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ABSTRACT 

We make decisions in every moment of our lives. How the brain forms those decisions 

has been an active topic of inquiry in the field of brain science in recent years. In this 

dissertation, I discuss our recent neuroimaging studies in trying to uncover the functional 

architecture of the human brain during social and perceptual decision-making processes.  

Our decisions in social context vary tremendously with many factors including emotion, 

reward, social norms, treatments from others, cooperation, and dependence to others. We studied 

the neural basis of social decision-making processes with a functional magnetic resonance 

imaging (fMRI) experiment using three economic exchange games with undercompensating, 



nearly equal, and overcompensating offers. Refusals of undercompensating offers recruited the 

right dorsolateral prefrontal cortex (dlPFC). Accepting of overcompensating offers recruited the 

brain reward pathway consisting of the caudate, the cingulate cortex, and the thalamus. 

Protesting of decisions activated the network consisting of the right dlPFC, the left ventrolateral 

prefrontal cortex, and midbrain in the substantia nigra. These findings suggested that social 

decisions are the results of coordination between evaluated fairness norms, self-interest, and 

reward.  

In the topic of perceptual decision-making, we contributed to answering how diverse 

cortical structures are involved in relaying and processing of sensory information to make a 

sense of environment around us. We conducted two fMRI experiments. In the first experiment, 

we used an audio-visual (AV) synchrony and asynchrony perceptual categorization task. In the 

second experiment, we used a face-house categorization task. Stimuli in the second experiment 

included three levels of noise in face and house images. In AV, we investigated the effective 

connectivity within the salience network consisting of the anterior insulae and anterior cingulate 

cortex. In face-house, we discovered that the BOLD activity in the dlPFC, the bidirectional 

connectivity between the fusiform face area (FFA) and the parahippocampal place area (PPA), 

and the feedforward connectivity from these regions to the dlPFC increased with the noise level 

– thus with difficulty of decision-making. These results support that the FFA-PPA-dlPFC 

network plays an important role for relaying and integrating competing sensory information to 

arrive at perceptual decisions of face and house. 

 
 

INDEX WORDS: Functional magnetic resonance imaging (fMRI), Unfairness, Perceptual 
decision, Social decision, Task difficulty, Dorsolateral prefrontal cortex (dlPFC), Salience 
network (SN). 
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1 INTRODUCTION 

1.1 Overview 

Decision-making is a highly complex cognitive process and involves the integration and 

interpretation of available information. The integration of required information for a decision to 

be made could be either from the highly complex social environment where we live in or from 

the availability of information in the environment. In either case, the decision-making process 

produces a final choice that may or may not prompt action. The decision results from interaction 

of the complex external factors (for example, socio-economic conditions of the decision maker in 

the social domain, the availability of sensory information in the perceptual domain) and the 

neural architecture comprised of a highly complex and interconnected circuitry. This dissertation 

describes three studies we conducted in an attempt to understand the neural mechanisms of 

decision-making in healthy human participants. The study of the decision-making process from 

healthy individuals is important not only for the basic understanding of the underlying brain 

mechanisms, but also to lay the foundations for the study of patients suffering from mental 

illnesses and neurological disorders whose brain circuitry for decision-making is impaired.  

We live in a highly complex social environment surrounded by family, friends, and 

various cultural and socio-economic conditions. Our everyday decisions and the choices that we 

make in the context of social interaction, social decisions, have great social values as the 

decisions not only affect ourselves but also the others in our society. We humans are distinct 

from other organisms in such decision-making, as many of our decisions are not only based on 

the basic “animal” needs (e.g., hunger, reproduction) but on social (e.g. fair and unfair), moral 

(e.g., love, trust, respect, cooperation), and economic values. The complexity of the social 

decision process varies tremendously with other factors such as intention, punishment, emotions, 
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risk, and uncertainty. For example, many of our social decisions are influenced by the behavior 

of others {for review [1-3]}. Similarly, the perception of an object or an event in our 

environment is based on the available the sensory evidence. The decision, which is based on the 

gathered sensory evidence, perceptual decision, may be affected by various factors such as the 

ambiguity of sensory information or attention. 

Neuroimaging techniques offer the promise of unlocking the mystery of brain processes 

underlying many cognitive phenomena, including decision-making. We used functional 

magnetic resonance imaging (fMRI) to describe the brain states that resulted from the neural 

computation of available information in real-world situations, such as choosing personal benefits 

versus social norms and categorization of objects in the visual world. In the following chapters of 

this dissertation, I will discuss the brain mechanisms for such complex and strategic human 

behaviors and the brain responses of social and perceptual decision-making processes.  

1.2 Study of social decision-making 

The social decision-making process in humans has been studied for a long time in the 

laboratory setting to understand details of the neural substrate of the decision-making process 

and its cognitive aspects. Modern neuroscientific technologies (fMRI, EEG) combined with the 

theoretical framework from behavioral economics and cognitive psychology allows 

neuroscientists to study how humans interact with the environment to produce economic 

behavior. Behavioral economic games provide a useful foundation and well-specified models for 

the study of the decision-making process in a complex social environment, and they are being 

used as a tool to establish connections between variables derived from observed behavior with 

the neuronal data. Thus neuroeconomics, the combination of economics, psychology, and 

neuroscience, has been making headway on gaining a more detailed picture of the social 
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decision-making process and greatly extending our knowledge of the brain mechanisms involved 

in social decision-making, such as the feelings of reward and emotional response to unfair 

treatment. 

In typical economic games, the players are assumed to act rationally in order to maximize 

their earnings. But, the decision drastically varies with factors like rewards, punishment, 

emotions, value to social norms, risk, and uncertainty, and different brain areas are recruited to 

process the information [1-7]. Also, when people actually play these games, they rarely play 

according to this strategy [8]. In reality, decision-makers are typically both less selfish and more 

willing to consider factors such as reciprocity and equity than the classical model predicts. The 

ultimatum game (UG), introduced by W. Guth and colleagues [9], is one of the  games used to 

shed light on reasons for rejections of unfair offers. From a game-theoretic perspective, the 

responder should accept any non-zero offers. However, humans significantly diverge from this 

strategy: the offers in the range from 40–60% are usually accepted and below 20% are rejected 

almost half the time [8]. There are some interesting differences in more traditional cultures [10], 

but in general, the probability of rejection increases substantially as offers decrease in 

magnitude. This decision to reject offers in UG has puzzled economists because if people are 

motivated purely by self-interest, the responder should accept any offer; thus it seems that 

material self-interest is not the sole motivation of all human beings. These predictive failures of 

the self-interest model gave rise to the development of social preference models.  

A “ social preference ” is now considered to be a characteristic of an individual’s 

behavior or motives, indicating that the individual cares positively or negatively about others’ 

material payoff or wellbeing. Thus, a social preference means that the individual’s motives are 

other-regarding – that is, the individual takes the welfare of other individuals into account. There 
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is now a large body of experimental evidence in economics and psychology [7,8,11] indicating 

that a substantial percentage of people are motivated by other regarding preferences.  

Another study in UG by Xiao and Houser [12] found that, compared with standard 

ultimatum games where the only action that responders can take is to accept or reject offers, 

responders are significantly less likely to reject the unfair offers when they can write a message 

to the proposers. In particular, proposers’ offers of $4 (20% of the total surplus) or less are 

rejected 60% of the time in standard ultimatum games. When responders can express emotions, 

only 32% reject unfair offers, and this difference is statistically significant. This study suggested 

that the desire to express negative emotions can itself become an important motivation 

underlying costly punishment. Moreover, in impunity game (IG), unlike in UG, the responder 

can neither punish an unfair proposer nor restore fairness, yet despite this rejection of unfair 

offers is often observed in experimental studies of the impunity game [13]. Thus the standard 

explanation of rejection behavior in the ultimatum game, that is, social preferences of inequity 

aversion and reciprocity [7,11,14], cannot explain the rejection of unfair offers in the impunity 

game. Thus, previous studies suggested that the neither the role of emotion nor fairness and 

reciprocity can be ignored in social interactions.  

The most complex and advanced brain mechanisms of social decision making processes 

is influenced by various factors including emotion, reward, and fairness norms. The 

understanding of such brain process is becoming a target of neuroscientists. Many in the field 

have attempted to understand the neural correlates of human social behavior, however almost all 

of these considered only one aspect of inequity: how individuals respond when inequity does not 

favor them [15-17]. Inequity has, however, two sides: the responder may be over-benefitted (or 

over-compensated, advantageous inequity), or under-benefitted (or under-compensated, 



5 

 

disadvantageous inequity). One of the goals of this dissertation is to use both inequity condition 

in the UG and IG and uncover the mystery of the brain processes of those sorts of inequity. How 

does the brain internalize the preference?  Importantly, including both UG and IG permitted us to 

explore the role of dorsolateral prefrontal cortex when unfairness is perceived in economic 

exchange. In both UG and IG, rejecting monetary offered affect responder’s outcome, however, 

a new game, the Fixed Decision Game (FDG), was used where protest (rejection to an offer) did 

not affect the player’s earnings. The hypothesis in the new game was that if one values fairness; 

one would protest more frequently in the FDG unfair conditions, a response that may not appear 

in other games due to the high cost of doing so. In brain activations, the contrasts of primary 

interest were between the neural responses to unfair offers as compared to fair offers and the 

brain network for protesting unfair offers. The details of social decision-making study will be 

discussed in chapter 2 of this dissertation.  

1.3 Study of perceptual decision-making 

The neural correlates of perceptual decision-making have been extensively studied in 

humans and in monkeys in laboratory setting using a simple perceptual discrimination task with 

two or more forced-choice alternatives [18,19]. It is believed that the brain has to integrate and 

interpret sensory information to form a decision. Diverse cortical structures are known to be 

involved in relaying and processing of sensory information available to our sensory system in 

order to make a sense of the environment around us.  

Making sure of the identity of visual or other sensory events is difficult in the case of 

scantly or briefly available sensory information. For example, when you see a yellow light while 

driving, you have two options, to stop at or cross the intersection; and your decision to do that 

will be affected by how far you are from the intersection and your current speed. The decision-
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making in yellow light condition compared to the red light (in which case you will have to stop) 

might be relatively harder as the brain has to integrate all the information in this situation. 

However, little is known about how such perception and decision is achieved in the brain, 

translated to motor command, and how the task difficulty modulates the brain response.  

Recent findings suggested that anterior insulae (INSs) and the dorsal anterior cingulate 

cortex (dACC) are a part of the salience network (SN), a key network known to be involved in 

decision-making and thought, also to be important for the coordination of behavioral responses 

[20-27]. However, how these nodes in SN contribute to the decision-making process from 

segregation of stimuli to the generation of an appropriate behavioral response remains unknown. 

We aimed to contribute to answering this question using audio and visual synchrony and 

asynchrony perception task (AV). The details of functional architecture of SN in perceptual 

decision-making task will be discussed in chapter 3 of this dissertation.  

Out of many secrets of human brain function is how information is processed in order to 

reach a decision and which brain areas are involved in these kinds of perceptual decision-making 

processes, both of which are widely investigated questions in the field of neuroscience [18-

20,28-36]. The answers for such questions were investigated with the brain responses of varying 

degrees of sensory evidence available to our sensory system. Various paradigms have been 

developed, including vibrotactile frequency discrimination [28], visual motion discrimination 

[37], and face-house discrimination [38] under conditions of different intensity of sensory 

information conditions. These studies suggested that the decision-forming process for such 

simple perceptual decision-making tasks starts off with the integration of sensory evidence for 

each choice by lower-level sensory neurons [28,37,38]. For example, faces and houses categories 

were represented in ventral temporal areas namely fusiform face areas (FFA) and 
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parahippocampal place area (PPA) [35,39,40] and the decision is then thought to be computed in 

higher-order cortical regions by comparing the difference in amount of sensory information for 

each choice [19,38]. But it remains to understand how the decision is computed and where. 

In this dissertation, I will discuss one of our experiments that examines the neural 

correlates of perceptual decision-making in human brain and clarifies the relationship between 

sensory representations in a lower order sensory cortex and decision-making hub, the 

dorsolateral prefrontal cortex. The innovation in this study is that we varied the difficulty level of 

tasks and studied the relationship between the category responsive visual areas and higher order 

areas with different difficulty levels. We further established a causal link between FFA, PPA, 

and dlPFC in perceptual performance. 

 Our findings challenge some of the previous findings in perceptual decision-making 

studies. We provided the evidence that a perceptual decision of faces and houses results from the 

neural interaction between category responsive visual processing area in ventral temporal cortex 

(VT) and the higher cortical area in dorsolateral prefrontal cortex (dlPFC). We argued that the 

increase in blood oxygen level dependent (BOLD) response in the dlPFC with task difficulty in 

perceptual decision making task is the consequence of decision related-processes, which 

challenges the highly publicized previous study of observed deactivation [38].  Their study [38] 

predicted that regions involved in decision-making would be more active on trials with less 

noise. In chapter 4, I will discuss and summarize how perceptual decisions of faces and houses, 

the result from the neural interactions between the visual and prefrontal cortices.   

1.4 Selected scientific contributions during my PhD program 

Some of my scientific contributions during my PhD are listed below. The dissertation is 

based upon the first three works in the list. 
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2 THE NEURAL BASIS OF PERCEIVED UNFAIRNESS IN ECONOMIC 

EXCHANGE 

2.1 Introduction 

Our sense of fairness helps us to regulate our lives in society. Our perception of inequity 

leads to a range of emotions [41-44] and often motivates us to react negatively [6,9,45], even 

when we know that such a reaction may lead to a personal cost [45]. Such negative reactions 

have been observed to varying degrees across diverse cultures [10], and nonhuman animals share 

a similar trait  [46], indicating a strong biological predisposition. Human social decision-making 

in situations of inequity is often viewed as a competition between the norms of fairness and self-

interest [5,47]. Thus, deviations from self-interested behavior leading to reciprocal fairness are 

hypothesized to reflect our values for social norms and inequity aversion [11]. This notion of 

social decision-making as a result of competition between sense of fairness and self-interest is 

primarily based on the studies of human responses in the two-person (proposer and responder) 

economic exchange by using only one aspect of inequity, how individuals respond when inequity 

does not favor them [15-17]. Inequity has, however, two sides: the responder may be over-

benefitted (or over-compensated, which is advantageous inequity) or under-benefitted (or 

undercompensated, which is disadvantageous inequity). Is there an asymmetry in our responses 

and, hence, in our sense of fairness between these two inequity conditions?  If yes, what are the 

brain mechanisms underlying this difference? To what degree do reactions depend on whether 

the responder’s actions can influence the players’ outcomes, and what are the differences in brain 

mechanisms for protests as compared to refusals? This study addresses these questions using 

functional neuroimaging techniques in three two-person economic exchange games: the 

Ultimatum Game (UG), the Impunity Game (UG) and a new Fixed Decision Game (FDG).   
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The UG is the game most commonly used to determine how people make decisions in 

situations of inequity [9]. In the UG, the first player, the proposer, splits a sum of money with the 

second player, the responder. If the responder accepts the offer, both participants are rewarded 

accordingly, while if the responder rejects the offer, neither player receives any money. Thus a 

refusal by the responder leads to him or her receiving absolutely less, but relatively the same as, 

the partner. The responder’s rejection in the UG has been interpreted as a way by which he or 

she punishes the unfair proposer and/or signals to the proposer (or others) that the unfair 

treatment has occurred. A variant of the UG is the Impunity Game (IG: [48]). The IG is 

procedurally identical to the UG, except that the responder’s rejection response affects only his 

or her own payoff, and not the proposer’s. Unlike in the UG, in the IG, the responder cannot 

punish an unfair proposer, nor does a refusal result in equality.  In fact, a refusal results in both 

an absolutely and relatively less good outcome for the responder. Nonetheless, responders still 

refuse, possibly due to frustration or to reinforce their commitment to fairness [13]. Finally, we 

were interested in how responders would use a ‘protest’ option that did not change either the 

proposer’s or the responder’s outcome.  Thus we developed a new game, the Fixed Decision 

Game (FDG), a variation on the UG and IG. In the FDG, a distribution of offers was shown to 

the responder, who could choose to either protest or not protest these decided outcome offers, but 

in neither case were the outcomes to either player altered. Additionally, in contrast to the UG, in 

the FDG there is no competition between economic self-interest and fairness norms, particularly 

in the case of overcompensation, because the responder still gets the designated monetary 

amount even if he or she protests a decision.  

Fairness-related social decisions are known to be motivated by self-interest, self-versus-

other comparisons and fairness norms[5,9]. Neuroimaging studies have shown that such 
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decisions activate several brain regions:  the insula, dorsolateral prefrontal cortex (dlPFC) and 

the anterior cingulate cortex (ACC) for the perception of unfair offers [3], the ventral striatum for 

fair offers [49], and the ventromedial prefrontal cortex and caudate for social rewards [50].  The 

competition between self-interest and fairness norms [9,47] is neutrally instantiated in the right 

dorsolateral prefrontal cortex (dlPFC), where activity is found to be associated with 

undercompensating (low unfair) offers [3,47]. The dlPFC is believed to play a role in limiting the 

selfish motive and implementing fairness [3]. Disruption of the right, but not the left dlPFC 

(using repetitive transcranial magnetic simulation; [47]) substantially reduces participants’ 

willingness to reject their partners’ unfair offers. However, the right dlPFC is also found to be 

recruited when responders decide whether or not to punish a partner in a two party economic 

exchange by rejecting an unfair economic deal proposed by that partner. Thus, the precise role of 

the dlPFC in these refusals is still debated; evidence supports both inhibition of self-interest [47] 

and punishment of norm violators [3,51]. We hypothesized that, if the role of the dlPFC is to 

inhibit the self-interest, dlPFC activity would be elevated in the UG and IG rejection where the 

self-interested motivation is suppressed, but not necessarily the FDG game, in which a protest 

does not influence outcomes. If the dlPFC has a role in punishing the norm violators, dlPFC 

activity should be higher in the UG than in the IG or FDG when responders are rejecting 

undercompensating offers.  

One limitation of the previous fairness-related studies is that they primarily consider only 

one aspect of inequity - disadvantageous inequity, or participants’ reactions when they received 

less than a partner. Inequity aversion includes two components, both disadvantageous inequity 

aversion and advantageous inequity aversion, or an aversion to outcomes that overly benefit the 

individual as compared to a partner [7]. In the current study, we included overcompensated 
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offers. First, this allowed us to explore whether individuals would refuse rewards in order to 

bring about equity when they are overcompensated with respect to a partner.  Second, we 

explored whether undercompensated and overcompensated offers equally triggered the 

disapproval response [3,45]. One of our main foci was to determine the brain mechanism that 

differentiates between these two conditions. Third, we explored whether individuals would 

protest more frequently in the FDG condition, where the protest does not affect their earnings, 

which may allow them to appear to be ‘nicer’ people without paying any cost to do so. This 

could potentially uncover situations in which people have a taste for fairness, but one that does 

not appear in traditional games due to the high cost of being fair (e.g., conflict between their taste 

for equity and their self-interest in their own material outcomes). 

We hypothesized that there would be a low rejection rate for overcompensated offers, 

which is in line with previous behavioral studies [52,53]. For the associated brain response, we 

hypothesized that the activity would be different between overcompensated and 

undercompensated offers, and between overcompensated and fair offers. The manifested 

behavioral outcome in overcompensated offers might be triggered by feelings similar to those 

experienced for being rewarded, which would invoke the brains’ reward circuitry [54-60]. We 

additionally predicted that there would be a higher protest rate in the FDG than the refusal rate in 

the UG. We hypothesized that the brain activity would differ between the protested decisions and 

not protested decisions, allowing us to learn about the brain mechanisms of protesting decisions 

[61]. Here, we predicted that protesting a decision would involve the brain network that 

coordinates between the inner speech of subjective feeling and protest [62,63] and social norm 

compliance [64]. 
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2.2 Materials and Methods 

2.2.1 Participants 

Eighteen people (10 males and 8 females; age: 25.2 ± 6.2 years (mean ± standard 

deviation)) participated in the experiment. A pre-scanning written interview was conducted. 

Participants were asked to fill an interview form with a number of questions related to MRI 

safety and medical history. All of our participants reported that they were right-handed and had 

normal or corrected-to-normal vision, no history of medical, psychiatric, or neurological 

diagnoses, and were not taking any medication. A written informed consent was obtained from 

each participant before the experiment according to the procedures approved by the Institutional 

Review Board of Georgia State University.  

2.2.2 Experimental task 

We used two established economics games, the Ultimatum and Impunity games, and 

included a new game, which we called the Fixed Decision Game (FDG). In all of these games, 

there were three offer distributions: fair, unfair-low (e.g., disadvantageous to the participant), and 

unfair-overcompensated (e.g., advantageous to the participant). The distributions were from by 

the random splits of $100 in above mention three contexts as: fair offers ($40 < offer < $60), 

unfair low (undercompensated) offers ($0 < offer < $20), and unfair high (overcompensated) 

offers ($80 < offer < $100) in all three games. There were thus nine offer conditions (three 

games type × three offer conditions), but during testing only one offer condition at a time was 

presented in the computer screen (Figure 2.1). Offer conditions were randomized across the 

session. Presentation (Neurobehavioral systems, http://www.neurobs.com) was used to display 

the offers to the participants and to record participants’ behavioral responses.  
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Figure 2.1 Task paradigm.  
A single round of the economic games consisted of the proposer’s offer, the question and 
the responder’s yes or no choice. The time interval between an offer and a question was 
14 seconds. Offers, along with the game outcomes should the offer be rejected, were 
displayed for 4 seconds on a computer-projected screen. Here, in three sample offers, 
participants saw both the offer and the payoffs to both parties should they reject the offer.  
Regarding the latter, “Reject (0,0)” means that if the offer is rejected, $0 will go to the 
responder and the proposer (this is ultimatum game, UG); “Reject (0, 90)” means $0 to 
the responder and $90 to the proposer (impunity game, IG); “Decided (10, 90)” means a 
fixed offer of $10 to the responder and $90 to the proposer (fixed decision game, FDG). 
Responders could indicate their yes or no choices by pressing one of the two buttons on a 
response box after the question, “Reject?” for the UG or IG and “Protest?” for the FDG, 
appeared on the screen. 
 
 
The responder (the participant in our study) could either reject or accept the proposer’s 

offers in the UG and IG, and could choose either to protest or not to protest the fixed offers in the 

FDG. The outcome of the responder’s action varied according to the rules of these games (Table 

2.1). The responder’s rejection led to no pay-offs to both players in the UG, but only the 

responder lost their payoff in the IG. In the FDG, the responder could change neither their own 

nor the partners’ outcomes, but could choose to protest the decided offers. 
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Table 2.1 Economic games and outcomes. 

Game Option 
Outcomes for Reject/Protest 

Proposer Responder 

Ultimatum (UG) Reject/Accept $0 $0 

Impunity (IG) Reject/Accept Offer amount $0 

Fixed Decision (FDG) Protest/Not Protest Offer amount Offer amount 

 

Before scanning, each participant saw the pictures and names of possible players 

(proposers), who would be referred as ‘he’ or ‘she’ in each trial (Figure 2.1). They were also told 

that they would be playing with real money, and that they would be compensated for a 

percentage (approx. 2%) of their earnings, up to $50 in total. The participants were told how the 

games were played and what the possible outcomes of each game were. The participants were 

asked to practice a few rounds of the task in a computer setup before going into the scanner. In 

the scanner, each participant played 30 rounds of each of the three games from each of the three 

distributions discussed above, with games and payoff conditions randomized across the session. 

This was done in three 860s-long functional runs. Each run had two 10s rest (no task) durations, 

one in the beginning and the other at the end.  Each round (trial) consisted of an offer and the 

question. The offer and the associated question (“Reject?” or “Protest?”) were each displayed for 

4 s. The time between the onset of an offer and a question was 14 s. Participants decided whether 

to reject or not to reject the offers in the between offer-to-question block. The participants were 

asked to make a response after the question mark (?) appeared on the screen. 



16 

 

2.2.3 Data acquisition and analysis 

Participants were scanned on 3-T Siemens fMRI scanner in the Biomedical Imaging 

Technology Center at Emory University while they played three economic games and decided 

whether (i) to reject or not to reject unfair (under- or over-compensated) and fair monetary offers 

(UG and IG), and (ii) to protest or not protest a fixed monetary offers (FDG). The functional 

scans were acquired with T2*-weighted gradient echo-planar imaging (EPI) sequence (repetition 

time (TR), 2000 ms; echo time (TE), 32 ms; flip angle, 90°; field of view, 256×256 mm2; 

dimensions, 64×64×33; voxel dimensions, 3 mm×3 mm×4 mm). For each of the three functional 

runs, 430 volume images were taken. Behavioral responses were analyzed using Matlab. The 

analysis of fMRI images was carried out by using Statistical Parametric Mapping (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Slice timing and motion-corrected images were 

spatially normalized to the Montreal Neurological Institute (MNI) template. The voxels were 

resized to 3×3×3 mm3 per voxel resolution. Finally, images were spatially smoothed using an 8-

mm FWHM Gaussian Kernel. A random-effect, model-based, univariate statistical analysis was 

performed in a two-level procedure. At the first level, a separate general linear model (GLM) 

was specified for 18 task conditions [3 offer types × 3 games × 2 response conditions (that is 

accepted/not protested and rejected /protested conditions)) for each of decision and response 

block plus time-courses of 6 motion parameters (as nuisance covariates) were entered in GLM. 

The individual contrast images of all participants from the first level GLM were then taken into a 

second level analysis for a separate one-sample t-test. Resulting summary statistical maps were 

then corrected for multiple comparisons by using AlphaSim command in AFNI [65]. These maps 

were overlaid on a high-resolution structural image in Montreal Neurological Institute (MNI) 

orientation. 
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2.2.4 Behavior data analysis 

In all of the games, we used three offer distributions mentioned above: 

undercompensating, nearly equal and overcompensating. We planned to test whether there was 

an asymmetry in behavioral responses and, hence, in the sense of fairness between these three 

conditions. Among games, we were interested in the degree to which the responder’s actions 

could influence the players’ outcomes in both undercompensated and overcompensated offer 

conditions. The rejection or protest rates for three distinct distributions for each game were 

calculated for individual participants and averaged for the group in each condition. Wilcoxon 

sum rank tests were performed to compute the significance levels of behavioral differences 

across conditions.  

2.2.5 Functional connectivity analysis 

The analysis of functional relationship between the brain regions, the functional 

connectivity, was done by defining the regions of interests (ROIs). ROIs were defined by 

generating a sphere of 6 mm radius around the coordinate of local maxima from the group level 

analysis of fMRI data by using MarsBar [66]. The time courses from all the voxels within each 

ROI and all participants were extracted from the sets of the ROIs. To investigate the brain 

mechanism for accepting overcompensated offers and to explore how the brain internalized a 

overcompensated offer, we contrasted the brain activity of accepting overcompensated offers 

with that of fair offers [57,60] as “High unfair > fair (UG + IG)”. We hypothesized that a 

network of brain regions involved in reward processing [54-60] would be activated. This was the 

first set of ROIs. The second set of ROIs was chosen from the group level analysis of contrast  “ 

Low unfair protested > fair not protested (in FDG),” to investigate the neural correlated of 

protesting a decision. Time courses were then segmented into trials for accepting 
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overcompensated versus fair offers from the first set of ROIs and for protesting versus not 

protesting the fixed decided undercompensated offers condition from the second set of ROIs. We 

calculated pairwise correlation coefficients from trial by trial time series between the ROIs of the 

respective sets. To estimate the average effect, we used Fisher’s z-transformation [67-69] on 

cross-correlation values. The correlation coefficients were converted into their equivalent 

Fisher’s z-values to compute average Fisher’s z-value. The average Fisher’s z-

values for each participant and each pair of ROIs were then used to calculate the grand average 

z-value, the significance level p and the corresponding correlation coefficient. This analysis was 

done separately for accepting overcompensated offers and fair offers from the first set of ROIs 

and for protesting and not protesting the fixed decided undercompensated offers from the second 

set of ROIs. 

2.2.6  Directed functional connectivity analysis 

We performed Granger causality (GC) analysis to characterize the directional influences 

between ROIs, as the functional connectivity does not reveal the direction of information flow. 

We extracted the voxels time courses for each ROI from all participants. Since fMRI-BOLD 

signals are believed to originate from smoothing of neuronal activity by the HRF [70,71], we 

constructed hidden neural signals by hemodynamic deconvolution for each ROI as suggested in 

previous studies [71-75]. We used these deconvolved fMRI-BOLD time series for functional 

connectivity calculation.The ensemble-mean removed segmented deconvolved time series from 

separate voxels and participants were treated as trials for reliable estimates of the network 

measures. We calculated the frequency dependent nonparametric Granger causality spectra [76] 

for pairs of ROIs, separately for both set of RIOs. From the spectral GC, the time-domain values 

were obtained by integrating the causality spectra over the entire frequency range. The 

(z=arctanh(r))



19 

 

significant GC spectra were defined by setting a GC threshold above the random-noise baseline. 

To compute the threshold value of GC, we constructed a set of surrogates by randomly 

permuting trials data from each participant and used the random permutation technique [77,78]. 

The threshold was thus based on the null hypothesis that there was no statistical interdependence 

between nodes when trials were randomized.  We computed GC spectra from all possible pairs 

of ROIs with 300 random permutations and picked maximum GC on each permutation. By 

fitting the distribution with gamma-distribution function [76], we obtained the threshold for GC 

spectra at significance p < 10-3 separately from each set of ROIs.  This threshold GC was used to 

identify significantly active directed network activity among three ROIs for both sets of ROIs. 

We computed the time-domain GC values for significantly active network directions.  

2.3 Results 

2.3.1 Behavioral Results 

Most (88%) of the fair offers were accepted in all games, whereas most of the 

undercompensated offers were rejected and protested (>80%) in the UG and FDG. While we did 

not find any difference in the frequency with which undercompensated offers were rejected or 

protested between the UG and the FDG, the rejection rate of undercompensated offers in the IG 

was less (39.9%) than that of the UG (z-score = 3.26, p<0.01) and than the protestation rate in 

the FDG (z-score = 3.23, p <0.01). The overcompensated offers were not rejected to the same 

degree as undercompensated ones in any of the three games, including the FDG, where protest 

was not costly. Participants more frequently rejected or protested the undercompensated offers as 

compared to the fair offers and overcompensated offers in all games (z-score > 3.3, p<0.001 in 

the UG and FDG; z-score = 2.65, p<0.01 in the IG; Figure 2.2 and Table 2.2). They did not 
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respond differently to the overcompensated conditions as compared to the fair conditions in any 

of the games (Figure 2.2).  

   
  Figure 2.2 Behavioral response. 
These are the group averages of rejection or protest rates for three distinct distributions 
of offers displayed to the responders, $0-$20 (unequal low offers), $40-$60 (nearly 
equal or equal offers) and $80 - $100 (unequal high offers) out of $100. Each participant 
played 30 rounds of each game [Ultimatum Game (UG), Impunity Game (IG) and Fixed 
Decision Game (FDG)) during three fMRI runs. Approximately 2% of the total earnings 
were given to the participants. Error bars here represent standard errors of the means. 
 
 

Table 2.2 Behavioral rejection rates in economics games 

Games Choices Undercompensated 
offers 

Fair 
offers 

Overcompensated 
offers 

UG Reject 84.5 % 6.5 % 11.3 % 

IG Reject 38.9 % 4.7 % 9.8 % 

FDG Protest 80.6 % 11.5 % 12.8 % 
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2.3.2 Imaging Results 

2.3.2.1 Brain activity associated with undercompensated offers 

             In order to explore the precise role of the dlPFC in two-person economic 

exchanges, we contrasted the conditions for undercompensating offers from the UG and IG with 

FDG as: (i) UG>FDG, (ii) IG>FDG and, (iii) IG>UG. In all of these cases (i - iii), the dlPFC was 

activated (Figure 2.3 (A-C)) .The details of the brain activations with the multiple comparisons 

correction is shown in Table 2.3. We also compared the level of activity (% signal change) in the 

dlPFC for each game during accepting (or not protesting) conditions with rejecting (or 

protesting) conditions (Figure 2.3 (D-F)). We found that the dlPFC activity was significantly 

higher (p<0.05) when rejecting offers as compared to accepting offers in the UG, IG and in 

protesting offers compared to not protesting offers in the FDG. 
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Table 2.3 Brain activations.  
All the activations survived a significance threshold at p < 0.005 and cluster threshold of 
k > 10. [for AlphaSim corrected (*) p < 0.05, (**) p < 0.001] 

Contrast 
(Economics Game) 

Brain region Cluster 
size 

Voxel t 
(z-equivalent) 

MNI 
coordinates 

Low UG > low FDG 
Right dorsolateral prefrontal 

cortex (dlPFC) 22** 3.18 (2.79) 30, 47, 28 

R thalamus 14** 3.24 (2.82) 18, -10, 13 

Low IG > low FDG 

dlPFC 35** 4.75 (3.74) 42, 14, 22 

R inferior temporal cortex 47** 5.26 (4.00) 48, -56, -17 

L cuneus 17 4.19 (3.43) -12, -70, 4 

 
Low unfair (IG) > 
Low unfair (UG) 

L lingual gyrus 820** 4.21 (3.44) -15, -67,  -2 

L middle temporal gyrus 78** 4.10 (3.37) -60, -58, -2 

L superior temporal gyrus 19 3.88 (3.24) -45,14, -23 

dlPFC 30* 3.19 (2.79) 45, 14, 31 

L culmen 23** 3.28 (2.48) -30, -64, -26 

L fusiform gyrus 78** 3.42 (2.94) -36, -52, -11 

L thalamus 22** 4.77 (3.75) -24, -25, -2 

 
High unfair > fair 

(UG + IG) 

R thalamus 26** 4.92 (3.83) 9, -22, 7 

L caudate 12* 4.61 (3.66) -12, -1, 22 

R cingulate 12* 4.24 (3.46) 18, 2, 31 

Low unfair protested 
> fair not protested 

(FDG) 

dlPFC 10** 3.80 (3.19) 54, 17, 37 

L mid brain 11** 3.57 (3.04) -6, -22, -20 

L ventrolateral prefrontal cortex 
(BA 45/47) (vlPFC) 11** 3.44 (2.95) -48, 17, 4 
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Figure 2.3 Right dorsolateral prefrontal cortex activity.  
(A, D) The right dorsolateral prefrontal cortex (dlPFC) showed heightened activity during 
the rejection of unfair undercompensated offer in the UG as compared to the FDG and 
corresponding % signal change for rejected/protested and accepted/not protested offers. 
(B, E) dlPFC activity while rejecting of unfair undercompensated offers in the IG as 
compared to unfair undercompensated offers in the FDG and % signal change for 
rejected/protested and accepted or not protested offers. (C, F) dlPFC activity during the 
rejection of unfair undercompensated offers in the IG as compared to unfair 
undercompensated offers in the UG and % change for rejected and accepted offers. Here, 
*: p<0.05; ns = not significant. 
 

2.3.2.2 Brain activity associated with overcompensated offers 

In order to understand the brain mechanism of accepting overcompensated offers, we 

contrasted the brain response from overcompensated trials in the UG and IG with that from fair 

trials [60]. We found significant activation in the left caudate in the dorsal striatum, the right 

middle cingulate gyrus and the right thalamus when participants decided to accept 

overcompensated (OC) offers as compared to fair offers (Figure 2.4). Further, the average 

percent signal changes in these regions differed significantly (p<0.05) between the trials when 

the participants accepted OC offers and the trials when they rejected these offers (Figure 2.4 
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(C)). Also these regions were found to be functionally connected while accepting the OC offers 

(Figure 2.4 (A)) but not in accepting the fair offers (Figure 2.4 (B)). 

 

Figure 2.4 Brain node and network activity related to accepting overcompensated 
offers in the UG and IG.  

 (A) The left caudate, right thalamus and right cingulate cortex became relatively more 
active in unfair high offers (overcompensated offers) than in fair offers. This activation 
analysis included the trials from the UG and IG games. There was significant functional 
connectivity among these regions during unfair high offer trials. (B) There was not a 
significant connectivity pattern during fair offers. (C) The average BOLD signal changes 
in all of these regions were significantly different between the trials when the participants 
accepted overcompensated offers and the trials when they rejected these offers. (D) The 
directed functional connectivity pattern is significant at p<0.001 (with multiple 
comparisons corrections). The cingulate cortex receives a dominant information flow 
from the caudate and thalamus. Here, *: p<0.05, **: p<0.01.  
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We obtained the directed functional connectivity within this network based on the hidden 

neuronal responses derived from the deconvolution of hemodynamic responses (Figure. 2.4 (D)).  

The Granger causality results showed that thalamus exerted causal influences to both the caudate 

and the cingulate. There were bidirectional influences between the caudate and the cingulate, but 

the influence from the caudate to the cingulate was stronger.  

2.3.2.3 Brain activity associated with protesting a decision 

We isolated the brain areas that were activated when a responder was protesting a 

decision by contrasting the trials in which he or she protested versus did not protest in the FDG. 

This allowed us to further elucidate the neural circuitry associated with protesting a decision. 

Protesting a decision produced significant activation in two structurally [79] and functionally 

[80] connected brain regions in the left ventrolateral prefrontal cortex (vlPFC) within the inferior 

frontal gyrus (BA 45/47), the right middle frontal gyrus (dlPFC (BA 9)), a sub-region in the 

prefrontal cortex, and in the left mid brain in the substantia nigra (STN) (Figure 2.5). These 

regions vlPFC and dlPFC, dlPFC and STN were found to be functionally connected during 

protest (Figure 2.5 (A)), but not when individuals chose not to protest (Figure 2.5 (B)). There 

was bidirectional directed functional connectivity between these pairs of regions; vlPFC and 

dlPFC; dlPFC and STN. The causal influence was stronger from vlPFC to dlPFC than for the 

opposite direction. The causal influences were nearly equal in strength from dlPFC to STN and 

to the opposite direction (Figure 2.5 (C)). 
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Figure 2.5 Brain node and network activity related to protesting fixed decided 
offers. 

 (A) The left substantia nigra (L STN), the right dorsolateral prefrontal cortex (R dlPFC) 
and the left ventrolateral prefrontal cortex (L vlPFC) became more active during the 
protest of undercompensated offers than during not protesting fair offers. vlPFC and STN 
were functionally associated with dlPFC during protest. (B) This functional association 
was not significant in decided fair offers. (C) Although there were bidirectional network 
interactions of R dlPFC with L vlPFC and L STN, the R dlPFC received a dominant 
information flow from L vlPFC during the protest of undercompensated offers. 

 

2.4 Discussion 

Primarily based on the Ultimatum Game (UG) and the brain response to disadvantageous 

inequity, previous neuroimaging studies proposed that human decision-making in the context of 

unfair offers is a result of competition between cognitive and emotional processes in the brain. In 

this study, we included both disadvantageous and advantageous inequity conditions to explore 
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the asymmetry in the sense of fairness  (e.g., whether reactions are the same in situations of over- 

versus under-compensation) and its neural substrates. Our result further showed that a different 

neural system comes into play in the situations when the responder protests against unfair 

outcomes without altering these outcomes. Here, we discussed the results of the behavioral 

responses, fMRI activations and brain networks obtained in three different economic games, the 

UG, the IG and the FDG.  

2.4.1 Behavioral response 

In all three games, participants showed their sensitivity to being disadvantaged by 

refusing or protesting outcomes more often when they were offered less money than a social 

partner. On the other hand, participants did not show any sensitivity to overcompensation; we 

found no significant difference in rejection or the protest rate for overcompensated offers as 

compared to fair offers. These results add to the discussion about the degree to which humans are 

sensitive to the outcomes of others as compared to themselves.  While it is very clear that 

humans care about others’ outcomes [5,14], they are also more interested in their own outcomes 

than those of others [52] and when sensitivity to others’ outcomes may result in a drop in one’s 

own outcome, people prefer not to have that knowledge [53]. Additionally, it is possible that 

even these prosocial outcomes may be overstated in the case of explicit experimental situations 

as compared to otherwise similar daily interactions [81]. However, despite disliking being 

disadvantaged, humans do not uniformly refuse disadvantageous offers [82]. Our results showed 

that participants were sensitive to how their refusal influenced both their own and their partner’s 

outcomes; participants were less likely to refuse the unequal outcomes in the IG, where refusing 

resulted to $0 payoff for them but not the partner, than the UG, where refusing resulted to $0 

payoff for both participants.  This reflects previous work showing that people refuse unequal 



28 

 

outcomes in the IG at about half the frequency for which they refuse the same distribution in the 

UG [13]. These results from the UG and IG games altogether suggest that the refusals in the UG 

are not about the punishment to the proposer. Similarly, the refusals in the IG are not an effort to 

engender equity.  

In the UG, there is a tension between acquiring more resources and achieving equity, but 

in the FDG, individuals could protest such offers without losing resources, presumably 

dissolving this tension. Thus, we predicted higher protest rates in the FDG than the refusal rate in 

the UG. Nonetheless, in the FDG, when participants could protest without affecting their 

material outcomes, participants did not protest with any more frequency than they refused 

overcompensated outcomes in the IG and UG. That is, despite the essentially non-existent cost of 

protesting, people frequently chose not to do so. This indicates that participants are not failing to 

refuse offers in the UG in order to gain resources. One possible explanation for this is that 

participants were not concerned about the inequity to their partners in the overcompensated 

conditions. This also extends to disadvantageous offers towards the responder him or herself.   

2.4.2 Dorsolateral prefrontal cortex (dlPFC) 

The dlPFC is a part of cognitive system that represents goals and the means to achieve 

them [83,84], and also plays a role in evaluating the fairness-related behaviors and outcomes 

[85]. In two-person economic exchange games, such as the UG, the dlPFC is usually activated 

while rejecting undercompensated offers. However, whether its role is to inhibit self interest [47] 

or to punish the norm violators [3,51] is not resolved yet. Our finding of significantly increased 

BOLD activity in the dlPFC while participants are rejecting undercompensated offers in the UG 

(where rejection needs to inhibit economic self interest) as compared to that of the FDG, (where 
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monetary gain is fixed, meaning no concern about monetary loss and no self-control is required) 

supports the role of the dlPFC in self-control [86].  

To understand its possible role in punishment, we further contrasted the 

undercompensated offer condition in the IG (where there is no punishment goal) with that of the 

UG and FDG. We found significantly higher dlPFC activity while rejecting monetary offers in 

the IG compared to the UG and FDG.  Because there is no direct punishment goal associated 

with rejection in the IG, our results do not support the role of dlPFC for maintaining punishment 

goals. The higher dlPFC activity while refusing undercompensated offers in the IG might be 

because it requires a higher level of self-control because refusing in the IG results in both an 

absolute and a relative loss, while refusing in the UG results only in an absolute loss. The role of 

the dlPFC in self-control is further supported by a recent study in which disrupting activity in the 

right dlPFC via transcranial magnetic stimulation (TMS), generated fewer rejections of unfair 

offers [47]. Moreover, the significant signal change (%) in the dlPFC while rejecting offers as 

compared to accepting offers in both the UG and IG game conditions suggests that the dlPFC 

might be involved in inhibiting the appetitive desire for money, which allows individuals to 

choose socially appropriate options in the implementation of fairness related goal rather than a 

punitive response to unfair treatment. 

2.4.3 Neural correlates of accepting overcompensated offers 

Reward plays a major motivational role in changing the behavior of humans and other 

animals. Our behavioral results clearly showed that people were motivated not to reject or protest 

overcompensated offers. Importantly, from the brain analysis, the approval response to the 

overcompensated offers was found to be triggered by the reward related brain circuit consisted of 

the left caudate, right cingulate gyrus and right thalamus [54-60]. The role of the caudate in 
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reward processing is further supported by a positive correlation of caudate activation with 

increased monetary reward [57,59,60]. Similarly, activity in the cingulate gyrus [60] and the 

thalamus have been found to be associated with rewards [59,60,87,88]. Thus here, too, it is 

reasonable to argue that the brain might have internalized the overcompensated offers as 

rewards.  

This argument is also supported by the low frequency of protestation of overcompensated 

offers in the FDG. The low rate of refusals may not be surprising in the IG and UG because 

responders lose materially by rejecting the offers. However, individuals who possess the taste for 

fairness should protest when there is no cost to doing so, as in the FDG. The failure to do this 

may indicate that they do not find these outcomes troubling. This argument is further supported 

by previous work [89] done by using a two-person economic exchange game (the trust game) in 

which hemodynamic responses in the caudate were found to be correlated with an increase in 

trust (that is, an increase in payments to the partner). In the same direction, a study by Hikosaka 

et al. [54] and single neuron recording in non-human [90-92] have shown that  the dorsal 

striatum is the main hub associated with reward and goal-directed behaviors. The cingulate is 

known to be involved in conflict monitoring [30,93], and is active when choosing actions 

associated with reward [94] and in reward related decision making [60,94-96].  

Furthermore, the functional connectivity analysis revealed functional connection between 

them (Figure2.4 (A)) while accepting overcompensated offers, but not in the fair offer condition 

(Figure 2.4 (B)). The caudate and cingulate were causally influenced from the thalamus and they 

also communicated when people accepted overcompensating offers (Figure 2.4 (D)). The 

caudate is well known for processing reward-related information [58,88] and is thought to 

involve the outputs of the midbrain dopaminergic system [97]. The strong causal influence from 
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the caudate to the cingulate might be the reward signals, or the incentive motivation, that helps 

the cingulate resolve conflict [30,93] between social fairness norms and accepting unfair 

overcompensation offers.  This might lead towards the acceptance of unfair overcompensated 

offers by modifying or changing behavioral responses [95,96]. The significantly higher BOLD 

signal during the acceptance of overcompensated compared to fair offers (Figure 2.4 (C)) 

showed the involvement of this brain network towards the acceptance of overcompensating 

offers. The involvement the caudate-cingulate –thalamus network might be either in the selection 

of action associated with higher value outcomes [54-56,94] or in the processing of rewards 

[54,57-60,95,96], and does not  support previous thinking that inequity aversion  is symmetric  in 

humans [1,9,45,98].  

2.4.4 Neural correlates of protesting a fixed decision 

The monetary gain in the FDG is fixed and so, unlike in the UG, there is no conflict (or 

tension) between acquiring monetary gain and promoting (if not achieving) equity when 

protesting a decision in the FDG. As a result, the act of protesting a decision is based only on the 

responders’ attitudes concerning fairness (e.g., the current reward is uninvolved) [80], which are 

highly rooted on one’s knowledge, awareness, personality traits [99,100] and perception of 

proposer’s intention [17], and  require cognitive control [83,86]. The elevated right dlPFC 

activity while protesting the decision might indicate executive top-down control of such behavior 

[83,101,102]. This view is further supported by the previous findings [103] that patients with 

right prefrontal lesions were characterized by the inability to behave in normatively appropriate 

ways, despite the fact that they were keenly aware of the prevailing norms, such as the fairness 

norm (in tasks similar to ours; [6]). The higher dlPFC activity while protesting the 
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undercompensated offers compared with not protested fair offers is also consistent with the 

previous finding [47] that the dlPFC is involved in social norms enforcement.  

However, the dlPFC is not the only region activated when protesting an 

undercompensated offer; the vlPFC, a region involved in verbal reasoning [104] and inner 

speech [63], and the STN are coherently activated. The vlPFC has consistently been identified as 

the neuro-anatomical basis of inner speech and reliably gets activated when participants are 

asked to silently articulate sentences or single words [62]; dysfunction also disrupts inner speech 

[63]. In our case, the vlPFC might be feeding (the observed dominant causal flow from the 

vlPFC to the dlPFC, Figure 2.5(C)) its inner speech of frustration/protestation induced by unfair 

treatment to the dlPFC while protesting the decision. Further, the strong functional connectivity 

between the dlPFC and the vlPFC when protesting a decision (Figure 2.5(A)), but not when 

participants choose not to protest (Figure 2.5(B)), suggests that the interaction between these 

regions is important during the processing of participants’ reaction to unfair offers. The similar 

connectivity pattern between the right dlPFC and the left ventral prefrontal cortex [105] was 

observed in rejecting unfair offers. As these brain areas are not yet fully developed in children, 

adolescents, or even young adults [106], these groups are not fully able to evaluate appropriate 

social norms [64]. Thus the network formed by these region might be a part of the neural 

circuitry involved in social norm compliance [64]. Additionally, brain activity in the left STN 

(midbrain), a reward related brain region [59,97,107], might reflect the pleasure feeling induced 

by decision of protesting (symbolically) unfair decision [87]. Thus, the evidence suggests that 

the act of protestation or the expression of frustration [61] resulted from the coordination of  

neural activity among the dlPFC, vlPFC, and STN and was triggered by the frustration of a social 

norm violation.  
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Previous studies on human social decision-making in the context of economic games 

have shown that there is competition between self-interest and fairness norms, and little is known 

about the neural basis of resolving such conflict. Here, by using three games, the UG, IG and 

FDC, we find evidence supporting the role of the right dlPFC in the social decision making 

process. By including an overcompensated offer condition, we found that, contrary to earlier 

reports [7,9], people do not make decisions that benefit others at a cost to themselves. Further, 

accepting overcompensated offers was found to be associated with activity in the brain reward’s 

system [57-60,88]. Finally, we found that the ability to protest without cost does not influence 

participants’ tendency to do so, indicating that the cost involved in refusals is not sufficient to 

explain the lack of rejections.  

  Behavioral results in our new FDG were very similar to those typically found in the UG 

in low unfair condition [3,13], however, the difference in the rate of rejection of 

overcompensated offers was of the same degree as fair offers in all games. This is surprising, 

especially in the case of the FDG, because the responder could lodge a protest for a decision to 

unfair offers without affecting their material outcomes. Future neuroimaging studies on social 

decision-making processes can examine the interplay between over- and under-compensation, as 

well as the role of actual rejection versus protest.  In particular, this sample space should be 

extended by investigating similarities and differences due to a variety of factors such as 

personality traits [99,100], perception of proposer’s intention [17], age [108] and culture [10].  

Levels of perceived fairness are known to change in certain psychiatric illnesses, such as bipolar 

disorder and personality disorders [109,110]. This study with fairness related games and 

neuroimaging probes could provide some basis for future studies of cognitive functions and 

dysfunctions useful for the diagnosis and understanding of mental disorders.   
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3 THE SAILENCE NETWORK AND ITS FUNCTIONAL ARCHITECTURE IN A 

PERCEPTUAL DECISION: AN EFFECTIVE CONNECTIVITY STUDY 

3.1 Introduction 

The anterior insulae (INSs) are known to be involved in perceptual decision-making 

independent of response modalities [22,111]. The increase in INSs activity at the moment of a 

perceptual decision during an image recognition task [112] further supports their role in the 

decision-making process [113]. Also, INSs have been shown to be involved in the integration of 

perceptual information in the auditory and visual domains [114,115], and were found to be 

strongly affected by task difficulty level [116].  

 Another brain region on the medial wall of the frontal lobe, the dorsal anterior cingulate 

cortex (dACC), has long been implicated in movement initiation [117,118].  dACC lesions can 

lead to difficulties initiating complex voluntary movements and actions [119,120].  The activity 

in dACC is known to have a direct causal role on choosing an action during the goal directed 

action selection [20,121,122], and is involved in the top-down modulation to primary motor 

cortex [123].  

In task-based functional imaging, INSs and dACC have been found to be co-activated 

[20,32,112] and are anatomically interconnected [124]. The spike of activity in this network was 

found time-locked with the ‘‘moment of recognition’’ in a perceptual discrimination task [112]. 

This is in accordance with the previously documented evidence on their role in the decision-

making process [111,125]. The network formed by INSs and dACC has been named the 

“salience network (SN)” [24,36].  

Previous studies have indicated a broad role of SN in the decision-making process, 

including the implementation of goal-directed tasks [20,21]. However, when available sensory 
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information is scant, the task of decision-making becomes difficult and is reflected in the 

uncertainty of the decisions [22,126,127]. For optimal performance of decision-making, the brain 

has to put together the ambiguous information to arrive at the perceptual decisions [128]. How is 

the ambiguity resolved?  What is the role of the INSs in the ambiguity resolution?  How a goal-

directed behavior evolves from the causal interactions of nodes within the SN remains to be 

understood. 

In this study, we aimed to understand the contribution of each node of SN in the decision-

making process, from segregation of stimuli to response selection. To pursue the goal, we used 

functional magnetic resonance imaging (fMRI) with dynamical causal modeling (DCM), a 

technique that infers effective connectivity from fMRI data, coupled with a Bayesian model 

evidence technique. Thirty-three healthy participants were scanned and asked whether the 

presented pairs of audio-visual (AV) stimuli were synchronous or asynchronous. Stimuli pairs 

were presented in blocks of eight pairs with a participant-specific temporal lag (ΔΤ) between 

audio and visual stimulus onset. The perception of synchrony or asynchrony is strongly 

influenced time lag (ΔΤ). Time spacing between the tone and flash was unique to each 

individual. The individuals’ ΔΤ was chosen by finding the point of subjective simultaneity (PSS) 

(details in the methods and materials). The task difficulty, the cognitive demand of our task, was 

manipulated by creating the temporal lag near the PSS. 

3.2 Materials and Methods 

3.2.1 Participants 

Thirty-three healthy individuals (17 females and 16 males; mean age, 27.54 years) 

participated in this experiment. All participants had normal hearing and normal or corrected to 

normal vision, as well as normal neurological history. Participants were compensated for their 
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participation. The Institutional Review Board (IRB) for Georgia State University and Georgia 

Institute of Technology, Atlanta, Georgia, USA approved the experimental procedure. All 

participants provided written informed consent in accordance with institutional guidelines 

3.2.2 Stimuli 

We used a pair of auditory (a tone) and visual (a flash of light) stimuli. The auditory 

stimulus consisted of a 440-Hz–30-ms tone, while the visual stimulus consisted of a 30-ms 

yellow-red flash from the disc of 0.7cm radius. The auditory stimulus was delivered through a 

pair of earphones, one on each ear, and visual stimulus was flashed at the central position on the 

computer screen. Sound was presented first with a stimulus onset asynchrony (SOA) depending 

on the participants’ point of subjective simultaneity (PSS) (for details see task and behavioral 

paradigms). Participants judged whether the pair of stimuli appeared to have been presented 

simultaneously (synchronously) or not (asynchronously). They were asked to report their 

decision by pressing the left or the right button on a button box with either their right index or 

middle finger. Subjects were asked to indicate their decision as quickly and as accurately as 

possible outside the scanner and after the question mark appeared on the screen in the fMRI run. 

The trials in which they failed to respond or made an incorrect response were discarded for 

further analysis. The presentation software (http://www.neurobs.com) was used to display 

stimuli and to control task trial sequences. Prior to the task, the experimenter explained the 

instructions and procedure to each participant. Example trials were shown to help make the 

subjects more familiar with the task procedure. 

3.2.3 Task and behavioral paradigms 

      Outside the fMRI scanner. The experimental task outside the scanner was divided into 

two separate sessions and each session consisted of a single run. The first session was aimed to 
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identify a “ point of subjective simultaneity (PSS)”, i.e. how far apart in time the asynchronously 

presented audio and visual pair could be perceived as synchronous. The PSS is unique to each 

individual. Our perception of synchrony (or asynchrony) of audiovisual signals is affected by a 

variety of factors such as the nature of the stimuli, its complexity, experience, life span, and is 

especially influenced by time lag (ΔΤ): time spacing between the tone and flash [129-133]. The 

behavioral run started with 5s of initial rest followed by the presentation of audio and visual 

stimuli with a systematically varying asynchrony lag of 66.6, 83.3, 100, 116.6,133.3,150 and 

166.6 milliseconds. Previous literature suggested that humans can correctly detect audiovisual 

asynchrony within these limits [130,133-136]. The time between each pair (the pause, τ) was 

chosen randomly between 1000- 1160 ms. Participants were seated in a dimly lit room at an 

approximate distance of 70-80 cm in front of the monitor and responded using a keyboard. On 

each trial, participants were asked to judge whether the AV stimulus was synchronous or 

asynchronous. They were asked to indicate their perception by left mouse click if they perceived 

synchrony or right mouse click for asynchrony. After reporting their perception, participants 

were asked to click on the middle of the mouse to advance to the next stimulus. Each condition 

was presented 20 times, totaling 140 trials.  After completing the run, we looked at the fraction 

of the trials that were perceived as synchronous or asynchronous. The time lag (ΔT) was chosen 

from the sets of time lags in which performance accuracy was 50:50 % or close to it (which we 

call temporal threshold or simply threshold in this text).  The second session also involved 

acquiring behavioral data and response time outside the fMRI scanner. It consisted of a single 

run but the time lag (ΔΤ) were manipulated to a threshold-16.6, threshold and threshold+16.6 

ms. The pair of stimuli was presented 60 times: 20 at each ΔΤ. The time the stimulus was 

presented and the response time to that stimulus were recorded for further analysis. 
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Inside the fMRI scanner. The last experimental run was inside the fMRI scanner where 

fMRI data was acquired and behavioral responses were recorded (Figure 3.1). This fMRI run 

started with 30 seconds of initial rest followed by 24 multisensory task blocks and 8 blocks of 

unisensory task. Blocks were presented in a random order and consisted of 8 pairs of stimuli in 

the multisensory block where both the tone and flash were presented. In the unisensory block, 

either 8 flashes or 8 beeps were presented. Stimuli within a block were presented with the 

random pause of 1666 to 1926 ms followed by the cue of 600ms at the end of each block, 

totaling about 24 seconds for one block. There was about 10 seconds of pause in-between blocks 

and the run ended with 35 seconds of a final rest period. While running the experimental runs, 

participants were asked to focus their gaze on the crosshair at the center of the screen. 

While recoding our data, two stimulus types were used; a beep-flash pair with a distractor 

and one without a distractor. No distractor was used in the unisensory block either. Here the 

distractor was a ball of a radius 0.7 cm moving across the screen, only one time per AV pair, 

either left to right or right to left while the audio-visual pair stimuli was presented. Participants 

were asked to disregard the ball and focus on the sensory stimuli. The aim of adding distractor 

was to make more engaging. The data from these two conditions (with distractor and without 

distractor) was initially analyzed separately. However we did not find significant behavioral 

difference in the perception of asynchrony with or without the distractor (mean percentages were 

35.43 and 31.66 respectively, probability (p)= 0.49, a paired t-test was performed). Similarly, we 

did not find significant difference between synchrony response with or without distractor (means 

64.56 and 68.33, p= 0.49). Also, no significant difference was found in RT between asynchrony 

perception with or without the distractor (means were 0.91 s and 1.03 s, p=0.17) and that of 

synchrony perception too (means were 0.78 s and 0.79, p= 0.87).  
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Figure 3.1 Experimental paradigm.  
Task paradigm during the functional experiment started with initial 30s of rest followed 
by task blocks and 35s of rest at the end of the run. There were two block types: 
multisensory blocks (beep-flash pair were presented for 30 ms, as shown in figure) and 
unisensory blocks (flash only or beep only were presented, not shown in figure). The time 
interval between the beep and flash (ΔT) were varied participants to participants. Stimuli 
within the block were presented with the random pause (τ) of 1666 to 1926 ms followed 
by the cue of 600ms at the end of each block; totaling about 24 second of one block. 
Participants were asked to respond after the cue was presented. In unisensory blocks, 
since a single stimulus was presented, no question was asked about asynchrony and 
synchrony perception at end of block. 
 

Further, to make sure that there was no significant difference in brain activation, we first 

analyzed the brain data considering with and without the distractor as a separate regressor in 

SPM general linear model for both asynchrony and synchrony response trials. We compared 

mean contrast values extracted form SN nodes using a pairwise t-test. We found no difference in 

mean contrast values of asynchrony and synchrony perception between with and without the 

distractor conditions (for lINS: p =0.20 and 0.64, for rINS p=0.95 and 0.07, for dACC p=0.93 

and 0.14. Here the first value of p is between asynchrony perception with a distractor and 
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without a distractor and the second value is that of synchrony perception). So for further analysis 

we combined the trials of asynchrony perception from with and without the distractor condition 

and called them as asynchrony on trials and that of synchrony as synchrony trials.  

3.2.4 Data Acquisition and Analysis 

3.2.4.1 Behavioral data 

Response time (RT), the time between onset of the stimulus and button response, for each 

trial was recorded outside the scanner and behavioral performance was recorded from both inside 

and outside the scanner. Participants’ behavioral performance was analyzed using Matlab. Trial 

by trial RTs of each participant from outside the scanner were separated and averaged for both 

asynchrony and synchrony responses. Paired t-tests were used to compare the response times 

between the asynchrony and synchrony perception conditions.  We did not record RTs inside the 

scanner as the participants were instructed to wait until the question mark (cue) was displayed in 

the computer screen before indicating their decision by button presses for the given stimuli.  

3.2.4.2 Functional magnetic resonance imaging (fMRI) data 

The whole-brain MR imaging was done on a 3-Tesla Siemens scanner available at CABI 

(Georgia State and Georgia Tech Center for Advanced Brain Imaging, Atlanta, Georgia). High-

resolution anatomical images were acquired for anatomical references using an MPRAGE 

sequence (with, TR = 2250 ms, TE = 4.18 ms, Flip angle = 90, inversion time = 900 ms, voxel 

size = 1×1×1 mm3 ). The functional run consisted of 449 scans, the measurement of the T2*-

weighted BOLD effect, were acquired with a gradient echo-planar imaging protocol; echo time 

(TE) = 30 ms, repetition time (TR) = 2000 ms, flip angle = 900, voxel size = 3×3×3 mm3, field of 

view = 204 mm × 204 mm, matrix size = 68×68 and 37 interleaved axial slices each of 3 mm 
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thickness. 

MRI data were analyzed using Statistical Parametric Mapping (SPM8, Wellcome Trust 

Center, London, http://www.fil.ion.ucl.ac.uk/spm). Functional volumes were slice timing 

corrected at individual subject level as this step is required to minimize the error in effective 

connectivity between different brain regions [137]. The further processing steps includes motion 

correction, co-registration to individual anatomical image, normalization to Montreal 

Neurological Institute (MNI) template [138] and smoothing of functional scans. Spatial 

smoothing of the normalized image was done with an 8 mm isotropic Gaussian kernel. A 

random-effects, model-based, univariate statistical analysis was performed in two level 

procedures. At the first level, a general linear model (GLM) was specified according to the task 

sequences and behavioral responses for each participant, rest and six motion parameters were 

also included in GLM analysis. Here 6 motion parameters were entered as nuisance covariates 

and were regressed out of the data.  After defining the contrast in first level analysis, the contrast 

images of the particular contrast from all participants were then entered into a second level 

analysis for a separate one-sample t-test. The resulting summary statistical maps were then 

thresholded and overlaid on high-resolution structural images in Montreal Neurological Institute 

(MNI) orientation. For display purposes, the functional images were overlayed on the MNI 

template available in MRIcro (http://www.mccauslandcenter.sc.edu/CRNL) 

3.2.4.3 Effective connectivity analysis: dynamic causal modeling (DCM) 

To examine the effective connectivity established by our experimental conditions (i.e. 

asynchrony and synchrony perception) between our ROIs in SN, we used dynamical causal 

modeling [139] implemented in SPM8 (DCM10). We identified the ROIs from the group level 
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results and determined the peak voxels of interest from the contrast [asynchrony (A)+synchrony 

(S)> beep (b)+flash (f)]. Then we used these coordinates as a reference to find the local maxima 

from the first level brain map and extracted the eigenvariate by defining a sphere of radius 6 mm 

for the contrast of interest adjusted for the equivalent F-contrast. The center of each region of 

interest (ROI) was located on the most significant voxels in the cluster nearest to the peak cluster 

coordinate obtained from group analysis and activated at the a significance level (p<0.05 

uncorrected) and lie within twice the width of the Gaussian smoothing kernel used while 

smoothing the data. Obtained fMRI time-series were then used in the DCM analysis. First, using 

Bayesian model selection [140], we identified nodes from where the inputs to the SN entered. 

Second, using Bayesian model averaging (BMA), we computed resultant connection (intrinsic 

and modulatory) strengths established by our task (i.e., perception asynchrony and synchrony). 

Finally, we tested for statistical significance of resultant intrinsic connection strengths within SN 

and determined whether any connections were significantly modulated by task conditions. 

For DCM analysis, we kept matrix A, the matrix of intrinsic connections, fully connected 

between ROIs across all models. For three ROIs, there were six possible intrinsic connections 

(dACC to RINS, dACC to LINS, RINS to dACC, LINS to dACC, LINS to RINS, and RINS to 

LINS). The “B” matrix is the matrix of changes (increases or decreases) in effective connectivity 

between regions for each task condition of interest. As in  “A” matrix, there were six possible 

connections in “B” matrices and each connection could exist in two states (i.e., modulated or not 

modulated by task type) and, therefore, there are 26 = 64 mathematically possible combinations 

of “B” matrix.  Similarly, The inputs into the network are expressed in matrix “C”. It represents 

the direct influence of the task on specific nodes. For 3 ROIs, there are 7 possible input 

conditions as: dACC alone, RINS alone, LINS alone, dACC and RINS in combination, dACC 
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and LINS in combination, LINS and RINS in combination, all nodes. Therefore, we have used 

7×64=448 models per participant to thoroughly explore model space. Each of the 64 models of 7 

families were compared using the random effects option of the family level Bayesian inference 

[140] and the winning families were taken to the next level analysis (detail analysis and result : 

on result section). 

3.3 Results 

3.3.1 Behavioral performance 

Since there is no right or wrong answer, we categorized the behavioral responses based 

on participants’ perception of asynchrony and synchrony. The mean performance ratio outside 

the scanner was about 34: 66 (standard deviation (std), 19.71) for asynchrony and synchrony 

perception respectively. However, more time was taken to respond with the asynchrony 

perception (mean RT =0.96 ms, std 0.30) compared to synchrony  (mean RT 0.79 ms, std 0.23). 

This was statistically significant  (student’s paired t-test, p=<0.016,t-stat =2.48). Similarly the 

mean performance ratio inside the scanner was the ratio of 41: 61 (std, 17.58). The plots of 

behavioral results are shown in Figure 3.2. 
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Figure 3.2 Behavior results.  
Behavior responses were categorized based on participant’s perception of asynchrony and 
synchrony. The mean performance ratio outside the scanner was about 34: 66 and that of 
inside the scanner was 41: 59 for asynchrony and synchrony perception respectively 
(top). The trials by trial response time (RT) were recorded outside the fMRI scanner and 
mean RT were 0.96 and 0.79 s for asynchrony and synchrony response respectively 
(bottom). Error bars show standard error of the mean. (* p < 0.05). 
 

3.3.2 Brain activation 

Both synchrony and asynchrony perception activate the SN network (Table3.1 and 

Figure. 3.3). The contrast used was asynchrony perception (A)>[auditory (beep only; b) +visual 

(flash only; f), in other words multisensory > unisensory] and synchrony perception 

(S)>[auditory (beep only; b) +visual (flash only; f)] respectively. Further, for ROI analysis 

purpose, we have contrasted [asynchrony perception (A)+ synchrony perception (S)]> [auditory 

(beep only; b) +visual (flash only; f). From the activation map, we have extracted the contrast 

values (the beta parameters), by defining a sphere of 6 mm radius centered at the local maxima 
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peak activity voxel using MarsBaR[66]. The group average of contrast values was plotted for 

each node in SN separately for asynchrony and synchrony conditions (Figure 3.3B). We found 

significantly (paired t-tests) higher brain activity in asynchrony perception compared to 

synchrony perception conditions in each node of SN. 

 

Figure 3.3 SN activation.  
(A) Brain activations shown were associated with contrast:  asynchrony (A) and 
synchrony (S) (i.e. multisensory stimuli ) > beep (b)+ flash (f) ( i.e. unisensory stimuli) . 
Final statistical images were thresholded using family-wise error (FWE) correction of 
multiple comparisons at p  <0.05. (B) Plots of mean contrast value associated with 
asynchrony and synchrony perception in SN nodes. Error bars show standard error of the 
mean. ** = p<0.01, and *** = p<0.005)  
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Table 3.1 Brain activations for asynchrony perception (A) and synchrony     
perception (S) contrasted with audio (beep, b) and visual (flash, f). 

Contrast Brain area MNI coordinates 
(x, y, z) 

Cluster  
size Z (t-stat) 

A>b+f** 

Dorsal anterior cingulate 
(dACC) -6 11 52 203 6.93 (10.71) 

dlPFC(BA9) -60 8 31 79 9.13 (6.36) 
Insula (R INS) 33 20 4 169 6.24 (8.82) 
Insula (L INS) -30 20 4 103 5.85 (7.93) 

Visual area (BA 18) 27 -97 -2 62 5.82 (7.84) 
Inferior perital lobe (IPL) -30 -49 46 71 5.63 (7.45) 

Thalamus 3 -1 1 19 5.56 (7.27) 
Medial Globul Pallidus -12 2 1 33 5.41 (6.99) 

Caudate body 15 8 7 49 5.39 (6.96) 
dlPFC (BA9) 45 2 28 57 5.22 (6.63) 

Visual Area (BA17) -30 -94 -8 19 5 (6.22) 

S>b+f * 
 

Visual area (BA 18) 27 -97 -8 90 5.97 (8.19) 
dACC -9 11 49 96 5.64 (7.46) 

Thalamus 3 -4  1 88 5.55(7.29) 
Visual Area (BA18) -27 -94 -5 62 5.45 (7.07) 

dlPFC -60 8 25 16 4.97 (6.17) 
Insula (L INS) -30 20 7 56 4.61 (5.55) 
Insula (R INS) 33 23 7 41 4.44 (5.28) 

Inferior perital lobe (IPL) -33 -46 43 27 4.38 (5.18) 

A+S>b+f** 

dACC -6 11 52 122 6.61(9.78) 
Visual area (BA 18) 27 -97 -5 71 6.24 (8.84) 

dlPFC -60 8 28 47 6.07 (8.42) 
Thalamus 3 – 1 1 101 6.07 (8.41) 

Insula (L INS) -30 20 4 84 5.78 (7.76) 
Insula (R INS) 33 23 4 117 5.75 (7.69) 

BA18/lingual gyrus -27 -94 -5 37 5.31 (6.80) 

IPL -30 -49 46 42 5.24 (6.67) 
** Family-wise error corrected (FWC) <0.05,  *AlphaSim corrected p<0.05 

 

3.3.3 Dynamical causal modeling analysis (DCM) 

To identify where the inputs to the SN entered, family level inference was used. This 

procedure removed the uncertainty about aspects of the model structure other than the 
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characteristic of interest. For example: what are the inputs to the system? [140]. Out of seven 

family models we have compared, the most evidence (xp, the exceedance probability) was for 

right insula input (83.12%). Similarly the evidence for dACC and left insula input was 8.50% 

and 7.90% respectively. The evidences for remaining families were less than 0.33% (Figure 

3.4A). We focus our further DCM analysis on the first three winning models as the evidence 

combining three families resulted 99.51%.  

The random effect Bayesian model averaging procedure (BMA.rfx) was used to compute 

resultant pattern of connection strengths (intrinsic and modulatory) established by the perception 

of asynchrony and synchrony of AV pairs. The intrinsic connections between nodes during 

asynchrony and synchrony perception were found significant (t-test, p<0.05) from (i) R INS to L 

INS and dACC  (ii) L INS to R INS and dACC (Figure 3.4B,blue arrows). No significant 

connections were observed from dACC to R INS and L INS. Next, we investigated whether the 

connections were modulated by asynchrony and synchrony conditions (the matrix “B”). For the 

asynchrony condition, the connection from L INS to R INS was significantly increased (Figure 

3.4B,red arrow). No other connections were found to be modulated by either asynchrony or 

synchrony perception. The parameter estimates of the driving stimuli to dACC, left and right 

insula were found to be 0.027, 0.020 and 0.030 respectively. 
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Figure 3.4 Exceedance probability and connections between nodes of SN. 
 (A) The bars represent the exceedance probability of constructed seven families based on 
where the input was supplied to the SN. (B) Schematic representations of significant 
connections and parameter estimates of driving stimuli obtained from Bayesian model 
averaging from the first three winning families. The blue arrows: significant intrinsic 
connectivity between nodes and red arrow increased effective connectivity from LINS to 
R INS for asynchrony perception condition. The number next to the arrows represent 
respective connection strength. The xp (the exceedance probability) and the parameter 
estimates of driving stimuli of the node are shown with large arrow.  
 

3.4 Discussion 

The INSs and the dACC form an independent brain network, the salience network (SN) 

[36]. These brain regions are often co-activated, making it difficult to isolate the functional role 

of individual nodes [141]. In this study, we attempted to understand the complex, and as yet only 

partially characterized patterns of functional connectivity between nodes in the human SN by 

using the multisensory perception task coupled with dynamical causal modeling (DCM). Our 

DCM analysis showed that both R INS and L INS were connected intrinsically to each other and 

also with dACC. Input to the SN mostly came through R INS. These results suggest a central 
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role of INSs and dACC in the perception of sensory events and selection of appropriate 

behavioral responses. These findings further extend previously reported findings that the INSs 

and dACC serve as part of the decision-making network that integrates information important to 

choose one response over another [22,23,25-27,120,126]. 

A large number of studies have found that the insula is a key structure in perceptual 

decision-making [22,111-113,116]. INSs have been shown to have widespread efferent and 

afferent projections to and from both the frontal and parietal cortices [124,142,143]. This 

connectivity places the INSs perfectly to perform their putative role on decision-making, for 

example INSs are involved in integration [114,115] and comparison [111,144] of sensory 

information. The significantly higher brain activity (Figure 3.3B) in INSs during asynchrony 

perception might reflect the greater task difficulty in audio-visual integration [116,145] and 

discrimination [146]. 

 The dACC has been implicated as part of the task-set system that initiates and selects 

action [21]. Lesions in this part of the brain can lead to difficulties in initiating complex 

voluntary movements and actions [25,119,120]. However, in goal directed actions, knowledge 

about which task to pursue is important before we initiate or select any action. This is done by 

accumulating evidence to support one action over another action [147,148]. The significant 

intrinsic connectivity form INSs to dACC in our task condition supports the previous findings 

that the dACC gets immediate access to information about external task cues from insular cortex, 

cortical areas associated with high-level perception [149,150]. In our task condition, dACC 

might be involved in accessing moment-to-moment perceptual information supporting one 

versus another response in order to guide behavior. The higher brain response in dACC during 

asynchrony perception compared to synchrony perception might be due to the increased task 
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demand of assessing information required for response selection processing, such as conflicting 

information which may make such selection difficult [120,151]. This is in line with previous 

findings that dACC facilitates response selection under conditions of conflicting response 

alternatives or task sets [123,152]. The role of dACC in the decision-making process includes 

action initiation [25] and the selection of specific actions [120], dACC’s role is also supported by 

the findings in a much wider range of decision-making tasks [22,23,26,126].  

INSs and dACC share a direct white matter connection [124]. There is now a wealth of 

evidence that INSs and dACC have a close functional relationship in wide range of tasks 

[20,24,32,36,111,112,125]. SN plays a role in the coordination of behavioral responses [121]. 

Our findings provide evidence that efficient behavior evolves from the causal interaction of 

nodes within the SN. The higher evidence that input in SN is mostly from INSs suggests their 

role in the integration of stimulus saliency [27,114,115]. This is supported by INSs widespread 

efferent and afferent projections to and from both the frontal and parietal cortices [124,142,143]. 

Activity in dACC was triggered by INSs, which has led to the conclusion that INSs provide 

cortical signals used for appropriate response selection. This is in line with previous findings that 

suggest the insula acts as a cortical “out flow hub” to influence activity of other brain regions 

[24,32,153]. 

The input to the right insula was much higher than to the left insula (Figure 3.4B), which 

suggests a dominant role of the right insula in the SN function. This difference of the left and the 

right in the insular function has not been understood well, possibly because they are usually co-

activated [117,154-156], as in our current study. Here, by the use of  DCM, we were able to 

point out that there might be different functional roles of the left and right insulae in the 

integration of perceptual saliency. Based on these results and experimental evidence obtained 



51 

 

from other similar studies [24,32,157], we propose that the right insula is, in general, critical for 

the integration of external stimuli in a perceptual decision process, in which the interactions 

between the left and the right insulae are essential. Highly engaging tasks such as the asynchrony 

perception task that we conducted often lead to modulation of effective connectivity from the left 

to the right. These results are consistent with the earlier proposal that the right insula aids in the 

coordination and evaluation of task performance across behavioral tasks with varying perceptual 

and response demands [157]. 

Broadly, our results support that SN is a set mechanism required during the performance 

of cognitively demanding goal-directed tasks [20,21,151] and coordination of behavioral 

responses [121]. One potential limitation of our study is that we constrained our study within the 

SN as, in many situations, the activity within SN appears related to goal directed decision-

making, especially in engaging tasks [20,21,121,151]. However, these were not the only higher 

order cortical brain regions activated by our experimental task. The other brain regions activated 

included the dorsolateral prefrontal cortex (dlPFC) and inferior parietal lobe (IPL). The dlPFC 

has been reported in various decision-making tasks [31,158-161], and is also considered a part of 

the cognitive system [84,162,163]. Another brain region, IPL, has also been reported in various 

decision-making tasks [164-168]. The thalamus is known to be involved in perceptual task [169]. 

In our study also, the thalamus was strongly activated both in synchrony and asynchrony 

conditions. Thalamus did not show significant difference in modulation of activity levels by the 

perception of synchrony and asynchrony (paired t-test, p=0.63). However, resolving effective 

connectivity patterns between the salient network and the thalamus would definitely add to our 

current understanding of salience information processing in the brain. But, we leave this 

computation for future research since the DCM analysis to resolve this connectivity pattern will 
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be computationally expensive due to a large number of models that need to be solved for a 

connectivity of four nodes with inputs and modulations included per participant. 

Finally, we provide evidence about how the nodes in the SN played their role in the decision- 

making process and implementation of goal-directed action.  The INSs were found to a play an 

important role in integration of sensory information. INSs also supply necessary information for 

the dACC to use for the selection of the appropriate response.   The present results support the 

hypothesis that dACC and INS are part of the task-set system involved in the decision-making 

process, and that this mechanism is required during the performance of cognitively demanding 

goal-directed tasks. 

 

4   PERCEPTUAL DECISION-MAKING DIFFICULTY MODULATES 

FEEDFORWARD EFFECTIVE CONNECTIVIRTY TO DORSOLATERAL 

PREFRONTAL CORTEX.   

4.1 Introduction 

Humans are efficient in perceiving and discriminating the visual objects. How does the 

brain receive, relay, and integrate relevant sensory information to make such perception and 

discrimination known as perceptual decision?  Specifically, what are the brain regions involved 

and how do these regions coordinate activity in perceptual decision-making processes?  Previous 

studies showed that the brain areas on the ventral visual pathway process object category-

specific visual information [35,170-172]. However, visual information processing in these early 

visual areas was found insufficient in discrimination of visual objects [173-175]. In spite of the 

abundant research in the field [19,33,170,172,176-178], we do not exactly know where and how 

visual information is processed in the brain to arrive at a difficult perceptual decision. In this 
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study, we used face-house categorization tasks with three levels of noise in face-house images in 

functional magnetic resonance imaging (fMRI) experiments to answer these questions.  

The encoding of relevant sensory information is one of the main steps of the brain 

processes in the cognitive chain leading to perceptual decisions. Experiments on both humans 

and non-human primates have demonstrated that the first stage of perceptual decision-making 

involves lower order regions receiving and representing sensory information [37,113,179-182]. 

For example, perception of faces showed stronger response in the fusiform face area (FFA) [35] 

and that of house in the parahippocampal place area (PPA) [39,170,183,184]. However, 

relatively recent studies in the field have shown that the representation of visual information in 

these areas, also called core system, is not sufficient [173,174,185,186], and further processing 

of visual information in the higher order cortical area, also called the extended system, is crucial 

to discriminate visual objects [19,173,176].  

In a previous study, the core system was found to be functionally organized in a 

hierarchical, feed-forward architecture, in which the core exerted a strong causal influence on the 

extended system in frontal cortex [176]. The frontal cortex activity, especially in the dlPFC, was 

also reported in semantic analysis [187], disambiguation [159], and temporal processing [188]. 

The dlPFC was also found to be involved in social decision-making [2,47,161] and cognitive 

control [83]. The dlPFC has been understood to accumulate relayed sensory information to form 

a decision [189]. However, how these regions in core and extended system coordinate activity in 

relaying and integrating competing sensory information to arrive at perceptual decisions is 

largely remained unknown.  

Here, we aimed to map out the neural mechanisms for perceptual decision-making 

processes by examining categorization-task specific brain activations, brain connectivity, and 
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their modulations by decision-making task difficulty. We included three-noise levels in our 

stimuli, predicting an increase in connectivity within category-specific brain areas in ventral 

temporal region (the FFA and the PPA) and feedforward connectivity between these regions and 

the extended system (the dlPFC) by face-house categorization difficulty. The rationale for this 

prediction is based on the notion that as noise in face-house stimuli increases, the neural 

representation of category specific information in FFA and PPA decreases [38]. As the result of 

the decrease in category specific information in these regions with noise, the brain has to work 

harder in gathering and evaluating of sensory information and hence predicted increased activity 

in decision-making [159,160,187,189].  

4.2 Materials and Methods  

4.2.1 Participants 

Thirty-three human participants (17 females; mean age 27.54 ± 4.67 years) participated in 

this study. All participants had normal or corrected to normal vision and reported normal 

neurological history. Participants provided written signed informed consent forms and were 

compensated for their participation in the experiments. Institutional Review Board (IRB) for 

Joint Georgia State University and Georgia Institute of Technology Center for Advanced Brain 

Imaging, Atlanta, Georgia, USA approved this study. 

4.2.2 Stimuli 

We used a total of 14 images of faces and 14 images of houses as stimuli. All the 

presented pictures were downloaded from F.A.C.E. Training–an interactive training by Paul 

Ekman (https://www.paulekman.com/product/pictures-of-facial-affect-pofa/). All the images 

were equalized for luminance and contrast by converting them to gray scale and were cropped to 
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make equal size. Furthermore, both face- and house- images were degraded by manipulating 

images and adding noise [190]. Image pixel phase randomization and addition of Gaussian noise 

enabled us to make visual image stimuli noisy. Stimuli consisted of three different noise levels:  

0 %, 40%, and 55%, for both sets of images. The stimulus software Presentation 

(http://www.neurobs.com) was used to display stimuli and to control task trial sequences.  

4.2.3 Task and behavioral paradigms 

The experimental task was divided into two separate sessions: the first session involved 

acquiring behavioral data outside the MRI scanner and the second session was inside the 

scanner, where we acquired both fMRI and behavioral data. In both cases, participants were 

asked to decide whether the presented gray scale images were faces or houses. They indicated 

their decisions by keyboard or button presses on a response box. Prior to the experimental tasks, 

participants were briefly explained about the study and the task. Some sample stimuli were 

shown and the participants were asked to make decisions about the presented stimuli, allowing 

them to be familiar with the task. 
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Figure 4.1  Experimental paradigm. 
 (A) Sample images at three noise levels for sets of both face and house stimuli. (B) Task 
paradigm during a functional run, starting from the initial 30 s rest followed by a task trial 
that included 500 ms- stimulus presentation, 8 s of decision time, and 500 ms-display of a 
question mark, requiring participants to indicate their decision within the next 6 s. 
 

4.2.3.1 Outside the fMRI scanner 

This behavioral study consisted of a single run. There were three noise conditions and 

each condition was repeated 60 times (30 times each for faces and houses) in a random order, 

generating 180 trials in total. Participants were asked to indicate their decisions as quickly and as 

accurately as possible by the right and left mouse clicks (right for house stimuli and left for face 

stimuli). They were instructed to press the space bar in the computer keyboard to proceed to the 

next trial. The type of stimuli, the stimulus presented times, and the response times to that stimuli 

were all recorded.  
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4.2.3.2 Inside the fMRI scanner    

Participants performed face-house categorization tasks in three functional runs, each run 

was 614 s long. The number of trials for each noise condition was 36 (18 faces and 18 houses), 

and the total trials were 108 for all 3 conditions in each run. Stimuli were presented in a random 

order as in an event-related design within each run. There were rest periods of 30 s at the 

beginning and of 35 s at the end of each run. Participants were instructed to focus on the central 

crossbar on the screen during experimental run. They were asked to perceive the presented 

stimuli, to wait for the display of a question mark on the screen and then to indicate their choice 

by pressing a response key on a button-box by using either the index or the middle finger of their 

right hand. Each picture was presented for 500 ms, followed by an 8 seconds-long display of the 

fixation cross, then a briefly presented question mark for 500 ms at the end of this 8 seconds’ 

interval. The next 6 s time period was allowed for participants to report their decisions by 

responding on a button box. Trials in which participants were failed to respond were discarded 

from the final analysis. Figure 4.1B shows a schematic representation of the behavioral paradigm 

used in the experiment.  

4.2.4 Data Acquisition and Analysis 

4.2.4.1 Behavioral data 

A participant’s response time (RT), the time between the onset of a stimulus and the 

button press in each trial was recorded for the tasks performed outside the scanner. Participants 

were required to do button presses only to indicate their decisions inside the scanner.  

Participants’ behavioral performance, both outside and inside the scanner, was analyzed by using 

Matlab. Trial by trial RTs of each participant from outside-scanner button presses were separated 
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and averaged across noise conditions. No RT calculation was done for the recorded behavioral 

data inside the scanner as participants were instructed to wait until the question mark was 

displayed to indicate their decisions. T-tests were used to assess the significance levels of 

performance accuracy and response time across noise levels in face-house stimuli.  

4.2.4.2 Functional magnetic resonance imaging (fMRI) data 

The whole-brain MR imaging was done on a 3-Tesla Siemens scanner available at 

Georgia State University and Georgia Institute of Technology Center for Advanced Brain 

Imaging (CABI), Atlanta, Georgia. High-resolution anatomical images were acquired for 

anatomical references using an MPRAGE sequence (with TR = 2250 ms, TE = 4.18 ms, Flip 

angle = 900, inversion time = 900 ms, voxel size = 1×1×1 mm3). Three functional runs each of 

307 scans with the measurement of the T2*-weighted BOLD effect, were acquired with a 

gradient echo-planar imaging protocol and these parameters: echo time (TE) = 30 ms, repetition 

time (TR) = 2000 ms, flip angle = 900, voxel size = 3×3×3 mm3, field of view = 204 mm × 204 

mm, matrix size = 68×68, and 37 axial slices each of 3 mm thickness.  

MRI data were analyzed using Statistical Parametric Mapping (SPM8, Wellcome Trust 

Center, London, http://www.fil.ion.ucl.ac.uk/spm) which included slice timing correction, 

motion correction, co-registration to individual anatomical image, and normalization to Montreal 

Neurological Institute (MNI) template [138]. Spatial smoothing of the normalized image was 

done with an 8 mm isotropic Gaussian kernel. A random-effects model-based univariate 

statistical analysis was performed in two level procedures. At the first level, a separate general 

linear model (GLM) was specified according to the task sequences and behavioral responses for 

each participant. Only correct trials for each of the three noise-levels (0%, 40% and 55%), rest 

and six motion parameters were included in GLM analysis. Here, 6 motion parameters were 
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entered as nuisance covariates and were regressed out of the data. Individual contrast images of 

all participants from the first level analysis were then entered into a second level analysis for a 

separate one-sample t-test. The resulting summary statistical maps were then thresholded and 

overlaid on high-resolution structural images in Montreal Neurological Institute (MNI) 

orientation. For display purposes, the functional images were overlayed on the MNI template 

available in MRIcro (http://www.mccauslandcenter.sc.edu/CRNL).  

4.2.4.3 Brain Activity and Effective Connectivity Analysis 

We examined the brain activity of hypothesized regions of interest (ROIs) in our 

experimental condition (i.e. face-house discrimination task at different noise-levels). We defined 

the ROIs from the group level activation results. To localize FFA activation in-group level, we 

used face>house contrast. Similarly to localize PPA, we contrasted house with face 

(house>face). The peak-activity location of the dlPFC was chosen using face + house > rest 

contrast. The ROIs analysis were performed using a spherical region of 6 mm radius centered at 

the maxima peak activity voxel of group level result using MarsBaR[66]. The beta parameters 

(also called contrast values) were extracted for each experimental condition that was defined in 

design matrix for each subject. The beta parameters of condition of interest were then averaged 

over the subjects. Finally, paired t-tests were used to determine whether there was a statistically 

significant difference in contrast values between the conditions of interests. 

The effective connectivity established by our experimental conditions between ROIs 

were examined using dynamical causal modeling [191-193] implemented in SPM8 (DCM10). 

For this purpose, we used group level peak activity coordinates as a reference to find the local 

maxima from the first level brain map. Then we extracted the eigenvariate by defining a sphere 

of radius 6 mm for the contrast of interest adjusted for the equivalent F-contrast. While 
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extracting eigenvariate, the center of each ROI was positioned on the most significant voxel in 

the cluster nearest to the peak cluster coordinate obtained from group analysis and activated at 

the a significant level (p<0.01 uncorrected), and lie within twice the width of the Gaussian 

smoothing kernel used while smoothing the data. The details of modal specification and 

comparison procedure were included below.  

4.3 Results 

4.3.1 Behavioral response. 

The mean performance (i.e. the group level accuracy) for images with 0% noise-level 

was very high. The accuracy rate for 0% noise was 99.26 for outside scanner and that of inside 

the scanner was 97.89%. The performance levels were found decreased for 40 % noise-level and 

the rates were 89.48% and 87.01% for outside and inside the scanner respectively. The rates 

were further decreased to 68.52% and 65.07% for outside and inside the scanner respectively 

when the noise level increased to 55%. A paired t-test was performed to see the significant effect 

of task difficulty (or, noise-level) on behavioral accuracy. The behavioral accuracies were found 

decreased significantly (all p < 0.001) with noise level (Figure 4.2). On the other hand, RTs were 

found significantly increased with noise level (all p< 0.01). The mean response time for clear 

images (0% noise) was 0.79 s and that for 40% noisy-images was 0.94 s. The response time 

further increased to 1.13 s for 55% noise level (Figure 4.2). 
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Figure 4.2 Behavior response.  
The bar plots of (A) mean performance  (%) outside the scanner, (B) response time 
outside the fMRI scanner and, (C) mean performance  (%) inside the fMRI scanner for 
three noise-levels. (**p<0.01 and ***p<0.001). 
 

4.3.2 Brain Activations 

With the face-house decision versus rest contrast, we observed significant brain 

activations in the occipital, lateral occipital cortex (LOC), FFA and PPA in the ventral temporal 

cortex (VT), inferior parietal lobe (IPL), dorsolateral prefrontal cortex (dlPFC), insular cortex 

(INS), and pre-supplementary motor cortex in middle frontal cortex (Pre-SMA) (Figure 4.3 (A, 

B)). To localize the category specific brain regions in VT, we further contrasted face versus 

house and house versus face conditions (Table 4.1). The face versus house contrast showed a 

stronger response in the FFA (Figure 4.3D). Similarly, the house versus face contrast activated 

PPA more (Figure 4.3C). The ROI analysis showed higher BOLD responses for face in FFA and 

that of house in PPA (Figure 4.4A). The average beta linearly increased with the difficulty of 
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task in the dlPFC (Figure 4.4B) 

  

Figure 4.3 Brain activations.  
Activations associated with (A) face and house stimuli> rest(p<0.001)., (B) right dlPFC 
for face and house > rest (p<0.001). (C) Left PPA for house > face (p<0.05), and (D) 
right FFA for face>house (p<0.05). All activations are familywise error corrected (FWC).  
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Table 4.1 Brain activations of face-and-house perception. 
 

Contrast 
 

Brain area 
MNI 

coordinates 
(x, y, z) 

Cluster 
size Z -score 

 
Face>House* Fusiform face area (FFA) 42, -49, -17 (R) 31 4.33 

House>Face* Parahippocampal place 
area (PPA) -27, -46,  -8  (L) 27 5.64 

All 
pictures>Rest*** 

Inferior parietal lobe (IPL) -27, -58, 46 (L) 12 5.69 
Pre-supplementary motor 

area 
(Pre-SAM) 

-3, 14, 49 (L) 49 6.64 

Dorsolateral prefrontal 
cortex (dlPFC) 42, 8, 25 (R) 32 6.35 

    Insula 33, 26, 7 (R) 38 6.29 
-30, 26, 1 (L) 24 6.15 

Venteral temporal cortex  
(VT) 

30, -46, -14 (R) 489 7.62 
-27, -55, -11 (L) 383 9.91 

Occipital cortex 15, -85, -8 (R) 489 9.42 
-12, -100, -4 (L) 383 7.13 

Posterior cingulate (PCC) 12, -70,13 (R) 41 6.06 
  R=Right, L=left.  Family-wise error corrected (FWC) at *p< <0.05 and  ***p< <0.001 
 

 
 
Figure 4.4 Bar plots of mean contrast 
values.  

(A) Contrast values for face and house 
stimulus conditions in parahippocampal 
place area (PPA) and fusiform face area 
(FFA). (B) Contrast values according to the 
noise-level in dorsolateral prefrontal cortex 
(dlPFC) (*p<0.05 and ** p<0.01). 
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4.3.3 Dynamic causal modeling (DCM) results 

Based on the hypothesized roles of these regions: dlPFC, FFA and PPA and the network 

as a whole in face-house decision tasks, we considered various DCM models as shown in Figure 

4.5. We defined 8 models for the network consisting of the dlPFC (region 1), FFA (region 2) and 

PPA (region 3) allowing sensory inputs and modulations. The ‘minimal’ model (model 1) was 

systematically modified by adding connections and inputs to build other models (model 2 to 

model 8). In these models, both face and house trials were used as input on both FFA and PPA. 

Furthermore, we extended our model space to 16 aiming to remove the uncertainty about aspects 

of the model structure other than the characteristic of interest. In these additional 8 models face 

trials were used as input to FFA and house trials to PPA. The random effects Bayesian model 

selection procedure was then used to select the optimal model at the group level [193]. 

Out of 16 plausible models, the most evidence favored the model 8 compared to other 

models (Figure 4.6A). The exceedance probability of the winning model was found 0.54. This 

model consisted of bidirectional connection between all three regions. Since the test of our 

hypothesis was based on encoded connectivity parameter that tell us the details about the 

strength of intrinsic as well as the modulatory effects on connection between ROIs at three noise 

conditions, we inclined towards Bayesian parameter averaging procedure (BPA) over the 

winning model. During perception, the intrinsic forward connections from category responsive 

regions, the FFA and the PPA to dlPFC were 1.72 (posterior probability (p), 1.0) and 1.52  

(p=0.99) respectively while the backward connections from dlPFC to FFA and PAA were 0.45 

(p=0.82) and 0.29 (p=0.72) respectively (Figure 4.6 B). 
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Figure 4.5 DCM model specifications. 
Model number 1 is a basic model that included the minimal number of connections 
between dlPFC (1) with FFA (2) and PPA (3). The endogenous connectivity of this 
‘minimal’ model was then modified by systematically adding connections (from model 2 
to 4). Models 5 to 8 were constructed model from 1 to 4   by adding bidirectional 
connections between FFA and PPA. In these models (1 to 8), all face- house images were 
the inputs to both FFA and PPA. We further used face image input to FFA and house 
input to PPA and expanded our model space to 16. 
 
Our analysis further revealed that the bidirectional interactions between FFA and PPA. 

The coupling strength from FFA to PPA is 1.44 (p=0.99) and that from PPA to FFA is 1.06 

(p=0.99). Second, we examined the modulatory effect, the increase in connectivity between 

regions (Friston et al., 2003) due to the task context on intrinsic connections. The connectivity 

from FFA to dlPFC was enhanced by 24.88 %, 21.50 % and 9.58 % for image noise levels of 

55%, 40 % and 0% respectively and that from PPA to dlPFC was 22.0 %, 18.51 %, and 11.39 % 
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(Table 4.2). Moreover, we found the significant correlation between feedforward connectivity 

from FFA and PPA to dlPFC for all noise levels with that of contrast values in dlPFC (Figure 

4.7). 

 
Figure 4.6 Bar plots of exceedance probability for 16 models.  

(B) Diagrammatic representation of connectivity patterns between ROIs. Parameters were 
averaged (Bayesian Parameter Averaging, BPA) across all participants. The numbers 
next to the connectivity-strength inside the bracket represent the posterior probability (p) 
of that connection. 
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Figure 4.7 Linear fits of 
connectivity versus contrast value.  
The plots of connectivity strength 
from FFA to dlPFC (A) and from 
PPA to dlPFC (B) with contrast 
value in dlPFC (in all three-noise 
level). 

  

 

 

 
 
 
 

 
Table 4.2 The percent (%) change in effective connectivity 
compared with intrinsic connectivity. 

 

 

 

 

 

 

 

From To Noise level (%) Change 

FFA 

dlPFC 
0 % 9.58 
40 % 21.50 
55 % 24.88 

PPA 
0 % 5.18 
40 % 12.63 
55% 14.20 

PPA 

dlPFC 
0 % 11.39 
40 % 18.51 
55 % 22.00 

FFA 
0 % 10.28 
40 % 13.63 
55% 25.09 

dlPFC 

FFA 
0 % 0.66 
40 % 1.96 
55 % 1.76 

PPA 
0 % 0.80 
40 % 1.90 
55% 2.67 
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4.4 Discussion  

Here, we investigated the brain activity, effective connectivity and modulations of activity and 

connectivity by task difficulty during perceptual decision-making in the visual domain. 

Consistent with previous findings [33,170-172,177,194], we have identified two category-

responsive regions FFA and PPA in ventral temporal (VT) area of the brain and the prefrontal 

region (dlPFC), the decision-making hub. We focused our study on these three regions and 

applied the Bayesian model selection technique to dynamic causal models in order to select the 

best neural architecture that account for neural processes of the perception of faces and houses. 

The group level averages of connectivity parameters between FFA and PPA were found 

significant and were correlated with the task difficulty. Importantly, we observed dominant 

feedforward connectivity from these regions to the dlPFC, which also increased with noise level.  

We have measured the decision-making difficulty behaviorally both in terms of 

performance accuracy and response time. The result showed that noise added to face or house 

images made perceptual categorization decisions difficult. We investigated large-scale brain 

network and its architecture involved in the task. Out of 16 plausible intrinsic models between 

FFA, PPA and dlPFC, the model 8 consisting of bidirectional connections between all the ROIs 

came out to be the optimal model. The observed dominant feedforward intrinsic connectivity, 

also known as average connectivity established by task from these brain regions to more anterior 

regions of the brain, the dlPFC in particular, is consistent with the proposal that ventral visual 

system is the pathway for relaying and processing sensory information of visual objects 

[35,39,170,183,184].These results are also consistent with the function of the visual system that 

it may not be involved in a higher order perceptual analysis [112] but may provide a causal input 

to the extended system [176,195,196] and the relayed sensory information is further processed 
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by downstream processing areas to produce visual perception [174,175]. 

The intrinsic connectivity from FFA and PPA to dlPFC was found to be modulated by 

task difficulty. Further, the modulation of feedforward connectivity to dlPFC and brain activity 

in dlPFC by task difficulty is consistent with the notion that the brain required more effort to 

accumulate sensory information together from ambiguous sensory information before a decision 

about stimulus category can be formed [31,159,160,187]. Here, the function of the dlPCF also 

fits with its role in disambiguation [159] and in decision-making [83,84,163]. The greater 

response to the noisy but recognized stimuli [189] in dlPFC further supports its role in evaluation 

of sensory information [160].  

The strengths of intrinsic connectivity from dlPFC to FFA and PAA were 0.45 (p=0.82) 

and 0.29 (p=0.72) respectively. The more evidence in favor of model 8 compared with model 5 

with no feedback connection underscores the importance of feedback mechanism in processing 

of visual information [171].  However, the connectivity strengths did not increase with task 

difficulty (<2 % in all cases). This top- down (or feedback) connectivity might regulate the 

bottom-up process of visual processing [196,197]. These findings show that the involvement of 

both bottom-up and top-down processes are necessary for successfully evaluating visual stimuli 

consistent with previous studies [171,177,196-198]. 

In addition to the modulation of feedforward connectivity by task difficulty, our DCM 

results also favored the bidirectional connectivity between FFA and PPA. The connectivity 

between FFA and PPA increased with noise level. This supports the importance of bilateral 

interactions in visual processing [175,199]. The outperformance of model 8 compared with 

model 16 favors the hypothesis that the FFA and PPA not only each process its preferred 

category but also represents the other form of visual objects (for example, non-preferred 
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category) and their physical properties [34,170,171,198,200,201].  

We focused our analysis on category-responsive regions in ventral temporal area of the 

brain [35,39,170,183,184] and the dlPFC, decision making hub [3,47,83,112,159,174-176,187-

189,195,196]. Other brain regions such as Pre-SMA, bilateral inferior parietal lobe (IPL) and 

bilateral the insular cortex (INS) were also activated by the task. However, we excluded these 

regions in DCM analysis as these regions are known for supporting cognitive processes such as 

attention, working memory [202,203]. The peak activation coordinates for pre-SMA obtained in 

our study are close to the peak activity locations reported in previous studies and was shown be 

associated with the attention [19,38,204]. The insular activation is known to related with the 

subjective experience of emotional states and feelings [156]. Similarly, IPL is known to be 

involved in visual short-term memory [203,205,206]. The choice of a fewer nodes also worked 

in our favor for the DCM analysis since a large number of nodes in DCM analysis can be 

computationally expensive and, at times, problematic [207]. 

Summarizing, we showed how the dynamics of distinct cortical areas contributes to the 

processing of visual-sensation that leads to perceptual decisions. In relation to our task, evidence 

supports us to argue that the FFA-PPA-dlPFC network represents a minimal brain circuitry 

necessary for relaying and integrating competing sensory information, and has a role in decision-

making. Future studies using this type of experiment in multisensory domains can lead to 

uncovering brain functional architectures necessary for more complex perceptual decision-

making processes in the brain. 
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