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SURVIVORS OF CHILDHOOD CEREBELLAR TUMORS: ATROPHY, LACK OF 

LESION SPECIFICITY, AND THE IMPACT ON BEHAVIORAL PERFORMANCE 

by 

 

ALYSSA AILION  

 

Under the Direction of Tricia Z. King, Ph.D. 

 

ABSTRACT 

Research suggests that the cerebellum is involved in cognition, but its exact 

role is unclear. The efficiency theory posits that the cerebellum supports processing 

speed. Other researchers argue that the cerebellum is functionally heterogeneous, 

and damage to lobes of the cerebellum causes selective loss of cognitive functions. 

This study sought to determine whether selective impairment in motor, verbal 

fluency, or processing speed occurred depending on the lobe of the cerebellum that 

was lesioned. Lesion mapping was used to measure lesion size and volumetric 

methods were used to measure atrophy in 25 adult survivors of cerebellar tumors. 

Participants had too a high degree of heterogeneous cerebellar lesions and 

accompanying atrophy to explore specialization. However, total cerebellar atrophy 

negatively impacted written and oral processing speed to a greater degree than total 

cerebellar lesion size. Younger ages at diagnosis and radiation therapy were 

associated with greater cerebellar atrophy. 

INDEX WORDS: Cerebellum, Brain tumor, Atrophy, Structural MRI, 
Cerebellar-cortical loops, Age at diagnosis  
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1 Introduction 

Historically, researchers thought the cerebellum was only involved in motor 

functioning (Flourens, 1824; Rolando, 1809); however, recent behavioral research 

suggests that the cerebellum also is involved in cognitive tasks (Stoodley, 2012; 

Stoodley and Schmahmann, 2009; Schmahmann and Sherman, 1998). For example, 

patients with cerebellar damage experience changes in a wide range of domains, such 

as difficulties with language, executive functioning, and changes in personality 

(Schmahmann and Sherman, 1998). There are a number of theories regarding the role 

of the cerebellum in cognition. One theory is that the cerebellum’s function is to increase 

brain efficiency. The efficiency theory posits that whole cerebellum works to support the 

efficiency of other brain regions, and individual regions within the cerebellum are not 

responsible for any specific functions (Bower, 1997). In support of a functionally 

homogeneous cerebellum, researchers have found that the volume of the whole 

cerebellum in healthy adults is related to working memory performance, measured by 

the WAIS-III Working Memory Index (Posthuma et al., 2003). Further supporting the 

functionally homogeneous cerebellum, the amount of cerebellar damage is associated 

with poorer semantic and phonemic verbal fluency (Vaquero et al., 2008). Nevertheless, 

the evidence for globalized function is mixed; for example, single pulse synchronized 

transcranial magnetic stimulation (sTMS, 1 pulse, 120% MT Intensity, double cone, 110 

mm/ handle up) of lobes VI and crus I (For visual depiction of lobes, see Figure 1) in the 

cerebellum results in slowed processing speed on verbal working memory tasks, but 

does not change processing speed on motor tasks (Desmond, Chen, and Shieh, 2005).  
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Researchers have found that the brain has interconnected networks, which are 

responsible for motor or cognitive functions (D’Angelo and Casali, 2013; Koziol and 

Budding, 2009), and any disruption in the neural network can affect motor or cognitive 

performance. Specific hemispheres of the cerebellum have been implicated in these 

loops in primates (Kelly and Strick, 2003). Cortical brain regions are connected to the 

cerebellar hemispheres via the pontine nuclei and the cerebellar vermis. From the 

cerebellar hemispheres, the information is then projected to the dentate nucleus which 

then travels through the thalamus before returning to the cortex. Different lobes of the 

cerebellum are thought to be functionally heterogeneous because they connect to 

different cortical brain regions associated with either motor or cognitive processing 

(D’Angelo and Casali, 2013; Berl et al., 2012; Kelly and Strick, 2003). Further 

supporting a functionally heterogeneous cerebellum, damage to specific lobes of the 

cerebellum causes selective loss of cognitive functions (Schweizer et al., 2010; 

Stoodley and Schmahmann, 2008; Leggio et al., 2000). 

Desmond et al. (1997) proposed a theoretical loop between the frontal lobes and 

lobe VI and crus I of the cerebellum (see Figure 2) that supports verbal working memory 

(Desmond, Chen, and Shieh, 2005; Chen and Desmond, 2005). In support of this 

theory, disruptions to the white matter pathway connecting the cerebellum to the frontal 

lobes (i.e., DTI and fMRI) results in poorer working memory performance (Law et al., 

2011; Ziemus et al., 2007). Recent studies investigating both healthy and neurological 

injury populations have converged on three specific regions of right hemisphere of the 

cerebellum associated with phonemic fluency: lobe VI, crus I, and crus II (See Figure 1; 

Mariën et al., 2013; Schweizer et al., 2010, Stoodley and Schmahmann, 2009, Richter 



3 
 

et al., 2007). Furthermore, animal tracer injection research provides evidence that a 

distinct non-motor loop exists and includes crus I and crus II of the cerebellum (Kelly 

and Strick, 2003; see Figure 3). Therefore, human and animal models converge to 

suggest that there is a closed loop between the cerebellar hemispheres and frontal 

cortex, which supports verbal working memory performance and specifically implicates 

phonemic fluency ability (Mariën et al., 2013; Law et al., 2011; Stoodley and 

Schmahmann, 2009, Richter et al., 2007; Kelly and Strick, 2003; Middleton and Strick, 

2001; Desmond et al., 1997). 

Motor performance is frequently negatively impacted following cerebellar 

damage. In addition to the verbal working memory loop, there is a distinct motor loop 

that connects the cerebellum to the motor cortex (Dum and Strick, 2003), and it appears 

that the motor and verbal working memory loops are dissociated in the cerebellum 

(Kelly and Strick, 2003; see Figure 3). Similarly, specific regions of the cerebellum, 

lobes V and VIII, are activated during motor tasks (Stoodley and Schmahmann, 2009), 

and damage to these regions results is poorer motor performance (Kuper et al., 2013).  

The question remains: Does poorer phonemic fluency performance result from 

damage to the functionally distinct cerebellar lobes, which are implicated in the 

cerebellar-frontal loop, or from damage to the functionally homogeneous cerebellum? 

By exploring the amount of damage to the lobes of the cerebellum, the current study 

sought to determine whether selective impairment in motor or verbal fluency (phonemic 

and semantic) performance occurred based on the lobe of the cerebellum that was 

damaged. The dentate nucleus and vermis also were included as a region of interest 

because they are involved in both loops. Based on behavioral evidence, processing 



speed was explored as a potential marker that may underlie the difficulties seen on 

verbal fluency and motor tasks. Given the finding of selective disruption of processing 

speed for verbal working memory (Desmond, Chen, and Shieh, 2005), the current study 

also explored whether selective impairment in written and

occurred based on the lobe of the cerebellum that 

impairment did not occur, then 

cerebellum were not functionally distinct

relationship between the amount of damage to the entire cerebellum and performance 

across measures.  

Figure 1 Atlas of the cerebellar hemispheres (Diedrichsen et al., 2009)
 

 

 

Figure 2 Proposed model for the verbal working memory 
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Figure 3 Distinct motor and cognitive 
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1.1 Childhood Brain Tumors 

Individuals diagnosed with childhood brain tumors are a complex population who 

commonly experience cerebellar damage. Cerebellar brain tumors a

common brain tumor in childhood (Gurney, Smith, and

1995, tumors in the cerebellum accounted for 43% of brain tumors in children younger 

than 15 years old (Legler et al., 1999)

childhood and an increasing survival rate make

role of the cerebellum in cognitive processing

thought that the cerebellum only contributed to motor functioning

neurosurgeons would often remove cerebellar tumors without consideration for the 

cerebellum’s role in cognitive functioning (

functional roles of the cerebellum in general and 

of the cerebellum are important 

 

 

Distinct motor and cognitive cerebellar-cortical loops (Kelly and Strick, 
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role of the cerebellum in cognitive processing. Until recently, researchers and clinicians 

thought that the cerebellum only contributed to motor functioning; therefore, 

neurosurgeons would often remove cerebellar tumors without consideration for the 

cerebellum’s role in cognitive functioning (de Ribaupierre et al., 2008). Both t
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of the cerebellum are important to consider for the surgical planning of cerebell
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resections. Typically, after tumor diagnosis a neurosurgeon will conduct a tumor biopsy 

and resection, which, depending on the type and location of the tumor, may be followed 

by radiation and chemotherapy treatment. Shortly following tumor resection, up to 24% 

of children develop cerebellar mutism syndrome, also known as posterior fossa 

syndrome, which is characterized by a temporary inability to speak, emotional lability, 

changes in personality, and motor abnormalities (Robertson et al., 2006; Pollack, 1997). 

Posterior fossa syndrome can last from weeks to months (Pollack, 1997). High risk 

factors for posterior fossa syndrome include medulloblastoma pathology, brain stem 

invasion, and damage to the cerebellar vermis (Robertson et al., 2006; Pollack, 1997). 

A large body of literature has explored outcomes following brain tumor treatment 

and complications. Understanding how treatment factors have impacted verbal fluency 

and motor performance was important for the current study. Survivors treated with 

cranial radiation show significant declines relative to peers in the following domains: 

intelligence, visual-motor integration, problem solving, and verbal fluency (Spiegler et 

al., 2004). Other factors, such as the size of tumor, amount of resection, intracranial 

pressure, seizures (etiology, frequency, and type), treatment with anticonvulsants, age 

at diagnosis, and complications, also have been associated with neurocognitive 

sequelae (For reviews see Butler and Haser, 2006; Ris and Noll, 1994). Additionally, 

while some research indicates that chemotherapy and quickly treated acute 

hydrocephalus do not significantly impact cognitive outcomes (Ellenberg et al., 1987; 

Ris and Noll, 1994), other researchers have found that chemotherapy (Anderson and 

Kunin-Batson, 2009) and hydrocephalus (Hardy, Bonner, Willard, Watral, and 

Gururangan, 2008) do affect neurocognitive functioning. Younger age at diagnosis and 
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radiation treatment also has been related to poorer global functioning (Palmer et al., 

2003). While some researchers suggest that verbal fluency difficulties could be due to 

cancer treatment, other studies have found that verbal fluency difficulties 

(semantic/phonemic not specified) are present after surgical resection, but before 

additional treatment (Riva and Giorgi, 2000). 

Very few studies look at how the damage and removal of specific areas in the 

cerebellum due to tumor resection are associated with outcomes. One study has 

investigated how lesions in the cerebellum are associated with motor performance 

recovery in survivors of childhood brain tumors (Küper et al., 2013). To date, only one 

study has looked at how tumor resection in specific areas of the cerebellum is related to 

semantic and phonemic verbal fluency performance in brain tumor populations 

(Kirschen et al., 2008). Kirschen and colleagues (2008) found no verbal fluency 

differences between 12 children diagnosed with brain tumors and matched controls, and 

did not report an analysis between the lobes of the cerebellum and phonemic fluency. 

The small number of studies on this topic is likely due to the complexity of brain tumor 

diagnosis and treatment as well as the relatively rare occurrence of brain tumors. Other 

studies on phonemic fluency have included heterogeneous cerebellar injury samples, 

typically including only 1-3 participants with brain tumors, as well as more commonly 

occurring neurological damage, such as strokes (i.e. Justus, Ravizza, Fiez, and Ivry, 

2005; Ravizza et al., 2006). It is important to note that the majority of prior research is 

on neurological injuries that occurred in adulthood, whereas the current study 

investigated tumors that were diagnosed and treated in childhood.  
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Studies on cognitive outcomes of childhood brain tumors suggest that verbal 

fluency ability declines following tumor diagnosis and treatment. Spiegler et al. (2004) 

found that verbal fluency scores (semantic/phonemic not specified) decline about 1 

standard deviation every 5 years post diagnosis in a population of 17 children 

diagnosed with malignant posterior fossa brain tumors treated with cranial radiation. In a 

study including 8 children with posterior fossa tumors, researchers found that children 

performed significantly lower than a control population on semantic fluency measures 

(De Smet et al., 2009). Riva and Giorgi (2000) found that verbal fluency 

(semantic/phonemic not specified) performance in childhood was on average 2.9 

standard deviations below the normative mean for right lateralized cerebellar tumors, 

and 1.7 standard deviations below the normative mean for left sided cerebellar tumors 

(n=26). Therefore, it appears that verbal fluency ability declines following childhood 

tumor diagnosis and treatment. Nonetheless, more research is necessary on the 

differences in the types of verbal fluency, especially phonemic and semantic fluency, 

and the underlying mechanisms explaining these difficulties. 

Individuals diagnosed with pediatric brain tumors commonly experience damage 

to their cerebellum, and exhibit motor and verbal fluency performance difficulties.  

However, based on prior literature on brain tumor populations it remains unclear 

whether performance difficulties are due to damage to specific areas of the cerebellum 

or due to cerebellar damage in general. Determining the functional specification of the 

lobes of the cerebellum is of particular importance for surgical planning of cerebellar 

tumor resections. To differentiate each potential explanation, this study explored 
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specific neuroanatomical regions and their association with phonemic verbal fluency 

and motor performance following tumor diagnosis and treatment. 

1.2 The Cerebellum  

Childhood cerebellar brain tumors typically develop in the vermis or cerebellar 

hemispheres, with the highest occurrence in the posterior lobe (Zuzak et al., 2008). 

Vermis resection is associated with lower IQ (Steinlin et al., 2003), posterior fossa 

syndrome in children (Robertson et al., 2006; Pollack, 1997), and cerebellar cognitive 

affective syndrome in adults, which results in a number of cognitive, personality, and 

motor changes (Schmahmann and Sherman, 1998). Specifically, evidence suggests 

that the vermis is involved in verbal working memory (Kirschen et al., 2008), and 

damage to the paravermis and vermis negatively impacts speech rate (Richter et al., 

2007). Moreover, animal virus tracing studies suggest that the cerebral cortex projects 

to the vermis of the cerebellum via the pontine nuclei (Coffman, Dum, and Strick, 2011; 

Thielert and Their, 1993). Taken together, the vermis appears to be critical to both the 

motor and verbal working memory loops, as well as performance on both tasks. 

The dentate nucleus is another critical region of connection; information from all 

of the lobes of the cerebellum is transported to various areas in the brain through the 

dentate nucleus (Sultan, Hamodeh, Baizer, 2010). The dentate nucleus is divided into 

ventral and dorsal halves. Researchers have found that the frontal lobes project to the 

ventral half of the dentate nucleus, whereas the motor loop connects to the dorsal half 

of the dentate nucleus (Middleton and Strick, 2001). Furthermore, damage to the 

dentate nucleus also is associated with posterior fossa syndrome, presumably because 

this results in a disconnection between the cerebellum and both cortical and subcortical 
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regions (Küper and Timmann, 2013). Further supporting the importance of the dentate, 

researchers have found that poorer verbal fluency (semantic and phonemic) is 

associated with damage to the dentate nucleus (Vaquero et al., 2008). Thus, like the 

vermis, the dentate nucleus is crucial to both the motor and verbal working memory 

loops. 

In conclusion, there is evidence to suggest that the vermis and dentate nucleus 

are essential components of cerebellar-cortical loops (Coffman, Dum, and Strick, 2011). 

Thus, the current study explored the dentate nucleus and the vermis as essential 

regions common to both phonemic fluency and motor pathways. The current study 

expected to find that the lesion size in the vermis and dentate would be related to motor 

and verbal fluency (regardless of phonemic or semantic) performance as well as written 

and oral processing speed. The current study did not expect damage to the dentate 

nucleus to discriminate among semantic or verbal fluency tasks due to each regions 

involvement in verbal fluency.   

1.3 Behavioral Performance 

1.3.1 Verbal Fluency 

Verbal fluency is the ability to generate words quickly based on certain criteria. 

The ability to name words requires a number of cognitive processes. These processes 

include a semantic and phonological word representation, access to word knowledge 

from memory, the manipulation of words in short term memory, and speech production 

(Cantwell and Rubin, 1992). Verbal fluency requires a component of executive 

functioning and verbal skills. Performance on verbal fluency measures also requires 

components of initiation, simultaneous processing, and processing speed.  



11 
 

There are different types of verbal fluency measures. Phonemic fluency is the 

ability to generate words that start with a specific letter, and neuroanatomically is 

associated with the right cerebellum and the frontal lobes (Baldo, Schwartz, Wilkins, 

and Dronkers, 2006). Semantic fluency is the ability to generate words that belong to a 

specific category, and is associated with the temporal lobes (Baldo et al., 2006; Troyer 

et al., 1998). The current study focused on phonemic fluency because of the interest in 

the role of the cerebellum in verbal fluency. Semantic fluency was used as a 

comparison task to ensure that fluency difficulties are not due to difficulties with the 

word generation component of verbal fluency tasks. While generally considered a good 

comparison measure, the semantic fluency measure is a clinical measure that may not 

be sensitive enough to determine subtle semantic fluency difficulties. Also of note, the 

semantic fluency measure is generally considered an easier task, as opposed to the 

phonemic fluency task, which is slightly more challenging.  

Researchers suggest that phonemic fluency is more affected by cerebellar 

lesions than semantic fluency (Mariën et al., 2013), and there is evidence that semantic 

and phonemic fluency are neuroanatomically distinct. However, there is mixed 

behavioral evidence on the laterality of damage to the cerebellum. For example, 

damage to either side of the cerebellum is associated with difficulty with phonemic 

fluency, but not semantic fluency (Leggio et al., 2000). However, fMRI and PET studies 

on healthy individuals suggest that the right cerebellum and left prefrontal regions are 

activated during phonemic fluency tasks (Schlosser et al., 1998; Hubrich-Ungureanu et 

al. 2002). In general, researchers have suggested that language and motor tasks are 

right lateralized in the cerebellum and spatial tasks are left lateralized (Stoodley, Valera, 
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and Schmahmann, 2012; Stoodley and Schmahmann, 2009). Additionally, in stroke 

patients, voxel based lesion symptom mapping shows that damage to crus II of the right 

cerebellum is associated with poorer phonemic fluency (Richter et al., 2007). Thus, right 

cerebellar lesions typically result in worse phonemic fluency outcomes; however, 

questions still remain about how damage to the left cerebellum relates to phonemic 

fluency performance (for review see Mariën et al., 2013). Considering that the left 

cerebellum is connected to the right dorsolateral prefrontal area, which is associated 

with attention (e.g., Lau et al., 2004), it is possible that the left cerebellum may also be 

involved in attention. Based on behavioral evidence, the current study planned to add 

an exploratory component to investigate phonemic fluency outcomes following damage 

to left cerebellar regions. 

Within the cerebellum, there is reliable evidence to suggest that phonemic 

fluency is localized in lobes VI, crus I, and crus II (Mariën et al., 2013; Stoodley, 2012; 

Stoodley and Schmahmann, 2009). A meta-analysis of 25 fMRI studies found that 

activation in the right crus I and II and bilateral lobe VI were most associated with 

language (Stoodley and Schmahmann, 2009). When compared to executive functioning 

measures (e.g. go-no-go task, risk taking tasks, Tower of London, decision making 

tasks), language (e.g. verbal fluency- phonological and semantic, word stem 

completion, word generation, semantic decisions, reading words) had greater activation 

in right lobe VI, and right crus I. Thus, Stoodley and Schmahmann (2009) identified 

activation peaks for language and verbal working memory in lobes VI and crus I. Using 

voxel based lesion symptom mapping, research from cerebellar strokes also suggests 

that damage to the right crus II of the cerebellum is associated with poorer phonemic 
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fluency (Richter et al., 2007). Furthermore, lobes VI, crus I, and crus II correspond with 

both virus tracing in animals and human single pulse synchronized transcranial 

magnetic stimulation studies (Desmond, Chen, and Shieh, 2005; Kelly and Strick, 

2003). Taken together, there is substantial theoretical and empirical evidence that lobe 

VI, crus I, and crus II are implicated in phonemic fluency performance.  

The temporal component to verbal fluency tasks was an important consideration 

for the current study. Difficulty during the first 15 seconds of phonemic fluency tasks can 

be attributed to impaired initiation or inflexible search strategies, as the first 15 seconds 

typically results in the most words generated (Troyer et al., 1998). Difficulty exclusively 

with phonemic fluency tasks (as opposed to both semantic and phonemic) is likely due 

to an inflexible search strategy, considering the phonemic fluency task requires the 

individual to generate a novel organizational strategy based on letters; whereas, the 

semantic task requires less effort because the individual is simply retrieving previously 

organized words from semantic memory (Koziol and Budding, 2009). Schweizer et al. 

(2010) found that individuals with right cerebellar lesions produced significantly fewer 

words in the first 15 seconds of phonemic fluency tasks when compared to both controls 

and individuals with left cerebellar lesions. Furthermore, Schweizer et al. (2010) found 

no differences in the last 45 seconds of the phonemic fluency task among groups. 

However, during the semantic fluency task the individuals with right cerebellar lesions 

produced significantly fewer words than the control group, with no differences in the 

beginning or end of the task (Schweizer et al., 2010).  

Another factor that may explain differences in the amount of words generated on 

phonemic verses semantic fluency is task difficulty. Hickok and Poeppel (2007) suggest 
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that unfamiliar words and phonemic aspects of speech require more sensory motor 

integration. Therefore, the phonemic fluency measure may engage the phonemic 

aspects of speech and/or may be more likely to produce low frequency words, which 

would require additional sensory motor integration and implicate the cerebellum. In 

contrast, semantic categories, such as animals or boy’s names, prime high frequency 

automated words that rely less on sensory motor coding, and thus less engagement 

with the cerebellum. If differences are due to task demands, one would expect global 

task differences and different trajectories of verbal fluency performance over time. The 

current study conducted analyses on the first and last 15-second blocks of verbal 

fluency performance to determine whether timing explains any differences in verbal 

fluency performance.   

Despite the large body of research on the cerebellum, questions remain 

regarding the cerebellum’s specific role during phonemic fluency performance. Prior 

lesion studies have not included a control region in the cerebellum, so it is unclear 

whether results are due to damage to the hypothesized lobes involved in verbal fluency 

or damage to the cerebellum in general. The current study used lesion–symptom 

mapping to determine whether lesion size in specific lobes of cerebellum was related to 

phonemic fluency performance and the specificity of this relationship by including 

control regions and control tasks.  
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1.3.2 Fine Motor Performance 

Fine motor performance was chosen as the control task for the current study 

because animal tracer injection studies suggest that there is a distinct motor loop that 

connects the cerebellum to the motor cortex (Dum and Strick, 2003). Due to the 

neuroanatomical dissociation between the motor and verbal working memory loops, fine 

motor performance measures were ideal for the current study. Prior literature suggests 

that motor ability is localized in the right lobes V, VIIIA, and VIIIB (7 studies included in 

meta-analysis; see Stoodley and Schmahmann, 2009), and these regions are indeed 

part of the motor loop (Kelly and Strick, 2003). Thus, motor performance allowed an 

ideal comparison task to determine if selective impairment occurs based on which lobe 

of the cerebellum was damaged.  

Some researchers argue that the relationship between the cerebellum and verbal 

fluency is due to the motor speech involved with language production. However, other 

researchers have demonstrated that the relationship between cerebellar lesions and 

verbal fluency is not due to motor difficulties associated with speech (Molinari et al., 

1997). Furthermore, researchers have reported that the right cerebellum is activated 

during a silent phonemic fluency fMRI task (Hubrich-Ungureanu et al. 2002). Taken 

together, there is evidence to suggest that that the difficulties seen in phonemic fluency 

extend beyond any motor difficulties that affect speech abilities.  

1.3.3 Processing Speed 

Processing speed is a central component of verbal fluency and motor 

performance. While some researchers suggest that the cerebellum is functionally 

homogeneous and responsible for task efficiency (Bower, 1997), there is evidence that 
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specific lobes of the cerebellum are functionally heterogeneous with regard to 

processing speed. For example, single pulse synchronized transcranial magnetic 

disruption of crus I and lobe VI results in slower verbal working memory processing 

speed, whereas motor processing speed remains unaffected (Desmond, Chen, and 

Shieh, 2005). Morton and Patterson (1980) argue that phonological output and 

orthographic output are distinct, but connected through an underlying semantic system. 

Similarly there is some evidence that phonology does not mediate orthographic output, 

and may be independently activated (e.g., Miceli et al., 1997). Taken together, there is 

some behavioral evidence to suggest that written and oral modalities of processing 

speed should be explored separately. Additionally, processing speed is of particular 

interest in the current study because cranial radiation is associated with poorer 

processing speed in childhood brain tumor populations (Mabbott et al., 2008). In order 

to gain a greater understanding of how processing speed underlies the difficulties seen 

in verbal fluency and motor performance, written and oral processing speed were 

included in the current study. To address the notion that the cerebellum is functional 

homogeneous the current study also explored the relationship between damage to the 

entire cerebellum and a composite measure that included the average of processing 

speed (oral and written), verbal fluency (semantic and phonemic), and motor 

performance.  

The current study explored which lobes of the cerebellum are involved in either 

motor and/or phonemic fluency performance. Phonemic fluency and motor performance 

were chosen due to their association with specific lobes of the cerebellum and their 

involvement in cerebellar-cortical loops. In addition to exploring overall phonemic 



17 
 

fluency performance, the current study investigated the number of words generated 

during the first and last 15 seconds of the both phonemic and semantic fluency in order 

to understand any underlying factors (i.e. initiation or strategy generation) which may 

have contributed to the results. Because motor and verbal fluency tasks were timed, the 

current study included oral processing speed and written processing speed as potential 

underlying factors that affected performance on each task.  

1.4 Lesion Symptom Mapping 

Lesion symptom mapping is a neuroimaging technique that helps to determine 

the function of brain regions by evaluating the relationship between the lesion location 

and performance on behavioral measures (Rorden, Karnath, and Bonilha, 2007). 

Furthermore, lesion symptom mapping has been used with a heterogeneous population 

of brain tumor patients to determine how brain lesions influence behavioral measures 

(Kuper et al., 2013). Kuper et al. (2013) found that the grooved pegboard was 

associated with lesions in lobe V (intermediate cerebellum), the cerebellar nuclei 

(dentate), and lobe VIII (lateral cerebellum). Additionally, percent of lesions in lobes of 

the cerebellum has been used in brain tumor populations (Kirschen et al., 2008; 

Ravizza et al., 2006). The current study looked at the percent of lesions in lobes of the 

cerebellum, similar to the technique used by Ravizza et al. (2006) and Kirschen et al. 

(2008) with brain tumor populations.  

2 Specific Aims 

The primary aim of this study was to investigate how damage to regions of the 

cerebellum related to phonemic fluency performance in adult survivors of childhood 
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brain tumors and the specificity of this relationship. Prior studies have suggested that 

damage to lobe VI, crus I, and crus II is related to phonemic fluency. Therefore, the 

current study expected to replicate this association and expand on it by testing it with a 

new population (brain tumor survivors) and determining the specificity of this 

relationship with other regions and measures. To examine the specificity of this 

relationship, the current study examined comparison brain regions and comparison 

tasks. Prior research has suggested that damage to lobes V, VIIIA, and VIIIB 

corresponds with poorer motor performance, and the current study expected to replicate 

and expand on this finding by testing it with a new population (brain tumor survivors) 

and determining the specificity of this relationship with other regions and measures. 

Furthermore, the current study expected that damage to lobe VI, crus I, and crus II 

would be dissociated from both motor performance and semantic fluency performance. 

Additionally, the current study expected to find dissociations between lobes V, VIIIA, 

and VIIIB and phonemic and semantic fluency performance. Since there has been 

evidence that the dentate and vermis are involved in connecting these regions to their 

respective cerebellar-cortical loops and speech production, the current study also 

expected to find that cumulative percent damage to the dentate nucleus and the vermis 

would be associated with poorer phonemic fluency, motor, and semantic fluency 

performance. 

The second aim of the study was to explore possible underlying factors that 

contributed to performance on verbal fluency and motor tasks in adult survivors of 

childhood brain tumors. Prior research provides empirical evidence that processing 

speed for verbal information is selectively disrupted following single pulse synchronized 
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transcranial magnetic stimulation of crus I and lobe IV. Thus, the current study explored 

the relationship between the regions of interest and both oral processing speed and 

written processing speed. The current study expected these results to be consistent 

with the findings for phonemic fluency and motor ability described above. Finally, 

because prior research has reported that damage to the entire cerebellum relates to 

global processing difficulties, the current study expected to find a relationship between 

the lesion size in the cerebellum and composite impairment across measures.  

2.1 Specific Aim 1 

 Tested a double dissociation between phonemic fluency and motor performance 

and their respective regions of interest in the cerebellum, and explored each ROI’s 

relationship with semantic fluency in adult survivors of childhood brain tumors and the 

specificity of these relationships. Then further investigated how lesion size in the 

dentate/vermis ROI related to each task. 

2.1.1 Hypothesis 1 

 Cumulative percent lesion of right lobe VI, crus I, and crus II would be 

associated with phonemic fluency, and dissociated from motor performance and 

semantic fluency performance.  

2.1.2 Hypothesis 2 

 Cumulative percent lesion of right lobes V, VIIIA, and VIIIB would be associated 

with motor performance, and dissociated from phonemic fluency performance. 
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2.1.3 Hypothesis 3 

 Cumulative percent lesion of the dentate nucleus and the vermis would be 

associated with phonemic fluency, motor, and semantic fluency performance. 

2.2 Specific Aim 2 

Tested a double dissociation between oral processing speed and written 

processing speed performance and regions of interest in the cerebellum to explore how 

damage to specific regions of the cerebellum related to oral processing speed and 

written processing speed in adult survivors of childhood brain tumors and the specificity 

of these relationships. 

2.2.1 Hypothesis 1 

 Cumulative percent lesion of right lobe VI, crus I, and crus II would be 

associated with oral processing speed, and dissociated from written processing speed.  

2.2.2 Hypothesis 2 

Cumulative percent lesion of the right lobes V, VIIIA, and VIIIB would be 

associated with written processing speed, and dissociated from oral processing speed. 

2.2.3 Hypothesis 3 

 Cumulative percent lesion of the dentate nucleus and the vermis would be 

associated with both written and oral processing speed. 

 

  



21 
 

2.3 Specific Aim 3 

Examined how percent lesion in the whole cerebellum related to composite 

impairment across measures.  

2.3.1 Hypothesis 1 

Cumulative percent lesion in the entire cerebellum would be related poorer 

composite performance (average of phonemic fluency, semantic fluency, motor 

performance, oral processing speed, and written processing speed).   

3 Methods 

3.1 Survivor Recruitment 

Data for this study was obtained from a larger study on the long-term outcomes 

following pediatric brain tumor diagnosis. In the larger study, survivors of childhood 

brain tumors were recruited from two sources. Survivors were either part of a long-term 

follow-up to a prior longitudinal study on childhood brain tumors, or survivors were 

recruited from a database of brain tumor survivors obtained from Children’s Healthcare 

of Atlanta (CHOA). Each participant was mailed a letter that described the study and 

asked them to call the research laboratory if they were interested in participating. Once 

they called the laboratory, participants were informed of the study description, risks, 

benefits, and compensation. Survivors of childhood brain tumors completed a screening 

form and were excluded if they had any of the following conditions: neurofibromatosis, 

MRI incompatible medical implants, or serious health complications (that would make 

an MRI scan impossible). Survivors also were excluded if they had an impairment in 

hearing or vision that would make them unable to complete the study. It was common 
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for survivors with a diagnosis of hydrocephalus to have a metal shunt placed in their 

skull to drain excess fluid. The participants with shunts were asked to provide the serial 

number for their implant, which was provided to the MRI technician to ensure that the 

participant would be safe in the 3 Tesla MRI scanner. 

Control participants were recruited from the Georgia State University community 

through the psychology participant pool, fliers posted around the community, and the 

Georgia State University/Georgia Institute of Technology Joint Center for Advanced 

Brain Imaging (CABI). Inclusion criteria included fluency in English, adequate hearing 

and vision to complete the study. Controls were excluded if they endorsed substance 

use, medical illnesses, or psychiatric problems. All procedures were reviewed and 

approved by the Georgia State University (IRB# H03177) and Georgia Institute of 

Technology (IRB# H14088) Institutional Review Boards. 

3.2 Procedure 

Participants were asked to come to 2 separate study visits. Informed consent 

was obtained at both visits.  At the first visit, all participants completed a structured 

clinical interview (SCID-II; First, Spitzer, Gibbon, and Williams, 2002) and a battery of 

cognitive testing with a trained graduate student. A MRI safety screener and a medical 

history questionnaire were completed with the participant. Participants were then 

administered a battery of neuropsychological tests. This testing session took 

approximately 4 hours. Participants who preferred not to complete an MRI (e.g. due to 

claustrophobia, safety concerns, or scheduling conflicts) did not continue to the second 

visit and were compensated for their time. Survivors received $50 for the first visit, and 

controls received research credit. 
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Of the 108 survivors recruited, 61 continued to the second visit of the study.  

Survivors indicated a number of reasons for not participating including most often the 

presence of a metallic medical implant and occasionally a lack of interest. The second 

visit of the study took place at the Georgia State University/Georgia Institute of 

Technology Shared Center for Advanced Brain Imaging. Upon arriving, each participant 

completed an additional MRI safety screening, which was then approved by an MRI 

technician for the scan. Once cleared for the MRI scan, a graduate student explained 

the MRI study procedures and completed an informed consent form with the participant. 

Participants were informed that they could discontinue the study at any time. Following 

the scan, a member of the research team debriefed and compensated each participant. 

Survivors and controls received $50 for the second visit. 

3.3 Participants 

Of the 61 participants who participated in the second part of the study, 29 had 

tumors in the cerebellum. Of these participants, four had poor quality imaging data. One 

participant had poor image quality due to movement, two had issues with registration, 

and one other participant had poor image quality due to an artifact. The remaining 25 

participants were selected for inclusion in the current study. The participants were on 

average 9 years old (SD=5) at diagnosis, and their average age at exam was 24 

(SD=5). The average Full Scale IQ (WASI) was 96.92 (SD=17.45). Thirteen individuals 

were diagnosed with medulloblastoma tumors, 10 with astrocytomas, and the remaining 

two individuals were diagnosed with an ependymoma and a pineoblastoma. In the 

current sample, 52% of the participants were female. Ethnicity in the sample was 80% 

Caucasian, 12% African American, 4% Hispanic, and 4% Asian. With regard to 
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treatment, 76% of the sample had a history of hydrocephalus, 56% had a history of 

radiation treatment, 60% had a history of chemotherapy (only 1 participant had 

chemotherapy without radiation therapy), 52% had a hormone deficiency, and 4% had a 

history of taking seizure medication. Of the participants who had radiation treatment 

(n=14), 100% had whole brain radiation therapy and almost all participants (93%), 

except for one individual, had an additional focal boost of radiation to the posterior 

fossa. Treatment protocol numbers included: CCG 9961 Arm A (n=3), POG 8695 (n=2), 

ACNS 0331 (n= 1), ACNS 0332 (n= 1), CCG 9961 and CHP 691 (n=1), CCG 9961 Reg 

B (n=1), POG 9331 Arm B (n=1), POG 9961 Arm A (n=1), and three participants did not 

have protocol numbers listed in their medical records (n=3). Four individuals had 

cerebellar mutism in childhood. Treatment factors, lesion location, and performance in 

adult survivors of childhood brain tumors may be related. The current study explored 

treatment variables (e.g. hydrocephalus, presence of radiation, chemotherapy, seizures) 

descriptively and in relationship to findings. 

3.4 Verbal Fluency Measures 

The Delis-Kaplan Executive Functioning System (D-KEFS) is a series of 

neuropsychological tests which measure a variety of domains of executive functioning 

(Delis et al., 2001). The D-KEFS is a validated standardized measure with good 

psychometric properties that consists of 9 separate subtests. This study focused on two 

subtests of the verbal fluency section: the letter (phonemic) fluency test and the 

semantic fluency test.  

The verbal fluency subtest of the D-KEFS is a timed task that involves 

participants naming as many words as possible in 60 seconds based on certain criteria. 
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Across verbal fluency subtests, participants are informed of specific rules (e.g., no 

proper nouns, no numbers, none of the same words with different endings). The verbal 

fluency task starts with phonemic fluency which requires participants to name as many 

words as possible that start with a specific letter, and consists of three separate letter 

conditions (F-A-S). Next participants completed the semantic fluency task, which is 

identical to the phonemic task- except participants are asked to name words in a 

specific category. The semantic fluency task consists of two separate semantic 

conditions (animals and boy’s names).  

Researchers report that the phonemic fluency subtest has a split-half reliability of 

.68 - .90 (depending on age) and a test-retest reliability of .80 (Homack, Lee and Riccio, 

2005). The semantic fluency subtest has a split-half reliability of .37-.68 (depending on 

age) and a test-retest reliability of .79 (Homack, Lee and Riccio, 2005). The semantic 

and phonemic fluency subtests also display good validity, and there is some evidence 

that the D-KEFs fluency subtest can distinguish between Alzheimer’s disease and 

Huntington’s disease (Delis et al., 2001). The individuals with Huntington’s disease 

displayed similar impairment across tasks due to difficulties with initiation, whereas the 

patients Alzheimer’s disease only displayed difficulties with the semantic and semantic 

switching subtests.  

Scores on the verbal fluency subtests are standardized based on the normative 

sample of the D-KEFS. For the current study, Z-scores were calculated based on the 

normative data in the D-KEFS normative standardization sample (Delis et al., 2001). 

The average Z-score for phonemic fluency was -.05 (SD=1.35) and the average Z-score 

for semantic fluency was 0.23 (SD=1.30). Prior empirical research suggests that 
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populations with cerebellar insults show particular difficulty with the phonemic (letter) 

fluency task (Leggio, Silveri, Petrosini, Molinari, 2000) over other fluency tasks. As 

previously mentioned, this finding may be due to timing or strategy generation. The D-

KEFs administration divides the number of words generated by 15 second blocks; thus, 

the current study also explored the number of words generated in the first and last 15 

seconds of the task for both phonemic and semantic fluency tasks.  

Across analyses, phonemic fluency was the primary dependent variable of 

interest. Semantic fluency was included as a dependent variable in analyses to ensure 

that the results are not due to component skills required for fluency tasks, such as word 

generation or attention abilities. The number of words generated in the first and last 15 

second block for both semantic and phonemic fluency tasks was used to explore 

whether timing or strategy generation was different across semantic and phonemic 

fluency tasks.  

3.5 Fine Motor and Processing Speed Measures 

Participants completed the grooved pegboard test (Trites, 1977) which measures 

speeded upper limb fine motor ability. During the grooved pegboard test the participant 

places 25 pins, each with a round peg and a square portion, into a matching keyhole on 

a board. The participant uses one hand to take each pin from a reservoir of pins on the 

board and matched the pins one at a time, in order, and as fast as possible. The 

participant does this task twice, first with their dominant hand, then again with their non-

dominant hand. For the current study, Z-scores were calculated for each hand based on 

normative data in a population standardization sample (Bornstein, 1985). The test-retest 

reliability for the grooved pegboard test is .94 for the dominant hand and .92 non-
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dominant hand, and measures of validity are within an acceptable range (Wang et al., 

2011).  Z-scores for the dominant hand were analyzed and included as the primary 

dependent variable for analyses of fine motor functioning. The average Z-score for 

dominant hand motor performance was -1.89 (SD=2.05). 

Processing speed was measured using the symbol digit modality test (Smith, 

1982). During this speeded number-symbol task, participants were given a sheet of 

paper with series of symbols, a blank box beneath each one. At the top of the page, 

there is a key where each symbol corresponds to a number. First, participants were 

asked to write the number that corresponds to the symbol in the box as fast as possible. 

The graduate student asked the participant to stop after 90 seconds. Next, participants 

were given another blank sheet and asked to call out the number that corresponds with 

the specific symbol according to a provided key. The graduate student wrote down the 

participants responses and stopped them after 90 seconds. The test-retest reliability for 

the written portion of the symbol digit modality test is .80 and the test-retest reliability for 

the oral symbol digit modality test is .76 (Smith, 1982). Additionally, performance on the 

symbol digit modality test was correlated to performance on the digit symbol subtest of 

the WAIS-R (Morgan and Wheelock, 1992).  The average Z-score for oral processing 

speed performance was -1.31 (SD=1.57), and the average Z-score for written 

processing speed was -1.73 (SD=1.61). 

The current study used the participants’ symbol digit modality test performance 

as a measure of processing speed performance in order to determine whether there 

was specificity of written and oral processing speed with the corresponding regions of 

interest (crus I, crus II and lobe VI for oral; lobes V and VIII for written). These measures 
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were selected because the written and oral tasks are identical, thus providing an ideal 

measure to explore whether it was the oral processing speed or the written processing 

speed that was disrupted. Therefore, Z-scores on each symbol digit modality test 

(written and oral) were included as dependent variables in analyses. Z-scores were 

calculated by subtracting the number of correct answers from the number of mistakes to 

obtain separate raw scores for both oral and written portions of the test. Then each raw 

score was subtracted from the mean normative scores (Smith, 1982) and then divided 

by the mean normative standard deviation, both of which are based on age range and 

level of education (<12 or >13). 

3.6 Measure of Lesion Size in Each Region 

Participants completed an MRI scan using a 3-Tesla Siemens Trio Magnetic 

Resonance Imaging System which included a T1-weighted 3D sequence (FOV=256mm, 

voxel size=1x1x1mm, TR/TE=2250ms/3.98 ms, flip angle=9°) and a T2-weighted 

sequence (FOV=256mm, voxel size=1x1x1mm, TR/TE=3200ms/402 ms). The current 

study used manual lesion tracing, as some researchers argue that it is the best 

technique for lesion symptom mapping (Timmann et al., 2008). The brain lesions were 

drawn and saved as a region of interest for each survivor using MRIcron software 

(http://www.mricro.com). Lesions were manually drawn on each slice of the T1-weighted 

image in the coronal view, checked in the axial and sagittal views, and then rechecked 

in the coronal view. Inspection bilaterally and across different views was used to ensure 

atrophy, healthy brain space (e.g., fourth ventricle or gyri), and large sulci were not 

included in lesion masks. Lesions were then verified with the T2 image. All lesion masks 

were verified and corrected by a neuroradiologist. 
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All images were converted into SUIT space to improve spatial resolution and 

normalization of the cerebellum, which is based on 24 healthy brains (Diedrichsen, 

2006; http://www.icn.ucl.ac.uk/motorcontrol/imaging/ suit.htm). Using Matlab R2014a, all 

scripts were run using SPM 8 with the SUIT toolbox, version 2.7.  First, images were 

converted to 3D NifTI images using the DICOM to NIfTI converter (Rorden et al., 2007). 

Then, the origin was set to the anterior commissure in SPM8. Next, the suit_isolate 

script was used to segment, crop, and mask the cerebellum. Each cerebellar mask was 

visually inspected and corrected. At that point, the suit_normalize script was used to 

normalize the cerebellums and the lesion ROIs into SUIT space, and suit_reslice was 

used bring the cerebellums and lesions into atlas space.  Next, suit_lobuli_summarize 

nanmean function was used to summarize the lesion size to each lobe of the 

cerebellum. The lesion size in each region of the cerebellum was divided by the total 

volume of each region, which resulted in the percent lesion size to each region of the 

cerebellum. The vermis of lobe V was not included because the SUIT atlas does not 

define this region due to poor anatomical boundaries relative to the cerebellar 

hemispheres (Schmahmann et al., 2000; Diedrichsen et al., 2009). For cumulative 

measures, an average of each region was used (e.g., (% lesion in right crus I + % lesion 

in right crus II + % lesion in right lobe VI) / 3 = % lesion of phonemic fluency related 

ROI). The measures were right lateralized for the motor and phonemic fluency related 

regions, and bilateral for the dentate/vermis regions due to their midline location and 

importance for cerebellar connectivity. All distinct left and right regions also were 

explored in the exploratory analyses. Lesion methods were modeled based on prior 

studies (e.g., Kuper et al., 2013; Kirschen et al., 2008; Ravizza et al., 2006) in which the 
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lesion ROI overlaid on top of an atlas template to determine the percentage of lesion 

size to relative to brain regions.  

Given the theoretical similarity among phonemic fluency and motor related 

regions of interest, the current study explored cumulative lesion size in each set of ROIs 

(i.e. cumulative lesion size in crus I, crus II, and lobe VI; cumulative lesion size in lobes 

V and VIII; cumulative lesion size in the dentate and vermis). Some researchers might 

argue that rather than percent lesion to the specific area of interest, the percent lesion 

to the entire cerebellum would explain the relationships. Thus, total lesion size was 

calculated as well.  

3.7 Atrophy Measure 

 Visual inspection of the T1 scans revealed possible cerebellar atrophy in the 

sample. However, cerebellar abnormalities could have been due to factors unrelated to 

atrophy (e.g., structure collapsing); therefore, an equation was developed to quantify 

atrophy. Volume of the intracranial vault was included in this measure to correct for any 

possible premorbid individual brain differences.  

Volume of the intracranial vault was calculated using SPM8 with Ashburner and 

Friston’s (2005) unified segmentation program to generate tissue maps of grey matter, 

white matter, and cerebrospinal fluid. Then the get_total script (Ridgway, 2007; 

http://www0.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m) was used to obtain a 3D 

voxel count for each image. The sum of the total gray matter, white matter, and 

cerebrospinal fluid volume was used to calculate the volume of the intracranial vault 

(Sanfilipo et al., 2007). This measure of intracranial vault is commonly used in 
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populations, such as multiple sclerosis, who experience both lesions and atrophy (e.g., 

Chard et al., 2002). For the cerebellar volume, the same script was used with the 

corrected cerebellar mask for the white and grey matter images. In an effort to quantify 

atrophy, the following formula was developed and corresponds with the prior literature. 

������������ 
���� ��
� � ����� ������ � ���� ������ � ������������ ����� 

Equation 1 Equation for ICV from Sanfilipo et al., 2007 

������������ 
����� �  ��������� ����� ������ � ��������� ���� ������ 

Equation 2 Cerebellar specific absolute parenchymal fraction. Adapted from 

Sanfilipo et al., 2007; original equation: (total gray + total white matter volume) 

������� �������  ��������� �  
� 
�����
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Equation 3 Cerebellar specific brain parenchymal fraction. Adapted from Sanfilipo 

et al., 2007; original equation: [gray matter + white matter] / ICV) 

!��"�"���#��������� �
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Equation 4 Adapted from Chard et al., 2002 atrophy measure with multiple 

sclerosis patients; original equation: [total white matter + lesion volume (all 

lesions were in WM)]/ ICV. 
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Equation 5 Adapted from Chard et al., 2002; Cross sectional comparison between 

matched controls and MS patients. Original equation: [Controls total white 

matter]/ ICV – [MS total white matter + lesion volume] / ICV. Lesion size was 

added back into survivors’ volume 

� % %������ �  
%������

�
� 
�����'()*+(,-

�

�

4 100 

Equation 6 Adapted from Chard et al., 2002; Cross sectional comparison between 

matched controls and MS reports percent decline relative to controls 

 

4 Planned Analyses 

Double dissociations help to determine the exact roles of brain structures and 

how they are involved in behavior, and provide strong evidence for the localization of 

behavioral functions. The goal of the current study was to localize the cerebellum’s 

contribution to behavioral measures. To dissociate phonemic fluency from motor 

functioning, the current study included comparison motor related regions and a 

comparison motor task. The current study also explored whether selective impairment in 

written or oral processing speed occurred based on lesion size in specific lobes of the 

cerebellum. Lastly, lesions in the dentate nucleus and the vermis disrupt the 

aforementioned loops that support both phonemic and motor related regions; therefore, 

lesions in these regions were hypothesized to negatively affect all measures. 
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Additionally, treatment factors (e.g., cranial radiation, hydrocephalus, seizure disorder, 

and hormone disorder) were explored in analyses as potential confounds and 

covariates.  

A confound was defined as a treatment variable that was correlated to both the 

independent variable (percent lesion size) and the dependent variable (behavioral 

performance). Confounds were accounted for statistically to ensure they were not 

misrepresenting the relationship between the independent variable and the dependent 

variable. A covariate was defined as a treatment factor that was correlated with the 

dependent variable (behavioral performance) but not the independent variable (ROI 

lesion size). Covariates were accounted for by using partial correlations.  

If findings were not consistent with hypotheses then they would be further 

probed. First, the individual regions (as opposed to cumulative ROIs) would be 

explored. Then, analyses would be replicated with the number of words generated 

during the first and last 15 second time block of the verbal fluency task, to determine 

whether impaired initiation, impaired word generation, or inflexible search strategies 

contributed to results. Only medium effect sizes would be reported in exploratory 

analyses to correct for multiple comparisons. This approach was used for each of the 

following analyses.   
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5 Results 

5.1 Outliers 

Outliers were defined using the outlier labeling rule, in which the interquartile 

range (Q375-Q125) was multiplied by a factor of 2.2, which was added to or subtracted 

from Q250 to determine the upper and lower boundary of outliers for each group 

(Hoaglin and Iglewicz, 1987). Outlier analysis was conducted and 3 survivors were 

changed to the next lowest score (5.81; Osborne and Overbay, 2004) due to extremely 

low scores on the grooved pegboard measure (Z-score of -7, -9, and -10). Two of the 

outliers had damage across all three ROIs, and the third did not have a lesion in the 

right hemisphere of the cerebellum but did have cerebellar atrophy. Analyses were run 

both with and without the outliers. The results did not appreciably change when outliers 

were removed, therefore they were included to increase the overall sample size and 

power in the analyses.  

5.2 Effect Size 

Because of the small sample size, the need to explore effect size was critical to 

ensure that a lack of statistical power was not explaining results. Effect size was defined 

based on Cohen (1988), who stated that when exploring Pearson’s r values, greater 

than .1  was defined as a small effect size, greater than .3 was defined as a medium 

effect size, and greater than .5 was defined as a large effect size.  

5.3 Descriptive Analyses 

A number of participants had some degree of damage across all regions. On 

average the highest lesion sizes occurred in the dentate and the vermis. Summary of 
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average lesion size across each lobe of the cerebellum is displayed below in Figures 4-

6.  On average, participants experienced about 14% total cerebellar lesion size (range 

2-28). On average, 10% of the right dentate (0-100), 4% of the left dentate (0-30), 7% of 

the total dentate (0-50), and 29% of the total vermis (0-72) was lesioned. With regard to 

the regions of interest (ROIs), average lesion size was 11% of the right phonemic ROIs 

(0-43), and 10% of the right motor ROIs (0-63). Average lesion size was 18% in the 

combined dentate and vermis region (0-42). In general, the highest degree of damage 

occurred in the vermis, whereas the cerebellar hemispheres had smaller amount 

damage. With regard to lesion laterality, 16 participants had midline lesions, 5 had left 

lateralized lesions, and 4 had right lateralized lesions. 

 

Figure 4 Summary of average cerebellar lesion size 
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Figure 5 Average lesion size in the 
dentate & vermis 

 

Figure 6 Average lesion size in the 
ROIs 

5.4 Group Comparisons 

Data from controls only was included in the atrophy equation. Survivors and 

controls were matched with regard to gender, age, and level of education. Group 

comparisons indicated that survivors differed from controls with regard to amount of 

cerebrospinal fluid (CSF), cerebellar white matter, cerebellar grey matter, total 

cerebellar volume, whole brain grey matter, and the proportion of the cerebellum 

relative to the intracranial vault (ICV; see Table 1). Table 2 displays subgroup 

comparisons. Cohen’s D values are reported to reduce bias due to multiple 

comparisons. Participants with high grade tumors had lower whole brain grey matter, 

whole brain white matter, cerebellar grey matter, cerebellar volume, and proportion of 

cerebellar volume relative to ICV when compared to low grade tumors and controls. 

Participants with low grade tumors had greater CSF, and less cerebellar grey matter, 

cerebellar white matter, and cerebellar volume when compared to controls. Participants 

with high grade and low grade tumors had on average the same lesion size, however, 

individuals with high grade brain tumors displayed significantly greater cerebellar 

atrophy when compared to individuals with low grade brain tumors.  
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Table 1 Survivor and control demographic and descriptive comparisons 

 
Survivors n=25 Controls n=25 Group differences Cohen’s D 

Gender 52% Female 52% Female   

Age at exam (years) M=23.68 
SD=5.06 
Range: 18-34 

M=23.56 
SD=4.44 
Range: 18-35 

t=-.09, p=.93 D=.03, r=.01 

Years of education M=13.88 
SD=2.49 

M=14.59 
SD=2.16 

t=-1.08, p=.29 D=-.30, r=-.15 

Age at diagnosis (years) M=9.32, 
SD=5.06 
Range 1-19 

   

Radiation & 
Chemotherapy 

n=14     56%    

Chemotherapy only n=1        4%    

High grade tumor n=15     60%     

Hydrocephalus n=19     76%    

Seizure medication n=1       4%    

Hormone deficiency n=13     52%    

Whole brain grey matter * M=646  
SD=80 

M=687  
SD=55 

t=2.09, p=.04 D=-.60, r=-.29 

Whole brain white matter^ M=442 
SD=62 

M=466 
SD=36 

t=1.73, p=.09 D=-.47, r=-.23 

CSF*  M=395 
SD=138 

M=287 
SD=68 

t=-3.51, p<.01 D=0.99, r=.44 

ICV M=1482 
SD=178 

M=1440 
SD=110 

t=-1.01, p=.32 D=.28, r=.14 

Cerebellar grey matter* M=81 
SD=15 

M=108 
SD=9 

t=-7.46, p<.01 D=-2.18, r=-.74 

Cerebellar white matter* M=43 
SD=8 

M=53 
SD=5 

t=-5.47, p<.01 D=-1.50, r=-.60 

Lesion size M=14 
SD=8 

   

Cerebellar volume (inc 
lesion)* 

M=138 
SD=23 

M=161 
SD=12 

t=-4.39, p<.01 D=-1.25, r=-.53 

Percent of CB atrophy M=11 
SD=12 

   

CB Proportion of ICV* M=.10 
SD=.02 

M=.11 
SD=.01 

t=2.46, p=.01 D=-.63, r=-.30 

Note. ^ indicates trend at p<.10; * indicates p<.05; CSF=cerebrospinal fluid; 
ICV=intracranial vault; CB=cerebellar; inc=including 
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Table 2 Subgroup descriptive statistics and effect sizes 

 Subgroup descriptive statistics Subgroup differences Cohen’s D 

 
High Grade 
n=15 

Low Grade 
n=10 

Controls  
n=25 

High Grade  
vs. Low Grade 

High Grade 
vs. Controls 

Low Grade 
vs. Controls 

Gender 60% Female 40% Female 52% Female    

Age at exam 
(years) 

M=23.67 
SD=5.26 
Range:18-34 

M=23.70 
SD=5.03 
Range: 18-32 

M=23.56 
SD=4.44 
Range: 18-35 

   

Years of education M=13.53 
SD=2.61 

M=14.40 
SD=2.32 

M=14.59 
SD=2.16 

   

Age at diagnosis 
(years) 

M=9.27 
SD=5.57 
Range 1-19 

M=9.40 
SD=4.50 
Range 3-17 

    

Radiation & 
Chemotherapy 

n=14    93% n=0       0%     

Chemotherapy only n=1       7% n=0       0%     

Hydrocephalus n=11     73% n=8       80%     

Seizure medication n=1       7% n=0       0%     

Hormone 
deficiency 

n=12     80% n=1      10%     

Whole brain grey 
matter

+
 

M=612  
SD=74 

M=697  
SD=64 

M=687  
SD=55 

-1.21** -1.20** 0.17 

Whole brain white 
matter

+
 

M=419 
SD=50 

M=475 
SD=66 

M=466 
SD=36 

-0.99** -1.15** 0.17 

CSF
+
 M=434 

SD=145 
M=336 
SD=106 

M=287 
SD=68 

0.75* 0.49 0.66* 

ICV M=1466 
SD=154 

M=1507 
SD=217 

M=1440 
SD=110 

-0.23 0.20 0.46 

Cerebellar grey 
matter

+
 

M=75 
SD=15 

M=90 
SD=11 

M=108 
SD=9 

-1.10** -2.85** -1.88** 

Cerebellar white 
matter

+
 

M=39 
SD=7 

M=49 
SD=6 

M=53 
SD=5 

-1.51** -2.41** -0.76* 

Lesion size
+
 M=14 

SD=8 
M=14 
SD=9 

 0   

Cerebellar volume 
(inc lesion)

 +
 

M=129 
SD=20 

M=152 
SD=21 

M=161 
SD=12 

-1.13** -2.07** -0.60* 

Percent of CB 
atrophy 

M=15 
SD=13 

M=5 
SD=5 

 0.94**   

CB Proportion of 
ICV

 +
 

M=.10 
SD=.02 

M=.11 
SD=.01 

M=.11 
SD=.01 

-0.59* -0.69* 0 

Note. + indicates significant difference; CSF= cerebrospinal fluid; ICV=intracranial vault; 
CB=cerebellar; inc= including; Cohen’s D: Small=0.2-0.3, Medium=0.5*, Large > 0.8** 
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5.5 Intracranial Vault (ICV) 

 To examine the possibility that survivors may, in general, have smaller brains 

due to neurological sequelae that was not captured in the ICV, a t-test was conducted 

between survivor and control groups and ICV. It revealed that survivors and controls 

were similar with regard to ICV, t(39.85)=-1.01, p=.32, Cohen’s d=.28, r=.14. The 

measure of ICV (white matter + grey matter + CSF) is commonly used in healthy 

individuals, brain tumor populations (Mulhern et al., 1999), and other clinical populations 

with atrophy (e.g., multiple sclerosis; Vagberg et al., 2013). CSF alone, which is 

commonly used in other populations with brain atrophy, was not used in the analyses 

because it does not differentiate between cerebellar lesion and cerebellar atrophy.  

5.6 Cerebellar Atrophy 

In an effort to quantify atrophy, the aforementioned formula was used. Survivors 

treated with cranial radiation had on average greater cerebellar atrophy, t(18.38)=-2.66, 

p=.01. Survivors treated without radiation therapy on average had 5% cerebellar 

atrophy (SD=5) and survivors who were treated with radiation therapy on average had 

15% cerebellar atrophy (SD=13). The relationships between radiation and atrophy, 

atrophy and hormone disorder, and NPS and atrophy were similar (r=.48, r=.39, r=.41, 

respectively). Of note, radiation, hormone disorder, and NPS are highly collinear (see 

5.10 Assumptions of Regression). ICV was not significantly different among survivors 

treated with or without radiation t(23)=.08, p=.94, suggesting that cerebrospinal fluid 

accounted for volume in atrophied spaces, and negligible differences remained in the 

estimate of premorbid brain size. Age at diagnosis was negatively related to atrophy, 

indicating that survivors diagnosed at a younger age had greater levels of atrophy when 
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compared to survivors diagnosed at older ages. Cerebellar atrophy was not related to 

total cerebellar lesion size (see Table 3; for a more detailed investigation see section 

5.21.1 Relationship between Lesion Size and Cerebellar Atrophy).  

Table 3 Correlations among atrophy and medical variables 

 

Surgery  

Type 
Seizures 

Age at 

diagnosis  

NPS Radiation Lesion 

Size 

Hormone 

Disorder 

Atrophy -.09 -.10 -.35 .41* .48* -.26  .39 

Note. N=25; *p <.05; NPS= Neurological Predictor Scale; Variables defined as: Surgery type (1= 
subtotal excision, 2= gross total resection), Seizures (0=no seizures, 1= presence of seizures), 
Age at diagnosis (years), NPS (low treatment 1 to 9 high treatment), Radiation (0=no radiation, 
1=presence of radiation), Lesion size (0-100%), Hormone disorder (0= no hormone disorder, 
1=presence of hormone disorder)  

5.7 Feasibility of Lesion Symptom Mapping 

In order to conduct lesion symptom mapping, it was important to have 

overlapping as well as distinct lesion areas. The first step of determining the lesion 

overlap was based on a preliminary visual evaluation of each participant’s T1 MRI scan. 

In the preliminary analyses, there was significant overlap in individuals with lesions in 

both motor and fluency related regions, but a few distinct lesion areas; based on visual 

inspection, 10 participants had lesions in both motor and fluency related regions, 14 

participants had lesions only in fluency related regions, and 4 participants had lesions 

only in motor related regions. While the preliminary analyses included 28 participants, 

only 25 survived imaging analyses (2 participants had registration issues and 1 

participant had an artifact). Once lesions were drawn and confirmed by a 

neuroradiologist, the lesion distribution changed due to increased precision and 

increased ability to distinguish between cerebellar lesion and cerebellar atrophy. After 

more precise analysis that included atrophy, 20 participants had some degree of 

damage across all three ROIs. Three individuals had damage outside of the proposed 
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ROIs, and only two individuals had damage that showed some degree of lesion 

specificity (see Table 4).  

Table 4 Summary of the percentage of cross regional lesion and atrophy 

ID Phonemic 
Lesion 

Motor 
Lesion 

Dentate 
Vermis 
Lesion 

Total 
Lesion 

Phonemic 
Atrophy 

Motor 
Atrophy 

Dentate 
Vermis 
Atrophy 

Total 
Atrophy 

1 27 10 14 15 0 0 5 0 
2 5 1 3 8 8 14 18 3 
3 7 1 23 14 23 19 9 27 
4 43 13 35 24 2 15 7 8 
5 0 13 5 7 14 1 24 13 
6 22 5 3 10 3 10 24 5 
7 41 5 38 23 0 0 8 10 
8 0 0 25 14 0 0 9 0 
9 1 0 30 19 4 11 9 25 

10 2 5 4 6 7 10 25 3 
11 12 2 33 21 48 54 16 15 
12 4 12 27 16 0 0 10 0 
13 11 23 12 11 17 16 30 21 
14 10 0 0 2 0 0 10 5 
15 9 11 40 28 4 4 5 0 
16 11 2 32 20 13 21 38 9 
17 7 3 20 13 0 0 17 3 
18 25 63 21 27 0 0 0 0 
19 0 2 29 14 34 32 10 13 
20 0 4 17 12 12 15 4 20 
21 41 45 42 28 19 28 34 0 
22 0 0 0 5 0 0 33 0 
23 9 23 2 10 14 9 11 42 
24 0 0 0 2 0 0 19 14 
25 0 0 0 3 37 71 3 33 
Note. All numbers indicate the percentage of the region that was damaged; IDs 22, 24, 

and 25 had lesions outside the proposed regions of interest, 16 individuals had lesions 

that went across all three ROIs, 3 individuals had lesions in the motor and the 

dentate/vermis ROIs (ID 5, 19, 20), 1 person had a lesion only in the dentate/vermis 

ROI (ID 8), 1 person had a lesion only in the phonemic ROI (ID 14), and 1 person had a 

lesion in the phonemic and dentate/vermis ROIs (ID 9). With regard to region specificity 

with atrophy, only IDs 8 (dentate/vermis) and 14 (phonemic fluency and dentate/vermis) 

did not display damage across ROIs. 
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5.8 Case Series 

Descriptive statistics indicated a large degree of diffuse damage and a general 

lack of regional specificity. Damage across regions makes it very difficult to test the 

proposed questions. To explore whether any participants showed the expected pattern 

of results, a case series with individuals who displayed lesion specificity was explored. 

The only two cases that displayed any specificity were IDs 8 (dentate/vermis) and 14 

(phonemic and dentate/vermis). For the case series, significance was defined as 

greater than or equal to 1.5 standard deviations below the mean on behavioral 

measures. Thus, the hypothesis was that both participants with damage in the 

dentate/vermis ROI would have impaired performance across measures. The 

participant with damage to the phonemic ROI in addition to the dentate/vermis ROI was 

expected to have a greater degree of impairment on the phonemic fluency measure, 

when compared to other measures. The last hypothesis was that total lesion size would 

be related to poorer composite performance (average of phonemic fluency, semantic 

fluency, right motor performance, oral processing speed, and written processing speed). 

The planned additional analysis on the number of words generated during the each time 

block of the verbal fluency task was also explored. 

It was important to look at results with consideration for individual differences 

participant 8 had a high grade tumor that was treated with radiation (whole brain and 

focal) and chemotherapy. Participant 8 also had secondary complications including 

hydrocephalus and hormone disorder. Participant 14 had a high grade tumor that was 

treated with radiation (whole brain and focal) and secondary complications of 

hydrocephalus and seizures.  



48 

Results are presented in Table 5. Participant 8, who had damage to the dentate 

and the vermis, displayed impaired performance on semantic fluency, oral processing 

speed, and written processing speed measures. However, unexpected resiliencies were 

seen in phonemic fluency and motor performance. Participant 14 displayed intact 

performance across all measures that were hypothesized to be affected. Therefore this 

case series was not consistent with the hypotheses that individuals with lesions in the 

phonemic and dentate/vermis ROIs would display corresponding deficits in behavioral 

performance. It is important to note that 14% of the cerebellum of participant 8 was 

lesioned, whereas only 2% of the cerebellum of participant 14 was lesioned. 

Correspondingly, participant 8 displayed more global impairments on behavioral 

measures, whereas participant 14 displayed intact performance. Therefore the last 

hypothesis, that total lesion size would be related to cumulative performance, was 

supported by the case series. With regard to the number of words generated in each 15 

second time block (see Figure 8), participant 8 displayed similar trajectories on both the 

phonemic and semantic fluency measures. Participant 14 appeared to do slightly better 

at sustaining fluency on the semantic measure, when compared to the phonemic 

measure. However, this difference did not appear to be substantial enough to conclude 

that there are differences between semantic and phonemic fluency performance.  
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Note. Participant 8 had damage exclusively in the dentate/vermis ROI, and participant 
14 had damage exclusively in the phonemic ROI and the dentate/vermis ROI 

Figure 7 Case Series: Plot of Z-scores on behavioral measures 

 

Table 5 Case series: Z-score performance across behavioral measures 

Note. * indicates significantly impaired Z-score (<1.50); participant 8 had damage exclusively in 
the dentate/vermis ROI, and participant 14 had damage exclusively in the phonemic ROI and 
the dentate/vermis ROI 
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Note. Participant 8 had damage exclusively in the dentate/vermis ROI, and participant 14 had 
damage exclusively in the phonemic ROI and the dentate/vermis ROI

 

Figure 8 Number of words generated during the 15
phonemic and semantic fluency measures
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cerebellar damage. Because the dentate and the vermis are critical regions of 

connection and damage to these regions has been associated with poorer outcomes 

(e.g., Szathmari et al., 2010), lesion size in the dentate and the vermis was also 

investigated. Prior research has not determined the precise causes of cerebellar 

atrophy, but researchers have suggested that cerebellar atrophy could result from 

surgery, damage to the dentate, cranial irradiation, seizures, or seizure medication 

(Poretti, Wolf, and Boltshauser, 2008). There is evidence from multiple sclerosis 

populations that brain atrophy may be independent of lesion size (Chard et al., 2002). 

Both cerebellar atrophy and cerebellar lesion size appear to be related to motor and 

cognitive difficulties (e.g., Schmahmann, 2004); however, due to methodological 

limitations researchers have not been able to investigate the interaction between the 

lesion size and the amount of cerebellar atrophy (e.g., Timmann, 2008). Animal models 

suggest that the cells in the cerebellum are more likely to regenerate if there is a small 

degree of uniform damage (Rohkamm, 1977). Therefore, cerebellar atrophy was 

hypothesized to change the relationship between lesion size and behavioral 

performance, such that individuals with larger lesions would be more affected by 

cerebellar atrophy, whereas individuals with smaller lesions would be less affected by 

cerebellar atrophy. After testing assumptions, confounds, and covariates, multiple 

regressions were used to test the hypotheses. 

5.9.1 Hypothesis 1 

An interaction between cerebellar lesion size and cerebellar atrophy (such that 

survivors with larger lesions would be more affected by atrophy than survivors with 

smaller lesions) would predict cumulative performance and all behavioral measures 
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(phonemic and semantic fluency, motor performance, and written and oral processing 

speed).  

5.9.2 Hypothesis 2 

An interaction between lesion size in the dentate and the vermis and cerebellar 

atrophy (such that survivors with larger lesions would be more affected by atrophy than 

survivors with smaller lesions) would predict all behavioral measures (phonemic and 

semantic fluency, motor performance, and written and oral processing speed).  

5.10 Assumptions of Regression 

It is important to note when interpreting results that lesion size in the cerebellum 

and lesion size in the dentate/vermis were highly correlated and could not be modeled 

in the same equation due to problems with multicollinearity (r=.91, p<.01). Other 

variables that displayed a high degree of multicollinearity included: radiation and 

hormone disorder (r=.76, p<.01), tumor grade and hormone disorder (r=.69, p<.01), 

tumor grade and radiation (r=.92, p<.01), and tumor grade and the neurological 

predictor scale (r=.86, p<.01). Other assumptions of regression (e.g., normal 

distribution, homoscedasticity, independence of residuals) were not violated in the 

regression models. Nonlinear relationships among variables were also explored and did 

not appear in scatter plots and were not statistically significant when tested 

quantitatively.  

5.11 Potential Confound Analyses 

Potential confounds were defined as treatment variables that were correlated to 

both the independent variable (lesion size) and the dependent variable (behavioral 
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performance). Potential confounds were chosen based on prior literature which has 

reported that radiation, hydrocephalus, seizures, hormone disorder, age at diagnosis, 

tumor grade, cumulative neurological risk factors, and atrophy corresponds with poorer 

behavioral outcomes (Butler and Haser, 2006; Ris and Noll, 1994; Hardy, Bonner, 

Willard, Watral, and Gururangan, 2008; Palmer et al., 2003). As previously mentioned, it 

is important to interpret these relationships with the consideration that some of these 

variables are highly collinear. 

As reported in Table 6, Pearson and Point-biserial correlations revealed that 

some disease and treatment factors, such as radiation, hormone disorder, age at 

diagnosis, and cerebellar atrophy, did correlate with lesion size in the cerebellum and 

lesion size in the dentate/vermis ROI. Radiation, hydrocephalus, seizure disorder, and 

hormone disorder were defined as dichotomous variables where 0 indicated treatment 

or disorder was not present and 1 indicated treatment or disorder was present. Age at 

diagnosis was defined in years; tumor grade was defined as 1 indicating a low grade 

tumor and 2 indicating a high grade tumor. The Neurological Predictor Scale (NPS; 

Micklewright et al., 2008) is a cumulative measure that includes treatment complications 

such as hydrocephalus, hormone deficiency, seizures, as well as amount of brain 

surgery, presence and type of radiation therapy, and chemotherapy, and values range 

from 0 (no treatments or complications) to 9 (high degree of treatments and 

complications). The aforementioned formula for atrophy was used, and provided a 

measure of the percentage of atrophy in the cerebellum secondary to lesion size. Total 

cerebellar volume and ICV were also included to verify that the percent lesion was not 
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highly correlated with the volumetric measures used in the atrophy equation (see Table 

6).  

For radiation, a small, but statistically non-significant, effect was present between 

cerebellar lesion size and radiation, such that individuals treated with radiation therapy 

had slightly smaller lesions in the cerebellum than those without radiation therapy. In 

contrast, a small, but statistically non-significant, effect was present between hormone 

disorder and total lesion size as well as lesion size in the dentate and the vermis, 

indicating that individuals with hormone disorder had slightly larger lesions in the 

cerebellum and the dentate/vermis ROI than participants without hormone disorder. 

These findings may, however, be due to radiation therapy considering that only one 

individual with hormone disorder was not treated with radiation therapy.  

With regard to age at diagnosis, there was a small positive relationship between 

lesion size in the dentate/vermis and age at diagnosis, such that individuals older at 

diagnosis had larger lesions in the dentate/vermis ROI. For cerebellar atrophy, a small, 

but statistically non-significant, negative effect was detected between the total lesion 

size and cerebellar atrophy (r=-.26). This relationship was similar for lesion size in the 

dentate/vermis ROI and atrophy (r=-.22) and indicated that as lesion size increased total 

cerebellar atrophy decreased. Additionally, for seizures, the non-significant negative 

relationships between total lesion size and presence of seizures were based on only 

one individual who had seizures. Lastly, volumetric correlations indicated that there 

were small non-significant relationships between the percent lesion measures (total 

cerebellum and dentate/vermis) and ICV, such that as lesion size increased ICV slightly 

increased.  
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Table 6 Correlation coefficients for potential confound analyses 

 Rad Hydro Seizures Hormone Age 
Dx 

Tumor 
Grade 

NPS Atrophy CB Volume ICV 

% Lesion in  
Cerebellum 

-.10 -.01 -.31 .12 .02 .03 .02 -.26 .09 .19 

% Lesion in 
Dentate & 
Vermis 

-.03 .02 -.26 .14 .17 -.01 .06 -.22 .14 .22 

Note. N=25; all p values>.05; Rad= Radiation Therapy; Hydro= Hydrocephalus; Dx=Diagnosis; 
NPS=Neurological Predictor Scale; CB=Cerebellum; ICV=Intracranial Vault 
 

5.12 Potential Covariate Analyses 

Across behavioral measures, a number of treatment variables were correlated 

with behavioral outcomes (see Table 7). Therefore, a cumulative measure of total 

treatments was used as a covariate in all of the following analyses. The Neurological 

Predictor Scale (NPS; Micklewright et al., 2008) is a cumulative measure that includes 

treatment complications such as hydrocephalus, hormone deficiency, seizures, as well 

as amount of brain surgery, presence and type of radiation therapy, and chemotherapy. 

Cerebellar atrophy also was included as a covariate in all analyses because it had a 

small to large negative correlation across behavioral measures (-.29 - -.57; see Table 

7), indicating that as atrophy increased behavioral performance across measures 

decreased. Region specific atrophy was explored, but resulted in much smaller 

correlations among behavioral measures when compared to total atrophy (see Table 8). 

Therefore, total atrophy was selected as the covariate for the subsequent analyses.  

Due to a small sample size and limited power, only variables with medium to large effect 

sizes were included as covariates in the analyses (NPS and atrophy), and because age 

at diagnosis consistently displayed a small effect size, it was not included as a 

covariate.  
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Table 7 Correlation coefficients for potential covariate analyses 

 Rad Hydrocephalus Seizure Hormone Age 
Dx 

NPS Total 
Cerebellar 
Atrophy 

Phonemic Fluency -.38^ -.09 .16 -.30 .23 -.37^ -.32 

Motor 
Performance 

-.37^ .15 .11 -.39^ .02 -.21 -.56** 

Semantic Fluency -.43* -.14 .28 -.52** .28 -.44* -.29 

Oral Processing 
Speed 

-.39^ .10 .35^ -.38^ .19 -.28 -.46* 

Written Processing 
Speed 

-.40* .15 .33 -.50* .24 -.31 -.57** 

Cumulative 
Performance 

-.46* .06 .28 .49* .21 -.37^ -.54** 

Note. N=25, ^indicates trend <.10; * indicates p<.05; ** indicates p<.01; Rad=Radiation; 
Dx=Diagnosis; NPS=Neurological Predictor Scale  

 

Table 8 Correlation coefficients for region specific atrophy 

 Phonemic 

Fluency 

Dominant 

Motor 

Performance 

Semantic  

Fluency 

Oral 

Processing 

Speed 

Written 

Processing 

Speed 

Atrophy in 

Phonemic 

ROIs 

-.35^ -.09 -.27 -.43* -.29 

Atrophy in 

Motor ROIs 

-.25 -.19 -.23 -.43* -.30 

Atrophy in 

Dentate/Vermis 

-.19 -.04 -.12 -.17 -.28 

Total 

Cerebellar 

Atrophy 

-.32 -.56** -.29 -.46* -.57** 

Note. N=25; ^indicates trend <.10; * indicates p<.05; ** indicates p<.01 
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5.13 Cumulative Performance: Total Lesion Size and Atrophy 

All variables were checked for multicollinearity using variance inflation factor 

analyses (VIF). VIF values of multicollinearity were within an acceptable range (<5). 

Unfortunately, lesion size in the dentate/vermis ROI was unable to be included as a 

covariate in any of the total lesion size analyses due to problems with multicollinearity 

that would double the standard error (VIF>5); therefore, lesion size in the 

dentate/vermis ROI was explored separately in subsequent analyses.  

The first hypothesis was tested using a four predictor simultaneous entry 

regression model including the covariates (Neurological Predictor Scale (NPS) and 

Atrophy), total cerebellar lesion size and the interaction term (Cerebellar Atrophy*Lesion 

Size) as predictors of cumulative performance. All variables were grand mean centered 

to aid interpretation. This model accounted for 47% of the variance in cumulative 

performance (average of all measures), Adj R2=.47,F(4,20)=6.27, p<.01. In the model, 

NPS was a trending towards significance (Beta=-.30, p=.09). Given the strength of this 

relationship, it is likely that if the study was replicated with a larger sample size higher 

NPS scores would result in poorer overall performance (See Table 9 for regression 

coefficients). A main effect of atrophy on cumulative performance was not significant at 

the average lesion size, and after controlling for NPS. Larger cerebellar lesion size was 

associated with higher cumulative performance at the average level of atrophy, B=.07, 

SE=0.03, Beta=.40, p=.03. Cerebellar lesion size uniquely explained 12% of the 

variance in cumulative performance. An interaction effect between atrophy and total 

lesion size indicated that the effect of atrophy was different based on size of the 

cerebellar lesion, B=.01, SE=0.00, Beta=.54, p=.01, and accounted for 22% of the 
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variance in cumulative performance. The interaction term indicated that the slope of the 

regression line between cumulative performance and atrophy varied based on lesion 

size (see Figure 9). Therefore, the results were inconsistent with the hypothesis that 

larger lesions would be more affected by atrophy and, rather, analyses suggested that 

individuals with smaller cerebellar lesions were more negatively affected by (steeper 

slope) a larger amount of cerebellar atrophy.  

Table 9 Regression coefficients for total lesion size and atrophy predicting 
cumulative performance 

Variable B SE B Beta p sr2 VIF 

NPS (Centered) -.17 .09 -.30 .09 .07 1.28 

Atrophy (Centered) -.02 .02 -.16 .40 .02 1.60 

Total Lesion Size 
(Centered) 

.07 .03 .40 .03 .12 1.33 

Interaction (Atrophy*Lesion 
Size) 

.01 .00 .54 .01 .22 1.32 



59 

 

Note. Continuous interaction is probed at three levels (low, moderate, and high damage 
due to lesion).  
 
Figure 9  Interaction between cerebellar lesion size and atrophy predicts 
cumulative performance 

 
5.14 Total Lesion Size and Atrophy: Fluency and Motor 

The first hypothesis was also tested across dependent variables (motor 

performance, phonemic fluency, semantic fluency, oral processing speed, and written 

processing speed) using the same four predictor regression model. The model 

significantly predicted motor performance (Adj R2=.30, F(4,20)=3.62, p=.02); however, 

none of the independent variables were significantly correlated with motor performance. 

The model did not significantly predict phonemic fluency performance (Adj R2=.21, 

F(4,20)=2.64, p=.07). However, the model did predict semantic fluency performance 

(Adj R2=.35, F(4,20)=4.20, p=.01). Similar to the results presented in the cumulative 
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model, NPS (B=-.28, SE=0.10, Beta=-.52, p=.01) and the interaction term (B=.01, 

SE=0.00, Beta=.54, p=.01) significantly predicted semantic fluency performance. 

Therefore, overall the first hypothesis was not supported for motor or phonemic verbal 

fluency performance; however, NPS and the interaction term were found to be 

predictors of semantic fluency performance.  

5.15 Total Lesion Size and Atrophy: Oral Processing Speed 

The first hypothesis was supported for the oral processing speed measure using 

the same four predictor regression model (NPS, atrophy, total lesion size, and the 

interaction term) accounted for 33% of the variance in oral processing speed, Adj 

R2=.33, F(4,20)=3.95, p=.02. NPS was not significant, p=.25 (See Table 10 for 

regression coefficients). A main effect of atrophy was not significant at the average 

lesion size and after controlling for NPS. Total cerebellar lesion size was not 

significantly associated with oral processing speed performance at the average level of 

atrophy and after controlling for NPS, B=.07, SE=0.04, p=.10. An interaction effect 

between atrophy and total lesion size was present and indicated that the effect of 

atrophy was different based lesion size, B=.01, SE=0.00, p=.01, and accounted for 21% 

of the variance in oral processing speed. The interaction term indicated the slope of the 

regression line between oral processing speed and atrophy changed based on lesion 

size (see Figure 10). Specifically, when estimating oral processing speed, individuals 

with smaller lesion sizes were more affected by (steeper slope) a greater amount of 

cerebellar atrophy, whereas individuals with larger cerebellar lesions were less affected 

by greater atrophy. Similar to the cumulative measure, the results were inconsistent with 

the hypothesis that larger lesions would be more affected by atrophy and, rather, 
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analyses suggested that individuals with smaller cerebellar lesions had oral processing 

speed that was more negatively affected by a larger amount of cerebellar atrophy.  

Table 10 Regression coefficients for total lesion size and atrophy predicting oral 
processing speed performance 

 

Note. Continuous interaction is probed at three levels (low, moderate, and high damage 
due to lesion).  
 
Figure 10  Interaction between total cerebellar lesion size and atrophy predicts 
oral processing speed performance 

Variable B SE B Beta P sr2 VIF 

NPS (Centered) -.15 .12 -.22 .25 .04 1.28 

Atrophy (Centered) -.02 .03 -.14 .53 .01 1.60 

Total Lesion size 
(Centered) 

.07 .04 .33 .10 .08 1.33 

Interaction 
(Atrophy*Lesion size) 

.01 .00 .53 .01 .21 1.32 
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5.16 Total Lesion Size and Atrophy: Written Processing Speed 

To test hypothesis one, the same model also was tested for written processing 

speed and accounted for 48% of the variance, Adj R2=.48, F(4,20)=6.49, p<.01. Main 

effects of NPS and atrophy were not significant (See Table 11 for regression 

coefficients). Larger cerebellar lesion size was associated with better written processing 

speed performance at an average level of cerebellar atrophy after controlling for NPS, 

B=.08, SE=0.03, p=.03, and uniquely explained 12% of the variance in written 

processing speed. An interaction effect between atrophy and total lesion size was 

present in the sample, B=.01, SE=0.00, p=.01, and accounted for 20% of the variance in 

written processing speed. Similar to the previous models of cumulative performance 

and oral processing speed, the interaction term indicated that the slope of the 

regression line between written processing speed and atrophy was changed based on 

lesion size, and individuals with smaller cerebellar lesion size were more affected by 

(steeper slope) a greater amount of total atrophy (see Figure 11). 

Table 11 Regression coefficients for total lesion size and atrophy predicting 
written processing speed performance 

Variable B SE B Beta 

 

p sr2 VIF 

NPS (Centered) -.15 .11 -.22 .20 .04 1.28 

Atrophy (Centered) -.03 .03 -.23 .24 .03 1.60 

Total Lesion size 
(Centered) 

.08 .03 .41 .03 .12 1.33 

Interaction 
(Atrophy*Lesion size) 

.01 .00 .52 <.01 .20 1.32 
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Note. Continuous interaction is probed at three levels (low, moderate, and high damage 
due to lesion).  
 
Figure 11  Interaction between cerebellar lesion size and atrophy predicts written 
processing speed performance 

 

5.17 Dentate/Vermis Lesion Size and Atrophy: Fluency and Motor Performance 

To test the second hypothesis identical models were run with lesion size in the 

dentate/vermis ROI rather than total cerebellar lesion size. The dentate/vermis ROI 

models did not predict phonemic fluency performance, Adj R2=.09, F(4,20)=1.61, p=.21. 

Whereas, for semantic fluency the model was trending towards significance, Adj R2=.23, 

F(4,20)=2.82, p=.052, NPS was a significant predictor, (NPS: B=-.24, SE=0.11, p=.04), 

and the interaction term was a trend (dentate/vermis*atrophy: B=.00, SE=0.00, p=.051). 

However, the dentate/vermis ROI model did predict motor performance, Adj R2=.31, 

F(4,20)=3.70 p=.02, and two variables were trending towards significance: cerebellar 

atrophy Beta=-.39, p=.08 and the interaction (atrophy*dentate vermis lesion size) 
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Beta=.37, p=.07. Therefore, the second hypothesis was not significant for phonemic 

fluency performance, but was a trend for semantic fluency and motor performance. 

5.18 Dentate/Vermis Lesion Size and Atrophy: Oral Processing Speed and Written 

Processing Speed 

To test hypothesis two, the same four predictor regression model was tested for 

the dentate/vermis ROI and written and oral processing speed. The dentate/vermis 

model did not significantly predict oral processing speed although this model was 

trending towards significance, Adj R2=.18, F(4,20)=2.33, p=.09.  

In contrast, the second hypothesis was supported for written processing speed. 

The four predictor model included NPS, atrophy, dentate/vermis lesion size, and an 

interaction term (Atrophy* dentate/vermis lesion size) as predictors, and accounted for 

40% of the variance in written processing speed, Adj R2=.40,F(4,20)=4.98, p<.01. NPS 

did not significantly predict written processing speed (See Table 12 for regression 

coefficients). A main effect of atrophy was not significant at the average lesion size. 

Lesion size in the dentate/vermis ROI was not associated with written processing speed 

at the average level of atrophy, and after controlling for NPS, B=.02, SE=0.02, p=.20. 

However, an interaction effect between atrophy and lesion size in the dentate/vermis 

ROI was present in the sample, B=.00, SE=0.00, p=.02, and accounted for 15% of the 

variance in written processing speed. The interaction term indicated the slope of the 

regression line between written processing speed and atrophy changed based on the 

size of the lesion in the dentate/vermis ROI, such that individuals with smaller lesion in 

the dentate/vermis were more affected by (steeper slope) a greater amount of 

cerebellar atrophy (See Figure 12). Left and right dentate regions (as opposed to 
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cumulative regions) were tested individually in regression models and did not 

significantly predict written processing speed. 

Table 12 Regression coefficients for lesion size in the dentate/vermis ROI and 
atrophy predicting written processing speed performance 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Note. Continuous interaction is probed at three levels (low, moderate, and high damage 
due to lesion).  
 
 
Figure 12  Interaction between dentate/vermis lesion size and atrophy predicts 
written processing speed performance 

Variable B SE B Beta 

 

p sr2 VIF 

NPS (Centered) -.10 .12 -.15 .42 .02 1.24 

Atrophy (Centered) -.04 .03 -.27 .18 .05 1.59 

Dentate/Vermis Lesion 
size (Centered) 

.02 .02 -.22 .20 .04 1.11 

Interaction 
(Atrophy*Lesion size) 

.00 .00 .43 .02 .15 1.26 
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5.19 Planned Secondary Analyses: What is Associated with Cerebellar Atrophy? 

Due to the possibility that tumor malignancy, age at diagnosis, or presence of 

cranial radiation was associated with cerebellar atrophy, secondary analyses were used 

to explore these possible relationships.  

5.19.1 Age at Diagnosis and Radiation  

Prior research suggests that children diagnosed with high grade brain tumors at 

a very young age (<5) may delay radiation treatment due to the negative impact on the 

developing central nervous system and white matter in the brain (Mulhern et al., 1992). 

In the current sample this was true for one individual (ID 20 diagnosed at age 1, 

medulloblastoma, no radiation, no cerebellar atrophy). This was the only participant with 

a medulloblastoma tumor who was not treated with radiation therapy. Other individuals 

diagnosed at a young age received radiation therapy within one month of diagnosis (ID 

16 diagnosed at age 4, medulloblastoma, radiation, 42% cerebellar atrophy and ID 24 

diagnosed at age 3 medulloblastoma, radiation, 33% cerebellar atrophy). In the current 

sample, it is impossible to differentiate treatment from tumor malignancy because no 

low grade tumors were treated with radiation, and only one high grade tumor was not 

treated with radiation. However, for participants who received radiation treatment, young 

age at diagnosis was correlated with greater cerebellar atrophy (n=14, r=-.64, p=.01). In 

contrast, age at diagnosis was not related to the amount of atrophy for individuals who 

were not treated with radiation (n=11, r=-.06, p=.86; see Figure 13).  
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Note. Visual depiction of the interaction between age at diagnosis and radiation as it relates 
to cerebellar atrophy. For the radiation group, younger age at diagnosis was associated with 
higher degrees of atrophy; however, in the no radiation group age at diagnosis was not 
associated with atrophy.  
 

Figure 13 Treatment groups: Interaction between age at diagnosis and 
cerebellar atrophy 

 

5.19.2 Interaction between Age at Diagnosis and Radiation predicts Cerebellar 

Atrophy 

Based on the evidence from the correlational analyses, an interaction 

between age at diagnosis and radiation therapy predicting atrophy was explored. A 

three predictor regression model, which included the simultaneous entry of age at 

diagnosis, presence of radiation, and an interaction term (age*radiation) as 

predictors, accounted for 44% of the variance in cerebellar atrophy, Adj R2=.44, 

F(3,21)=7.30, p<.01. A main effect of age at diagnosis was not significant. Presence 

of radiation was associated with higher cerebellar atrophy, B=11.99, SE=3.52, 

Beta=.52, p<.01. Radiation uniquely explained 27% of the variance in cerebellar 

atrophy. An interaction effect between age at diagnosis and radiation was present in 

the sample, B=-1.51, SE=0.72, Beta=-.50, p=.049, and accounted for 10% of the 
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variance in atrophy. The interaction term indicated that for individuals treated with 

radiation, younger age at diagnosis was associated with higher cerebellar atrophy. 

When NPS was added to the model, it was not a significant predictor of cerebellar 

atrophy (B=-.92, SE=1.67, Beta=-.19, p=.59); therefore it was removed for 

parsimony.  

Table 13 Regression coefficients for age at diagnosis and radiation predicting 
cerebellar atrophy 

Note. Rad= Radiation Therapy; Age=Age at diagnosis 

 

5.19.2 Lesion Size and the interaction between Age at Diagnosis and Radiation  

To determine whether lesion size changed the interaction between age at 

diagnosis and radiation therapy with regard to cerebellar atrophy, the sample was 

split into small and large lesion groups based on the median lesion size (14%). 

Individuals with less than 14% of their cerebellum lesioned were placed in the small 

lesion group (n=12), and individuals with greater than or equal to 14% of their 

cerebellum lesioned were placed in the large lesion group (n=13). For both groups, 

radiation therapy appeared to change the relationship between age at diagnosis and 

cerebellar atrophy; however, individuals in the large lesion group who received 

radiation displayed a steeper slope between age at diagnosis and atrophy, when 

compared to the small lesion group (see Figures 14-15). In contrast, correlations 

Variable B SE B Beta 

 

p sr2 VIF 

Age at diagnosis 
(Centered) 

-.07 .56 -.03 .91 .00 2.52 

Radiation  
(0=no rad, 1=rad) 

11.99 3.53 .52 <.01 .27 2.49 

Interaction (age*rad) -1.51 .72 .50 .049 .10 1.02 
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among subgroups (large lesion + radiation and small lesion + radiation) suggested 

that individuals with smaller lesion sizes and radiation had a stronger correlation 

between age at diagnosis and radiation therapy (r=-78, p=.02) when compared to the 

larger lesion group (r=-.45, p=.37); however, these results should be interpreted with 

caution due to extremely small sample size (n=8 and n=6, respectively).  

 

 
Note. Visual depiction of the interaction between age at diagnosis and radiation as it relates 
to cerebellar atrophy for individuals with small cerebellar lesions (<14%). For the radiation 
group, younger age at diagnosis was associated with higher degrees of atrophy; however, in 
the no radiation group age at diagnosis was not associated with atrophy.  
 

Figure 14 Small Lesions: Interaction between age at diagnosis and cerebellar 
atrophy 
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Note. Visual depiction of the interaction between age at diagnosis and radiation as it relates 
to cerebellar atrophy for individuals with large cerebellar lesions (>14%). For the radiation 
group, younger age at diagnosis appeared to be associated with higher degrees of atrophy 
and a steeper slope than the small lesion group; however, in the no radiation group age at 
diagnosis was not associated with atrophy.  
 

Figure 15 Large Lesions: Interaction between age at diagnosis and cerebellar 
atrophy 

 

5.19.3 Time since Radiation and Atrophy  

Age at diagnosis and time since radiation were highly correlated (r=.70, 

p<.01). Time since treatment was linked to age at diagnosis because younger 

children are inherently at a longer time since diagnosis when compared to children 

who were diagnosed when they are older. While results are interpreted as young age 

at diagnosis and radiation contributing to atrophy, it is important to note that time 

since radiation also displayed a positive medium effect size (r=.48, p=.09), although 

non-significant, with cerebellar atrophy (see Figure 16). 
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Figure 16 Time since radiation is correlated with cerebellar atrophy 

 
5.20 Relationships among Age at Diagnosis, Radiation Therapy, Atrophy, Lesion 

Size, and Processing Speed 

In summary, the hypotheses that lesions in the cerebellar regions would 

discriminate based on behavioral performance could not be tested due to a high 

degree of overlapping lesion locations and the discovery of cerebellar atrophy. 

Results from the current study suggested that young age at diagnosis and presence 

of radiation therapy correlated with higher cerebellar atrophy. Furthermore, 

individuals with smaller cerebellar lesions, and greater cerebellar atrophy displayed 

lower overall processing speed (oral and written modalities). Figure 17 displays a 

graphical depiction of the results of the current study.  
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Note. Grey arrows indicate significant effects, white arrow signifies that there is 

evidence to suggest that cerebellar lesion size (small vs. large) changes the 

interaction between age at diagnosis and radiation therapy. 

Figure 17 Proposed model based on the relationships among lesion size, age at 

diagnosis, radiation treatment, atrophy, and processing speed 

 

5.21 Additional Considerations 

5.21.1 Relationship between Lesion Size and Cerebellar Atrophy 

Given the nature of brain tumor resection and cerebellar atrophy, it was 

possible that cerebellar lesion size and cerebellar atrophy were related. Survivors of 

cerebellar brain tumors with larger lesion sizes may have had lower cerebellar 

atrophy because they had less intact cerebellar volume post-surgery. In the current 

study there was a small non-significant negative correlation between the cerebellar 

atrophy and total cerebellar lesion size (r=-.26, p=.21, see Figure 18). The cerebellar 

atrophy equation attempted to account for lesion size by adding lesion size back into 

the survivors’ cerebellar volume, but the relationship between lesion size and 

atrophy may have been more nuanced than the equation suggests. Since this 
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technique has been used with multiple sclerosis populations, it was considered a 

reasonable proxy for atrophy for the current study (e.g., Chard et al., 2002). 

Furthermore, the cerebellar atrophy measure was highly correlated with cranial 

radiation (r=.48, p<.05), cerebellar gray matter (r=-.66, p<.01), and a trend for 

cerebellar white matter (r=-.29, p=.16), which suggested that the atrophy measure 

was correlated with expected treatment factors and volumetric measures. Cerebellar 

atrophy also was not related other neurological factors, such as hydrocephalus (r=-

.06, p=.77), or damage to the dentate and the vermis (r=-.22, p=.30).  

 

Figure 18 Scatter plot of cerebellar lesion size and cerebellar atrophy 
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5.21.2 Correction for Intracranial Vault (ICV) 

It is possible that the correction for ICV may have explained why atrophy was 

a stronger predictor of behavior than lesion size. Cerebellar lesion sizes were 

normalized to the SUIT brain, which by definition accounts for individual differences 

in volume so there was no correction for ICV. When the analyses were rerun with 

lesion size divided by ICV, the results were similar and the main effect for cerebellar 

lesion size was still not significant for oral processing (B=79.84, Beta=.28, p=.19), 

and was a trend for written processing (previously significant at p=.03; B=103.19, 

Beta=.35, p=.07). Unfortunately, correcting lesion size for ICV introduced greater 

error to the model due to problems with multicollinearity (VIF=5) with the cerebellar 

atrophy measure (despite centering the variables). These results suggested that the 

ICV correction did not explain why cerebellar atrophy was a stronger predictor than 

cerebellar lesion size, likely indicating that cerebellar atrophy caused greater 

behavioral impairments than lesion size.   

5.21.3 Combined Lesion and Atrophy 

It is possible that total damage (rather than lesion and atrophy separately) 

explained results better than the interaction. Therefore an additional regression was 

run with percent lesion size and percent atrophy added together for a total cerebellar 

damage measure. A regression that included total damage and NPS did not predict 

cumulative performance, Adj R2=.10, F(2,22)=2.28, p=.13, oral processing speed, 

Adj R2=.04, F(2,22)=1.47, p=.25, or written processing speed, Adj R2=.07, 

F(2,22)=1.93, p=.17. Thus, the interaction effect appeared to better explain 

processing speed performance than if cerebellar lesion and atrophy were added 

together.  
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6 Discussion 

The current study found that cerebellar atrophy is important to examine in 

adult survivors of childhood brain tumors. The results provided evidence that age at 

diagnosis changed the relationship between radiation therapy and cerebellar 

atrophy, such that participants who were diagnosed at a young age and treated with 

radiation therapy displayed the highest amount of cerebellar atrophy, particularly for 

individuals with large cerebellar lesions. Participants who were not treated with 

radiation therapy did not display a correlation between age at diagnosis and 

cerebellar atrophy. The analyses suggested that 44% of the variance in cerebellar 

atrophy was explained by age at diagnosis and radiation therapy. Furthermore, 

greater cerebellar atrophy was associated with poorer oral and written processing 

speed for individuals with smaller lesion sizes. Together lesion size and atrophy 

explained a large portion of variance in processing speed (33% oral and 48% 

written). These results provided further evidence that radiation therapy has 

significant negative ramifications for the developing brain and behavioral 

performance and should be delayed for young children when medically appropriate. 

There was an unexpected finding that participants with larger lesion sizes had 

processing speed that was less impacted by cerebellar atrophy. This is likely 

because when greater than 20% of the cerebellum is damaged, participants have 

reached a maximum threshold of cerebellar damage; whereas, individuals with 

smaller lesion sizes have more remaining cerebellar volume to be affected by 

atrophy, and cerebellar atrophy corresponded with the greatest processing speed 

impairments. An alternative explanation for this finding could be that individuals with 

larger lesions had a smaller portion of remaining brain volume for volumetric 

analyses. The atrophy measure assumed the lesion volume due to tumor resection 
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had 0% atrophy. Therefore participants with large lesions (>20% of the cerebellum) 

had a smaller portion of intact brain volume to measure atrophy and on average a 

smaller degree of cerebellar atrophy.  

Prior literature suggests that the cerebellum is vulnerable to degeneration but 

also displays regenerative properties in animal models (Rohkamm, 1977). In 

particular, Purkinje cells, which are characterized by a high concentration of 

dendrites, are vulnerable to degeneration after cerebellar damage. In animal models 

these cells most often regenerate when there is a small degree of uniform damage 

(applied once) and the animal is at a younger age (Rohkamm, 1977). Additional 

evidence from human research suggests that the young cerebellum is vulnerable to 

atrophy following traumatic brain injuries (age at injury: M=9.8 years, time since 

injury=3.1 years; Spanos et al., 2007), and malignant brain tumors (age at diagnosis: 

M=8 years, time since injury=9 years; Szathmari et al., 2010). Furthermore, 

longitudinal research on childhood posterior fossa tumors has found that volume loss 

in the dentate nuclei following surgery and radiation treatment does not appear to 

recover > 6 months post-surgery (Perreault et al., 2013).  

A large body of research looks at atrophy independent of behavioral 

outcomes (e.g., Dietrich et al., 2001); however, atrophy in brain tumor populations 

has been related to difficulties sustaining daily tasks (Szathmari et al., 2010). 

Research on the human brain suggests that subcortical structures are uniquely 

vulnerable to radiation treatment and correspond with poorer behavioral outcomes. 

While having a brain tumor generally results in lower whole brain volume relative to 

controls, researchers have not found significant differences in whole brain volume 

within survivors groups based on presence of radiation therapy (Jayakar et al., 

2015); however, researchers have found significant volumetric differences in 
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radiation and no radiation groups for the hippocampus and putamen, and these 

differences are related to poorer verbal memory performance (auditory attention list 

span and list learning) in adult survivors of childhood brain tumors relative to controls 

(Jayakar et al., 2015). The results of the current study also are consistent with other 

literature on brain tumor populations, which suggests that young age at cranial 

radiation, in particular, has been associated with the largest reduction in whole brain 

white matter and corresponds with lower attention, intelligence, and academic 

abilities (Reddick et al., 2005; Reddick et al., 2003; Mulhern, 1998). Furthermore, 

prior researchers have found that age at radiation therapy has been related to brain 

atrophy in children who are younger than 5 years old at treatment (Dietrich et al., 

2001). Therefore, the finding that young age at diagnosis and radiation therapy is 

associated with greater cerebellar atrophy and poorer outcomes was consistent with 

prior research on humans and animals.  

The current study was unable to test the original hypotheses because there 

was a large amount of cross regional damage, with regard to both lesions and 

atrophy. The majority of the sample had damage across the proposed ROIs making 

it impossible to draw conclusions about the association between lesion location and 

behavioral performance. Therefore, the questions regarding heterogeneous 

functions of the cerebellum were unable to be answered. Distinct lesion groups are 

critical in lesion based studies in order to correlate lesion location and behavioral 

impairments. In the context of diffuse damage, correlations between specific lesion 

locations within the cerebellum and behavioral impairments are less meaningful.  

Overall, both malignant and benign tumor survivors displayed diffuse cerebellar 

damage. Prior researchers have successfully done lesion mapping with benign 

childhood cerebellar tumors, however, they did not include measures of cerebellar 
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atrophy or dentate damage (e.g., Kirschen et al., 2008). Furthermore, prior research 

in adult stroke populations does not appear to map onto childhood brain tumor 

populations who experience more diffuse cerebellar damage, regardless of tumor 

malignancy.  

The case series on the two participants who had more focal cerebellar lesions 

did not display a pattern of results that were consistent with hypotheses for regional 

specificity within the cerebellum. Instead, the case series suggested a pattern 

consistent with the homogenous cerebellum. The case series found that greater total 

damage to the cerebellum resulted in decreased behavioral performance across 

measures. It is important to consider that both of these participants experienced 

damage to the dentate and the vermis, radiation, and treatment complications. 

Therefore, these factors likely contributed to their presentation. Future studies with 

participants who have more focal cerebellar lesions and are not treated with radiation 

may discover a localized presentation.  

6.1 Theories 

 If one were able to interpret the data as supporting a lack of specialization 

then it is possible that the primary function of the cerebellum is brain efficiency 

(Bower, 1997). Conversely, one could argue that the cerebellum in young children is 

functionally plastic, also known as equipotential, and then becomes specialized in 

adulthood with experience, similar to the theory of neural commitment (Oddy, 1993). 

One piece of evidence that supports this argument is that in young animals 

cerebellar lesions are followed by recovery of functions, possibly due to neural 

reorganization, compensation, or behavioral adaptation (Molinari and Petrosini, 

1993; Bower, 1997). Further supporting this argument, Bower (1997) suggests that 

even with neural adaptation it still takes a longer time to perform tasks (Bower, 
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1997), due to delays in processing sensory information. However, the data provided 

in this study could not make a conclusion regarding functional homogeneity because 

patients had too high a degree of damage to explore functional specialization of the 

cerebellum. If future research replicated the current findings with a population of 

children who have focal lesions, then this alternative theory could explain both the 

lack of structure-functional specification of the cerebellar lobes seen in adults, as 

well as the processing speed impairments.  

6.2 Limitations 

The biggest limitation of the current study was the small amount of lesion 

specificity in the proposed regions of interest, and in general, most participants had 

diffuse damage. Unfortunately, natural lesion studies do not neatly fall into one 

cerebellar lobe, and many individuals had lesions and atrophy across ROIs. While 

there appeared to be enough participants based on the preliminary visual evaluation 

in the proposed study, the lesion distribution changed due to increased precision of 

lesion mapping and the methodological addition that allowed the current study to 

distinguish between cerebellar lesions and atrophy. Therefore, a more precise 

analysis the sample displayed a great deal of lesion overlap and a smaller portion of 

individuals with distinct lesion areas. The proposed aims and hypotheses could not 

have been answered with the current sample due to the high degree of diffuse 

damage, thus making it impossible to truly differentiate among lesions in specific 

regions of interest. Even upon looking among individual cases, only two people had 

damage in distinct regions. Upon looking at these two participants with distinct 

regions, the results again did not provide sufficient evidence for regional specificity 

but rather provided evidence for greater diffuse cerebellar damage relating to greater 

behavioral difficulties. Of note, however, is that both these individuals had malignant 
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brain tumors, were treated with radiation/chemotherapy, and displayed treatment 

complications that also could explain the lack of regional specificity.   

It is important to highlight that the results presented in the current study are 

based on brain tumor survivors who were diagnosed and treated on average 15 

years prior to participating in this study. One limitation of the study is that caution 

must be used when making recommendations for current treatment approaches, 

which have changed over time. The results and implications of this study are 

inherently embedded in the limitation that this older cohort that may not be 

generalizable to more recent brain tumor survivors and advancing treatment 

approaches.  

It is important to note that a number of individuals had relatively intact verbal 

fluency on The Delis–Kaplan Executive Function System verbal fluency subtests 

(semantic and phonemic). It is possible that this clinical measure of verbal fluency 

measure is not sensitive enough to determine subtle verbal fluency difficulties. Also 

of note, the semantic fluency measure is generally considered an easier task, as 

opposed to the phonemic fluency task, which is slightly more challenging. Therefore, 

it is possible that with a different and more challenging measure of verbal fluency, 

survivors would have shown increased levels of difficulty.  

Lastly, while the current study had a large number of participants for this 

patient population, the study was limited by a relatively small sample size which 

restricted the amount of variables that could be statistically modeled. There were a 

number of individuals who were not included in the present study because of poor 

quality imaging data (n=4) or inability to obtain an MRI scan due to medical implant 

(n=4). An inevitable limitation of using neuroimaging data, particularly with this 
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population, was difficulties with data acquisition (n=4) and data surviving registration 

analyses (n=4), which can contribute to small sample size. The participants that were 

excluded were not significantly different from those that were included with regard to 

demographic factors, treatment variables, or behavioral performance. Because 

results are based on a small sample size, future researchers should replicate these 

findings with a larger sample.  

6.3 ICV/Estimate of Premorbid Brain Size 

There are both strengths and weaknesses to the measure of ICV employed in 

the current study. For instance, if individuals had reduced total intracranial volume 

due to one or many of the aforementioned treatment factors, the results of the 

current study could have been potentially biased. For example, if cranial radiation 

reduced grey matter or white matter in a way that was not accounted for with 

cerebrospinal fluid (e.g., diminished whole brain growth), then total ICV could have 

been underestimated. Because ICV was a denominator in the atrophy equation, it 

could have overestimated the amount of cerebellar atrophy. Measures obtained in 

this study, such as ICV, indicated that there were not statistical differences between 

ICV that would suggest systematic differences between the overall premorbid 

estimate of brain size of controls and survivors. Thus, a strength of ICV was the 

statistical similarities between ICV in survivors and controls, making it a reasonable 

estimate of total premorbid brain size. This measure also has been previously used 

in the brain tumor literature and prior researchers have reported that survivors 

diagnosed with posterior fossa medulloblastoma do not show significant differences 

when compared to low grade astrocytoma in ICV or grey matter volume (Mulhern et 

al., 1999). The findings of the current study that indicated similar ICV for survivors 

with low grade and high grade tumors are consistent with those of Mulhern et al. 
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(1999) who employed a similar measure of total grey matter, white matter, and 

cerebrospinal fluid. The finding that ICV is similar for survivors and controls is 

inconsistent with Jayakar et al. (2015), who found differences in whole brain volume 

between survivors and controls; however, Jayakar et al. (2015) used a whole brain 

measure that did not include cerebrospinal fluid. Therefore, the addition of 

cerebrospinal fluid appears to account for the differences in whole brain volume 

between survivors and controls. Overall, intracranial vault is a relatively easy and 

semi-automated method to obtain an estimate of premorbid brain size that appears 

to be robust in accounting for differences between controls and brain tumor survivors 

with cerebellar lesions and atrophy.  

6.4 Strengths and Innovation 

 This study was among the first to attempt to explore how damage to specific 

regions of the cerebellum was related to performance across measures of verbal 

fluency, motor, and processing speed. Individuals diagnosed with cerebellar brain 

tumors commonly have exhibited cognitive difficulties, which appeared to be due to 

cerebellar lesions, and specifically lesions in the dentate and the vermis, as well as 

cerebellar atrophy. While there is mention of cerebellar atrophy in brain tumor 

patients in the literature, quantitative measures of atrophy in brain tumor populations 

are notably absent from neuroimaging studies. This absence is presumably because 

prior researchers often have excluded cerebellar atrophy or grouped (atrophy vs. no 

atrophy) patients due to methodological difficulties (e.g., Szathmari et al., 2010; 

Dietrich et al., 2001). As a result, Voxel-Based Morphometry often is used to 

measure cerebellar atrophy, and lesion mapping commonly is used with focal lesions 

(Timmann et al., 2008). However, when both lesion and atrophy are present, 

qualitative measures are used (Szathmari et al., 2010; Dietrich et al., 2001). Thus, 
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there is little empirical information regarding the interaction between cerebellar 

lesions and cerebellar atrophy. The current study used a quantitative measure of 

cerebellar volume reduction relative to healthy controls that accounted for lesion size 

by combining Voxel-Based Morphometry and lesion mapping techniques.  

Atrophy secondary to cerebellar brain tumors is unique relative to other 

populations with brain atrophy because it is more difficult to differentiate due to 

presence of tumor resection. For instance, in Alzheimer’s disease and multiple 

sclerosis, researchers can simply explore the amount of cerebrospinal fluid relative 

to ICV in order to determine the amount of atrophy. However, cerebrospinal fluid 

(CSF) does not differentiate between brain lesion and brain atrophy, so the atrophy 

equation was used to quantify the amount of atrophy secondary to the lesion. 

Additionally, subtle atrophy was detected in a number of individuals, where these 

individuals may seem like “focal lesions” subtle atrophy may not be fully captured in 

the current body of literature.  

This study also was able to include data from medulloblastoma and low grade 

astrocytoma survivors. Prior researchers have reported that survivors diagnosed with 

posterior fossa medulloblastoma do not show significant differences when compared 

to low grade astrocytoma in ICV or whole brain grey matter volume. The literature 

suggests that medulloblastoma survivors do, however, have significantly reduced 

whole brain white matter, and significantly increased CSF (Mulhern et al., 1999). 

Furthermore, whole brain white matter, but not CSF or grey matter, is related to 

intelligence scores (VIQ, PIQ, and FSIQ) in medulloblastoma survivors but not low-

grade astrocytoma survivors (Mulhern et al., 1999). Survivors of childhood brain 

tumors with heterogeneous tumor locations displayed reduced whole brain volume 

(white matter + grey matter) when compared to controls on average 15 years post 
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diagnosis (Jayakar et al., 2015). However, findings are mixed and other researchers 

have reported that whole brain white matter volume and cortical thickness are not 

associated with performance on measures of executive functioning in survivors of 

childhood medulloblastoma on average 18 years post diagnosis (Brinkman et al., 

2012). The atrophy measure used in the current study provided an objective 

assessment that detects small amounts of atrophy that may not have been 

detectable with qualitative ratings and may not be captured in the current body of 

literature. Future researchers should look at cerebellar atrophy quantitatively and 

independent of cerebellar lesion size, as it appears that lesion size and atrophy in 

the cerebellum have a unique relationship to one another that is not captured by 

simply adding them together. Therefore, this relationship may not be fully captured 

with volumetric measures of whole brain grey matter, white matter, and 

cerebrospinal fluid, particularly in subcortical structures.  

With a sample of 25, the proposed study was among the largest lesion 

symptom mapping investigation of cerebellar brain tumors to date. The current study 

added to prior research by including both written and oral processing speed and 

having found that these measures were only dissociated with regard to their 

relationship to the dentate/vermis ROI, but not in relationship to diffuse cerebellar 

damage. The written and oral processing speed measure in the current study 

provided a unique opportunity to compare whether the written verses oral expressive 

modality explained processing speed differences. Taken together, the proposed 

study makes methodological, theoretical, and empirical contribution to the current 

understanding of how cerebellar damage due to lesions and atrophy impacted long 

term outcomes in survivors of childhood brain tumors.   
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6.5 Future Directions  

Lack of regional specificity was likely due to the diffuse nature of brain tumor 

resection and treatment; therefore, it is possible that with different forms of lesion 

etiologies, researchers would find lesion specificity. Thus, this study should be 

replicated with focal childhood cerebellar injuries (e.g., stroke) to determine if the 

young cerebellum displays functional specialization in focal injury populations. 

Alternatively, it is possible that longer time since radiation is causing diffuse brain 

injury in long-term survivors. Another important future direction will be to replicate 

this study with survivors who have a shorter time since diagnosis to determine if time 

since radiation contributed to the lack of regional specificity. Future research with 

each of these populations will be important in determining whether the results of the 

current study were due to diffuse cerebellar injury or time since diagnosis.  

Future research with diffusion tensor imaging may explore the cascading 

effect of cerebellar atrophy on the corresponding regions in the cerebellar-cortical 

loops, particularly with regard to motor performance and working memory, two 

common difficulties seen in populations with cerebellar insults. While difficulties in 

phonemic fluency is commonly reported in cerebellar lesion populations, difficulties 

in working memory has been a robust finding in the brain tumor literature (e.g., Law 

et al., 2011). Therefore exploring a different cognitive construct may provide more 

robust findings. Spanos et al. (2007) found that the cerebellum and corresponding 

regions included in cerebellar loops, particularly the pons and the dorsolateral 

prefrontal cortex, are vulnerable to atrophy following a moderate to severe traumatic 

brain injury, and resulting cerebellar atrophy. Thus, diffusion tensor imaging studies 

will be important to understand how cerebellar atrophy impacts important brain 

networks for motor and working memory performance. To address the diffuse 
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cerebellar injury in this population, it would be important to design studies that 

incorporate whole brain volumetric studies and behavioral measures that are resilient 

to diffuse brain injury as comparison tasks, for instance including verbal or 

perceptual intelligence and whole brain grey matter as comparison measures (e,g., 

Law et al., 2011).  

Very few studies have looked at white matter connections, measured using 

diffusion tensor imaging, among cortical-cerebellar loops in brain tumor populations. 

Although the evidence is limited, there is one study which investigated how the white 

matter integrity of the dorsolateral prefrontal (DLPF)-thalamo-cerebellar loop relates 

to working memory performance in children with posterior fossa (cerebellum and 

brain stem) tumors. Law et al. (2011) found that children with greater treatment (e.g., 

radiation and chemotherapy) had lower white matter integrity within the DLPF- 

thalamo-cerebellar loop, when compared to healthy controls. Further, they found that 

white matter in the left DLPF-thalamo-cerebellar loop was significantly associated 

with working memory performance, but not verbal or perceptual intelligence, in 

healthy controls and children with posterior fossa tumors (above and beyond 

treatment status). Of particular relevance to future studies, Law et al. (2011) 

establish that diffusion tensor imaging of the loop connecting the right cerebellum- 

left thalamus- left DLPF is possible with brain tumor populations. Based on the 

findings of the current study, future researchers should explore how additional 

treatment factors (e.g., interaction between radiation therapy and age at diagnosis) 

and cerebellar atrophy relate to white matter integrity in the DLPF-thalamo-cerebellar 

loop, and how these relationships impact behavioral measures, such as working 

memory or intelligence.  
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In our sample, a large number of individuals experienced cerebellar atrophy 

after tumor surgery and treatment. Given that as many as 43% of individuals with 

childhood cerebellar medulloblastoma experience atrophy five years post diagnosis 

(Szathmari et al., 2010), an important future direction will be to explore possible 

etiologies of cerebellar atrophy in an effort to understand and prevent this disease 

process where possible. Prior research suggests that cerebellar atrophy could be 

due to posterior fossa surgery, damage to the dentate, cranial irradiation, seizures, 

and seizure medication (Poretti, Wolf, and Boltshauser, 2008). In our sample, young 

age at diagnosis and presence of radiation were related to greater cerebellar 

atrophy, but no one factor fully explained cerebellar atrophy. Researchers suggest 

that cerebellar structure is sensitive and may be at high risk for atrophy (e.g., 

Rohkamm, 1977). Other research suggests that damage to the dentate and vermis, 

critical regions of connection, would result in disconnection and atrophy in other 

brain regions (Spanos et al., 2007). Furthermore, advances in surgical techniques 

using fiber tracking suggests that certain surgical approaches may pose a higher risk 

to the dentate nucleus; researchers suggest that lower risk methods should be used 

in elderly populations due to the risk of cerebellar atrophy (Akakin et al., 2014). 

These are just some of the possible explanations for cerebellar atrophy, and these 

and other theories should be explored to best identify and prevent cerebellar 

atrophy.   
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