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Abstract

Protected areas represent a powerful policy tool for the preservation of ecosystems and their
services. The rapid proliferation of protected areas in Bolivia over the past several decades has
prompted interest in understanding their impacts on surrounding populations. Recent studies
from other developing countries show that protected areas have had positive impacts on poverty.
Using rich biophysical and socioeconomic data from Bolivia we find that municipalities with at
least 10% of their area occupied by a protected area established between 1992 and 2000 exhib-
ited differentially greater levels of poverty reduction between 1992 and 2001 compared to similar
municipalities unaffected by protected areas. We find that our results are robust to a number
of econometric specifications, spillover analyses and a placebo study. Although our overarching
results that Bolivia’s protected areas were associated with poverty reduction are similar to pre-
vious studies, our underlying results differ subtly, but significantly. Previous studies found that
controlling for key observable covariates led to fundamentally antithetical results compared to
näıve (uncontrolled) estimates. Conversely, our results indicate that näıve estimates lead to an
over estimation of the poverty reducing impacts of protected areas. Our results expose the het-
erogeneity of protected area impacts across countries and, therefore, underscore the importance
of country-level impact evaluations in order to build the global knowledge base regarding the
socioeconomic impacts of protected areas.
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∗Funding for this study comes from the Latin American and Caribbean Environmental Economics Program
(LACEEP), Small Grants Program for Research in Environmental Economics. We would like to thank Andrew
Balthrop, Allen Blackman, Mario Boudoin, Salvatore Di Falco, Paul J. Ferraro, Alfonso Malky, Juan Robalino and
the participants at the LACEEP seminars in Costa Rica for helpful comments and suggestions. We extend deep
gratitude to Juan Carlos Ledezma for providing and discussing data.
†International Center for Public Policy, Andrew Young School of Policy Studies, Georgia State University, PO

Box 3992, Atlanta, GA 30302-3992, USA; gcanavirebacarreza@gsu.edu
‡Department of Economics, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA;

hanauer@sonoma.edu

1

mailto:gcanavirebacarreza@gsu.edu
mailto:hanauer@sonoma.edu


1 Introduction

Protected areas are an important tool for the global conservation of ecosystems and biodiversity

(MEA, 2005). Presently, approximately 13% of the world’s terrestrial surface is covered by some

form of protected area (WDPA, 2011). The sheer scale of the global coverage of protected ar-

eas highlights the importance of understanding their underlying impacts. Unfortunately, there is

little empirical evidence on the environmental impacts of protected areas and even less on the

socioeconomic impacts of protected areas on surrounding communities (Coad et al., 2008). The

socioeconomic implications of establishing protected areas are of particular interest given the high

degree of overlap between areas of remaining biodiversity (i.e., areas likely to be targeted for protec-

tion) and poverty (Sachs et al., 2009). This raises concerns from poverty advocates that achieving

environmental goals may come at the expense of the populations impacted by such policy (Coad

et al., 2008; Adams et al., 2004).

The dearth of quality evidence on the impacts of protected areas fuels a general debate regarding

the relationship between areas protected by environmental law and the socioeconomic outcomes in

surrounding areas. Conservationists see the establishment of protected areas as essential to global

environmental stability, whereas poverty advocates argue that, while the benefits from protecting

these areas are paid to all, the costs are borne only by those proximal to the areas (Coad et al.,

2008; Wilkie et al., 2006; Adams et al., 2004). This argument concerns the land-use laws associated

with protected areas that restrict economic development by preventing forms of profitable activities

such as the exploitation of natural resources and agricultural cultivation (Coad et al., 2008; Fleck

et al., 2006).

There have been few empirical studies with the proper data and methodologies to accurately

estimate the socioeconomic impacts of protected areas on local economies, especially in developing

nations (exceptions include: Ferraro and Hanauer (2011); Ferraro et al. (2011); Andam et al.

(2010); Sims (2010); Robalino and Villalobos-Fiatt (2010)). Most studies have either been ex ante

estimates of future costs and benefits, or ex post studies of observed states of welfare (Andam

et al., 2010; Wilkie et al., 2006). The ability to empirically measure the socioeconomic impacts of

protected areas is complicated by the non-random nature in which areas are assigned to protection.

The presence of such selection issues necessitates the use of sophisticated research design and
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methodologies, absent most previous studies. Further confounding the process is the fact that

most developing nations do not have sufficiently rich data sets with which to measure pre- and

post-treatment poverty outcomes.1

Bolivia is an apt setting for evaluating the impacts of protected areas on poverty in surrounding

communities. Bolivia is one of the most biodiverse countries in the world.2 Yet despite having a

wealth of natural resources, Bolivia is one of the poorest countries in Latin America, with poverty

levels upwards of 60% (Canavire-Bacarreza and Mariscal, 2010). Bolivia also has an extensive pro-

tected area network that was made effective by an identifiable restructuring of the existing system

in 1992, followed by a surge in proliferation of new protected areas throughout the 90s. Moreover,

Bolivia has rich biophysical and socioeconomic data that predate the effective establishment of

protected areas.

Using rich biophysical and socioeconomic data, and quasi-experimental methods, we ask, “what

would poverty outcomes in Bolivian communities affected by protected areas have been had pro-

tected areas not been established?” We find no evidence that communities affected by protected

areas established between 1992 and 2000 fared any worse, between 1992 and 2001, than similar

communities that remained unaffected by protected areas. In fact, all of our point estimates indi-

cate that protected communities had differentially greater levels of poverty reduction. We find that

these results are robust to a number of econometric specifications, sensitivity analyses, spillover

analyses and placebo studies. Our results are concordant with findings of poverty alleviation due

to the establishment of protected areas in Costa Rica (Andam et al., 2010) and Thailand (Andam

et al., 2010; Sims, 2010). However, unlike previous studies (Andam et al., 2010; Sims, 2010) our

results indicate that näıve (uncontrolled) comparisons of protected and unprotected communities

leads to an overestimation of the poverty alleviation associated with the establishment of protected

areas. Accordingly, our results underscore the fact that protected area impacts are likely not gener-

1See Ferraro (2008) for a discussion on the components of a quality socioeconomic impact evaluation which include:
1) An appropriate measure of welfare; 2) observations on outcomes and pertinent covariates for both pre- and post-
treatment; 3) relevant indicators for both treatment and control units, and; 4) observations of pretreatment covariates
that affect both selection into treatment and socioeconomic outcomes.

2Bolivia is one of the 15 most biologically diverse countries in the world. It is recognized as one of the 11 nations
with the greatest diversity of flora (about 20 thousand species) and one of the top 10 most abundant in terms of
birds (1,400 species) and mammals (356 species). Information provided by the Protected Areas National Service of
Bolivia SERNAP (2009). Moreover, according to an UNESCO report, Bolivia has the largest water reserves in Latin
America and ranks 6th in the world in terms of tropical moist forest resources (the third in the continent after Brazil
and Mexico).
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alizable and, therefore, the importance of country-level protected area impact evaluations. To that

end, our results add to the scientific body of knowledge on the socioeconomic impacts of protected

areas in developing countries, which is exceedingly sparse.

1.1 Background

1.1.1 Protected areas in Bolivia

The evolution of the establishment and enforcement of protected areas in Bolivia is complex but

can be defined, coarsely, by two periods: pre- and post-1992. A non-trivial amount of Bolivia’s

area was designated for protection between the late 30’s and early 90’s.3 However, the criteria for

establishing these areas were not uniform, or systematic. Most were established with little technical

background and absent the participation of local actors (SERNAP, 2007). Furthermore, there was a

lack of recognition and requisite enforcement within these areas, a phenomenon commonly referred

to as, “paper parks” (e.g., Bruner et al. (2001)).

The progression of the theme of conservation and the consequent international commitments

undertaken by countries in the early 90’s, after the Rio Conference, led to the development of

policy and institutional foundations related to the then new paradigm of sustainable development

and environmental care. Thus, under the Environment Law (Law 1333), the National System of

Protected Areas in Bolivia (SNAP) was created in 1992, defined as natural and cultural heritage

of the State and public and social interest.

The Law 1333, defines protected areas in Bolivia as “natural areas with or without human

intervention, declared under state protection by law, in order to protect and preserve the flora

and fauna, genetic resources, natural ecosystems, watersheds and values of scientific, aesthetic,

historical, economic and social interest, in order to conserve and protect natural and cultural

heritage of the country.”4

The consequence of Bolivia’s history of protection and Law 1333 is that, even for areas desig-

3The 10 protected areas that were established prior to the 1990’s cover 5,917,638 ha which is approximately 1/3
of the total protected area.

4One of the most important characteristics of Bolivia’s protected areas is their compatibility with the existence
of traditional indigenous people (Environment Law 1333, Section 60-65). Since its initiation in 1992, the National
System of Protected Areas in Bolivia has been designed with a participatory approach, recognizing that the areas
are occupied and are ancestral territories of indigenous populations. Therefore, the participation of local people is a
fundamental in the main aspect of the system.
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nated prior to 1992, the effective establishment date of Bolivia’s protected area system was 1992

(and thereafter). The identification of this administrative recognition and enforcement allows us to

use 1992 as a baseline, pre-treatment year, after which the intervention impact of protected areas

can be measured.

1.1.2 Related literature

There have been only a handful of studies on the socioeconomic impacts of protected areas that

properly control for their non-random establishment. Further, there is no formal literature regarding

the impacts of Bolivia’s protected area network on socioeconomic outcomes. The closest study to

this kind for Bolivia (Yáñez, 2006) examines the potential effects of three protected areas on poverty

in Bolivia. Based on household surveys carried out near these protected areas, the author finds a

small positive effect of protected areas on poverty. Nevertheless, this study not only has a small

sample of protected areas, but also presents some methodological drawbacks such as selection bias

and sample selection.

The most comparable study to ours is a quasi-experimental analysis of protected areas in Costa

Rica (Andam et al., 2010). The authors designate census tracts (segmentos) with 10% or more of

their areas protected, as treated. They then use matching techniques to construct a counterfactual

group that is similar along pretreatment dimensions to the treated census tracts. The authors’

calculation of average treatment effect on the treated (ATT) provides evidence that census tracts

with protected areas that were established prior to 1980 had differentially greater levels of poverty

reduction between 1973 and 2000 than comparable unprotected census tracts.

In a similar study Sims (2010) uses a continuous measure of the percent of land area protected

within Thailand sub-districts to measure the marginal effect of protected areas (IUCN category I &

II) on a poverty headcount ratio. The author compiles an extensive set of pre- and post-treatment

biophysical covariates. However, the outcome variable is only available for the contemporaneous

period, therefore, the baseline levels of poverty are unknown. The results of the study show that

when baseline geographic and development variables are controlled for, sub-districts with more

protected area displayed lower poverty levels than comparison districts.

Robalino and Villalobos-Fiatt (2010) explore how national parks affect local wages in Costa Rica

and how these effects vary within different areas of a park and among different social groups. They
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use highly disaggregated geographic references, and find that parks’ effects on wages vary according

to economic activity and proximity to the entrance of the park. Workers close to entrances receive

higher wages and are employed in higher-paid, non-agricultural activities.

Several studies from the United States have shown no effect of protected areas on economic

outcomes at the county level. In two studies, (Lewis et al., 2002, 2003) use a simultaneous equations

framework to examine the county level effects of protected areas (publicly owned land designated

for preservation and multiple use) in the Northern Forest Region of the United States on migration,

on employment and wage composition. A broader study by (Duffy-Deno, 1998) uses a cross-section

of intermountain western counties of the United States to determine the effect of protected areas

(Wilderness, Forest Service and BLM land) on population and employment densities. The author

finds no significant effect on either outcome of interest. However, all of these studies suffer from

the lack of a true baseline, given that all of the protected areas were designated decades prior to

the first census observations.

2 Data and Methods

2.1 Data

We employ three categories of spatial and demographic data in this study: (1) temporally distinct

boundary mappings of terrestrial protected areas, (2) boundary mappings of municipalities for the

1992 and 2001 censuses and the underlying demography, and; (3) key biophysical characteristics

believed to jointly affect the establishment of protected areas and poverty.

The 1992 and 2001 census data were obtained from the Bolivian National Statistical Office

(INE). The census provides information that allows us to estimate socioeconomic indicators at

municipal level, such as structural poverty measures, education, employment, housing and health.

Information regarding Bolivia’s protected areas and their boundaries was obtained from Servicio

Nacional de Areas Protegidas (SERNAP) and the World Database on Protected Areas (WDPA).

Further geographic data (e.g., road networks, digital elevation models, cities, forest cover, etc.)

were obtained from NASA, Conservation International and Bolivian forest regulation office (Super-

intendencia Forestal).
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2.1.1 Unit of analysis

The unit of analysis for our study is the municipality. The municipality is the penultimate political

boundary in terms of disaggregation, second to the comunidad. Bolivia comprises 327 municipalities

with an average area of 325,083 ha (about the size of Rhode Island; range: 28,928 – 1,298,121 ha).

The maps in Figures 1 and 2 show that the municipalities in the mountainous and altiplano regions

(southwest) tend to be smaller than those in the lowlands (east northeast; see Figure 3 for the

topography of Bolivia).

2.1.2 Protected areas and treatment assignment

Bolivia has 23 protected areas that cover a total area of 17,131,507.48 ha or ∼16 percent of Bolivia’s

terrestrial area (GIS calculations). The average size of a protected area is 475,875 ha (range: 221

– 2,919,143 ha). To determine the socioeconomic impacts of protected areas we must identify

the municipalities that are spatially influenced by protected areas. We use GIS to determine

the proportion (percentage) of each municipality that is occupied by a protected area established

between 1992 and 2000. Of the 87 municipalities that intersect with one or more protected area,

the average area designated as protected is 29.3% (range: 0.00007 – 100%). In order to assign

municipalities a binary indicator of treatment we must establish a threshold (percentage), above

which municipalities are considered protected. Our initial threshold is established at 10%.5 In

order to reduce potential bias to our estimates we need to ensure that we are not comparing

protected municipalities with marginally protected municipalities (doing so would likely serve to

weaken estimates of treatment effect). We, therefore, drop municipalities with percentage overlap

along the interval [0.1, 10). According to our assignment rule, there are 56 municipalities that are

considered protected. The percentage of overlap within these protected municipalities ranges from

10.26 – 100% (mean = 43.9%, median = 39.14%). We are left with 256 municipalities that are

considered unprotected.

5We use the 10% threshold in accordance with previous studies (Andam et al., 2010; Ferraro and Hanauer, 2011;
Ferraro et al., 2011). A 10% threshold was chosen because one the goals of set forth by 4th World Congress on
National Parks and Protected Areas was to protect 10% of the worlds ecosystems (Andam et al., 2010). We test the
robustness of our results to this protection threshold by defining alternative thresholds at 5, 20, 30 and 50%. We find
that our results are robust to these alternative thresholds (see Appendix for full threshold results).

8



Brazil
Peru

Chile
Paraguay

Argentina

Sucre

Oruro

Tarija

Potosi

Cobija

La Paz

Trinidad

Santa Cruz de La Sierra

Legend
Protected Areas

Quintiles of Baseline Poverty

PI 92
Richest

2nd Quintile

3rd Quintile

4th Quintile

Poorest

No Data

μ

200 0 200 400 600100
Kilometers

Figure 1: Map of protected areas, major cities and quintiles of poverty in 1992 according to poverty index.
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2.1.3 Covariates of interest

To isolate the causal effect of protected areas on poverty, we compile a set of observable covariates

that jointly affect the establishment of protected areas and poverty outcomes (and assume that all

unobservables do not exhibit joint influence). These covariates are used in our analyses to control

for the observable differences between protected and unprotected municipalities, therefore, isolating

the impact of protection.

Distance to major city. Cities tend to be the nodes of major markets, economic activity and

opportunity. Protected areas are often located distant from major cities, where the opportunity

cost of land is lower (Sims, 2010; Joppa and Pfaff, 2009). We calculate the average distance from

each municipality to the nearest city (each municipality is broken into 1 ha parcels and the average

euclidean distance from the set of parcels within each municipality to the nearest city is calculated

using GIS). Cities included in the measurement are the state capitals: La Paz (and El Alto), Sucre,

Cochabamba, Cobija, Trinidad, Oruro, Potosi, Tarija and Santa Cruz. Table 1 shows that protected

municipalities are significantly farther from cities, on average, than unprotected municipalities. This

is consistent with previous findings (e.g., Andam et al., 2010; Sims, 2010; Joppa and Pfaff, 2009).

Roadless volume. Access to roads increases access to markets and other resources (reducing

transportation costs, etc.). In addition, roads serve as a good indicator of the level of infrastructure

development and urbanization. Previous country-level studies have found that protected areas tend

to be located in areas with sparse road networks (Andam et al., 2010, 2008). To control for baseline

measures of these influences we calculate roadless volume (Watts et al., 2007). Roadless volume

is an aggregation of the euclidean distance to a road for each land parcel within a municipality,

adjusted for the size of the land parcel. Roadless volume is calculated by summing the product of

the area of each land parcel (1 ha in this case) and the distance of that parcel to the nearest road

(1992). Therefore, higher measurements of roadless volume indicate fewer road networks within a

municipality. Table 1 shows that roadless volume is greater within protected municipalities, which

is consistent with previous studies (e.g., Andam et al., 2010).6

Elevation and slope. Productivity of land, especially related to agricultural productivity,

6One may be concerned that disparate municipality areas across protected and unprotected units might confound
the estimates of protected area impacts (e.g., may be correlated with urbanization or other unobservable). However,
roadless volume is nearly perfectly correlated with the area of respective municipalities (Pearson correlation coefficient
is 0.905), mitigating such concerns.
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Figure 2: Map of protected areas, major cities and quintiles of poverty in 1992 according to NBI.
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plays a large role in economic development. Low slope, low elevation land tends to be more

suitable for agriculture and general development (lower production, extraction and development

costs). Previous studies, both globally (Joppa and Pfaff, 2009) and at the country-level (Andam

et al., 2010; Sims, 2010), have found that protected areas tend to be placed on land that is relatively

steep and at high elevation. It is, therefore, important to control for the average slope and elevation

of municipalities. Bolivia presents somewhat of a unique case, however. Bolivia is characterized by

a dichotomous landscape in that the country is defined (in general) by the highlands and lowlands.

Table 1 shows that the slope in protected municipalities is greater in unprotected municipalities

(expected), however the average elevation is lower (on average) within these protected municipalities

(unexpected).

N

Figure 3: Digital elevation model of Bolivia, with protected areas draped (green). While a majority of the
designated protected areas lie in relatively mountainous regions, there is a large area protected in the east
that accounts for the relatively low average slope of protected municipalities. The red points represent the
location of major cities listed in Figures 1 and 2.

Forest cover. Protected areas tend to be placed on forested lands (Andam et al., 2010; Sims,

2010). In addition, forests represent potential for economic opportunities (timber, fuelwood, etc.).

We therefore calculate the percentage of each municipality covered by forest in 1991. Table 1 shows

that protected municipalities contained significantly more forested areas at baseline.
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2.1.4 Poverty

In order to estimate the impact of protected areas on poverty, an outcome that objectively measures

levels of socioeconomic welfare is necessary. In the absence of a universal metric such as income, we

are tasked with developing metrics that adequately capture socioeconomic outcomes. We employ

two measures of poverty in our analyses: (1) an asset based poverty index (PI), and, (2) Necesidades

Basicas Insatisfechas (NBI). Both poverty indicators are measured during the 1992 and 2001 census

years and serve two purposes. First, the PI and NBI in 2001 serve as the outcome of interest to

measure differences in poverty between protected and unprotected municipalities. Second, the PI

and NBI in 1992 serve as controls for baseline states of poverty. By ensuring that we compare

protected and unprotected municipalities with similar baseline poverty characteristics, we improve

the probability that these units share similar poverty trajectories prior to the establishment of

protected areas.

Table 2: Eigenvectors from principal component analysis

Eigenvectors, Pooled
Variable EigenV

Adult men in population* -0.02836
Households without bathroom* 0.34984

Households that use fuelwood for cooking* 0.39719
Households with dirt floors* 0.39399

Low-quality houses* 0.33074
Households without electricity* 0.46972

Illiterate population* 0.17906
Population employed with salary* -0.06499

Average persons per bedroom 0.00384
Households without access to public water* 0.39091

Households without sewer or septic* 0.20994
Average years of education -0.02452

Notes: Census data from 1992 and 2001 are pooled to measure
average influence of assets across time.
* Indicates that variable is measured as a percentage.

We use two separate measures of poverty to buttress the robustness of our analyses. Although

the PI and NBI are both designed as measures of poverty, they capture different aspects that

contribute to poverty.7

7Given that we do not have a more direct metric for poverty, such as income, we feel that it is important not to
limit our analyses to a single proxy.
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Table 3: Mean Asset Values by Deciles of 1992 Poverty Index

Richer Deciles of PI 1992 Poorer
Variable 1 2 3 4 5 6 7 8 9 10

pct.men.92 57.77 55.96 55.78 54.74 54.45 56.5 55.1 54.56 54.3 57.9
pct.wo.bath.92 43.96 66.88 61.13 68.52 77.72 86.13 82.14 85.15 92.49 99.26

pct.fuelwood.92 25.59 46.61 70.06 69.85 65.79 74.67 82.98 89.47 91.4 99.2
pct.dirt.floor.92 28.77 49.74 63.72 72.77 76.89 79.72 80.52 81.61 92.19 91.7

pct.low.qual.house.92 15.23 23.07 37.02 41.09 49.08 47.7 57.57 58.63 68.46 82.57
pct.wo.elct.92 26.35 45.1 63.42 73.31 82.13 86.89 94.17 94.65 97.19 99.87

illit.92 12.5 19.32 23.11 27.04 24.7 33.12 30.24 37.22 47.19 67.91
emp.92 95.8 91.28 90.17 88.66 89.6 88.09 85.62 84.93 81.45 61.62

avg.person.room.92 3.28 3.26 3.48 3.52 3.42 3.34 3.53 3.57 3.77 4.09
pct.nowater.92 27.13 46.12 59.33 69.38 75.83 75.63 77.57 83.98 90.18 97.56
pct.nosewer.92 65.05 87.19 90.97 93.19 96.16 96.98 97.34 98.5 99.03 99.87

avg.edu.92 6.77 5.1 4.66 4.2 4.42 3.68 3.77 3.36 2.72 1.45

Poverty Index (PI).8 Our PI is an asset based poverty index founded on household responses

to the 1992 and 2001 censuses. The index is constructed using a principal component analysis

(PCA). The primary purpose of the PCA is to measure the influence of a vector of variables

on a latent outcome, poverty. The relative influence of each component variable is measured by

the eigenvectors (factor loading) calculated from the variance/covariance matrix underlying the

component variables. The eigenvectors are combined with the relative municipal-level variation in

assets to calculate a municipal-level PI.

Table 2 lists the variables used in the construction of the poverty index, and the eigenvectors

associated with each asset.9 These eigenvectors (from the first component) account for over 60% of

the variation in the asset variables and provide the factor scores Fj for asset j ∈ {1, 2, ..., J} which

indicate the weight and direction of the influence each asset aj exerts on the PI. These factor scores

are combined with observed asset levels to formulate the PI for municipality i ∈ {1, 2, ..., N} ,

P Ii =
J∑
1

Fj

[
aij − aj
sj

]
, (1)

where aij is the observed level of asset j in municipality i, aj is the mean of asset j across all

municipalities, and sj is the standard deviation of asset j across municipalities. The intuition

underlying our PI is that there are a number of household assets and characteristics that explain

8A similar asset based poverty index was developed for Costa Rica (Andam et al., 2010; Cavatassi et al., 2004)
and used by the Mexican government in the analyses of the PROGRESA program (cited by Cavatassi et al. (2004).

9Our analyses are designed to measure changes in poverty over time. To ensure that our poverty indexes are
comparable across time we pool the asset data from the 1992 and 2001 census data similar to Cavatassi et al. (2004)
(see also (Filmer and Pritchett, 2001)). By pooling the data for the PCA we estimate the mean influence of each
asset across time, allowing the variation in assets between time periods to drive the estimated changes in poverty.
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variation in unobserved poverty outcomes. By understanding of how these assets co-vary (and by

how much), we can infer, from the composition of these assets across municipalities, how relative

poverty levels vary across municipalities.

We confirm the validity of our PI both internally and externally. The factor scores from the

eigenvectors in Table 2 provide evidence that our PI is internally coherent. A positive factor score

indicates that the asset variable contributes (adds) to poverty, and vice versa. The factor score of

each asset variable carries the expected sign.10 We provide further evidence of the internal validity

of our PI in Table 3, in which we list the mean values of each asset within the deciles of the 1992

PI. The trends in asset levels as the PI increases (increasing deciles) are similar to what we would

expect to see as wealth decreases, indicating that the PI is likely capturing poverty. As an external

(to the PI) measure of our poverty index’s validity we measure the correlation between the PI and

NBI. Although the PI and NBI capture different aspects of poverty, the two measures should be

correlated. We find that this is the case, for instance, the correlation between NBI and PI in 2001

is over 0.88.11

NBI. The NBI measures the percentage of the population within a municipality with unsatis-

fied basic human needs. It captures poverty by measuring the goods or services that a household

possesses that are associated with well-being and then comparing these municipality-level values

to a norm (or ideal). The Bolivian NBI was estimated by the INE in coordination with UDAPE.

It comprises a set of factors such as housing, basic services, education and health.12 The housing

component aims to isolate the household environment, in terms of providing protection from the

outdoors and other external factors such as animals and insects that transmit diseases. It also

includes living spaces inside the household in order to consider social environment, privacy and

comfort. The basic services component considers basic sanitation in terms of the need for good

quality water for food and hygiene, and the availability of health services that allow privacy, sanita-

tion and hygiene. In addition, NBI considers energy availability and cooking sources. The education

portion includes the years of schooling, school attainment and literacy. Finally, the health com-

10According to the manner in which the poverty index was constructed, poverty is decreasing in the negative
orthant.

11This correlation can be observed spatially in the maps in Figures 1 and 2.
12The health component of the Bolivian NBI is not fully comparable between censuses as the questions have

changed. However the change has been accepted and approved by the Bolivian government. The full methodology
can be found at http://www.ine.gob.bo/pdf/Metodologias2004/NBI.doc
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ponent relates to the capabilities of people, and good health that allows the proper development

within the social environment.

The individual household components are compared to a norm which is used to determine if

the household’s basic needs are met. The compilation of each equally weighted component allows

for the identification of the poverty condition of each household.13 Accordingly, a higher measure

of the NBI indicates greater poverty within the associated municipality.

2.1.5 Baseline covariate distributions

Previous studies at the global and country level have found significant differences in the biophysical

(Andam et al., 2010; Sims, 2010; Joppa and Pfaff, 2009; Pfaff et al., 2009) and socioeconomic

(Andam et al., 2010) characteristics underlying protected and unprotected areas. The differences

underscore the non-random nature in which protected areas are allocated. Globally it has been

shown that protected areas tend to be located distant from cities (markets) and on agriculturally

unsuitable land (high slope, high elevation), so-called “high and far” or “rocks and ice” bias (Joppa

and Pfaff, 2009). In addition, a similar study in Costa Rica demonstrated that communities affected

by protected areas had significantly higher levels of baseline poverty than unaffected communities

(Andam et al., 2010).

Table 1 shows that Bolivia shares many of the characteristics associated with protected areas

that are observed globally. The geographic characteristics associated with access to markets, in-

frastructure and urbanization differ significantly between protected and unprotected areas. The

average distance to a major city, roadless volume and percent baseline forest cover are greater in

protected municipalities, indicating that protected areas tend to be established in more rural areas.

In addition, it can be seen that one of the primary indicators of agricultural suitability, slope,

is greater (indicating lower suitability) in protected municipalities. However, contrary to global

trends, we observe that the average elevation in protected municipalities is lower than in unpro-

tected municipalities (see Figure 3). Most interesting is the fact that, according to both poverty

13The methods used to formulate the NBI present some limitations related to the weight of the components that
are included in the index. All the factors included have the same weight, in addition, the method require some norms
to which indicators are compared. These norms are, to some extent, arbitrary. Also, a household is considered poor
if at least one of the NBI components are not satisfied. Moreover, NBI does not consider explicitly the demographic
structure of the household and prioritizes the housing indicators. There is one final, practical, limitation: there are
13 municipalities (four of which are considered protected) for which NBI was not calculated in 1992.
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measures, baseline poverty is slightly lower in protected municipalities. This finding is contrary to

findings from Costa Rica (Andam et al., 2010) and common wisdom.

2.2 Methods

The underlying differences in covariate values between protected and unprotected municipalities

underscores the importance of controlling for such differences in the estimation of the impacts of

protected areas. The selection issue that we must address is that protected areas are not established

randomly across the landscape. Non-random allocation leads to the observed imbalance across

these key covariates, that jointly determine selection into protection and socioeconomic outcomes

(see Table 1), which may lead to biased estimates of the impacts of protected areas under näıve

comparisons of protected and unprotected municipalities. To reduce the bias associated with our

estimates of the socioeconomic impacts of protected areas, we use matching as our primary strategy

to control for this confounding imbalance.

2.2.1 Matching

To measure the impact of protected areas on poverty in surrounding municipalities we use matching

to estimate the average treatment effect on the treated (ATT). Estimation of the ATT is implied

in our research question, “what would poverty outcomes in protected municipalities have been had

they not been protected?” Answering such a question requires the estimation of a counterfactual,

and because there are municipalities for which it is implausible to suppose the establishment of a

protected area, the estimation of an ATT is most appropriate.14

The key to matching as an identification strategy to estimate ATT is the balancing of covariate

distributions across treatment arms (protected and unprotected) thus mimicking the identification

strategy of a randomized experiment. This covariate balance is achieved in expectation through

randomization. Covariate balance is implicit under randomization because each unit of the ex-

perimental sample has an equal probability (or more generally, a probability that is known to

the experimenter) of being assigned to treatment or control. Therefore, treatment is assigned in-

dependent of potential outcomes Y (1) and Y (0) under treatment (T = 1) and control (T = 0),

14Estimation of average treatment effects (ATE), for instance, entails the estimation of an additional counterfactual:
outcomes for all unprotected units had they been protected. We argue that it is implausible for many of Bolivia’s
municipalities to have been protected and, therefore, the estimation of ATT is more appropriate that ATE.
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respectively. In the absence of a treatment, one would expect similar average outcomes from both

groups. Similarly, if both groups were to receive (the same) treatment, one would expect similar

average outcomes from both groups. In the statistics, epidemiology and social science literature this

assumption is termed ignorability of treatment, independence of treatment or unconfoundedness.

Stated formally,

E[Y (1)|T = 1)] = E[Y (1)|T = 0)] = E[Y (1)] (2)

E[Y (0)|T = 1)] = E[Y (0)|T = 0)] = E[Y (0)] . (3)

In words, (2) simply states that average potential outcome for the treatment group under

treatment, E[Y (1)|T = 1)], is equal to the average potential outcome of the control group had they

been treated, E[Y (1)|T = 0)]. Similarly, (3) states that the average potential outcome for the treated

group had they not been treated, E[Y (0)|T = 1)], is equal to the average potential outcome of the

control group in the absence of treatment, E[Y (0)|T = 0)]. In (2) and (3), the terms E[Y (1)|T = 0)]

and E[Y (0)|T = 1)] are termed counterfactual outcomes. The fundamental problem for causal

inference (Holland, 1986) is the fact that counterfactual outcomes are not observed. However, with

treatment assigned at random (and thus independent of potential outcomes), the average outcome

for control units can act as the counterfactual for treatment units, and vice versa.

Protected areas in Bolivia were not established randomly. Matching seeks to mimic the identifi-

cation of randomization by balancing key covariates that jointly determine selection into treatment

and outcomes. Balance, conditional on key covariates, leads to conditional ignorability or condi-

tional independence. However, because our primary estimand of interest is the ATT we only need

to estimate one counterfactual. Therefore, it is only necessary for us to invoke the conditional

independence assumption (CIA) for (2). This more restrictive assumption can be stated formally

as the analog to (2),

E[Y (0)|T = 1, X] = E[Y (0)|T = 0, X)] = E[Y (0)|X] . (4)

Equation (4) states that, conditional on similar covariate distributions across treatment arms,

the average outcomes for the matched control units, E[Y (0)|X,T = 0)], can be used as the coun-
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terfactual for treatment units. In other words, by ensuring that the distributions of key covariates

are balanced across treatment and control groups, similar methods to those used in randomized

experiments can be used to estimate ATT on matched datasets.15 By ensuring that units are

comparable across treatment and control groups, we make the CIA, which is necessary for causal

inference, more defensible (Angrist and Pischke, 2009).

2.2.2 Primary estimator

There are many matching metrics from which to choose. Our final specification is determined by

the metric that provides the best balance across our covariates of interest.16 We find that, given

our relatively small sample size, genetic matching provides the best balance and, therefore, is most

likely to satisfy the CIA. Genetic matching (Sekhon, 2007) conducts an algorithmic search across

potential weighting matrices in order to optimize the weighting matrix to best satisfy covariate

balance. We conduct a series of robustness checks on the estimates stemming from the genetic

matching, including adding calipers, calculating the Rosenbaum bounds (Rosenbaum, 2002), and

various regression based estimators (see the Robustness Section below).

Our primary genetic matching specification uses the single nearest neighbor (in terms of covari-

ate distribution) to each treated unit to act as the counterfactual for each treated unit. We allow for

replacement (which generally reduces bias but can increase the variance (Imbens and Wooldridge,

2009; Dehejia and Wahba, 2002)) during matching, use a post-match regression bias-adjustment

(Imbens and Wooldridge, 2009; Abadie and Imbens, 2006; Abadie et al., 2004),17 and calculate

so-called Abadie and Imbens (2006) heteroskedasticity robust standard errors. Our matching spec-

ification seeks to find an unprotected municipality that is observably similar to each protected

municipality, isolating the only remaining variation between treatment arms to be the establish-

ment of protected areas, thereby allowing the unbiased estimation of ATT.

15Similarly, by additionally invoking CIA for equation (3) (i.e., E[Y (1)|T = 1, X] = E[Y (1)|T = 0, X)] =
E[Y (1)|X]), average treatment effects can be measured.

16During the process of selecting a matching metric we tested the balancing properties of many different metrics
(e.g., Mahalanobis, propensity score and inverse covariance). Outcomes and ATT estimates were omitted while
inspecting balance across different specifications to prevent the estimates from potentially affecting the selection of a
metric.

17Because our matched samples are relatively balanced, the post-match regression bias adjustment has relatively
little effect on the point estimates.
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3 Results

3.1 Primary Results

Figure 4 and Table 4 present the results from our primary, and ancillary robustness, analyses (Tables

5 and 6 provide balancing results from our primary matching specifications). In this subsection we

focus on the second column of the respective right, and left, hand bar charts and the respective

row in Table 4, which present the ATT estimates stemming from the genetic matching algorithm.

For both our PI and NBI poverty indicators we find no evidence to suggest that the establish-

ment of protected areas in Bolivia had deleterious effects on poverty. To the contrary, all of our

point estimates indicate that protected areas were likely associated with poverty alleviation. In

other words, after controlling for covariates that jointly influence the establishment of protected

areas and poverty, we find that there was differentially greater poverty reduction between 1992 and

2001 in municipalities that had at least 10% of their area occupied by a protected area. The point

estimates from the primary specification are statistically significant (at any standard level) when

the PI is used as the outcome of interest, but is insignificant when NBI is used as the outcome of

interest (though the point estimates are concordant with those of the PI).

An attractive feature of our matching-based estimator is its transparency in terms of allowing

for the identification of mean poverty outcomes across treatment arms of the matched sample, which

represent the components of the ATT. Table 4 highlights the underlying difference between the näıve

and genetic matching estimates, which stem from the formulation of the counterfactual sample.

When the counterfactual comprises all unprotected municipalities other than those marginally

protected, the counterfactual poverty outcome (the poverty level that would have been observed in

protected municipalities, had they not been protected) is -0.451 (85.61) according to the PI (NBI).

Under our genetic matching specification we are left with 56 and 53 counterfactual unprotected

municipalities for the PI and NBI analyses, respectively (41 and 38 of which are unique in the

respective analyses). The associated counterfactual outcome estimates are more similar to the

treated sample (-0.805 for the PI and 84.16 for NBI), resulting in a more modest estimate of the

poverty reduction associated with the establishment of protected areas for both poverty metrics.

Our results are concordant with previous studies from Costa Rica (Andam et al., 2010) and

Thailand (Andam et al., 2010; Sims, 2010): protected areas are associated with poverty reduction.
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However, our results differ fundamentally from these previous studies. Andam et al. (2010) and

Sims (2010) find that näıve estimates of protected area impacts indicate that protected areas

exacerbated poverty. When key covariates are controlled for, however, their results reverse. In

contrast, our results indicate that a failure to control for key covariates leads to the over estimation

of the impacts of protected areas on poverty reduction.
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Figure 4: Primary estimates of the impacts of protected areas on poverty in Bolivia. The left hand (right
hand) group of bars represent the impact according to poverty index (NBI) across a number of econometric
specifications. The results from the primary genetic matching specification described in Methods can be
found in the second bar of the respective bar groups. The whiskers represent the 95% confidence interval for
the corresponding point estimates underlying each bar.

3.2 Robustness

We test the robustness of our primary estimates in several ways. First, we test the sensitivity

of our matching estimator to unobserved heterogeneity between protected and unprotected units.

The purpose is to identify by how much the groups would have to differ (unobservably) in order to

nullify our results of statistically significant poverty reduction. Second, we test the robustness of

our matching specifications by comparing our primary specification to a number of matching- and

regression-based econometric specifications.
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3.2.1 Internal robustness of matching specification

In any observational study it must be acknowledged that the ability to eliminate bias associated

with non-random selection is limited by one’s understanding of the underlying selection process

(Meyer, 1995), moreover, from a practical standpoint, by the pertinent characteristics of selection

that one can actually observe and obtain. If the selection process and outcomes are systematically

determined only by observable characteristics (for which one controls) then a treatment effect es-

timate derived from a matching algorithm that provides balance will be unbiased and consistent.

However, if there are unobservable characteristics that are uncorrelated with observable charac-

teristics for which we control but also contribute to determining selection and outcomes, then

treatment effect estimates, even for a well balanced matched sample, may be biased. We believe

our data are rich enough to provide sufficient covariates with which to control, therefore mitigating

unobserved heterogeneity. However, we test the sensitivity of our ATT estimates to unobserved

heterogeneity/bias using Rosenbaum bounds (Rosenbaum, 2002).

The Rosenbaum bounds sensitivity analysis measures the amount of unobserved heterogeneity

necessary to undermine the statistical results from our matching process. If a great (small) amount

of unobserved heterogeneity is necessary to weaken the significance of our results then the results are

relatively robust (sensitive).18 Table 7 indicates the level of unobserved heterogeneity (unaccounted

for in our matching process) that would be necessary to nullify our findings of statistically significant

poverty reduction according to the PI. Our results are robust (at the 5% level) to unobserved

heterogeneity that affects the odds of selection into protection by a factor of 2.3. In other words,

these results are highly robust to potential unobserved bias.

3.2.2 Robustness of matching specification to alternative econometric specifications

To ensure that our results are not sensitive to the choice of econometric specification, we conduct

a series of ancillary matching- and regression-based analyses. The results of these analyses can be

found in Figure 4 and Table 4.

Genetic matching with calipers. In our primary econometric specification we use one-to-

one nearest neighbor matching based on the genetic matching algorithm. Although we achieve a

18See Appendix for full details on Rosenbaum bounds.
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high level of balance across treatment arms, there are invariably a number of treated units that

do not obtain a well-matched control/counterfactual unit. To ensure that a few poorly matched

units are not biasing or driving the results, we impose calipers, equal to one standard deviation, on

our primary matching specification. In other words, we use the identical genetic weighting matrix,

however, we remove from the sample any matched pair that differ by more than one standard

deviation across covariate values.19

Table 4: Results from Primary and Ancillary Analyses

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.33 -0.451 -0.838 76.7 85.61 -8.92
in Means [56] [268] {0.014} [53] [242] {0.005}

Regression on Raw NA NA -0.502 NA NA -5.52
Data [56] [268] (0.98) [53] [258] (1.17)

Regression Dropping NA NA -0.535 NA NA -5.62
Marginal [56] [252] (0.099) [53] [242] (1.2)

Post-Match Frequency NA NA -0.494 NA NA -2.63
Weighted Regression [56] [41] (0.106) [53] [45] (1.7)

Genetic Matching -1.33 -0.805 -0.525 76.18 81.16 -4.99
[56] [56] (0.142) [53] [53] (3.67)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}

Figure 4 and Table 4 show that the results for the PI are relatively robust to the introduction

of calipers, i.e., there is only a marginal absolute increase in the point estimate of ATT. Seven pro-

tected municipalities are dropped from the analysis, resulting in a bilateral increase in PI outcomes

across matched protected and unprotected municipalities (from -1.33 to -1.07 and -0.805 to -0.511,

respectively). The variance of the resulting ATT changes little and the point estimate is significant

at any conventional level.

Results for NBI are not as robust. Six protected municipalities are dropped from the sample

resulting in an absolute reduction in the ATT from -4.99 to -2.47. Table 4 indicates that this change

is due to opposite movements in average poverty across the protected and unprotected samples.

19The variance is measured according to the scalar value assigned to each unit after taking the product of the
covariate values of each unit and the genetic weighting matrix. This scalar, like a propensity score, mitigates the
so-called curse of dimensionality associated with multivariate matching.
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Average NBI in protected municipalities increased from 76.18 to 79.04 while average NBI in un-

protected municipalities decreased from 84.16 to 81.51. Although the variance in ATT decreases

after calipers are imposed, the resulting ATT estimate remains insignificant at conventional levels.

Regression-based specifications. We run several regression-based econometric specifications

to ensure that our results are not driven by the use of a matching-based estimator. The results

of these specifications are found in Table 4 (see Appendix Table A15 for full regression results)

and we highlight these specifications in last two columns of each bar group of Figure 4. Although

there is slightly greater heterogeneity in the specifications for which NBI is the outcome, the central

results from these specifications are that: (1) protected areas are associated with significant poverty

reductions according to both the PI and NBI, and; (2) the results do not differ significantly from

the primary matching-based estimates.

Table 5: Balance Results for Primary GenMatch Specification- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

Poverty Index Unmatched 0.267 0.744 -0.477 0.141 0.436
1992 Matched 0.267 0.319 -0.052 0.015 0.164 89.12%

% Forest 1991 Unmatched 0.485 0.194 0.291 0.476 0.292
Matched 0.485 0.466 0.019 0.029 0.037 93.40%

Distance to Unmatched 142800 108000 34790 0.173 35950
Major City Matched 142800 136600 6151 0.029 32940 82.32%

Average Unmatched 1825 2713 -888 0.307 884
Elevation Matched 1825 1794 30.94 0.011 118.9 96.52%

Average Slope Unmatched 23.89 18.97 4.922 0.162 5.34
Matched 23.89 23.89 0.004 0.000 1.628 99.92%

Roadless Unmatched 2.98E+14 8.35E+13 2.14E+14 0.194 1.96E+14
Volume 1992 Matched 2.98E+14 2.53E+14 4.53E+13 0.030 1.27E+14 78.89%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Bar columns 4 and 5 of each bar group in Figure 4 present the results of a standard regression

(marginally protected units are dropped from the sample and all covariates are included as controls),

and a post-match frequency weighted regression,20 respectively.

Both the regression-based analyses for which the PI is the outcome of interest (bars 4 and 5 on

20The post-match frequency weight regression is conducted on the resulting matched sample from the primary
genetic matching specification. To correct for potential overstatement in the precision of coefficient estimates (due to
repeat matched unprotected observations) we drop all duplicate observations from the unprotected sample and then
weight each unprotected unit by the number of times it was used as a match for a protected unit, to ensure unbiased
coefficient estimates. This so-called “double robust” estimation strategy is promoted by Ho et al. (2007) because the
second stage regression helps to eliminate any residual differences across treatment arms that remain after matching.
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Table 6: Balance Results for Primary GenMatch Specification- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

NBI 1992 Unmatched 87.52 91.05 -3.527 0.078 3.15
Matched 87.52 87.56 -0.044 0.001 0.97 98.74%

% Forest 1991 Unmatched 0.464 0.187 0.277 0.453 0.277
Matched 0.464 0.459 0.005 0.007 0.03 98.22%

Distance to Unmatched 136400 108600 27790 0.140 29580
Major City Matched 136400 132600 3730 0.017 25160 86.58%

Average Unmatched 1888 2751 -863.1 0.299 862.8
Elevation Matched 1888 1884 4.489 0.002 106.7 99.48%

Average Slope Unmatched 24.01 19.45 4.555 0.149 5.055
Matched 24.01 23.67 0.334 0.010 3.979 92.66%

Roadless Unmatched 3.06E+14 8.53E+13 2.20E+14 0.195 1.99E+14
Volume 1992 Matched 3.06E+14 2.58E+14 4.80E+13 0.033 1.06E+14 78.22%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

the left hand side of Figure 4) return estimates that are strikingly similar to one another, and to the

primary matching specification. The confidence intervals are slightly tighter than those from the

matching based estimators (expected given the efficiency properties of OLS and the fact that the

standard specification contains a larger sample of unprotected units). There is more heterogeneity in

the impact estimates in which NBI is the outcome of interest. However, one of the more interesting

results from the NBI regression specifications is that, although the estimated impacts of protected

areas on poverty do not differ significantly from the primary matching specification, the impacts of

protected areas on NBI are all significantly different from zero.

3.3 Results Summary

The central finding in our results is that it does not appear as if Bolivia’s protected areas that were

established between 1992 and 2000 had any negative effect on poverty in surrounding communities

between 1992 and 2001. Rather, our results indicate that protected areas were likely associated

with reductions in poverty. Though these results are relatively robust across specifications, a couple

of questions linger.

3.3.1 Effect Size of Impacts

To measure poverty, and changes therein, we use two metrics that are neither directly compara-

ble to one another nor standard measures (e.g., income). It is, therefore, difficult to interpreter
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whether or not the estimated socioeconomic impacts that we report are consistent across metrics,

or economically interesting in terms of magnitude. We calculate the effect size (Cohen, 1988) for

each of our primary impact estimates to overcome the non-comparability of our poverty metrics.

To calculate the effect size of our ATT estimates, we divide the respective estimates by the

standard deviation of the matched unprotected units from the respective analyses. The effect size

is, therefore, a standardized measure of by how much the distribution of the treatment group differs

from that of the control group. The effect size estimates from our primary PI and NBI analyses

are both -0.25. This can be interpreted as follows: protected municipalities had, on average, 0.25

standard deviations lower PI and NBI than the associated matched controls.21 According to Cohen

(1988) this is a relatively small effect size; non-trivial, however.

Another benefit of calculating the effect size is that it allows us to draw comparison between

our results and those of similar studies. Andam et al. (2010) make effect size calculations for there

estimates of the poverty alleviating impacts of protected areas in Costa Rica and Thailand. There

estimates fall on either side of ours at -0.2 and -0.43 for Costa Rica and Thailand, respectively.

3.3.2 PI or NBI?

Although the point estimates in all the primary and ancillary analyses indicate poverty reductions

associated with protected areas, the results from analyses in which the PI is the outcome of interest

are more consistent, and remain statistically significant. This begs the question, in which poverty

measure we should place more stock? From a policy standpoint we argue that it matters little.

There is no evidence that protected areas exacerbated poverty, by any measure. From a technical

standpoint, however, we believe that the PI is more appropriate in our study.

The NBI has some technical and practical shortcomings, mentioned previously. First, the NBI

weights all socioeconomic components equally, unlike the PI in which weights are determined em-

pirically via the PCA. Second, the NBI measures the percentage of households that lie below a norm

which is (somewhat) arbitrarily established. The PI, on the other hand, is based on deviations from

municipality-level means (in either direction). Finally, and from a practical standpoint, analyses in

which the NBI is used are limited by the fact that we do not have baseline NBI measurement for

21Another way to intemperate this effect size measurement would be that approximately 60% of the protected
municipalities had lower PI and NBI measures than the matched controls.
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14 municipalities (four of which are considered protected).

3.3.3 Why are the matching-based and regression-based estimates so similar?

The goals of matching and regression in causal analysis are the same: achieve plausible conditional

independence of the treatment. However, the two methods go about doing so in different manners.

Regression isolates the causal effect of a treatment by imposing a functional relationship between

treatment, covariates and outcome. Regression then isolates the causal effect of treatment by

partialing out the effects of the covariates of interest. Instead of controlling for the differences

across treatment arms via the imposition of a functional form, matching uses a weighting scheme22

to create balance in expectation across the covariates, thereby “controlling” for their influence.

Typically in an analysis in which the ATT is the estimand of interest we would expect greater

differences in matching- and regression-based results. The reason relates to the idea of propensity

for treatment. In a study like ours, where there are control units that would never plausibly be

treated, the overlap in propensity for treatment is generally sparse (or completely lacking) at the

tails of the distributions (of propensity scores and the underlying covariates) between protected

and unprotected units. This scenario can lead to bias in regression results because the coefficient

estimates can be heavily (and inappropriately) influenced by outlying control units (e.g., Ho et al.

(2007)).

The reason that our results are so similar across matching- and regression-based estimates can

be seen in Figure A2. We plot the distributions of propensity scores across treatment arms for pre-

and post-matched samples. It can be seen that there is a high degree of overlap across the range of

propensity scores even prior to matching (left panel of Figure A2). Therefore, it makes sense that

the matching- and regression-based results are comparable because, even within the full sample,

the regression results are not plagued by “out of sample” predictions.

22For example, with one-to-one matching without replacement, control units are excluded from the sample by
receiving an effective weight of 0 whereas remaining units receive a weight of 1.

27



Table 7: Rosenbaum Upper Bound on P-Value at Given Levels of Γ for Primary Matching Analysis- PI

Upper Bound
Γ P-value

1 0
1.1 0.0001
1.2 0.0003
1.3 0.0007
1.4 0.0015
1.5 0.0029
1.6 0.005
1.7 0.0081
1.8 0.0124
1.9 0.018
2 0.0253

2.1 0.0342
2.2 0.0448
2.3 0.0572

4 Discussion

Protected areas have played an increasingly important role in the global conservation of biodiversity

and ecosystem services over the past several decades. However, there is little empirical evidence

of the environmental impacts of protected areas and even less evidence of their socioeconomic

impacts on surrounding communities. Given the high degree of overlap between remaining global

biodiversity and poverty, it is of paramount importance to understand how the establishment of

protected areas impacts poverty.

We use rich biophysical and socioeconomic data, and a myriad of econometric specifications to

estimate the impact of protected areas established in Bolivia between 1992 and 2000 on poverty

between 1992 and 2001. Contrary to the concerns of poverty advocates, that the land-use restric-

tions associated with protected areas impart economic hardship on surrounding communities, our

results do not indicate that protected municipalities were adversely affected by the establishment

of protected areas. In fact, we find evidence that municipalities with at least 10% of their areas

occupied by a protected area had differentially greater poverty reduction than those unaffected by

protected areas. We employ two separate measures of poverty in our analyses and find that the

point estimates of poverty reduction are robust across our econometric specification.

Although our overarching results that Bolivia’s protected areas were associated with poverty

reduction are similar to previous studies from Costa Rica (Andam et al., 2010) and Thailand (An-

28



dam et al., 2010; Sims, 2010), our underlying results differ subtly, but significantly. In those studies

the authors found that controlling for key observable covariates lead to fundamentally antithetical

results compared to näıve estimates. Conversely, our results indicate that näıve estimates lead to

an over estimation of the poverty reducing impacts of protected areas.

The implications of our results are twofold. First, our results add to a growing body of literature

on the impacts of protected ares on poverty. More importantly our findings add support to this

literature that environmental conservation policies do not necessarily run in opposition to develop-

ment goals. On the contrary, our results indicate that environmental goals can be complementary

to social poverty goals. Second, our results underscore the importance of country-level analyses of

the socioeconomic impacts of protected areas. Protected areas in Bolivia exhibit many of the char-

acteristics observed globally (i.e., located relatively distant from major cities, roads and on steeper

slopes), however, some of the key drivers of poverty differ in important ways from global and pre-

vious country-level observations. Importantly, we key find differences from previous country-level

and global studies which indicate that evidence from single country or global studies are likely not

generalizable across countries.

The fact that our results exhibit subtle differences to previous results implies that the external

validity of our, and other studies of this ilk, is likely limited. Indeed, we believe that comprehensive

understanding of the socioeconomic impacts for protected areas requires that the scientific body of

knowledge be built on a country-by-country basis.

Further studies in Bolivia and elsewhere should strive to identify and quantify the mechanisms

through which protected areas affect poverty (e.g., Hanauer (2011); Robalino and Villalobos-Fiatt

(2010)). Although studies such as ours are important for building an understanding of the global

impacts of protected areas, only by understanding how protected areas affect poverty (especially

in terms of alleviating poverty) can social policies be designed to enhance (mitigate) the positive

(negative) impacts of protected areas. In addition, because the theme of protection in Bolivia

has been toward integrated management and recognition of indigenous populations, future studies

should account for differences in protected area management practices and baseline populations.
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A Appendix

A.1 Threshold Analyses

In our primary specifications we designate a municipality as protected if at least 10% of its area is

occupied by a protected area. A 10% protection threshold is in line with the goals set forth at the

4th World Congress on National Parks and Protected areas (Andam et al., 2010)23 and previous

studies (Andam et al., 2010; Ferraro and Hanauer, 2011; Ferraro et al., 2011). However, it could be

argued that this threshold is somewhat arbitrary. We, therefore, test the robustness of our results

to changes in this threshold assignment.

Table A1 provides comparisons of ATT for the primary genetic matching specification at the

5%, 10% (primary specification in main analysis), 20%, 30% and 50% protection thresholds for both

PI and NBI (Tables A2-A5 provide full results for all protection thresholds). Table A1 shows that

as the protection threshold increases, i.e., as we increase the protected area land coverage required

for a municipality to be considered protected, the number of protected municipalities drops (as

expected). In the final 50% threshold specification, only 18 (17) treated units remain in the PI

(NBI) analyses.

In the PI analyses we find that the ATT remains relatively stable, and statistically significant,

across the range of protection thresholds. The mean outcomes for treated and control groups jumps

up (in absolute terms) at the 50% threshold providing indication that there is somewhat lower

poverty within municipalities with greater area protected (note that their matched counterparts

have relatively low average poverty levels as well). We see a similar phenomenon in the NBI

analyses in Table A1. The lowest average poverty outcomes (for protected and matched unprotected

units) are observed at the highest levels of protection. The ATT according to NBI is increasing

monotonically (in absolute terms) with percent protection, however none of the estimates are

significant at the 5% level (the 50% threshold specification is significant at the 10% level).

The results in Tables A1-A5 provide evidence that our primary results are not driven by the

choice of threshold. Rather, our results are robust and consistent across protection threshold

specifications.

23As mentioned in the main text, one of the goals set forth by the 4th World Congress on National Parks and
Protected areas was to protect 10% of the earth’s ecosystems by the year 2000.
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A.2 Placebo Analysis

In our main and ancillary analyses we show that the estimated poverty alleviation associated

with the establishment of protected areas is robust to a number of econometric specifications and

ancillary analyses. However, there is always the concern that the difference in outcomes between

protected and unprotected municipalities stems from our inability to select a control group that

closely enough resembles the protected group.24 To address this potential confounding issue we

perform a placebo analysis.

The goal is to see if our covariates of interest perform well in the construction of a counter-

factual for municipalities that are observably similar (on average) to protected municipalities, but

were never protected. In other words, to see if the gap in poverty outcomes between protected and

unprotected groups was due to something other than protection. If protection was the only remain-

ing source of variation across treatment arms (to which the treatment effect can be attributed) in

our main analyses, then we should observe no difference in expected outcomes between the placebo

group and its matched controls (i.e., our covariates are creating a quality counterfactual).

We proceed by selecting a placebo group that is observably similar to the original protected

group. We then run the same genetic matching specification, assigning the placebo group as

the “treated” group, as in the primary matching analysis. The placebo group in this analysis

comprises the 56 matched controls from the primary genetic matching analysis in the main text.25

This group is observably similar to the original protected group (on average; see Table 5) with the

exception that the placebo group was not affected by protected areas. Therefore, if our covariates

are capturing underlying poverty trajectories well, then by selecting unprotected municipalities that

are observably similar to our placebo group, we should observe no difference in outcomes because

there is no longer protection as a source of variation between the two groups.

The results in Table A6, for both the full and unique placebo groups, indicate that there is no

placebo effect. In other words, our covariates of interest appear to be predicting poverty trajectories

well (see Tables A7 and A8 for balance results). These results buttress our claims that the treatment

24This concern is unlikely true given the high degree of balance across treatment arms in Tables 1and 6.
25Recall that matching was performed with replacement so the placebo group has 15 repeat observations. We choose

this for our primary placebo group because it most closely resembles our original protected group in expectation.
We perform an additional analysis assigning only unique matched controls, from the original analysis, to the placebo
group (see Table A7).
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effects present in our main analyses are due to the establishment of protected areas rather than an

inability to estimate quality counterfactuals.

A.3 Spillover Analysis

The central result from our main analyses is that municipalities that were affected by protected

areas had differentially greater poverty reduction than comparable municipalities that were unaf-

fected by protected areas. An often voiced concern is that protected areas, rather than having a

positive impact of proximal populations, caused those most negatively impacted to emigrate from

the impacted communities, thus leading to positive impact estimates. If such emigration was un-

dertaken by relatively poor populations (a supposition supported by Robalino, 2007) it would have

two effects. First, the departure of a relatively poor population would result in a decrease in the

measured average poverty level within protected municipalities. Second, immigration of these rel-

atively poor populations would increase average poverty measured in surrounding municipalities.

The former affect is a concern because it implies that there were no truly positive mechanisms

through which protected areas affected poverty (e.g., tourism, infrastructure development, ecosys-

tem services, etc.). Instead, the former implies that the establishment of protected areas didn’t

make surrounding populations better-off, it just compelled those that they made the worst-off, to

emigrate. In conjunction, such a scenario would lead to erroneous estimates of poverty alleviation

associated with the establishment of protected areas. To test for this potential false identification

we first assume that if the poor are negatively affected by protected areas, they will migrate to the

nearest unaffected municipalities.

Our analysis to test local migration effects is thus framed as a spillover analysis. Using GIS we

select all the municipalities that neighbor (congruent to) municipalities with at least 10% of their

area occupied by a protected area (see Figure A1). If protected areas caused poor populations

to migrate to surrounding municipalities, then we would expect an increase in poverty between

1992 and 2001 in these neighboring municipalities, compared to observably similar (unprotected)

municipalities. To test this hypothesis we treat the 99 neighboring municipalities26 as ”treated”

units and match them to observably similar unprotected municipalities (according to our covariates

26There are 116 municipalities that are congruent to a protected municipality. 17 are dropped from the sample
because they are considered marginally protected.
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of interest). Under the null hypothesis of no spillover, there should be no treatment effect in the

resulting matched sample. In other words, there should be no difference in poverty outcomes

between congruent (to protected municipalities) and matched unprotected municipalities.

We run our primary genetic matching and regression specifications on the spillover data, the

results of which can be found in Table A9 (see Tables A10 and A11 for balance results). We find no

evidence of negative spillover effects from protected municipalities into congruent municipalities.

For both specifications in which we designate the PI as the outcome, the estimated impacts are quite

small and statistically insignificant. In the specifications using NBI, we find estimates of poverty

alleviation in congruent municipalities (compared to similar unprotected municipalities). These

results are statistically significant (insignificant) in the regression (genetic matching) specification.

The results from our spillover analysis indicate that municipalities congruent to protected mu-

nicipalities fared no worse (and by most indications, better) than similar unprotected municipalities.

We, therefore, propose that the positive poverty impacts associated with the establishment of pro-

tected areas are unlikely due to the emigration of poor populations to surrounding communities.

While this proposition may hold for our regional spillover analysis, it is difficult to test for broader

general equilibrium migration effects.

One final piece of evidence that indicates our results are unlikely driven by complex migration

patterns comes from the preceding placebo analysis. Aside from localized (congruent) migration, it

is not illogical to presume that adversely affected poor populations might migrate to municipalities

that are observably similar to the protected municipalities from which they originate. Under this

scenario we might reasonably assume that poor populations would migrate to the unprotected

municipalities found in the matched control group from the primary genetic matching specification.

However, these are the municipalities that compose our “treated” placebo group, for which we found

no difference in poverty outcomes (compared to similar unprotected municipalities) in the placebo

analysis. If our more complex migration scenario were occurring, we would expect to find a negative

(poverty exacerbation) treatment effect in the placebo analysis.

Unfortunately it is not possible to fully capture all the potential general equilibrium poverty

effects of protected areas. However, given the limited mobility of poor populations and migration

scenarios explored, we believe that our analyses provide strong evidence that the positive impacts

of protected areas are not driven by the emigration of poor populations.

33



A.4 Areas Formally Protected in the 1990s

Fundamental to our identification of the impacts of protected areas in our study period was Law

1333 and the associated restructuring and enforcement or protected areas subsequent to 1992.

Despite the evidence of that protected areas were so-called “paper parks” (e.g., (Bruner et al.,

2001)), if the 10 protected areas that were established prior to our study period were in fact

effective, this may be biasing our results.

There are a number of plausible impacts to our results that stem from including protected areas

established (and maintained effectively) prior to our study period. However, our primary concern

is that such inclusion would significantly increase the probability of inferring poverty alleviation

associated with the establishment of protected areas. To address this potential bias, we drop the

10 protected areas that were originally established prior to our study period. We are left with 32

(30) protected municipalities when the PI (NBI) is used as the outcome of interest. We run our

primary specifications on this sample and find the results to be strikingly similar to those from the

original sample (see Table A12 for results and Tables A113 and A14 for balance results).

A.5 Rosenbaum Bounds

The ATT estimates from the primary genetic matching specifications represent unbiased estimates

of the impact of protected areas on poverty under the assumption that we have sufficiently con-

trolled for all covariates that jointly determine the spatial establishment of protection and poverty

(conditional independence assumption). However, if there exists an unobserved covariate or group

of covariates, that is highly correlated with protection and poverty, and uncorrelated with the co-

variates for which we do control, then we may be concerned that this confounder might be biasing

our results. The fundamental concern is that the poverty alleviation observed in protected munic-

ipalities is due to systematic differences between protected and unprotected municipalities, other

than protection.

One of the desirable properties of matching is that under CIA we can invoke many of the

methods of inference used in a randomized experiment. Under pure randomization each selected

unit has an equal probability of being assigned to the treatment or control group. Therefore, under

the null hypothesis of no treatment effect there is a Pr = 0.5 that any unit within a pair chosen

34



across treatment arms has a greater outcome than the other unit within the pair (outcomes are

“exchangeable” within pairs). In other words, under randomization, if treatment has no effect, we

should observe treated units within pairs exhibiting greater outcomes approximately 50% of the

time, and control units exhibiting greater outcomes approximately 50% of the time.27 If matching

satisfies CIA then similar logic, and inference, can be applied to matched pairs.

Suppose that matching perfectly accounts for all covariates that affect outcome and selection.

Similar to randomization, under the null hypothesis of no treatment effect, we should observe

treated units exhibiting greater outcome values within matched pairs approximately 50%, and vice

versa. This type of inference is valid within matched pairs because, conditional on covariates X,

the probability of treatment within these pairs in equal and, therefore, outcomes within matched

pairs are considered exchangeable.28 Now suppose that there is some unobserved covariate, u, that

is uncorrelated with X, but correlated with outcomes Y and treatment T . There are two ways

of looking at the impact of u on inference: (1) u affects the probability of treatment such that

exchangeability is no longer satisfied, therefore, invalidating permutation-based inference using a

null of no treatment effect, and; (2) the differences in u, which are systematically related to T, are

driving the observed differences in Y, otherwise attributed to T.

Rosenbaum (2002) proposes measures by which we can test the sensitivity of our matching

results to the presence of u. Rosenbaum bounds allow us to measure how strong a confounder, u,

would need to be to the invalidate our statistical findings.29 In Rosenbaum’s model the probability

of assignment to treatment πj for unit j can be expressed in terms of odds as
πj

(1−πj) . Under

randomization πj = πk for j 6= k. Similarly, in an observational setting and in absence of u,

πj = πk when xj = xk. In other words, conditional of similar values of X within matched pairs, the

probability of treatment is equal for treated and control units. The departure from randomization

(or the influence of u), can be expressed by Γ in the odds ratio between matched pairs

1

Γ
≤ πj (1− πk)
πk (1− πj)

≤ Γ, for all j, k with xj = xk,

27Under randomization, there are a number of permutation-based inference tests by which to estimate exact p-values
based on this logic (e.g., Rosenbaum 2002).

28Another way of expressing this is that, conditional of X, there remains no other source of variation between
treated and control groups that affects Y , other than T .

29It should be noted prior to exposition that any measurement of sensitivity to unobserved bias, or varying degrees
therein, does not imply the presences of unobserved bias.
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where Γ = 1 under randomization. Conversely, if xj = xk but πj 6= πk this implies the presence of

u, the degree of which is captured by Γ 6= 1. For instance, if Γ = 2 (but xj = xk) this implies that

the presence of u is causing the odds of treatment between j and k to differ by a factor of 2. In

Rosenbaum’s sensitivity test we ask how large Γ would need to be (i.e., how strong a confounder u

would need to be) in order to alter matching-based inference.

To frame Γ explicitly in terms of the unobserved bias, u, Rosenbaum (2002) shows that the log

odds ratio for j is equivalent to

log

(
πj

(1− πj)

)
= k(xj) + γuj , with 0 ≤ uj ≤ 1,

which states that the odds of treatment are an unknown function of x plus an unknown parametriza-

tion of u.30 The odds ratio can therefore be rewritten as

πj (1− πk)
πk (1− πj)

= exp{γ(uj − uk)},

where k(·) cancels when xj = xk. By stating the odds ratio in terms of u it can be seen that in the

absence of u, i.e., when u does not influence π (or when uj = uk), e
γ = Γ = 1. Conversely, as the

influence of u increases (or as uj and uk diverge) Γ and the absolute difference in probability of

treatment between treated and untreated units increases.

In observational studies we cannot observe the presence of u or its potential influence as mea-

sured by Γ = eγ . In Rosenbaum’s sensitivity test we impose increasing levels of Γ to measure at

what influence of unobserved bias our inference would be invalidated (shown to be insignificant).

If inference is altered by a level of Γ close to 1 this implies that a study is sensitive to unobserved

bias. However, we reiterate that estimated sensitivity to unobserved bias in no way implies the

presence of unobserved bias.

A.6 Heterogeneous Impacts

One of the primary goals of the 1992 protected area restructuring was to empower affected commu-

nities by allowing for an integrated management strategy. Proponents of integrated management

30See Rosenbaum (2002) for a discussion of the restriction on u.
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argue that such a strategy is necessary for environmental goals to be achieved. Furthermore, by pro-

moting community involvement toward the achievement of environmental goals, one might expect

to see greater participation in the community at large and, therefore, greater poverty reductions in

communities surrounding protected areas that subscribe to an integrated management policy.

We test for differential poverty impacts in municipalities that were impacted by integrated

management protected areas (IMPA)31 using analyses similar to our primary specifications. Of

the 56 municipalities considered protected in the primary analyses, 18 are considered protected by

IMPAs. The genetic matching specifications return ATT estimates of -0.49 and -7.36 for PI and

NBI, respectively. These point estimates provide no evidence of a differential poverty reduction

in communities affected by IMPAs. However, the fact that both of these estimates are highly

significant (p-values of 0.0006 and 0.004, respectively) with such a small sample is indicative of the

consistency of poverty alleviating effects associated with IMPAs. In the end, such an analysis of

heterogeneity would significantly benefit from finer socioeconomic data. We believe that defensible

evidence of heterogeneity will only be obtained from community-level data, which will likely be

attainable in future work.

31Municipalities considered protected in these analyses had at least 10% of their area occupied by an IMPA.
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Protección Social En Bolivia.

Cavatassi, R., B. Davis, and L. Lipper (2004). Estimating poverty over time and space: construction
of a time-variant poverty index for costa rica. Technical report, ESA Working Paper.

Coad, L., A. Campbell, L. Miles, and K. Humphries (2008). The costs and benefits of protected
areas for local livelihoods: a review of the current literature.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum.

Dehejia, R. and S. Wahba (2002). Propensity score-matching methods for nonexperimental causal
studies. Review of Economics and Statistics 84 (1), 151–161.

Duffy-Deno, K. (1998). The effect of federal wilderness on county growth in the intermountain
western united states. Journal of Regional Science 38 (1), 109–136.

Ferraro, P. J. (2008). Protected areas and human well-being.

Ferraro, P. J. and M. M. Hanauer (2011). Protecting ecosystems and alleviating poverty with parks
and reserves: ‘win-win’ or tradeoffs? Environmental and Resource Economics. 48 (2), 269.

Ferraro, P. J., M. M. Hanauer, and K. R. Sims (2011). Conditions associated with protected
area success in conservation and poverty reduction. Proceedings of the National Academy of
Sciences. Forthcoming.

Filmer, D. and L. Pritchett (2001). Estimating wealth effects without expenditure dataor tears:
An application to educational enrollments in states of india*. Demography 38 (1), 115–132.

38



Fleck, L. C., M. Amend, L. Painter, and J. Reid (2006). Regional economic benefits from conder-
cation: The cas of madidi. Conservation Strategy Fund .

Hanauer, M. M. (2011). Causal mechanisms of protected area impacts. Working Paper .

Ho, D., K. Imai, G. King, and E. Stuart (2007). Matching as nonparametric preprocessing for
reducing model dependence in parametric causal inference. Political Analysis 15, 199–236.

Holland, P. (1986). Statistics and causal inference. Journal of the American Statistical Associa-
tion 81 (396), 945–960.

Imbens, G. and J. Wooldridge (2009). Recent developments in the econometrics of program evalu-
ation. Journal of Economic Literature 47 (1), 5–86.

Joppa, L. and A. Pfaff (2009). High and far: Biases in the location of protected areas. PLOS
One 4 (12).

Lewis, D., G. Hunt, and A. Plantinga (2002). Public conservation land and employment growth in
the northern forest region. Land Economics 78 (2), 245.

Lewis, D., G. Hunt, and A. Plantinga (2003). Does public lands policy affect local wage growth?
Growth and Change 34 (1), 64–86.

MEA (2005). Ecosystems and human well-being. Millennium Ecosystem Assessment. Island Press.

Meyer, B. (1995). Natural and quasi-experiments in economics. Journal of Business and Economic
Statistics 13 (2), 151–161.

Pfaff, A., J. Robalino, G. Sanchez-Azofeifa, K. Andam, and P. Ferraro (2009). Park location affects
forest protection: Land characteristics cause differences in park impacts across costa rica. The
B.E. Journal of Economic Analysis and Policy 9 (2), 5.

Robalino, J. (2007). Land conservation policies and income distribution: who bears the burden of
our environmental efforts? Environment and Development Economics 12 (04), 521–533.

Robalino, J. and L. Villalobos-Fiatt (2010). Conservation policies and labor markets: Unraveling
the effects of national parks on local wages in costa rica. IDEAS Discussion Papers.

Rosenbaum, P. (2002). Observational studies. Springer.

Sachs, J., J. Baillie, W. Sutherland, P. Armsworth, N. Ash, J. Beddington, T. Blackburn, B. Collen,
B. Gardiner, and K. Gaston (2009). Biodiversity conservation and the millennium development
goals. Science 325 (5947), 1502.

Sekhon, J. (2007). Multivariate and propensity score matching software with automated balance
optimization: The matching package for r. Journal of Statistical Software 10 (2), 1–51.

Sims, K. R. (2010). Conservation and development: Evidence from thai protected areas. Journal
of Environmental Economics and Management 60 (2), 94–114.

Watts, R., R. Compton, J. McCammon, C. Rich, S. Wright, T. Owens, and D. Ouren (2007).
Roadless space of the conterminous united states. Science 316 (5825), 736.

WDPA (2011). World database on protected areas: 2010 annual release.

39



Wilkie, D., G. Morelli, J. Demmer, M. Starkey, P. Telfer, and M. Steil (2006). Parks and people:
Assessing the human welfare effects of establishing protected areas for biodiversity conservation.
Conservation Biology 20 (1), 247.
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Figure A1: Map of municipalities congruent (orange) to a municipality with at least 10% area occupied by
a protected area (yellow).
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Figure A2: Histogram of propensity score distributions according to PI for full and matched datasets. Red
bars indicate frequency of unprotected units and blue bars indicate frequency of protected units (purple
represent areas where bars overlap).

Table A1: ATT Estimates from Primary GenMatch Specification by Protection Threshold

Poverty Index NBI

Threshold Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

5% -1.23 -0.761 -0.465 77.12 81.78 -4.66
[63] [63] (0.136) [60] [60] (3.394)

10% -1.33 -0.805 -0.525 76.18 84.16 -4.99
(Primary Specification) [56] [56] (0.142) [53] [53] (3.67)

20% -1.214 -0.725 -0.489 76.21 82.3 -6.075
[42] [42] (0.149) [39] [39] (4.75)

30% -1.162 -0.731 -0.431 76.64 82.92 -6.282
[38] [38] (0.154) [36] [36] (5.1)

50% -1.67 -1.223 -0.454 70.14 76.49 -6.35
[18] [18] (0.272) [17] [17] (3.52)

(Abadie-Imbens Heteroskedasticity Robust Standard Errors)
[Observation]

42



Table A2: Results from Primary and Ancillary Analyses, Treatment Threshold=5%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.23 -0.4946 -0.731 77.12 85.89 -8.77
in Means [63] [261] {0.0215} [60] [251] {0.004}

Regression Dropping NA NA -0.42 NA NA -2.04
Marginal [63] [46] (0.103) [60] [42] (1.55)

Post-Match Frequency -1.23 -0.761 -0.465 77.12 81.78 -4.66
Weighted Regression [63] [63] (0.136) [60] [60] (3.394)

Genetic Matching -0.986 -0.516 -0.471 79.72 82.73 -3.01
[56] [56] (0.14) [54] [54] (2.09)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}

Table A3: Results from Primary and Ancillary Analyses, Treatment Threshold=20%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.21 -0.551 -0.663 76.2 85.3 -9.13
in Means [42] [282] {0.018} [39] [272] {0.013}

Regression Dropping NA NA -0.527 NA NA -7.23
Marginal [42] [252] (0.113) [39] [242] (1.39)

Post-Match Frequency NA NA -0.47 NA NA -2.83
Weighted Regression [42] [31] (0.116) [39] [29] (1.95)

Genetic Matching -0.996 -0.475 -0.52 78.95 82.48 -3.53
[36] [36] (0.155) [35] [35] (3.1)

Genetic Matching, -1.07 -0.511 -0.56 79.04 81.51 -2.47
Calipers=1sd [49] [49] (0.147) [47] [47] (1.55)

[Number of observations]
(Standard errors)
{P-value}
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Table A4: Results from Primary and Ancillary Analyses, Treatment Threshold=30%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.16 -0.567 -0.595 76.6 85.2 -8.551
in Means [42] [282] {0.108} [36] [275] {0.029}

Regression Dropping NA NA -0.523 NA NA -7.42
Marginal [38] [252] (0.119) [36] [242] (1.44)

Post-Match Frequency NA NA -0.45 NA NA -2.91
Weighted Regression [38] [30] (0.124) [36] [28] (2.08)

Genetic Matching -1.162 -0.731 -0.431 76.64 82.92 -6.282
[38] [38] (0.154) [36] [36] (5.1)

Genetic Matching, -0.908 -0.506 -0.402 79.71 83.59 -3.872
Calipers=1sd [32] [32] (0.157) [31] [31] (3.1)

[Number of observations]
(Standard errors)
{P-value}

Table A5: Results from Primary and Ancillary Analyses, Treatment Threshold=50%

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Nave Difference -1.67 -0.577 -1.1 70.14 85.01 -14.87
in Means [18] [306] {0.09} [17] [294] {0.04}

Regression Dropping NA NA -0.684 NA NA -11.3
Marginal [18] [252] (0.162) [17] [242] (1.95)

Post-Match Frequency NA NA -0.627 NA NA -8.52
Weighted Regression [18] [15] (0.218) [17] [15] (3.3)

Genetic Matching -1.67 -1.223 -0.454 70.14 76.49 -6.35
[18] [18] (0.272) [17] [17] (3.52)

Genetic Matching, -1.23 -0.451 -0.782 75.9 82.22 -6.33
Calipers=1sd [15] [15] (0.245) [14] [14] (6.95)

[Number of observations]
(Standard errors)
{P-value}

Table A6: Results from Placebo Matching Test

Poverty Index
Method Y(T=1) Y(T=0) Treatment

Genetic Matching -0.797 -0.84 0.044
Full Matched Sample [56] [56] (0.17)

Genetic Matching -0.915 -0.7189 -0.196
Dropped Repeat [41] [41] (0.156)

[Number of observations]
(Standard errors)
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Table A7: Balance Results for Placebo Matching Analysis- Full Sample

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

Poverty Index Unmatched 0.319 0.834 -0.515 0.157 0.502
1992 Matched 0.319 0.264 0.054 0.016 0.216 89.48%

% Forest 1991 Unmatched 0.466 0.148 0.317 0.531 0.315
Matched 0.466 0.458 0.008 0.012 0.035 97.51%

Distance to Unmatched 136600 102500 34100 0.205 33260
Major City Matched 136600 137500 -868.1 0.004 13100 97.45%

Average Unmatched 1794 2860 -1066 0.375 1052
Elevation Matched 1794 1936 -142 0.051 204.9 86.68%

Average Slope Unmatched 23.89 18.06 5.822 0.191 5.989
Matched 23.89 24.17 -0.287 0.008 4.508 95.07%

Roadless Unmatched 2.526E+14 6.101E+13 1.916E+14 0.259 1.860E+14
Volume 1992 Matched 2.526E+14 1.269E+14 1.257E+14 0.162 1.547E+14 34.38%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Table A8: Balance Results for Placebo Matching Analysis- Unique Sample

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

Poverty Index Unmatched 0.282 0.834 -0.551 0.170 0.537
1992 Matched 0.282 0.283 -0.001 0.000 0.188 99.89%

% Forest 1991 Unmatched 0.427 0.148 0.279 0.458 0.274
Matched 0.427 0.426 0.002 0.002 0.024 99.41%

Distance to Unmatched 136100 102500 33560 0.201 32230
Major City Matched 136100 132900 3230 0.017 10430 90.38%

Average Unmatched 1956 2860 -904.1 0.313 887.6
Elevation Matched 1956 2000 -44.070 0.015 147.3 95.13%

Average Slope Unmatched 23.62 18.06 5.556 0.181 5.591
Matched 23.62 23.03 0.594 0.017 3.361 89.30%

Roadless Unmatched 1.992E+14 6.101E+13 1.382E+14 0.212 1.265E+14
Volume 1992 Matched 1.992E+14 1.415E+14 5.764E+13 0.080 1.097E+14 58.28%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Table A9: Spillover Analyses, Municipalities Congruent to Protected Municipalities Considered Treated

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Regression Dropping NA NA -0.14 NA NA -3.12
Marginal [99] [153] (0.09) [95] [147] (0.98)

Genetic Matching -0.629 -0.726 0.097 81.7 83.88 -2.187
[99] [99] (0.185) [95] [95] (2.29)

[Number of observations]
(Standard errors)
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Table A10: Balance Results for Congruent Spillover Analysis- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

Poverty Index Unmatched 0.678 0.787 -0.109 0.034 0.323
1992 Matched 0.678 0.616 0.062 0.019 0.331 43.27%

% Forest 1991 Unmatched 0.319 0.113 0.206 0.355 0.208
Matched 0.319 0.311 0.008 0.012 0.020 96.30%

Distance to Unmatched 109000 107400 1569 0.009 10650
Major City Matched 109000 110500 -1567 0.009 9140 0.06%

Average Unmatched 2124 3095 -970.3 0.342 959.5
Elevation Matched 2124 2109 15.45 0.005 195.9 98.41%

Average Slope Unmatched 21.66 17.23 4.43 0.145 4.688
Matched 21.66 20.70 0.96 0.029 3.121 78.28%

Roadless Unmatched 7.926E+13 8.624E+13 -6.976E+12 0.009 3.20E+13
Volume 1992 Matched 7.926E+13 7.774E+13 1.524E+12 0.002 1.95E+13 78.15%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Table A11: Balance Results for Congruent Spillover Analysis- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.† Mean Diff.

NBI 1992 Unmatched 89.760 91.880 -2.114 0.049 1.957
Matched 89.760 90.560 -0.797 0.018 1.936 62.32%

% Forest 1991 Unmatched 0.309 0.108 0.201 0.346 0.203
Matched 0.309 0.304 0.005 0.007 0.023 97.56%

Distance to Unmatched 109200 108200 1048 0.006 10110
Major City Matched 109200 107300 1894 0.011 7354 -80.79%

Average Unmatched 2158 3135 -977 0.348 965.8
Elevation Matched 2158 2137 20.97 0.008 167.7 97.85%

Average Slope Unmatched 22.08 17.75 4.332 0.141 4.579
Matched 22.08 22.72 -0.643 0.019 2.743 85.15%

Roadless Unmatched 8.04E+13 8.84E+13 -8.04E+12 0.010 3.26E+13
Volume 1992 Matched 8.04E+13 7.70E+13 3.43E+12 0.004 2.08E+13 57.36%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Table A12: Results from Primary and Ancillary Analyses, Protected Areas Established in 1990s

Poverty Index NBI

Method Y(T=1) Y(T=0) Treatment Y(T=1) Y(T=0) Treatment

Regression Dropping NA NA -0.599 NA NA -4.23
Marginal [32] [252] (0.128) [30] [242] (1.48)

Post-Match Frequency NA NA -0.54 NA NA -1.87
Weighted Regression [32] [24] (0.151) [30] [24] (2.09)

Genetic Matching -0.79 -0.313 -0.485 79.95 85.85 -5.89
[32] [32] (0.205) [30] [30] (5.38)

[Number of observations]
(Standard errors)
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Table A13: Balance Results for Analysis Using Protected Areas Established in 1990s- PI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

Poverty Index Unmatched 0.552 0.744 -0.192 0.056 0.329
1992 Matched 0.552 0.563 -0.010 0.003 0.199 94.54%

% Forest 1991 Unmatched 0.510 0.194 0.316 0.534 0.316
Matched 0.510 0.501 0.009 0.014 0.048 97.28%

Distance to Unmatched 175400 108000 67370 0.314 65140
Major City Matched 175400 145900 29480 0.123 41660 56.24%

Average Unmatched 1649 2713 -1065.000 0.373 1057
Elevation Matched 1649 1584 65.060 0.027 130.400 93.89%

Average Slope Unmatched 24.970 18.970 6.006 0.193 6.080
Matched 24.970 24.890 0.087 0.003 2.305 98.56%

Roadless Unmatched 3.825E+14 8.350E+13 2.990E+14 0.234 2.558E+14
Volume 1992 Matched 3.825E+14 2.808E+14 1.017E+14 0.061 1.632E+14 65.98%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.

Table A14: Balance Results for Analysis Using Protected Areas Established in 1990s- NBI

Mean Mean Diff. Norm. Mean eQQ %Improve
Covariate Status Prot. Unprot. in Means Diff.† Diff.‡ Mean Diff.

NBI 1992 Unmatched 89.11 91.050 -1.934 0.043 1.821
Matched 89.11 89.130 -0.017 0.000 1.069 0.991%

% Forest 1991 Unmatched 0.488 0.187 0.301 0.510 0.298
Matched 0.488 0.483 0.006 0.009 0.036 0.982%

Distance to Unmatched 165600 108600 57030 0.271 54590
Major City Matched 165600 139400 26230 0.108 34620 0.540%

Average Unmatched 1731 2751 -1021 0.360 1013
Elevation Matched 1731 1746 -14.74 0.006 112.6 0.986%

Average Slope Unmatched 25.83 19.45 6.376 0.204 6.4
Matched 25.83 27.43 -1.602 0.045 3.239 0.749%

Roadless Unmatched 3.924E+14 8.528E+13 3.071E+14 0.234 2.600E+14
Volume 1992 Matched 3.924E+14 3.027E+14 8.969E+13 0.052 1.691E+14 0.708%
† Normalized difference in means is the difference in means divided by the square root of the sum of the

squared standard deviations of the treated and untreated covariate samples.
‡ Mean eQQ difference is the mean of the raw differences in the empirical quantile-quantile plots.
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Table A15: Regression Results from Primary Specifications

Standard Post-Match Weighted
Covariate/Outcome PI NBI PI NBI

(Intercept) -2.01*** -42.3*** -1.42*** -39.4
(0.157) (3.41) (0.288) (6.37)

Protected -0.535*** -5.62*** -0.494*** -2.63
(0.099) (1.2) (0.106) (1.7)

Baseline Poverty 0.896*** 1.26*** 0.927*** 1.31***
(0.017) (0.0361) (0.0235) (0.066)

Percent Forest 1991 0.574** 6.22*** -0.0298 -2.73
(0.192) (2.34) (0.302) (4.75)

Distance to Major City 2.77E-06*** -2.47E-05*** 2.22E-06*** 1.12E-05
(4.88E-08) (5.98E-06) (6.33E-07) (9.69E-06)

Average Elevation 1.95E-04*** -0.0035*** -4.51E-05 6.70E-04
(4.39E-05) (0.00054) (9.09E-05) (0.0014)

Average Slope -0.003 0.027 0.006 0.071
(0.0027) (0.032) (0.005) (0.074)

Roadless Volume 2.67E-17 1.96E-15* -7.78E-17 1.58E-15
(9.26E-17) (1.11E-15) (8.29E-17 (1.41E-15)

R2=0.918 R2=0.848 R2=0.951 R2=0.845
DF=300 DF=287 DF=89 DF=83
F=481 F=229 F=245 F=64.8

Notes: Outcomes are indicated at column heads and represent 2001 poverty index and NBI.
***, **, * Indicate significance at the 0.01, 0.05 and 0.1 level, respectively.
(Standard Errors)
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