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ABSTRACT

The use of doubly robust estimators is a key for estimating the population mean response

in the presence of incomplete data. Cao et al. (2009) proposed an alternative doubly robust

estimator which exhibits strong performance compared to existing estimation methods. In

this thesis, we apply the jackknife empirical likelihood, the jackknife empirical likelihood with

nuisance parameters, the profile empirical likelihood, and an empirical likelihood method

based on the influence function to make an inference for the population mean. We use

these methods to construct confidence intervals for the population mean, and compare the

coverage probabilities and interval lengths using both the “usual” doubly robust estimator

and the alternative estimator proposed by Cao et al. (2009). An extensive simulation study

is carried out to compare the different methods. Finally, the proposed methods are applied

to two real data sets.
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1 INTRODUCTION

As it is well known, missing data is a common problem which can affect inferences

obtained from data. Some settings in which missing outcomes arise include non-response

in sample surveys and patient dropouts during clinical trials. Further, making a causal

inference on a treatment mean from an experiment, or observational study, may be viewed

as a missing data problem (Kang and Schafer, 2007).

Doubly robust estimators have been proposed to alleviate the bias obtained from using

the naive sample mean based on the complete cases only. These estimators require the

specification of an outcome regression model to describe the population of responses, and

a propensity scores model to describe the missingness mechanism observed in the data.

Although these estimators are consistent as long as one of the two models is correctly specified

(Scharfstein et al., 1999), Kang and Schafer (2007) revealed that the usual doubly robust

estimator can be severely biased if both models are even mildly incorrectly specified.

In the remainder of this chapter, we introduce the basic concepts that were used for

this research. First, we present the ideas behind the USUAL doubly robust estimator and

the alternative estimator proposed by Cao et al. (2009) which we denote as the “PROJ”

estimator. Next, we present the methodology of empirical likelihood (EL), acknowledge

some of its applications, and introduce methods based on EL. Finally, we conclude this

chapter with a description of the organization that the thesis will follow.

1.1 Doubly Robust estimators

Consider a population of interest for which we have a random sample of n observations.

Let Xi denote the vector of covariates and Yi be the response or outcome of observation i.

Now, consider the case where Yi is missing for some subjects; in this case, we can introduce

a dummy variable, Ri, to indicate whether the response was observed (Ri = 1) or is missing

(Ri = 0). Hence, the data observed is independent and identically distributed (RiYi, Ri, Xi)

for i = 1, . . . , n. As in Rubin (1978), we assume that the data is missing at random (i.e. Yi

and Ri are conditionally independent given Xi) in order to estimate the population mean µ.
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Denote the propensity score and the outcome regression by P (R = 1|X) and E(Y |X)

respectively. Since the true propensity scores are rarely known, we can use a logistic regres-

sion model π(X, γ) = {1 + exp(−X̃γ)}−1, where X̃ = (1, X), to estimate them. Similarly,

we can adopt a model m(X, β) for E(Y |X), where we estimate β using only the complete

cases {i|Ri = 1}. Thus, by combining both models, we can obtain the USUAL doubly robust

estimator

µ̂USUAL = n−1
n∑
i=1

{
RiYi

π(Xi, γ̂)
− Ri − π(Xi, γ̂)

π(Xi, γ̂)
m(Xi, β̂)

}
, (1.1)

where γ is estimated by maximum likelihood and β is estimated using ordinary or weighted

least squares. Scharfstein et al. (1999) noted that this estimator is consistent as long as at

least one of the two models is correctly specified but is inconsistent otherwise.

Using a thorough simulation scenario, Kang and Schafer (2007) noted that the USUAL

doubly robust estimator may exhibit poor performance when some of the estimated propen-

sity scores are close to 0. Among several strategies proposed by Tsiatis and Davidian (2007)

to improve the performance of this estimator, these authors used semiparametric theory to

argue that the method used to estimate β may be a strong influence to the poor performance

of the estimator.

In order to find an estimator for µ, in the form of eqn. (1.1), that is (i) doubly robust

and (ii) has the smallest asymptotic variance when the propensity model is correct, Cao

et al. (2009) proposed to estimate β by solving the following equation jointly in (β, c)

n∑
i=1

 Ri

π(Xi, γ̂)

1− π(Xi, γ̂)

π(Xi, γ̂)


mβ(Xi,β)

πγ(Xi,γ̂)

1− π(Xi, γ̂)


{
Yi −m(Xi, β)− cT πγ(Xi, γ̂)

1− π(Xi, γ̂)

} = 0.

(1.2)

Thus, if we take β̂∗ as the solution to eqn. (1.2), γ̂ as the maximum likelihood estimator

for the propensity scores model, and plug these estimators into eqn. (1.1), we obtain the

alternative doubly robust estimator µ̂PROJ .
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1.2 Empirical likelihood

Empirical Likelihood is a nonparametric methodology which was first introduced by

Owen (1988, 1990). The method can be used to construct confidence regions and perform

hypothesis tests without any distributional assumptions. Furthermore, EL can incorporate

side information in the form of constraints to the likelihood function, and it has the ability

to construct confidence regions for the parameter of interest without estimating complicated

covariance matrices. For a more thorough review, we refer the reader to Owen (2001).

Due to its simplicity and attractive properties, EL has found applications in areas such

as in regression models (Chen and Van Keilegom, 2009), quantile estimation (Chen and Hall,

1993), the accelerated failure time model (Zhao, 2011), and continuous scale diagnostic tests

in the presence of verification bias (Wang and Qin, 2013), to name only a few. Of particular

importance are the papers by Qin and Lawless (1994), and Hjort et al. (2009), which linked

the concepts of empirical likelihood, general estimating equations, and nuisance parameters.

Since then, EL has been applied to many different contexts.

Regarding missing outcome data problems, Qin and Zhang (2007) proposed an EL based

estimator for a response mean with the double robustness property when the outcomes might

be missing at random. Chan (2012) studied modifications of the EL estimator of Qin and

Zhang (2007) that attains uniform improvements in asymptotic efficiency. Xue and Xue

(2011) used a bias-correction technique to construct EL ratios to study a semi-parametric

model with missing response data. Similarly, Tang and Zhao (2013) developed inferences

for a semi-parametric nonlinear regression model for longitudinal data in the presence of

missing responses. Zhao et al. (2013) developed an EL approach to obtain inference for

mean functionals with nonignorably missing data. Further, Tang et al. (2014) developed

EL inferences on parameters in generalized estimating equations with nonignorably missing

response data.

In order to overcome the computational difficulties that EL encounters when handling

nonlinear statistics, Jing et al. (2009) proposed a new approach: the jackknife empirical
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likelihood (JEL). This method converts the statistic of interest into a sample mean of jack-

knife pseudo-values (Quenouille, 1956). The attractiveness of this methodology lies behind

its simplicity, as it merely combines the EL method of Owen to the sample mean of the

jackknife pseudo-values.

Zhong and Chen (2014) proposed JEL methods for constructing confidence intervals

for a population mean with regression imputation or non-ignorable missingness. Likewise,

Gong et al. (2010) proposed a smoothed JEL method to construct confidence intervals for

the receiver operating characteristic (ROC) curve. Further applications of JEL include a

test for the equality of 2 high dimensional means (Wang et al., 2013), the accelerated failure

time model with censored data (Bouadoumou et al., 2015), and confidence intervals for the

difference between two ROC curves (Yang and Zhao, 2013).

Motivated by Jing et al. (2009), Li et al. (2011) proposed a JEL method to construct

confidence regions for a parameter of interest in the presence of nuisance parameters. This

method allows the computation of the nuisance parameter through a subset of estimating

equations. Furthermore, it retains the property of the standard chi-square limiting distri-

bution of the EL ratio. Peng (2012) proposed an approximate JEL method to reduce the

computation of the JEL method when the parameters cannot be explicitly estimated.

1.3 Organization

In this thesis, we adapt the methodologies of Jing et al. (2009), Li et al. (2011), and

Wang and Qin (2013) to construct confidence intervals for a population mean in the presence

of incomplete data. We also develop a new approach based on the influence functions of the

doubly robust estimators to construct confidence intervals for the parameter of interest. In

Chapter 2, we give a detailed overview of the methodologies and develop their application

to our scenario. In Chapter 3, we carry out an extensive simulation study to compare the

efficiencies of the proposed methods in terms of coverage probabilities and average lengths

of the confidence intervals. Next, in Chapter 4, we apply the proposed methods to two real

data sets. Finally, we give a concluding discussion of our work in Chapter 5.
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2 INFERENCE METHODS

2.1 Jackknife empirical likelihood

In order to apply the JEL technique of Jing et al. (2009), we first need to estimate

the unknown quantities to plug into eqn.(1.1). As mentioned earlier, propensity scores and

predicted outcomes can be estimated by using a logistic regression model and a linear model

respectively.

Define π̂i = π(xi, γ̂), where γ̂ is the MLE for γ; m̂i = m(xi, β̂), where β̂ is the OLS

or WLS estimator for β; and m̂i
∗ = m(xi, β̂

∗), where β̂∗ is the solution to eqn.(1.2). We

illustrate the proposed method by using the results of the USUAL doubly robust estimation

methodology. Inferences for the methodology proposed by Cao et al. (2009) are obtained by

replacing m̂i with m̂i
∗.

Let Z1, . . . , Zn be independent random variables, where

Zi = (RiYi, Ri, xi, m̂i, π̂i).

A consistent estimator for µ is given by

Tn = n−1
n∑
i=1

h(Zi) = n−1
n∑
i=1

{
RiYi
π̂i
− Ri − π̂i

π̂i
m̂i

}
.

Define the jackknife pseudo-values by

V̂i = nTn − (n− 1)T
(−i)
n−1 ,

where T
(−i)
n−1 is the statistic Tn−1 computed from the n−1 observations from the original data

set after deleting the ith data value in which γ̂ and β̂ are obtained from the full sample as

in Tn. Thus, we can obtain the jackknife estimator of µ

T̂n,jack =
1

n

n∑
i=1

V̂i,
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which is just the sample average of asymptotically independent random variables V̂i’s (Shi,

1984).

We can now apply Owen’s EL. Let p = (p1, . . . , pn) be a vector of weights such that∑n
i=1 pi = 1 and pi > 0 for i = 1, . . . , n. The empirical likelihood evaluated at µ is

L(µ) = max

{
n∏
i=1

pi :
n∑
i=1

piV̂i = µ,

n∑
i=1

pi = 1, pi > 0

}
,

from which we can obtain the jackknife empirical likelihood ratio at µ

R(µ) =
L(µ)

n−n
= max

{
n∏
i=1

npi :
n∑
i=1

piV̂i = µ,
n∑
i=1

pi = 1, pi > 0

}
.

Using the method of Lagrange multipliers, we have

pi =
1

n

1

1 + λ(V̂i − µ)
,

where λ is the solution to

f(λ) ≡ 1

n

n∑
i=1

V̂i − µ
1 + λ(V̂i − µ)

= 0.

By taking the logarithm of R(µ) and plugging in the computed values of pi into logR(µ),

we obtain the nonparametric jackknife empirical log-likelihood ratio

logR(µ) = −
n∑
i=1

log{1 + λ(V̂i − µ)}.

Using the techniques in Jing et al. (2009), we can prove the following Wilks’ theorem,

Theorem 1. Let µ0 be the true value of µ. Under the regularity conditions that Eh2(Z) <∞

and σ2
h > 0,

−2logR(µ0)
d−→ χ2

1.

Based on the previous theorem, we can construct asymptotic (1−α)100% JEL confidence
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intervals of the form

Ic = {µ | −2logR(µ) ≤ χ2
1(α)},

where χ2
1(α) is the upper αth quantile of the χ2

1 distribution.

2.2 Jackknife empirical likelihood with nuisance parameters

Let ξ = (µ, θT )T be the collection of unknown parameters involved in the estimation

of µ, where θ denotes the vector of nuisance parameters. In particular, θ = (γT , βT )T for

µ̂USUAL and θ = (γT , βT , cT )T for µ̂PROJ . Since we are only interested in µ, we can estimate

θ through a subset of estimating equations. Estimation of both µ̂USUAL and µ̂PROJ involves

solving jointly a set of M-estimating equations (Stefanski and Boos, 2002). µ̂USUAL is found

by solving the score equation for γ, the least squares equation for β, and the estimating

equation implied by eqn. (1.1). On the other hand, µ̂PROJ is found by again solving the

score equation for γ, the two estimating equations implied by eqn. (1.2) for β and c, and

the estimating equation implied by eqn. (1.1).

As in the previous section, the method is illustrated using the USUAL doubly robust

estimation methodology. Results for the Cao et al. (2009) estimator are obtained by replacing

β̃ with β̃∗, which is the corresponding estimator for β obtained by solving eqn. (1.2).

Let θ̃ denote the corresponding estimator for θ and set

Tn(µ) = n−1
n∑
i=1

{
Ri

π(xi, γ̃)

(
Yi −m(xi, β̃)

)
+m(xi, β̃)− µ

}
.

Next, let θ̃(−j) denote the estimator for θ obtained by first removing the jth observation from

the original data set. Similarly, define

T (−j)
n (µ) = (n− 1)−1

n∑
i=1,i 6=j

{
Ri

π(xi, γ̃(−j))

(
Yi −m(xi, β̃

(−j))
)

+m(xi, β̃
(−j))− µ

}
.
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The jackknife pseudo sample is then defined as

Vi(µ) = nTn(µ)− (n− 1)T (−j)
n (µ), for i = 1, . . . , n.

Since the jackknife pseudo sample is expected to be asymptotically independent (Tukey,

1958), we may apply the standard empirical likelihood method to these values in order to

construct confidence intervals for µ. Hence, we define the JEL ratio for µ as

LJ(µ) = sup

{
n∏
i=1

(npi) :
n∑
i=1

pi = 1,
n∑
i=1

piVi(µ) = 0, pi > 0

}
.

Using the Lagrange multiplier technique, the above ratio is maximized at

pi =
1

n

1

1 + λVi(µ)
,

and the empirical log-likelihood ratio is

`J(µ) = −logLJ(µ) =
n∑
i=1

log {1 + λVi(µ)} ,

where λ satisfies

n−1
n∑
i=1

Vi(µ)

1 + λVi(µ)
= 0.

We have the following theorem:

Theorem 2. Let µ0 be the true value of µ. Under regularity conditions (A1)-(A7) given in

Li et al. (2011), we have that

2`J(µ0)
d−→ χ2

1.

Based on Theorem 2, a (1− α)100% confidence interval for µ is given by

Iα =
{
µ : 2`J(µ) ≤ χ2

1(α)
}
,
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where χ2
1(α) is the upper αth quantile of the χ2

1 distribution.

2.3 Profile empirical likelihood

As in the introduction, let Zi = (RiYi, Ri, Xi) for i = 1, . . . , n be the data actually

observed. Further, suppose that Zi ∼ FZ for some unknown distribution FZ . As in the

previous section, we are interested in obtaining information about µ in the presence of a

nuisance parameter θ, where θ = (γT , βT )T for µ̂USUAL and θ = (γT , βT , cT )T for µ̂PROJ . Let

U(Z, µ, θ) denote the unbiased estimating equation which relates µ and FZ . Similarly, let

V (Z, θ) represent the vector of unbiased estimating functions relating to θ and FZ .

In order to streamline the presentation of the results, let πi = π(Xi, γ) denote the

propensity score model, and mi = m(Xi, β) represent the outcome regression model. Fur-

thermore, write πγi =
∂

∂γ
π(Xi, γ) and mβi =

∂

∂β
m(Xi, β). Finally, let Sγi denote the score

function corresponding to the propensity score model.

Based on the USUAL doubly robust estimator, we have the following estimating equa-

tion for µ

UUSUAL(Zi, µ, θ) =
Ri

πi
(Yi −mi) +mi − µ.

Also, since propensity scores and outcome regression can be modeled with a logistic and a

linear regression model respectively, we have the following estimating equations for θ

VUSUAL(Zi, θ) =

 Ri(Yi −mi)mβi

Ri − πi
πi(1− πi)

πγi

 ,

where the first equation corresponds to the least squares estimation method based on the

complete cases, and the second equation corresponds to the maximum likelihood estimation

method.

On the other hand, based on Cao et al. (2009), we have the following estimating equation

for µ

UPROJ(Zi, µ, θ) =
Ri

πi
(Yi −mi) +mi − cTSγi − µ,



10

where the additional term corresponds to the projection onto the propensity score tangent

space (Tsiatis, 2007). Further, based on eqn. (1.2), it is easily seen that we have the following

estimating equations for θ

VPROJ(Zi, θ) =


Ri(1− πi)

π2
i

mβi

(
Yi −mi − cT

πγi
1− πi

)
Ri(1− πi)

π2
i

πγi
1− πi

(
Yi −mi − cT

πγi
1− πi

)
Ri − πi
πi(1− πi)

πγi

 ,

where the first and second equations correspond to the estimation of β and c, respectively.

The last equation yields an estimator for γ based on the score equation obtained by using

logistic regression. The subsequent results are applicable to both µ̂PROJ and µ̂USUAL by

replacing U(Z, µ, θ) and V (Z, θ) with the corresponding pair of estimating equations for the

estimator of interest.

We define the empirical likelihood for (µ, θ) as

L(µ, θ) = sup

{
n∏
i=1

pi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piU(Zi, µ, θ) = 0

}
. (2.1)

Once we obtain a consistent estimator θ̂ of θ, we can plug it into eqn. (2.1) to obtain a

profile empirical likelihood for µ:

L̂(µ) = sup

{
n∏
i=1

pi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piU(Zi, µ, θ̂) = 0

}
.

Furthermore, the profile empirical likelihood ratio for µ is defined as:

R̂(µ) =
L̂(µ)

n−n
=

n∏
i=1

{
1 + λU(Zi, µ, θ̂)

}−1
,

where λ is the solution of

1

n

n∑
i=1

U(Zi, µ, θ̂)

1 + λU(Zi, µ, θ̂)
= 0.
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Then, the empirical log-likelihood ratio for µ is given by

ˆ̀(µ) = −2
n∑
i=1

log
{

1 + λU(Zi, µ, θ̂)
}
. (2.2)

By applying the general framework provided by Wang and Qin (2013) to the estimating

equations defined above, we obtain the following results. Let

Q1n(Zi, λ, µ, θ) =
1

n

n∑
i=1

U(Zi, µ, θ)

1 + λU(Zi, µ, θ)
.

We have the following theorem:

Theorem 3. Assume that (µ0, θ0) is the true value of (µ, θ), E

[
∂U(Z, µ0, θ0)

∂µ

]
and

E

[
∂V (Z, θ0)

∂θ

]
are negatively definite. Then,

ˆ̀(µ0)
d−→ kχ2

1,

where k is obtained as follows:

k = (−S11)
−1
(
I, S12(−S22)

−1
)
S∗

 I

(−S22)
−1ST12

 ,

S∗ = Cov
(
[U(Z, µ0, θ0), V

T (Z, θ0)]
T
)
,

S11 = E

[
∂Q1(Z, 0, µ0, θ0)

∂λ

]
,

S12 = E

[
∂Q1(Z, 0, µ0, θ0)

∂θT

]
,

S22 = E

[
∂V (Z, θ0)

∂θT

]
.

Making use of Theorem 3, we can construct (1 − α)100% profile empirical likelihood
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confidence intervals for µ of the form

Iα = {µ : ˆ̀(µ) ≤ cα},

where cα is the (1− α)th quantile of the kχ2
1 distribution.

2.4 Influence function based empirical likelihood

In this section, we propose an empirical likelihood method based on the influence func-

tion for the estimator of interest. The proposed method inherits the standard χ2 limiting

distribution. This property, in turn, significantly improves computation time compared to

the jackknife and profile empirical likelihood methods described previously.

In the foregoing section, we defined the estimating equations for both µ̂USUAL and

µ̂PROJ . For development purposes, let us consider inferences for µ̂PROJ .

Assuming that γ0 is the true value of γ, the influence functions corresponding to esti-

mators of the form given by eqn. (1.1) defined in this thesis have the form:

RY

π(X, γ0)
− R− π(X, γ0)

π(X, γ0)

{
m(X, β) + cT

πγ0(X, γ0)

1− π(X, γ0)

}
− µ,

where πγ0(X, γ0) = ∂/∂γ0{π(X, γ0)}, see Cao et al. (2009).

Let Sγ(R,X, γ) = {R− π(X, γ)}[π(X, γ){1−π(X, γ)}]−1πγ(X, γ) be the score function

for gamma, where πγ(X, γ) = ∂/∂γ{π(X, γ)}. Using the influence function defined above,

we consider

Wni(µ) =
Ri

π̂i
(Yi − m̂i

∗) + m̂i
∗ − ĉT Ŝγi − µ,

where π̂i = π(Xi, γ̂) denotes the estimated propensity score, m̂i
∗ = m(Xi, β̂

∗) represents

the predicted outcome, and Ŝγi = Sγ(Ri, Xi, γ̂) denotes the estimated value of the score

functions associated with the propensity score model. Further, in order to obtain β̂∗ and

ĉ, we need to solve equation (1.2) jointly in (β, c). To estimate γ, we use the method of

maximum likelihood.
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Next, we apply Owen’s empirical likelihood method using Wni(µ), to define the EL ratio

at µ as

RIF (µ) = sup

{
n∏
i=1

npi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piWni(µ) = 0

}
.

Define the log-empirical likelihood ratio as

`IF (µ) = −2logRIF (µ).

Using the method of Lagrange multipliers, one has that

`IF (µ) = 2
n∑
i=1

log {1 + λ(µ)Wni(µ)} ,

where λ satisfies

1

n

n∑
i=1

Wni(µ)

1 + λ(µ)Wni(µ)
= 0.

Similar to Owen (2001), we have the following Wilk’s theorem:

Theorem 4. Suppose that µ0 is the true value of µ, then

`IF (µ0)
d−→ χ2

1.

Based on Theorem 4, we may construct asymptotic (1 − α)100% empirical likelihood

confidence intervals for µ as follows:

Iα = {µ : `IF (µ) ≤ χ2
1(α)},

where χ2
1(α) denotes the (1− α)th quantile of the χ2

1 distribution.

Inferences for µUSUAL work in the exact same way by replacing Wni(µ) above with

W ∗
ni(µ) =

Ri

π̂i
(Yi − m̂i) + m̂i − µ,
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where, in this case, γ is estimated using maximum likelihood, and β is estimated using the

method of least squares.
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3 SIMULATION STUDY

Based on the methodology proposed in the previous chapters, an extensive simulation

study is carried out to compute the coverage probabilities and average lengths of confidence

intervals. We compare the results obtained from the EL methods to those of the normal

approximations. Our simulations are identical to those conducted by Kang and Schafer

(2007), whose design leads to the discovery that the USUAL doubly robust estimator may

be severely biased when both models are incorrectly specified. For samples of size n = 50,

n = 100, n = 200, n = 500, and n = 1000, we consider the four possible combinations of

correct and erroneous model specifications. All simulation results are obtained using 1000

repetitions. For each estimator, nominal 95% confidence intervals for µ are calculated.

For each i (i = 1, . . . , n), let Zi = (Zi1, Zi2, Zi3, Zi4)
T be generated as a standard mul-

tivariate normal random variable. Also, let the elements of Xi = (Xi1, Xi2, Xi3, Xi4)
T be

defined as Xi1 = exp(Zi1/2), Xi2 = Zi2/{1 + exp(Zi1)} + 10, Xi3 = (Zi1Zi3/25 + 0.6)3, and

Xi4 = (Zi2 + Zi4 + 20)2. Define Yi = m0(Zi) + εi for εi ∼ N(0, 1) and

m0(Zi) = 210 + 27.4Zi1 + 13.7Zi2 + 13.7Zi3 + 13.7Zi4.

Further, let Ri ∼ Bernoulli(π0(Zi)), such that

π0(Zi) = sigmoid(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4),

where sigmoid(x) = ex/(1 + ex). Correct models are obtained when a linear regression of

Yi on Zi and a logistic regression of Ri on Zi, respectively, are fitted. Thus, m(Z, β) and

π(Z, γ) represent the correct models. Incorrect models are obtained by replacing Zi with Xi;

hence, m(X, β) and π(X, γ) denote the incorrect models. Furthermore, the true value of the

mean is µ0 = 210.

Tables 3.1 - 3.4 display the results of the coverage probabilities and average interval

lengths for each of the proposed methods. In general, the performance of the methods

improves as the sample size increases.
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Table (3.1) Coverage probabilities for µ̂PROJ

METHOD OR PS n = 50 n = 100 n = 200 n = 500 n = 1000

NA

Correct Correct 0.941 0.946 0.945 0.950 0.953
Correct Incorrect 0.938 0.947 0.943 0.952 0.952

Incorrect Correct 0.906 0.931 0.940 0.953 0.954
Incorrect Incorrect 0.619 0.819 0.903 0.876 0.815

JEL

Correct Correct 0.946 0.950 0.949 0.951 0.954
Correct Incorrect 0.943 0.948 0.944 0.952 0.955

Incorrect Correct 0.957 0.972 0.979 0.988 0.995
Incorrect Incorrect 0.956 0.982 0.981 0.966 0.925

JELN

Correct Correct 0.919 0.948 0.948 0.951 0.954
Correct Incorrect 0.936 0.947 0.947 0.950 0.953

Incorrect Correct 0.899 0.939 0.947 0.949 0.955
Incorrect Incorrect 0.512 0.878 0.905 0.858 0.664

PEL

Correct Correct 0.943 0.949 0.948 0.950 0.955
Correct Incorrect 0.947 0.950 0.946 0.950 0.954

Incorrect Correct 0.917 0.935 0.942 0.952 0.947
Incorrect Incorrect * * * * *

IFEL

Correct Correct 0.937 0.947 0.948 0.950 0.954
Correct Incorrect 0.942 0.947 0.946 0.952 0.954

Incorrect Correct 0.910 0.939 0.940 0.953 0.955
Incorrect Incorrect 0.725 0.860 0.923 0.896 0.839

NOTE:

NA: Normal Approximation

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

IFEL: Influence Function Empirical Likelihood

OR: Outcome Regression Model

PS: Propensity Score Model
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Table (3.2) Coverage probabilities for µ̂USUAL

METHOD OR PS n = 50 n = 100 n = 200 n = 500 n = 1000

NA

Correct Correct 0.941 0.947 0.943 0.951 0.954
Correct Incorrect 0.940 0.946 0.945 0.947 0.953

Incorrect Correct 0.930 0.939 0.942 0.940 0.948
Incorrect Incorrect 0.931 0.936 0.915 0.813 0.619

JEL

Correct Correct 0.945 0.948 0.946 0.951 0.954
Correct Incorrect 0.945 0.948 0.946 0.948 0.947

Incorrect Correct 0.932 0.943 0.948 0.959 0.956
Incorrect Incorrect 0.912 0.884 0.828 0.628 0.355

JELN

Correct Correct 0.944 0.948 0.946 0.951 0.954
Correct Incorrect 0.945 0.949 0.947 0.947 0.955

Incorrect Correct 0.949 0.959 0.952 0.958 0.960
Incorrect Incorrect 0.944 0.961 0.930 0.858 0.664

PEL

Correct Correct 0.948 0.949 0.946 0.951 0.954
Correct Incorrect 0.946 0.948 0.947 0.947 0.949

Incorrect Correct 0.929 0.934 0.933 0.933 0.941
Incorrect Incorrect 0.939 0.921 0.838 0.574 0.329

IFEL

Correct Correct 0.945 0.948 0.946 0.951 0.954
Correct Incorrect 0.945 0.948 0.946 0.948 0.947

Incorrect Correct 0.932 0.943 0.948 0.959 0.956
Incorrect Incorrect 0.912 0.884 0.828 0.628 0.355

NOTE:

NA: Normal Approximation

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

IFEL: Influence Function Empirical Likelihood

OR: Outcome Regression Model

PS: Propensity Score Model
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Table (3.3) Average length of confidence intervals for µ̂PROJ

METHOD OR PS n = 50 n = 100 n = 200 n = 500 n = 1000

NA

Correct Correct 20.817 14.180 10.030 6.354 4.493
Correct Incorrect 19.816 14.137 10.023 6.353 4.490

Incorrect Correct 19.858 14.239 10.110 6.407 4.532
Incorrect Incorrect 22.037 15.586 10.887 6.726 4.676

JEL

Correct Correct 21.106 14.529 10.166 6.395 4.511
Correct Incorrect 20.304 14.303 10.088 6.375 4.507

Incorrect Correct 25.590 17.768 12.539 8.011 5.707
Incorrect Incorrect 69.653 37.601 19.557 9.807 6.169

JELN

Correct Correct 22.792 14.575 10.043 6.357 4.515
Correct Incorrect 20.721 14.277 10.027 6.358 4.520

Incorrect Correct 27.237 16.208 10.517 6.487 4.563
Incorrect Incorrect 97.419 39.978 18.321 7.916 5.541

PEL

Correct Correct 21.312 14.636 10.196 6.403 4.513
Correct Incorrect 20.652 14.388 10.115 6.387 4.512

Incorrect Correct 20.581 14.563 10.231 6.451 4.552
Incorrect Incorrect * * * * *

IFEL

Correct Correct 20.144 14.256 10.068 6.364 4.497
Correct Incorrect 20.123 14.256 10.066 6.364 4.498

Incorrect Correct 20.358 14.393 10.158 6.419 4.535
Incorrect Incorrect 27.732 17.632 11.507 6.913 4.843

NOTE:

NA: Normal Approximation

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

IFEL: Influence Function Empirical Likelihood

OR: Outcome Regression Model

PS: Propensity Score Model
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Table (3.4) Average length of confidence intervals for µ̂USUAL

METHOD OR PS n = 50 n = 100 n = 200 n = 500 n = 1000

NA

Correct Correct 19.824 14.146 10.025 6.353 4.493
Correct Incorrect 19.853 14.184 10.073 6.425 4.882

Incorrect Correct 25.531 18.048 12.576 8.258 5.992
Incorrect Incorrect 30.578 30.740 30.367 28.708 128.507

JEL

Correct Correct 20.125 14.268 10.071 6.365 4.498
Correct Incorrect 20.127 14.283 10.117 6.470 4.726

Incorrect Correct 26.596 19.912 14.358 9.432 6.800
Incorrect Incorrect 26.751 22.564 18.329 16.551 15.977

JELN

Correct Correct 20.049 14.211 9.979 6.354 4.509
Correct Incorrect 20.165 14.229 10.070 6.415 5.551

Incorrect Correct 24.524 17.925 10.714 7.968 5.877
Incorrect Incorrect 27.670 23.336 18.379 14.311 11.662

PEL

Correct Correct 20.339 14.342 10.096 6.372 4.500
Correct Incorrect 20.371 14.387 10.161 6.462 4.736

Incorrect Correct 26.389 18.630 13.005 8.515 6.178
Incorrect Incorrect 30.043 27.908 28.521 15.969 13.749

IFEL

Correct Correct 20.125 14.268 10.071 6.365 4.498
Correct Incorrect 20.127 14.283 10.117 6.470 4.726

Incorrect Correct 26.596 19.912 14.358 9.432 6.800
Incorrect Incorrect 26.751 22.564 18.329 16.551 15.977

NOTE:

NA: Normal Approximation

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

IFEL: Influence Function Empirical Likelihood

OR: Outcome Regression Model

PS: Propensity Score Model
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For µ̂USUAL, all of the proposed methods perform similarly as long as one of the models

is correctly specified. Regarding coverage probability, all methods slightly undercover when

n = 50. As the sample size is increased, the coverage probability for all the methods converges

to nominal level. In the case when both models are incorrect, the JELN method performs

the best compared to other methods; however, all of the proposed techniques undercover,

and the performance decreases as the sample size increases. This trend is expected since

according to Scharfstein et al. (1999), µ̂USUAL may be severely biased.

In terms of average interval lengths, when at least one model is correctly specified,

the NA method has the shortest average lengths followed by JELN in general. When both

models are incorrect, the NA method has the largest lengths. In this scenario, the JELN

method has the best performance.

In the case of µ̂PROJ , all coverage probabilities for the proposed methods, except the

JEL method, converge to nominal level as n increases. Similar to the results of Cao et al.

(2009), when both models are incorrect and the sample size is large, our simulations show

that the coverage probabilities for the normal approximations are vastly improved upon by

using the µ̂PROJ estimator as opposed to µ̂USUAL. In terms of coverage probabilities, the

IFEL method performs the best overall.

Regarding average lengths of confidence intervals, it is seen that the JEL method has

the longest lengths compared to the other methods. This is the main reason for the observed

inflation with respect to coverage probabilities for this method. The JELN method has the

second longest average lengths, but we observe close to nomial level in most settings. Similar

to the case of using µ̂USUAL, the NA method has the shortest interval lengths closely followed

by the IFEL method.

Our simulation results show that the weights obtained for the PEL method are either

negative or very large when both models are incorrect and the µ̂PROJ methodology is used.

In this case, it appears that a consistent estimator of the Λ matrix does not exist which in

turn causes the weight for the limiting distribution to be incorrect. For this reason, care

must be taken when applying the PEL method under this scenario. Moreover, as tables
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3.2 and 3.4 illustrate, the JEL and IFEL methods have the same coverage probabilities and

average lengths when µ̂USUAL is used.
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4 REAL DATA ANALYSIS

In this chapter, the proposed methods are applied to two real data sets. For each

data set, both the µ̂USUAL and the µ̂PROJ estimators are obtained, and 95% confidence

intervals are constructed using each of the proposed methods. As in the simulation studies,

the coverage probabilities and average interval lengths are the same for the JEL and IFEL

methods when the µ̂USUAL estimator is used.

The first data set, “Hitters”, was taken from the StatLib library at the Carnegie Mellon

University. The data set consists of 322 observations describing career statistics for baseball

players. The second data set, “Acupuncture”, consists of 401 observations from a study

comparing the effects of acupuncture on the treatment of chronic headache. This data set

was obtained from the article titled “Acupuncture for chronic headache in primary care:

large, pragmatic, randomised trial” published in March 2004 by the BMJ journal.

4.1 Hitters data analysis

The “Hitters” data set consists of 322 observations with 18 variables representing various

performance statistics for major league baseball players during 1986, and a factor variable

representing the player’s league in the beginning of 1987. Our interest is in estimating the

1987 average annual salary on opening day in thousands of dollars for all baseball players.

Salary information is missing for 59 observations.

Applying ordinary least squares regression with Bayes information criterion (BIC) as

the model selection technique, we find that the significant variables to be included in the

outcome regression model include the number of times at bat, hits, walks, and put outs in

1986. Also, the number of hits during his professional career, and the player’s division at

the end of 1986 were selected into the model.

To model the missingness mechanism observed in this data set, a logistic regression

model was fitted using the BIC criterion for variable selection. Only two variables were

selected into the final model: the number of runs and the number of assists made in 1986.

The results of applying the proposed methods are given in Table 4.1. The first thing to



23

note is that the PFL method yields incorrect confidence intervals using Cao’s doubly robust

estimation technique. The weight obtained is 183.844, which explains the extraordinary

length of the confidence interval. Both estimators are close to each other with a percent

difference of less than 0.3%. In terms of length, the results are consistent with the simulations;

we see that normal approximations perform the best, but are closely followed by the IFEL

technique.

Table (4.1) 95% C.I. for the Hitters Data Set

µ̂USUAL = 515.725

LB UB Length
NA 463.663 567.787 104.124

IFEL 467.237 571.632 104.395
JEL 467.237 571.632 104.395

JELN 465.454 570.761 105.307
PEL 466.798 572.220 105.422

µ̂PROJ = 517.063

LB UB Length
NA 466.057 568.069 102.012

IFEL 468.987 572.102 103.115
JEL 467.601 573.605 106.004

JELN 467.121 573.951 106.830
PEL 47.834 2327.771 2279.937

NOTE:

NA: Normal Approximation

IFEL: Influence Function Empirical Likelihood

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

LB: Lower Bound of 95% Confidence Interval

UB: Upper Bound of 95% Confidence Interval

Length: Length of Confidence Interval
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4.2 Acupuncture data analysis

The “Acupuncture” data set contains information on 401 patients with chronic

headache involved in a large, pragmatic, and randomized clinical trial. Subjects in the

study were randomly allocated to receive acupuncture treatments over 3 months, or to a

control intervention group receiving usual care. 196 subjects were allocated to control (56

dropouts), while 205 to treatment (44 dropouts). The main goal of this study was to assess

the effects of receiving acupuncture treatments on headache scores versus usual interventions.

The data consists of 18 baseline covariates including demographics and results of the

SF-36 questionnaire; a covariate which determines the treatment group membership, and

the outcome of interest which is defined as a headache score at the one year follow up. A

separate analysis is carried out for each group. The model selection process follows the same

steps as described in the previous section for the analysis of the “Hitters” data set.

For the control group, headache scores are best modeled with an outcome regression

model using the baseline headache score and the “rle” value of the SF-36 questionnaire. The

final propensity scores model uses age and the “pf” value of the SF-36 questionnaire.

The results for this group are given in Table 4.2. The percent difference between the

two estimators is only 0.1%. This time, the PEL method has very short lengths for µ̂PROJ

since the estimate for the weight in Theorem 3 is k̂ = 0.599. Overall, the NA and IFEL

methods have the best performance.

For the treatment group, the outcome regression model is chosen to include the baseline

headache score as well as the “painmeds” variable, which appears to be a score for pain

medications at baseline. The best model which can be used to describe the missingness

mechanism observed in the data is the null model according to Bayes information criterion.

Results for the treatment group are given in Table 4.3. In this scenario, the IFEL and

the JEL have the best performance. Inferences using the PEL seem to be correct since the

weight is k̂ = 1.141. As seen in previous tables and the simulation results, the JELN method

estimate appears to have the lowest efficiency in terms of lengths of confidence intervals.
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Table (4.2) 95% C.I. for the Control Group

µ̂USUAL = 22.873

LB UB Length
NA 20.339 25.407 5.068

IFEL 20.499 25.582 5.083
JEL 20.499 25.582 5.083

JELN 20.473 25.618 5.145
PEL 20.488 25.597 5.109

µ̂PROJ = 22.907

LB UB Length
NA 20.335 25.479 5.144

IFEL 20.513 25.652 5.139
JEL 19.693 26.295 6.602

JELN 20.541 25.941 5.400
PEL 21.029 24.993 3.964

NOTE:

NA: Normal Approximation

IFEL: Influence Function Empirical Likelihood

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

LB: Lower Bound of 95% Confidence Interval

UB: Upper Bound of 95% Confidence Interval

Length: Length of Confidence Interval
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Table (4.3) 95% C.I. for the Treatment Group

µ̂USUAL = 16.762

LB UB Length
NA 14.497 19.027 4.530

IFEL 14.811 19.078 4.267
JEL 14.811 19.078 4.267

JELN 14.672 19.280 4.608
PEL 14.675 19.271 4.596

µ̂PROJ = 16.750

LB UB Length
NA 14.528 18.972 4.444

IFEL 14.811 19.024 4.213
JEL 14.817 19.024 4.207

JELN 14.697 19.242 4.545
PEL 14.688 19.195 4.507

NOTE:

NA: Normal Approximation

IFEL: Influence Function Empirical Likelihood

JEL: Jackknife Empirical Likelihood

JELN: Jackknife Empirical Likelihood with Nuisance Parameters

PEL: Profile Empirical Likelihood

LB: Lower Bound of 95% Confidence Interval

UB: Upper Bound of 95% Confidence Interval

Length: Length of Confidence Interval
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Since none of the two confidence intervals overlap with each other, we can reject the null

hypothesis that there is no headache score difference between the 2 groups at the α = 0.05

confidence level. Our results show that acupuncture leads to clinically relevant benefits for

patients suffering from chronic headache. Furthermore, using our proposed methods, results

are coherent to those published in Vickers et al. (2004).
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5 SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we developed four distinct methods to construct confidence intervals

for a population mean using incomplete outcome data based on the empirical likelihood

methodology. The confidence intervals are constructed using the estimating equations of

both the µ̂USUAL and µ̂PROJ doubly robust estimators.

Our simulation results suggest that the confidence intervals for µ̂PROJ perform better

than those for µ̂USUAL as the sample size increases. In terms of coverage probability, we

note that most scenarios undercover when both models are incorrectly specified. When at

least one model is correct, coverage probabilities of all methods converge to the nominal

level with the exception of the JEL method applied to µ̂PROJ , which actually overcovers.

With respect to interval lengths, we note that all the methods have longer lengths when

the outcome regression model is incorrectly specified. In this aspect, normal approximations

have the best performance, but are closely followed by IFEL.

Results for the real data analysis also suggest that IFEL and NA have similar per-

formance. For the Hitters data set, the normal approximations have the shortest lengths;

however, for the Acupuncture data set, the IFEL method has the shortest lengths of all 5

methods.

Overall, it appears that using µ̂PROJ and constructing confidence intervals based on

the IFEL method yields the best performance. Furthermore, IFEL is very computationally

efficient, and avoids the complex formulation of the sandwich standard errors associated with

the NA method. Based on our results, we suggest the use of this strategy to obtain inferences

for a population mean when facing real data problems with missing outcome data.

5.2 Future Work

The main drawback of empirical likelihood lies in the difficulty of its practical implemen-

tation due to the complex optimizations involved. For this reason, the coordinate descent
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algorithm of Tang and Wu (2014) as well as the self-concordance for EL proposed by Owen

(2013) can lead to better computational efficiency.

In addition, the enhanced propensity score model proposed in Cao et al. (2009) was

shown to reduce the bias of µ̂USUAL and µ̂PROJ . We expect that combining µ̂PROJ with the

enhanced propensity scores and the IFEL method may give the most robust inferences for

the population mean when missing outcome data is present.
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