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DISCOVERY OF POTENT TYROSYL-DNA PHOSPHODIESTERASE 1 INHIBITORS 

USING IN SILICO VIRTUAL SCREENING & NETWORK ANALYSIS FOR EVOLUTION 

OF ALLOSTERIC COMMUNICATION IN 3-KETOSTEROID RECEPTORS  

by 

 

SHIH-WEI CHUO 

 

Under the Direction of Ivaylo Ivanov, PhD 

 

ABSTRACT 

Tyrosyl-DNA phosphodiesterase I (TDP1) plays an important role in repair of 

topoisomerase I-DNA complexes in vivo, and its inhibitors have the potential to enhance the 

efficacy of the Top1-targeting drugs in anticancer therapy. Nevertheless a large number of TDP1 

inhibitors have been reported, none of them has inhibition activity in vivo. We present a virtual 

screening protocol to explore potent TDP1-selective inhibitors.  

3-ketosteroid receptors belong to nuclear receptor family, and their DNA binding domains 

interact with glucocorticoid response elements (GREs) to regulate gene transcription. With 

evolution, all of them can bind to activating response element ((+)GRE), but only some exhibit 

the ability to bind to negative glucocorticoid response element (nGRE). It was found that 

evolutionary mutations are important to change their binding functions. We have presented 

dynamic network models to elucidate allosteric communication for selected evolutionary 

homologues, discussing the correlation between binding characteristics and epistatic mutations 

from network theory.  

INDEX WORDS: DNA repair, Topoisomerase, Chemotherapy, Nuclear receptor, Epistasis, 

Correlation Network
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1 CHAPTER 1: DISCOVERY OF POTENT TYROSYL-DNA 

PHOSPHODIESTERASE 1 INHIBITORS USING IN SILICO VIRTUAL 

SCREENING  

1.1 INTRODUCTION 

1.1.1 Topoisomerase 1 and 2 (Top1 and Top2) 

In eukaryotes, dormant DNA is wound around histones in highly compact bodies known as 

nucleosomes, which must be unwound for replication and transcription. Unwinding of 

nucleosomal DNA by the cellular replication and transcription machinery can cause supercoiling. 

[1] In the confines of the nucleus, this supercoiling becomes a topological phenomenon and can 

only be relieved by topoisomerase activity. There are two general classes of topoisomerase: type 

I topoisomerases, of which human topoisomerase 1 (Topo1) is a member, cut a single strand of 

DNA, allowing superhelical tension to drive rotation about the uncleaved strand before finally 

religating the cut strand; and type II topoisomerases, of which human topoisomerase II (Topo2) 

is a member, cut both strands of a DNA duplex, while binding the DNA at another position, 

allowing the uncut DNA to pass through the cut site before reannealing the cut DNA. Both types 

of topoisomerase perform DNA scission via nucleophilic attack of a tyrosinate residue on a DNA 
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backbone phosphorus, resulting in a covalent tyrosine phosphodiester linkage between the 

topoisomerase and the cleaved DNA, with this linkage occurring on the 3’ and 5’ sides of the 

phosphate in type I and type II topoisomerases, respectively. [2]  

1.1.2 Topoisomerase as drug target 

Topoisomerase have become a popular target in anticancer therapy. Top1 and Top2 cleavage 

complexes (Top1cc and Top2cc) can be trapped, resulting in persistent single and double strand 

breaks, effectively blocking replication in rapidly dividing cancer cells and thereby inhibiting 

tumor growth and metastasis. [3] The efficacy of this class of anticancer drugs, known as 

topoisomerase poisons, is compromised by the activity of tyrosyl-DNA phosphodiesterases, 

enzymes capable of actively cleaving the covalent linkage between topoisomerases and their 

DNA substrates. [4] 

1.1.3 Tyrosyl-DNA phosphodiesterase 1 (TDP1) 

TDP1, first identified by Nash and coworkers in Saccharomyces cerevisiae, catalyzes the 

hydrolysis of the tyrosyl-phosphodiester bond in TopoI-DNA complexes (figure 1.1). [5] Human 

TDP1 is a 68 kDa monomer with a pseudo-2-fold axis of symmetry arranged in an α-β-α-β-α 
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sandwich (figure 1.2(a)). The N-terminus catalytic domain is from Gly149 to Thr350, and the 

C-terminus catalytic domain goes from Asn351 to Ser608. Each domain consists of one 

conserved HKN motif (His263, Lys265, Asn283, His493, Lys495, and N516 in the human TDP1; 

that belongs to the phospholipase D (PLD) superfamily to catalyze the repair of 3'-DNA adducts, 

and the detail TDP1’s reaction mechanism are shown in figure 1.3. [6] Two conserved HKN 

motifs are located in the center of the TDP1, forming a catalytic region inside an asymmetric 

substrate-binding channel (figure 1.2(b)). One side of the asymmetric channel is narrow and 

lined with positively charged distribution, and the other side is bowl-shaped basin with 

negatively charged distribution. According to the size and charged distribution, it implies the 

narrow side is a DNA binding region and the opened side is a polypeptide binding region. [7]  

1.1.4 Tyrosyl-DNA phosphodiesterase 2 (TDP2) 

By contrast to TDP1, TDP2, which is critical to repair topoisomerase II-induced DNA 

damage, is specific to cleave phosphotyrosyl bond at the 5’ DNA terminal (figure 1.4). [8, 9] 

Although the function of TDP2 is similar to TDP1 hydrolyzing the phosphotyrosyl bond and 

removing topoisomerase-DNA adduct, their catalytic mechanisms are different. TDP2 does not 

form the covalent intermediate but involves one divalent metal, Mg2+, for catalysis (figure 1.5). 
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[10] The 5’-DNA phosphate is stabilized by the magnesium, H236, S239, and H359, and a water 

molecule is deprotonated by D272 and acts as nucleophile to attack the 5’-DNA phosphate. So 

far, the crystal structure of human TDP2 has not been reported, so the TDP2 crystal structure 

presented here is from Mus musculus (figure 1.6). [10] 

1.1.5 Specific goal 

Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are DNA repair enzymes that 

repair trapped topoisomerase-DNA complexes by removing a blocking group at a 3’- and 

5’-DNA ends. [7, 11] It was found that TDP1 inhibitors can increase the lifetime of Top1 

cleavage complexes and therefore, the cytotoxicity of camptothecin in vivo, enhancing the 

activity of Top1 inhibitors in cancer cells. A compound with in vivo TDP1 inhibition activity has 

yet to be identified. Therefore, we have identified a number of potential drug candidates that 

have TDP1-selective inhibition to enhance the cytotoxicity of camptothecin in vivo.  
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1.2 METHOD 

1.2.1 Virtual Screening 

 Virtual screening is a computational technique applied on drug discovery to search libraries 

of known molecules in order to rapidly identify those molecules that can bind to a drug target. 

[12] The virtual screening protocol can be seen in figure 1.7.  

1.2.2 Model Construction 

 Model construction is useful to give us an idea about the 3-dimenstional structure and where 

the residues locate in the protein structure, and a complete protein structure can assistant us to 

study in dynamics, protein-ligand interaction, and drug discovery. Usually, some residues are not 

rigid in the crystal resulting in missing residues reported in the PDB files, and these residues may 

be critical to the biological function. Therefore, if there are empirical 3D protein structures that 

are similar to our target protein (template) with 50% or better sequence similarity, we can 

arrange the backbone of the similar sequence, place the missing residues or insert additional 

residues to our template. [13, 14] 
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1.2.3 Molecular dynamic simulations 

 The first application of Molecular Dynamics (MD) simulation was reported in the late 

1970s, and MD simulation has been vastly developed and become an extremely powerful tool 

applying on biochemistry and biology due to the advanced computation technologies and 

algorithmic improvements. [15] Many successful applications of MD simulations are shown to 

cover a broad spectrum of problems, such as allosteric properties, polypeptide folding, 

biomolecular association, and ion transport. [16-19] MD simulation reveals atomic-level detailed 

information to provide great assistance in interpreting experiment data that are not accessible to 

direct experimental measurement. Therefore, it is considered a significant method to study 

microstructure of materials. 

1.2.3.1 Amber Force Field 

In MD simulation, potential energy (V) is a function of the molecular parameters (R) to 

describe intra- and inter- molecular forces between atoms in the system. In order to easily be 

calculated on a computer, it includes many approximations to construct an additive formula 

called a force field, and this formula consist of several terms to provide contribution of bonded 

and non-bonded interactions.  
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(1.1)

 

The bonded interactions corresponding to bond length, angle, and dihedral parameters 

describe the ability of bonds to stretch, bend, and torsion, and the non-bonded interactions have 

two components, Columbic potential for electrostatic interactions and Lennard-Jones (LJ) 

potential for van der Waals interactions. In force field, parameters can be derived by fitting either 

experimental measurements, such as vibrational frequencies of molecules, potential energy 

surface, and dielectric permittivity etc., or quantum mechanical calculations. In this thesis, 

AMBER force field [20] used to carry out all simulations is as follows: 

    
(1.2)

 

The above potential energy function includes the first four terms for intra-molecular 

interactions and the last two terms for inter-molecular interactions. Parameters, 𝐾!, 𝐾!, 𝐾!, and 

𝐾!, account for the bond, angle, dihedral, and improper force constant. 𝑟 − 𝑟!" represents the 

changes in bond length and its equilibrium length. 𝜃 − 𝜃!"  is the angle from equilibrium 
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between three consecutive atoms. In the third term, 𝑛 is the multiplicity, 𝜙 is the dihedral 

angle, and 𝛿  is the phase shift. 𝜑 − 𝜑!"  is the changes in out-of-plane angle from its 

equilibrium state (figure 1.8). 

For two inter-molecular interactions, the first is using Lennard-Jones (LJ) potential to 

account for the attractive force, !
!!"

!
, and repulsive force, !

!!"

!"
, between two particles, 

where 𝑟!" is the distance between these two particles, 𝜀!" is the Lennard-Jones well depth, and 

𝑅!"!"# is the distance between two particles at the minimum potential fitted from experiment data 

or quantum calculation. The second one is using Coulomb potential to describe electrostatic 

interaction, where  𝑟!" is the distance between atom 𝑖 and 𝑗, 𝑞! and 𝑞! are the point charges of 

them respectively, and 𝜀! is the effective dialectic constant.  

1.2.3.2 Integration of Newton’s equation 

After the determination of initial coordinates and velocities for a system of all atoms, a set of 

classical Newton’s equation of motion (eq. 1.3) was numerically integrated to obtain a trajectory 

over a period of time. 

                                                 
(1.3)
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In the eq. 1.3, 𝐹 is the force acting on an atom, 𝑚 is the mass of the atom, 𝑎 is the 

acceleration, and R is the position of the atom. The acceleration can be further expressed as the 

second derivative of the position of the atom with related time, 𝑡. The force also can be written 

as the gradient of the potential energy: 

                          
(1.4)

 

Therefore, the combination of eq. 1.3 and eq. 1.4 is obtained to describe the correlation 

between the derivative of the potential energy and the changes in position as a function of time: 

                             
(1.5)

 

 Once the forces acting on atoms are calculated, the accelerations of all atoms can be 

obtained. Subsequently, the new positions and velocities of the atoms can be derived within a 

short period of time (timestep). [21] According to the new positions, the forces on the atoms will 

be recalculated from the potential energy function, and these data, positions, velocities, and force, 

are calculated with iterative steps and saved for a certain time interval to obtain a trajectory of 

the system. In order to accurately simulate the fastest motion, the timestep is typically on the 

order of femtosecond (fs), because vibrational frequencies of the fastest motion involving heavy 

atom-hydrogen bonds in a molecular system corresponds to ~10 fs. Since simulations with short 
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timesteps are computationally expensive, one of the methods to improve and allow longer 

timesteps (2fs) [22] in MD simulation is SHAKE algorithm. SHAKE algorithm is applied to 

remove the highest vibrational frequency by constraining all bonds associated with hydrogen in 

the system, and it is based on Verlet integration algorithm [23] derived from two Taylor 

expansions shown as follows: 

                   
(1.6)

 

                   
(1.7)

 

In these expansions, 𝑟!  is the position at the nst timestep, 𝑟!!!  is the position at its 

previous timestep, and 𝑟!!! is the position at its next timestep. O ∆𝑡!  is the function of ∆𝑡 

with n order or higher order. These two expansions can be added to obtain equation 1.8. 

                    (1.8) 

According to the eq. 1.8, the new atomic position at n+1st timestep is determined from the 

current position and force exerted on the atom at nst timestep, and its prior position at n-1st 

timestep. 
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1.2.3.3 Non-bonded interactions 

In most MD simulations, the systems contain solvent molecules with thousands of atoms, 

and the computation of non-bonded interactions for these large molecular systems is 

prohibitively slow due to the number of pair interactions grows on the order of !!!!
!

. To 

reduce the computational costs for performing the non-bonded interactions, there are several 

methods have been developed. [24] 

1.2.3.4 Cutoffs 

With the increase of distance between two particles, van der Waals interactions represented 

by the Lennard-Jones potential decay rapidly. When σ is defined as a finite distance between two 

interacting atoms at which the inter-atomic potential is zero, the van der Waals interaction at a 

distance of 2.5 σ is only 1% of the interaction at σ. [25] Therefore, a straight cutoff truncation is 

frequently applied on Lennard-Jones potential. In MD simulations, the Lennard-Jones interaction 

is neglected when the distances of pairs of all atoms are greater than a certain distance referred to 

the cutoff distance.   

In order to avoid the abrupt truncation and obtain a smooth decay at the cutoff distance, 

shifted potential function or switching function is introduced. For shifted potential function, the 
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potential is slightly shift in the entire range of distance, so the potential value at the cutoff 

distance is zero to maintain the continuity. For the switching function, a modified potential 𝑆(𝑟) 

is used to bring the potential gradually approaching to zero within a interval, and usually the 

interval is 1-2 Å.[26] 

1.2.3.5 Long-range electrostatic interaction 

 The cutoff methods also are applied on electrostatic interactions. However, it was found that 

the long-range electrostatic interactions are important in the biological systems because of its 

slowly decay (~1/R), so the truncation of long-range electrostatic interactions causes large 

computational errors and inaccuracy that are not acceptable to describe the protein and nucleic 

acid dynamics. [27] Therefore, treatments to correct long-range electrostatic interactions have 

been introduced, and Ewald summation is a most popular method to calculate electrostatic 

interactions in MD simulations. 

 The total energy in the Ewald summation method [28] includes the direct space energy 

(Edir), the reciprocal space energy (Erec), and the self energy (Ecorr). These three energies are show 

as follows: 
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(1.9)
 

(1.10)
 

(1.11)
 

Here,  𝛽 represents the Ewald parameters, 𝑉 is the volume of the unit cell, 𝑚 is lattice 

vector (m1, m2, m3) in reciprocal space, and 𝑆 𝑚  is the lattice structure factor. 

(1.12) 

The scale of Ewald summation is O(N2) in the system with N atoms, so it is computationally 

expensive. The Particle Mesh Ewald (PME) method reduces the Ewald summation to O(Nlog(N)) 

[29]. In PME method, a three-dimenstional grid is generated over the system, and the atomic 

charge is mapped on the grid; a fast fourier transforms is used to evaluate the summation of these 

grid points efficiently. In addition, incorporating an infinite number of unit cells in PME simply 

involves extrapolating the fourier series to infinity. [30, 31]  

1.2.3.6  Temperature control- Langevin thermostat 

 In MD simulation, the total energy of the system is conserved. If the total number of atoms 

(N) and the volume of the unit cell (V) are fixed, the MD simulation is considered being 
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conducted in the NVE ensemble also called microcanonical ensemble. An ensemble is a large 

collection of different microstates with an identical macroscopic in a system. For different 

situations, the MD simulation can be conduced in NVT (fixed number of atoms, fixed volume, 

and fixed temperature) or NTP ensemble (fixed number of atoms, fixed temperature, and fixed 

pressure). Therefore, the temperature should be controlled in MD simulations. In this thesis, an 

essential method used to maintain constant temperature is Langevin dynamics. [32]  

 In the Langevin dynamics, all atoms receive a random force and a friction force at each step, 

and these forces are related to the fluctuation-dissipation theorem to ensure sampling of the NVT 

statistics. Instead of the Newton’s equations, the dynamics of atoms is described by the 

Langevin’s equation [33] shown as follows: 

(1.13)
 

Here, 𝑚 is the mass of the particle, 𝑈 represents the particle interaction potential, 𝛤 is a 

friction coefficient,  is the velocity,  is the acceleration, and 𝑊!(𝑡) is the random force 

determined from a Gaussian distribution. 𝑊!(𝑡) varies by the desired temperature and timestep 

and it is balances with the friction force to keep the system temperature. 

  !r   !!r
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1.2.3.7  Pressure control 

 In the NPT ensemble, pressure is fixed, so the volume of the unit cell is allowed to fluctuate 

in the simulated system. Usually, the pressure is calculated via the virial theorem of Causius. 

[34] 

(1.14) 

𝑉 is the volume of the unit box, 𝐸!"#$%"& is the kinetic energy, and 𝛯 is the inner virial 

tensor for pair-additive potentials further described as: 

(1.15)
 

Here, 𝑓 𝑟!"  is the force on particle i caued by particle j, and 𝑟!" is the distance between 

the particle i and the particle j. When the system is treated as an isotropic manner, the pressure is 

a scalar quantity and can be expressed as: 

(1.16)
 

It is common to correct the pressure through a change in the inner virial 𝛯 by scaling the 

distances of inter particle. For Nosé-Hoover Langevin piston barostat, an additional degree of 

freedom, a piston (𝜎), is introduced into the equation of motion of each atom to vary the volume 

of the unit cell for controlling pressure. [35]  
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1.2.4  Docking 

 Docking is a computational technique that can place one ligand with the receptor in possible 

binding forms with optimal interactions. In docking, a bounding box is set to define a space 

where the ligand can bind to the target receptor, and the possible binding conformations and 

poses of the ligand can be sampled and ranked by calculating the estimated binding free energy 

of the receptor-ligand complex, so we can predict which binding mode is the most predominant 

with three-dimensional structure. Normally, the ligand-binding site of the target biomolecule 

could be a catalytic site in the enzyme, so the knowledge about the catalytic mechanism of 

biological processes for the target biomolecule can provide insights to determine the size and the 

position of the bounding box for docking ligands into the ligand-binding domain. [36] 

For docking, there are some inherent limitations. Typically, ligands with rotatable bonds are 

allowed to have different conformational changes, but the target molecules, such as protein, are 

treated as a rigid body. When the target molecules are kept in a particular conformation, docking 

algorithms may predict about 50% ~ 70% incorrect binding modes or energies. [37] In addition, 

the semi-empirical force field is used to calculate the binding free energy that is less accurate 

than the purely force field-based method, such as molecular dynamics, and some empirical 
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parameters in the program are determined from known structures leading to the inaccurate scores. 

Furthermore, the solvent effect is not adequately applied on the receptor-ligand system even if 

the solvent plays a significant role in the binding system. [36]  

1.2.5  Molecular mechanic-Poisson Boltzmann surface area (MM-PBSA) calculation 

 The binding free energy of ligand to protein can be predicted by MM-PBSA calculation 

with MD trajectories. [38] In ideal condition, the binding free energy of ligand to protein is 

evaluated by calculating the difference of free energy between unbound and bound two 

molecules in solvated state.  

              ∆𝐆𝐛𝐢𝐧𝐝,𝐬𝐨𝐥𝐯   =   ∆𝐆𝐜𝐨𝐦𝐩𝐥𝐞𝐱,𝐬𝐨𝐥𝐯   −   ∆𝐆𝐩𝐫𝐨𝐭𝐞𝐢𝐧,𝐬𝐨𝐥𝐯   −   ∆𝐆𝐥𝐢𝐠𝐚𝐧𝐝,𝐬𝐨𝐥𝐯           (1.17) 

However, a large number of solvent molecules occupy in the system, so solvent effects on 

solvent-solvent interactions and fluctuations are major energy contribution rather than the 

binding energy. Thus MM-PBSA is an effective method to calculate binding free energy as the 

following equation. [39] 

    ∆𝑮𝒃𝒊𝒏𝒅,𝒔𝒐𝒍𝒗   =   ∆𝑮𝒃𝒊𝒏𝒅,𝒗𝒂𝒄   +   ∆𝑮𝒄𝒐𝒎𝒑𝒍𝒆𝒙,𝒔𝒐𝒍𝒗   −   ∆𝑮𝒑𝒓𝒐𝒕𝒆𝒊𝒏,𝒔𝒐𝒍𝒗   −   ∆𝑮𝒍𝒊𝒈𝒂𝒏𝒅,𝒔𝒐𝒍𝒗      (1.18) 

∆𝐺!"#$,!"#$  and ∆𝐺!"#$,!"# represent the binding free energies in the solvated and vacuum 

system, and ∆𝐺!"#$%&',!"#$, ∆𝐺!"#$%&',!"#$, and ∆𝐺!"#$%&,!"#$  represent the solvation free energy 
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for complex, protein, and ligand. The solvation free energy contains the contribution of the 

electrostatic interaction and hydrophobic interaction.  

                            ∆𝑮𝒔𝒐𝒍𝒗   =   ∆𝑮𝒔𝒐𝒍𝒗,𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒔𝒕𝒂𝒕𝒊𝒄   +   ∆𝑮𝒔𝒐𝒍𝒗,𝒉𝒚𝒅𝒓𝒐𝒑𝒉𝒐𝒃𝒊𝒄                    (1.19) 

Poisson Boltzmann (PB) approach was used to solve the electrostatic contribution of the 

solvation free energy ∆𝐺!"#$,!"!#$%&'$($)#, and the hydrophobic contribution was calculated from 

the surface area (SA). Under the constant temperature condition, the vacuum binding free energy 

can be defined as 

                        ∆𝑮𝒃𝒊𝒏𝒅,𝒗𝒂𝒄   =   ∆𝑬𝒃𝒊𝒏𝒅,𝒗𝒂𝒄   −   𝑻∆𝑺                               (1.20) 

In the eq. 1.20, ∆𝐸!"#$,!"#, which includes molecular mechanics bond energy, molecular 

mechanics van der Waals energy, and molecular mechanics electrostatic energy, is the binding 

free energy between ligand and receptor in vacuum, and ∆S is the entropy change upon binding 

in vacuum. According to the eq. 1.19 and eq. 1.20, the binding free energy can be described by 

the eq. 1.21. 

               ∆𝑮𝒃𝒊𝒏𝒅,𝒔𝒐𝒍𝒗   =   ∆𝑬𝒃𝒊𝒏𝒅,𝒗𝒂𝒄   +   ∆𝑮𝑷𝑩   +   ∆𝑮𝑺𝑨   −   𝑻∆𝑺              (1.21) 
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1.2.6  Tanimoto similarity with ROCS and EON 

Proteins (enzymes, receptors, etc.) recognize ligands or inhibitors by their shape and charge. 

Ligand based virtual screening techniques can identify new scaffolds that can bind to the same 

pocket with similar overall shape and charge distribution. After running the MD simulation, we 

obtained the possible configurations of shape and charge to run virtual screening by ROCS 

(Rapid Overlay of Chemical Structures) and EON (electrostatics comparison program) basing on 

Tanimoto measurement. [40, 41] First, an ensemble of ligand conformations was generated for 

all compounds in NCI database by program OMEGA [42], and query molecule and database 

conformer are aligned by a solid-body optimization process with ROCS (figure 1.9). After 

aligning their shape, EON, an, was used to compare electrostatic potential maps of these aligned 

molecules and determine the Tanimoto measurement for finding the potent inhibitors. 

Tanimoto measurement is used in the comparison of sets of 3D parameters, and it involves 

comparing properties for two compounds with the overlap of those properties. Shape functions 

for A and B are compared with the overlap between the two shape functions after alignment to 

give Shape Tanimoto values that approach 0.0 for dissimilar and 1.0 for similar shapes (eq. 1.22). 

Poisson-Boltzman electrostatic field functions for A and B are compared with overlap between 
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fields to give Electrostatic Tanimoto values that approach -1/3 for opposite and 1.0 for similar 

field overlaps (eq. 1.23) 

(1.22) 

(1.23) 

1.2.7 Trajectory Analysis 

1.2.7.1 RMSD 

 The Root Mean Square Deviation (RMSD) [43] is a measurement of differences between 

two values, and it is frequently used to calculate the structural similarity between two 

macromolecules. To achieve the minimal RMSD, an optimal superposition of structures is 

necessary to eliminate the deviations from translation and rotation, and RMSD can be defined 

by: 

(1.24)

 

Here, 𝑁 is the total number of selected atoms in a reference or instantaneous configuration, 

𝑟!! is the coordinates of nth atom for ith conformation of the macromolecule, and 𝑟!! is the 
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coordinates of nth atom for jth conformation of the macromolecule. Usually, the changes in the 

order of 1-3 Å are acceptable for small proteins. 

1.2.7.2  RMSF 

 The Root Mean Square Fluctuation (RMSF) [44] is the standard deviation between the 

position of the residue i and the position of residue i from the average structure to measure the 

local chain flexibility. 

(1.25) 

Here, 𝑇 is the trajectory time, 𝑟!
!"# is the time-averaged position of the residue 𝑖,  𝑟!(𝑡) is 

the position of the residue i at time 𝑡. 

1.3 EXPERIMENTAL PROCEDURE 

To construct a TDP1 model, the protein structures of human TDP1 were obtained from the 

RCSB Protein Data Bank (PDB code: 1RG1, 1JY1, 1QZQ). Holo-form TDP1 (1RG1) was used 

as the template structure, and missing residues 124-161 were added from 1JY1, residues 387-390 

were added from 1RG1 chain B, and residues 425-434 were added from 1QZQ chain A in 
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PyMOL. Missing loops between residues 560-568 were built with the program ModLoop: 

automated modeling of loops in protein structures bioinformatics.[45, 46] 

 Flexible docking was applied for docking leading compound to our TDP1 model in 

Autodock 4.2.[47] The Lamarckian genetic algorithm was used for two hundreds runs, and the 

grid box was centered at the middle of the DNA-protien binding cleft. 

 Simulations were performed using the AMBER ff99SB forcefield, in the NAMD2.9 [48] 

molecular dynamics program. Bonded and short-range interactions were evaluated every 2fs, 

with long-range electrostatics evaluated every 4 fs with the smooth particle mesh ewald method. 

[49]  Short-range nonbonded interactions were evaluated using a 10Å cutoff with a switching 

function at 8.5 Å. The r-RESPA [50] multiple timestep integration scheme was employed with a 

2fs timestep and SHAKE employed to fix bonds between hydrogens and heavy atoms. Partial 

charges for ligands were computed via Gaussian geometry optimization, followed by RESP 

fitting of the resultant Mulliken population analysis in the program antechamber, a component of 

the AMBER computational chemistry suite. Atom types were automatically generated for the 

ligand in antechamber, with atomic parameters taken from the generalized amber force field 

(GAFF).  System preparation was performed in the xLEaP program, with a TIP3P water solvent 
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box extended 10A in every direction from the protein-ligand complex and Na+ and Cl- ions 

added to 0.15M. The equilibration protocol consists of 5000-steps of steepest descent energy 

minimization, with positional constraints placed on solvent atoms, followed by another 

5000-steps of conjugated gradient minimization without positional restraints. The system was 

then simulated for 100-ps in the canonical ensmble, while heating from 0 to 300 K with 

positional restraints on all solute heavy atoms. Finally, the system was simulated in the 

isothermal-isobaric ensemble for 2 ns with positional restraints on protein backbone atoms only. 

The system was sampled in the isothermal-isobaric ensemble for 100 ns for analysis. 

1.4  RESULTS AND DISCUSSION 

1.4.1 Docking of NSC339616 to TDP1 

 The leading compound, NSC 339616, we used for docking was discovered by using virtual 

screening from 265,000 NCI compounds, and it was found that the compound is a selective 

inhibitor of TDP1 according to the gel assay (figure 1.10). Our docking results indicate that 

NSC339616 likely binds either directly to the active site or to the DNA-binding cleft of TDP1. 

Molecular dynamics simulations, as previously described, were carried out on the top 4 docking 

poses (figure 1.11) to determine which of the binding sites is most likely to be observed 
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experimentally, as well as determine the dominant conformation of the bound ligand. The 

relative stability of each complex was monitored by RMSD. As seen in figure 1.12, binding of 

ligand to the DNA-binding cleft greatly reduces conformational flexibility in that region of the 

protein. The evidence for regional conformational stabilization by DNA-binding cleft 

interactions with the ligand is further compounded by the RMSF plots in figure 1.13. Major 

reductions in RMSF in bining pose 1 (BP1) relative to binding pose 2 (BP2) occur mostly in a 

flexible loop near the binding site, indicating that closure of this loop over the cleft is a direct 

result of ligand binding (figure 1.14). 

15,000 evenly spaced frames from the MD trajectories were clustered to identify the 

kinetically dominant binding pose (figure 1.15). BP1 exhibits hydrogen bonding from 

NSC339616 to Ser363 and Gln365, with Phe159 stacking over the aliphatic portion of the 

compound to stabilize loop closure. In BP2, NSC339616 forms hydrogen bonds to Lys265 and 

Asn139 as well as nonpolar interactions with Tyr104. 

1.4.2 Binding free energy calculation 

 To distinguish between the active site and DNA-binding cleft ligand binding sites, PBSA 

calculations were performed over 1,200 frames of each trajectory. BP1 is the more favorable of 
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the two poses, at ~7 kcal/mol lower than BP2, with Van der Waals and electrostatic contributions 

indicating stronger protein-ligand interactions. 

Table 1.1 Comparison of MM-PBSA results for ligand bound in DNA binding site and 

active binding site. 

 DNA binding site Active site 

Van der Waals contribution 

(kcal/mole) 
-29.0±2.4 -25.6±2.6 

Electrostatic energy 

(kcal/mole) 
-41.3±2.7 -34.7±2.5 

Electrostatic contribution to 

the solvation free energy 

(kcal/mole) 

40.2±2.1 34.0±1.8 

Nonpolar contribution to the 

solvation free energy 

(kcal/mole) 

-21.6±1.2 -19.7±1.3 

Dispersion solvation energy 

(kcal/mole) 
37.3±1.7 39.0±1.8 

Delta G (kcal/mole) -14.3±2.3 -6.9±2.7 

 

 In order to clarify detailed interactions that stabilize NSC339616, the protein-ligand 

interaction energies were decomposed into each residue [51], and residues with significant 

contributions are shown in figure 1.16. Compared to binding pose 2, more residues provide 

interaction to stabilize NSC339616 in the DNA binding site. 
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1.4.3 Similarity search with 3D shape and electrostatic comparison 

The NSC339616 conformation in BP1 was used to perform shape- and electrostatics-based 

screening against the NCI small molecule library. 10,000 potential analogues were identified and 

ranked by linear combination of their electrostatic and shape Tanimoto scores. The top six 

compounds in this ranking are displayed as shape- and electrostatic overlays with NSC339616 in 

figures 1.17 and 1.18.  

1.5 CONCLUSIONS 

The development of TDP1 and TDP2 selective inhibitors is a very attractive therapeutic goal, 

given that such an inhibitor could be used in conjunction with topoisomerase poisons, leading to 

higher rates of clinical success in cancer patients who have been prescribed topoisomerase 

poisons. Using NSC339616 as a lead compound, we have identified 6 potential inhibitor 

candidates and determined that flexibility in the DNA-binding cleft of TDP1 can be exploited as 

a binding site for small molecules. Further cycles of virtual screening against these 6 compounds 

could lead to the discovery of a potent and selective TDP1 inhibitor. 
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Table 1.2 Comparison of TDP1 and TDP2. 

 TDP1 TDP2 

Family Phospholipase D (PLD) 
Exonuclease-endonuclease- 

phosphatase (EEP) 

Catalytic 

mechanism 
Covalent intermediate Metal catalysis 

Conserved motifs HKN TWN, LQE, GDXN, and SDH 

Cleavage activity Tyrosine from the 3’-DNA end Tyrosine from the 5’-DNA end 

Associate disease SCAN1 Parkinson disease 

 

 

Figure 1.1 The repair of the topoisomerase I-mediated DNA damage by TDP1. 
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Figure 1.2 Crystal structure of human TDP1 (PDB ID: 1RG1). 

 (a) TDP1 structure is shown in ribbon. Each N-terminal (cyan) and C-terminal (yellow) 

provides one HKN motif in the center of the TDP1. (b) The structure is colored by electrostatic 

potential (blue in positive and red is negative). Left side with narrow channel and positive charge 

is DNA binding site, and the right side with bowl shape and negative charge is peptide-binding 

site. 

 

 

 

 

(a)  (b)  

Asn283 

Lys265 His263 

Asn516 

Lys495 His493 
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His263 

Glu538 

His493 

Top1-Tyr His263 

Glu538 

His493 

Top1-Tyr His263 

Glu538 

His493 

His263 

Glu538 

His493 

Top1-Tyr 

His493 

Glu538 

His263 

 

 

Figure 1.3 Catalytic mechanism of TDP1. 

At the beginning, His263 residue attacks phosphotyrosyl bond between the Top1-DNA complex, 

and His493 residue protonates the tyrosine-containing leaving group to cleave the 

phosphodiester bond with the formation of the transient covalent phosphoamide bond. The 

negatively charged residue of Glu538 stabilizes the hydrogen on imidazole ring of His263 to 

keep the proximal nitrogen acting as a nucleophile. Next, the His493 residue from the C-terminal 

domain acts as a general base to active a water molecule that hydrolyzes the covalent 

intermediate. [7, 52] 
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Figure 1.4 The repair of the topoisomerase II-mediated DNA damage by TDP2. 

 

 

Figure 1.5 The proposed catalytic mechanism for TDP2 to cleave phosphodiester bond. 
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Figure 1.6 Crystal structure of human TDP2 (PDB ID: 4GZ1). 

(a) TDP2 structure is shown in ribbon. Catalytic residues, N130, D132, E162, D272, N274, and 

H359, are shown in sticks in the center of the TDP2. (b) The structure is colored by electrostatic 

potential (blue in positive and red is negative). Similarly to TDP1, left side with positive charge 

is DNA binding cleft, and the right side negative charge is catalytic region. 

 

(a)  (b)  

E162 D272 

N274 

H359 
N130 

D132 
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Figure 1.7 Virtual Screening Protocol. 

 

Figure 1.8 Intra- and inter- molecular interactions. 

(a) bond stretching, (b) angle bending, (c) torsional angle, (d) improper anagle, (e) van der Waals, 

and (f) electrostatic interactions. 

(a)  (b)  

(d)  (c)  

(e)  (f)  
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Figure 1.9 Basic ideal of Tanimoto similarity. 

We begin with a query molecule and a database molecule, align these two molecules, and 

overlay two molecules basing on their centers of mass and aligning along principle moment of 

inertia. From this point, the maximized overlap volume was optimized between query and 

database molecules, and we can compute the shape Tanimoto score. 
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Figure 1.10 TDP1 and TDP2 gel assay. 

(a) Both TDP1 and TDP2 cleave a tyrosine residue at the 3’- and 5’-end of single-stranded 

oligonucleotides respectively. (b) NSC339616 was tested on a dose response (0.46, 1.4, 4.1, 12.3, 

37, 111µM) with 5 pM hTDP1 in LMP1 buffer. (left gel) and on a dose response (12.3, 37, 

111µM ) with hTDP2 in LMP2 buffer. (right gel) Representative gels show NSC339616 is a 

TDP1-selective inhibitor. 
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Figure 1.11 Four representative docking poses of NSC339616 in TDP1 model. 

Both the DNA and the active site with positive charge distribution are available providing 

electrostatic interaction to stabilize our leading compound with -1 charge. The estimated binding 

free energy for 1~4 binding poses are -6.26, -6.19, -5.75, and -5.63 kcal/mol, respectively. TDP1 

structure is colored by electrostatic potential (blue in positive and red is negative).  
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Figure 1.12 Changes of RMSD of two binding pose as a function of time from MD 

simulation. 

 

Figure 1.13 RMSD profiles in two binding poses 

− Binding pose 1 (DNA site) 

− Binding pose 2 (active site) 
 

− Binding pose 1 (DNA site) 

− Binding pose 2 (active site) 
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Figure 1.14 Comparison of TDP1 structures for (a) binding pose 1, (b) binding pose 2. 

(a,b) The structure is colored by RMSF, and the highlight loop locating in the DNA binding site 

shows different flexibilities between two binding poses. Blue region means less fluctuation, and 

(a)  (b)  

(c)  (d)  
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red area indicates more fluctuation. (c,d) NSC339616 in the DNA binding site induces the 

flexible loop become closer.  

 

 

Figure 1.15 Binding properties of two binding poses in TDP1 model. 

(a) Binding pose 1 and (b) binding pose 2. Hydrogen bonds are drawn in cyan line. NSC339616 

is shown in yellow sticks, and residues within 3.0 Å of the ligand are shown in tan sticks. 

(Yellow is C, blue is N, green is F, and lime is Cl.) The structure is colored by RMSF (blue 

region means less fluctuation, and red area indicates more fluctuation). 
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Figure 1.16 Ligand-residue interactions from MM-PBSA energy decomposition for binding 

poses 1 (a) and 2 (b) in TDP1 model. 

TDP1 structure is colored by the values of interaction contribution from red (more contribution) 

to blue (less contribution). 
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Figure 1.17 Virtual screening with ROCS. 

The shape Tanimoto scores of compounds are followed as: 1: 0.849, 2: 0.799, 3: 0.771, 4: 0.765, 

5: 0.756, and 6: 0.754. The template is shown in green, and hits are shown in blue. The shapte 

Tanimoto score ranges from 0(non-identical) to 1(identical).  

 

 

 

 

 

 

 

 

1 2 3

4 5 6

1  2  3  

4 5 6 



41 

 

 

 

 

 

 

Figure 1.18 Virtual screening with EON. 

The EON_ET_combo scores of compounds are followed as: 1: 1.71, 2: 1.665, 3: 1.610, 4: 1.596, 

5: 1.594, and 6: 1.589. The are colored by electrostatic potential. Electrostatic Tanimoto combo 

score (ET_combo) that is the sum of the Shape Tanimoto and the Electrostatic Tanimoto, ranges 

from -1/3 (non-identical) to 2 (identical) values resulting from the overlap of charge and shape 

matches. TDP1 potent inhibitors are shown in molecular surface and colored by electrostatic 

potential (blue in positive and red is negative). 

Leading compound
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Figure 1.19 Top six potent TDP1 inhibitors. 
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2 CHAPTER 2. NETWORK ANALYSIS FOR EVOLUTION OF ALLOSTERIC 

COMMUNICATION IN 3-KETOSTEROID RECEPTORS 

2.1 INTRODUCTION 

2.1.1 Structure and Function of 3-ketosteroid receptors  

3-ketosteroid (3KS) receptors are a ubiquitous family of nuclear hormone receptors (NRs) 

that regulate multiple biological pathways by either up-regulating transcription via binding to a 

glucocorticoid response-activating element ((+)GRE) or down-regulating transcription via 

binding to a glucocorticoid response-repressing element (nGRE). After diverging from the latest 

common ancestor, Ancestral Steroid Receptor 2 (AncSR2) [1], members of the 3KS family have 

evolved varying binding affinities for (+)GRE and nGRE elements that act as allosteric effectors 

to influence protein structures and activity. [2] The mutations within the 3KS family cause no 

significant perturbation to the secondary structure of the DNA binding domain (DBD) of the 

receptor, making allosteric effects the most likely cause of differences in binding affinity 

between the homologues. [3]  

The 3KS DBD consists of two zinc fingers, a “reading helix,” responsible for making 

specific contacts along the major groove of the GRE, two semi-flexible loops known as the 
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D-box (distal box; see figure 2.1), and P-box (proximal box; see figure 2.1). The D-box is 

primarily involved in dimerization, while the P-box interacts with the DNA. [4] [5]  

2.1.2 Glucocorticoid Response Elements 

 (+)GREs consist of two hexameric, inverted half-sites that are separated by a three base 

pair spacer, causing the 3KS DBD to bind as a homodimer (figure 2.2). Studies indicate that the 

(+)GREs allosterically activates transcription [2, 5-7] by positively promoting the binding of a 

second monomer after one monomer binds. In contrast to (+)GREs, 3KS receptors bind to nGRE 

elements as monomers on opposing sides of the DNA duplex, with each monomer’s D-box 

facing away from the other, separated by a 0-2 base pair spacer (figure 2.2). [8, 9]       

2.1.3 Specific goal 

Although 3-Ketosteroid nuclear receptors share similar structure, evolutionary mutations 

occurring far from the dimerization and DNA binding interfaces cause differing GRE binding 

affinities. [10] Therefore, we have investigated allosteric communication within selected 

3-Ketosteroid DBD complexes, illustrating how network theory can be applied to elucidate the 

correlation between 3KS DBD binding characteristics and epistatic mutations. 
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2.2 METHOD 

2.2.1 Dynamic network analysis 

 Network theory is a broad field that can be applied to a diverse range of complex systems, 

such as social network or biological network analysis. A network is an analytically useful 

representation of a collection of interacting components (nodes) and the communication 

pathways between them (edges). In the case of protein-DNA systems, nodes are assigned to each 

protein α-carbon and phosphorus and C1’ atoms in nucleotides. An edge is placed between two 

nodes that are within a 4.5 Å cutoff for over 75% of the MD trajectory, with the weight of the 

edge between nodes i and j calculated as 𝑊!" = − log(|𝐶!"|) , where Cij is the cartesian 

covariance between the nodes, calculated from eq. 2.1 and 2.2. [11, 12] According to this 

network model, residues are defined to have strong correlation if their coordinates move in the 

same way. 

  (2.1)  

     
(2.2) 



54 

 

 

 

Here the expectation value represents time average, and is the cartesian position vector of the ith 

node at the time t. In practice, these covariance values are calculated for every node pair in the 

complex and organized in a covariance matrix from which the network data is derived.  

2.2.2 Selected analysis methodologies for dynamical networks  

Within a network, nodes tend to organize into clusters with dense intra-cluster connections.  

These clusters are known as communities and yield insight into the global structure of the 

network communication pathways. There are many ways to organize a network into communities, 

with one of the more rigorous being the Girvan-Newman (GN) algorithm. [12, 13] In GN, the 

shortest communication pathway between every node pair (the optimal path) is first determined, 

based on edge weight. i.e. A very heavily weighted edge is conceptually shorter than a lighter 

edge. Next, an edge is assigned a betweenness value that reflects the number of optimal paths 

that proceed through it. The algorithm then begins removing edges, starting with those 

possessing the highest betweenness, assessing the modularity (Q, eq. 2.3) after removing each 

edge. [14] 
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(2.3)

 

Here, 𝐴!"  is an adjacency matrix (𝐴!" = 1  if node 𝑖 and node 𝑗 are connected, otherwise 

𝐴!" = 0), 𝐾! and 𝐾! is degree of node 𝑖 and 𝑗 to present the number of edges at each node, 

and 𝑚 is the total number of the edges in the network. After nodes are assigned to communities, 

the betweennesses of the edges that lie between communities can be summed over, producing a 

quantitative total-betweenness value that describes how closely intertwined two communities are. 

For example, a pair of communities that exhibit a very high total-betweenness can be considered 

close to merging into a single community. 

2.3 EXPERIMENTAL PROCEDURE 

 Here we investigate allosteric signal transduction in (+)GRE complexes for six 3KS family 

members: AncSR2, Ancestral Glucocorticoid Receptor (AncGR), Ancestral Glucocorticoid 

Rreceptor 2 (AncGR2), the human Glucocorticoid Receptor (hGR), Ancestral Mineralocorticoid 

Receptor (AncMR), and the human Mineralocorticoid Receptor (hMR); and in nGRE complexes 

for the hGR and AncSR2 homologues. The unpublished crystal structures for these complexes 

were provided by the Ortlund group at Emory University. All systems were solvated in a 0.1M 
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NaCl, TIP3P waterbox with 10Å distances between the edges of the solute and the box. 

Simulations were run using the molecular dynamics program NAMD 2.9 [15] with the amber 

ff99SB-parmbsc0 force field [16]. Bonded and short-range interactions were evaluated every 2fs, 

with long-range electrostatics evaluated every 4 fs with the smooth particle mesh ewald method 

[17]. Short-range nonbonded interactions were evaluated using a 10Å cutoff with a switching 

function at 8.5 Å. The r-RESPA [18] multiple timestep integration scheme was employed with a 

2fs timestep and SHAKE employed to fix bonds between hydrogens and heavy atoms. Each 

system was subjected to 10,000 steps of conjugate gradient minimization, followed by 100ps of 

dynamics in the NVT ensemble, during which the system was heated from 0 to 300 K with 

positional restraints applied to the solute. Finally, 7 NPT ensemble simulations were performed 

at 1 atm for 1ns, with each stage incrementally releasing the positional restraints, first on the 

protein, followed by the DNA, with sidechains and bases released before backbone atoms. 220ns 

of unrestrained NPT was performed, with the beginning 20ns discarded as equilibration, 

resulting in 200ns of trajectory used in the analysis. [6, 19, 20] 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Sequence alignment and evolution tree 

We have inferred the relative binding affinities of many members of the 3KS family to 

(+)GRE and nGRE elements from two experimental lines of evidence: florescence anisotropy 

probes and luciferase assays. Figure 2.3 displays the results of the fluorescence anisotropy 

experiments. The results show little difference in (+)GRE binding for most of the homologues, 

with the exception of the hMR variant that exhibits lower affinity than the rest, while the nGRE 

binding data shows conclusively that AncGR2 and hGR are the homologues shown that bind to 

nGRE elements with substantial affinity.  

Luciferase reporter activity in HeLa cells shows that the orders for (+)GRE activation (figure 

2.4) and nGRE repression (figure 2.5) for the 3KS homologues are AncGR > AncGR2 > hGR > 

AncSR2 ~ AncMR > hMR and AncGR2 ~ hGR > AncSR2 ~ AncGR > AncMR ~ hMR ~ 0, 

respectively. This data has been incorporated into the phylogenetic tree in figure 2.6 in order to 

highlight the role of epistasis in this evolutionary pathway. From multiple sequence alignment of 

3-ketosteroid receptor DBDs within GR and MR lineage, these DBDs are highly conserved with 

few mutations leading to functional changes (figure 2.7). In order to determine activation and 
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repressive abilities of ancestral DBDs, the homologous sequences studied here were generated 

via ancestral protein resurrection (APR) to reconstruct and characterize the DBDs of its ancestral 

proteins from finding maximum-likehood phylogenetics, followed by experimental synthesis, 

expression, and characterization. 

2.4.2 Correlation network analysis 

Dynamical networks and community organizations were calculated for the 3KS systems as 

described in the methodology section. The community structures, namely the creation and 

ablation of communities by evolution, are powerfully retrodictive.   

The first phenomenon of interest in analyzing the network structures presented in figure 2.8 

is the annihilation and re-creation of the community representing only the 3 base pair spacer (S 

community) in the (+)GRE DNA duplex along the GR branch of the 3KS phylogeny. The spacer 

makes no contact to the protein homodimer and is recognized by the GN algorithm as a 

semi-independent body (figure 2.8 and figure 2.9). From AncSR2 to AncGR, this community 

disappears, having been absorbed into the neighboring communities. The disappearance of the 

spacer community is due to its increased betweenness. Because AncGR has the highest affinity 

for (+)GRE elements of any 3KS receptor studied, one concludes that communication through 
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the DNA increases substantially with binding affinity. The spacer community reappears upon the 

evolution of AncGR2, coincident with a slight decrease in binding affinity. The strength of the 

betweennesses associated with the spacer community throughout the 3KS phylogeny exactly 

mirrors the binding affinity trend.  Tracking along the GR branch of the 3KS phylogeny, one 

observes a strong increase in nGRE binding affinity occurs with the G425S mutation. However, 

this mutation has a strong epistatic relationship with those preceding it; introducing G425S in 

AncSR2 does not significantly impact nGRE binding affinity. This epistasis is clearly 

represented in figure 2.8 as the creation of community Υ. The creation of community Υ	  lays the 

dynamical foundation necessary for the G425S mutant to impact allostery. Specifically, the 

I423V mutation (figure 2.10) appears to be strongly associated with the bifurcation of 

communities β and Υ. The I423 variant presses the β-sheet and helix 3 structural elements 

together, fusing them into a single community. Introducing V423 decreases this hydrophobic 

packing, forming a new community. This change is relatively insignificant in (+)GRE element 

binding affinity, but clearly impacts nGRE binding (figure 2.11). In hGR, a portion of the nGRE 

DNA duplex becomes so closely associated with the community created by the I423V and 
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G425S that it merges into the protein monomer, illustrating an immense increase in 

communication through the DNA, and therefore monomer binding cooperativity.   

Finally, while the homologues along the GR branch share many commonalities, the MR 

branch displays a large number of community divergences, fracturing the allosteric cohesiveness 

of the complex. This fracturing ablates nGRE binding activity and reduces (+)GRE binding 

activity, indicating that a relatively small number of well-organized communities results in 

stronger allosteric pathways throughout the complex and stronger binding affinity. 

Colors are assigned by communities, and values between nodes are betweennesses.   

  Some studies[8, 21, 22] indicate that dimerization interface is also crucial in GR DBD to 

transmit information. One mutation, A477T, located at the dimerization interface can disrupt this 

pathway and abolish the GR activity. We can observe the A477 residue pops up the community 

for the other receptor monomer within GR and MR linage (Figure 2.12), so we can see how 

important this A477 residue is in the dimerization.  

2.5 CONCLUSIONS 

    The community structures of the 3KS homologues are indicative of their binding affinities 

and clearly highlight the epistatic preconditions required for nGRE binding enhancement by the 
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G425S mutation. We have found that community creation and deletion are closely associated 

with binding affinity and that the community analysis method is sensitive enough to exactly 

reproduce binding affinity trends in NRs. More specifically, some community bifurcations are 

necessary for allosteric alterations (the GR lineage), while a poorly organized and incoherent 

community structure negatively impacts binding affinity by deleteriously affecting 

intra-monomer and intra-complex allosteric communication. The evolution of the 3KS receptor 

family is a very illustrative example of how mutations that occur far from any functionally 

important regions of a protein (in this case, dimerization or DNA-binding interfaces) can alter 

protein function by altering the underlying, inherent allosteric organization of the protein. We 

have shown that community analysis are very powerful retrodictive tools and the work herein 

describes certain community structure attributes that could be used in future work to predict 

changes in protein function. 
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Figure 2.1 Secondary structure of the 3KS DBD. 

(a) Crystal structure of hGR DBD colored by functional domains as represented in (b). (PDB ID: 

1R4O)  
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Figure 2.2 General mechanisms of receptor action. 

GR binds to (+)GREs as a homodimer (left), while it binds cooperatively as monomers to nGREs 

(right). 

 

 

Figure 2.3 Fluorescence anisotropy of selected 3KS homologues. 

3KS fluorescence anisotropy in the presence of (+)GRE (left) and thymic stromal lymphopoeitin 
associated nGRE (right). The (+)GRE construct for binding used was  
5’-(FAM)CCAGAACAGAGTGTTCTGA-3’; 5’-TCAGAACACTCTGTTCTGG-3’ and the 
nGRE probe was 5’-(FAM)CCGCCTCCGGGAGAGCTG-3’; 5’-CAGCTCTCCCGGAGGCGG 
-3.  
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Figure 2.4 (+)GRE associated luciferase activity in the presence of selected 3KS 

homologues. 

Experimental presentation for determination of transactivation ability of ancestral DBDs by dual 
luciferase reporter assays. Luciferase reporter activity when associated with (+)GRE, higher 
reporter activity indicates higher affinity. 

 

 

Figure 2.5 nGRE associated luciferase activity in the presence of selected 3KS homologues. 

Luciferase reporter activity when associated with thymic stromal lymphopoeitin nGRE, lower 

reporter activity indicates higher affinity. 
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Figure 2.6 3KS phylogenetic tree. 

The left semi-circle represents the (+)GRE binding affinity, while the right semi-circle represents 
nGRE binding affinity. Fully colored indicates high binding affinity, while half-colored indicates 
low biding affinity. Stems are labeled with their associated mutations.  

 

 

Figure 2.7 Multiple sequence alignment of 3-ketosteroid family of DBDs within GR and 

MR lineage. 
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Figure 2.8 Network structures and graphs in (+)GRE-bound 3KS homologues GR linege. 

Each panel is labeled with the 3KS homologue represented within the panel. The left portion of 

each panel is a structure of the homologue, colored by community. The right portion of each 

(a) AcnSR2 

(b) AncGR 

(c) AncGR2 

(d) GR 
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panel is a simplified graph representation of the community structure, with edges weighted and 

labeled by betweenness.   

 

 

Figure 2.9 Network structures and graphs in (+)GRE-bound 3KS homologues MR lineage. 

Each panel is labeled with the 3KS homologue represented within the panel. The left portion of 

each panel is a structure of the homologue, colored by community. The right portion of each 

panel is a simplified graph representation of the community structure, with edges weighted and 

labeled by betweenness.   

 

(b) AncMR 

(c) MR 

(a) AcnSR2 
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Figure 2.10 I423V causes a community bifurcation. 

V423 alters hydrophobic packing, creating a new community (purple). 
 

 

(a) (b) 



69 

 

 

 

Figure 2.11 Network structures and graphs in nGRE-bound AncSR2 and GR. 

Each panel is labeled with the 3KS homologue represented within the panel. The left portion of 

each panel is a structure of the homologue, colored by community. The right portion of each 

panel is a simplified graph representation of the community structure, with edges weighted and 

labeled by betweenness.  

  

(a) AncSR2 

(b) GR 
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Figure 2.12 Comparison of A477 in (a) AncSR2, (b) GR, and (c) MR systems. 

A477 located at the dimerization interface is involved in the community that spans receptor 

monomers implicating a strong communication between two monomers via A477. 

 

(a) 
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GENERAL CONCLUSIONS 

This thesis has been dedicated to the computational studies in the discovery of potential 

TDP1-selective inhibitors and allosteric communication in the selected evolutionary 3KS 

receptors.  

TDP1 is a cellular enzyme involved in repair of Top1 cleavage complexes generated by the 

block of Top1 inhibitors, such as camptothecins, resulting in DNA damage for anti-cancer drugs, 

and camptothecin is hypersensitive in TDP1-defective cells, so development of TDP1-selective 

inhibitors is emerging to improve response in chemotherapeutics. In present studies, there is no 

specific TDP1 inhibitor with high inhibitory activity, and its binding site is unknown. According 

to binding mode analysis of our lead compound, NSC 339616, we have found the TDP1 inhibitor 

is well accommodated in the DNA-binding cleft through the hydrophilic and stable hydrogen 

bonding interactions and sandwich interactions with hydrophobic residues. Furthermore, 

potential TDP1-selective inhibitor candidates are identified by using ligand-based virtual 

screening based on a comparison of three-dimensional shape and electrostatic potential from 

large library of molecules. 
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3KS receptors cooperatively bind to (+)GRE and nGRE that allosterically activates and 

suppresses transcription, respectively. In evolution of 3KS, some epistatic mutations cause 

changes in allosteric communications resulting in altered binding affinities. Such allostery has 

been studied but not been analyzed and quantified from the field of network theory. We have 

shown correlation network and community analysis are very powerful tools to predict changes in 

binding affinities via quantification of communications between communities and illustrated the 

epistatic relationship between I423V and G425S mutations in the 3KS homologues for nGRE 

binding enhancement.  

The computational methods using in this thesis have displayed efficiency, accuracy, and 

how it bridges gaps between theory and reality, being performed in future work to discover drugs 

or predict changes in protein binding function. 
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