and independently with probability

p = 6
√
ρ|Y |/

( |Y |
2k−`−1

)
. Since there are at most

( |Y |
2k−`−1

)
· (2k − ` − 1) ·

( |Y |−1
2k−`−2

)
pairs of

intersecting (2k− `− 1)-sets in Y , the expected number of intersecting pairs of (2k− `− 1)-

sets in F is at most

p2

(
|Y |

2k − `− 1

)
· (2k − `− 1) ·

(
|Y | − 1

2k − `− 2

)
= 36(2k − `− 1)2ρ|Y |.

By applying Chernoff’s bound on the first two properties and Markov’s bound on the

last one below, we can find, with positive probability, a family F of good (2k−`−1)-subsets

of Y ′ that satisfies

• |F| ≤ 2p
( |Y ′|

2k−`−1

)
≤ 12

√
ρ|Y |,
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• for any vertex x ∈ X, because of Claim 4.26, at least

p

2
(1− ρ1/5)

(
|Y |

2k − `− 1

)
≥ 2
√
ρ|Y |

members of F are suitable for x.

• the number of intersecting pairs of (2k− `−1)-sets in F is at most 72(2k− `−1)2ρ|Y |.

After deleting one (2k − ` − 1)-set from each of the intersecting pairs from F , we obtain a

family F ′ ⊆ F consisting of at most 12
√
ρ|Y | disjoint good (2k − ` − 1)-subsets of Y ′ and

for each x ∈ X, at least

2
√
ρ|Y | − 72(2k − `− 1)2ρ|Y | ≥ 3

2

√
ρ|Y | (4.21)

members of F ′ are suitable for x.

Denote F ′ by {Q2, Q4, . . . , Q2q} for some q ≤ 12
√
ρ|Y |. We arbitrarily partition each

Q2i into L2i ∪ P2i ∪ L2i+1 such that |L2i| = |L2i+1| = ` and |P2i| = 2k − 3` − 1. Since Q2i

is good, both L2i and L2i+1 satisfy (4.20). We claim that L0 and L1 satisfy (4.20) as well.

Let us show this for L0. By the definition of G, the number of XY k−`−1-sets T such that

T ∪L0 6∈ E(H) is at least degG(L0)
√
ρt. Using (4.16), we derive that degG(L0)

√
ρt ≤ ρ

( |Y |
k−`

)
.

Since |Y | ≤ (2k − 2`)t, it follows that degG(L0) ≤ 2
√
ρ
( |Y |−1
k−`−1

)
≤ ρ1/4

( |Y |−`
k−`−1

)
.

Next we find disjoint (2k − 3` − 1)-sets P1, P3, . . . , P2q−1 from Y ′ \
⋃q
i=1Q2i such that

for i ∈ [q], every (k − ` − 1)-subset of P2i−1 is a common neighbor of L2i−1 and L2i in G.

Since L1, L2, . . . , L2q all satisfy (4.20), at most

2 · ρ1/4

(
|Y | − `
k − `− 1

)(
|Y | − k + `+ 1

k − 2`

)

(2k − 3` − 1)-subsets of Y contain a non-neighbor of L2i−1 or L2i. Since q ≤ 12
√
ρ|Y | and

ρ� 1, we can greedily find desired P1, P3 . . . , P2q−1.

Let Y1 = Y ′ \
⋃q
i=1(P2i−1 ∪ Q2i) and G ′ = G[Y1]. Then |Y1| = |Y ′| − (2k − 2` − 1)2q.
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Since degG′(v) ≤ degG(v) for every v ∈ Y1, we have, by (4.18),

δ1(G ′) ≥
(
|Y1| − 1

k − 2

)
− 2
√
ρ

(
|Y | − 1

k − 2

)
≥ (1− 3

√
ρ)

(
|Y1| − 1

k − 2

)
.

Let α = 3
√
ρ and ρ0 = (22α)

1
k−1 . We want to find two disjoint ρ0-typical ordered subsets

(x1, . . . , xk−`−1) and (y1, . . . , yk−`−1) of Y1 such that

L2q+1 ∪ {x1, . . . , xk−`−1}, L0 ∪ {y1, . . . , yk−`−1} ∈ E(G). (4.22)

To achieve this, we choose (x1, . . . , xk−1, y1, . . . , yk−1) from Y1
2k−2 uniformly at random. By

Lemma 4.25, with probability at least 8
11

, (x1, . . . , xk−`−1) and (y1, . . . , yk−`−1) are two disjoint

ordered ρ0-typical (k − `− 1)-sets. Since L0 satisfies (4.20), at most (k − `− 1)!ρ1/4
( |Y |−`
k−`−1

)
ordered (k−`−1)-subsets of Y are not neighbors of L0 (the same holds for L2q+1). Thus (4.22)

fails with probability at most 2(k − ` − 1)!ρ1/4, provided that x1, . . . , xk−`−1, y1, . . . , yk−`−1

are all distinct. Therefore the desired (x1, . . . , xk−`−1) and (y1, . . . , yk−`−1) exist.

Next we apply Theorem 4.24 to G ′ and obtain a tight Hamilton path

P = xk−`−1xk−`−2 · · ·x1 · · · · · · y1y2 · · · yk−`−1.

Following the order of P , we partition Y1 into

R2q+1, S2q+1, R
′
2q+1, L2q+2, . . . , Lt, Rt, St, R

′
t

such that |Li| = `, |Ri| = |R′i| = k − 2`, and |Si| = ` − 1. Since P is a tight path in G, we

have

LiRiSi, SiR
′
iLi+1 ∈ E(G) (4.23)

for 2q + 2 ≤ i ≤ t− 1. Letting Lt+1 = L0, by (4.22), we also have (4.23) for i = 2q + 1 and

i = t.

We now arbitrarily partition Pi, 1 ≤ i ≤ 2q into Ri∪Si∪R′i such that |Ri| = |R′i| = k−2`,
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and |Si| = `− 1. By the choice of Pi, (4.23) holds for 1 ≤ i ≤ 2q.

Consider the bipartite graph Γ between X and Z := {z1, z2, . . . , zt} such that x ∈ X

and zi ∈ Z are adjacent if and only if LiRiSix, xSiR
′
iLi+1 ∈ E(H). For every i ∈ [t], since

(4.23) holds, we have degΓ(zi) ≥ (1− 2
√
ρ)t by the definition of G. Let Z ′ = {z2q+1, . . . , zt}

and X0 be the set of x ∈ X such that degΓ(x, Z ′) ≤ |Z ′|/2. Then

|X0|
|Z ′|
2
≤
∑
x∈X

degΓ(x, Z ′) ≤ 2
√
ρt · |Z ′|,

which implies that |X0| ≤ 4
√
ρt = 4

√
ρ |Y |−`

2k−2`−1
≤ 4

3

√
ρ|Y | (note that 2k − 2`− 1 ≥ k ≥ 3).

We now find a perfect matching between X and Z as follows.

Step 1: Each x ∈ X0 is matched to some z2i, i ∈ [q] such that the corresponding Q2i ∈ F ′ is

suitable for x (thus x and z2i are adjacent in Γ) – this is possible because of (4.21) and

|X0| ≤ 4
3

√
ρ|Y |.

Step 2: Each of the unused zi, i ∈ [2q] is matched to a vertex in X \ X0 – this is possible

because degΓ(zi) ≥ (1− 2
√
ρ)t ≥ |X0|+ 2q.

Step 3: Let X ′ be the set of the remaining vertices in X. Then |X ′| = t − 2q = |Z ′|. Now

consider the induced subgraph Γ′ of Γ on X ′ ∪ Z ′. Since δ(Γ′) ≥ |X ′|/2, the Marriage

Theorem provides a perfect matching in Γ′.

The perfect matching between X and Z gives rise to the desired Hamilton path of H.
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PART 5

MINIMUM VERTEX DEGREE THRESHOLD FOR LOOSE HAMILTON

CYCLES IN 3-UNIFORM HYPERGRAPHS

5.1 Introduction

The study of Hamilton cycles is an important topic in graph theory. In recent years,

researchers have worked on extending the classical theorem of Dirac on Hamilton cycles to

hypergraphs (see [58] for a survey and also Chapter 4).

Recently, Buß, Hàn, and Schacht [4] studied the minimum vertex degree that guarantees

a loose Hamilton cycle in 3-graphs and obtained the following result.

Theorem 5.1. [4, Theorem 3] For all γ > 0 there exists an integer n0 such that the following

holds. Suppose H is a 3-graph on n > n0 with n ∈ 2N and

δ1(H) >

(
7

16
+ γ

)(
n

2

)
.

Then H contains a loose Hamilton cycle.

In this chapter we improve Theorem 5.1 as follows.

Theorem 5.2. There exists an n5.2 ∈ N such that the following holds. Suppose that H is a

3-graph on n > n5.2 with n ∈ 2N and

δ1(H) ≥
(
n− 1

2

)
−
(
b3

4
nc
2

)
+ c, (5.1)

where c = 2 if n ∈ 4N and c = 1 otherwise. Then H contains a loose Hamilton cycle.

The following construction shows that Theorem 5.2 is best possible. It is slightly

stronger than [4, Fact 4].



71

Proposition 5.3. For every n ∈ 2N there exists a 3-graph on n vertices with minimum

vertex degree
(
n−1

2

)
−
(b 3

4
nc

2

)
+c−1, where c is defined as in Theorem 5.2, and which contains

no loose Hamilton cycle.

Proof. Let H1 = (V1, E1) be the 3-graph on n ∈ 2N \ 4N vertices such that V1 = A∪̇B with

|A| = dn
4
e − 1 and |B| = b3n

4
c + 1, and E1 consists of all triples intersecting A. Note that

δ1(H1) =
(
n−1

2

)
−
(b 3n

4
c

2

)
. Suppose that H1 contains a loose Hamilton cycle C. There are n/2

edges in C and every vertex in A is contained in at most two edges in C. Since 2|A| = n−2
2

,

there is at least one edge of C whose vertices are completely from B. This is a contradiction

because B is independent. So H1 contains no loose Hamilton cycle.

Let H2 = (V2, E2) be a 3-graph on n ∈ 4N vertices such that V2 = A∪̇B with |A| = n
4
−1

and |B| = 3
4
n+ 1, and E2 consists of all triples intersecting A and those containing both b1

and b2, where b1, b2 are two fixed vertices in B. Then δ1(H2) =
(
n−1

2

)
−
( 3

4
n

2

)
+ 1. Suppose

that H2 contains a loose Hamilton cycle C. There are n/2 edges in C and every vertex in

A is contained in at most two edges in C. Thus, there are at least two edges of C whose

vertices are completely from B. But due to the construction, every two edges in B share

two vertices so they can not both appear in one loose cycle. This contradiction shows that

H2 contains no loose Hamilton cycle.

As a typical approach of obtaining exact results, we distinguish the extremal case from

the nonextremal case and solve them separately.

Definition 5.4. Given ∆ > 0, a 3-graph H on n vertices is called ∆-extremal if there is a

set B ⊆ V (H), such that |B| = b3n/4c and e(B) ≤ ∆n3.

Theorem 5.5 (Extremal Case). There exist ∆ > 0 and n5.5 ∈ N such that the following

holds. Let n > n5.5 be an even integer. Suppose that H is a 3-graph on n vertices satisfying

(5.1). If H is ∆-extremal, then H contains a loose Hamilton cycle.

Theorem 5.6 (Nonextremal Case). For any ∆ > 0, there exist γ > 0 and n5.6 ∈ N such

that the following holds. Let n > n5.5 be an even integer. Suppose that H is a 3-graph on



72

A

Figure 5.1. Constructions in Proposition 5.3

n vertices satisfying δ1(H) ≥
(

7
16
− γ
) (

n
2

)
. If H is not ∆-extremal, then H contains a loose

Hamilton cycle.

Theorem 5.2 follows from Theorems 5.5 and 5.6 immediately by choosing ∆ from The-

orem 5.5 and letting n5.2 = max{n5.5, n5.6}.

Let us briefly discuss our proof ideas here. Since the proof of Theorem 5.5 is somewhat

routine, the main task is to prove Theoreom 5.6. Following previous work [60, 63, 64, 18, 40,

4], we use the absorbing method. More precisely, we find the desired loose Hamilton cycle by

applying the Absorbing Lemma (Lemma 5.7), the Reservoir Lemma (Lemma 5.8), and the

Path-tiling Lemma (Lemma 5.9). In fact, the Absorbing Lemma and the Reservoir Lemma

are not very difficult and already proven in [4]. Thus the main step is to prove the Path-

tiling Lemma, under the assumption δ1(H) ≥
(

7
16
− γ
) (

n
2

)
and that H is not ∆-extremal

(in contrast, δ1(H) ≥ ( 7
16

+ γ)
(
n
2

)
is assumed in [4]). As shown in [18, 4], after applying the

(weak) Regularity Lemma, it suffices to prove that the cluster 3-graph K can be tiled almost

perfectly by some particular 3-graph. For example, the 3-graph M given in [4] has the

vertex set [8] = {1, 2, . . . , 8} and edges 123, 345, 456, 678 (throughout this chapter, we often

represent a set {v1, v2, . . . , vk} as v1v2 · · · vk). Since it is hard to find anM-tiling directly, the

authors of [4] found a fractional M-tiling instead and converted it to an (integer) M-tiling
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by applying the Regularity Lemma again. We consider C3
4 , a much simpler 3-graph, and

obtain an almost perfect C3
4 -tiling in K directly. Interestingly, C3

4 -tiling was studied (via the

codegree condition) in the very first paper on loose Hamilton cycles [41].

As far as we know, Theorem 5.2 is the second exact result on Hamilton cycles in hy-

pergraphs (the one in [64] was the first). Comparing with [64], our proof is much shorter

because their Absorbing and Reservoir Lemmas are much harder to prove.

We will prove Theorem 5.6 in Section 5.2 and Theorem 5.5 in Section 5.3.

5.2 Proof of Theorem 5.6

In this section we prove Theorem 5.6 by following the same approach as in [4].

5.2.1 Auxiliary lemmas and Proof of Theorem 5.6

A loose path P = v1v2 · · · v2k+1 is a 3-graph on {v1, v2, . . . , v2k+1} with edges

v2i−1v2iv2i+1 for all i ∈ [k]. The vertices v1 and v2k+1 are called the ends of P . For conve-

nience, we rephrase the Absorbing Lemma [4, Lemma 7] as follows.1

Lemma 5.7 (Absorbing Lemma). For any 0 < γ1 ≤ 10−14 there exists an integer n5.7 such

that the following holds. Let H be a 3-graph on n > n5.7 vertices with δ1(H) ≥ 13
32

(
n
2

)
. Then

there is a loose path P with |V (P)| ≤ γ1n such that for every subset U ⊆ V \ V (P) with

|U | ≤ γ3
1n and |U | ∈ 2N there exists a loose path Q with V (Q) = V (P)∪U such that P and

Q have the same ends.

We also need the Reservoir Lemma [4, Lemma 6].

Lemma 5.8 (Reservoir Lemma). For any 0 < γ2 < 1/4 there exists an integer n5.8 such

that for every 3-graph H on n > n5.8 vertices satisfying

δ1(H) ≥ (1/4 + γ2)

(
n

2

)
,

1Lemma 7 in [4] assumes that δ1(H) ≥ ( 58 + γ)2
(
n
2

)
and returns |V (P)| ≤ γ7n with |U | ≤ γ14

14336n. We

simply take their γ7 as our γ1 and thus γ1 ≤
(√

13
32 −

5
8

)7
≈ 10−14.
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there is a set R of size at most γ2n with the following property: for every k ≤ γ3
2n/12 mutually

disjoint pairs {ai, bi}i∈[k] of vertices from V (H) there are 3k vertices ui, vi, wi, i ∈ [k] from

R such that aiuivi, viwibi ∈ H for all i ∈ [k].

The main step in our proof of Theorem 5.6 is the following lemma, which is stronger

than Lemma 10 in [4].

Lemma 5.9 (Path-tiling lemma). For any 0 < γ3, α < 1 there exist integers p and n5.9 such

that the following holds for n > n5.9. Suppose H is a 3-graph on n vertices with minimum

vertex degree

δ1(H) ≥
(

7

16
− γ3

)(
n

2

)
,

then there are at most p vertex disjoint loose paths in H that together cover all but at most

αn vertices of H unless H is 2050γ3-extremal.

Proof of Theorem 5.6. Given ∆ > 0, let γ = min{ ∆
4101

, 10−14}. We choose n5.6 = max{n5.7,

2n5.8, 2n5.9, 192(p+1)/(γ/3)9}, where p is the constant returned from Lemma 5.9 with γ3 = 2γ

and α = (γ/3)3/2. Let n > n5.6 be an even integer.

Suppose that H = (V,E) is a 3-graph on n vertices with δ1(H) ≥
(

7
16
− γ
) (

n
2

)
. Since

7
16
− γ > 13

32
, we can apply Lemma 5.7 with γ1 = γ/3 and obtain an absorbing path P0 with

ends a0, b0. We next apply Lemma 5.8 with γ2 = (γ/3)3/2 to H[(V \ V (P0)) ∪ {a0, b0}] and

obtain a reservoir R. Let V ′ = V \(V (P0)∪R) and n′ = |V ′|. Note that n−n′ ≤ γ1n+γ2n <

γn/2. The induced subhypergraph H ′ = H[V ′] satisfies

δ1(H ′) ≥
(

7

16
− γ
)(

n

2

)
− γ

2
n · (n− 2) >

(
7

16
− 2γ

)(
n′

2

)
.

Applying Lemma 5.9 to H ′ with γ3 = 2γ and α = (γ/3)3/2, we obtain at most p vertex

disjoint loose paths that cover all but at most αn′ vertices of H ′, unless H ′ is 2050γ3-extremal.

In the latter case, there exists B′ ⊆ V ′ such that |B′| = b3
4
n′c and e(B′) ≤ 4100γ(n′)3. Then

we add b3
4
nc − b3

4
n′c < γn/2 arbitrary vertices from V \B′ to B′ to get a vertex set B such
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that |B| = b3
4
nc and

e(B) ≤ 4100γ(n′)3 +
γn

2

(
n− 1

2

)
< 4101γn3 ≤ ∆n3,

which means that H is ∆-extremal, a contradiction. In the former case, denote these loose

paths by {Pi}i∈[p′] for some p′ ≤ p, and their ends by {ai, bi}i∈[p′]. The choice of n5.6

guarantees that p′+1 ≤ p+1 ≤ γ3
2n/24. We can thus connect {ai, bi+1}0≤i≤p′−1∪{ap′ , b0} by

using vertices from R obtaining a loose cycle C. Since |V \C| ≤ |R|+αn′ ≤ γ2n+γ2n
′ ≤ γ3

1n,

we can use P0 to absorb all unused vertices in R and uncovered vertices in V ′.

The rest of this section is devoted to the proof of Lemma 5.9.

5.2.2 Proof of Lemma 5.9

Following the approach in [4], we will use the weak regularity lemma and the cluster

hypergraph introduced in Chapter 2. The following corollary of the weak regularity lemma

(Theorem 2.1) shows that the cluster hypergraph inherits the minimum vertex degree of the

original hypergraph. Its proof is the same as that of [4, Proposition 15] after we replace

7/16 + γ by c (we thus omit the proof).

Corollary 5.10. For c > d > ε > 0 and t0 ≥ 0 there exist T0 and n0 such that the

following holds. Suppose H is a 3-graph on n > n0 vertices which has minimum vertex

degree δ1(H) ≥ c
(
n
2

)
. Then there exists an (ε, t)-regular partition Q with t0 < t < T0 such

that the cluster hypergraph K = K(ε, d,Q) has minimum vertex degree δ1(K) ≥ (c−ε−d)
(
t
2

)
.

In 3-graphs, a loose path is 3-partite with partition sizes about m,m, 2m for some integer

m. Proposition 5.11 below shows that every regular triple with partition sizes m,m, 2m

contains an almost spanning loose path as a subhypergraph. In contrast, [4, Proposition

25] (more generally [18, Lemma 20]) shows that every regular triple with partition sizes

3m, 3m, 2m contains finitely many vertex disjoint loose paths. The proof of Proposition 5.11

uses the standard approach handling regularity.
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For a vertex v and disjoint vertex sets S, T in a 3-graph, we denote by deg(v, S) the

number of edges that contain v and two vertices from S, and denote by deg(v, ST ) the

number of edges that contain v, one vertex from S and one vertex from T .

Proposition 5.11. Fix any ε > 0, d > 2ε, and an integer m ≥ d
ε(d−2ε)

. Suppose that

V (H) = V1∪V2∪V3 and (V1, V2, V3) is (ε, d)-regular with |Vi| = m for i = 1, 3 and |V2| = 2m.

Then there is a loose path P omitting at most 8εm/d+ 3 vertices of H.

Proof. We will greedily construct the loose path P = v1v2 · · · v2k+1 such that v2i ∈ V2,

v4i+1 ∈ V1 and v4i+3 ∈ V3 until |Vi \ V (P )| < 2ε
d
|Vi| for some i ∈ [3]. For j ∈ [3], let U0

j = Vj

and U i
j = Vj \ {v1, . . . , v2i−1} for i ∈ [k]. In addition, we require that for i = 0, . . . , k,

deg(v2i+1, U
i
2U

i
r) ≥ (d− ε)|U i

2||U i
r|, (5.2)

where r ≡ 2i− 1 mod 4. We proceed by induction on i. First we pick a vertex v1 ∈ V1 such

that deg(v1, V2V3) ≥ (d−ε)|V2||V3| (thus (5.2) holds for i = 0). By regularity, all but at most

ε|V1| vertices can be chosen as v1. Suppose that we have selected v1, . . . , v2i−1. Without loss

of generality, assume that v2i−1 ∈ V1. Our goal is to choose v2i ∈ U i
2, v2i+1 ∈ U i

3 such that

(i) v2i−1v2iv2i+1 ∈ E(H),

(ii) deg(v2i+1, U
i
1U

i
2) ≥ (d− ε)|U i

1||U i
2|.

In fact, the induction hypothesis implies that deg(v2i−1, U
i−1
2 U i−1

3 ) ≥ (d−ε)|U i−1
2 ||U i−1

3 |.

Since U i
2 = U i−1

2 \ {v2i−2} and U i
3 = U i−1

3 , we have

deg(v2i−1, U
i
2U

i
3) ≥ (d− ε)|U i−1

2 ||U i−1
3 | − |U i−1

3 | = ((d− ε)|U i−1
2 | − 1)|U i−1

3 |.

By regularity, at most ε|V3| vertices in V3 does not satisfy (ii). So, at least

deg(v2i−1, U
i
2U

i
3)− ε|V3| · |U i−1

2 | ≥ ((d− ε)|U i−1
2 | − 1)|U i−1

3 | − ε|V3| · |U i−1
2 | (5.3)
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pairs of vertices can be chosen as v2i, v2i+1. Since |U i−1
3 | ≥ 2ε

d
|V3| and |U i−1

2 | ≥ 2ε
d
|V2| ≥ 4

d−2ε

(using m ≥ d
ε(d−2ε)

), the right side of (5.3) is at least

((d− ε)|U i−1
2 | − 1)

2ε

d
|V3| − ε|V3| · |U i−1

2 | =
(
(d− 2ε)|U i−1

2 | − 2
) ε
d
|V3| ≥

2ε

d
|V3|,

thus the selection of v2i, v2i+1 satisfying (i) and (ii) is guaranteed.

To calculate the number of the vertices omitted by P = v1v2 · · · v2k+1, note that |V1 ∩

V (P )| = dk+1
2
e, |V2 ∩ V (P )| = k, and |V3 ∩ V (P )| = bk+1

2
c. Our greedy construction of P

stops as soon as |Vi \ V (P )| < 2ε
d
|Vi| for some i ∈ [3]. As |V1| = |V3| = m = |V2|/2, one of

the following three inequalities holds:

m−
⌈
k + 1

2

⌉
<

2ε

d
m, 2m− k < 2ε

d
2m, m−

⌊
k + 1

2

⌋
<

2ε

d
m.

Thus we always have m −
⌈
k+1

2

⌉
< 2ε

d
m, which implies that k+2

2
>
(
1− 2ε

d

)
m or k >

2
(
1− 2ε

d

)
m− 2. Consequently,

|V (H) \ V (P )| = 4m− (2k + 1) < 4m−
(

4

(
1− 2ε

d

)
m− 4 + 1

)
=

8ε

d
m+ 3.

Recall that C3
4 is the unique 3-graph with four vertices and two edges. Throughout this

chapter, we call it as C for short. The following lemma is the main step in our proof of

Lemma 5.9. In general, given two (hyper)graphs F and G, an F-tiling is a sub(hyper)graph

of G that consists of vertex disjoint copies of F . The F -tiling is perfect if it is a spanning

sub(hyper)graph of G.

Lemma 5.12 (C-tiling Lemma). For any γ > 0, there exists an integer n5.12 such that the

following holds. Suppose H is a 3-graph on n > n5.12 vertices with

δ1(H) ≥
(

7

16
− γ
)(

n

2

)
,

then there is a C-tiling covering all but at most 219/γ vertices of H unless H is 210γ-extremal.
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Now we are ready to prove Lemma 5.9 using the same approach as in [4].

Proof of Lemma 5.9. Given 0 < γ3, α < 1, let n5.9 = max{n0, 4T0/ε} and p = T0/2, where T0

and n0 are the constants returned from Corollary 5.10 with c = 7
16
− γ3, d = γ3/2, ε = αd

8+α
,

and t0 = max{n5.12,
220

γ3α
}.

Suppose that H is a 3-graph on n > n5.9 vertices with δ1(H) ≥ ( 7
16
−γ3)

(
n
2

)
. By applying

Corollary 5.10 with the constants chosen above, we obtain an (ε, t)-regular partition Q. The

cluster hypergraph K = K(ε, d,Q) satisfies δ1(K) ≥ ( 7
16
− 2γ3)

(
t
2

)
. Let m be the size of each

cluster except V0, then (1 − ε)n
t
≤ m ≤ n

t
. By Lemma 5.12, either K is 210(2γ3)-extremal,

or there is a C-tiling C of K that covers all but at most 219/(2γ3) vertices of K. In the first

case, there exists a set B ⊆ V (K) such that |B| = b3t
4
c and e(B) ≤ 211γ3t

3. Let B′ ⊆ V (H)

be the union of the clusters in B. By regularity,

e(B′) ≤ e(B) ·m3 +

(
t

3

)
· d ·m3 + ε ·

(
t

3

)
·m3 +

(
m

2

)
n,

where the right-hand side bounds the number of edges from regular triples with high density,

edges from regular triples with low density, edges from irregular triples and edges that are

from at most two clusters. Since m ≤ n
t
, ε < d < γ3, and t−2 < t−2

0 < γ3, we get

e(B′) ≤ 211γ3t
3
(n
t

)3

+ d

(
t

3

)(n
t

)3

+ ε

(
t

3

)(n
t

)3

+

(
n/t

2

)
n < 2049γ3n

3.

Note that |B′| =
⌊

3t
4

⌋
m ≤ 3t

4
· n
t

= 3n
4

implies that |B′| ≤ b3n
4
c. On the other hand,

|B′| =
⌊

3t

4

⌋
m ≥

(
3t

4
− 1

)
(1− ε)n

t
≥
(

3t

4
− εt

)
n

t
=

3n

4
− εn,

by adding at most εn vertices from V \ B′ to B′, we get a set B′′ ⊆ V (H) of size exactly

b3n/4c, with e(B′′) ≤ e(B′) + εn · n2 < 2050γ3n
3. Hence H is 2050γ3-extremal.

In the second case, the union of the clusters covered by C contains all but at most

219

2γ3
m+ |V0| ≤ αn/4 + εn < 3αn/8 vertices (here we use t ≥ 220

γ3α
). We will apply Proposition

5.11 to each member C ′ ∈ C . Suppose that C ′ has the vertex set [4] with edges 123, 234.
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For i ∈ [4], let Vi denote the corresponding cluster in H. We split Vi, i = 2, 3, into two

disjoint sets V 1
i and V 2

i of equal sizes. Then the triples (V1, V
1

2 , V
1

3 ) and (V4, V
2

2 , V
2

3 ) are

(2ε, d− ε)-regular and of sizes m, m
2
, m

2
. Applying Proposition 5.11 to these two triples with

m′ = m
2

, we find a loose path in each triple covering all but at most 8(2ε)
d−ε m

′ + 3 = αm + 3

vertices (here we need ε = αd
8+α

).

Since |C | ≤ t/4, we obtain a path tiling that consists of at most 2t/4 ≤ T0/2 = p paths

and covers all but at most

2(αm+ 3)
t

4
+

3α

8
n ≤ α

2
n+

3t

2
+

3α

8
n < αn

vertices. This completes the proof.

5.2.3 Proof of C-tiling Lemma (Lemma 5.12)

Fact 5.13. Let H be a 3-graph on m vertices which contains no copy of C, then e(H) ≤ 1
3

(
m
2

)
.

Proof. Since there is no copy of C, then given any u, v ∈ V (H), we have that deg(uv) ≤ 1,

which implies e(H) ≤ 1
3

(
m
2

)
· 1 = 1

3

(
m
2

)
.

Proof of Lemma 5.12. Fix γ > 0 and let n ∈ N be sufficiently large. Let H be a 3-graph on

n vertices that satisfies δ1(H) ≥ ( 7
16
− γ)

(
n
2

)
. Fix a largest C-tiling C = {C1, . . . , Cm} and let

Vi = V (Ci) for i ∈ [m]. Let V ′ =
⋃
i∈[m] Vi and U = V (H) \ V ′. Assume that |U | > 219/γ –

otherwise we are done.

Our goal is to find a set C of vertices in V ′ of size at most n/4 that covers almost all

the edges, which implies that H is extremal.

Let Ai be the set of all edges with exactly i vertices in V ′, for i = 0, 1, 2, 3. Note that

|A0| ≤ 1
3

(|U |
2

)
by Fact 5.13. We may assume that |U | < 3

4
n and consequently

m >
n

16
. (5.4)
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Indeed, if |U | ≥ 3
4
n, then taking U ′ ⊆ U of size b3

4
nc, we get that e(U ′) ≤ e(U) ≤ 1

3

(|U |
2

)
≤

1
6
n2 < γn3. Thus H is γ-extremal and we are done.

Claim 5.14. |A1| ≤ m
(|U |

2

)
+ 12m|U |.

Proof. Let D be the set of vertices v ∈ V ′ such that deg(v, U) ≥ 4|U |. First observe that

every Ci ∈ C contains at most one vertex in D. Suppose instead, two vertices x, y ∈ Vi are

both in D. Since deg(x, U) ≥ 4|U | > |U |/2, the link graph of x on U contains a path u1u2u3

of length two. The link graph of y on U \ {u1, u2, u3} has size at least 4|U | − 3|U | > |U |/2,

so it also contains a path of length two, with vertices denoted by u4, u5, u6. Note that

{x, u1, u2, u3} and {y, u4, u5, u6} span two vertex disjoint copies of C. Replacing Ci in C

with them creates a larger C-tiling, contradicting the maximality of C . So we conclude that

|D| ≤ m. Consequently,

|A1| ≤ |D| ·
(
|U |
2

)
+ |V ′ \D| · 4|U | = m

(
|U |
2

)
+ 3m · 4|U | ≤ m

(
|U |
2

)
+ 12m|U |.

Fix u ∈ U , i 6= j ∈ [m], denote Li,j(u) as the link graph of u on [Vi, Vj], namely the

bipartite link graph of u between Vi and Vj. Let T≤6 be the set of all triples uij, u ∈ U ,

i, j ∈ [m] such that e(Li,j(u)) ≤ 6. Let T 1
7 be the set of all triples uij, u ∈ U , i, j ∈ [m] such

that Li,j(u) contains exactly seven edges, and a vertex cover of two vertices with one from

Vi and the other from Vj. Let T 2
≥7 be the set of all triples uij, u ∈ U , i, j ∈ [m] such that

Li,j(u) contains at least seven edges, and a vertex cover of two vertices both from Vi or Vj.

Let T 3
≥7 be the set of all triples uij, u ∈ U , i, j ∈ [m] such that Li,j(u) contains at least seven

edges, and a matching of size three. Since a bipartite graph either contains a matching of

size three or a vertex cover of size two (by the König–Egervary theorem), T≤6, T 1
7 , T 2

≥7 and

T 3
≥7 form a partition of U ×

(
[m]
2

)
.

Fact 5.15. 1. H does not contain i 6= j ∈ [m] and six vertices u1, . . . , u6 ∈ U such that

u1, . . . , u6 have the same (labeled) link graph on [Vi, Vj] and u1ij ∈ T 3
≥7.
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2. H does not contain distinct i, j, k ∈ [m] and eight vertices u1, . . . , u8 ∈ U such that the

following holds. First, u1, . . . , u4 share the same link graph on [Vi, Vj], and u5, . . . , u8

share the same link graph on [Vi, Vk]. Second, u1ij ∈ T 2
≥7 with the vertex cover in Vj

and u5ik ∈ T 2
≥7 with the vertex cover in Vk.

Proof. To see Part (1), since there is a matching of size three in the (same) link graph of

u1, . . . , u6, say, a1b1, a2b2, a3b3, then u1u2a1b1, u3u4a2b2 and u5u6a3b3 span three copies of C.

Replacing Ci, Cj by them gives a C-tiling larger than C , a contradiction.

To see Part (2), assume that Vi = {a, b, c, d}. Suppose that the vertex cover of Li,j(u1)

is {x1, y1} ⊆ Vj and the vertex cover of Li,k(u5) is {x2, y2} ⊆ Vk. Since u1ij ∈ T 2
≥7, at

most one pair from {x1, y1} × {a, b} is not in Li,j(u1). Analogously at most one pair from

{x2, y2} × {c, d} is not in Li,k(u5). Thus, without loss of generality, we may assume that

x1a, y1b ∈ Li,j(u1) and x2c, y2d ∈ Li,k(u5). Since u1, . . . , u4 share the same link graph on

[Vi, Vj], u1u2x1a, u3u4y1b span two copies of C. Similarly, u5u6x2c and u7u8y2d span two

copies of C. Replacing Ci, Cj, Ck by these four copies of C gives a C-tiling larger than C , a

contradiction.

We next show that all but at most γn2|U | triples uij, u ∈ U , i, j ∈ [m] are in T 1
7 .

Claim 5.16. |T 1
7 | ≥

(
m
2

)
|U | − γn2|U |.

Proof. First, we claim that

|T 3
≥7| ≤

(
m

2

)
· 216 · 5, |T 2

≥7| ≤ 756

(
m

2

)
+m · |U |. (5.5)

To see the first inequality, by Part (1) of Fact 5.15, given i, j ∈ [m] and a bipartite

graph on [Vi, Vj] containing a matching of size three, at most five vertices in U can share

this link graph on [Vi, Vj]. Since there are 216 (labeled) bipartite graphs on [Vi, Vj], we get

that |T 3
≥7| ≤

(
m
2

)
· 216 · 5.

To see the second inequality in (5.5), let D denote the digraph on [m] such that (i, j) ∈

E(D) if and only if at least eight vertices u1, . . . , u8 ∈ U share the same link graph on [Vi, Vj]
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such that u1ij ∈ T 2
≥7, and the vertex cover is in Vi. We claim that d−D(i) ≤ 1 for every

i ∈ [m] and consequently e(D) ≤ m. Suppose instead, there are i, j, k ∈ [m] such that

(j, i), (k, i) ∈ E(D), then eight vertices of U share the same link graph on [Vi, Vj], and (not

necessarily different) eight vertices of U share the same link graph on [Vi, Vk]. Thus we can

pick four distinct vertices for each of [Vi, Vj] and [Vi, Vk] and obtain a structure forbidden by

Part (2) of Fact 5.15, a contradiction. Note that there are 2 ·
(

4
2

)
· 8 + 2 ·

(
4
2

)
= 108 (labeled)

bipartite graphs on [Vi, Vj] with at least seven edges and a vertex cover of two vertices both

from Vi or Vj. Furthermore, fixing one of these bipartite graphs, if (i, j), (j, i) /∈ D, then at

most seven vertices in U share this link graph by the definition of D. So we get that

|T 2
≥7| ≤

(
m

2

)
· 108 · 7 +m|U | = 756

(
m

2

)
+m|U |.

Recall that A2 is the set of all edges of H with exactly two vertices in V ′. Then

|A2| ≤ 6|T≤6|+ 7|T 1
7 |+ 8|T 2

≥7|+ 16|T 3
≥7|+

(
4

2

)
m|U |.

Together with |T≤6|+ |T 1
7 |+ |T 2

≥7|+ |T 3
≥7| =

(
m
2

)
|U |, we get,

|A2| ≤ 7

(
m

2

)
|U | − |T≤6|+ |T 2

≥7|+ 9|T 3
≥7|+ 6m|U |

≤ 7

(
m

2

)
|U | − |T≤6|+

(
m

2

)
· (216 · 45 + 756) + 7m|U | by (5.5)

< 7

(
m

2

)
|U | − |T≤6|+ 222

(
m

2

)
+ 7m|U |. (5.6)

We know that
∑

u∈U deg(u) = 3|A0|+ 2|A1|+ |A2|. Thus, by |A0| ≤ 1
3

(|U |
2

)
, Claim 5.14
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and (5.6), we have

∑
u∈U

deg(u) ≤
(
|U |
2

)
+ 2m

(
|U |
2

)
+ 24m|U |+ 7

(
m

2

)
|U | − |T≤6|+ 222

(
m

2

)
+ 7m|U |

=

(
|U |
2

)
+m|U |2 + 30m|U |+ 7

(
m

2

)
|U | − |T≤6|+ 222

(
m

2

)
<

7

16

(
|U |
2

)
|U |+ 7

4
m|U |2 +

7

16

(
4m

2

)
|U | − |T≤6|+ 222

(
m

2

)
as |U | > 40

=
7

16

(
n

2

)
|U | − |T≤6|+ 222

(
m

2

)
, (5.7)

where the last inequality is due to
(|U |

2

)
+ 4m|U |+

(
4m
2

)
=
(|U |+4m

2

)
=
(
n
2

)
.

On the other hand, δ1(H) ≥ ( 7
16
− γ)

(
n
2

)
implies that

∑
u∈U deg(u) ≥ ( 7

16
− γ)

(
n
2

)
|U |.

Together with (5.7), this gives

|T≤6| ≤ γ

(
n

2

)
|U |+ 222

(
m

2

)
. (5.8)

Note that (5.4) implies that |U | < 3
4
n < 3

4
16m = 12m. By (5.5) and (5.8), we have

|T 1
7 | ≥

(
m

2

)
|U | −

((
m

2

)
· (216 · 5 + 756) +m|U |

)
− γ
(
n

2

)
|U | − 222

(
m

2

)
≥
(
m

2

)
|U | − γ

(
n

2

)
|U | − 223

(
m

2

)
as |U | < 12m

≥
(
m

2

)
|U | − γ

(
n

2

)
|U | − 219

(
n

2

)
as m <

n

4

>

(
m

2

)
|U | − γn2|U | as |U | > 219/γ.

For a triple uij ∈ T 1
7 , we call v1 ∈ Vi and v2 ∈ Vj a pair of centers (in short, centers) for

u if {v1, v2} is the vertex cover of Li,j(u). Define G as the graph on the vertex set V ′ such

that two vertices v1, v2 ∈ V ′ are adjacent if and only if there are at least 16 vertices u ∈ U

such that v1, v2 are centers for u. Let C be the set of vertices v ∈ V ′ such that degG(v) ≥ 7

and degG(v′) ≥ 2 for some v′ ∈ NG(v), where NG(v) denotes the neighborhood of v in G.

Fact 5.17. For every i ∈ [m], at most one vertex v ∈ Vi satisfies degG(v) > 0.
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Proof. Suppose to the contrary, some Vi = {a, b, c, d} satisfies degG(a), degG(b) > 0. Let

a′ ∈ NG(a), b′ ∈ NG(b). First, assume that both a′ and b′ are in Vj for some j ∈ [m] \ i.

Furthermore, assume a′ 6= b′ and say Vj = {a′, b′, c′, d′}. Then by the definition of G, we can

find u1, . . . , u4, u
′
1, . . . , u

′
4 ∈ U such that a, a′ are centers for ul and b, b′ are centers for u′l for

l = 1, . . . , 4. This gives four copies of C on ac′u1u2, a
′cu3u4, bd

′u′1u
′
2, b
′du′3u

′
4. Replacing Ci, Cj

by them in C gives a larger C-tiling, a contradiction. Otherwise, assume that a′ = b′ and

say Vj = {a′, x, c′, d′}. Then by the definition of G, we can find u1, . . . , u4, u
′
1, u
′
2 ∈ U such

that a, a′ are centers for ul, l = 1, . . . , 4 and b, a′ are centers for u′1 and u′2. This gives three

copies of C on ac′u1u2, a
′cu3u4, bd

′u′1u
′
2. Replacing Ci, Cj by them in C gives a larger C-tiling,

a contradiction.

Second, assume that a′ ∈ Vj and b′ ∈ Vk for distinct j, k ∈ [m] \ i. Let c′ ∈ Vj \ a′ and

d′ ∈ Vk \ b′. Then by the definition of G, we can find u1, . . . , u4, u
′
1, . . . , u

′
4 ∈ U such that a, a′

are centers for ul and b, b′ are centers for u′l, for l = 1, . . . , 4. This gives four copies of C on

ac′u1u2, a
′cu3u4, bd

′u′1u
′
2, b′du′3u

′
4. Replacing Ci, Cj, Ck by them in C gives a larger C-tiling, a

contradiction.

Claim 5.18. (1− 211γ)m ≤ |C| ≤ m.

Proof. The upper bound follows from Fact 5.17 immediately.

To see the lower bound, we first show that

e(G) ≥ (1− 210γ)

(
m

2

)
. (5.9)

To see this, let M be the set of pairs i, j ∈
(

[m]
2

)
such that there are at most 240 vertices

u ∈ U satisfying that uij ∈ T 1
7 . By Claim 5.16, the number of triples uij 6∈ T 1

7 (u ∈ U ,

i 6= j ∈ [m]) is at most γn2|U |. Thus

|M | ≤ γn2|U |
|U | − 240

≤ γn2|U |
2
3
|U |

=
3γn2

2
<

3γ(16m)2

2
< 210γ

(
m

2

)
.

where the second last inequality follows from (5.4). Fix a pair i, j ∈
(

[m]
2

)
\M . There are
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at least 241 = 16 · 15 + 1 vertices u ∈ U satisfying that uij ∈ T 1
7 . Since Vi × Vj contains

16 pairs of vertices, by the pigeonhole principle, some pair of vertices v1 ∈ Vi, v2 ∈ Vj are

centers for at least 16 vertices u ∈ U , namely, v1v2 ∈ G. Thus (5.9) follows.

By Fact 5.17, there are at most m vertices with positive degree in G. For convenience,

define V ′′ ⊂ V ′ as an arbitrary set of m vertices that contains all the vertices with positive

degree in G. Furthermore, for any integer t < m, let Dt ⊆ V ′′ denote the set of vertices v

such that degG(v) ≤ t. Let D′2 ⊆ (V ′′\D1) denote the set of vertices v such that NG(v) ⊆ D1.

We have

2e(G) ≤ t|Dt|+ (m− 1)(m− |Dt|) = m(m− 1)− (m− t− 1)|Dt|.

Together with (5.9), it gives |Dt| ≤ 210γm(m−1)
m−t−1

. By definition, each vertex v ∈ D′2 satisfies

degG(v) ≥ 2, and its neighborhood is contained in D1 (thus the vertices in D′2 have disjoint

neighborhoods). This implies that |D′2| ≤ |D1|/2. Recall that C = V ′′ \ (D6 ∪D′2). Since D6

and D′2 are not necessarily disjoint,

|C| ≥ m− |D6| − |D′2| ≥ m− 210γ
m(m− 1)

m− 7
− 210γ

m(m− 1)

2(m− 2)
≥ (1− 211γ)m.

as claimed.

Let IC be the set of all i ∈ [m] such that Vi ∩C 6= ∅. Fact 5.17 and Claim 5.18 together

imply that |IC | = |C| ≥ (1− 211γ)m. Let A = (
⋃
i∈IC Vi \ C) ∪ U .

Claim 5.19. H[A] contains no copy of C, thus e(A) ≤ 1
3

(
n
2

)
.

Proof. The first half of the claim implies the second half by Fact 5.13. Suppose instead,

H[A] contains a copy of C, denoted by C0, on V0. Since H[U ] contains no copy of C, V0 must

intersect some Vi with i ∈ IC . Without loss of generality, suppose that V1, . . . , Vj contain

the vertices of V0 \ U for some 1 ≤ j ≤ 4. Here we separate two cases.

Case 1. For any i ∈ [j], |Vi ∩ V0| ≤ 2.
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For i ∈ [j], let ci = Vi ∩ C, and suppose that di ∈ Vi \ (V0 ∪ ci). For each i ∈ [j], since

degG(ci) ≥ 7, we can pick distinct vi ∈ NG(ci) \ (V1 ∪ · · · ∪ Vj). By Fact 5.17, v1, . . . , vj

are contained in different members of C (also different from C1, . . . , Cj). Let v′1, . . . , v
′
j be

arbitrary vertices in these members of C , respectively, which are different from v1, . . . , vj.

For every i ∈ [j], since ci, vi are centers for at least 16 vertices of U , we find a different set of

four vertices u1
i , . . . , u

4
i ∈ U \V0 such that ci, vi are centers for them. This is possible because

|V0 ∩ U | ≤ 4 − j and the number of available vertices in U is thus at least 16 − (4 − j) =

12 + j ≥ 4j.

Note that for i ∈ [j], civ
′
iu

1
iu

2
i , diviu

3
iu

4
i span two copies of C. Together with C0, this gives

2j + 1 copies of C while using vertices from 2j members of C , contradicting the maximality

of C .

Case 2. There exists i0 ∈ [j], such that |Vi0 ∩ V0| = 3.

Note that j = 1 or 2 in this case. Without loss of generality, assume that |V1 ∩ V0| = 3.

First assume that j = 1 (then |V0 ∩ U | = 1). Let c1 = V1 ∩ C. By the definition of C,

there exists c2 ∈ NG(c1) such that degG(c2) ≥ 2. Let c3 6= c1 be a neighbor of c2 in G.

Assume that Ci2 , Ci3 ∈ C contains c2, c3, respectively. By the definition of G, we can find

u1, . . . , u6 ∈ U \V0 such that c1, c2 are centers for u1, u2, and c2, c3 are centers for u3, u4, u5, u6.

Thus, c1w1u1u2, c2w3u3u4, c3w2u5u6 span three copies of C, where w1, w2 are two vertices in

Vi2 \ {c2} and w3 ∈ Vi3 \ {c3}. Together with C0, it gives four copies of C while using vertices

from three members of C , contradicting the maximality of C .

Now assume that j = 2, that is, |V0∩V2| = 1. We pick c2, c3, u1, . . . , u6 in the same way

as in the j = 1 case. If c2 ∈ V2, then this gives four copies of C by using vertices from three

members of C , a contradiction. Otherwise, let c4 = V2∩C and pick c5 ∈ NG(c4) \ {c1, c2, c3}

(this is possible because degG(c4) ≥ 7). Suppose that Ci5 contains c5. We pick four new

vertices u7, . . . , u10 ∈ U for whom c4, c5 are centers. Thus, we can form two copies of C

by using vertices from C2, Ci5 and u7, . . . , u10. Together with the four copies of C given in

the previous case, we obtain six copies of C while using vertices from five members of C , a

contradiction.
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Note that the edges not incident to C are either contained in A or incident to some Vi,

i /∈ IC . By Claim 5.19, C is incident to all but at most

e(A) + 4 · 211γm

(
n− 1

2

)
<

1

3

(
n

2

)
+ 210γ(4m)n2

< 210γn2

(
1

210γ
+ 4m

)
< 210γn3,

edges, where the last inequality holds because |U | > 1
210γ

. Since |C| ≤ m ≤ n/4, we can

pick a set B ⊆ V \ C of order b3
4
nc. Then e(B) < 210γn3, which implies that H is 210γ-

extremal.

In Claim 5.19 we proved that H[A] contains no copy of C, where, by Claim 5.18,

|A| = n−m− 3(m− |C|) ≥ n− n

4
− 3 · 211γm ≥ (1− 211γ)

3

4
n.

We summarize this in the following lemma. It is easy to see this lemma is equivalent to

Lemma 8.7.

Lemma 5.20. For any γ > 0, there exists an integer n0 such that the following holds.

Suppose H is a 3-graph on n > n0 vertices with

δ1(H) ≥
(

7

16
− γ
)(

n

2

)
,

then there is a C-tiling covering all but at most 219/γ vertices of H unless H contains a set

of order at least (1− 211γ)3
4
n that contains no copy of C.

5.3 The Extremal Theorem

In this section we prove Theorem 5.5. Let n be sufficiently large and H be a 3-graph on

n vertices satisfying (5.1). Assume that H is ∆-extremal, namely, there is a set B ⊆ V (H),

such that |B| = b3
4
nc and e(B) ≤ ∆n3. For the convenience of later calculations, we let
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ε0 = 18∆ and derive that

e(B) < ε0

(
|B|
3

)
. (5.10)

Let A = V (H) \B. We write EH(XY Z) as XY Z for short.

5.3.1 Classifying vertices

Let ε1 = 8
√
ε0. Assume that the partition A and B satisfies that |B| = b3

4
nc and (5.10).

In addition, assume that e(B) is the smallest among all the partitions satisfying the first two

conditions. We now define

A′ :=

{
v ∈ V | deg(v,B) ≥ (1− ε1)

(
|B|
2

)}
,

B′ :=

{
v ∈ V | deg(v,B) ≤ ε1

(
|B|
2

)}
,

V0 = V \ (A′ ∪B′).

Claim 5.21. A ∩B′ 6= ∅ implies that B ⊆ B′, and B ∩ A′ 6= ∅ implies that A ⊆ A′.

Proof. First, assume that A ∩ B′ 6= ∅. Then there is some u ∈ A satisfies that deg(u,B) ≤

ε1
(|B|

2

)
. If there exists some v ∈ B \ B′, namely, deg(v,B) > ε1

(|B|
2

)
, then we can switch u

and v and form a new partition A′′ ∪ B′′ such that |B′′| = |B| and e(B′′) < e(B), which

contradicts the minimality of e(B).

Second, assume thatB∩A′ 6= ∅. Then some u ∈ B satisfies that deg(u,B) ≥ (1−ε1)
(|B|

2

)
.

Similarly, by the minimality of e(B), we get that for any vertex v ∈ A, deg(v,B) ≥ (1 −

ε1)
(|B|

2

)
, which implies that A ⊆ A′.

Claim 5.22. {|A \ A′|, |B \B′|, |A′ \ A|, |B′ \B|} ≤ ε1
64
|B| and |V0| ≤ ε1

32
|B|.

Proof. First assume that |B \ B′| > ε1
64
|B|. By the definition of B′ and the assumption

ε1 = 8
√
ε0, we get that

e(B) >
1

3
ε1

(
|B|
2

)
· ε1

64
|B| > ε21

64

(
|B|
3

)
= ε0

(
|B|
3

)
,
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which contradicts (5.10).

Second, assume that |A \ A′| > ε1
64
|B|. Then by the definition of A′, for any vertex

v /∈ A′, we have that deg(v,B) > ε1
(|B|

2

)
. So we get

e(ABB) >
ε1
64
|B| · ε1

(
|B|
2

)
= ε0|B|

(
|B|
2

)
> 3ε0

(
|B|
3

)
.

Together with (5.10), this implies that

∑
b∈B

deg(b) ≥ 3e(B) + 2e(ABB) > 3(1− ε0)

(
|B|
3

)
+ 6ε0

(
|B|
3

)
= 3(1 + ε0)

(
|B|
3

)
.

By the pigeonhole principle, there exists b ∈ B, such that

deg(b) > (1 + ε0)

(
|B|
2

)
= (1 + ε0)

(
b3n

4
c − 1

2

)
>

(
b3n

4
c

2

)
,

where the last inequality follows from the assumption that n is large enough. This contradicts

(5.1).

Consequently,

|A′ \ A| = |A′ ∩B| ≤ |B \B′| ≤ ε1
64
|B|,

|B′ \B| = |A ∩B′| ≤ |A \ A′| ≤ ε1
64
|B|,

|V0| = |A \ A′|+ |B \B′| ≤
ε1
64
|B|+ ε1

64
|B| = ε1

32
|B|.

We next show that we can connect any two vertices of B′ with a loose path of length

two without using any fixed n
8

vertices of V .

Claim 5.23. For every pair of vertices u, v ∈ B′ and every vertex set S ⊆ V with |S| ≤ n/8,

there exist a ∈ A′ \ S and b1, b2 ∈ B′ \ S such that ub1a, ab2v ∈ E(H).

Proof. For any x ∈ B′, by (5.1), we have that deg(x) ≤
(b 3

4
nc

2

)
=
(|B|

2

)
. So by the definition
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of B′,

deg(x,AB) ≤ deg(x)− deg(x,B) ≤
(
|B|
2

)
− (1− ε1)

(
|B|
2

)
= ε1

(
|B|
2

)
.

By Claim 5.22, we get that

deg(x,A′B′) ≤ deg(x,AB) + |A′ \ A| · |B′|+ |B′ \B| · |A′|

≤ ε1

(
|B|
2

)
+
ε1
64
|B|n ≤ 2ε1

(
|B|
2

)
. (5.11)

Consider a bipartite graph G on A \ S and B \ S with pairs ab ∈ E(G) if and only if

uab, vab ∈ E(H). Since |S| ≤ n
8
, we have |A \ S| ≥ |A|

2
≥ |B|

6
and |B \ S| > |B|

2
, so

|A \ S| · |B \ S| > 1
6

(|B|
2

)
> 8ε1

(|B|
2

)
. Consequently,

e(G) ≥ |A \ S| · |B \ S| − 4ε1

(
|B|
2

)
≥ 1

2
|A \ S| · |B \ S| > |A \ S|.

Hence there exists a vertex a ∈ A \ S such that degG(a) ≥ 2. By picking b1, b2 ∈ NG(a) we

finish the proof.

5.3.2 Building a short path

Claim 5.24. Suppose that |A∩B′| = q > 0. Then there exists a family P1 of vertex disjoint

loose paths in B′, where

P1 consists of


one edge if q = 1 and n /∈ 4N

two edges e1, e2 with |e1 ∩ e2| ≤ 1 if q = 1 and n ∈ 4N

2q disjoint edges if q ≥ 2

Proof. Let |A∩B′| = q > 0. Since A∩B′ 6= ∅, by Claim 5.21, we get B ⊆ B′, which implies

|B′| = b3
4
nc+ q.

By Claim 5.22, we get that q = |A ∩ B′| ≤ |A \ A′| ≤ ε1
64
|B|. Hence for any vertex b in
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B′,

deg (b, B′) ≤ deg (b, B) + |B′ \B|(|B′| − 1)

≤ ε1

(
|B|
2

)
+ q(|B′| − 1) < 2ε1

(
|B|
2

)
. (5.12)

Now we assume that q = 1, so |B′| − 1 = b3
4
nc. By (5.1), for any b ∈ B′,

deg (b, B′) ≥
(
n− 1

2

)
−
(
b3

4
nc
2

)
+ c−

[(
n− 1

2

)
−
(
|B′| − 1

2

)]
= c,

where c = 1 if n /∈ 4N and c = 2 otherwise. The n /∈ 4N case is trivial since B′ actually

contains at least |B′|/3 > 1 edges. If n ∈ 4N, then we have deg(b, B′) ≥ 2. Assume that B′

does not contain the desired structure. Then any two distinct edges of B′ share exactly two

vertices. Fix an edge e0 = v1v2v3 of B′ and two vertices u, u′ ∈ B′ \ e0. Then every edge of

B′ containing u must have its two other vertices in e0. Since deg(u,B′) ≥ 2, the link graph

of u contains at least two pairs of vertices of e0. So does the link graph of u′. We thus find

a loose path of length two from u to u′ because two distinct pairs on e0 share exactly one

vertex.

Second, assume that q > 1. In this case we construct 2q disjoint edges greedily. By

(5.1) and |B′| = b3
4
nc+ q, for any b ∈ B′,

deg (b, B′) ≥
(
n− 1

2

)
−
(
b3

4
nc
2

)
+ c−

[(
n− 1

2

)
−
(
|B′| − 1

2

)]
>

(
|B′| − 1

2

)
−
(
b3

4
nc
2

)
≥ (q − 1)

⌊
3

4
n

⌋
,

which implies that e(B′) > 1
3
|B′|(q − 1)b3

4
nc. Suppose we have found i < 2q disjoint edges

of B′. By (5.12), there are at most 3(2q− 1) · 2ε1
(|B|

2

)
edges of B′ intersecting these i edges.



92

Hence, there are at least

e(B′)− 3(2q − 1) · 2ε1
(
|B|
2

)
≥ 1

3
|B′|(q − 1)

⌊
3

4
n

⌋
− 6(2q − 1)ε1

(
|B|
2

)
≥ 2(q − 1)

3

(
|B|
2

)
− 6(2q − 1)ε1

(
|B|
2

)
=

2

3
[(q − 1)− 9(2q − 1)ε1]

(
|B|
2

)

edges not intersecting the existing i edges. This quantity is positive provided that ε1 <

q−1
9(2q−1)

. Thus, ε1 <
1
27

suffices since the minimum of q−1
9(2q−1)

, q > 1 is 1
27

attained by q = 2.

Remark 5.25. Claim 5.24 is the only place where the constant c from (5.1) is used.

The goal of this subsection is to prove the following claim.

Claim 5.26. There exists a loose path P in H with the following properties:

• V0 ⊆ V (P ),

• |V (P )| ≤ ε1
4
|B|,

• |B′ \ V (P )| ≤ 3|A′ \ V (P )| − 1,

• two ends of P are in B′.

Proof. We split into two cases here.

Case 1. A ∩B′ 6= ∅.

By Claim 5.21, A ∩ B′ 6= ∅ implies that B ⊆ B′, which implies that V0 ⊆ A. Let

q = |A ∩ B′|. We first apply Claim 5.24 and find a family P1 of vertex disjoint loose paths

on at most 6q vertices of B′. Next we put each vertex of V0 into a loose path of length two

with four vertices from B (so in B′) such that these paths are pairwise vertex disjoint and

also vertex disjoint from the paths in P1. Let V0 = {x1, . . . , x|V0|}. Suppose that we have

found loose paths for x1, . . . , xi with i < |V0|. Since A \ A′ = V0∪̇(A ∩ B′), by Claim 5.22,

we have

q + |V0| = |A \ A′| ≤
ε1
64
|B|. (5.13)
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Thus,

4i+ 6q < 4|V0|+ 6q ≤ 6(|V0|+ q) ≤ 3ε1
32
|B|

and consequently at most 3ε1
32
|B|(|B| − 1) = 3ε1

16

(|B|
2

)
pairs of B intersect the existing paths.

By the definition of V0, deg(xi+1, B) > ε1
(|B|

2

)
. Since every graph on n ≥ 4 vertices and

m ≥ n edges contains two vertex disjoint edges, we can find two vertex disjoint pairs in the

link graph of xi+1 in B.

Denote by P2 the family of the loose paths that we obtained so far. Now we want to

glue paths of P2 together to a single loose path. For this purpose, we apply Claim 5.23

repeatedly to connect the ends of two loose paths while avoiding previously used vertices.

This is possible because |V (P2)| ≤ 5|V0| + 6q and at most 3(|V0| + 2q − 1) vertices will be

used to connect the paths in P2. By (5.13), the resulting loose path P satisfies

|V (P )| ≤ 8|V0|+ 12q − 3 < 12 · ε1
64
|B| < ε1

4
|B|.

We next show that |B′ \ V (P )| ≤ 3|A′ \ V (P )| − 1. To prove this, we split into three cases

according to the structure of P1. Note that |B′| = b3n
4
c+ q and |A′| = dn

4
e − |V0| − q.

First, assume that q > 1. Our construction shows that P1 consists of 2q disjoint edges

in B′. So |V (P ) ∩ A′| = |V0| + 2q − 1 and |V (P ) ∩ B′| = 4|V0| + 3 · 2q + 2(|V0| + 2q − 1) =

6|V0|+ 10q − 2. Thus,

|B′ \ V (P )| =
⌊

3n

4

⌋
+ q − (6|V0|+ 10q − 2)

≤ 3
(⌈n

4

⌉
− 2|V0| − 3q + 1

)
− 1 = 3|A′ \ V (P )| − 1.

Second, assume that q = 1 and n ∈ 4N. Then P1 consists of a loose path of length two

or two disjoint edges. For the first case, we have that |V (P ) ∩A′| = |V0| and |V (P ) ∩B′| =

4|V0|+ 2|V0|+ 5 = 6|V0|+ 5. Thus,

|B′ \ V (P )| = 3n

4
+ 1− (6|V0|+ 5) = 3

(n
4
− 2|V0| − 1

)
− 1 = 3|A′ \ V (P )| − 1.
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In the second case, we have that |V (P )∩A′| = |V0|+1 and |V (P )∩B′| = 4|V0|+2(|V0|+1)+6 =

6|V0|+ 8. Thus,

|B′ \ V (P )| = 3n

4
+ 1− (6|V0|+ 8) = 3

(n
4
− 2|V0| − 2

)
− 1 = 3|A′ \ V (P )| − 1.

Third, assume that q = 1 and n /∈ 4N, so P1 contains only one edge. We have |V (P )∩A′| =

|V0| and |V (P ) ∩ B′| = 4|V0| + 2|V0| + 3 = 6|V0| + 3. Let n = 4k + 2 with some k ∈ Z, so

|A| = k + 1, |B| = 3k + 1, |B′| = 3k + 2 and |A′| = k − |V0|. Thus,

|B′ \ V (P )| = 3k + 2− (6|V0|+ 3) = 3(k − 2|V0|)− 1 = 3|A′ \ V (P )| − 1.

Case 2. A ∩B′ = ∅.

Note that A ∩B′ = ∅ means that B′ ⊆ B. The difference from the first case is that we

do not need to construct P1.

First we will put every vertex in V0 into a loose path of length two together with four

vertices from B′. By Claim 5.22, |B \B′| ≤ ε1
64
|B| and thus for any vertex x ∈ V0,

deg(x,B′) ≥ deg(x,B)− |B \B′| · (|B| − 1) ≥ ε1

(
|B|
2

)
− ε1

32

(
|B|
2

)
. (5.14)

Similar as in Case 1, let V0 = {x1, . . . , x|V0|} and suppose that we have found loose paths for

x1, . . . , xi with i < |V0|. By Claim 5.22, |V0| ≤ ε1
32
|B|. Thus, we have 4i < 4|V0| ≤ ε1

8
|B| and

consequently at most ε1
8
|B|(|B′|−1) ≤ ε1

4

(|B|
2

)
pairs of B′ intersect the existing i loose paths.

Then by (5.14), we may find two vertex disjoint pairs in the link graph of xi+1 in B′.

As in Case 1, we connect the paths that we obtained to a single loose path by applying

Claim 5.23 repeatedly. The resulting loose path P satisfies that

|V (P )| = 5|V0|+ 3(|V0| − 1) < 8 · ε1
32
|B| = ε1

4
|B|.

We next show that |B′ \ V (P )| ≤ 3|A′ \ V (P )| − 1. Note that |V (P ) ∩ A′| = |V0| − 1 and
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|V (P )∩B′| = 4|V0|+2(|V0|−1) = 6|V0|−2. Since B′ ⊆ B, we have |A′| ≥ |A′∩A| = dn
4
e−|V0|.

Thus,

|B′ \ V (P )| = |B′| − (6|V0| − 2) ≤ 3
⌈n

4

⌉
− 6|V0|+ 2

≤ 3 (|A′|+ |V0| − 2|V0|+ 1)− 1

= 3(|A′| − |V (P ) ∩ A′|)− 1 = 3|A′ \ V (P )| − 1.

5.3.3 Completing a Hamilton cycle

Let P be the loose path given by Claim 5.26. Suppose that |B′\V (P )| = 3|A′\V (P )|−l

for some integer l ≥ 1. Since P is a loose path, |V (P )| is odd. Since V = A′ ∪ B′ ∪ V0 and

V0 ⊂ V (P ), we have

|V (P )|+ |B′ \ V (P )|+ |A′ \ V (P )| = n. (5.15)

Since n is even, it follows that |B′ \ V (P )| + |A′ \ V (P )| is odd, which implies that l =

3|A′ \ V (P )| − |B′ \ V (P )| is odd.

If l > 1, then we extend P as follows. Starting from an end u of P (note that u ∈ B′), we

add an edge by using one vertex from A′ and one from B′. This is guaranteed by Claim 5.23,

which actually provides a loose path starting from u. We repeat this l−1
2

times. The resulting

loose path P ′ satisfies |B′ \V (P ′)| = 3|A′ \V (P ′)|− 1. We claim that |V (P ′)| ≤ 3ε1
4
|B| (thus

Claim 5.23 can be applied repeatedly). Indeed, by (5.15) and |V (P )| ≤ ε1
4
|B|,

l = 3|A′ \ V (P )| − |B′ \ V (P )| = 4|A′ \ V (P )| − (n− |V (P )|)

≤ 4|A′| − n+
ε1
4
|B|.

Since |A′| ≤ |A| + |B \ B′| ≤ dn
4
e + ε1

64
|B| from Claim 5.22, we have l ≤ ε1

2
|B|. Since

|V (P ′)| = |V (P )|+ l − 1, we derive that |V (P ′)| ≤ 3ε1
4
|B|.

Finally, since both ends of P ′ are vertices in B′, we extend P ′ by one more ABB edge

from each end, respectively. Denote the ends of the resulting path Q be x0, x1 ∈ A′. Let
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A1 = (A′ \ V (Q)) ∪ {x0, x1} and B1 = B′ \ V (Q). Note that we have |B1| = 3(|A1| − 1). By

Claim 5.22, we have |B1 \B| ≤ |B′ \B| ≤ ε1
64
|B|. Furthermore,

|B1| ≥ |B′| −
3ε1
4
|B| ≥ |B| − ε1

64
|B| − 3ε1

4
|B| − 2 > (1− ε1)|B|. (5.16)

For a vertex v ∈ A1, since deg(v,B) ≤ ε1
(|B|

2

)
, we have

deg (v,B1) ≤ deg(v,B) + |B1 \B| · (|B1| − 1)

≤ ε1

(
|B|
2

)
+
ε1
64
|B|
(

1 +
ε1
64

)
|B|

< 2ε1

(
|B|
2

)
< 3ε1

(
|B1|

2

)
,

where the last inequality follows from (5.16). In addition, (5.11) and (5.16) imply that for

any vertex v ∈ B1,

deg(v, A1B1) ≤ deg(v, A′B′) ≤ 2ε1

(
|B|
2

)
< ε1|B|2 < 4ε1|A1||B1|.

We finally complete the proof of Theorem 5.5 by applying the following lemma with X = A1,

Z = B1, and ρ = 4ε1.

Lemma 5.27. Suppose that 0 < ρ < 10−8 and n is sufficiently large. Let H be a 3-graph on

n vertices with V (H) = X∪̇Z such that |Z| = 3(|X| − 1). Further, assume that for every

vertex v ∈ X, deg(v, Z) ≤ ρ
(|Z|

2

)
and for every vertex v ∈ Z, deg(v,XZ) ≤ ρ|X||Z|. Then

given any two vertices x0, x1 ∈ X, there is a loose Hamilton path from x0 to x1.

Let us introduce some terminology. A bipartite graph G = (A,B,E) with |A| = |B| = n

is called (d, ε)-regular if for any two subsets A′ ⊆ A, B′ ⊆ B with |A′|, |B′| ≥ εn,

(1− ε)d ≤ e(A′, B′)

|A′||B′|
≤ (1 + ε)d,

and G is called (d, ε)-super-regular if in addition for every v ∈ A ∪B, (1− ε)dn ≤ deg(v) ≤
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(1 + ε)dn.

We use the following result of Kühn and Osthus in [43] in the proof of Lemma 5.27.

Lemma 5.28. [43] For all positive constants d, v0, η ≤ 1 there is a positive ε = ε(d, v0, η)

and an integer N0 = N0(d, v0, η) such that the following holds for all n ≥ N0 and all v ≥ v0.

Let G = (A,B,E) be a (d, ε)-super-regular bipartite graph whose vertex classes both have size

n and let F be a subgraph of G with |F | = v|E|. Choose a perfect matching M uniformly at

random in G. Then with probability at least 1− e−εn we have

(1− η)vn ≤ |M ∩ E(F )| ≤ (1 + η)vn.

Proof of Lemma 5.27. Let G be the graph of all pairs uv in Z such that deg(uv,X) ≥

(1−√ρ)|X|. We claim that for any vertex v ∈ Z,

degG(v) ≤ √ρ|Z|. (5.17)

Otherwise, some vertex v ∈ Z satisfies degG(v) >
√
ρ|Z|. As each u /∈ NG(v) satisfies

degH(uv,X) >
√
ρ|X|, we have

degH(v,XZ) >
√
ρ|Z| · √ρ|X| = ρ|Z||X|,

contradicting our assumption.

Arbitrarily partition Z into three sets Z1, Z2, Z3, each of order |X|−1. By (5.17), we have

degG(v) ≤ √ρ|Z| = 3
√
ρ(|X|−1) and δ(G[Z1, Z2]), δ(G[Z2, Z3]) ≥ (1−3

√
ρ)(|X|−1). Thus,

G[Z1, Z2] and G[Z2, Z3] are both (1, 3 4
√
ρ)-super-regular. For any x ∈ X, let F 1

x := {zz′ ∈

E(G[Z1, Z2]) : {x, z, z′} ∈ E(H)} and let F 2
x := {zz′ ∈ E(G[Z2, Z3]) : {x, z, z′} ∈ E(H)}.

Since deg(x, Z) ≤ ρ
(|Z|

2

)
≤ 5ρ|X|2, we have |F 1

x |, |F 2
x | ≥ (1 − 3

√
ρ)(|X| − 1)2 − 5ρ|X|2 ≥

(1 − 4
√
ρ)(|X| − 1)2. By applying Lemma 5.28 with v = 1 − 4

√
ρ and η = ρ, then for any
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x ∈ X, with probability at least 1− e−ε|X| we have

|M1 ∩ E(F 1
x )|, |M2 ∩ E(F 2

x )| ≥ (1− η)v(|X| − 1) ≥ (1− 5
√
ρ)|X|.

Thus, there is a matching M1 in G[Z1, Z2] and a matching M2 in G[Z2, Z3] such that |M1 \

F 1
x | ≤ 5

√
ρ|X| and |M2 \ F 2

x | ≤ 5
√
ρ|X| for every vertex x ∈ X. Label the vertices of Z so

that Z1 = {a1, . . . , a|X|−1}, Z2 = {b1, . . . , b|X|−1} and Z3 = {c1, . . . , c|X|−1} such that M1 =

{a1b1, . . . , a|X|−1b|X|−1} and M2 = {b1c1, . . . , b|X|−1c|X|−1}. Let Γ be a bipartite graph with

one part X and the other part {a1b1c1, . . . , a|X|−1b|X|−1c|X|−1} such that {x, aibici} ∈ E(Γ)

if and only if xaibi, xbici ∈ E(H). For every 1 ≤ i ≤ |X| − 1, since aibi, bici ∈ E(G), so

degΓ(aibici) ≥ (1 − 2
√
ρ)|X| in Γ. On the other hand, by assumptions, we have degΓ(x) ≥

(1− 10
√
ρ)|X| for any x ∈ X. Thus it is easy to see that there is a Hamilton path in Γ with

ends x0, x1. Since for each 1 ≤ i ≤ |X| − 1, {xi, aibici}, {xi+1, aibici} ∈ E(Γ) implies that

xiaibi, bicixi+1 ∈ E(H) (let x|X| = x0), we get a loose Hamilton path of H as

x1 a1 b1 c1 x2 a2 b2 c2 · · · x|X|−1 a|X|−1 b|X|−1 c|X|−1x|X|(= x0)
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PART 6

NEAR PERFECT MATCHINGS IN K-UNIFORM HYPERGRAPHS

6.1 Introduction

Given k ≥ 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V (H)

and an edge set E(H) ⊆
(
V (H)
k

)
, where every edge is a k-element subset of V (H). A matching

in H is a collection of vertex-disjoint edges of H. A perfect matching M in H is a matching

that covers all vertices of H. Clearly a perfect matching in H exists only if k divides |V (H)|.

When k does not divide n = |V (H)|, we call a matching M in H a near perfect matching if

|M | = bn/kc.

Given a k-graph H with a set S of d vertices (where 1 ≤ d ≤ k − 1) we define degH(S)

to be the number of edges containing S (the subscript H is omitted if it is clear from the

context). The minimum d-degree δd(H) of H is the minimum of degH(S) over all d-vertex

sets S in H. We refer to δk−1(H) as the minimum codegree of H.

Over the last few years there has been a strong focus in establishing minimum d-degree

thresholds that force a perfect matching in a k-graph [1, 8, 17, 35, 36, 42, 47, 54, 57, 58, 61,

63, 69]. In particular, Rödl, Ruciński and Szemerédi [63] determined the minimum codegree

threshold that ensures a perfect matching in a k-graph on n vertices for all k ≥ 3 and

sufficiently large n ∈ kN. The threshold is n
2
− k + C, where C ∈ {3/2, 2, 5/2, 3} depends

on the values of n and k. In contrast, they proved that the minimum codegree threshold

that ensures a near perfect matching in a k-graph on n /∈ kN vertices is between bn
k
c and

n
k

+ O(log n). It is conjectured, in [63] and [58, Problem 3.3], that this threshold should be

bn
k
c. In this chapter we verify this conjecture.

Theorem 6.1. For any integer k ≥ 3, let n be a sufficiently large integer which is not

divisible by k. Suppose H is a k-uniform hypergraph on n vertices with δk−1(H) ≥ bn
k
c.

Then H contains a matching of size bn
k
c.
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It is also natural to ask for the minimum codegree threshold for the matching number

of k-graphs, namely, the size of a maximum matching. The following theorem [63, Fact 2.1]

is obtained by a greedy algorithm. Let ν(H) be the size of a maximum matching in H.

Theorem 6.2. [63] Let n ≥ k ≥ 2. For every k-uniform hypergraph H on n vertices,

ν(H) ≥ δk−1(H) if δk−1(H) ≤
⌊n
k

⌋
− k + 2.

Note that for n ∈ kN and n
k
≤ δk−1(H) ≤ n

2
−k, H may not contain a perfect matching,

namely, a matching of size n
k

(see [63]). So the only open cases are when
⌊
n
k

⌋
− k + 3 ≤

δk−1(H) < n
k
. In this note, we close this gap for large n.

Corollary 6.3. For any integer k ≥ 3, let n be a sufficiently large integer. For every

k-uniform hypergraph H on n vertices,

ν(H) ≥ δk−1(H) if δk−1(H) <
n

k
.

Proof. Let δk−1(H) =
⌊
n
k

⌋
− c. We only prove Corollary 6.3 in the cases when 1 ≤ c ≤ k− 3,

since Theorem 6.2 covers the cases when c ≥ k − 2 and Theorem 6.1 covers the case when

δk−1(H) =
⌊
n
k

⌋
< n

k
. Let r ≡ n mod k such that 0 ≤ r ≤ k − 1. Note that

⌊
n
k

⌋
=
⌊
n+c
k

⌋
if r + c < k and

⌊
n
k

⌋
+ 1 =

⌊
n+c+1
k

⌋
otherwise. For the first case, we add c vertices to H

and get H ′ such that H ′ contains all edges of H and all k-sets containing any of these new

vertices. Note that H ′ has n+ c vertices and δk−1(H ′) =
⌊
n+c
k

⌋
. Moreover, k does not divide

n+ c since 1 ≤ r+ c < k. We apply Theorem 6.1 on H ′ and get a near perfect matching M

of H ′. Deleting up to c edges from M that contain the new vertices, we get a matching in

H of size
⌊
n
k

⌋
− c.

In the second case, we add c + 1 vertices to H and get H ′ such that H ′ contains all

edges of H and all k-sets containing any of these new vertices. Note that H ′ has n + c + 1

vertices and δk−1(H ′) =
⌊
n
k

⌋
+ 1 =

⌊
n+c+1
k

⌋
. Moreover, k does not divide n + c + 1 since

k + 1 ≤ r + c + 1 ≤ 2k − 3. Similarly we apply Theorem 6.1 on H ′ and get a near perfect
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ν(H)

n/k − 1
n/k

n/k − 1 ≈ n/2 δk−1(H)

Figure 6.1. δk−1(H) and ν(H)

matching M of H ′. Deleting up to c+ 1 edges from M that contain the new vertices, we get

a matching in H of size
⌊
n
k

⌋
+ 1− (c+ 1) =

⌊
n
k

⌋
− c.

It is easy to see that Theorem 6.1 and Corollary 6.3 are best possible. For an integer

0 ≤ d < n
k
, let H be a k-graph with a partition A ∪ B of the vertex set V (H) such that

|A| = d and E(H) consists of all k-tuples that intersect A. Since every edge intersects A, we

have ν(H) = δk−1(H) = |A| = d.

Let us describe this interesting phenomenon by the following dynamic process (see

Figure 6.1). Consider a k-graph H on n vertices with E(H) = ∅ at the beginning and add

edges to E(H) gradually. Corollary 6.3 says ν(H) ≥ δk−1(H) when δk−1(H) < n
k
. In order

to guarantee a perfect matching, δk−1(H) needs to be about n/2 [63].

As a typical approach to obtain exact results, our proof of Theorem 6.1 consists of an

extremal case and a nonextremal case. We say that H is γ-extremal if V (H) contains an

independent subset B of order at least (1− γ)k−1
k
n.

Theorem 6.4 (Nonextremal case). For any integer k ≥ 3 and constant γ > 0, there is an

integer n0 such that the following holds. Let n ≥ n0 be an integer not divisible by k and let

H be an n-vertex k-graph with δk−1(H) ≥ n
k
−γn. If H is not 5kγ-extremal, then H contains

a near perfect matching.
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Theorem 6.5 (Extremal case). For any integer k ≥ 3, there exist an ε > 0 and an integer

n1 such that the following holds. Let n ≥ n1 be an integer not divisible by k and let H be

an n-vertex k-graph with δk−1(H) ≥ bn
k
c. If H is ε-extremal, then H contains a near perfect

matching.

Theorem 6.1 follows from Theorem 6.4 and Theorem 6.5 immediately.

We prove Theorem 6.4 by the absorbing method, initiated by Rödl, Ruciński and Sze-

merédi [60]. Given a set S of k + 1 vertices, we call an edge e ∈ E(H) disjoint from S

S-absorbing if there are two disjoint edges e1 and e2 in E(H) such that |e1 ∩ S| = k − 1,

|e1 ∩ e| = 1, |e2 ∩ S| = 2, and |e2 ∩ e| = k − 2. Note that this is not the absorbing in the

usual sense because e1 ∪ e2 misses one vertex of S ∪ e. Let us explain how such absorbing

works. Let S be a (k+1)-set and M be a matching, where V (M)∩S = ∅, which contains an

S-absorbing edge e. Then M can “absorb” S by replacing e in M by e1 and e2 (one vertex

of e becomes uncovered). The following absorbing lemma was proved in [63, Fact 2.3] with

the conclusion that the number of S-absorbing edges in M is at least k − 2. However, its

proof shows that k − 2 can be replaced by any constant. Note that we do not require that

k does not divide n in Lemma 6.6 and Lemma 6.7.

Lemma 6.6. [63, Absorbing lemma] For all c, γ > 0 there exist C > 0 and n2 such that if

H is a k-graph with n ≥ n2 vertices and δk−1(H) ≥ cn, then there exists a matching M ′ in

H of size |M ′| ≤ C log n and such that for every (k+1)-tuple S of vertices of H, the number

of S-absorbing edges in M ′ is at least k/γ.

We also need the following lemma, which provides a matching that covers all but a

constant number of vertices when H is not extremal.

Lemma 6.7 (Almost perfect matching). For any integer k ≥ 3 and constant γ > 0 the

following holds. Let H be an n-vertex k-graph such that n is sufficiently large and δk−1(H) ≥
n
k
− γn. If H is not 2kγ-extremal, then H contains a matching that covers all but at most

k2/γ vertices.
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Now let us compare our proof with the proof in [63], which showed that δk−1(H) ≥
n
k

+O(log n) guarantees a near perfect matching. In [63], the authors first build an absorbing

matching of size C log n and then apply Theorem 6.2 in the remaining k-graph. Finally,

they absorb the leftover vertices and get the near perfect matching. In our proof, instead

of Theorem 6.2, we apply Lemma 6.7 after building the absorbing matching. Lemma 6.7

only requires a weaker degree condition δk−1(H) ≥ n
k
− γn and the condition that H is not

extremal. We then handle the extremal case separately.

6.2 Proof of Theorem 6.4

In this section we prove Theorem 6.4 with the help of Lemma 6.6 and Lemma 6.7.

Proof of Lemma 6.7. Let M = {e1, e2, . . . , em} be a maximum matching of size m in H.

Let V ′ be the set of vertices covered by M and let U be the set of vertices which are not

covered by M . We assume that H is not 2kγ-extremal and |U | > k2/γ. Note that U is

an independent set by the maximality of M . We arbitrarily partition all but at most k − 2

vertices of U as disjoint (k − 1)-sets A1, . . . , At where t = b |U |
k−1
c > k

γ
.

Let D be the set of vertices v ∈ V ′ such that {v} ∪ Ai ∈ E(H) for at least k sets Ai,

i ∈ [t]. We claim that |ei∩D| ≤ 1 for any i ∈ [m]. Otherwise, assume that x, y ∈ ei∩D. By

the definition of D, we can pick Ai, Aj for some distinct i, j ∈ [t] such that {x}∪Ai ∈ E(H)

and {y}∪Aj ∈ E(H). We obtain a matching of size m+ 1 by replacing ei in M by {x}∪Ai

and {y} ∪ Aj, contradicting the maximality of M .

Next we show that |D| ≥ ( 1
k
− 2γ)n. By the minimum degree condition, we have

t

(
1

k
− γ
)
n ≤

t∑
i=1

deg(Ai) ≤ |D|t+ n · k,

where we use the fact that U is an independent set. So we get

|D| ≥
(

1

k
− γ
)
n− nk

t
>

(
1

k
− 2γ

)
n,
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where we use t > k/γ.

Let VD :=
⋃
{ei, ei∩D 6= ∅}. Note that |VD \D| = (k−1)|D| ≥ (k−1)( 1

k
−2γ)n. Since

H is not 2kγ-extremal, H[VD \ D] contains at least one edge, denoted by e0. We assume

that e0 intersects ei1 , . . . , eil in M for some 2 ≤ l ≤ k. Suppose {vij} = eij ∩D for all j ∈ [l].

By the definition of D, we can greedily pick Ai1 , . . . , Ail such that {vij} ∪ Aij ∈ E(H) for

all j ∈ [l]. Let M ′′ be the matching obtained from replacing the edges ei1 , . . . , eil by e0 and

{vij} ∪ Aij for j ∈ [l]. Thus, M ′′ has m+ 1 edges, contradicting the maximality of M .

Now we prove Theorem 6.4.

Proof of Theorem 6.4. Suppose H is a k-graph on n /∈ kN vertices with δk−1(H) ≥ n/k−γn

and H is not 5kγ-extremal. In particular, γ < 1
5k

. Since δk−1(H) ≥ n
2k

, we first apply Lemma

6.6 on H with c = 1
2k

and find the absorbing matching M ′ of size at most C log n such that

for every set S of k+ 1 vertices of H, the number of S-absorbing edges in M ′ is at least k/γ.

Let H ′ = H[V (H) \ V (M ′)] and n′ = |V (H ′)|. Note that δk−1(H ′) ≥ δk−1(H) −

kC log n > ( 1
k
− 2γ)n′. If H ′ is 4kγ-extremal, namely, V (H ′) contains an independent set B

of order at least (1− 4kγ)k−1
k
n′, then since

(1− 4kγ)
k − 1

k
n′ ≥ (1− 5kγ)

k − 1

k
n,

we get that H is 5kγ-extremal, a contradiction. Thus, H ′ is not 4kγ-extremal and we can

apply Lemma 6.7 on H ′ with parameter 2γ and get a matching M ′′ in H ′ that covers all but

at most k2/(2γ) vertices. Since for every (k+1)-tuple S in V (H), the number of S-absorbing

edges in M ′ is at least k/γ, we can repeatedly absorb the leftover vertices (at most k/(2γ)

times, each time the number of leftover vertices is reduced by k) until the number of leftover

vertices is at most k (strictly less than k by the assumption). Let M̃ denote the absorbing

matching after the absorption. Then M̃ ∪M ′′ is the desired near perfect matching in H.



105

6.3 Proof of Theorem 6.5

We prove Theorem 6.5 in this section. We use the following result of Pikhurko [57],

stated here in a less general form.

Theorem 6.8. [57, Theorem 3] Let H be a k-partite k-graph with k-partition V (H) =

V1 ∪ V2 ∪ · · · ∪ Vk such that |Vi| = m for all i ∈ [k]. Let δ{1}(H) = min{|N(v1)| : v1 ∈ V1}

and

δ[k]\{1}(H) = min{|N(v2, . . . , vk)| : vi ∈ Vi for every 2 ≤ i ≤ k}.

For sufficiently large integer m, if

δ{1}(H)m+ δ[k]\{1}(H)mk−1 ≥ 3

2
mk,

then H contains a perfect matching.

Proof of Theorem 6.5. Fix a sufficiently small ε > 0. Suppose n is sufficiently large and not

divisible by k. Let H be a k-graph on n vertices satisfying δk−1(H) ≥ bn
k
c. Assume that H

is ε-extremal, namely, there is an independent set S ⊆ V (H) with |S| ≥ (1− ε)k−1
k
n.

We partition V (H) as follows. Let α = ε1/2. Let C be a maximum independent set of

V (H). Define

A =

{
x ∈ V \ C : deg(x,C) ≥ (1− α)

(
|C|
k − 1

)}
, (6.1)

and B = V \ (A ∪ C). We first observe the following bounds of |A|, |B|, |C|.

Proposition 6.9. |A| ≥
⌊
n
k

⌋
− αn, |B| ≤ αn, and (1− ε) (k−1)n

k
≤ |C| ≤ d (k−1)n

k
e.

Proof. The lower bound for |C| follows from our hypothesis immediately. For any S ⊆ C of

order k − 1, we have N(S) ⊆ A ∪B. By the minimum degree condition, we have

⌊n
k

⌋
≤ |N(S)| ≤ |A|+ |B| = n− |C| ≤ n

k
+ ε

(k − 1)n

k
, (6.2)
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which gives the upper bound for |C|. By the definitions of A and B, we have

⌊n
k

⌋( |C|
k − 1

)
≤ e((A ∪B)Ck−1) ≤ (1− α)

(
|C|
k − 1

)
|B|+

(
|C|
k − 1

)
|A|,

where e((A ∪ B)Ck−1) denotes the number of edges that contains k − 1 vertices in C and

one vertex in A ∪ B. Thus, we get
⌊
n
k

⌋
≤ |A| + |B| − α|B|, which gives that α|B| ≤

|A|+ |B| −
⌊
n
k

⌋
≤ εn by (6.2). So |B| ≤ αn and |A| ≥

⌊
n
k

⌋
− |B| ≥

⌊
n
k

⌋
− αn.

We will build four disjoint matchings M1, M2, M3, and M4 in H, whose union gives

the desired near perfect matching in H. Let r ≡ n mod k and 1 ≤ r ≤ k − 1. Note that

bn
k
c = n−r

k
. For i ∈ [3], let Ai = A \ V (∪j∈[i]Mj) and Ci = C \ V (∪j∈[i]Mj) be the sets of

uncovered vertices of A and C, respectively. Let ni = |V (H) \ V (∪j∈[i]Mj)| and note that

ni ≡ r mod k.

Step 1. Small matchings M1 and M2 covering B.

We build the first matching M1 on vertices of B ∪ C of size t only if t := bn
k
c − |A| >

0. Note that it is possible that t ≤ 0 – in this case M1 = ∅. By Proposition 6.9, we

know that t = bn
k
c − |A| ≤ αn. Since δk−1(H) ≥ bn

k
c and by the definition of t, we have

δk−1(H[B ∪ C]) ≥ t. Since |C| ≤ d (k−1)n
k
e, we have |B| = n − |C| − |A| ≥ bn

k
c − |A| = t.

We pick arbitrary t disjoint (k − 1)-sets from C. Since C is an independent set, each of the

(k − 1)-sets has at least t neighbors in B, so we can choose a matching M1 of size t.

Next we build the second matching M2 that covers all the vertices in B \ V (M1). For

each v ∈ B \ V (M1), we pick k − 2 arbitrary vertices from C not covered by the existing

matching, and an uncovered vertex v ∈ V to complete an edge and add it to M2. Since

δk−1(H) ≥ bn
k
c and the number of vertices covered by the existing matching is at most

k|B| ≤ kαn < bn
k
c, such an edge always exists.

Our construction guarantees that each edge in M1 ∪M2 contains at least one vertex

from B and thus |M1 ∪M2| ≤ |B|. We claim that |A1| ≥ n1−r
k

and |A2| ≥ n2−r
k

. To see the
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bound for |A1|, we separate two cases depending on t. When t > 0, since |M1| = t, we have

|A1| =
n− r
k
− t =

n− r − k|M1|
k

=
n1 − r
k

.

Otherwise t ≤ 0, we have n1 = n and |A1| = |A| ≥ n−r
k

= n1−r
k

. For the bound for |A2|, since

each edge of M2 contains at most one vertex of A, we have

|A2| ≥ |A1| − |M2| ≥
n1 − r
k
− |M2| =

n2 − r
k

.

Let s := |A2| − n2−r
k
≥ 0. Since n2 = n − k|M1 ∪M2| ≥ n − k|B| ≥ n − kαn and

|C| ≥ (1− ε) (k−1)n
k

(Proposition 6.9), we get

s ≤ n− |C| − n− kαn− r
k

≤ ε
(k − 1)n

k
+ αn+ 1 ≤ 2αn.

Step 2. A small matching M3.

Starting with M3 = ∅, we will greedily add at most 2αn edges to M3 from A2 ∪C2 until

we have |A3| − n3−r
k
∈ {0, 1}. Indeed, throughout the process, denote by n′ the number of

uncovered vertices of H and denote by A′, C ′ the set of uncovered vertices in A,C, respec-

tively. Let c = |A′| − n′−r
k

. If c ≥ k − 1, then we arbitrarily pick k − 1 vertices from A′

and a vertex from A′ ∪ C ′ to form an edge. As a result, |A′| − n′−r
k

decreases by k − 1 or

k − 2. If c < k − 1, then we pick c vertices from A′, k − c− 1 vertices from C ′, and form an

edge with some vertex from A′ ∪ C ′. In this case, |A′| − n′−r
k

decreases by c or c − 1. The

iteration stops when |A′| − n′−r
k

becomes 0 or 1 after at most d s
k−2
e ≤ s ≤ 2αn steps. Note

that we can always form an edge in each step because the number of covered vertices is at

most k|B|+ k · 2αn ≤ 3kαn < δk−1(H). So we get a matching M3 of at most 2αn edges.

Step 3. The last matching M4.

Now we have two cases, |A3| − n3−r
k

= 0 or 1. In the first case, we will find a matching

M4 of size |A3| which leaves r vertices in C3. In the second case, we will find a matching M4
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of size |A3| − 1 which leaves one vertex in A3 and r − 1 vertices in C3. Note that in either

case we are done since M = M1 ∪M2 ∪M3 ∪M4 is a matching that covers all but r vertices

of V (H).

We define A′3 and C ′3 as follows. If |A3| − n3−r
k

= 0, we let A′3 = A3 and obtain C ′3

by deleting arbitrary r vertices from C3. Otherwise, we obtain A′3 by deleting one arbitrary

vertex from A3 and obtain C ′3 by deleting r−1 arbitrary vertices from C3. Note that in both

cases, we have |A′3| −
|A′3|+|C′3|

k
= 0, which implies |C ′3| = (k − 1)|A′3|. Furthermore, we have

|A′3| ≥ |A| − |M1 ∪M2| − |M3| − 1 ≥
⌊n
k

⌋
− αn− αn− 2αn− 1 ≥

⌊n
k

⌋
− 5αn,

because |M1 ∪M2| ≤ |B| ≤ αn and |M3| ≤ 2αn.

Let m := |A′3|. Next, we partition C ′3 arbitrarily into k − 1 parts C1, C2, . . . , Ck−1

of the same size m. We want to apply Theorem 6.8 on the k-partite k-graph H ′ :=

H[A′3, C
1, . . . , Ck−1]. Let us verify the assumptions. First, since C ′3 is independent, for

any set of k − 1 vertices v1, . . . , vk−1 such that vi ∈ Ci for i ∈ [k − 1], the number of its

non-neighbors in A ∪B is at most

|A|+ |B| −
⌊n
k

⌋
≤ n

k
+ ε

(k − 1)n

k
−
⌊n
k

⌋
≤ εn ≤ 2kεm,

where we use (6.2) and the last inequality follows from m = |A′3| ≥ bnk c − 5αn > k−1
k2
n. So

we have δ[k]\{1}(H
′) ≥ m− 2kεm = (1− 2kε)m. Next, by (6.1), for any v ∈ A′3, we have

degH(v, C) ≤ α

(
|C|
k − 1

)
≤ α

|C|k−1

(k − 1)!
≤ α

(
k−1
k
n
)k−1

(k − 1)!
≤ α

(km)k−1

(k − 1)!
= αckm

k−1,

where ck = kk−1

(k−1)!
. This implies that δ{1}(H

′) ≥ (1− αck)mk−1. Thus, we have

δ{1}(H
′)m+ δ[k]\{1}(H

′)mk−1 ≥ (1− αck)mk−1m+ (1− 2kε)mmk−1 >
3

2
mk.

By Theorem 6.8, we find a perfect matching M4 on V (H ′) = A′3 ∪ C ′3.
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PART 7

DECISION PROBLEM FOR PERFECT MATCHINGS IN DENSE

K-UNIFORM HYPERGRAPHS

7.1 Introduction

The question of whether a given k-graph H contains a perfect matching is one of the

most fundamental questions of combinatorics. In the graph case k = 2, Tutte’s Theorem [71]

gives necessary and sufficient conditions for H to contain a perfect matching, and Edmonds’

Algorithm [11] finds such a matching in polynomial time. However, for k ≥ 3 this problem

was one of Karp’s celebrated 21 NP-complete problems [26]. Since the general problem is

intractable provided P 6= NP, it is natural to ask conditions on H which make the problem

tractable or even guarantee that a perfect matching exists. One well-studied class of such

conditions are minimum degree conditions.

7.1.1 Perfect matchings under minimum degree conditions

Given a k-graph H with a set S of d vertices (where 1 ≤ d ≤ k − 1) we define degH(S)

to be the number of edges containing S (the subscript H is omitted if it is clear from the

context). The minimum d-degree δd(H) of H is the minimum of degH(S) over all d-vertex

sets S in H. We refer to δk−1(H) as the minimum codegree of H.

Over the last few years there has been a strong focus in establishing minimum d-degree

thresholds that force a perfect matching in a k-graph. In particular, Rödl, Ruciński and

Szemerédi [63] determined the minimum codegree threshold that ensures a perfect matching

in a k-graph on n vertices for large n and all k ≥ 3. The threshold is n/2 − k + C, where

C ∈ {3/2, 2, 5/2, 3} depends on the values of n and k. In contrast, they proved that a

k-graph H on n vertices satisfying δk−1(H) ≥ n/k + O(log n) contains a matching of size

n/k − 1 (one edge away from a perfect matching). We improved this result in Chapter 6 by
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S

Figure 7.1. Space Barrier for k = 3

showing that δk−1(H) ≥ n/k − 1 suffices. The following construction, usually called space

barrier, shows that this is best possible.

Construction 7.1 (Space Barrier). Let V be a set of size n and fix S ⊆ V with |S| < n/k.

Let H be the k-graph whose edges are all k-sets that intersect S.

Note that the minimum codegree of H is |S| and any matching in Construction 7.1 has

at most |S| edges.

Let PM(k, δ) be the decision problem of determining whether a k-graph H with

δk−1(H) ≥ δn contains a perfect matching. Given the result of [63], a natural question

to ask is the following: For which values of δ can PM(k, δ) be decided in polynomial time?

This holds for PM(k, 1/2) by the main result of [63]. On the other hand, PM(k, 0) includes

no degree restriction on H at all, so is NP-complete by the result of Karp [26]. Szymańska

[67] proved that for δ < 1/k the problem PM(k, δ) admits a polynomial-time reduction to

PM(k, 0) and hence PM(k, δ) is also NP-complete. Karpiński, Ruciński and Szymańska

showed that there exists ε > 0 such that PM(k, 1/2 − ε) is in P and asked the complexity

of PM(k, δ) for δ ∈ [1/k, 1/2).

Problem 7.2. [27] What is the computational complexity of PM(k, δ) for δ ∈ [1/k, 1/2)?

Recently, Keevash, Knox and Mycroft [31] gave a long and involved proof that shows
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PM(k, δ) is in P for any δ > 1/k that leaves only PM(k, 1/k) unknown. Moreover, they

also constructed a polynomial-time algorithm to find a perfect matching provided one exists.

They [30] also expected that it would be difficult to solve the decision problem for δ = 1/k, as

n/k is the minimum codegree threshold at which a perfect fractional matching is guaranteed,

so there is a clear behavioral change at this point. In this chapter, we give a short proof that

shows PM(k, δ) is in P for all δ ≥ 1/k and thus solve Problem 7.2 completely.

Theorem 7.3. Fix k ≥ 3. Let H be an n-vertex k-graph with δk−1(H) ≥ n/k. Then there is

an algorithm with running time O(n3k2−5k), which determines whether H contains a perfect

matching.

The proof of Theorem 7.3 follows the approach of [31], from which we use several

definitions and results. The heart of the algorithm in that paper was a structural theorem

[31, Theorem 1.10], which was proved by partitioning the k-graph H into a number of k-

partite k-graphs, before finding a perfect matching in each of these k-partite k-graphs by

using a theorem of Keevash and Mycroft [34]. Our main improvement is to replace this

by a new structural theorem (Theorem 7.12) which significantly simplifies the argument in

[31], and which applies in the exact case δk−1(H) ≥ n/k (the structural theorem of [31]

only applied for δk−1(H) ≥ n/k+ o(n)). This already provides a polynomial-time algorithm

deciding the existence of perfect matchings, and a faster algorithm as claimed in Theorem

7.3 is obtained by combining Theorem 7.12 with ideas from [31]. Our proof of Theorem 7.12

uses a lattice-based absorbing method which does not need the hypergraph regularity lemma

or the main result of [34]. This novel approach, which combines the powerful absorbing

technique with the ‘divisibility barrier’ structures considered in [34], may well be useful for

other matching problems in hypergraphs.

7.1.2 Lattice-based constructions

It is shown in [34] that a k-graph H has a perfect matching or is close to a family of

lattice-based constructions termed “divisibility barriers”. The following examples of divisi-

bility barriers were given in [63].
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Figure 7.2. Constructions 7.4 and 7.5 coincide when k = 3

Construction 7.4. Let X and Y be disjoint sets such that |X ∪ Y | = n and |X| is odd,

and let H be the k-graph on X ∪ Y whose edges are all k-sets which intersect X in an even

number of vertices.

Construction 7.5. Let X and Y be disjoint sets such that |X ∪ Y | = n and |X| − n/k is

odd, and let H be the k-graph on X ∪ Y whose edges are all k-sets which intersect X in an

odd number of vertices.

To see why there is no perfect matching in Construction 7.5, note that a perfect matching

has n/k edges, intersecting X in n/k (mod 2) number of vertices. Since |X| 6≡ n/k (mod 2),

a perfect matching does not exist. To describe divisibility barriers in general, we make the

following definition. In this chapter, every partition has an implicit order on its parts.

Definition 7.6. Let H be a k-graph and let P be a partition of V (H) into d parts. Then

the index vector iP(S) ∈ Zd of a subset S ⊆ V (H) with respect to P is the vector whose

coordinates are the sizes of the intersections of S with each part of P, namely, iP(S)X =

|S ∩X| for X ∈ P. Furthermore,

(i) IP(H) denotes the set of index vectors iP(e) of edges e ∈ H, and

(ii) LP(H) denotes the lattice (i.e. additive subgroup) in Zd generated by IP(H).
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A divisibility barrier is a k-graph H which admits a partition P of its vertex set V

such that iP(V ) /∈ LP(H); To see that such an H contains no perfect matching, let M

be a matching in H. Then iP(V (M)) =
∑

e∈M iP(e) ∈ LP(H). But iP(V ) /∈ LP(H), so

V (M) 6= V , namely, M is not perfect. For example, to see that this generates Construction

7.4, let P be the partition into parts X and Y ; then LP(H) is the lattice of vectors (x, y) in

Z2 for which x is even and k divides x+ y, and |X| being odd implies that iP(V ) /∈ LP(H).

7.2 The Main structural theorem

We need the following definitions from [31] before giving the statement of our structural

theorem.

Definition 7.7. [31] Suppose L is a lattice in Zd.

(i) We say that i ∈ Zd is an r-vector if it has non-negative coordinates that sum to r. We

write uj for the ‘unit’ 1-vector that is 1 in coordinate j and 0 in all other coordinates.

(ii) We say that L is an edge-lattice if it is generated by a set of k-vectors.

(iii) We write Ldmax for the lattice generated by all k-vectors. So Ldmax = {x ∈ Zd :

k divides
∑

i∈[d] xi}.

(iv) We say that L is complete if L = Ldmax, otherwise it is incomplete.

(v) A transferral is a non-zero difference ui − uj of 1-vectors.

(vi) We say that L is transferral-free if it does not contain any transferral.

(vii) We say that a set I of k-vectors is full if for every (k−1)-vector v there is some i ∈ [d]

such that v + ui ∈ I.

(viii) We say that L is full if it contains a full set of k-vectors and is transferral-free.

We recall the following construction [31, Construction 1.6] in the case when k = 4.
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Construction 7.8. [31] Let P = {V1, V2, V3} be a partition of vertex set |V | = n, with

|V1| = n/3 − 2, |V2| = n/3 and |V3| = n/3 + 2. Fix some vertex x ∈ V2, and let H be the

4-graph such that E(H) consists of all k-sets e with iP(e) = (3, 0, 1), (0, 3, 1), (0, 0, 4), (2, 2, 0)

or (1, 1, 2) and all k-sets e containing x with iP(e) = (0, 1, 3).

Note that δ3(H) = n/3− 4. It is not hard to see that iP(V ) ∈ LP(H) but H does not

contain a perfect matching. Indeed, if a matching M in H does not contain any edge e with

index vector (0, 1, 3), then |V (M) ∩ V2| − |V (M) ∩ V1| ≡ 0 (mod 3). Otherwise M contains

an edge with index vector (0, 1, 3), thus we have |V (M)∩V2| − |V (M)∩V1| ≡ 1 (mod 3). In

either case, M is not perfect since |V2| − |V1| = 2. In fact, as shown in [31], iP(V ) ∈ LP(H)

holds for any P of V (H). Thus, having a divisibility barrier is not a necessary condition for

H not containing a perfect matching.

Note that when we determine if iP(V ) ∈ LP(H), we are free to use any multiple of

any vectors i ∈ IP(H). But in Construction 7.8, all edges e with iP(e) = (0, 1, 3) contain

x, thus a matching in H can only contain one edge with index vector (0, 1, 3). So although

iP(V ) ∈ LP(H), there is no perfect matching. Thus, it is natural to consider the following

robust edge-lattice such that for every k-vector i ∈ IµP(H), there are many edges e such that

iP(e) = i.

Definition 7.9 (Robust edge-lattices). Let H be a k-graph and P be a partition of V (H)

into d parts. Then for any µ > 0,

(i) IµP(H) denotes the set of all i ∈ Zd such that at least µ|V (H)|k edges e ∈ H have

iP(e) = i.

(ii) LµP(H) denotes the lattice in Zd generated by IµP(H).

We will show that there exists a partition P of V (H) and µ > 0, such that if iP(V ) ∈

LµP(H), then H contains a perfect matching. Indeed, even a weaker condition suffices. If we

can find a small matching M such that iP(V \V (M)) ∈ LµP(H[V \V (M)]) = LµP(H), then we

can apply our proof above to show that H[V \V (M)] contains a perfect matching M ′. Thus
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M ∪M ′ is a perfect matching of H. Note that we can guarantee LµP(H[V \V (M)]) = LµP(H)

by selecting µ ‘wisely’ and requiring that M is small. The following definitions are essentially

from [31]. The only difference is that a full pair defined in [31] has at most k − 1 parts.

Definition 7.10. [31] Let H be a k-graph.

(i) A full pair (P , L) for H consists of a partition P of V (H) into d ≤ k parts and a full

edge-lattice L ⊂ Zd.

(ii) A (possibly empty) matching M of size at most |P| − 1 is a solution for (P , L) (in H)

if iP(V (H) \ V (M)) ∈ L; we say that (P , L) is soluble if it has a solution, otherwise

insoluble.

The following lemma provides a partition P0 such that we can develop the absorbing

lemma on the pair (P0, L
µ
P0

(H)) for some µ > 0. For a small enough µ > 0, IµP0
(H) is full.

However, the pair (P0, L
µ
P0

(H)) may not be full because it may contain transferrals. Then

we will obtain a full pair (P ′0, L
µ
P ′0

(H)) from the pair (P0, L
µ
P0

(H)) by iteratively merging

parts that contain transferrals.

We call that a vertex u is (β, i)-reachable to a vertex v if there are at least βnik−1

(ik − 1)-sets S such that both H[S ∪ u] and H[S ∪ v] have perfect matchings. We say a

vertex set U is (β, i)-closed if any two vertices u, v ∈ U are (β, i)-reachable to each other.

For two partitions P ,P ′ of a set V , we say P refines P ′ if every vertex class of P is a subset

of some vertex class of P ′.

Lemma 7.11. Given an integer k ≥ 3, for any 0 < γ � 1/k, suppose that 1/n� {β, µ} �

γ. Then for each k-graph H on n vertices with δk−1(H) ≥ n/k−γn, we find partitions P0 =

{V1, . . . , Vd} and P ′0 = {V ′1 , . . . , V ′d′} of V (H) in time O(n2k−1k+1) satisfying the following

properties:

(i) P0 refines P ′0 and (P ′0, L
µ
P ′0

(H)) is a full pair,

(ii) each partition set of P0 or P ′0 has size at least n/k − 2γn,
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(iii) for each D ⊆ V (H) such that iP ′0(D) ∈ LµP ′0(H), we have iP0(D) ∈ LµP0
(H),

(iv) for each i ∈ [d], Vi is (β, 2k−1)-closed.

Given integers n ≥ k ≥ 3, let Hn,k be the collection of k-graphs H such that there is a

partition of V (H) = X ∪ Y with n/k − |X| is odd and all edges of H intersect X at an odd

number of vertices. Note that the members of Hn,k are subhypergraphs of the k-graphs in

Construction 7.5 and thus none of them has a perfect matching.

Now we are ready to state our main structural theorem.

Theorem 7.12. Fix an integer k ≥ 3. Suppose

1/n0 � {β, µ} � γ � 1/k.

Let H be a k-graph on n ≥ n0 vertices such that δk−1(H) ≥ n/k with P0 and P ′0 found by

Lemma 7.11. Then H contains a perfect matching if and only if the full pair (P ′0, L
µ
P ′0

(H))

is soluble and H /∈ Hn,k.

We first prove the forward implication. The following lemma from [31] says that we can

omit the condition on the size of M when considering solubility. Although the definition of

full pairs is slightly different in [31], the same proof works in our case.

Lemma 7.13. [31, Lemma 6.9] Let (P , L) be a full pair for a k-graph H, where k ≥ 3. Then

(P , L) is soluble if and only if there exists a matching M in H such that iP(V (H)\V (M)) ∈

L.

Proof of the forward implication of Theorem 7.12. If H contains a perfect matching M , then

iP ′0(V (H) \ V (M)) = 0 ∈ LµP ′0(H). Since (P ′0, L
µ
P ′0

(H)) is a full pair, by Lemma 7.13, it is

soluble. Furthermore, H /∈ Hn,k because no member of Hn,k contains a perfect matching.

The proof of the backward implication is more involved. For this purpose, we develop

a lattice-based absorbing method. In order to use the absorbing method, we need to reserve

O(log n) vertices for our absorbing matching and then look for an almost perfect matching
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in the remaining k-graph H ′. But an almost perfect matching may not exist if H ′ is close

to the space barrier (Construction 7.1). This means that our absorbing technique works

only if H is not extremal (not close to the space barrier). So we separate the proof into an

extremal case and a non-extremal case and then handle the extremal case separately. More

precisely, we say that H is γ-extremal if V (H) contains an independent subset of order at

least (1 − γ)k−1
k
n. By picking constants 0 < γ, ε � 1/k such that ε = 11kγ, the backward

implication follows from the following two theorems immediately.

Theorem 7.14. For any 0 < γ � 1/k, suppose that 1/n � {β, µ} � γ. Let H be a

k-graph on n vertices such that δk−1(H) ≥ n/k − γn with P0 and P ′0 found by Lemma 7.11.

Moreover, assume H is not 11kγ-extremal and (P ′0, L
µ
P ′0

(H)) is soluble, then H contains a

perfect matching.

Theorem 7.15. For any 0 < ε � 1/k and sufficiently large integer n the following holds.

Suppose H is a k-graph on n vertices such that δk−1(H) ≥ n/k and H is ε-extremal. If

H /∈ Hn,k, then H contains a perfect matching.

Note that we only need that (P ′0, L
µ
P ′0

(H)) is soluble in the non-extremal case and H /∈

Hn,k in the extremal case.

Let us compare our method and the traditional absorbing method and outline our proof

of Theorem 7.14. The absorbing method, initialed by Rödl, Ruciński and Szemerédi [60], has

been shown efficient in finding spanning structures in graphs and hypergraphs. For example,

in order to get a perfect matching in a k-graph H, it is first shown that any k-set has many

absorbing sets in H. Then we apply the probabilistic method to find a small matching that

can absorb any (much smaller) collection of k-vertex sets.

However, with potential divisibility barriers, we cannot guarantee that every k-vertex

set can be absorbed in general unless the minimum codegree is at least (1/2 + γ)n. In

this chapter, we develop a lattice-based absorbing method to overcome this difficulty. More

precisely, we first find a partition P0 = {V1, . . . , Vd} of V (H) such that any two vertices from

the same Vi are reachable to each other (property (iv) of Lemma 7.11). Then we build our
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absorbing matching that can absorb any k-set S with index vector iP0(S) ∈ IµP0
(H). After

applying the almost perfect matching theorem (Theorem 7.16), we will have only k vertices

left unmatched. Then the solubility condition guarantees that we can release some edges

from the partial matching such that the set of unmatched vertices can be partitioned into

k-sets S1, . . . , Sd′′ for some constant d′′ such that iP0(Si) ∈ I
µ
P0

(H), so we can absorb them

by the absorbing matching and get a perfect matching of H.

The rest of the chapter is organized as follows. We prove Theorem 7.14 in Section 7.3

and prove Theorem 7.15 in Section 7.4, respectively. We show the algorithms and prove

Theorem 7.3 in Section 7.5.

7.3 The Non-extremal Case

In this section we prove Theorem 7.14.

7.3.1 Tools

Theorem 6.4 easily implies the following theorem.

Theorem 7.16. Suppose that 1/n � γ � 1/k and n ∈ kN. Let H be a k-graph on n

vertices with δk−1(H) ≥ n/k − γn. If H is not 5kγ-extremal, then H contains a matching

that leaves k vertices uncovered.

Although we are one step away from a perfect matching after applying Theorem 7.16, it

is not easy to finish the last edge (in many cases impossible). Let us introduce the following

definition and result in [31].

Definition 7.17. Suppose L is an edge-lattice in Z|P|, where P is a partition of a set V .

(i) The coset group of (P , L) is G = G(P , L) = L
|P|
max/L.

(ii) For any i ∈ L
|P|
max, the residue of i in G is RG(i) = i + L. For any A ⊆ V of size

divisible by k, the residue of A in G is RG(A) = RG(iP(A)).

Lemma 7.18. [31, Lemma 6.4] If k ≥ 3 and L is a full lattice, then |G(P , L)| = |P|.
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Suppose I is a set of k-vectors of Zd and i is an l-vector with k ≤ l ≤ k2 such that i can

be written as a linear combination of vectors in I, namely,

i =
∑
v∈I

avv. (7.1)

We denote by C = C(d, k, I) as the maximum of |av|,v ∈ I over all possible i.

Fix an integer i > 0. For a k-vertex set S, we say a set T is an absorbing i-set for S

if |T | = i and both H[T ] and H[T ∪ S] contain perfect matchings. Now we may state our

absorbing lemma.

Lemma 7.19 (Absorbing Lemma). Suppose

1/n� 1/c� {β, µ} � 1/k, 1/t,

and define C as above. Suppose that P0 = {V1, . . . , Vd} is a partition of V (H) such that

for i ∈ [d], Vi is (β, t)-closed. Then there is a family Fabs of disjoint tk2-sets with size at

most c log n such that H[V (F)] contains a perfect matching and every k-vertex set S with

iP0(S) ∈ IµP0
(H) has at least 2kkC absorbing tk2-sets in Fabs.

We postpone the proof of the absorbing lemma to the end of this section and prove the

main goal of this section, Theorem 7.14 first.

7.3.2 Proof of Theorem 7.14

Proof of Theorem 7.14. Fix 0 < γ � 1/k. Suppose

1/n� 1/c� {β, µ} � γ.

Let H be a k-graph on n vertices such that δk−1(H) ≥ n/k − γn with P0 and P ′0 found by

Lemma 7.11 satisfying properties (i)-(iv). Moreover, assume that H is not 11kγ-extremal

and (P ′0, L
µ
P ′0

(H)) is soluble. Let P0 = {V1, . . . , Vd} and P ′0 = {V ′1 , . . . , V ′d′} and note that

d′ ≤ d ≤ k by (ii). We first apply Lemma 7.19 on H with t = 2k−1 and get a family Fabs of
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2k−1k2-sets with size at most c log n such that every k-set S of vertices with iP0(S) ∈ IµP0
(H)

has at least 2kkC absorbing 2k−1k2-sets in Fabs.

Since (P ′0, L
µ
P ′0

(H)) is soluble, there exists a matching M1 of size at most d′−1 such that

iP ′0(V (H) \ V (M1)) ∈ LµP ′0(H). Note that V (M1) may intersect V (Fabs), but M1 can only

intersect at most k(k − 1) absorbing sets of Fabs. Let F0 be the subfamily of Fabs obtained

from removing the 2k−1k2-sets that intersect V (M1). Let M0 be the perfect matching on

V (F0) that consists of perfect matchings on each member of F0. Note that every k-set S of

vertices with iP0(S) ∈ IµP0
(H) has at least 2kkC − k(k − 1) absorbing sets in F0.

Now we switch to P0. We want to ‘store’ some edges for each k-vector in IµP0
(H) for

future use. More precisely, we find a matching M2 in V (H) \ V (M0 ∪M1) which contains C

edges e with iP0(e) = i for every i ∈ IµP0
(H). So |M2| ≤

(
k+d−1
k

)
C and the process is possible

because H contains at least µnk edges for each k-vector i ∈ IµP0
(H) and |V (M0∪M1∪M2)| ≤

2k−1k2c log n+ k(k − 1) +
(
k+d−1
k

)
C < µn.

Let H ′ := H[V (H) \ V (M0 ∪M1 ∪M2)]. Note that |V (H ′)| ≥ n− µn. So

δk−1(H ′) ≥ δk−1(H)− µn ≥ n/k − 2γn ≥ (1/k − 2γ)|V (H ′)|.

Moreover, if H ′ is 10kγ-extremal, namely, V (H ′) contains an independent subset of order at

least

(1− 10kγ)
k − 1

k
|V (H ′)| ≥ (1− 10kγ)

k − 1

k
(n− µn) ≥ (1− 11kγ)

k − 1

k
n,

then H is 11kγ-extremal, a contradiction. Now we can apply Theorem 7.16 on H ′ with

parameter 2γ in place of γ and find a matching M3 covering all but a set S0 of k vertices of

V (H ′). Note that we can absorb S0 by F0 and get a perfect matching of H immediately if

iP0(S0) ∈ IµP0
(H) (however, this may not be the case).

Now we step back to the full pair (P ′0, L
µ
P ′0

(H)). Instead of index vectors, we consider

the residues of S0 and all edges in the matching M0 ∪ M3 with respect to P ′0. Recall
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that iP ′0(V (H) \ V (M1)) ∈ LµP ′0
(H). Note that, since P0 refines P ′0, the index vectors of

all edges in M2 are in IµP ′0
(H). So we have iP ′0(V (H) \ V (M1 ∪ M2)) ∈ LµP ′0

(H), namely,

RG(V (H) \ V (M1 ∪M2)) = 0 + LµP ′0
(H). Thus,

∑
e∈M0∪M3

RG(e) +RG(S0) = 0 + LµP ′0
(H).

Suppose RG(S0) = v0 + LµP ′0
(H) for some v0 ∈ Ld

′
max and we get

∑
e∈M0∪M3

RG(e) = −v0 + LµP ′0
(H).

Claim 7.20. There exist edges e1, . . . , ed′′ ∈M0 ∪M3 for some d′′ ≤ d′ − 1 such that

∑
i∈[d′′]

RG(ei) = −v0 + LµP ′0
(H).

Proof. We follow the proof of [31, Lemma 6.10]. Fix any set of edges e1, . . . , el ∈ M0 ∪M3

for l ≥ d′, consider l + 1 partial sums
∑

i∈[j] RG(ei) for j = 0, 1, . . . , l, where the sum equals

0 + LµP ′0
(H) when j = 0. Since G = G(P , L) is a group, the sums are still in G. By Lemma

7.18, |G| = |P ′0| = d′, then by the pigeonhole principle two of the partial sums must be equal,

that is, there exist 0 ≤ l1 < l2 ≤ l such that
∑

l1<i≤l2 RG(ei) = 0 +LµP ′0
(H). So we can delete

them from the equation. We can repeat this process until there are at most d′− 1 edges.

So we have
∑

i∈[d′′] iP ′0(ei) + iP ′0(S0) ∈ LµP ′0(H). Let D :=
⋃
i∈[d′′] ei ∪ S0 satisfying that

|D| = kd′′ + k ≤ k(d′ − 1) + k ≤ k2. At last, we switch to (P0, L
µ
P0

(H)) again and finish

the perfect matching by absorption. Since iP ′0(D) ∈ LµP ′0(H), by Lemma 7.11 (iii), we have

iP0(D) ∈ LµP0
(H). Thus, we have the following equation

iP0(D) =
∑

v∈IµP0 (H)

avv,

where av ∈ Z for all v ∈ IµP0
(H). Since the equation above is a special case of equation (7.1),
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we have |av| ≤ C for all v ∈ IµP0
(H). Noticing that av may be negative, we can assume

av = bv − cv such that one of bv, cv is a nonnegative integer and the other is zero for all

v ∈ IµP0
(H). So, we have

∑
v∈IµP0 (H)

cvv + iP0(D) =
∑

v∈IµP0 (H)

bvv.

This equation means that given any family F consisting of disjoint
∑

v cv k-sets ev1 , . . . , e
v
cv ⊆

V (H) \D for v ∈ IµP0
(H) such that iP0(e

v
i ) = v for all i ∈ [cv], we can regard V (F) ∪D as

the union of bv k-sets Sv
1 , . . . , S

v
bv

such that iP0(S
v
j ) = v, j ∈ [bv] for all v ∈ IµP0

(H). Since

cv ≤ C for all v and V (M2)∩D = ∅, we can pick the family F as a subset of M2. Thus, we

regard V (F)∪D as at most
(
k+d′−1
d′

)
C+k ≤ kkC k-sets S with iP0(S) ∈ IµP0

(H). Note that by

definition, D may intersect at most k−1 absorbing sets in F0, which cannot be used to absorb

those sets we obtained above. Since each k-set S has at least 2kkC− k(k− 1) > kkC + k− 1

absorbing sets in F0, we can absorb them by F0 greedily and get a perfect matching of

H.

7.3.3 Proof of the Absorbing Lemma

Claim 7.21. Suppose Vi is (β, t)-closed for all i ∈ [d]. Then any k-set S with iP0(S) ∈ IµP0
(H)

has at least µβk

2k+1n
tk2 absorbing tk2-sets.

Proof. For a k-set S = {y1, . . . , yk} with iP0(S) ∈ IµP0
(H), we construct absorbing tk2-sets for

S as follows. We first fix an edge e = {x1, . . . , xk} in H such that iP0(e) = iP0(S) ∈ IµP0
(H)

and e ∩ S = ∅. Note that we have at least µnk − knk−1 > µ
2
nk choices for such e. Without

loss of generality, we may assume that for all i ∈ [k], xi, yi are in the same partition set of

P0. Since xi is (β, t)-reachable to yi, there are at least βntk−1 (tk− 1)-sets Ti such that both

H[Ti∪xi] and H[Ti∪ yi] have perfect matchings. We pick disjoint reachable (tk− 1)-sets for

each xi, yi, i ∈ [k] greedily, while avoiding the existing vertices. Since the number of existing

vertices is at most tk2 + k, we have at least β
2
ntk−1 choices for such (tk − 1)-sets in each

step. Note that each of e∪T1 ∪ · · · ∪Tk is an absorbing set for S. First, it contains a perfect
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matching because each Ti∪xi for i ∈ [k] spans t disjoint edges. Second, H[e∪T1∪· · ·∪Tk∪S]

also contains a perfect matching because e is an edge and each Ti ∪ yi for i ∈ [k] spans t

disjoint edges. So we find at least µβk

2k+1n
tk2 absorbing tk2-sets for S.

Proof of Lemma 7.19. We pick a family F of tk2-sets by including every tk2-set with prob-

ability p = cn−tk
2

log n independently, uniformly at random. Then the expected number of

elements in F is p
(
n
tk2

)
≤ c

tk2
log n and the expected number of intersecting pairs of tk2-sets

is at most

p2

(
n

tk2

)
· tk2 ·

(
n

tk2 − 1

)
≤ c2(log n)2

n
= o(1).

Then by Markov’s inequality, with probability 1− 1/(tk2)− o(1), F contains at most c log n

sets and they are pairwise vertex-disjoint.

For every k-set S with iP0(S) ∈ IµP0
(H), let XS be the number of absorbing sets for S

in F . Then by Claim 7.21,

E(XS) ≥ p
µβk

2k+1
ntk

2

=
µβkc log n

2k+1
.

By Chernoff’s bound,

P
(
XS ≤

1

2
E(XS)

)
≤ exp

{
−1

8
E(XS)

}
≤ exp

{
−µβ

kc log n

2k+4

}
= o(n−k)

because 1/c� {β, µ}. Thus, with probability 1−o(1), for each k-set S with iP0(S) ∈ IµP0
(H),

there are at least

1

2
E(XS) ≥ µβkc log n

2k+2
� 2kkC

absorbing sets for S in F . We obtain Fabs by deleting the elements of F that are not

absorbing sets for any k-set S and thus |Fabs| ≤ |F| ≤ c log n.

7.3.4 Proof of Lemma 7.11

In this subsection we prove Lemma 7.11. Our main goal is to build a partition P =

{V1, . . . , Vd} of V (H) for some d ≤ k such that every Vi is (β, 2k−1)-closed for some β > 0.
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For any v ∈ V (H), let Ñβ,i(v) be the set of vertices in V (H) that are (β, i)-reachable to v.

Proposition 7.22. Suppose H is a k-graph on n vertices satisfying δk−1(H) ≥ (1/k − γ)n.

For α > 0 and any v ∈ V (H), |Ñα,1(v)| ≥ (1/k − γ − 2k!α)n.

Proof. First note that δk−1(H) ≥ (1/k − γ)n implies that δ1(H) ≥ (1/k − γ)
(
n−1
k−1

)
. Fix a

vertex v ∈ V (H), note that for any vertex u, u ∈ Ñα,1(v) if and only if |NH(u) ∩NH(v)| ≥

αnk−1. By double counting, we have

|NH(v)|δk−1(H) ≤
∑

S∈NH(v)

degH(S) < |Ñα,1(v)| · |NH(v)|+ n · αnk−1.

Thus, |Ñα,1(v)| > δk−1(H) − αnk

|NH(v)| ≥ (1/k − γ − 2k!α)n as |NH(v)| ≥ δ1(H) ≥ (1/k −

γ)
(
n−1
k−1

)
.

The following lemma provides the partition P0 in Lemma 7.11. Note that it does not

require the minimum codegree condition.

Lemma 7.23. Given 0 < α � δ, δ′, there exists constant β > 0 satisfying the following.

Assume an n-vertex k-graph H satisfies that |Ñα,1(v)| ≥ δ′n for any v ∈ V (H) and δ1(H) ≥

δ
(
n−1
k−1

)
. Then we can find a partition P0 of V (H) into V1, . . . , Vd with d ≤ min{b1/δc, b1/δ′c}

such that for any i ∈ [d], |Vi| ≥ (δ′ − α)n and Vi is (β, 2b1/δc−1)-closed in H, in time

O(n2c−1k+1).

We will use the following simple result from [49] to prove Lemma 7.23.

Proposition 7.24. [49, Proposition 2.1] For ε, β > 0 and integer i ≥ 1, there exists β0 > 0

and an integer n0 satisfying the following. Suppose H is a k-graph of order n ≥ n0 and there

exists a vertex x ∈ V (H) with |Ñβ,i(x)| ≥ εn. Then for all 0 < β′ ≤ β0, Ñβ,i(x) ⊆ Ñβ′,i+1(x).

Proof of Lemma 7.23. Let c = b1/δc (then (c + 1)δ − 1 > 0) and ε = α/c. We choose

constants satisfying the following hierarchy

1/n� β = βc−1 � βc−2 � · · · � β1 � β0 � ε, (c+ 1)δ − 1.
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Throughout this proof, given v ∈ V (H) and i ∈ [c − 1], we write Ñβi,2i(v) as Ñi(v)

for short. Note that for any v ∈ V (H), |Ñ0(v)| = |Ñβ0,1(v)| ≥ |Ñα,1(v)| ≥ δ′n because

β0 < α. We also say 2i-reachable (or 2i-closed) for (βi, 2
i)-reachable (or (βi, 2

i)-closed).

By Proposition 7.24 and the choice of βi’s, we may assume that Ñi(v) ⊆ Ñi+1(v) for all

0 ≤ i < c− 1 and all v ∈ V (H). Hence, if W ⊆ V (H) is 2i-closed in H for some i ≤ c− 1,

then W is 2c−1-closed.

Recall that two vertices u and v are 1-reachable to each other if |NH(u) ∩ NH(v)| ≥

β0n
k−1. We first note that any set of c + 1 vertices in V (H) contains two vertices that are

1-reachable to each other because δ1(H) ≥ δ
(
n−1
k−1

)
and (c + 1)δ − 1 ≥ 2k!β0. Also we can

assume that there are two vertices that are not 2c−1-reachable to each other, as otherwise

V (H) is 2c−1-closed and we get a trivial partition P0 = {V (H)}.

Let d be the largest integer such that there exist v1, . . . , vd ∈ V (H) such that no pair

of them are 2c+1−d-reachable to each other. Note that d exists by our assumption and

2 ≤ d ≤ c = b1/δc by our observation. Fix such v1, . . . , vd ∈ V (H), by Proposition 7.24, we

can assume that any two of them are not 2c−d-reachable to each other. Consider Ñc−d(vi)

for all i ∈ [d]. Then we have the following facts.

(i) Any v ∈ V (H) \ {v1, . . . , vd} must be in Ñc−d(vi) for some i ∈ [d], as otherwise

v, v1, . . . , vd contradicts the definition of d.

(ii) |Ñc−d(vi)∩Ñc−d(vj)| < εn because vi, vj are not 2c+1−d-reachable to each other. Indeed,

otherwise we get at least

1

(2c+1−dk − 1)!
εn(βc−dn

2c−dk−1−n2c−dk−2)(βc−dn
2c−dk−1−2c−dkn2c−dk−2) ≥ βc+1−dn

2c+1−dk−1

reachable (2c+1−dk − 1)-sets for vi, vj, which means that they are 2c+1−d-reachable, a

contradiction.

Note that (ii) and |Ñc−d(vi)| ≥ |Ñ0(vi)| ≥ δ′n for i ∈ [d] imply dδ′n−
(
d
2

)
εn ≤ n. So we have

d ≤ (1 + d2ε)/δ′. Since ε ≤ α� δ′, we have d ≤ b1/δ′c and thus, d ≤ min{b1/δc, b1/δ′c}.
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For i ∈ [d], let Ui = (Ñc−d(vi) ∪ {vi}) \
⋃
j∈[d]\{i} Ñc−d(vj). Note that for i ∈ [d], Ui is

2c−d-closed. Indeed, if there exist u1, u2 ∈ Ui that are not 2c−d-reachable to each other, then

{u1, u2} ∪ ({v1, . . . , vd} \ {vi}) contradicts the definition of d.

Let U0 = V (H) \ (U1 ∪ · · · ∪ Ud). By (i) and (ii), we have |U0| ≤
(
d
2

)
εn. We will move

vertices of U0 greedily to Ui for some i ∈ [d]. For any v ∈ U0, since |Ñ0(v)\U0| ≥ δ′n−|U0| ≥

dεn, there exists i ∈ [d] such that v is 1-reachable to at least εn vertices in Ui. In this case

we add v to Ui (we add v to an arbitrary Ui if there are more than one such i). Let the

resulting partition of V (H) be V1, . . . , Vd. Note that we have |Vi| ≥ |Ui| ≥ |Ñc−d(vi)|−dεn ≥

|Ñ0(vi)| − cεn ≥ (δ′ − α)n. Observe that in each Vi, the ‘farthest’ possible pairs are those

two vertices both from U0, which are (2c−d + 2)-reachable to each other. Thus, each Vi is

(2c−d + 2)-closed, so 2c−1-closed because d ≥ 2.

We estimate the running time as follows. First, for every two vertices u, v ∈ V (H), we

determine if they are 2i-reachable for 0 ≤ i ≤ c − 1. This can be done by testing if any

(2ik − 1)-set S ∈
(
V (H)\{u,v}

2ik−1

)
is a reachable set for u and v, namely, if both H[S ∪ {u}] and

H[S ∪ {v}] have perfect matchings or not, which can be checked by listing every set of 2i

edges on them, in constant time. If there are at least βin
2ik−1 reachable (2ik − 1)-sets for

vi and vj, then they are 2i-reachable. Since we need time O(n2c−1k−1) to list all 2c−1k − 1

sets for all pairs u, v of vertices, this can be done in time O(n2c−1k+1). Second, we search the

set of vertices v1, . . . , vd such that no pair of them are 2c+1−d-reachable to each other for all

2 ≤ d ≤ c. With the reachable information at hand, this can be done in time O(nc). We

then fix the largest d as in the proof. If such d does not exist, then we get P0 = {V (H)}

and output P0. Otherwise, we fix any d-set v1, . . . , vd such that no pair of them are 2c+1−d-

reachable to each other. We find the partition {U0, U1, . . . , Ud} by identifying Ñc−d(vi) for

i ∈ [d], in time O(n). Finally we move vertices in U0 to U1, . . . , Ud, depending on |Ñ0(v)∩Ui|

for v ∈ U0 and i ∈ [d], which can be done in time O(n2). Thus, the running time for finding

a desired partition is O(n2c−1k+1).

Proof of Lemma 7.11. Fix 0 < γ � 1/k. We apply Lemma 7.23 with α � γ, δ = 1/k − γ,
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and δ′ = 1/k − γ − 2k!α and get β > 0. Suppose

1/n� {β, µ0} � γ, 2−k.

Let H be a k-graph on n vertices satisfying δk−1(H) ≥ (1/k− γ)n. By Proposition 7.22, for

any v ∈ V (H), Ñα,1(v) ≥ (1/k − γ − 2k!α)n = δ′n. Since we also have δ1(H) ≥ δ
(
n−1
k−1

)
, we

apply Lemma 7.23 on H and get a partition P0 = {V1, . . . , Vd} of V (H) in time O(n2k−1k+1).

Note that |Vi| ≥ (δ′ − α)n ≥ (1/k − 2γ)n for all i ∈ [d] because α � γ. Also we know that

d ≤ b1/δc = k and each Vi is (β, 2k−1)-closed.

Let K = (k + 1)d−1. We pick a constant µ such that K−(k+d−1
k )µ0 ≤ µ ≤ µ0 and

LµP0
(H) = L

µ/K
P0

(H). (7.2)

Indeed, it suffices to pick such a µ so that IµP0
(H) = I

µ/K
P0

(H). This means that we will not

‘witness’ more vectors even if we loosen our selection parameter µ by a factor K. Note that

|Ldmax| =
(
k+d−1
k

)
. So if Iµ0P0

(H) 6= I
µ0/K
P0

(H), we pick µ0/K as the new candidate, check it

and repeat until we get the desired µ. Note that in each intermediate step for some µ′, we

witness at least one new vector in I
µ′/K
P0

(H). So the process will terminate in at most
(
k+d−1
k

)
steps and the resulting value µ satisfying µ ≥ K−(k+d−1

k )µ0. Note that we find µ in constant

time and we have the same hierarchy of constants after replacing µ0 by µ.

It is possible that (P0, L
µ
P0

(H)) contains transferrals. We merge Vi and Vj into one

vertex set if the transferral ui−uj appears in LµP0
(H) and repeat until there is no transferral

in the resulting pair, denoted by (P ′0, L
µ
P ′0

(H)), where P ′0 = {V ′1 , . . . , V ′d′} for some d′ ≤ d ≤ k.

Note that we get P ′0 from P0 in time O(nk). Indeed, we merge parts at most d − 1 times

and in each step, we identify the set of robust edge vectors by visiting all edges of H and

then determine if any transferral appears in the lattice in constant time. Thus, overall, we

find the pair (P ′0, L
µ
P ′0

(H)) in time O(nk).

Claim 7.25. Fix µ > 0. Given a partition P1 = {V1, . . . , V|P1|} such that u1 − u2 ∈ LµP1
(H)
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and let P ′1 be the partition obtained from merging V1, V2 of P1. Then for any D ⊆ V (H)

such that iP ′1(D) ∈ LµP ′1(H), we have iP1(D) ∈ Lµ/(k+1)
P1

(H).

Proof. For any vector v with respect to P1, let v|P ′1 be the projection of v on P ′1, which is

a vector with respect to P ′1. Let D ⊆ V (H) be any vertex set such that iP ′1(D) ∈ LµP ′1(H).

So we have the equation iP ′1(D) =
∑

v′∈IµP′1
(H) av′v

′, where av′ ∈ Z for all v′ ∈ IµP ′1
(H).

Note that for each v′ ∈ IµP ′1
(H), there exist at most k + 1 vectors vi ∈ L

|P1|
max such that

vi|P ′1 = v′. Thus, by the pigeonhole principle, there exists v ∈ I
µ/(k+1)
P1

(H) such that

v|P ′1 = v′. Let i0 =
∑

v′∈IµP′1
(H) av′v, which is a |D|-vector in L

µ/(k+1)
P1

(H). Note that

iP1(D)|P ′1 = iP ′1(D) = i0|P ′1 . This implies that iP1(D) = i0 or iP1(D) − i0 equals a multiple

of u1 − u2. Since u1 − u2 ∈ LµP1
(H), we have iP1(D) − i0 ∈ LµP1

(H) and thus iP1(D) =

iP1(D)− i0 + i0 ∈ Lµ/(k+1)
P1

(H).

Now let us show Lemma 7.11 (iii). Fix any D ⊆ V (H) such that iP ′0(D) ∈ LµP ′0
(H).

We apply Claim 7.25 d − d′ times and get that iP0(D) ∈ L
µ/(k+1)d−d

′

P0
(H). Since µ/K ≤

µ/(k + 1)d−d
′ ≤ µ, by (7.2), we get iP0(D) ∈ Lµ/(k+1)d−d

′

P0
(H) = L

µ/K
P0

(H) = LµP0
(H).

It remains to show that (P ′0, L
µ
P ′0

(H)) is a full pair for H. Indeed, since (P ′0, L
µ
P ′0

(H))

is transferral-free, it remains to show that IµP ′0
(H) is full. Assume to the contrary, that

there exists a (k − 1)-vector v such that v + ui /∈ IµP ′0(H) for all i ∈ [d′]. Note that since

v + ui /∈ IµP ′0(H), there are less than µnk edges e in H with iP ′0(e) = v + ui. So there are

less than d′µnk edges that contain some (k − 1)-set with index vector v. But since there

are at least
(minj∈[d′] |V ′j |

k−1

)
(k − 1)-sets with index vector v and δk−1(H) ≥ n/k − γn, the

number of such edges is at least 1
k

(
n
k
− γn

) (minj∈[d′] |V ′j |
k−1

)
≥ 1

k

(
n
k
− γn

) (
n/k−2γn
k−1

)
> d′µnk, a

contradiction.

7.4 The Extremal Case

Our goal of this section is to prove Theorem 7.15. We remark that the k-graphs in

Construction 7.4 do not appear in our proof because they achieve smaller minimum codegrees

than those k-graphs in Construction 7.5 if k is even and Construction 7.4 and Construction



129

7.5 are the same if k is odd. A main ingredient of our proof is Theorem 6.8, a result of

Pikhurko (see Chapter 6).

7.4.1 Preliminary and the proof of Theorem 7.15

Fix a sufficiently small ε > 0. Let n be a sufficiently large integer. Suppose H is a

k-graph on n vertices such that δk−1(H) ≥ n/k and H /∈ Hn,k. Assume that H is ε-extremal,

namely, there is an independent subset S ⊆ V (H) with |S| ≥ (1− ε)k−1
k
n. Let α = ε1/3. We

partition V (H) as follows. Let C be a maximum independent subset of V (H). Define

A =

{
x ∈ V \ C : deg(x,C) ≥ (1− α)

(
|C|
k − 1

)}
, (7.3)

and B = V (H) \ (A ∪ C). We first observe the following bounds of |A|, |B|, |C|.

Claim 7.26. |A| ≥ n/k − α2n, |B| ≤ α2n, and (1− ε) (k−1)n
k
≤ |C| ≤ (k−1)n

k
.

Proof. The lower bound for |C| follows from our hypothesis immediately. For any S ⊆ C of

order k − 1, we have N(S) ⊆ A ∪B. By the minimum degree condition, we have

n

k
≤ |N(S)| ≤ |A|+ |B| = n− |C| ≤ n

k
+ ε

(k − 1)n

k
, (7.4)

which gives the upper bound for |C|. By the definitions of A and B, we have

n

k

(
|C|
k − 1

)
≤ e((A ∪B)Ck−1) ≤ (1− α)

(
|C|
k − 1

)
|B|+

(
|C|
k − 1

)
|A|,

where e((A∪B)Ck−1) denotes the number of edges that contain k− 1 vertices in C and one

vertex in A∪B. Thus, we get n/k ≤ |A|+|B|−α|B|, which gives that α|B| ≤ |A|+|B|−n/k ≤

εn by (7.4). So |B| ≤ α2n and by (7.4) again, |A| ≥ n/k − |B| ≥ n/k − α2n.

The partition which we will work on in this section is P = (A ∪ B,C). For 0 ≤ i ≤ k,

we say an edges e is an i-edge if |e∩ (A∪B)| = i. We remark that as mentioned before, since

H is close to the space barrier, it is rather ‘fragile’ – even the bad choice of one edge may
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lead the remaining k-graph into the space barrier, so we cannot use the robust edge-lattice

and apply the discussions in Section 7.3.

Let us list our auxiliary lemmas.

Lemma 7.27. Fix any even 2 ≤ i ≤ k. Assume that |A∪B| ≥ n/k + i− 1 and H contains

no j-edge for all even 0 ≤ j ≤ i − 2. If H contains an i-edge, then H contains a perfect

matching.

Lemma 7.28. Fix any even 0 ≤ i ≤ k. If |A ∪ B| = n/k + i and H contains no j-edge for

all even 0 ≤ j ≤ i, then H contains a perfect matching.

Lemma 7.29. If H contains no j-edge for all even 0 ≤ j ≤ k and H /∈ Hn,k, then H

contains a perfect matching.

We postpone the proofs of these lemmas to the following subsections and prove Theorem

7.15 first.

Proof of Theorem 7.15. The proof of Theorem 7.15 runs in an algorithmic way as follows.

The case when |A∪B| = n/k is covered by Lemma 7.28 with i = 0. Next by Lemma 7.27, if

|A∪B| ≥ n/k+1 and there is a 2-edge in H, then H contains a perfect matching. So we may

assume that H contains no 2-edge. Consider any (k− 1)-set S with |S ∩ (A∪B)| = 2, since

there is no 2-edge, we get N(S) ⊆ A∪B and thus |A∪B| ≥ n/k+ 2. By Lemma 7.28 again,

if |A ∪B| = n/k + 2 and H contains no 2-edge, then H contains a perfect matching. So we

can assume that |A ∪ B| ≥ n/k + 3 and H contains no 2-edge. If H contains one 4-edge,

then by Lemma 7.27, H has a perfect matching. After bk/2c iterations, we can assume that

H contains no j-edge for all even 0 ≤ j ≤ k. In this case, by Lemma 7.29, we find a perfect

matching provided that H /∈ Hn,k.

7.4.2 Proof of Lemma 7.27

Fix any even 2 ≤ i ≤ k. Assume that |A ∪ B| ≥ n/k + i− 1 and H contains no j-edge

for all even 0 ≤ j ≤ i− 2. Assume that H contains an i-edge.
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Let us first outline our proof. Our main goal is to remove a small matching M that

covers every vertex in B such that the sets of remaining vertices A \ V (M) and C \ V (M)

satisfy |C \ V (M)| = (k − 1)|A \ V (M)|. Then we partition C \ V (M) into k − 1 parts

and apply Theorem 6.8 and get a perfect matching on V (H) \ V (M). So we get a perfect

matching of H.

Roughly speaking, since |P| = 2, the ‘divisibility’ is reduced to ‘parity’, which means

that if we need to ‘repair’ the divisibility, one edge is enough. An i-edge e0 will be such

edge for repairing – we will add e0 to our matching at the very beginning of our proof. But

the divisibility barrier may not appear, in which case, choosing e0 makes the parity bad.

However, we cannot foresee this at the beginning. So at some intermediate step, if we find

out that we made the wrong decision, we just free e0 from our partial matching and the

parity will be good again (in this case, the parity was good at the beginning).

Now we start our proof. We separate two cases.

Case 1. i = 2 and there is a 2-edge e0 such that |e0 ∩ A| = |e0 ∩B| = 1.

Let x = e0∩B. Since C is a maximum independent set, there exists a (k−1)-set Sx ⊆ C

such that ex := x ∪ Sx ∈ E(H). Note that Sx \ e0 may intersect e0 ∩ C. We reserve Sx for

future use, which means, we will not use its vertices later until the very last step.

We will build four disjoint matchings M1, M2, M3, and M4 in H, whose union gives the

desired perfect matching in H. For i ∈ [3], let Ai = A\V (∪j∈[i]Mj) and Ci = C \V (∪j∈[i]Mj)

be the sets of uncovered vertices of A and C, respectively. Let ni = |V (H) \ V (∪j∈[i]Mj)|.

Step 1. Small matchings M1 and M2 covering B.

Let t := n/k − |A|. We let M1 = {e0} if t ≤ 0. Otherwise, we build the first matching

M1 of size t + 1 as follows. By Claim 7.26, we know that t = n/k − |A| ≤ α2n. By

δk−1(H) ≥ n/k and the definition of t, we have δk−1(H[B ∪ C]) ≥ t. Since |C| ≤ (k−1)n
k
− 1,

we have |B| = n− |C| − |A| ≥ n/k − |A|+ 1 = t+ 1.

We claim that we can find a matching of t 1-edges in (B ∪C) \ (e0∪Sx). Let M1 be the

union of these edges and e0. Indeed, we pick t arbitrary disjoint (k− 1)-sets S1, . . . , St from
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C \ (e0 ∪ Sx). Since C is an independent set, each of Si has at least t− 1 neighbors in B \ x

for i ∈ [t]. Consider the bipartite graph between B \ x and {S1, . . . , St}, in which we put an

edge if v ∪ Si ∈ E(H) for v ∈ B \ x and i ∈ [t]. By the König-Egervary Theorem, either we

have a matching of size t (then we are done), or there is a vertex cover of order t− 1. Since

the degree of any S1, . . . , St is at least t− 1 in the auxiliary bipartite graph, the vertex cover

must be in B \ x, denoted by B′ (of order t− 1), and every vertex in B′ is adjacent to all Si

for i ∈ [t]. Now consider (k − 1)-sets in C \ (
⋃
i∈[t] Si ∪ e0 ∪ Sx). If our claim does not hold,

namely, there is no t disjoint 1-edges, then all these (k − 1)-sets are adjacent to all vertices

in B′. Note that |C \ (
⋃
i∈[t] Si ∪ e0 ∪ Sx)| ≥ |C| − (k − 1)t − 2k ≥ (1 − 2kα2)|C|, because

t ≤ α2n ≤ 2α2|C|. So for any v ∈ B′, we have

deg(v, C) ≥
(

(1− 2kα2)|C|
k − 1

)
≥ ((1− 2kα2)k−1 − o(1))

(
|C|
k − 1

)
> (1− α)

(
|C|
k − 1

)
,

as α is small enough. This contradicts the fact that v /∈ A. So the claim holds.

Next we build the second matching M2 that covers all vertices in B \ V (M1). For each

v ∈ B \ V (M1), we pick k − 2 arbitrary vertices from C \ Sx not covered by the existing

matching, and an uncovered vertex in V to complete an edge and add it to M2. Since

δk−1(H) ≥ n/k and the number of vertices covered by the existing matching is at most

k|B| ≤ kα2n < δk−1(H), such edge always exists.

Our construction guarantees that each edge in M1 ∪M2 contains at least one vertex

from B and thus |M1 ∪M2| ≤ |B|. We claim that |A1| ≥ n1/k and |A2| ≥ n2/k. To see the

bound for |A1|, we separate two cases depending on t. When t > 0, by the definition of M1,

we have

|A1| =
n

k
− t− 1 =

n− k|M1|
k

=
n1

k
.

Otherwise t ≤ 0, we have n1 = n− k and |A1| = |A| − 1 ≥ n/k − 1 = n1/k. For the bound

for |A2|, since each edge of M2 contains at most one vertex of A, we have

|A2| ≥ |A1| − |M2| ≥
n1

k
− |M2| =

n2

k
.



133

Let s := |A2| − n2/k ≥ 0. Since n2 = n − k|M1 ∪M2| ≥ n − k|B| ≥ n − kα2n and

|C| ≥ (1− ε) (k−1)n
k

(Claim 7.26), we get

s ≤ n− |C| − n− kα2n

k
≤ ε

(k − 1)n

k
+ α2n ≤ 2α2n.

Step 2. A small matching M3.

We will construct a matching M3 of size at most 2α2n on A2 ∪ (C2 \ Sx) such that

|A3| − n3/k ∈ {0,−1}. To see that this is possible, at some intermediate step, denote by

n′ as the number of uncovered vertices of H and denote by A′, C ′ as the sets of uncovered

vertices in A,C \ Sx, respectively. Let c = |A′| − n′/k. If c > 0, then we arbitrarily pick

two vertices from A′, k − 3 vertices from C ′ and one vertex from A′ ∪ C ′ to form an edge.

Note that we pick a 2-edge or a 3-edge in each step. As a result, c decreases by 1 or 2.

The iteration stops when c becomes 0 or −1 after at most s ≤ 2α2n steps. Note that we

can always form an edge in each step because the number of covered vertices is at most

k|B|+ k · 2α2n ≤ 3kα2n < δk−1(H). So we get a matching M3 of at most 2α2n edges.

Step 3. The last matching M4.

Now we have two cases, |A3| − n3/k = −1 or 0. In the former case, we delete the

edge e0 from M1 and add ex to M1. Note that this is possible because Sx ⊆ C3. Let the

resulting sets of uncovered vertices be A′3, C
′
3, respectively. Also let n′3 := |A′3| + |C ′3| = n3.

So |A′3| = |A3| + 1 and we have |A′3| − n′3/k = 0, that is, |C ′3| = (k − 1)|A′3|. In the latter

case we let A′3 = A3 and C ′3 = C3. We have |C ′3| = (k − 1)|A′3| immediately. By definition,

we have

|A′3| ≥ |A| − |M1 ∪M2| − 3|M3| ≥ n/k − α2n− α2n− 6α2n ≥ n/k − 8α2n,

as |M1 ∪M2| ≤ |B| ≤ α2n and |M3| ≤ 2α2n.

Let m := |A′3|. Next, we partition C ′3 arbitrarily into k − 1 parts C1, C2, . . . , Ck−1

of the same size m. We want to apply Theorem 6.8 on the k-partite k-graph H ′ :=
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H[A′3, C
1, . . . , Ck−1]. Let us verify the assumptions. First, since C ′3 is independent, for

any set of k − 1 vertices v1, . . . , vk−1 such that vi ∈ Ci for i ∈ [k − 1], the number of its

non-neighbors in A ∪B is at most

|A|+ |B| − n/k ≤ n/k + ε
(k − 1)n

k
− n/k ≤ kεm,

where we use (7.4) in the first inequality and the last inequality follows from m = |A′3| ≥

n/k − 8α2n > k−1
k2
n. So we have δ[k]\{1}(H

′) ≥ m − kεm = (1 − kε)m. Next, by (7.3), for

any v ∈ A′3, we have

degH(v, C) ≤ α

(
|C|
k − 1

)
≤ α

|C|k−1

(k − 1)!
≤ α

(
k−1
k
n
)k−1

(k − 1)!
≤ α

(km)k−1

(k − 1)!
= αckm

k−1,

where ck = kk−1

(k−1)!
. This implies that δ{1}(H

′) ≥ (1− αck)mk−1. Thus, we have

δ{1}(H
′)m+ δ[k]\{1}(H

′)mk−1 ≥ (1− αck)mk−1m+ (1− kε)mmk−1 >
3

2
mk,

as ε is small enough. By Theorem 6.8, we find a perfect matching in H ′, which gives the

perfect matching M4 on A′3 ∪ C ′3. So M1 ∪M2 ∪M3 ∪M4 gives a perfect matching of H.

Case 2. i = 2, there is a 2-edge e0 and there is no 2-edge e such that |e∩A| = |e∩B| = 1;

or i is even with 4 ≤ i ≤ k and there is an i-edge e0.

We first observe the following fact.

Fact 7.30. Assume that H contains no 2-edge e such that |e ∩ A| = |e ∩ B| = 1, then for

any (k − 1)-tuple S with |S ∩B| = 1 and |S ∩ C| = k − 2, we have deg(S,C) ≥ n/k − α2n.

Proof. Since there is no such 2-edge, N(S) ⊆ B ∪C. By the minimum degree condition and

|B| ≤ α2n by Claim 7.26, we have deg(S,C) ≥ n/k − α2n.

Note that Fact 7.30 works under either assumption in this case. This simplifies Step 1

– we only need to build one matching. But for uniformness, we set M2 = ∅ in this case.
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Step 1. A small matching M1 covering B.

We build M1 as follows. First we add the i-edge e0 to M1. By Fact 7.30 and |B| ≤ α2n,

we greedily pick a matching M ′ of |B| 1-edges from B∪(C\e0). Assume that |e0∩B| = j ≤ i.

If j > 0, denote the vertices by x1, . . . , xj ∈ e0 ∩B and let Sx1 , . . . , Sxj be the (k− 1)-sets in

C that form edges ex1 , . . . , exj with x1, . . . , xj in the matching M ′, respectively. As in Case

1, we will reserve Sx1 \ e0, . . . , Sxj \ e0 for future use. If j = 0, we add all edges of M ′ to M1.

Otherwise, we add the |B| − j edges of M ′ that do not contain x1, . . . , xj to M1. So we have

|M1| = |B|+ 1− j.

We claim that |A1| ≥ n1/k. Recall that

|A ∪B| ≥ n/k + i− 1 = n1/k + |M1|+ i− 1 = n1/k + |B|+ i− j.

Since |e0 ∩ A| = i− j, we have,

|A1| = |A| − (i− j) = |A ∪B| − |B| − (i− j) ≥ n1/k.

Since M2 = ∅, we have |A2| ≥ n2/k.

So s := |A2| − n2/k ≥ 0 and as in the previous case, s ≤ 2α2n.

Step 2. A small matching M3.

We will construct a matching M3 of 2-edges and 3-edges with size at most 2α2n on

A2 ∪ (C2 \ (Sx1 ∪ · · · ∪ Sxj)) such that |A3| − n3/k ∈ {0, 1 − i}. Similar as in Case 1, if we

add a 2-edge (or a 3-edge) to M3, then the value of c decreases by 1 (or 2), respectively. So

if there is one 2-edge, we can construct M3 of size at most s such that |A3| − n3/k = 0 (we

can choose to include or exclude this 2-edge in M3). So if we cannot have |A3| − n3/k = 0,

then there is no 2-edge in H[A2 ∪ (C2 \ (Sx1 ∪ · · · ∪ Sxj))] and s is odd. In this case we add

(s+ i− 1)/2 disjoint 3-edges to M3 and therefore |A3| − n3/k = 1− i. Note that we always

can form 2-edges or 3-edges similarly as in Case 1. So we get a matching M3 of at most

s ≤ 2α2n edges.
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Step 3. The last matching M4.

Now we have two cases, |A3| − n3/k = 1 − i or 0. In the former case, we delete the

i-edge e0 from M1 and add the edges ex1 , . . . , exj to M1 (if j > 0). Let the resulting sets

of uncovered vertices be A′3, C
′
3, respectively. Also let n′3 := |A′3| + |C ′3| = n3 + k − jk. So

|A′3| = |A3| + i − j and we have |A′3| − n′3/k = 0, namely, |C ′3| = (k − 1)|A′3|. In the latter

case we let A′3 = A3 and C ′3 = C3. We have |C ′3| = (k − 1)|A′3| immediately. By definition,

we have

|A′3| ≥ |A| − |M1| − 3|M3| ≥ n/k − α2n− (α2n+ 1)− 6α2n ≥ n/k − 9α2n,

as |M1| ≤ |B|+ 1 ≤ α2n+ 1 and |M3| ≤ 2α2n.

Let m := |A′3|. We partition C ′3 arbitrarily into k − 1 parts C1, C2, . . . , Ck−1 of the

same size m. We apply Theorem 6.8 on the k-partite k-graph H ′ := H[A′3, C
1, . . . , Ck−1]

and get a perfect matching in H ′, which gives the perfect matching M4 on A′3 ∪ C ′3. So

M1 ∪M2 ∪M3 ∪M4 gives a perfect matching of H. We omit the similar calculations.

7.4.3 Proofs of Lemma 7.28 and Lemma 7.29

Proof of Lemma 7.28. Fix any even 0 ≤ i ≤ k. Assume that |A ∪ B| = n/k + i and H

contains no j-edge for all even 0 ≤ j ≤ i. If i = 0, then we have |A ∪ B| = n/k and

|C| = k−1
k
n. By the minimum degree condition, every k-set containing exactly k− 1 vertices

in C is an edge of H. Thus, we partition V (H) into n/k such k-sets and get a perfect

matching of H. So we may assume i ≥ 2.

Since there is no i-edge, we can take an (i+1)-edge e0 such that |e0∩A| = i+1. Indeed,

we take i vertices from A and k− i− 1 vertices from C and another vertex to form an edge.

Since H contains no i-edge and |B| ≤ α2n < n/k, we can pick the last vertex from A and

get the desired (i+ 1)-edge e0.

Next by Fact 7.30, we find a matching of |B| 1-edges that covers all vertices of B. Let

A′ and C ′ be the set of uncovered vertices of A and C, respectively. Note that we have
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|A′| = n/k + i− |B| − (i+ 1) = n/k − |B| − 1 and

|C ′| = k − 1

k
n− i− (k − i− 1)− (k − 1)|B| = (k − 1)|A′|.

So as in the previous proofs, we partition C ′ arbitrarily into k− 1 parts, apply Theorem 6.8

and get a perfect matching on A′ ∪ C ′. Thus, we get a perfect matching of H.

Proof of Lemma 7.29. Assume that H contains no j-edge for all even 0 ≤ j ≤ k and H /∈

Hn,k. Since there is no 2-edge, by Fact 7.30, we find a matching M1 of |B| 1-edges that

covers all vertices of B. Let C ′ be the set of uncovered vertices of C. Let n′ = |A|+ |C ′| and

note that n′/k = n/k − |B|. Let

s := |A| − n′/k = |A|+ |B| − n/k = |A ∪B| − n/k.

So 0 ≤ s ≤ εn by (7.4). Moreover, we claim that s is even. Indeed, since all edges of H

intersect A ∪ B in an odd number of vertices, if s is odd, then H ∈ Hn,k, a contradiction.

We greedily pick a matching M2 of s/2 disjoint 3-edges, which is possible because s ≤ εn

and δk−1(H) ≥ n/k. Let A2 and C2 be the set of vertices not covered by M1 ∪M2. As in

the previous proofs, we have |C2| = (k− 1)|A2|. We partition C2 arbitrarily into k− 1 parts,

apply Theorem 6.8 and get a perfect matching M3 on A2∪C2. So we get a perfect matching

M1 ∪M2 ∪M3 of H.

7.5 Algorithms and the proof of Theorem 7.3

7.5.1 A straightforward but slower algorithm

Let Lodd be the lattice generated by all two dimensional k-vectors with first coordinate

odd, that is, (1, k−1), (3, k−3), . . . , (k−1, 1) if k is even, and (1, k−1), (3, k−3), . . . , (k, 0)

if k is odd. It is easy to see that Lodd is full. To check if a k-graph H ∈ Hn,k, we find the

bipartitions P of V (H) such that iP(e) ∈ Lodd for every e ∈ H. We use the algorithm Proce-

dure ListPartitions in [31]. The following lemma [31, Lemma 2.2] estimates the computation
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complexity of Procedure ListPartitions (although [31, Lemma 2.2] was proved under the

codegree condition δk−1(H) ≥ n/k+ γn, we can weaken the codegree condition as explained

in [31, Remark 2.3]).

Lemma 7.31. [31] Suppose H is an n-vertex k-graph with δk−1(H) ≥ n/k− 2k(k− 2). For

any d ∈ [k] and full edge-lattice L ⊆ Zd, there are at most d2k−1 partitions P of V (H) such

that iP(e) ∈ L for every e ∈ H, and Procedure ListPartitions lists them in time O(nk+1).

By Theorem 7.12, the straightforward way to determine the existence of a perfect match-

ing is to check if (P ′0, L
µ
P ′0

(H)) is soluble and if H /∈ Hn,k.

Theorem 7.32. Fix k ≥ 3. Let H be an n-vertex k-graph with δk−1(H) ≥ n/k. Then

there is an algorithm with running time O(n2k−1k+1), which determines whether H contains

a perfect matching.

Proof. Let H be an n-vertex k-graph with δk−1(H) ≥ n/k. Note that it is trivial to determine

the existence of a perfect matching if n < n0 given by Theorem 7.12. Our algorithm contains

two parts when n ≥ n0. First we find the partition P0 and P ′0 and check if (P ′0, L
µ
P ′0

(H)) is

soluble. Second, we check if H /∈ Hn,k. If both answers are ‘true’, then H contains a perfect

matching by Theorem 7.12.

By Lemma 7.11, we find P0 and P ′0 in time O(n2k−1k+1). To check the solubility, we

check if iP ′0(V (H) \ V (M)) ∈ LµP ′0(H)) for each matching M of size at most k− 1, which can

be done in time O(nk(k−1)). To check if H ∈ Hn,k, by Lemma 7.31 with d = 2 and L = Lodd,

we find the bipartitions for Lodd in time O(nk+1). Then for each bipartition P = {V1, V2}, we

check if n/k−|V1| is odd in constant time. Thus, the overall running time is O(n2k−1k+1).

7.5.2 A faster algorithm

An s-certificate for H is an insoluble full pair (P , L) for which some set of s vertices

intersects every edge e ∈ H with iP(e) /∈ L. Note that if a full pair (P , L) is soluble, then it

is not an s-certificate for any s. Recall that we allow the partition of a full pair to have k
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parts and in contrast, the partition of a full pair in [31] has at most k − 1 parts. Modifying

the proof of [31, Lemma 8.14], we can get the following lemma.

Lemma 7.33. [31] Suppose that k ≥ 3 and H is a k-graph such that there is no 2k(k − 2)-

certificate for H. Then every full pair for H is soluble.

Now we give the following structural theorem.

Theorem 7.34. Suppose 1/n0 � {β, µ} � γ � 1/k. Let H be a k-graph on n ≥ n0

vertices such that δk−1(H) ≥ n/k with P0 and P ′0 found by Lemma 7.11. Then the following

properties are equivalent.

(i) H contains a perfect matching.

(ii) There is no 2k(k − 2)-certificate for H.

(iii) The full pair (P ′0, L
µ
P ′0

(H)) is soluble and H /∈ Hn,k.

Proof. We will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Note that the proof of (i) ⇒ (ii) is the

same as the forward implication of proof of Theorem 7.12 and (iii)⇒ (i) by Theorem 7.12.

It remains to show (ii)⇒ (iii). Assume that there is no 2k(k− 2)-certificate for H, then by

Lemma 7.33, every full pair for H is soluble.

Since (P ′0, L
µ
P ′0

(H)) is a full pair, it is soluble. Second, assume to the contrary, that H ∈

Hn,k. Then there is a partition P1 = {X, Y } of V (H) such that LP1(H) ⊆ Lodd and |X|−n/k

is odd. Consider any (k−1)-set S with |S∩X| = a for some even 0 ≤ a ≤ k, since H contains

no even edge and δk−1(H) > 0, we have (a+ 1, k− a− 1) ∈ IP1(H) and thus LP1(H) = Lodd.

Also, LP1(H) = Lodd is transferral-free and thus (P1, LP1(H)) is a full pair. Note that by

definition, the first coordinate of each i ∈ IP1(H) is odd and thus for any (x, y) ∈ LP1(H),

we have k | (x + y) and x ≡ (x + y)/k (mod 2). So iP1(V ) = (|X|, |Y |) /∈ LP1(H) because

|X|−n/k is odd. Moreover, fix any edge e of H with iP1(e) = (a, k−a) for some odd a ∈ [k],

then iP1(V \e) = (|X|−a, |Y |−k+a) /∈ LP1(H) because |X|−a−(n−k)/k = |X|−n/k−a+1

is odd. So for any matching M of size at most 1, iP1(V (H) \ V (M)) /∈ LP1(H). Thus,

(P1, LP1(H)) is an insoluble full pair, a contradiction.
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Proof of Theorem 7.3. Let H be an n-vertex k-graph with δk−1(H) ≥ n/k. Note that it is

trivial to determine the existence of a perfect matching if n < n0 given by Theorem 7.34.

If n ≥ n0, by Theorem 7.34, to determine if H contains a perfect matching, we only need

to search the existence of a 2k(k − 2)-certificate for H. This can be done by Procedure

DeterminePM constructed in [31]. We estimate the running time as follows. There are at

most n2k(k−2) choices of sets S, and these can be generated in time O(n2k(k−2)). Also, there

are only a constant number of choices for d and L, and these can be generated in constant

time. For each choice of S, d and L, we apply Procedure ListPartitions on H[V \ S] and

then add the vertices of S arbitrarily to the partition we obtained. This generates the list

of partitions P in time O(nk+1) by Lemma 7.31. Furthermore, the number of choices for P

is constant, and for each one it takes time O(nk(k−1)) to check the existence of the matching

M of size at most d− 1 such that iP(V (H) \ V (M)) ∈ LP(H). Note that k(k − 1) > k + 1

for all k ≥ 3 and the total running time is O(n2k(k−2)+k(k−1)) = O(n3k2−5k).
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PART 8

MINIMUM VERTEX DEGREE THRESHOLD FOR C3
4-TILING

8.1 Introduction

As a natural extension of the matching problem, tiling has been an active area in the

past two decades (see surveys [44, 58]). Much work has been done on the problem for graphs

(k = 2), see e.g., [16, 3, 39, 45]. In particular, Kühn and Osthus [45] determined t1(n,G),

for any graph G, up to an additive constant. Tiling problems become much harder for

hypergraphs. For example, despite much recent progress [1, 8, 35, 36, 47, 63, 69], we still do

not know the 1-degree threshold for a perfect matching in k-graphs for arbitrary k.

Other than the matching problem, only a few tiling thresholds are known. Let K3
4 be

the complete 3-graph on four vertices, and let K3
4−e be the (unique) 3-graph on four vertices

with three edges. Recently Lo and Markström [49] proved that t2(n,K3
4) = (1 + o(1))3n/4,

and independently Keevash and Mycroft [34] determined the exact value of t2(n,K3
4) for

sufficiently large n. In [50], Lo and Markström proved that t2(n,K3
4 − e) = (1 + o(1))n/2.

Let C3
4 be the unique 3-graph on four vertices with two edges. This 3-graph was denoted by

K3
4 −2e in [7], and by Y in [23]. Here we follow the notation in [41] and view it as a cycle on

four vertices. Kühn and Osthus [41] showed that t2(n, C3
4) = (1 + o(1))n/4, and Czygrinow,

DeBiasio and Nagle [7] recently determined t2(n, C3
4) exactly for large n. In this chapter we

determine t1(n, C3
4) for sufficiently large n. From now on, we simply write C3

4 as C.

Previously we only knew t1(n,K3
3) [36, 47] and t1(n,K4

4) [35] exactly, and t1(n,K5
5) [1],

t1(n,K3
3(m)) and t1(n,K4

4(m)) [49] asymptotically, where Kk
k denotes a single k-edge, and

Kk
k (m) denotes the complete k-partite k-graph with m vertices in each part. So Theorem 8.1

below is one of the first (exact) results on vertex degree conditions for hypergraph tiling.

Theorem 8.1. Suppose H is a 3-graph on n vertices such that n ∈ 4N is sufficiently large
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and

δ1(H) ≥
(
n− 1

2

)
−
(

3
4
n

2

)
+

3

8
n+ c(n), (8.1)

where c(n) = 1 if n ∈ 8N and c(n) = −1/2 otherwise. Then H contains a perfect C-tiling.

Proposition 8.2 below shows that Theorem 8.1 is best possible. Theorem 8.1 and Propo-

sition 8.2 together imply that t1(n, C) =
(
n−1

2

)
−
( 3

4
n

2

)
+ 3

8
n+ c(n).

Proposition 8.2. For every n ∈ 4N there exists a 3-graph of order n with minimum vertex

degree
(
n−1

2

)
−
( 3

4
n

2

)
+ 3

8
n+ c(n)− 1, which does not contain a perfect C-tiling.

Proof. We give two constructions similar to those in [7]. Let V = A∪̇B with |A| = n
4
− 1

and |B| = 3n
4

+ 1. A Steiner system S(2, 3,m) is a 3-graph S on n vertices such that every

pair of vertices has degree one – so S(2, 3,m) contains no copy of C. It is well-known that

an S(2, 3,m) exists if and only if m ≡ 1, 3 mod 6.

Let H0 = (V,E0) be the 3-graph on n ∈ 8N vertices as follows. Let E0 be the set of all

triples intersecting A plus a Steiner system S(2, 3, 3
4
n+ 1) in B. Since for the Steiner system

S(2, 3, 3
4
n+1), each vertex is in exactly 3

4
n/2 = 3

8
n edges, we have δ1(H0) =

(
n−1

2

)
−
( 3n

4
2

)
+ 3

8
n.

Furthermore, since B contains no copy of C, the size of the largest C-tiling in H0 is |A| = n
4
−1.

So H0 does not contain a perfect C-tiling.

On the other hand, let H1 = (V,E1) be the 3-graph on n ∈ 4N \ 8N vertices as follows.

Let G be a Steiner system of order 3
4
n+ 4. This is possible since 3

4
n+ 4 ≡ 1 mod 6. Then

pick an edge abc in G and let G′ be the induced subgraph of G on V (G) \ {a, b, c}. Finally

let E1 be the set of all triples intersecting A plus G′ induced on B. Since G is a regular

graph with vertex degree 1
2
(3

4
n+4−1) = 3

8
n+ 3

2
, we have that δ1(G′) = 3

8
n+ 3

2
−3 = 3

8
n− 3

2
.

Thus, δ1(H1) =
(
n−1

2

)
−
( 3n

4
2

)
+ 3

8
n− 3

2
. As in the previous case, H1 does not contain a perfect

C-tiling.

As a typical approach of obtaining exact results, we distinguish the extremal case from

the nonextremal case and solve them separately. Given a 3-graph H of order n, we say that

H is C-free if H contains no copy of C. In this case, clearly, every pair of vertices has degree
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at most one. Every vertex has degree at most n−1
2

because its link graph contains no vertex

of degree two.

Definition 8.3. Given ε > 0, a 3-graph H on n vertices is called ε-extremal if there is a set

S ⊆ V (H), such that |S| ≥ (1− ε)3n
4

and H[S] is C-free.

Theorem 8.4 (Extremal Case). There exists ε > 0 such that for every 3-graph H on n

vertices, where n ∈ 4N is sufficiently large, if H is ε-extremal and satisfies (8.1), then H

contains a perfect C-tiling.

Theorem 8.5 (Nonextremal Case). For any ε > 0, there exists γ > 0 such that the following

holds. Let H be a 3-graph on n vertices, where n ∈ 4N is sufficiently large. If H is not ε-

extremal and satisfies δ1(H) ≥
(

7
16
− γ
) (

n
2

)
, then H contains a perfect C-tiling.

Theorem 8.1 follows Theorems 8.4 and 8.5 immediately by choosing ε from Theorem 8.4.

The proof of Theorem 8.4 is somewhat routine and will be presented in Section 8.3.

The proof of Theorem 8.5, as the one of [7, Theorem 1.5], uses the absorbing method.

More precisely, we find the perfect C-tiling by applying the Absorbing Lemma below and the

C-tiling Lemma [23, Lemma 2.15] together.

Lemma 8.6 (Absorbing Lemma). For any γ > 0, there exist β′ > 0 and an integer n0 > 0

such that the following holds. Suppose H is a 3-graph on n ≥ n0 vertices and δ1(H) ≥

(1/3 + γ)
(
n
2

)
. Then there exists a vertex set W ⊆ V (H) with |W | ≤ γn/2 such that for any

vertex set U ⊂ V \W with |U | ≤ β′n and |U | ∈ 4N, both H[W ] and H[U ∪W ] have perfect

C-tilings.

Lemma 8.7 (C-tiling Lemma). For any 0 < γ < 1, there exists an integer n8.7 such that the

following holds. Suppose H is a 3-graph on n > n8.7 vertices with

δ1(H) ≥
(

7

16
− γ
)(

n

2

)
,

then H contains a C-tiling covering all but at most 219/γ vertices or H is 211γ-extremal.
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We postpone the proof of lemmas later and prove Theorem 8.5 first.

Proof of Theorem 8.5. Without loss of generality, assume 0 < ε < 1. Let γ = 2−13ε. We

find β′ by applying Lemma 8.6. Choose n ∈ 4N which is large enough. Let H = (V,E) be a

3-graph on n vertices. Suppose that H is not ε-extremal and δ1(H) ≥
(

7
16
− γ
) (

n
2

)
. First we

apply Lemma 8.6 to H and find the absorbing set W with |W | ≤ γn/2. Let H ′ = H[V \W ]

and n′ = n− |W |. Note that,

δ1(H ′) ≥ δ1(H)− |W |(n− 1) ≥
(

7

16
− 2γ

)(
n

2

)
≥
(

7

16
− 2γ

)(
n′

2

)
.

Second we apply Lemma 8.7 to H ′ with parameter 2γ in place of γ and derive that either

H ′ is 212γ-extremal or H ′ contains a C-tiling covering all but at most 218/γ vertices. In the

former case, since

(1− 212γ)
3n′

4
> (1− 212γ)

3

4

(
n− γn

2

)
> (1− 213γ)

3n

4
= (1− ε)3n

4
,

H is ε-extremal, a contradiction. In the latter case, let U be the set of uncovered vertices

in H ′. Then we have |U | ∈ 4N and |U | ≤ 218/γ ≤ β′n as n is large enough. By Lemma 8.6,

H[W ∪ U ] contains a perfect C-tiling. Together with the C-tiling provided by Lemma 8.7,

this gives a perfect C-tiling of H.

The Absorbing Lemma and C-tiling Lemma in [7] are not very difficult to prove because

of the co-degree condition. In contrast, our corresponding lemmas are harder. We have

proved Lemma 8.7 in Chapter 5 (as a key step for finding a loose Hamilton cycle in 3-

graphs). In order to prove Lemma 8.6, we will use a baby version of the lattice-based

absorbing method (for a full strength of this argument, see [21]).

We prove Lemma 8.6 in Section 8.2, and prove Theorem 8.4 in Section 8.3.
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8.2 Proof of Lemma 8.6

We remark that the absorbing lemma for C-tiling can be proved under a weaker condition

δ1(H) ≥ (1/4 + γ)
(
n
2

)
, which is best possible (see [22, 21]). Since the main purpose of the

proof here is to give an expository of our method, we prove it under the stronger condition

which shortens the argument and the case analysis.

For β > 0, integer i ≥ 1 and two vertices u, v ∈ V (H), we call that u is (β, i)-reachable

to v if and only if there are at least βn4i−1 (4i − 1)-sets W such that both H[u ∪W ] and

H[v ∪W ] contain C-factors. In this case, we call W a reachable set for u and v. A vertex

set A is (β, i)-closed if every pair of vertices in A are (β, i)-reachable. Similar definitions for

the absorbing method can be found in [49, 50].

Proposition 8.8. Suppose x, y ∈ V such that |NH(x) ∩ NH(y)| ≥ γ
(
n
2

)
, then x and y are

(γ2/9, 1)-reachable to each other.

Proof. Let G = NH(x) ∩ NH(y) be a graph on V , then since e(G) ≥ γ
(
n
2

)
, the number of

paths of length 3 in G is at least

∑
v∈V

(
degG(v)

2

)
≥ 1

n

(∑
degG(v)

2

)
≥ 1

n

(
2γ
(
n
2

)
2

)
≥ γ2n3/3.

Since each path of length 3 in G is a reachable 3-set for x and y, then the number of reachable

3-sets for x and y is at least γ2n3/9, which implies that x and y are (γ2/9, 1)-reachable to

each other.

Lemma 8.9. Suppose H is an n-vertex 3-graph. Let V1 and V2 be disjoint vertex subsets of

V (H) such that both V1 and V2 are (β, c)-closed. Suppose there exist at least ηn4 copies F of

C such that |V (F ) ∩ V1| = |V (F ) ∩ V2| = 2 and there exist at least ηn4 copies F ′ of C such

that |V (F ′) ∩ V1| = 3 and |V (F ′) ∩ V2| = 1. Then V1 ∪ V2 is (η2β6, 5c+ 1)-closed in H.

Proof. Fix vertex-disjoint F, F ′ in H which are copies of K−4 satisfying the assumptions in

the lemma. Pick any vertex x ∈ V (F ′)∩V1 and y ∈ V (F )∩V2, and note that V (F )\{y} and
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V (F ′) \ {x} both have two vertices in V1 and one vertex in V2. Label them as V (F ) \ {y} =

{v1, v2, v3} and V (F ) \ {y} = {v′1, v′2, v′3} such that v1, v2, v
′
1, v
′
2 ∈ V1 and v3, v

′
3 ∈ V2. Since

each Vi is (β, c)-closed, there are at least βn4c−1 reachable (4c−1)-sets for (vi, v
′
i) and i ∈ [3].

We pick vertex-disjoint reachable sets Si for (vi, v
′
i) and i ∈ [3] such that they are also vertex-

disjoint with V (F ) and V (F ′). Let S = {v1, v2, v3, v
′
1, v
′
2, v
′
3} ∪ S1 ∪ S2 ∪ S3 and note that

each S is a reachable set for x and y. Indeed, H[x∪S] has a C-factor as the union of xv′1v
′
2v
′
3

and vi ∪ Si for i ∈ [3], and H[y ∪ S] has a C-factor as the union of yv1v2v3 and v′i ∪ Si for

i ∈ [3].

Now fix any two vertices x′ ∈ V1 and y′ ∈ V2. Since x′ and x are (β, c)-reachable,

they have at least βn4c−1-reachable (4c − 1)-sets and the same holds for y′ and y. We pick

reachable sets X and Y for them such that X, Y, S are pairwise disjoint. Observe that

Z = X ∪ Y ∪ S ∪ {x, y} is a reachable set for x′ and y′. Indeed, H[Z ∪ x′] has a C-factor as

the union of X ∪ {x′}, S ∪ {x} and Y ∪ {y}, and H[Z ∪ y′] has a C-factor as the union of

Y ∪ {y′}, S ∪ {y} and X ∪ {x}.

Note that we have at least

1

(4(3c+ 1) + 1)!
ηn4 · ηn

4

2
·
(
βn4c−1

2

)5

≥ η2β6n4(5c+1)−1

reachable (4(5c+1)−1)-sets for x′ and y′, as β is small enough. Thus, V1∪V2 is (η2β6, 5c+1)-

closed in H.

Let H be a 3-graph on n vertices with δ1(H) ≥ (1/3 + γ)
(
n
2

)
. A pair of vertices (x, y)

is called α-good if the number of pairs p ∈ N(x) ∩N(y) with deg(p) ≥ αn is at least α
(
n
2

)
.

Fix ε > 0. If an edge e ∈ H contains a pair p ∈
(
V (H)

2

)
with deg(p) ≤ ε2n, it is called weak,

otherwise called strong. Note that the number of weak edges in H is at most
(
n
2

)
ε2n. Let

Vε =

{
v ∈ V (H) : v is contained in at least ε

(
n

2

)
weak edges

}
.

We observe that |Vε| ≤ 3εn, as otherwise there are more than 3εnε
(
n
2

)
/3 =

(
n
2

)
ε2n weak
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edges in H, a contradiction. For any u ∈ V \ Vε, it is adjacent to at most 3εn(n− 2) edges

containing v ∈ Vε, so δ1(H[V \ Vε]) ≥ δ1(H) − 6ε
(
n
2

)
. Every u ∈ V \ Vε is contained in at

most ε
(
n
2

)
weak edges. Define subhypergraph Hε on V \ Vε with E(Hε) consisting of only

strong edges. Then

δ1(Hε) ≥ δ1(H)− 7ε

(
n

2

)
≥ (1/3 + γ/2)

(
n

2

)
.

For any v ∈ V (Hε), let Ñβ,i(v) be the set of vertices in V (Hε) that are (β, i)-reachable

to v. We have the following proposition.

Proposition 8.10. For α > 0 and any x ∈ V (Hε), |Ñε3,1(x)| ≥ 3
4
ε2n.

Proof. Let t be the number of pairs (p, y) where p ∈ NHε(x) and y ∈ NHε(p), and obviously

t ≥ degHε(x) ·ε2n. Suppose there are m vertices who have at least 1
12
ε2
(
n
2

)
common neighbors

with x. Then by double counting, we get

degHε(x) · ε2n ≤ t ≤ (n−m) · 1

12
ε2
(
n

2

)
+m · degHε(x).

Together with δ1(Hε) ≥ 1
3

(
n
2

)
, we have m ≥ 3

4
ε2n. Therefore, there are at least 3

4
ε2n vertices

y with |NHε(x) ∩ NHε(y)| ≥ 1
12
ε2
(
n
2

)
. Then for each such pair x and y, by Proposition 8.8,

they are (ε3, 1)-reachable to each other as ε is small enough.

Lemma 8.11. There exists β � 1/n and a vertex set V0 of size at most ε3n such that

V (Hε) \ V0 is (β, 6)-closed.

Proof. By δ1(Hε) ≥ (1/3 +γ/2)
(
n
2

)
, any three vertices x, y, z contain two vertices, say, x and

y, such that |NH(x) ∩NH(y)| ≥ γ
(
n
2

)
, which implies that x and y are (γ2/9, 1)-reachable to

each other by Proposition 8.8.

Suppose 0 < β � β2 � β1 � ε � γ. By Proposition 7.24 and β � β2 � β1, we may

assume that Ñβ1,1(v) ⊆ Ñβ2,2(v) ⊆ Ñβ,6(v) for every v ∈ V (Hε). This implies that if X is

(βi, i)-closed for i = 1 or 2, then X is (β, 6)-closed.
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First if all pairs of vertices are (β2, 2)-reachable, then we are done as V (H) is (β2, 2)-

closed. So we may assume that there are x, y ∈ V which are not (β2, 2)-reachable to each

other. Let A and B be the set of vertices which are (β1, 1)-reachable to x and y, respectively.

By Proposition 7.24, we may assume that y /∈ Ñβ1,1(x), that is, x and y are not (β1, 1)-

reachable to each other. Thus, for any vertex z ∈ V (Hε) \ {x, y}, we have z ∈ A or z ∈ B,

by our observation at the beginning of the proof.

For any pair u, v ∈ A \B, since neither u, v are (β1, 1)-reachable to y, u and v must be

(β, 1)-reachable to each other. The same holds for any pair of vertices in B\A. Furthermore,

we have |A∩B| ≤ ε3n, as otherwise there are ε3n vertices that are (β1, 1)-reachable to both

x and y, which implies that the number of reachable 7-sets for x and y is at least

1

7!
ε3n · (β1n

3/2)2 ≥ β2n
7,

that is, x and y are (β2, 2)-reachable, a contradiction.

Let V1 = {x} ∪ (A \ B), V2 = {y} ∪ (B \ A) and V0 = V \ (V1 ∪ V2) = A ∩ B. We have

showed that |V0| ≤ ε3n. By Proposition 8.10, we know that |V1|, |V2| ≥ |Ñβ1,1(x)| − |V0| ≥

|Ñε3,1(x)| − ε3n ≥ 1
2
ε2n. Observe that both V1 and V2 are (β1, 1)-closed. Next we will show

that in fact V1 ∪ V2 is (β, 6)-closed.

Note that since δ1(Hε) ≥ (1/3 + γ/2)
(
n
2

)
, there must be at least 2ε3n3 edges e of H that

are crossing, namely, e∩ V1 6= ∅ and e∩ V2 6= ∅. Indeed, otherwise, note that the smaller set

of V1 and V2 has at most n/2 vertices and by averaging, it contains a vertex v that is in at

most 2ε3n3

min{|V1|,|V2|} ≤
2ε3n3

ε2n/2
= 4εn2 crossing edges. So we have that

degHε(v) ≤
(
n/2

2

)
+ 4εn2 + |V0|n ≤

1

4

(
n

2

)
+ 5εn2 < δ1(Hε),

a contradiction, where we used |V0| ≤ ε3n. Without loss of generality, we can assume that

eHε(V1V1V2) ≥ ε3n3.

We want to conclude the proof by applying Lemma 8.9. So let us show that we indeed

have such copies of C. First, note that four vertices x1, x2 ∈ V1 and y1, y2 ∈ V2 form a copy
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of C if y1, y2 ∈ NHε(x1x2). So the number of copies of C with exactly two vertices in V1 is at

least

∑
x1,x2∈V1

(
degHε(x1x2, V2)

2

)
≥ 1(|V1|

2

)(∑ degHε(x1x2, V2)

2

)
=

1(|V1|
2

)(eHε(V1V1V2)

2

)
≥ ε6n4,

where we used the convexity in the first inequality. Second, note that four vertices x, x1, x2 ∈

V1 and y ∈ V2 form a copy of C if x1, x2 ∈ NHε(xy). Similarly, the number of copies of C

with exactly three vertices in V1 is at least

∑
x∈V1,y∈V2

(
degHε(xy, V1)

2

)
≥ 1

|V1||V2|

(∑
degHε(xy, V1)

2

)
=

1

|V1||V2|

(
2eHε(V1V1V2)

2

)
≥ ε6n4.

Thus, by Lemma 8.9, V1 ∪ V2 = V (Hε) \ V0 is (β, 6)-closed as (ε6)2β6
1 > β.

Now we are ready to prove Lemma 8.6.

Proof of Lemma 8.6. Suppose we have the constants 1/n� β′ � β � ε� γ. Let H be a 3-

graph on n vertices with δ1(H) ≥ (1/3 +γ)n. We first apply the arguments at the beginning

of this section and find Vε. Then we apply Lemma 8.11 and get V0. Let V ′ = V0 ∪ Vε and

thus |V ′| ≤ 4εn. There are two steps in our proof. In the first step, we build an absorbing

family F ′ such that for any small portion of vertices in V (H)\V ′, we can absorb them using

members of F ′. In the second step, we put the vertices in V ′ not covered by any member of

F ′ into a set A of copies of C. Thus, the union of F ′ and A gives the desired absorbing set.

We say that a set A absorbs another set B if A ∩ B = ∅ and both H[A] and H[A ∪ B]

contains C-factors. Fix any 4-set S = {v1, v2, v3, v4} ∈ V \ V ′, we will show that there

are many 72-sets absorbing S. First, we find vertices u2, u3, u4 such that v1u2u3u4 spans

a copy of C. Indeed, consider the link graph Hv1 of v1 on V \ V ′, which contains at least

(1
3

+ γ)
(
n
2

)
− |V ′|n ≥ (1

3
+ γ/2)

(
n
2

)
edges. By convexity, the number of paths of length two
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in Hv1 is

∑
x∈V \(V ′∪{v1})

(
degHv1 (x)

2

)
≥ (n− 4εn− 1)

( 1
n−4εn−1

∑
degHv1 (x)

2

)

≥ (n− 4εn− 1)

(
(1

3
+ γ/2)n

2

)
>

1

18
n3,

where the last inequality holds because ε� γ. Since v1u2u3u4 spans a copy of C if u2u3u4 is

a path of length two in Hv1 , then there are at least 1
18
n3 choices for such u2u3u4.

Second, we find reachable 23-sets Ci for ui and vi, for i = 2, 3, 4, which is possible

because ui is (β, 6)-reachable to vi, for i = 2, 3, 4. Since in each step we need to avoid at

most 59 previously selected vertices, there are at least β
2
n23 choices for each Ci. In total, we

get 1
18
n3 ·(β

2
n23)3 > β4n72 72-sets F = C1∪C2∪C3∪{u2, u3, u4} (because β is small enough).

It is easy to see that F absorbs S. Indeed, H[F ] has a C-factor since Ci ∪ {ui} spans six

copies of C for i = 2, 3, 4. In addition, H[F ∪ S] has a C-factor since v1u2u3u4 spans a copy

of C and Ci ∪ {vi} six two copies of C for i = 2, 3, 4.

Let n′ = n− |V ′|. We apply Lemma 2.5 with b = 72 and β4 on H[V \ V ′] and get a set

W ′ with |W ′| ∈ 4N and |W ′| ≤ 72β8n′ such that for any vertex subset U with U ∩W ′ = ∅,

|U | ∈ 4N and |U | ≤ β16n′ both H[W ′] and H[W ′ ∪ U ] contain C-factors.

At last, we will greedily build A, a collection of copies of C to cover the vertices in V ′

only using vertices in V \W ′. Indeed, assume that we have built a < |V ′| ≤ 4εn copies of

C. Together with the vertices in W ′, there are at most 4a+ 72β8n′ < γn/2 vertices already

selected. Then at most γn2/2 pairs of vertices intersect these vertices. So for any remaining

vertex v ∈ V ′, there are at least

deg(v)− γn2/2 ≥
(

1

4
+ γ

)(
n

2

)
− γn2/2 > n/2

edges containing v and not intersecting the existing vertices. So there is a path of length

two in the link graph of v not intersecting the existing vertices, which gives a copy of C

containing v.
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We get the desired absorbing setW = V (A)∪W ′ satisfying |W | ≤ 4·4εn+72β8n′ < γn/2

which can be used to absorb a vertex set U with |U | ∈ 4N and |U | ≤ β′n as β′ � β.

8.3 Proof of Theorem 8.4

In this section we prove Theorem 8.4. Our proof is similar to the one of [7, Theorem

1.4]. The following fact is the only place where we need the exact degree condition (8.1).

Fact 8.12. Let H be a 3-graph on n vertices with n ∈ 4N satisfying (8.1). If S ⊆ V (H)

spans no copy of C, then |S| ≤ 3
4
n.

Proof. Assume to the contrary, that S ⊆ V (H) spans no copy of C and is of size at least

3
4
n+1. Take S0 ⊆ S with size exactly 3

4
n+1. Then for any v ∈ S0, deg(v, S0) ≤ |S0|−1

2
= 3

8
n.

We split into two cases.

Case 8.1. n ∈ 8N.

In this case, for any v ∈ S0, since deg(v, S0) ≤ 3
8
n, we have that

deg(v) = deg(v, S0) + deg

(
v,

(
V

2

)
\
(
S0

2

))
≤ 3

8
n+

(
n− 1

2

)
−
(

3
4
n

2

)
< δ1(H),

contradicting (8.1).

Case 8.2. n ∈ 4N \ 8N.

In this case, for any v ∈ S0, deg(v, S0) ≤ 3
8
n implies that deg(v, S0) ≤ 3

8
n − 1

2
because

n ∈ 4N \ 8N. So we have

3e(S0) =
∑
v∈S0

deg(v, S0) ≤
(

3

8
n− 1

2

)(
3

4
n+ 1

)
=

3n− 4

8
· 3n+ 4

4
.

However, neither 3n−4
8

or 3n+4
4

is a multiple of 3. Thus
∑

v∈S0
deg(v, S0) < 3n−4

8
· 3n+4

4
, which

implies that there exists v0 ∈ S0 such that deg(v0, S0) < 3
8
n− 1

2
. Consequently,

deg(v0) = deg(v0, S0) + deg

(
v0,

(
V

2

)
\
(
S0

2

))
<

3

8
n− 1

2
+

(
n− 1

2

)
−
(

3
4
n

2

)
≤ δ1(H),
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contradicting (8.1).

Proof of Theorem 8.4. Take ε = 10−18 and let n be sufficiently large. We write α = ε1/3 =

10−6. Let H = (V,E) be a 3-graph of order n satisfying (8.1) which is ε-extremal, namely,

there exists a set S ⊆ V (H) such that |S| ≥ (1− ε)3n
4

and H[S] is C-free.

Let C ⊆ V be a maximum set for which H[C] is C-free. Define

A =

{
x ∈ V \ C : deg(x,C) ≥ (1− α)

(
|C|
2

)}
, (8.2)

and B = V \ (A ∪ C). We first claim the following bounds of |A|, |B|, |C|.

Claim 8.13. |A| > n
4
(1− 4α2), |B| < α2n and 3n

4
(1− ε) ≤ |C| ≤ 3n

4
.

Proof. The estimate on |C| follows from our hypothesis and Fact 8.12. We now estimate

|B|. For any v ∈ C, we have deg(v, C) ≤ |C|−1
2

, which gives deg(v, C) ≥
(|C|−1

2

)
− |C|−1

2
. By

(8.1), deg(v) ≤
( 3

4
n

2

)
− 3

8
n+ 1

2
. Thus

deg

(
v,

(
V

2

)
\
(
C

2

))
≤
(

3
4
n

2

)
− 3

8
n+

1

2
−
(
|C| − 1

2

)
+
|C| − 1

2

≤
(

3
4
n

2

)
−
(
|C| − 1

2

)
because |C| ≤ 3

4
n

=

(
3

4
n− |C|+ 1

)
· 1

2

(
3

4
n+ |C| − 2

)
.

The estimate on |C| gives 3
4
n ≤ |C|

1−ε < (1 + 2ε)(|C| − 1). Hence

deg

(
v,

(
V

2

)
\
(
C

2

))
<

(
3

4
n− |C|+ 1

)
· 1

2

(
(1 + 2ε)(|C| − 1) + |C| − 1

)
=

(
3

4
n− |C|+ 1

)
· (1 + ε)(|C| − 1) (8.3)

≤
(

3

4
εn+ 1

)
· (1 + ε)(|C| − 1) < εn · (|C| − 1). (8.4)

Consequently e(CC(A ∪B)) < 1
2
|C| · εn · (|C| − 1) = εn ·

(|C|
2

)
. Together with the definition
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of A and B, we have

(|A ∪B| − εn)

(
|C|
2

)
< e(CC(A ∪B)) ≤ (1− α)

(
|C|
2

)
|B|+

(
|C|
2

)
|A|,

so that |A∪B| − εn < |A|+ |B| − α|B|. Since A and B are disjoint, we get that |B| < α2n.

Finally, |A| = n− |B| − |C| > n− α2n− 3
4
n = n

4
(1− 4α2).

In the rest of the section, we will build four vertex-disjoint C-tilings Q,R,S, T whose

union is a perfect C-tiling of H. In particular, when |A| = n/4, B = ∅ and |C| = 3n/4, we

have Q = R = S = ∅ and the perfect C-tiling T of H will be provided by Lemma 3.9. The

purpose of C-tilings Q,R,S is covering the vertices of B and adjusting the sizes of A and C

such that we can apply Lemma 3.9 after Q,R,S are removed.

The C-tiling Q. Let Q be a largest C-tiling in H on B ∪ C and q = |Q|. We claim that

|B|/4 ≤ q ≤ |B|. Since C contains no copy of C, every element of Q contains at least one

vertex of B and consequently q ≤ |B|. On the other hand, suppose that q < |B|/4, then

(B ∪ C) \ V (Q) spans no copy of C and has order

|B|+ |C| − 4q > |B|+ |C| − |B| = |C|.

which contradicts the assumption that C is a maximum C-free subset of V (H).

Claim 8.14. q + |A| ≥ n
4
.

Proof. Let l = n
4
−|A|. There is nothing to show if l ≤ 0. If l = 1, we have |B∪C| = 3

4
n+ 1,

and thus Fact 8.12 implies that H[B ∪ C] contains a copy of C. Thus q ≥ 1 = l and we are

done. We thus assume l ≥ 2 and l > q ≥ |B|/4, which implies that |B| ≤ 4(l − 1). In this

case |B| ≥ 2 because |C| ≤ 3
4
n.

For any v ∈ C, by (8.3), we have deg(v,BC) <
(

3
4
n− |C|+ 1

)
· (1 + ε)(|C| − 1). By

definition, 3
4
n− |C| = |A|+ |B| − n

4
= |B| − l. So we get

e(BCC) <
1

2
|C|
(

3

4
n− |C|+ 1

)
· (1 + ε)(|C| − 1) = (1 + ε)(|B| − l + 1)

(
|C|
2

)
.
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Together with |B| ≤ 4(l − 1), this implies

e(BCC) > (|B| − (1 + ε)(|B| − l + 1))

(
|C|
2

)
= ((1 + ε)(l − 1)− ε|B|)

(
|C|
2

)
≥ ((1 + ε)(l − 1)− 4ε(l − 1))

(
|C|
2

)
= (1− 3ε)(l − 1)

(
|C|
2

)
. (8.5)

On the other hand, we want to bound e(BCC) from above and then derive a contra-

diction. Assume that Q′ is the maximum C-tiling of size q′ such that each element of Q′

contains exactly one vertex in B and three vertices in C. Note that q′ ≥ 1 because C is a

maximum C-free set and B 6= ∅. Write BQ′ for the set of vertices of B covered by Q′ and CQ′

for the set of vertices of C covered by Q′. Clearly, |BQ′ | = q′, |CQ′| = 3q′ and q′ ≤ q ≤ l− 1.

For any vertex v ∈ B \ BQ′ , deg(v, C) ≤ 3q′(|C| − 1) + 1
2
|C| < 4q′|C|. Together with the

definition of B and Claim 8.13, we get

e(BCC) = e(BQ′CC) + e((B \BQ′)CC)

≤ q′(1− α)

(
|C|
2

)
+ |B| · 4q′|C| < q′(1− α)

(
|C|
2

)
+ 4α2nq′|C|. (8.6)

Putting (8.5) and (8.6) together and using q′ ≤ l − 1 and |C| > n/2, we get

1− 3α3 = 1− 3ε < 1− α +
8α2n

|C| − 1
< 1− α + 16α2 < 1− α

2
,

which is a contradiction since α = 10−6.

Let B1 and C1 be the vertices in B and C not covered by Q, respectively. By Claim 8.13,

|C1| ≥ |C| − 3q ≥ |C| − 3|B| > 3

4
n(1− ε)− 3α2n >

3

4
n− 4α2n+ 1. (8.7)

The C-tiling R. Next we will build our C-tiling R which covers B1 such that every element

in R contains one vertex from A, one vertex from B1 and two vertices from C1. Since Q
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is a maximum C-tiling on B ∪ C, for every vertex v ∈ B1, we have that deg(v, C1) ≤ |C1|
2

.

Together with (8.7), this implies that

deg(v, C1) ≥
(
|C1|

2

)
− |C1|

2
=
|C1|(|C1| − 2)

2
>

(3
4
n− 4α2n)2 − 1

2
.

Together with (8.1), we get that for every v ∈ B1,

deg(v, AC1) <

(
3
4
n

2

)
− 3

8
n+

1

2
−

(3
4
n− 4α2n)2 − 1

2

=
1

2

(
3

2
n− 4α2n

)
4α2n− 3

4
n+ 1 < 3α2n2.

By Claim 8.13 and (8.7), we have that |A||C1| > (1 − 4α2)n
4
· (3

4
− 4α2)n > 3

17
n2. Thus,

deg(v,AC1) < 3α2n2 < 17α2|A||C1|, equivalently, deg(v, AC1) > (1 − 17α2)|A||C1|. For

every v ∈ B1, we greedily pick a copy of C containing v by picking a path of length two with

center in A and two ends in C1 from the link graph of v. Suppose we have found i < |B1|

copies of C, then for any remaining vertex v ∈ B1, by Claim 8.13, the number of pairs not

intersecting the existing vertices is at least

deg(v,AC1)− 3i · (|A|+ |C1|) > (1− 17α2)|A||C1| − 3|B1| · 2|C1| > |A|,

which guarantees a path of length two centered at A, so a copy of C containing v.

Now all vertices of B are covered by Q or R. Let A2 denote the set of vertices of A

not covered by Q or R and define C2 similarly. By the definition of Q and R, we have

|A2| = |A| − |B1| and |C2| = |B|+ |C| − 4q − 3|B1|. Define s = 1
4
(3|A2| − |C2|). Then

s =
1

4
(3|A| − 3|B1| − |B| − |C|+ 4q + 3|B1|) =

1

4
(4|A| − n+ 4q) = q + |A| − n

4
.

Thus s ∈ Z, and s ≥ 0 by Claim 8.14. Since q ≤ |B|, by Claim 8.13,

s = q + |A| − n

4
≤ |B|+ |A| − n

4
=

3

4
n− |C| ≤ 3

4
εn. (8.8)



156

The definition of Q and R also implies that |C \ C2| ≤ 3|B| and

|C2| ≥ |C| − 3|B| > |C| − 3 · 2α2|C| = (1− 6α2)|C|, (8.9)

where the second inequality follows from |B| < α2n < 2α2|C|.

The C-tiling S. Next we will build our C-tiling S of size s such that every element of S

contains two vertices in A2 and two vertices in C2. Note that for any vertex v ∈ A2, by (8.2)

and (8.9),

deg(v, C2) ≤ α

(
|C|
2

)
≤ α

(
1

1−6α2 |C2|
2

)
< 2α

(
|C2|

2

)
.

Suppose that we have found i < s copies of C of the desired type. We next select two vertices

a1, a2 in A2 and note that they have at least (1 − 4α)
(|C2|

2

)
common neighbors in C2. By

(8.8) and(8.9),

(1− 4α)

(
|C2|

2

)
− 2s|C2| ≥ (1− 4α)

(
|C2|

2

)
− 3

2
εn|C2| ≥ (1− 5α)

(
|C2|

2

)
> 0.

So we can pick a common neighbor c1c2 of a1 and a2 from unused vertices of C2 such that

{a1, a2, c1, c2} spans a copy of C.

Let A3 be the set of vertices of A not covered by Q,R,S and define C3 similarly. Then

|A3| = |A2| − 2s = 1
2
(|C2| − |A2|) and |C3| = |C2| − 2s = 3

2
(|C2| − |A2|), so |C3| = 3|A3|.

Furthermore, by (8.8) and (8.9), we have

|C3| = |C2| − 2s ≥ (1− 6α2)|C| − 3

2
εn > (1− 6α2)|C| − 3ε|C| > (1− 7α2)|C|.

Hence, for every vertex v ∈ A3,

deg(v, C3) ≤ α

(
|C|
2

)
≤ α

(
1

1−7α2 |C3|
2

)
< 2α

(
|C3|

2

)
.
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Since |C3| ≥ (1−7α2)|C| ≥ (1−7α2)(1−ε)3
4
n, by (8.4), we know that for any vertex v ∈ C3,

deg(v, A3C3) < εn · (|C| − 1) < 2ε|C3|2 = 6ε|A3||C3|.

The C-tiling T . Finally we use the following lemma to find a C-tiling T covering A3 and

C3 such that every element of T contains one vertex in A3 and three vertices in C3. Note

that in [7], this was done by applying a general theorem of Pikhurko [57, Theorem 3] (but

impossible here because we do not have the co-degree condition).

Lemma 8.15. Suppose that 0 < ρ ≤ 2 · 10−6 and n is sufficiently large. Let H be a 3-graph

on n vertices with V (H) = X∪̇Z such that |Z| = 3|X|. Further, assume that for every

vertex v ∈ X, deg(v, Z) ≤ ρ
(|Z|

2

)
and for every vertex v ∈ Z, deg(v,XZ) ≤ ρ|X||Z|. Then

H contains a perfect C-tiling.

Applying Lemma 8.15 with X = A3, Z = C3, ρ = 2α finishes the proof of Theorem

8.4.

Proof of Lemma 8.15. Let G be the graph of all pairs uv in Z such that deg(uv,X) ≥

(1−√ρ)|X|. We claim that for any vertex v ∈ Z,

degG(v) ≤ √ρ|Z|. (8.10)

Otherwise, some vertex v ∈ Z satisfies degG(v) >
√
ρ|Z|. As each u /∈ NG(v) satisfies

degH(uv,X) >
√
ρ|X|, we have

degH(v,XZ) >
√
ρ|Z| · √ρ|X| = ρ|Z||X|,

contradicting our assumption.

Arbitrarily partition Z into three sets Z1, Z2, Z3, each of order |X|. By (8.10), we

have degG(v) ≤ √ρ|Z| = 3
√
ρ|X| and δ(G[Z1, Z2]), δ(G[Z2, Z3]) ≥ (1 − 3

√
ρ)|X|. Thus,
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G[Z1, Z2] and G[Z2, Z3] are both (1, 3 4
√
ρ)-super-regular. For any x ∈ X, let F 1

x := {zz′ ∈

E(G[Z1, Z2]) : {x, z, z′} ∈ E(H)} and let F 2
x := {zz′ ∈ E(G[Z2, Z3]) : {x, z, z′} ∈ E(H)}.

Since deg(x, Z) ≤ ρ
(|Z|

2

)
≤ 5ρ|X|2, we have |F 1

x |, |F 2
x | ≥ (1 − 3

√
ρ)|X|2 − 5ρ|X|2 ≥ (1 −

4
√
ρ)|X|2. By applying Lemma 5.28 with v = 1− 4

√
ρ and η = ρ, then for any x ∈ X, with

probability at least 1− e−ε|X| we have

|M1 ∩ E(F 1
x )|, |M2 ∩ E(F 2

x )| ≥ (1− η)v|X| ≥ (1− 5
√
ρ)|X|.

Thus, there is a matching M1 in G[Z1, Z2] and a matching M2 in G[Z2, Z3] such that |M1 \

F 1
x | ≤ 5

√
ρ|X| and |M2 \ F 2

x | ≤ 5
√
ρ|X| for every vertex x ∈ X. Label the vertices of Z

so that Z1 = {a1, . . . , a|X|}, Z2 = {b1, . . . , b|X|} and Z3 = {c1, . . . , c|X|} such that M1 =

{a1b1, . . . , a|X|b|X|} and M2 = {b1c1, . . . , b|X|c|X|}. Let Γ be a bipartite graph with one part

X and the other part {a1b1c1, . . . , a|X|b|X|c|X|} such that {x, aibici} ∈ E(Γ) if and only if

xaibi, xbici ∈ E(H). For every 1 ≤ i ≤ |X|, since aibi, bici ∈ E(G), so degΓ(aibici) ≥

(1− 2
√
ρ)|X| in Γ. On the other hand, by assumptions, we have degΓ(x) ≥ (1− 10

√
ρ)|X|

for any x ∈ X. Thus we can find a perfect matching in Γ, which gives a perfect C-tiling in

H.
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[67] E. Szymańska. The complexity of almost perfect matchings and other packing problems

in uniform hypergraphs with high codegree. European J. Combin., 34(3):632–646, 2013.

[68] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in

uniform hypergraphs. J. Combin. Theory Ser. A, 119(7):1500–1522, 2012.

[69] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in

uniform hypergraphs II. J. Combin. Theory Ser. A, 120(7):1463–1482, 2013.

[70] P. Turán. On an extremal problem in graph theory, (Hungarian). Mat. Fiz. Lapok,

48:436–452, 1941.

[71] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107–111,

1947.


	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-11-2015

	Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
	Jie Han
	Recommended Citation


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Perfect tiling in multi-partite graphs
	Hamilton cycles in k-uniform hypergraphs
	Perfect matchings in k-uniform hypergraphs
	Perfect tiling in hypergraphs
	Notations

	Hypergraph Regularity method and Absorbing method
	Weak Hypergraph Regularity Lemma
	Absorbing method

	On multipartite Hajnal-Szemerédi theorem
	Introduction
	Proof of the Absorbing Lemma

	Minimum codegree threshold for Hamilton -cycles in k-uniform hypergraphs
	Introduction
	Proof of Theorem 4.4
	Auxiliary lemmas and Proof of Theorem 4.4
	Proof of Lemma 4.8
	Proof of Lemma 4.11

	The Extremal Theorem
	Classification of vertices
	Classification of -sets in B'
	Building a short path Q
	Completing the Hamilton cycle


	Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs
	Introduction
	Proof of Theorem 5.6
	Auxiliary lemmas and Proof of Theorem 5.6
	Proof of Lemma 5.9
	Proof of C-tiling Lemma (Lemma 5.12)

	The Extremal Theorem
	Classifying vertices
	Building a short path
	Completing a Hamilton cycle


	Near Perfect Matchings in k-uniform Hypergraphs
	Introduction
	Proof of Theorem 6.4
	Proof of Theorem 6.5

	Decision problem for Perfect Matchings in Dense k-uniform Hypergraphs
	Introduction
	Perfect matchings under minimum degree conditions
	Lattice-based constructions

	The Main structural theorem
	The Non-extremal Case
	Tools
	Proof of Theorem 7.14
	Proof of the Absorbing Lemma
	Proof of Lemma 7.11

	The Extremal Case
	Preliminary and the proof of Theorem 7.15
	Proof of Lemma 7.27
	Proofs of Lemma 7.28 and Lemma 7.29

	Algorithms and the proof of Theorem 7.3
	A straightforward but slower algorithm
	A faster algorithm


	Minimum vertex degree threshold for C43-tiling
	Introduction
	Proof of Lemma 8.6
	Proof of Theorem 8.4

	References

