
Georgia State University
ScholarWorks @ Georgia State University

Computer Information Systems Dissertations Department of Computer Information Systems

6-27-2014

Traveling of Requirements in the Development of
Packaged Software: An Investigation of Work
Design and Uncertainty
Thomas Gregory

Follow this and additional works at: https://scholarworks.gsu.edu/cis_diss

This Dissertation is brought to you for free and open access by the Department of Computer Information Systems at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Computer Information Systems Dissertations by an authorized administrator of ScholarWorks @
Georgia State University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Gregory, Thomas, "Traveling of Requirements in the Development of Packaged Software: An Investigation of Work Design and
Uncertainty." Dissertation, Georgia State University, 2014.
https://scholarworks.gsu.edu/cis_diss/53

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DISSERTATION

Traveling of Requirements in the

Development of Packaged Software

An Investigation of Work Design and Uncertainty

Thomas A. Gregory

Dissertation Committee:
Lars Mathiassen (Chair)

Richard Baskerville
Balasubramaniam Ramesh

Sandra Slaughter

CENTER FOR PROCESS INNOVATION
J. MACK ROBINSON COLLEGE OF BUSINESS

GEORGIA STATE UNIVERSITY

27 June 2014

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation i

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of the requirements for an
advanced degree from Georgia State University, I agree that the Library of the
University shall make it available for inspection and circulation in accordance with its
regulations governing materials of this type. I agree that permission to quote from, to
copy from, or publish this dissertation may be granted by the author or, in his absence,
the professor under whose direction it was written or, in his absence, by the Dean of the
Robinson College of Business. Such quoting, copying, or publishing must be solely for
the scholarly purposes and does not involve potential financial gain. It is understood
that any copying from or publication of this dissertation which involves potential gain
will not be allowed without written permission of the author.

Thomas A. Gregory

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation ii

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University Library must be used
only in accordance with the stipulations prescribed by the author in the preceding
statement.

The author of this dissertation is:

Thomas A. Gregory

Center for Process Innovation
J. Mack Robinson College of Business
Georgia State University
35 Broad Street, NW, Suite 400
Atlanta, GA 30303

E-mail: tom@alt-tag.com
Homepage: http://alt-tag.com

The director of this dissertation is:

Dr. Lars Mathiassen
GRA Eminent Scholar
Professor, Computer Information Systems Academic Director, Executive
Doctorate in Business Center for Process Innovation

J. Mack Robinson College of Business
Georgia State University
35 Broad Street, NW, Suite 427
Atlanta GA 30303

E-mail: lmathiassen@ceprin.org

Phone: +1-404-413-7855

Homepage: http://www.larsmathiassen.org

T. Gregory | Dissertation iii

TRAVELING OF REQUIREMENTS IN THE
 DEVELOPMENT OF PACKAGED SOFTWARE:

AN INVESTIGATION OF WORK DESIGN AND UNCERTAINTY

BY

Thomas A. Gregory

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Philosophy

In the Robinson College of Business

Of

Georgia State University

GEORGIA STATE UNIVERSITY

ROBINSON COLLEGE OF BUSINESS

2014

T. Gregory | Dissertation iv

Copyright by

Thomas A. Gregory

2014

T. Gregory | Dissertation v

ACCEPTANCE

This dissertation was prepared under the direction of Thomas A. Gregory’s Dissertation
Committee. It has been approved and accepted by all members of that committee, and
it has been accepted in partial fulfillment of the requirements for the degree of Doctoral
of Philosophy in Business Administration in the J. Mack Robinson College of Business
of Georgia State University.

 H. Fenwick Huss, Dean

DISSERTATION COMMITTEE:

Dr. Lars Mathiassen (Chair)

Dr. Richard Baskerville

Dr. Balasubramaniam Ramesh

Dr. Sandra Slaughter

T. Gregory | Dissertation vi

ABSTRACT

TRAVELING OF REQUIREMENTS IN
THE DEVELOPMENT OF PACKAGED SOFTWARE:

AN INVESTIGATION OF WORK DESIGN AND UNCERTAINTY

BY

THOMAS A. GREGORY

27 June 2014

Committee Chair: Dr. Lars Mathiassen

Major Academic Unit: Center for Process Innovation

Software requirements, and how they are constructed, shared and translated across
software organizations, express uncertainties that software developers need to address
through appropriate structuring of the process and the organization at large. To gain
new insights into this important phenomenon, we rely on theory of work design and the
travelling metaphor to undertake an in-depth qualitative inquiry into recurrent
development of packaged software for the utility industry. Using the particular context
of software provider GridCo, we examine how requirements are constructed, shared,
and translated as they travel across vertical and horizontal boundaries. In revealing
insights into these practices, we contribute to theory by conceptualizing how
requirements travel, not just locally, but across organizations and time, thereby
uncovering new knowledge about the responses to requirement uncertainty in
development of packaged software. We also contribute to theory by providing narrative
accounts of in situ requirements processes and by revealing practical consequences of
organization structure on managing uncertainty.

T. Gregory | Dissertation vii

ACKNOWLEDGEMENTS

The road, as it so often is, was longer than I first anticipated. I have been helped
by so many mentors along the way that any attempt to enumerate them will inevitably
be incomplete. Each are luminaries in their own right, and this simple
acknowledgement is inadequate to express how blessed I am to have been able to
interact with such great people.

To my advisor, Dr. Lars Mathiassen, I am forever grateful. His patience rivaled
that of a saint as he uncomplainingly (to me at least!) endured my frustration and
procrastination, and gently teased out a more coherent set of ideas and organization
than I would have ever been able to accomplish on my own.

I am grateful to Lars, as well as Arun Rai and Richard Welke for not only being
excellent mentors, but also coordinating the Center for Process Innovation and
encouraging research that is engaged with business. The field is better for it.

 As I marched—and sometimes plodded—down the path of the PhD program,
many have provided assistance and advice along the way. I’m lucky to have learned from
Detmar Straub, Dan Robey, Lisa Lambert, and many, many others here at Georgia State
University. I am thankful for each of you. He may not know it, but this journey was, in
part, inspired by advice from Dr. Dave Jennings and others at Brigham Young
University.

Any list of acknowledgements would be woefully incomplete without recognition
of the time and effort the dissertation committee put in to reading, advising, and
challenging this document. You each deserve a very special thank you: Lars Mathiassen
(Chair), Richard Baskerville, Bala Ramesh, Sandy Slaughter.

Lastly, to my family, I must say thank you for enduring late nights, long
weekends (and long breaks) and the many sacrifices that come with a doctoral program.

I am grateful for you all.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation viii
TABLE OF CONTENTS

TABLE OF CONTENTS

TABLES AND FIGURES .. x	

ABBREVIATIONS ... xi	

ABSTRACT ... 1	

1	
 INTRODUCTION ... 2	

1.1	
 Research Domain ... 2	

1.2	
 Research Questions .. 4	

1.3	
 Summary of Dissertation ... 6	

2	
 UNCERTAINTY .. 9	

2.1	
 Uncertainty in Information Systems and Organization Research 9	

2.2	
 Uncertainty in Software Development ... 12	

2.3	
 Uncertainty in Software Requirements .. 15	

2.4	
 Uncertainty and Risk .. 17	

3	
 PACKAGED SOFTWARE ... 21	

3.1	
 What is Packaged Software? ... 21	

3.2	
 Research Opportunity .. 26	

3.3	
 Contrasting “Packaged” and “Custom” Software .. 27	

4	
 REQUIREMENTS MANAGEMENT .. 31	

4.1	
 Requirements in the SE Literature .. 32	

4.2	
 Requirements in the IS Literature ... 34	

4.3	
 Contrasting IS and SE Requirements Literature .. 37	

5	
 WORK DESIGN AND UNCERTAINTY ... 44	

5.1	
 Work Design ... 44	

5.2	
 Contingency Theory ... 46	

5.3	
 Horizontal and Vertical Work Design ... 47	

5.4	
 Work Design and Information Systems ... 51	

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation ix
TABLES AND FIGURES

6	
 TRAVELING OF IDEAS ... 54	

6.1	
 The “Traveling” Metaphor ... 54	

6.2	
 Conceptualizing Traveling .. 57	

7	
 RESEARCH METHODOLOGY .. 59	

7.1	
 Qualitative Case Study ... 59	

7.2	
 Research Setting ... 61	

7.3	
 Data Collection .. 65	

7.4	
 Coding Structure .. 68	

7.5	
 Data Analysis Strategy ... 69	

8	
 TRAVELING OF REQUIREMENTS .. 72	

8.1	
 Types of Traveling .. 72	

8.2	
 The Expected Journey .. 73	

8.3	
 Localized Traveling .. 79	

8.4	
 Cross-Layer Traveling .. 88	

8.5	
 Cross-Cycle Traveling .. 92	

9	
 DISCUSSION .. 96	

9.1	
 Traveling .. 96	

9.2	
 Work Design ... 99	

9.3	
 Recurrent Development of Packaged Software .. 105	

9.4	
 Engaged Scholarship ... 107	

9.5	
 Contributions .. 114	

9.6	
 Limitations .. 118	

9.7	
 Conclusion ... 120	

10	
 REFERENCES .. 122	

Appendix A: ISD Requirements Construction Classics .. 128	

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation x
 STYLEREF "Heading 1" TABLES AND FIGURES

TABLES AND FIGURES

List of Tables
Table 1-1: Contributions to Knowledge .. 4

Table 3-1: Differences Between Packaged and Custom Software 22

Table 4–1: Contrasting Streams of Requirements Literature 37

Table 7–1: Overview of NPD Stages at GridCo .. 62

Table 7–2: Summary of Data Sources ... 65

Table 7–3: Framework for Analyzing Traveling of Requirements 68

Table 8–1: Initial Estimation Ranges .. 78

List of Figures
Figure 3–1: Product Software as described by Xu and Brinkkemper (2007) 22

Figure 4–1: Parallel Model of the Requirements Process .. 38

Figure 5–1: Conceptualizing Work Design Problems ... 48

Figure 8–1: Work Design ... 73

Figure 8–2: Local Traveling of Requirements ... 79

Figure 8–3: Cross-Layer Traveling of Requirements ... 88

Figure 8–4: Cross-Cycle Traveling of Requirements .. 92

Figure 9–1: Coordination Through the Local Hub Assembly at GridCo 102

Figure 9–2: Manipulating the Triple Constraints of Project Management 108

Figure 9–3: Differences in Constraint Management in Software and Hardware 109

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation xi
ABBREVIATIONS

ABBREVIATIONS

List of Abbreviations (in Alphabetical Order)

C&C Command and control system, specifically the C&C software product
developed by GridCo

CBS COTS-Based System

CEPRIN Center for Process Innovation (at Georgia State University)

COTS Commercial Off-The-Shelf (Software)

CRM Customer relationship management, a type of large software package

EJIS European Journal of Information Systems

ERP Enterprise resource planning, a type of large software package

FW Firmware; low-level, embedded software

HW Hardware

IEEE Institute of Electrical and Electronics Engineers, a professional association

IRB Institutional Review Board

IS Information Systems

ISD Information Systems Development

IT Information Technology

MoU Memorandum of Understanding

NPD New Product Development

PMBOK Project Management Body of Knowledge

SE Software engineering

SW Software; in the case of GridCo, generally a reference to the C&C SW

SWEBOK Software Engineering Body of Knowledge (an IEEE standard)

TCE Transaction Cost Economics

T. Gregory | Dissertation Proposal 1
ABSTRACT

ABSTRACT

Software requirements, and how they are constructed, shared and translated across

software organizations, express uncertainties that software developers need to address

through appropriate structuring of the process and the organization at large. To gain

new insights into this important phenomenon, we rely on theory of work design and the

travelling metaphor to undertake an in-depth qualitative inquiry into recurrent

development of packaged software for the utility industry. Using the particular context

of software provider GridCo, we examine how requirements are constructed, shared,

and translated as they travel across vertical and horizontal boundaries. In revealing

insights into these practices, we contribute to theory by conceptualizing how

requirements travel, not just locally, but across organizations and time, thereby

uncovering new knowledge about the responses to requirement uncertainty in

development of packaged software. We also contribute to theory by providing narrative

accounts of in situ requirements processes and by revealing practical consequences of

organization structure on managing uncertainty.

T. Gregory | Dissertation Proposal 2
INTRODUCTION

1 INTRODUCTION

1.1 Research Domain

Software is inherently complex (Brooks 1987), making its development a highly risky

(Boehm 1991) and uncertain (Mathiassen and Pedersen 2008) activity. Yet, the

outcomes of software development, as with development of any other product

(Henderson and Clark 1990), are affected in multiple ways by the organizational context

in which it is developed. We set out with the assumption that software requirements,

and how they are constructed, shared and translated as they travel across the software

organization, are expressions of uncertainties that software developers face and need to

address through appropriate structuring of the process and the organization at large.

Requirements are necessarily interpreted and negotiated as they travel through an

organization on a journey intended to resolve the gap of uncertainty between customer

needs and market options, on the one hand, and released software on the other. Thus,

we use the lenses of uncertainty and work design to investigate the management and

organization of software development as a complex human activity from the perspective

of software requirements.

Software requirements are strongly analogous to task uncertainty, and are useful

focal points for uncovering specific uncertainties in the development of software. By

considering types of uncertainty developers might encounter (identity, complexity, and

volatility uncertainties) (Mathiassen et al. 2007), the consequences to implementation

of requirements and the task uncertainties they represent may be more fully elucidated.

Moreover, adopting the language of task uncertainty (Galbraith 1973) enables the

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 3
INTRODUCTION

simultaneous investigation of work design in software development. Sinha and Van de

Ven (2005) argued for reopening the study of work design within and between

organizations, and provided a brief review of contingency theory. Contingency theory

suggests that organizations build structures and processes to adapt to tasks and contexts

(Drazin and Van de Ven 1985), and the consequences of these structures and processes

are expressed as tradeoffs between mutually desirable, but exclusive goals. Thus,

products developed in and between organizations, including software, may reflect

attributes of the processes used to create them. Simultaneously, the organization adapts

itself to the products it creates. As requirements must necessarily travel across vertical

and horizontal boundaries, the selection, negotiation and interpretation of requirements

is likely to change depending on how the development activity is structured. Hence,

examining how requirements travel (Czarniawska and Joerges 1996) may help tease

apart and understand this duality between the software and the organizational structure

under which it is developed.

This collection of theories, namely, traveling (Czarniawska and Joerges 1996),

organization contingency (Galbraith 1973), and uncertainty (Mathiassen et al. 2007),

emerge naturally from the focus on requirements as they interact with and are adapted

to the needs of their situating organization. Examining requirements across a system of

development aligns naturally with conventional IS perspectives. The notion that

requirements evolve throughout their life is readily explained by traveling theory. A view

of organizational structure is necessary to describe where requirements travel, and we

rely on the seminal work of Galbraith (1973) as well as modern simplifications (Sinha

and Van de Ven 2005). Lastly, we utilize uncertainty not only because it is a core

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 4
INTRODUCTION

underlying concept of information processing in contingency theory, but also because it

explains why requirements travel.

Using a specific corporate context of recurrent development of packaged

software, this study looks deeply into uncertainties encountered during development

and addresses the problems organizations face in ensuring requirements are effectively

constructed, shared, and translated as they travel across vertical and horizontal

boundaries, not only within a particular release cycle, but also between connected

releases. The context of packaged software allows for temporal effects as development is

recurrent—the same product is iterated over multiple releases—and this may be

reflected in the traveling behavior of requirements. In addition to richer insight in

uncertainty in a software development context, this research extends the sparse

packaged software literature by providing evidence to confirm or challenge the field’s

understanding of the nature and contextual effects on packaged software development.

1.2 Research Questions

In order to respond to these general themes of software requirements and work design,

it is necessary to examine in detail how requirements behave in particular

organizational contexts:

RQ 1: How are requirements constructed, shared, and translated in recurrent

development of packaged software?

Zooming in (Nicolini 2009) on the relationship between work design and requirements,

we adopt the traveling metaphor (Czarniawska and Joerges 1996; Nielsen et al. 2013) in

conjunction with the notion of boundaries (Carlile 2002) to examine how requirements

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 5
INTRODUCTION

change within and across boundaries in their journey towards software delivery. In an

organizational context, such boundaries might be horizontal or vertical (Sinha and Van

de Ven 2005). This leads to the second research question:

RQ 2: How do requirements travel across vertical and horizontal boundaries in

recurrent development of packaged software?

In addressing these questions, this dissertation seeks contribution to theory by

uncovering new knowledge about the sources of and responses to requirement

uncertainty in recurrent development of packaged software. In this way, it answers

recent calls (Austin and Devin 2009) for inductive qualitative research of design of

software processes based on contextual factors. Further, it contributes to theory by

providing detailed accounts of an organization’s contextual responses to managing

requirements as they travel across boundaries, reaffirming the need for process

reinforcement that supports the role of boundary spanners.

Despite the wealth of requirements research in the software engineering

tradition, based on evidence from analyses (Hassan and Mathiassen Forthcoming) and

reviews of requirements literature in information systems (Mathiassen et al. 2007), little

is known in the information systems (IS) field. Especially, we lack knowledge about the

human dynamics involved in constructing and translating requirements as multiple

actors negotiate meaning and resolve uncertainty across organizational boundaries.

Additionally, the consideration of software requirements in packaged software is novel

within the scope of IS literature, as compared with traditional, in-house or outsourced

software development.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 6
INTRODUCTION

This dissertation seeks to answer these research questions via an empirical

qualitative study. We list the consequential contributions to knowledge in Table 1-1.

1.3 Summary of Dissertation

This dissertation presents relevant research and extant theory; describes the empirical

setting, methodology, and analysis; and discusses findings and contributions to theory

according to the following structure:

Table 1-1: Contributions to Knowledge

Target Gap Contribution

IS research Sparse requirements
literature in IS;
requirements under-
represented in literature

Sparse application of
traveling metaphor in IS
literature

Exploration of requirements
practices as they unfold in an
organization

Reinforce utility of traveling
metaphor to support process
studies and theory building

Software development
research

Software development
should be examined in the
context of its
implementing
organization

Uncertainty avoidance
and mitigation

Investigation of connection
between work design and
uncertainty in software
development

Traveling metaphor reveals new
insights into management of
uncertainties in development
practices

Packaged software
research

Area is under-studied and
only speculatively defined

Lack of grounded
concepts about
development of packaged
software

A detailed empirical account of
packaged software development
informs beliefs

Conceptualization of the
different ways in which packaged
software requirements travel and
consequences for organizing the
process

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 7
INTRODUCTION

• Chapter 2 considers uncertainty as it appears in different literature streams,

and connects uncertainty to both the study of organizations and software

development. Task uncertainty is explained, and differentiated from

requirements uncertainty and environmental uncertainty.

• Chapter 3 reviews the packaged software literature and makes the case for

studying the domain of packaged software. The anticipated effects of packaged

software on organizations and development processes are contrasted with

development of other types of software.

• Chapter 4 summarizes the requirements management literature both from

software engineering and information systems perspectives and emphasizes the

lack of interactions between the two streams. Requirements processes are

described as iterative and parallel. Requirements are related to uncertainty.

• Chapter 5 presents modern and seminal theory of work design and how it

relates to uncertainty. Horizontal and vertical work design structures are

explicated. The problems arising from particular work design structures are

highlighted and framed as uncertainties. Organizations are similar to software in

the sense that they are the result of design as well as emergence.

• Chapter 6 presents and adapts the “travel of ideas” literature. The central

concept of “traveling” is discussed and further dissected to provide greater clarity

in a software development context.

• Chapter 7 describes the setting and design for this research, and details data

and method of collection. We use a qualitative, case study method. GridCo has a

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 8
INTRODUCTION

structured new product development (NDP) method. Analysis is delineated, and

the intended coding scheme is justified.

• Chapter 8 describes how requirements at GridCo traveled in certain ways

within and across release cycles as participants addressed uncertainties. We

identified and analyzed three major categories of traveling behavior: local, cross-

layer and cross-cycle.

• Chapter 9 using GridCo in relating analyses to theories of traveling, work

design, and recurrent packaged software. Strengths and weaknesses of GridCo’s

development practiced are presented as engaged scholarship. We summarize

contributions and limitations.

T. Gregory | Dissertation Proposal 9
UNCERTAINTY

2 UNCERTAINTY

Uncertainty is defined and discussed based on different literature streams.

Uncertainty is connected to both the study of organizations and software development.

Task uncertainty is explained, and differentiated from requirements uncertainty and

environmental uncertainty.

2.1 Uncertainty in Information Systems and Organization Research

Uncertainty is no stranger to information systems research, and has many facets.

Broadly speaking, uncertainty is the absence of complete information, and has been

called by Thompson (1967) the primary issue facing senior managers (Nidumolu 1995).

Uncertainty includes (to paraphrase former U.S. Secretary of Defense Donald Rumsfeld)

both known-unknowns and unknown-unknowns (Pawson et al. 2011).

The concept of uncertainty appears in most streams of IS and organization

research, as decisions must be made and work produced in the absence of complete

information. Consequently, uncertainty appears in strategy (Jauch and Kraft 1986;

Milliken 1987), Transaction Cost Economics (TCE) (Williamson 1991), software

development (Nidumolu 1995), project management (Jiang et al. 2009), requirements

management (Nidumolu 1996), and the study of work design (Galbraith 1973), just to

name a few. The term “uncertain” is also applied to information, particularly in the

fields of database and knowledge base systems, where uncertainty is used to mean “the

representation of and query support for information that is fuzzy, unknown, partially

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 10

UNCERTAINTY

known, vague, uncertain, probabilistic, indefinite, disjunctive, possible, maybe,

incomplete, approximate, erroneous, or imprecise” (Dyreson 1997, p. 413).

As Downey and Slocum (1975, p. 562) point out in their review of what came to

be known as “environmental uncertainty” in the strategy literature, “uncertainty is a

term which is used daily in a variety of ways. This everyday acquaintance with

uncertainty can be seductive in that it is all too easy to assume that one knows what he is

talking about.” Certainly, each research domain seems to have subtly different

definitions of uncertainty that are not always reconcilable.

One of the most basic questions in comparing literature on uncertainty is

determining whether it is an objective or perceptive state (Downey et al. 1975; Downey

and Slocum 1975; Milliken 1987). The fields of information processing, decision

sciences, and computer engineering refer to uncertainty as an objective property of

information, when a result is between states, unknown or incomplete (Dyreson 1997). In

contrast, most organizational and strategy research takes the psychological viewpoint

that uncertainty is a state faced by some deciding actor, which may occur because of

missing, incomplete, conflicting, transient, or complex information.

A common subcategory of uncertainty, particularly in the governance literature,

is ambiguity, the absence of information in decision making or the unknowability of

outcomes, including a lack of understanding of cause–effect relationships, unknown

variables, or unknown alternatives (Carson et al. 2006; Milliken 1987). Imprecision of

data (Morrissey 1990) similarly results in ambiguity. Ambiguity is a consequence of

complex, dynamic, or emergent systems (Snowden and Boone 2007). This wild

combination of too much and not enough information is attributed by some software

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 11

UNCERTAINTY

development researchers to communication gaps, and are labeled identity concerns

(Mathiassen et al. 2007).

Other classifications of uncertainty include volatility, the unpredictable rate of

change in market demand or supply availability (Carson et al. 2006), as well as

technological uncertainty, which indicates future changes in technology are unknown

and could led to significantly different future costs for a considered technology or render

it obsolete (Choudhury 1997). Strategy researchers use a similar construct, dynamism,

or the rate and unpredictability of environmental change (Miller and Friesen 1983;

Newkirk and Lederer 2006).1 Within software development research, volatility concerns

may arise because of changing market pressures, customer preferences, or business

needs, to list a few of many reasons, and may manifest as budget or schedule changes.

As in TCE, a basic assumption behind uncertainty is bounded rationality, the finite

ability of humans to access, store, and process information (Simon 1979). Although

generally unspoken, the assumption of bounded rationality undergirds the information

processing perspective (e.g., Galbraith 1973) typical of research in organization

1 Strategy research considers the broader label, environmental uncertainty, with three dimensions:

dynamism, heterogeneity (complexity of factors in the environment), and hostility (degree of
external competition) (Miller and Friesen 1983), although a review of resource-based view (RBV)
literature applies munificence (the extent to which a business can grow) instead of hostility (Wade
and Hulland, 2004). Although now collectively labeled environmental uncertainty, under the
original conception only dynamism was considered uncertainty (Miller and Friesen 1983), and was
defined similarly to the constructs volatility and demand uncertainty in other streams as mentioned
above. However, because of bounded rationality, heterogeneity and hostility increase the likelihood
of ambiguity, so collectively considering the three dimensions as uncertainty is appropriate. This is
particularly true, as these three dimensions have been shown to interact when considering the
extent to which managers make erratic strategic decisions.

 Mitchell, R.J., Shepherd, D.A., and Sharfman, M.P. 2011. "Erratic strategic decisions: when and why

Wade, M., and Hulland, J. 2004. “The Resource-Based View and Information Systems Research:
Review, extension, and suggestions for future research,” MIS Quarterly (28:1), pp. 107-142.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 12

UNCERTAINTY

structure and work design. Because of bounded rationality, uncertainties resulting from

ambiguity are magnified when decision makers are also faced with complexity; the two

facets of uncertainty are deeply intertwined. Thus, software development, a highly

complex endeavor, is guaranteed to encounter uncertainty.

2.2 Uncertainty in Software Development

Uncertainty pervades software development (Brooks 1987) and its attendant processes,

such as project management and requirements management. Zmud (1980) described

the effects of uncertainty in software development, saying, “most difficulties can be

traced to the uncertainty that pervades software development.”

One facet of the uncertainty found in software development has been called

requirements uncertainty, meaning “the difference in the information necessary to

identify user requirements and the amount of information possessed by the developers”

(Nidumolu 1995, p. 136). Although this definition is useful, it too narrowly considers

only the relationships between users, requirements, and developers. An earlier and

more general concept, task uncertainty, captures the essence of requirements

uncertainty.

Galbraith (1973, p. 5), defines task uncertainty as “the difference between the

amount of information required to perform the task and the amount of information

already possessed by the organization.” Software development is the act of creating

information (as represented by, for example, source code), and is, by its nature,

uncertain, and so a simpler but perhaps less precise definition of task uncertainty in a

software development context is the difference between what has been done and what

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 13

UNCERTAINTY

has yet to be done in response to specific customer needs and market demands. This

difference is expressed in agreed upon requirements and the completion status of the

next software release.

Galbraith (1973) argues for a correlation between the amount of information to

be processed and the level of task uncertainty. By this definition, the potential for

uncertainty in software development grows with the size of the software, as the amount

of information needing processing—for example, the size of the code base—increases

over time, and the possibility of unintended interactions between modules increases.

Developers attempt to manage growing complexity over time with the use of software

patterns and modularization, but it is the nature of software—as with other endeavors—

to become more complex, and thus more uncertain, over time. The same argument

applies to a growing organization faced with an increasing number of strategic

customers whose demands must be satisfied: as their number increases, the potential

for unintended negative interactions likewise increases, as does uncertainty.

Conversely, the potential for uncertainty decreases as the amount of information

already possessed by the organization increases. Although over time, uncertainty is

expected to go both up and down simultaneously, the resulting dynamics suggests a net

increase in uncertainty over time. Knowledge as represented by a growing code base as

well as the increasing institutional knowledge of developers over time tends to reduce

overall uncertainty, but this benefit is mitigated by the increased complexity and

increased likelihood of ambiguity.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 14

UNCERTAINTY

Task uncertainty is also a function of the way the organization is structured.2 The

design of an organization itself leads to additional uncertainties (Sinha and Van de Ven

2005), and thus as the organization grows uncertainty will tend to increase (as

evidenced by coordination cost (e.g., Kraut and Streeter 1995)), although this can be

mitigated with strategies such as vertical information systems. Galbraith (1973)

advocates hierarchical structures, in part because coordination costs are limited to

logarithmic rather than exponential growth. However, any mitigation of uncertainty is

limited by the cognitive ability of participants (Galbraith 1973).

As previously noted, a major distinction between requirements uncertainty and

task uncertainty (on which it is based), is its narrow focus. Requirements uncertainty

considers only information available from users, whereas task uncertainty encompasses

all information needed to complete a task, including the tools used in the development

process or understanding of appropriate software patterns or previous solutions which

might be applicable to the problem being considered. Further information not

encompassed by requirements uncertainty but within the umbrella of task uncertainty

might include the extant state of the code being modified, and any feedback regarding

iterative development steps, including such trivialities as syntax errors or more

substantive feedback such as failed unit tests. In software development, some of this

information (e.g., test feedback) is not available until a solution has been attempted.

Galbraith’s (1973) broader definition of task uncertainty, which references the

2 Here the duality between software and organization is again manifest. Uncertainty is a function of

work design while at the same time also conditions and informs work design. The lower the task
uncertainty, the more structure one can use in designing work (high programmability); the higher
the task uncertainty, the more organic structures would need to be applied (low programmability).

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 15

UNCERTAINTY

information required to perform a task, must thus necessarily include information that

reflects whether the task was completed. In the context of software development, this

suggests the outcome of development effort is uncertain until it is completed, a view

consistent with the industry understanding of uncertainty in software development

(Brooks 1987).

2.3 Uncertainty in Software Requirements

Researchers have adopted numerous categorizations for uncertainty in requirements

and software development, including Mathiassen et al. (2007), who separate uncertainty

into:3

1. Identity, the knowing of requirements caused by communications gaps4;

2. Volatility, the changing of requirements whether for internal or external

reasons, such changes in market and customer preferences, budget or

priority changes, or timing and schedule changes; and

3. Complexity, the difficulty in specifying and communicating requirements,

as well as the cognitive load required to understand the effects of

implementation due to, for example, dynamic systems, lack of modularity,

or quantity of constituent components or connections.

3 More precisely, Mathiassen et al. (2007) describe these as risks rather than dimensions of

uncertainty. This distinction will be addressed later (Section 2.4).
4 In requirements management literature, communications gaps are almost always in reference to

gaps in communication with customers. However, as these breakdowns can occur anywhere along
the potentially numerous organizational and process boundaries that separate users from the
developers writing source code, it is more useful to simply refer to these as communications gaps.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 16

UNCERTAINTY

The approach of Mathiassen et al. (2007) both aligns and diverges from earlier

work by Nidumolu (1996), who identifies a flavor of uncertainty mentioned previously,

requirements uncertainty, in reference to the uncertainties encountered during

management of software requirements. Requirements uncertainty stems from the

information processing viewpoint of Galbraith (1973), and is defined as the difference

between the information possessed by developers and the information necessary to

determine end-user requirements (Liu et al. 2011; Nidumolu 1996). Other researchers

have temporally bounded the idea of requirements uncertainty as occurring in only the

planning or analysis phases of the IS development process, with consequences felt in

design, implementation, and maintenance phases (e.g., Benslimane et al. 2010),

although it is not clear whether this interpretation is commonly held. An increase in

requirements uncertainty has been shown to have a positive relationship with inter-

personal conflict among stakeholders (Liu et al. 2011). Both requirements uncertainty

and interpersonal conflict are primary factors for the all-to-common failures in software

development (Liu et al. 2011; McFarlan 1981; Robey et al. 1993).

Nidumolu (1996, p. 136) described three dimensions of requirements

uncertainty:

1. “Requirements diversity, the extent to which users differ among

themselves in their requirements”;

2. “Requirements instability, the extent of changes in user requirements”;

3. “Requirements analyzability, the extent to which the process for

converting user needs to a set of requirements specifications can be

reduced to mechanical steps or objective procedures.”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 17

UNCERTAINTY

These dimensions match closely with the conclusions of Mathiassen et al. (2007).

Requirements diversity is a subset of potential identity issues, requirements instability

maps directly to volatility, and analyzability is a reasonable proxy for complexity. The

primary difference between these descriptions is that Mathiassen et al. (2007) seem to

be taking a broader view of the development process.

Software requirements are strongly analogous to, and representations of, task

uncertainty. In an information-heavy context like software development, requirements

document goals to be achieved, and thus represent the difference between what needs to

be done and what has been done. Requirements are statements intended to define these

gaps, and are thus attempts at setting boundaries around task uncertainty so that it

might be managed during the development process. This dissertation consequently

treats requirements as expressions of task uncertainty, with the expectation that the

organization reveals additional uncertainty (identity, complexity, volatility) as it

attempts to resolve acknowledged task uncertainty. In doing so, this research uses

requirements as a point of entry to examine simultaneously the theoretical

consequences of uncertainty in contingent organization design.

2.4 Uncertainty and Risk

Uncertainty and risk have a close relationship. Partly due to the differing perspectives

on uncertainty, some researchers have considered uncertainty and risk as separate

constructs, while others view them as interchangeable. We shall attempt here to

untangle the difference.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 18

UNCERTAINTY

Risk, most simply, is the probability of a future negative event multiplied by the

adverse impact on outcomes of the event (Boehm 1991). Both the probability and impact

are uncertain because outcomes are unknowable (otherwise, they would be certain, and

there would be no risk), and an actor undertaking risk analysis likely lacks a complete

understanding of cause–effect relationships or fails to consider unknown variables

(Milliken 1987). Impact and probability are both uncertain due to the complexity of

contributing factors, and ambiguity in understanding the cause–effect relationships

involved in predicting outcomes. So, risks involve uncertainties, but with respect to a

desired outcome. Uncertainties may imply risks, because events may occur in

addressing the uncertainty and these events may have adverse effects on outcomes.

However, not all uncertainties imply risks, as there may be no comparative final state, or

the difference between possessed information and sufficient information may have no

bearing on a desired final state.

Risk concerns itself with negative outcomes (it considers only adverse effects), yet

is connected inexorably to uncertainty. Like two sides of the same coin, uncertainty

considers the gap prior to an event, while risk considers the (negative) outcomes of an

event.

In software development and project management, the final state is presumed to

be program completion or delivery; at a somewhat more micro scale, completion of a

software requirement. Thus, the software development literature sometimes use the

terms uncertainty and risk interchangeably (e.g., Ramesh et al. 2010)5. This research

5 Unfortunately, the same development literature also occasionally conflates risk with risky behaviors

(that is, behaviors that increase risk).

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 19

UNCERTAINTY

considers uncertainty to be a psychological state of an actor, while risk is defined as an

objective (albeit, objectively uncertain) probable outcome. Still, not many researchers in

software development respect this distinction, and it is sometimes useful to treat risks

identified by some researchers as uncertainties.

In the narrower field of requirements uncertainty, by definition, requirements

uncertainty occurs at early project stages, while “residual performance risk”, by

definition, is risk that occurs at later stages of a project (Na et al. 2004; Nidumolu 1995;

Nidumolu 1996). Research into requirements uncertainty takes the view that

requirements uncertainty is a driver of performance risk, and views performance risk as

the difficulty in estimating what a project’s performance is likely to be, that is, a lack of

information about project outcomes. This research stream considers requirements

uncertainty as a lack of information regarding the inputs to a project (Nidumolu 1995).

Nidumolu (1996), in choosing to define risk constructs as occurring after the design and

analysis phases, frames the distinction between uncertainty and risk partly as temporal,

suggesting that performance risk as measured at different times in a project would vary

greatly, as major decisions (i.e. more information) such as elapsed time or project costs

would become available as the project progressed.

Given our focus on how requirements travel across vertical and horizontal

boundaries, it is the broader task uncertainty—not the narrower perspective of

requirements uncertainty—that is of interest. Outcomes from one part of the

organization or process may be inputs to a different part. Yet, the distinction between

focus on inputs and outcomes is useful, because it highlights the traveling of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 20

UNCERTAINTY

information across organizational boundaries. Further, understanding that risks are an

obverse of uncertainty permits the inclusion of a broader range of uncertainty research.

T. Gregory | Dissertation Proposal 21

PACKAGED SOFTWARE

3 PACKAGED SOFTWARE

This chapter reviews packaged software literature, and makes the case for the domain

of packaged software. The anticipated effects of packaged software on organizations

and development processes are contrasted with development of other types of

software.

3.1 What is Packaged Software?

The study of packaged software (Carmel and Becker 1995) is a distinct subset of the IS

development literature. Packaged software is usually contrasted with custom

development; it imposes different demands and constraints on the development process

that are not found in all settings, such as time-to-market pressures, particularly at the

industry and firm level (Sawyer 2000). Within the requirements engineering literature,

the notion that packaged software behaves differently is being accepted (Regnell et al.

2001), noting in particular that time pressures often lead to incremental releases,

accomplished by recurrent development. As Xu and Brinkkemper (2007, p. 533) point

out, “The boundaries distinguishing shrink-wrapped software, commercial off-the-shelf

software (COTS), packaged and commercial software are blurred, but the principle of

‘Make one, sell many’ is a common to them all.”

A similar notion exists in the software engineering and requirements literature,

where packaged software may be referred to as market-driven software (e.g., Karlsson et

al. 2007) or as COTS (Commercial Off-The-Shelf). No standard empirical definition of

COTS exists, although Torchiano and Morisio (2004) adopted a broad definition for

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 22

PACKAGED SOFTWARE

their empirical study (“[software] acquired from a vendor and used as-is or with minor

modifications” p.90), and COTS software has been described as systems which meet the

following criteria (Basili and Boehm 2001):

• The buyer has no access to developed source code,

• The vendor controls development,

• The software serves multiple customers (non-trivial install base).

In addition, it has been hypothesized that COTS products typically have a new

release every eight or nine months, although there is wide variation in the population of

COTS products (Basili and Boehm 2001). Although the weakened bargaining position of

customers relative to providers of COTS software suggests customers or integrators

(those using COTS components to build a COTS-based system, or CBS) would have no

input into COTS development, some researchers assert an interaction with a COTS

software component provider is important (Jingyue et al. 2009; Torchiano and Morisio

2004).

As may be seen from these definitions, the vast bulk of COTS research is

regarding development of systems with COTS components, rather than of the COTS

software itself, so its applicability to this research is limited. It does, however, provide

validation for the claim that development of packaged software imposes unique

contextual constraints as compared with software development generally, or “one-and-

done” internal software projects commonly reported on in the IS literature.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 23

PACKAGED SOFTWARE

Figure 3–1: Product Software as described by Xu and Brinkkemper (2007)

Thankfully, Xu and Brinkkemper (2007) attempted to clarify murky boundaries and

synthesize the several terms used in research under the umbrella “product software”:

• Shrink-wrapped software is the mass-produced type typically sold in

stores, boxed and shrink-wrapped. More modernly, this category might

include software downloadable from the Internet, such as via the Mac App

Store. Shrink-wrapped software is intended for large volumes of

customers.

• COTS software, as with shrink-wrapped software, targets a market rather

than individual customers. In contrast to shrink-wrapped software, it may

be a component rather than a stand-alone software package. Further,

COTS software may be part of a complex system (“complex COTS” or

“customized information system”).

• “Packaged software describes ready-made software products that can be

readily obtained from software vendors and which generally require little

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 24

PACKAGED SOFTWARE

modification or customization” (Xu and Brinkkemper 2007, p. 534).

According to Xu and Brinkkemper (2007), packaged software modernly

refers to large enterprise software systems, such as ERPs and CRMs, that

although despite being available “out of the box”, often require some

customization to be ready for use that may take weeks or months for large

packages.

• Commercial software is controlled by licensing restrictions, and is

typically available via retail outlets.

The difficulty with the classification scheme presented by Xu and Brinkkemper

(2007) is that categorizations are based on multiple dimensions that are not kept

consistent throughout: market versus niche orientation, retail channels utilized (and

this dimension is inadequately elucidated for modern software delivery), and whether

source code is publicly, privately, or not at all available to the end user. The distinction

between COTS and shrink-wrapped software is not clear, except for a reference to its

physical packaging, which is becoming less and less relevant in an era of digital

distribution. Using the language of Xu and Brinkkemper (2007), it is similarly difficult

to distinguish between COTS software and packaged software. This, indeed, may be

their point (despite their diagram), that as a field we have attempted to classify software

on changing and vague external attributes rather than focusing on the different

pressures that affect its development.

Considering open source software as a distinct category further muddies these

classifications. Most definitions of shrink-wrapped software, COTS, and packaged

software suggest the software source is, by definition, not available. It is not clear,

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 25

PACKAGED SOFTWARE

however, whether this distinction marks useful differences in how software is developed

by formal organizations. For example, the source code for Mozilla Firefox is publicly

available1, although only the smallest fraction of users even views it. Similarly, the open

source database MySQL2 meets all of the criteria for packaged package software except

source code availability; it has been developed by a corporation throughout its history3,

and is likely to experience many of the same effects during its development as other

packaged systems. The same could be said of SugarCRM4, or any other large open

source system with a community–enterprise (or similar) dual-licensing model. The

distinction of whether a packaged software product is open source (itself a muddy term)

is then only useful if measurable effects of that classification are distinct from closed

source packaged software products. It may be that the effects researchers have observed

in open source development stem from the nature of the software (packaged versus

custom), rather than the license of the resulting source code. Torchiano and Morisio

(2004) concur that open source software can act as a COTS product, particularly in

situations where the packaged source code, although available, is not modified, and the

software is treated as if it were closed source.

1 https://developer.mozilla.org
2 http://dev.mysql.com
3 MySQL was initially published in 1995 by MySQL AB, which was purchased by Sun Microsystems in

2008, who were then wholly acquired by Oracle in 2010.
4 http://www.sugarcrm.com

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 26

PACKAGED SOFTWARE

3.2 Research Opportunity

Although packaged software has demonstrably unique characteristics, it is still

considered “a poorly understood phenomena in the information systems research

community” (Light and Sawyer 2007, p. 527). A special issue of the European Journal

of Information Systems (EJIS) in 2007 brought attention to the issue, but packaged

software remains poorly represented in published research. In their editorial

introducing the issue, Light and Sawyer (2007) argue that although ERP systems, which

are manifestations of packaged software, have been widely studied in IS, such research

tended to be too specific to ERPs, or too broadly generalized to systems development,

without consideration for the differences between packaged and custom software. The

special issue adopted the same slant as the reviewed requirements literature, as three of

the five articles in the special issue of EJIS emphasized the consumption and use of

packaged software, rather than its production.

This suggests the packaged software literature is immature, incomplete, or simply

muddied by its mixing with research on custom or internal development. There is an

opportunity for researchers to tease apart which effects are due to market orientation

(custom, niche market, mass market), customer segmentation (business market,

consumer market, or both), source code availability (open, community–premium

hybrid, or closed), or product complexity (stand-alone applications versus systems). In

short, we as researchers have done a disservice to our field by considering all software

development to be alike, and have not developed a consistent language to permit the

teasing apart of observed effects based on characteristics of the developed software.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 27

PACKAGED SOFTWARE

Additionally, one under-emphasized aspect of packaged software is that its

development is recurrent, meaning the same organization regularly revisits the code

base and produces incremental versions for the market. Such iterating leads to a shared

vocabulary and increased organizational learning, which may, over time, result in

reduced uncertainty due to translation as requirements travel. Further, one particular

form of traveling is that a requirement may occur in multiple release cycles: a

requirement may be in a backlog but not prioritized high enough to receive attention in

a particular release. Alternatively, the organization may spend some time developing

toward a requirement that is not included in an initial release, but is fully realized in a

future one. Thus, requirements in packaged software may not only travel across an

organization but also in time across releases. This is in addition to any refinement or

elaboration that might occur (features related to a specific requirement expand or evolve

over time). These are examples of traveling that would not be possible if development

were not recurrent, as it is in packaged software.

3.3 Contrasting “Packaged” and “Custom” Software

For simplicity, this paper adopts two broad categories of software, packaged software,

and custom software. In general, custom software targets a single customer (or trivially

few customers), whether the organization itself or, in the case of contract development,

via an outsourcing arraignment. It is produced in or for a single project (Torchiano and

Morisio 2004). Packaged software, on the other hand, targets more than a trivial

number of customers, which leads to different behaviors in exploring and managing

software requirements (Sawyer 2000; Xu and Brinkkemper 2007). Packaged software is

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 28

PACKAGED SOFTWARE

intended to be a “going concern” (as accountants might say it), that is, to have an

extended useful life, and is developed over recurring cycles with the intention of long-

term maintenance and improvement. As Xu and Brinkkemper (2007) point out, this has

implications for the likely level of care taken in architecting the software. Packaged

software faces time-to-market pressures (Sawyer 2000; Xu and Brinkkemper 2007),

although this may also be true of contracted custom software. More specifically,

packaged software organizations are more likely concerned with maintaining schedules

than with project costs (Sawyer 2000).

Some of these effects (e.g., differences in requirements management) may

depend on the complexity of the developed product instead of on whether the software

is packaged or custom; it may be that the greater the complexity of the software, the

more likely it is to be productized so that development costs are shared among multiple

customers. Some of the observed effects may also be industry-level effects.

Using two small case studies and a review of practitioner and academic literature,

(Sawyer 2000) proposed what is probably the most well thought-out list of differences

between packaged and custom development (Table 3-1). There are some weaknesses in

Sawyer’s (2000) analysis—which should be expected, as Sawyer (2000) refers to these

as empirical speculations rather than empirical results—namely the similarities in the

sampled teams: all were focused on “small” products or product components (rather

than complex systems or networks of products), all were delivering a first-generation

product (rather than a new version of an existing product), and two of the three teams

studied were in small, isolated settings. Still, Sawyer’s (2000) article is perhaps the most

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 29

PACKAGED SOFTWARE

comprehensive examination of the differences between product and custom

development.

Packaged software companies’ emphasis on time constraints rather than cost

constraints has already been noted; Sawyer’s (2000) contended this was because

packaged software companies tended to be very rich (large and established) or very poor

Table 3-1: Differences Between Packaged and Custom Software (Sawyer, 2000)

 Packaged software Custom software
Industry • Time to market

pressures
• Success measures:

profit, market share,
mind share

• Cost pressures
• Success measures:

satisfaction, user
acceptance, ROI

Software Development • Line positions
• User is distant and

less involved
• Process is immature
• Somewhat integrated

design and
development

• Design control via
coordination

• Staff positions
• User is close and more

involved
• Process is more

mature
• Separated design and

development
• Design control via

consensus building
Cultural Milieu • Entrepreneurial

• Individualistic
• Bureaucratic
• Less individualistic

Teams • Less likely to have
matrix/project
structure, more likely
to be self-managed

• Involved in entire
development cycle

• More cohesive,
motivated, jelled

• Opportunities for
large financial
rewards

• Likelier to be small,
collocated

• Share a vision of their
product(s)

• Matrix managed and
project focused

• People assigned to
multiple projects

• Work together as
needed

• Salary-based
• Grow larger over time

and tend to disperse
• Rely on formal

specifications/docume
nts

Table content wholly from Sawyer (2000), p. 50

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 30

PACKAGED SOFTWARE

(just starting out). Other differences between packaged software and custom software

deserve mention as well (Table 3-1). Sawyer (2000) speculated packaged software

companies would measure success by profit and market share, while internal or custom

development would measure use, satisfaction or return on investment. The software

development teams in packaged software organizations were more likely to be central to

the organization’s structure and focused on individual skill and individual achievement,

and processes are adapted or evolve around an individual’s strengths. In contrast,

developers in custom software development, Sawyer (2000) contends, are typically

relegated to staff positions where process dominates and development resources are

fungible. Developers of packaged software are more likely to be separated from users by

intermediaries, more likely to have incentives based on project success, and more likely

to be self-organizing (Sawyer 2000).

Despite the arguments of Sawyer (2000), many of these team-level effects may

have more to do with the size of the organization than with the type of software being

developed, for reasons that will be discussed in the research findings.

T. Gregory | Dissertation Proposal 31

REQUIREMENTS MANAGEMENT

4 REQUIREMENTS MANAGEMENT

Requirements management literature is summarized using both software engineering

and information systems perspectives, emphasizing the lack of interactions between

the two streams. Requirements processes are described as iterative and parallel.

Requirements are related to uncertainty.

Requirements and requirements management exist at an interesting intersection in the

literature. The software engineering (SE) side provides a robust literature, with

specialized conferences and journals examining specific aspects of requirements

engineering, including elicitation, analysis, specification, and validation. However, it

does so without typically examining organizational or systemic considerations. In

contrast, the IS literature on requirements lacks the strong canonical foundation found

in SE literature, and tends to address processes and approaches in a fragmented way

(Hassan and Mathiassen Forthcoming)1. External reviews of the whole of requirements

literature provide a basis for categorizing uncertainties revealed through requirements

during the software development process.

Collectively, requirements engineering activities, along with integration of

requirements engineering activities into project management are considered by this

dissertation to constitute “requirements management.”

1 This is perhaps analogous to the state of agile development method in IS literature described by

Baskerville, R., Pries-Heje, J., and Madsen, S. 2011. "Post-agility: What follows a decade of agility?,"
Information and Software Technology (53:5), pp. 543-555., that is, requirements management and
requirements construction are something generally understood at a high level but it is difficult to
describe current contributions with precision.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 32

REQUIREMENTS MANAGEMENT

4.1 Requirements in the SE Literature

As with many bodies of knowledge, software practices may be usefully categorized as

“generally accepted”, part of specialized sub-fields, or those practices still being tested

and researched.2 The “Software Engineering Body of Knowledge” (SWEBOK) adopts

this approach, and includes only generally accepted practices. With this in mind, any

rigorous description of requirements practices beyond “generally accepted practice” is

useful to the field as a whole, as descriptions of practice are used to refine the body of

knowledge as the field progresses. SWEBOK has gone through several iterations, and its

third version (dubbed SWEBOK V3) was released at the end of 2013, having completed

its public review period. In contrast, SE review articles highlight the breadth of the field

and suggest directions for future research in requirements engineering (Cheng and Atlee

2007) and requirements management.

A requirement is in SE defined as “a property that must be exhibited by software

developed or adapted to solve a particular problem … An essential property of all

software requirements is that they be verifiable” (SWEBOK 2013, p. 2-4). Working with

software requirements is “not a discrete, front-end activity of the software life cycle, but

rather a process initiated at the beginning of a project and continuing to be refined

throughout the life cycle” (SWEBOK 2013, p. 2-4). Despite this espoused integrated

view, SE researchers make the distinction between requirements engineering as a pre-

2 This general taxonomy is used by IEEE in the development of SWEBOK, and is adapted from the

“Project Management Body of Knowledge.”

A Guide to the Project Management Body of Knowledge, 2000 ed., Project Management Institute,
www.pmi.org.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 33

REQUIREMENTS MANAGEMENT

development activities by which requirements are built from nascent ideas in to fully

formed descriptions of architecture, function, and expectation, and requirements

management, or the umbrella of activities involved in managing large numbers of

requirements, such as ensuring traceability or analyzing trends (such as stability) in

requirements over time (Cheng and Atlee 2007). However, in this dissertation we treat

requirements engineering and management activities collectively as requirements

management.

Broadly, SWEBOK separates requirements activities into elicitation, analysis,

specification, and validation. SE literature tends to treat them as discrete and

consecutive, but these need not be sequential; for example, analysis and specification

may be alternative and iterative. Nor need these activities precede the beginning of

development. Uncertainties may arise during development that require additional

specification (and thus, potentially, analysis and validation). Of these activities,

validation is perhaps the most motley, referring both to verification that requirements

are understandable (implying uncertainties may arise) and meet company standards—a

characteristic, it should be said, that is not fully knowable a priori—and also referring to

the application acceptance tests on the developed software to ensure requirements have

been met.

However, despite its strengths in developing a common vocabulary and basis for

discussion, SWEBOK does not provide much discussion of management of

requirements (beyond suggesting they be managed via a change control process). It also

does not consider the effect of vertical information systems on requirements

management (beyond suggesting ad hoc methods—such as using spreadsheets—may be

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 34

REQUIREMENTS MANAGEMENT

less effective) nor does it discuss sources of uncertainty as requirements are

communicated across vertical and horizontal boundaries in large organizations.

Implicit in the background of discussion of agile requirements is the fundamental

nature of requirements: to transfer the desire of a stakeholder to the understanding of

the developer, and express that desire in working software. Thus, agile methods serve to

reduce degrees of separation and permit dialog between requirements holders

(customers) and developers as a means to manage uncertainty, with the dual goals of 1)

reducing interpretation errors, 2) overcoming uncertainty through speedy feedback (Cao

and Ramesh 2008). In the agile SE literature, requirements engineering is formally

recognized as parallel, iterative and incremental, in a way designed to separate it from

“traditional” requirements engineering (Cao and Ramesh 2008), even though these

activates exhibit the same traits in “traditional” settings (Hickey and Davis 2004).

4.2 Requirements in the IS Literature

Despite the desire of much SE literature to treat requirements as infallible directives

(c.f., Sillitti et al. 2005), IS researchers know that requirements have inherent

uncertainties, and reflect the culture, knowledge, and (possibly flawed) interpretations

of those writing them (King 2013). Although software developers might wish to eschew

the uncertainty inherent in requirements—as evidenced by the continued development

of formal specification requirements languages (e.g., Heymans and Dubois 1998), which

constitutes its own niche area within the requirements literature—uncertainties remain

in requirements so long as they are interpreted by developers. Investigation of the

human aspect of requirements construction seems to naturally fall within the domain of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 35

REQUIREMENTS MANAGEMENT

IS development (ISD) research. Unfortunately, ISD literature has little to say about

these facets of requirements construction. That is not to say these topic are untreated in

the IS literature; the “classic” paper by Davidson (2002) serves as an excellent counter-

example. Still, requirements construction as a body of knowledge remains unsettled and

infrequent within IS research (Hassan and Mathiassen Forthcoming).

Iivari et al. (2004) argued that requirements construction—identification and

specification of the needs of users—should be one of the knowledge areas for which IS

researchers could provide “distinctive competence” (p. 322) that contributes to a settled

body of knowledge, and further argued “requirements construction continues to be the

major bottleneck in ISD” (p. 323). Indeed, in their analysis of articles in MIS Quarterly

and Information Systems Journal between 1996 and 2000, requirements construction

was a prominently featured topic, although spread across a number of development

contexts (e.g., business process redesign, groupware, decision support systems, etc.),

representing a fragmentation of knowledge and approaches.

More recently, Hassan and Mathiassen (Forthcoming) argued for a settled

contribution and body of knowledge in the IS literature3 through citation and n-gram

analysis of classics4. They demonstrated requirements construction classics represented

a tiny fraction (3%) of ISD classics, only thirteen articles, despite being one of the

categories Iivari et al. (2004) and King (2013) claim IS researchers should be able to

3 Their search was confined to the Senior Scholars Basket of Journals, a list of the top eight journals in

the field: MIS Quarterly, Information Systems Research, Journal of Management Information
Systems, European Journal of Information Systems, Information Systems Journal, Journal of
Strategic Information Systems, Journal of the AIS, and Journal of Information Technology.

4 To be designated a “classic,” an article must have been cited at least forty times over a decade.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 36

REQUIREMENTS MANAGEMENT

offer a distinctive contribution. Of the thirteen requirements construction classics

(Appendix A), only a couple are modern considerations of requirements processes. Two

are a mix of very specific context with an internal customer (executive information

systems) and contain requirements advice that while valuable, represents generally

accepted practices. Another article considers the systems analyst. The remainder use

requirements processes as a context or example application for exploring broader

theories of knowledge sharing, cognitive fit, project failure, modeling and boundary

spanning.

The consequence of the IS tradition considering these broader theories is

grander, more generalizable theories, which may be contributing to the neglect of ISD

research focusing on requirements construction. This is, perhaps, an example of the

trend Benbasat and Zmud (2003) identify when they claim IS researchers are “under-

investigating phenomena intimately associated with IT-based systems and

overestimating phenomena distantly associated with IT-based systems” (p.183). Maybe,

similar to what Weber (2003) observed regarding the state of research on conceptual

models and designing databases in the 1980s, requirements construction has been

co-opted by related disciplines (in this case SE).5 This explanation is supported by

recent journal analyses (Lowry et al. Forthcoming), which take the position that most

5 Perhaps the other reason Weber (2003) describes is also true: IS researchers as a whole may not

have sufficient undergraduate, post-graduate, or professional experience to examine the details of
systems development or requirements construction with confidence. Both of these arguments seem
to imply research on requirements construction and management is, contrary to the claims of Iivari
et al. (2004) and King (2013), best suited to sister disciplines than to IS. This is counter to my
experience and expectation, but I will not delve further into that discussion here.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 37

REQUIREMENTS MANAGEMENT

publications of the ACM and IEEE—perhaps the most likely outlets for requirements-

related research—are not widely considered “IS journals.”6

An alternative, if somewhat trite, explanation for the dearth of ISD requirements

classics is that the ISD field is volatile, and although it has existed for some time, began

to mature at the same time it was being disrupted by agile methods. Thus, while there

may be excellent requirements construction papers in IS outlets, such papers may not

yet be old enough to be considered classics.

Despite the lack of a canonical, classical foundation, when considering

requirements and uncertainty via the traveling of ideas metaphor, this research aligns

with the tradition in the IS literature of seeking broader theories of knowledge sharing

and uncertainty management in the context of requirements construction. However, it

also refocuses attention on the relevant IT artifact (Orlikowski and Iacono 2001): the

requirement. In doing so, this research anticipates a deep understanding of

requirements construction practices as they unfold within and between units as an

important area of ISD research.

4.3 Contrasting IS and SE Requirements Literature

IS and SE approach the study of requirements differently (Table 4–1). Whereas SE

literature tends to focus on individual steps of requirements engineering, with

occasional perspectives on requirements management, IS literature tends to adopt a

6 And if outlets are not IS journals, they would likely not be on tenure-quality publication lists for top

IS researchers, meaning there is little incentive for non-tenured faculty to consider requirements
research.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 38

REQUIREMENTS MANAGEMENT

more holistic and contextual approach. Additionally, SE literature seems to take as

assumed that requirements management is extrinsic to development; conversely, IS

researchers tend to take the view that requirements management is a development

activity, even though use of a computer programming language may not be implicated.

IS researchers recognize—perhaps more explicitly than evidenced in SE—that

although requirements management models typically show the steps of elicitation,

analysis, specification, and validation as discrete and sequential, in practice they almost

always occur iteratively and in parallel (Hickey and Davis 2004) (Figure 4-2), meaning

requirements both advance and regress, and may be utilized in multiple stages

simultaneously. This is particularly true in weaker forms of requirements management

as practiced in agile methods (Ramesh et al. 2010). More than in related fields, IS are

more likely to apply theories of reasoning, sense-making, and social interaction. IS

researchers seem to consider contingent contextual factors and holistic system-wide

consequences when selecting or recommending requirements methods, which may

contribute to the lack of cohesion discussed by Hassan and Mathiassen (Forthcoming).

Table 4–1: Contrasting streams of requirements literature

 Software Engineering Information Systems

• Focused
• Problem & solution are

distinct spaces
• Examines process steps
• Requirements management

distinct from development

• Contextual
• Problem & solution spaces

interact
• Examines process flow
• Requirements management part

of development

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 39

REQUIREMENTS MANAGEMENT

Figure 4–1: Parallel Model of the Requirements Process, per Hickey and Davis (2004)7

As Hickey and Davis (2004) noted, IS researchers, as with SE researchers, use a

multitude of terms to describe the same requirements management activities, although

this has perhaps settled somewhat since the publication of SWEBOK:

“There is little uniformity in the industry concerning
names given to these activities (Siddiqi and Shekaran 1996).
For example, to paraphrase Hickey (1999), Davis (1993) de-
fines two activities: problem analysis and product descrip-
tion. Graham (1998) defines two activities: requirements
elicitation and requirements analysis. Zave (1997) defines
three activities: elicitation, validation, and specification.
Jarke and Pohl (1994) define three activities: elicitation,
expression, and validation. Pohl (1996) defines four activi-
ties: elicitation, negotiation, specification/documentation,
and validation/verification. Finally, Thayer and Dorfman
(1994) define five activities: elicitation, analysis, specifica-
tion, verification, and management.” (footnote, p. 82;
internal citations reformatted)

Additionally, (Hickey and Davis 2004) demonstrated, as previously mentioned,

that the requirements activities occur iteratively and in parallel. (Figure 4-2) This is

7 Hickey and Davis (2004) use “triage” to mean determining which groups or requirements will be
addressed in a release. Some authors (e.g., Ramesh, et al., 2010) consider this part of analysis,
offering yet another example of unsettled definitions.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 40

REQUIREMENTS MANAGEMENT

consistent with research by Davidson (2002), who treats requirements as social

constructions elucidated over time through social interaction as actors engage in

resolving ambiguity. Davidson (2002) also found that because of the social nature of

requirements, interactions were not consistently recorded in requirements documents.

Thus, the requirements documents inconsistently addressed the assumptions

underlying particular requirements (even if later uncovered), and tended to reduce the

value of the documents. In both of these studies, however, uncertainty is best

represented by identity concerns; complexity and volatility as aspects of uncertainty are

not obviously considered.

On a more basic level, however, the different fields of requirements and IS

consider the nature of “development” and where it exists in the organization in

drastically different ways. Cheng and Atlee (2007) describe the difference this way:

“In general, the research challenges faced by
requirements-engineering community are distinct from
those faced by the general software-engineering community,
because requirements reside primarily in the problem space,
whereas other software artifacts reside primarily in the
solution space. That is, requirements descriptions, ideally,
are written entirely in terms of the environment, describing
how the environment is to be affected by the proposed
system. In contrast, other software artifacts focus on the
behavior of the proposed system, and are written in terms of
internal software entities and properties. Stated another way,
requirements engineering is about defining precisely the
problem that the software is supposed to solve (i.e., defining
what the software is to do), whereas other SE activities are
about defining and refining a proposed software solution."
(emphasis original)

The distinction between problem and solution spaces exists in academic

requirements research, despite the apparent incongruity of portions of the requirements

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 41

REQUIREMENTS MANAGEMENT

management domain such as analysis, modeling, and verification residing in, or at the

very least bridging, the problem and solution spaces.

Although requirements may flow into the firm from multiple sources, IS

researchers tend to either observe the vendor–client dyad or scope their research to the

boundaries of the firm. This dissertation adopts the latter approach, and is thus less

concerned with discovery that often occurs via connections beyond firm boundaries (as

discussed in the robust requirements elicitation literature), but focuses on those

interactions that exist within the firm’s processes, such as requirement exposition, as

well as the traveling and translation of requirements into software. This narrower focus

aligns with the accepted requirements engineering dimensions of specification,

representation and agreement (Pohl 1994). Although creation of the formal requirement

artifact ideally relies on interactions with customers, the actual artifact creation, that is,

instantiating the idea as an artifact usable by stakeholders within the firm for the

purpose of software development, is an activity that often occurs within firm

boundaries.

IS researchers challenge the inherent assumptions of much of the requirements

literature, particularly as it applies to “traditional” (or “plan-based”) development (as

opposed to “agile”, “organic”, “ad hoc”, or “flexible” development).8 These assumptions

generally presume, contrary to what is asserted in this research, that most uncertainty

8 For a discussion of the differences in software methodologies, see, e.g.:

Baskerville, R., Pries-Heje, J., and Madsen, S. 2011. "Post-agility: What follows a decade of agility?,"
Information and Software Technology (53:5), pp. 543-555.

Harris, M.L., Hevner, A.R., and Collins, R.W. 2009. "Controls in Flexible Software Development,"
Communications of the Association for Information Systems (24), pp. 757–776.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 42

REQUIREMENTS MANAGEMENT

can be resolved prior to development. More specifically, these assumptions include

(Ramesh et al. 2010; Sillitti et al. 2005):

• The customer is able to specify all needs up front, prior to development.

• One or more stakeholders are in charge of requirements gathering activity.

• The development team readily understands customer needs.

The first of these seems to assume a context of a single customer (or markedly few

customers), contrary to the assumptions of packaged software. The second seems to

imply requirements construction activities take place within a single function (although

the phrasing “... or more” offers enough wiggle room to be so universally true as to be

unhelpful). The last of these assumptions is challenged by the already cited literature on

requirements uncertainty. None of these assumptions are wholly useful in the intended

context of this research (discussed more fully in Chapter 7). This may be because

development practices in modern software organizations blur the line between flexible

and plan-based methods (Baskerville et al. 2011; Harris et al. 2009).

Lastly, the literature on both sides—SE and IS—is preoccupied with the process

by which we manage requirements (whether through emphasis on steps or flow), with

insufficient emphasis on the product for which requirements are managed. The

differences between software products developed by organizations is so large that any

claim to a generalized process is weakly grounded (Lee and Baskerville 2003; Thompson

and Perry 2004). Processes and steps that work well for one organization and product

may not work for another.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 43

REQUIREMENTS MANAGEMENT

Attempts have been made to synthesize the whole of requirements literature.

Mathiassen et al. (2007) reviewed 116 articles across both IS and SE streams. As part of

their review, they classified requirements techniques as discovery, prioritization,

experimentation, and specification techniques. Unsurprisingly, these activities reflect,

but do not map directly to, the commonly held list of requirements activities discussed

earlier: elicitation, analysis, specification and verification. Such deviation in language is

understandable, even expected, as these classifications were derived from reviewing

literature that labels these activities inconsistently, so new language is likely less

ambiguous.

The review by Mathiassen et al. (2007) is useful because they identified the three

flavors of uncertainty (identity, volatility, and complexity), discussed previously (Section

2.3), and successfully applied them in a summary of the requirements literature. We

adopt these labels for this research, and approach the setting through the IS tradition,

contextually and holistically.

T. Gregory | Dissertation Proposal 44

WORK DESIGN AND UNCERTAINTY

5 WORK DESIGN AND UNCERTAINTY

Modern and seminal theory of work design is presented and related to uncertainty.

Horizontal and vertical work design structures are explicated. The problems arising

from particular work design structures are highlighted, and framed as uncertainties.

Organizations are similar to software in the sense that they are the result of design as

well as emergence.

5.1 Work Design

In framing uncertainty as an information processing problem, Galbraith (1973) suggests

the management of uncertainty is one of the purposes of organizations, which can be

responded to with differentiation or integration strategies.1 The contingency theory of

organization structure was a response to addressing uncertainty in organizations. The

contingency view, that an organization’s success depends on the match between the

uncertainty an organization faces and its structural ability to process information in

response to uncertainty, is commonly held in the organization (Sinha and Van de Ven

2005), information systems (Nidumolu 1995), and project management literature (Jiang

et al. 2009). This is sometimes referred to as the information processing view, with the

argument that organizations can adopt strategies and structure changes to process more

information, although this approach loses some of the richness of early work (Galbraith

1973; Sinha and Van de Ven 2005).

1 Similar concerns exist in the development of software, where questions of tight and loose coupling

between modules are addressed.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 45

WORK DESIGN AND UNCERTAINTY

Work design is the system of procedures for organizing work (Sinha and Van de

Ven 2005). It goes beyond individual jobs and examines the broader view of the

organization or system along with its attendant support services (Mintzberg 1980; Trist

1981). Work design is reflected in the study of organizations’ internal structure, and can

affect an organization’s ability to access and utilize knowledge and allocate resources

(Weigelt and Miller 2013).

Galbraith’s (1973) original theory included response strategies to an

organizations need to increase information processing (whether due to poor

performance or additional information). Although presented as complementary

mechanisms and responses to work design, organizations rarely appear fully formed (or

fully designed), but rather tend to emerge over time. The common view is that

uncertainty leads to responsive structural changes and eventual equilibrium, but an

organization’s structure is both designed and organic as it constantly reacts to

uncertainty (Jauch and Kraft 1986). This is a classic question of design or emergence,

and organizations are, as other artifacts (software!), the result of both.

Within the software development literature, there is discussion about the most

appropriate work design for software organizations (Austin and Devin 2009). While

often framed as a tension between plan-based and flexible software processes (Harris et

al. 2009), software processes are adopted based on organization strategy and goals

(Slaughter et al. 2006), which reinforces the notion that these discussions of the

development process are, at their core, work design issues and attempts to mitigate the

uncertainty inherent in software development.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 46

WORK DESIGN AND UNCERTAINTY

Although the work design literature concerns itself with organizations, its

underlying principles apply generally to both work systems and the products produced

from these work systems. Parnas (1972), in his classical work on modularity for

software, refers to a software module as “a piece of work”, hence directly relating the

design of the software to the design of the related development work. Similarly, the

general literature on industrial design and innovation emphasizes the duality between

the structuring of the producing organization and the architecture of the product being

produced and it points to both being nearly decomposable and reflective of each other

(Sanchez and Mahoney 1996; Simon 1996). With this commonality, software

organization design and software product design become analogies for each other.

5.2 Contingency Theory

In describing organization design strategies, Galbraith (1973) lists several alternatives,

most of which can be characterized as facets of the “horizontal” and “vertical” labels

used by Sinha and Van de Ven (2005). The first three strategies relate to vertical

structures, and comprise a “mechanistic bureaucracy.” First, “rules or programs” are

imposed on sub-units as a standardized way of coordinating work. Rules fill the same

roles for organizations as habits do for individuals, and are particularly useful for

repeated work (Galbraith 1973, p. 10). Such rules or programs, however, require

attention and reinforcement by hierarchical authorities tasked with reinforcing

processes (Mintzberg 1980). The resulting assumption is that procedures are directed

rather than organically coordinated between units. The hierarchy (Galbraith’s second

strategy), addresses situations not covered by rule or tradition, and is expected to

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 47

WORK DESIGN AND UNCERTAINTY

respond in a way that considers all affected sub-tasks. Thus, hierarchy, which is the

epitome of vertical work design, is used to coordinate “in addition to, not instead of, the

use of rules” (Galbraith 1973, p. 12). Targeting or goal setting is a third method

employed by vertical coordinators in work design, whereby outcome controls (such as

goals, requirements, schedules, and design constraints) are set as boundaries for the

task, and the organizational unit need not seek approval for work within those

boundaries. Additionally, Galbraith (1973) lists four response strategies intended to

address failings in the mechanistic model. Creating slack resources, through reducing

the level of performance required of an organizational unit, and creating self-contained

units (that cross functional boundaries) are two strategies designed to reduce the need

for information processing and coordination between units. Similarly, the strategies of

investment in vertical information systems and the creation of lateral relations are

intended to increase the information processing capacity of units2 (Galbraith 1973). The

four response strategies are suggested as an exhaustive description of an organization’s

possible responses to uncertainty, with slack resources (reduced performance) occurring

by default.

5.3 Horizontal and Vertical Work Design

Modern work design literature recognizes two primary types of boundaries within a

work system. These boundaries are imposed with the intention of breaking work into

independent pieces. Vertical division of work, or hierarchical division, exists within a

2 Even though investment in vertical information systems is a “response”, modern designers of work
systems would do well to consider the impact of information systems when designing work. For
example, it is not unusual for self-organizing agile development teams to be built around a central
information system.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 48

WORK DESIGN AND UNCERTAINTY

unit, and may include access to resources or knowledge within the strata of a unit.

Vertical division may refer to an organization’s administrative hierarchy viewed as a

collection of subordination and authority relationships, of which there may be one or

more, or it may refer to hierarchical decomposition of a work product. Horizontal

division of work, or modular division (sometimes called “differentiation”), is the

imposition of modular boundaries on tasks that may be split in sequence or parallel

between organizations. Horizontal boundaries are often related to knowledge or

function. Such splits may be within a firm or may cross boundaries of multiple firms in a

network (Sinha and Van de Ven 2005).

The defining of internal structures, with consideration of responses to anticipated

and actual hierarchical and modular problems, reflect “allocation of decision rights to

subunits completing distinct jobs and the coordination among those subunits” (Weigelt

and Miller 2013, p. 2). In other words, work design is the allocation (or withholding) of

decision rights, and the modularization—and thus necessary coordination—or work

across subunits. Moreover, division of work may be tightly or loosely coupled. In a

vertical division, a subunit may be granted autonomy or constrained by structures,

budget authority, and accountability. Lateral coordination represents the extent to

which horizontally divided work units align to complete a task (Weigelt and Miller

2013).

In combination, horizontal and vertical divisions of work enable variegated

configurations. In each case, knowledge boundaries exist between work divisions that

must be crossed for successful coordination. However, as Sinha and Van de Ven (2005)

explain, these divisions reveal problems of modularity and hierarchy, respectively.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 49

WORK DESIGN AND UNCERTAINTY

Further, when horizontal and vertical divisions of work interact, as they do in practice, a

third type, known as network problems, also becomes manifest (See Figure 5-1). Within

the domain of software systems, problems of division of work are often solved by

identification and application of repeating patterns (e.g., Vlissides et al. 1995). Patterns

of organizational design exist as well, although they tend to be rougher and less detailed

than software development patterns.

Figure 5–1: Conceptualizing Work Design Problems (Sinha and Van de Ven 2005)

A modularity problem considers the division of work and separation of responsibilities

between units. Functional and cross-functional teams are examples of organizational

solutions to modularity problems, as are functional and product-silo organization

structures. Microsoft’s recently announced reorganization from a product division to a

functional division of responsibility (Balmer 2013) is an example of (primarily)

horizontal work design. Outsourcing decisions are also examples of organizational

modularity problems. Modular work coordinated between units, which may reside in

One

Many

One ManyOrganizations
Horizontal division of work

between units.

Hierarchical levels
Vertical division of work

within a unit.

Hierarchical
decomposition
problem

Modularity problem

Network
problem

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 50

WORK DESIGN AND UNCERTAINTY

multiple firms, combine to form modern value chains that comprise work systems.

Within the domain of software systems, the model–view–controller pattern permits a

separation of concerns within computer code. It has the additional advantage of

applying structural rules to a software work system, such that a developer within that

system has insight, based on the rules of the system, into where a particular work item

should be. This lessens cognitive load, and improves efficiency, as the need to process

information is reduced.

In contrast to the modular, loosely-coupled approach, integrated systems and

organizations are better suited for tasks that are ill-structured, difficult to decompose,

time constrained, or otherwise require a greater need for coordination (Weigelt and

Miller 2013). Although it is the antithesis of the modular approach, the choice to adopt

an integrated structure is also a horizontal work design decision. As with software, there

are trade-offs in adopting the integrated approach to designing organization units. It

does bounded tasks quickly and well, but as integrated structures grow in size internal

coordination and maintenance also grows exponentially, in contrast to modularized

processes which may be easier to coordinate and maintain.

A hierarchy problem considers the coordination and control of work, and

allocation of decision rights and knowledge across hierarchical levels of a work system.

For example, a hierarchical problem recently considered in IS literature is the ideal

reporting structure of the CIO (Banker et al. 2011). Within the domain of software

systems, and more specifically object-oriented systems, vertical structures may be

expressed by the relationship between a base class (also called superclass) and a

subclass. At a high level, the base class, or “senior” object in the code “hierarchy”,

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 51

WORK DESIGN AND UNCERTAINTY

defines general rules for the system; the subclass is granted decision authority for

specific instances of the subclass, applicable to its more targeted needs. The overall

structure is simplified and easier to manage when general rules defined at higher levels

of the object hierarchy are applied across multiple subclasses. This sort of “embedded

coordination,” through the application and use of standardized interfaces, acts as

hierarchical coordination “without the need to continually exercise authority—enabling

effective coordination of processes without the tight coupling of organizational

structures” (Sanchez and Mahoney 1996, p. 63). In organizations, such standardization

of controls, an imposition of hierarchical authority, is another example of how vertical

structures are put in place to reduce uncertainty, and thus project risk (Na et al. 2004;

Nidumolu 1996).

Although not explored fully in this dissertation, network problems consider the

aggregation of and interaction between horizontal and vertical work designs (Sinha and

Van de Ven 2005).

5.4 Work Design and Information Systems

Galbraith would not have been able to predict the strong effect of technology and

information systems on organizations. As Orlikowski (1996) demonstrated, technology

facilitates modularization of processes and sharing of knowledge across horizontal

boundaries. Additionally, some of the earliest uses of enterprise information systems

were to enable views of information across vertical boundaries, as evidenced by the

requirement construction classics dealing with executive information systems (Watson

and Frolick 1993). Digitization of processes (although not technically a “vertical”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 52

WORK DESIGN AND UNCERTAINTY

information system, as Galbraith (1973) predicted), has also led to increased modularity

as evidenced by a boom in outsourcing (Davis et al. 2006). Yet one of the biggest

challenges organizations face in outsourcing is maintaining coordination across

horizontal boundaries beyond the firm.

Perhaps the biggest weakness—and yet most prescient claim—of early

contingency theory was an underestimation of the magnitude of the effects of

information systems on organizations. Indeed, Im et al. (2013) offered empirical

evidence that firms were processing more information with fewer people by investing in

information systems. In their variance time-lagged study, they also found IT use is both

an antecedent and a consequence of organizational change. Consistent with the

predictions of Galbraith, as coordination activities increased, firms would invest in

information systems, seemingly as a cost control measure. Such investment would then,

over time, decrease coordination costs, and eventually the size of the firm. The evidence

is clear that information systems are reducing coordination cost across both vertical and

horizontal work boundaries.

Although interest in contingency theory and the structure of organizations waned

in the late 1970s, there have been several recent calls in top journals (Sinha and Van de

Ven 2005; Zammuto et al. 2007) to reapply contingency theory to modern, technology-

enabled organizations. Governance and strategy research have also been criticized for

ignoring the internal structure of organizations (Weigelt and Miller 2013). The core of

contingency theory is that task uncertainty, as originally described by Galbraith (1973)

and others, leads to contingent organization structures. Considering requirements as

expressions of task uncertainty (Galbraith 1973) in a software development

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 53

WORK DESIGN AND UNCERTAINTY

organization, and following them as they travel through the organization will reveal

conditional uncertainties useful for the study of how software development work may be

designed. In pursuing such efforts, Sinha and Van de Ven (2005, p. 389) highlight three

types of categorical issues relevant to organizational researchers in their call to reopen

the study of work design,: “(1) defining the boundaries of work systems, (2) examining

how the system is nested in a hierarchy within and between organizations, and (3)

determining interactions between the elements of a work system.”

T. Gregory | Dissertation Proposal 54

TRAVELING OF IDEAS

6 TRAVELING OF IDEAS

The “travel of ideas” literature is presented and adapted. The central concept of

“traveling” is discussed and further dissected to provide greater clarity in a software

development context.

6.1 The “Traveling” Metaphor

In explaining the travel of ideas metaphor, Czarniawska and Joerges (1996) argue that

in order to become useful, management ideas are sent to places other than where they

emerged. Along the way, these ideas are translated into new kind of objects, and this

translation is a necessary step in their travel. Czarniawska (2009) summarized how

ideas are changed as they move from place to place, arguing the sharing of an idea

requires it be newly interpreted. Interpretation and reinterpretation occur every time an

idea moves from one place to another or from one point in time to another. Even when

captured in an information system, it is still (re)interpreted as the idea passes from the

user to the system and from the system to the user. At each time or place, the idea is

recreated differently. Although this concept of interpretation is broadly described in the

traveling literature and organization studies as “translation,” in practice, particularly in

the context of requirements and software development, expressing the traveling of ideas

simply in terms of translation (in its original meaning) is overly broad. To compensate,

this research adapts the traveling framework utilizing concepts from the knowledge

management and requirements literature.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 55

TRAVELING OF IDEAS

Carlile (2004) describes how knowledge may have syntactic or semantic aspects.

Syntactic boundaries may be represented by source code, formal specification

languages, domain specific languages, or more generally, a common lexicon shared by a

group. To share an idea is to transfer it across a social boundary while preserving the

lexical context used to express it; sharing occurs with a common syntax. However, even

with a common syntax, sematic differences arise (Carlile 2004); sharing of knowledge

may lead to differing interpretations between the sender and the receiver. As

Czarniawska (2009, p. 425) acknowledges, “a thing moved from one place to another

cannot emerge unchanged: to set something in a new place or another point in time is to

construct it anew” (p. 425). Because sharing may lead to negotiation and trade-offs

between actors, it’s considered to exist at the semantic level (Carlile 2004), and such

discussions are only possible with a shared syntax. The syntax is itself negotiated over

time as actors make trade-offs and share understanding, but such negotiations are only

successful when the syntax is settled.

An idea may be translated from one syntax to another. This can be as “simple” as

documenting tacit knowledge, or storing knowledge in an information system. This

definition of translation is much narrower than the one applied by Czarniawska (2009).

Explicitly documenting tacit knowledge, as might occur during requirements processes,

has been recognized as one of the most critical processes in organizations (Nonaka

1994). When a developer expresses a requirement in code, she expresses the idea anew

using the syntax of a programming language. A systems analyst documenting his

understanding of a requirement is also engaged in translation. Just as with sharing,

translation necessarily results in change to the idea, as the nature of syntaxes causes

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 56

TRAVELING OF IDEAS

ideas to be expressed differently due to idioms of a given syntax.1 Translation may

uncover ambiguous meanings (the semantic level); just as linguistic translation can

introduce or mask connotations, so too can syntactic translation of ideas. It is for

perhaps this reason that Carlile (2004) describe the documentation of tacit knowledge

as a semantic, rather than syntactic endeavor, although he recognizes that semantic

discussions occur when the idea being presented is novel, or dependencies make

meanings ambiguous. It is because of translation between syntaxes (such as the

language of external users and internal product managers) that parties attempting to

communicate can begin to share knowledge. Because it involves different syntaxes,

translation typically occurs across technology boundaries rather than social ones,

although strong social boundaries (firms, cultures, countries) also adopt differing

syntax. For example, the storage, retrieval and transformation cycle as described by

Carlile and Rebentisch (2003) highlight the effects of translation. Using the vocabulary

of traveling as adapted in this research, it might be rebranded as a construction–

sharing–translation cycle.

As already noted, requirements, expressions of ideas, undergo change—

unintended or not—as they are specified. Specification and other uncertainty reduction

activities construct, or flesh out an idea. This occurs through investigation and

elicitation (Hickey and Davis 2004), and is a consequence of work done within or across

boundaries. Construction might include such activities as developing test cases for

software, and in such cases would accompany either sharing or translation, as

1 A possible exception to the transformation of an idea during translation might be translating a
simple idea from one formal language (e.g., programming language; as opposed to natural
language) to another, particularly where the two language have similar syntax.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 57

TRAVELING OF IDEAS

construction might occur through negotiated understanding across social boundaries, or

through the actions of a single person translating their understanding by expressing it in

requirements or source code. In a software development setting, construction activities

include documenting procedures to validate requirements such as test plans or test

cases.

6.2 Conceptualizing Traveling

It is important to note that “translation” in the traveling of ideas literature is used

differently than by Carlile (2004). A casual reader of Carlile (2004) might assume from

the figures and descriptions that translation is inexorably tied to the semantic level.

While this is true, in that successful translation requires consistent semantic

understanding, the translation is necessarily occurring because knowledge is expressed

in different domains, and thus in different syntaxes.

In contrast, the actor-network theory on which the traveling metaphor

(Czarniawska 2009; Czarniawska and Joerges 1996) is based, uses “translation” to mean

any reinterpretation or instantiation as an idea is expressed over time and space. Some

IS research that adopts the traveling metaphor combines theorization (the building of

ideas) with translation (the implementation of ideas) and therefore uses a more targeted

view in which translation means “how IT ideas are reinterpreted and implemented in

particular organizational settings” (Nielsen et al. 2013, p. 6). However, even this

interpretation is too broad. An even narrower view, which treats translation as

reinstating to a new syntax is more consistent with the common definition of translation

and adopted for this dissertation.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 58

TRAVELING OF IDEAS

In the same vein, Carlile (2004) expresses transformation as occurring at the

pragmatic level of interaction, which is only possible when syntactic and semantic

differences have been settled. Much the same way as construction is defined here,

pragmatic action, such as determining whether to move a requirement forward through

the development process or to discard or postpone it is the trigger for construction.

Although Carlile (2004) uses “transform” to mean pragmatic interaction, Carlile (2002)

clarifies the pragmatic approach is centered around localized knowledge that is invested

and embedded in practice, and that boundary objects that cross pragmatic boundaries

do so with the purpose of not only being used for representing and learning about an

idea, but also for transforming an idea. Accordingly, in this dissertation, we use

travelling of requirements to include constructing, sharing, and translating

requirements combined with the understanding that each new instantiation of a

requirements is newly interpreted, and may have new meaning for each actor.

In summary, the traveling metaphor is a good complement to the information

processing perspective of organizations (Galbraith 1973). Further, complex sets of

horizontal and vertical boundaries combine to form networks (Sinha and Van de Ven

2005) through which requirements travel. When combined with the study of work

design, the concepts of constructing, sharing, and translating describe the journey of

requirements as they travel through organizations.

T. Gregory | Dissertation Proposal 59

RESEARCH METHODOLOGY

7 RESEARCH METHODOLOGY

The setting and design of this research are described. We use a qualitative, case study

method. GridCo has a structured new product development (NDP) method. Analysis is

delineated, and the intended coding scheme is justified.

7.1 Qualitative Case Study

This research adopts a single-site, longitudinal qualitative case study, which is useful for

studying contextual factors, particularly organizational structure. Moreover, case studies

bring nuance and depth to complex data (Mason 2007), and are appropriate for

addressing “how” and “why” questions, particularly in real life contexts (Yin 2009). The

blend of technical and human-behavioral aspects of software development lends itself to

qualitative study (Seaman 1999). Thus, qualitative methods are the best fit for the

research objectives.

Further, as the research unfolds, qualitative methods permit a recursive cycle of

inductive reasoning, data analysis, and comparison to extant literature (Eisenhardt and

Graebner 2007). Although this may be most notable in the application of the packaged

software domain, which is uncovered and explored more thoroughly as data collection

progresses, this benefit of the case method applies to other included foundational

theories as well. As an additional example, the traveling metaphor fit the goals of the

research well, but was not, in its original form (Czarniawska 2009; Czarniawska and

Joerges 1996) descriptive enough to inform rich coding of data. Recursive application of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 60

RESEARCH METHODOLOGY

reasoning, comparison to observational data, and inductive theory building permitted

development of a more descriptive framework as presented in the previous sections.

As with most qualitative research, this dissertation adopts an interpretive

perspective (Klein and Myers 1999). Interpretive researchers consider reality to be

socially constructed, and assume actors behave according to their respective subjective

perceptions (Orlikowski and Baroudi 1991). Socially constructed artifacts may include

language, shared meanings, information systems and documents (Klein and Myers

1999). Other researchers have treated requirements as social constructions (Davidson

2002). Interpretive research considers phenomena of interest from the contextual

framework of its participants, in their natural setting. Thus it is important to engage in

the research setting through observation and interaction (Orlikowski and Baroudi 1991).

The interpretive perspective aligns well with longitudinal case studies.

Following initial meetings that occurred in December 2012, we prepared a

memorandum of understanding (MoU), also called a researcher–client agreement

(Davison et al. 2004). The MoU highlights the role of the researchers and confirms the

willingness of GridCo to share particular kinds of data, provide access to employees, and

permit observation. It also stipulates that the researchers are responsible for reporting

key findings and recommendations to the company. The MoU was signed by both

company officers and the researchers before research began in earnest. Additionally, the

Institutional Review Board (IRB) for Georgia State University reviewed and approved

this human-subjects research.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 61

RESEARCH METHODOLOGY

7.2 Research Setting

The research occurred at a medium-sized development arm of GridCo1, a large multi-

national provider of power and smart-grid solutions. The company produces a product

ecosystem of utility meters, network storage and routing components, and command-

and-control software (“GridWare”) that must operate not only on legacy systems, but

interoperate with competitor systems and meters, and adhere to common standards

using a variety of communication media (e.g., Internet, radio frequency, power-line

carrier and cellular). The development arm of GridCo is composed of several hundreds

of people. GridCo builds hardware, firmware, and administrative control software via a

hybrid process of plan-based and flexible development, using more than 35 small

software development teams at multiple locations in the U.S., an offshore captive in

India, as well as outsourced development providers.

For several reasons, the industry is dominated by a handful of incumbents

(including GridCo). Because customers tend to be large utility providers, the potential

market is limited, and there is thus strong competition for a relatively small number of

customers. Although GridWare meets the definition of package software as outlined in

this dissertation, GridCo both does and does not exhibit the attributes Sawyer (2000)

ascribes to organizations developing packaged software (See Chapter 9).

1 This is, of course, a pseudonym.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 62

RESEARCH METHODOLOGY

This research is primarily concerned with a single release cycle of the GridWare

command-and-control system during 2013 that was planned to last 36 weeks. We

observed meetings from related projects as part of data collection in order to build a

richer picture of the release cycle and to observe behaviors similar to those employed

Table 7–1: Overview of NPD Stages at GridCo

Stage Milestone Stage Description Contextual Application
Discover NPD-0

Start
Not technically part of the
defined and gated NPD
process, but listed in the
company’s documentation.
Documentation states,
“Ideas are captured and
scored using a
standardized, cross-
functional metric.”

No formal ranking or filter
processes at this stage were
observed. Methods of
weighting and ranking other
than contractual demands
(sometimes with financial
penalties) were not
referenced by participants.
Data imply customer
meetings, contracts, and
internal R&D are filtered
through product area
managers at this stage.

Scope NPD-1
Scope Ask
Sprint 1/18

The scope for the next cycle
is considered, and sized
(roughly estimated). High-
level scope for the cycle is
communicated to
executives and project
leaders.

Backlog list is almost always
oversubscribed, and exists
only for current cycle.
Development work
commenced before scope
document complete. Formal
scope ask delivered after
cycle already started.

Commit NPD-2
Scope
Commit
Sprint 3/18

Scope is determined
feasible and approved. A
particular scope is
committed to for the cycle.
Development formally
begins. Change control
implemented for further
scope/budget changes.

Software development has
already been occurring
throughout the cycle. Scope
commit actually occurred in
sprint 9, mid-way through
the cycle.

Develop NPD-5
Feature
Complete
Sprint 14/18

Actual development should
be completed by this stage.
The product is ready for
verification, testing.

Some few items remained,
and were continued to be
worked, when this stage was
to begin.

Verify NPD-6
Testing
Complete
Sprint 18/18

Testing is complete.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 63

RESEARCH METHODOLOGY

but which we could not observe directly for timing reasons. Development of the

GridWare system for the observed release cycle depended on related hardware and

firmware projects, which increased both the volatility and complexity of the observed

requirements.

GridCo uses a series of stage gates that overlay a common technology NPD

process. Ostensibly, “gates” describe “go/no-go” decision points; while this was allegedly

true for some gates at GridCo, more than one participant intimated that inertia as well

as market and contractual demands made continuation of the release cycle all but

certain. Indeed, GridCo’s NPD overview document read, “The stages are ‘soft’ meaning

that work in a subsequent stage can start before all the deliverables of a prior stage are

complete.” So in practice, these gates functioned more like milestones. Table 7–1 lists

the stages, the end-of-stage milestones, a brief description of each stage, and brief

comments about how the stage was implemented at GridCo. These are marked with

labels that correspond to stages of GridCo’s NPD process.

Observant readers may note that stages in the above table seemingly skip over

NPD-3 and NPD-4. Although GridCo utilizes these interim stages for hardware

processes, they are not present in software processes. This NPD process is universally

mandated at GridCo.

Perhaps the most interesting point regarding the application of the stated NPD

process, was that not only did development work commence before scope was finalized,

it commenced before the high-level scope for the release was trimmed to an

accomplishable size, with nothing formally more concrete than knowing of some

contractual obligations that would certainly be part of the final scope. The initial NPD-1

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 64

RESEARCH METHODOLOGY

date was delayed from February 10th to March 10th (and eventually delivered March

12th), two sprints into the 18-sprint project.

Similarly, the deliverable scope for the release cycle was not committed to until

the cycle was half over. This NPD-2 deliverable was a formal event that involved

multiple layers of local review as well as presentation to an executive global approval

board. The project manager faced internal pressure from his superiors to move the

NPD-2 (scope commit) date earlier in the release cycle. Several participants indicated

the NPD-2 date had a tendency to move later in the cycle than they would like, but

provided no argument for having it earlier other than doing so would be less

embarrassing to explain to the executive global approval board. (The NPD-2 review, per

the global process, includes a budget and resources request to accomplish the described

scope, although most of those personnel resources have already been utilized.)

Indeed, a “late” NPD-2 benefited the cycle as scope was flexible up to that time;

any scope changes following NPD-2 approval required change control and executive

oversight. This permitted multiple scope changes early in the cycle resulting not only

from identity and complexity reasons, but also due to unpreparedness of bottle-necked

preliminary work.

Thus, it is important to understand that while employees at GridCo considered

this release cycle (and previous cycles) a success, the scope documents against which

cycles were evaluated were not set until the middle of the cycle when many uncertainties

have already been resolved.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 65

RESEARCH METHODOLOGY

7.3 Data Collection

Data collection occurred over a ten month period, and included interviews and clarifying

conversations with fifteen key informants, observations of planning, estimation, review,

and approval meetings at multiple hierarchical levels, as well as process documents,

meeting and project status summary documents, organization charts, conversations

with the company liaisons, and electronic records (Table 7-2). We typically captured

data from interviews and researcher meetings with stakeholders as audio recordings,

although some subjects requested certain comments not be recorded. Following most

meetings and interviews where both researchers were present (most researcher–

stakeholder meetings, and about half of the interviews), researchers met and reflected

on interpretations of observed interactions, and engaged in dialectic reflection and

investigator triangulation (Patton 2005; Yin 2009). These dialogues were also

documented. In all cases, researcher notes and observations provided additional sources

of data. Importantly, researchers were also given access to the central information

system used to store requirements. Towards the end of the engagement, the key findings

of the study were presented to the release cycle manager for feedback and discussions.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 66

RESEARCH METHODOLOGY

Functional requirements, which are represented as “user stories”, along with

testing requirements, are stored in a vertical information system at GridCo. Multiple

views of this data were available. Requirement completion over time was available via

project status documents, which are also stored in a central (but separate) information

system. We had access to these documents as well.

Each interview lasted between 1 and 1.5 hours. We selected interview subjects to

include a mix of positions across both horizontal and vertical boundaries. Interviewees

came from across the breadth of the involved processes, and included vice presidents,

project and product managers, business analysts, architects, software development

Table 7-2: Summary of data sources

Data source Explanation

Employee Interviews Structured or semi-structured interviews regarding perceptions of
requirements, uncertainty, and project stumbling blocks.

Researcher–Stakeholder
Meetings

Meetings to define scope of research, summarize practices,
describe organization structure, and present key results from the
study. Differ from interviews in that these meetings were driven
by company stakeholders or collaboratively with researchers.

Meeting observations Unobtrusive observations of regularly scheduled project meetings.
Project documentation Project plans, status reports, meeting summaries, stack rankings,

change control requests, approvals, and other decision documents
produced during the course of the studied release cycles.

Requirements Metadata, user stories, decomposition, acceptance criteria, as
stored in the common information system.

Clarifying conversations Personal conversation with key informants intended to clarify
observations or validate interpretations.

Dialectic reflection Post data-collection researcher meetings intended to challenge
and align perspective to improve reliability. The timing of these
meetings also served as an additional opportunity to document
and flesh out observations and impressions that might not have
been otherwise recorded.

Research notes All other notes taken during the research. e.g., design of interview
or survey instruments, literature reviews, theories investigated,
and reviewer feedback.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 67

RESEARCH METHODOLOGY

managers, release managers, and stakeholders in research and development and quality

assurance roles. The perspectives of multiple stakeholders are necessary to contrast

interpretations of the internal boundaries of the organization and to enable rigorous

analysis of conclusions. Together, the broad view of the company offered by multiple

stakeholders and rich sets of artifact data across the complete release cycle permitted

triangulation of findings to enhance reliability.

Specifically, data were collected from interviews with 15 stakeholders (two were

interviewed twice), 6 discussion meetings, 27 meeting observations, and 12 clarifying

conversations, and a final review meeting in which study results were presented and

discussed, comprising dozens of hours of recorded audio and more than 200 pages of

researcher notes. Official project status update documents, proposals, and presentation

slides were also collected. Data from meeting observations was well saturated, and was

complemented with official summary documents from many of the observed meetings.

Although this research was initially scoped at the boundary of the firm, this limit

was examined over the course of data collection. Product managers were used as proxies

for interaction with GridCo’s customers, and as a means to validate the scoping decision.

As expected, data decreased in relevance close to the periphery, thus the scope

boundaries of the research was validated (Yin 2009).

In addition, GridCo permitted access to its central information systems, including

not only the central requirements repository, but also a document repository with

meeting summary and output documents. Participants relied heavily on the centralized

information system as the source of knowledge. As a project manager said, the IS was

used as the canonical version of “the truth.”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 68

RESEARCH METHODOLOGY

7.4 Coding Structure

The most preferred strategy for analyzing case study data is reliance on theory (Yin

2009). The theories developed in the preceding chapters formed the basis for coding

(Table 8-2). Some codes commonly appeared in concert with others. For example,

sharing occurs across a boundary, so data on sharing are typically accompanied by

indications of the observed work structure. The traveling constructs, sharing,

translating, and constructing, represent times when uncertainty is likely to be manifest.

In addition to the theory-based codes, the position(s) of the actor(s) involved were also

captured.

It is important the list of codes is sufficiently descriptive, mutually exclusive, and

(within the scope of the research), collectively exhaustive. The descriptive framework for

categorizing requirements groups combined with the theoretically derived descriptions

(Table 8-2) were designed to encompass the who, the what (requirement), the when

(travel), the where (work design), and the why (uncertainty) so that we could properly

address the “how” of the research questions. Although this framework is anticipated to

be sufficient, coding is an iterative process that is informed by both theory and data

(Miles and Huberman 1994). These codes, combined with the data displays, present a

sufficiently rich picture to validate the findings presented in this dissertation.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 69

RESEARCH METHODOLOGY

Table 7–3: Framework for Analyzing Traveling of Requirements

Theory Code Summary
Uncertainty
(Mathiassen et al. 2007)

Identity Difficulty in the knowing of requirements
caused by communications gaps.

Volatility The changing of requirements whether
for internal or external reasons (e.g.,
time, budget, changing market or
customer preferences).

Complexity Difficulty in specifying and
communicating requirements; includes
the cognitive load required to understand
the effects of implementation.

Work Design
(Nidumolu 1995; Sinha and
Van de Ven 2005)
Contingency Theory
(Galbraith 1973)
Boundaries
(Carlile 2002)

Horizontal Modular or serial work design. May
involve mutual adjustment.

Vertical Formal coordination within a
hierarchical structure. Decomposition.
Encompasses Galbraith’s
conceptualizations of both hierarchy and
targeting.

Network Complex combinations of horizontal
and/or vertical boundaries. Included for
completeness.

Travel of Ideas
(Czarniawska 2009;
Czarniawska and Joerges
1996)

Share The movement of an idea across a
boundary. Encompasses changes that
occur due to interpretations.

 Translate The (re)enacting or materializing of an
idea in a different form, using a different
syntax.

 Construct The explication of an idea within a given
syntactic/semantic context.

7.5 Data Analysis Strategy

Analyzing case study evidence is one of the most difficult aspects of case study research

(Yin 2009, p. 127). Preliminary analysis validated the research frame and study scope.

To begin, we placed evidence in a matrix of categories and created data displays to

provide rich pictures of processes, events, and temporal ordering (Miles and Huberman

1994; Yin 2009). Data displays summarized the organizational context, and highlighted

the work design relationships discussed by Sinha and Van de Ven (2005) (i.e.,

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 70

RESEARCH METHODOLOGY

horizontal, vertical, and network relationships) and early contingency theorists. These

displays were iterated against the data to present an accurate and informative synthesis.

The bulk of analysis centered on identifying indications of uncertainty within the

data, and coding these utterances using the various research lenses described

previously, particularly the work design strategies employed, as well as classifying the

type of uncertainty represented. We used the types of uncertainty (identity, volatility

and complexity) as indicators of the difficulty actors encounter in attempting to

accomplish their tasks of sharing, translating, and constructing requirements within the

organizational structure and the boundaries created by vertical and horizontal work

design (Sinha and Van de Ven 2005).

To assist in selection of specific groups of requirements for in-depth analysis—

and consequently, to support data reduction (Miles and Huberman 1994)—we

articulated a diverse set of general requirements traveling behaviors. We developed

these categorizations based on our professional and academic experience as likely

representing interesting types of requirements. We initially categorized the

requirements (or groups of requirements) we observed at GridCo into one or more of

these categories of travelling:

1. Requirements that behaved as expected (few manifestations of

uncertainty).2

2. Requirements that were added to the release cycle.

2 Although requirements in this last group are something of an endangered species, they are also,
with few exceptions, uninteresting. The only exception may be those requirements that originated
within the development and architecture teams, which may be the reason they consequently seemed
to exhibit little uncertainty in their construction.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 71

RESEARCH METHODOLOGY

3. Requirements that expanded in scope.

4. Requirements that contracted in scope.

5. Requirements that were removed from the release cycle.

Although these categories suitably described important traveling behavior within

a release cycle, it eventually became evident they did not represent the complexity of

observed traveling behavior. We therefore attempted multiple ways of collating and

displaying data, which led to the creation and refinement of additional data displays that

reflected the traveling we observed from multiple perspectives: the process, the

organization structure, temporal structure, and the release cycles of the product itself.

Via categorization of behaviors identified through iterative refinement of these

data displays, we identified select groups of requirements described in interviews and

project documents that reveal the series of events that led to a resolution of task

uncertainty over the life of each group of requirements, and selected those with enough

data for narrative completeness. These strings of events reflect the process progression,

the organizational structures involved, and the accomplished traveling activity at

GridCo, which in turn led to identification of emergent patterns. Simplified displays of

release cycle traveling (localized, cross-layer, and cross-cycle) summarized high level-

views of how requirements are constructed, shared, and translated (RQ1) and how

requirements travel (RQ2). These data displays provided a conceptual foundation for

positioning richer detail within its natural context. Models and storylines developed by

pattern-matching and explanation-building (Yin 2009) of aggregated and coded data

were then subject to verification and attempted disconfirmation through triangulation

of the multiple available sources of data.

T. Gregory | Dissertation Proposal 72

TRAVELING OF REQUIREMENTS

8 TRAVELING OF REQUIREMENTS

At GridCo, requirements traveled in certain ways within and across release cycles as

participants addressed uncertainties. We identified and analyzed three major

categories of traveling behavior: local, cross-layer and cross-cycle.

8.1 Types of Traveling

Our original intention in examining traveling of requirements was to consider

five types of observed behavior, which we label “localized traveling” that individually

and collectively describe the fate of requirements over the course of release execution.

However, while each requirement (or set of requirements) may be described using

localized language, it became evident that such framing alone was insufficient to fully

capture how requirements traveled. Cross-layer and cross-cycle traveling introduced

changes to the project’s scope across other parts of the company and over time, and

reveal additional insights into how requirements travel. Cross-layer traveling describes

the experience of requirements with dependencies across multiple hardware, firmware,

and software layers. Requirements with dependencies across layers were subject to mid-

stream modification (identity uncertainties) and whiplash effects (volatility).

Requirements also traveled across cycles, moving between consecutive, overlapping

release cycles. This cross-cycle traveling was a response to volatility, and additionally

served to postpone or reduce future identity uncertainties. Each of these types of

traveling occurred against the backdrop of the standardized NPD (new product

development) procedures and a fixed organizational structure at GridCo.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 73

TRAVELING OF REQUIREMENTS

8.2 The Expected Journey

An overview of the work design at GridCo for the observed cycle (Figure 8–1)

outlines the expected journey of requirements. Requirements were expected to travel

horizontally between functions as tasks were performed. As described in the NPD

process, the product portfolio manager considered requirements for inclusion in the

cycle based on input from product managers and (for large products) product area

managers. These product managers interfaced directly with customers, and acted as

customer representatives during the cycle. Planning the centralized C&C system

required input from multiple product managers, as the system is a hub in a network of

HW and SW products. In theory, developers or the in-house R&D group might present

requirements to product (area) managers. However, in the observed cycle, the vast

majority of requirements (both by count and by share of effort) in the backlog at the

start of the cycle were contractual obligations to current and future customers, which we

interpreted as vertical demands.1

There was not an overall, continuously maintained backlog of requirements.

Rather, a backlog was (re)created for each cycle, based largely on imminent customer

obligations, and made more volatile by the interventions of directors and executives

through vertical lines.

1 The included requirements were so weighted toward future contractual demands that one

participant exclaimed, “It would be nice if we sold the stuff we did, rather than the stuff we’re going
to do!”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 74

TRAVELING OF REQUIREMENTS

Figure 8–1: Work Design

Prior to the release cycle getting underway, the product portfolio manager

constructed a list of items desired for completion

in the cycle (“Backlog”). These items were assigned

rough effort estimates in a plenary meeting of

product managers, systems engineers, architects,

senior developers, and quality assurance;

essentially every senior person from product

development with responsibilities in the cycle was

there. These initial estimates (represented as “T-

Preliminary
Backlog

Rough
Estimation

Decomposed Stories

Demo/Review
(Acceptance)

Development

QA

Decomposition

Estimation

Information
System

Analysts

Developers

QA

Completion

T-Shirt
Size

Story
Points

XS 1–5

S 6–20
M 21–50

L 51–100
XL 101–150

2X 151–250

3X 251–500

Table 8–1: Initial Estimation Ranges

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 75

TRAVELING OF REQUIREMENTS

shirt sizes”, as shown in Table 8–1) reflected a range of story points2, and were later

combined with risk estimates as part of a Monte Carlo simulation to estimate the size of

the cycle’s capacity and the risk of over-subscription. These tasks were in place to reduce

uncertainty (by providing an abstraction layer to manage complexity and other

uncertainties), and reflected additional construction of information about the

requirements via horizontal coordination.

In a retrospective interview months later, a project manager indicated the

backlog review meeting was perhaps too big a production for what it accomplished, and

further indicated practice had since been modified so estimation was accomplished (in

the following cycle) by a smaller group of people considering fewer items on more

regular basis during an already existing meeting. However, at the time of the backlog

review meeting, the portfolio manager indicated to those present that the plenary

estimation meeting was necessary in order to have enough information to push back on

superiors who were apparently demanding items be included that exceeded the capacity

of the cycle. Some in the room, perhaps jokingly, indicated the “critical” items slated for

the cycle represented four times the available capacity. The portfolio manager intimated

following the meeting that the project was 25% over capacity before the meeting even

started. The observed meeting was insufficient to size all of requirements on the

backlog. In fact, several participants mentioned the over-subscription of work items (as

compared with resources and time-to-completion) as a common occurrence at the start

2 “Story points” are something of an abstract concept representing “nebulous units of time”

Rasmusson, J. 2011. The Agile Samurai: How Agile Masters Deliver Great Software. Pragmatic
Bookshelf., and are sometimes called “ideal days.” The actual unit used is not important, the intent
is to bring focus to the relative size of different tasks (ibid.). At GridCo, management estimated a
story point was roughly equivalent to four or five hours of a developer’s time.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 76

TRAVELING OF REQUIREMENTS

of cycles. In the cycle following the one observed, a product manager estimated in a

meeting that the over-subscription of the next cycle was an estimated 20%.

Following initial estimation, backlog items were re-ranked with executive input

by the portfolio manager. The project cycle was still over-subscribed, but the work of

further constructing requirements more fully commenced. Although we have described

the development process here in a sequential manner, in practice it operated in multiple

concurrent iterations such that decomposition of some requirements was concurrent

with writing of computer code. Coding commenced with decomposed requirements

from a previous cycle; decomposition could then occur in manageable chunks at a pace

slightly ahead of the software developers.

A central group of architects and business analysts decomposed (constructed)

backlog items that had been stack ranked and marked for inclusion in the cycle and

shared via a central information system. Decomposition included translating high-level

requirement descriptions into detailed user stories. As part of the decomposition

process, requirements were broken into smaller chunks. As a director described, “[T]he

story shouldn't be larger than about seven [story points] worth of work… In general

that's the number we're using because of the sprint size that we have, and the amount of

work that we believe the teams can complete within that [time frame].” When the story

is complete, a senior developer and senior QA analyst, in concert with the business

analyst responsible for constructing the story, gives the story a finer estimation of

development story points and QA story points. If a particular requirement significantly

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 77

TRAVELING OF REQUIREMENTS

exceeds seven points, it was usually split into multiple stories3, although this outcome

was negotiated between development, QA, and systems engineering during the

decomposition process. Participants offered several examples from their information

system of requirements—collections of stories—comprised of upwards of 70 stories.

Translating high-level requirements into stories and properly constructing stories

includes not only detailed architectural explanations of the work to be done, but also

steps to verify requirement completion and any acceptance criteria. Stories were

consciously detailed in order to unravel complexity and guard against identity

uncertainties. A systems engineer explained, “We don't know when we're decomposing

these stories what team is going to get this, and where that team is going to be located.

… We now have maybe 20-plus teams working on this product, with a wide variety of

skill level.” Consequently, stories were decomposed to be as specific as possible, so even

the lowest-skilled teams could accomplish them.

Stories were shared with software developers using the same central information

system that stored the requirements. When identity uncertainties arose in the

interpretation (translation) of a story, developers tended to contact the person who

authored the story, and, as appropriate, a member of the architecture team and product

manager (representing horizontal and network connections). Responses that materially

altered the design of the story or its test procedures were appended to the story in the

3 Although each story is itself a requirement, in describing process at GridCo this paper will use

“story” to indicate a small unit of work, and, in general, “requirement” to specify a collection of
related stories. The phrase “requirement group” means a collection of requirements with a similar
theme (e.g., security) or similar purpose (e.g., related to a specific piece of hard ware, or intended
for a particular customer).

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 78

TRAVELING OF REQUIREMENTS

information system; although we observed this practice, it’s not clear how common the

practice was.

In addition to communication across horizontal boundaries, we observed

travelling across vertical lines. In the above examples (identity and complexity

resolution and suggestions), vertical stakeholders were copied on the email

conversations, but did not participate. However, when schedule uncertainties arose

related to third-party actors—external vendors or internal dependencies on other

projects—the observed communication was almost exclusively vertical first. Those high

enough on the vertical chain would then communicate across horizontal boundaries and

with product and project managers to determine whether items should remain in scope.

Lastly, acceptance of each story required certification by the developer and QA

personnel assigned to the story. The delivered software was demoed to the business

analyst, who, as author of the story, held ultimate responsibility for acceptance.

This standard procedure of gross estimation and ranking, decomposition,

development, and acceptance worked for many of the included requirements.

Accordingly, minor uncertainties were easily resolved using expected horizontal and

vertical communication lines.

Among the backlog items slated for the release, the set of requirements that most

closely adhered to this ideal process were either small in size (fewer than 20 story

points) or related to security. These requirements, even at a high level, were

understandable to developers and relied on common industry practices. Consequently,

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 79

TRAVELING OF REQUIREMENTS

there was low identity uncertainty; complexity was similarly low because developers

tended to already possess relevant domain knowledge.

8.3 Localized Traveling

Figure 8-2 illustrates the observed localized traveling of requirements.

Representing the requirements accepted into a release cycle’s scope as a circle, we

identified five different types of localized travelling: (A) requirements implemented as

expected (the dot within the circle); (B) requirements added to scope (the incoming

arrow); (C) requirements removed from scope (the outgoing arrow); (D) requirements

discovered to be more complex than expected (the expanded circle); and, (E)

requirements discovered to be less complex than expected (the contracted circle). In

general, (A) represents low uncertainty, (B) and (C) represent high volatility

uncertainty, while (D) and (E) represent high complexity or identity uncertainties. We

accounted for our observations of requirements that travelled locally as expected (A) in

the previous section, and this description serves as a baseline for the our accounts of the

other forms of localized travelling provided below.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 80

TRAVELING OF REQUIREMENTS

Figure 8–2: Local Traveling of Requirements

8.3.1 Added requirements

Often termed “scope creep,” requirements are commonly added to projects after

work has begun. Two general categories of requirements were added to scope as the

cycle progressed. The first batch occurred early in the project, before the scope was

partially or formally fixed (NPD-1 and NPD-2, respectively.) The second collection of

added requirements occurred after scope had settled as a consequence of failed

coordination between horizontal departments.

Scope was not finalized by the first sprint, even though development had begun.

Not only was scope still changing, the rank order of requirements was also changing. A

system engineer commented, “Up until two days ago, there were no security features in

[this cycle], now, around five of the top ten [requirements] are security features. … This

changing of priorities is common. We may see it change again.”

Two sprints (four weeks) into the cycle, scope had still not been finalized. The

NPD-1 date was initially targeted for the first sprint, but was very quickly pushed back to

the middle of Sprint 3. The NPD-2 deliverable, originally scheduled for Sprint 3, was

consequently pushed back to Sprint 5. Scope was still shifting early in the project, which

Expected
Added

Removed

Expanded

Trimmed

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 81

TRAVELING OF REQUIREMENTS

was problematic, as decomposition and development occurred concurrently. A project

report4 from the middle of the first sprint indicated. “The current scope for [this cycle] is

still not set, but the [development] teams are working from a list of six items which has

recently changed from the original list of six.”

A development manager expressed frustration about the later NPD-2 date in a

meeting: “We will be 5 sprints in, and not everything will be decomposed. [I’m] already

assigning work to teams, but without guidance about the eventual task list, [we’re]

assigning based on the current work, not on the best overall fit.” The over-subscription

of requirements in the cycle meant that analysts had more requirements to decompose

than could possibly be worked. Both the initial reduced list of scope and the eventually

decomposed requirements are examples of goal-setting or targeting, indications of

vertical control. The responsible functional groups retain decision rights, even though

the responsible functions were treated as functionally and socially horizontal within the

organization. From an organization design perspective, scope definition and

requirements construction both constrain and determine outcome controls for later

work, and are thus vertical connections. There was general discontent with the way the

project was over-subscribed, and that scope definition was overlapping the development

schedule by too much, and thus causing development resources to be slack.

Despite frustration with a moving scope target, development teams still had

enough decomposed work. Due in part to delays with firmware dependencies in the

4 Project cycle status was reported to executive and international oversight weekly. Due to the number

of projects in progress at the company, only those projects self-reporting as “yellow” or “red” (as
opposed to “green”) received attention in the executive review meetings.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 82

TRAVELING OF REQUIREMENTS

previous cycle, some requirements were change controlled out of the previous cycle.

Additionally, the NPD-5 date of the previous cycle was change-controlled from

coinciding with the start date of the observed cycle to overlapping with the first two

sprints of the observed cycle. The lateness of the previous cycle may have added to

delays in finalizing scope. Although the previous development and the scope definition

were handled by different groups within the product organization (software and product

management, respectively), completing the scope definition required coordination.

A more interesting set of requirements was added during sprint 8, midway

through the project, shortly before project scope had officially committed. Due to

multiple competing demands on the business analysts and systems engineers, not

enough stories had been fully decomposed to match the developers’ capacity for the

sprint. To prevent the unutilized capacity from being wasted, development began

implementing architectural changes they had proposed in a previous release cycle,

although these requirements were officially slated for a future release. Interestingly,

while not fully decomposed, senior developers had enough familiarity with the intended

requirement to deliver code for the sprint. Although discussed later (Section 8.5, Cross-

Cycle Traveling), these architectural changes—which created a modular structure for

more easily adding support for new meter types to the utility network—had been passed

over multiple times for inclusion in the release cycle, in favor of contractual customer

demands. However, to best utilize otherwise slack development resources, these

architectural improvements were added into scope, not through the normal vertical

channels (although they were later formally accepted as part of scope), but by the

developers. This presents something of an anomaly from a work design perspective, as

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 83

TRAVELING OF REQUIREMENTS

the slack was caused by inadequate vertical coordination, but it was filled by the

reciprocal relationship through mutual coordination, a horizontal work design

mechanism.

8.3.2 Removed requirements

As with added requirements, there were two primary categories of removed

requirements: those removed while the scope was still churning, and those removed

after the scope was fixed at NPD-2.

The backlog list was quite volatile through NPP-1,

as items moved in and out for reasons including

availability of hardware, support of third-party vendors,

discovered defects, changing customer requirements,

and executive support. Such volatility was essential to the release cycle: after NPD-1, a

product manager estimated scope still exceeded capacity by between 123% and 137%.

One manager expressed frustration with the constantly changing requirements list,

saying , “We should make butter in this company, as much as we churn scope.” Volatility

in accepted requirements continued up to NPD-2.

Removal was an essential task in order to accomplish NPD-2. Not only were

project resources insufficient for the requested scope, those resources were being used

(“burned”) by the passage of time, although not necessarily fully utilized. In sprint 6, for

example, development managers reported they had assigned work “below the line”

(likely to be outside of the cycle scope) to developers, because sufficient work “above the

line” had not been properly decomposed. To the apparent exasperation of others present

“We should make
butter in this

company, as much
as we churn scope.”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 84

TRAVELING OF REQUIREMENTS

in the status meeting, a product manager asked, “If they’re working items below the line,

does that mean capacity has changed above the line?” The answer from several present

was a resounding, “Yes!” As development had started, any time not spent on items above

the line was irrecoverable.

After scope had settled, other requirements were removed from scope, for

reasons of volatility. Early in the cycle, a requirement to support a particular wireless

communications protocol was added to the requirements list, as it had been recently

change-controlled out of the previous release as the hardware and firmware necessary

for development and testing had not arrived from the third-party vendor in time. This

requirement remained in the observed cycle through NPD-2 without significant

development progress, despite receiving regular attention from product and project

management. Project and product managers were frustrated, and moved the problem up

the hierarchy. The release manager eventually explained that despite multiple

negotiations the vendor was unwilling to provide their newest hardware and firmware

versions as the vendor suspected GridCo was developing their own internal versions of

the same. Due to this and other schedule troubles with the vendor, GridCo felt it

necessary to fully control development of the communications HW and FW in-house,

and eventually ceased its relationship with that vendor. However, enough time had

lapsed waiting on and negotiating with the vendor that the necessary HW and FW were

not ready in time for inclusion in the observed cycle either. Because of the volatility

uncertainty encountered, this requirement was removed from the project via change

control after NPD-2. However, this uncertainty was managed throughout by constant

follow-up and horizontal coordination. In addition, product and project managers

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 85

TRAVELING OF REQUIREMENTS

regularly sought guidance from vertical authorities on how to address the third-party

vendor, for information on the status of the internal replication project, and advice on

strategic fit of the requirement.

8.3.3 Expanded requirements

Requirements expand as uncertainty is revealed during the development process,

often during translation or construction. Expansion differs from addition (scope creep)

in that it is not the addition of new requirements (volatility), but rather the result of a

deeper understanding of existing requirements (e.g., identity or complexity

uncertainties).

In one example of expansion growing from identity uncertainty, senior

developers asked questions about the scope of a decomposed requirement during an

estimation meeting. The requirement introduced a software process that might, in

certain circumstances, lead to a failure condition. However, steps to recover from the

failed state were not specified in the requirement, and developers questioned how that

should occur. This led to the creation and inclusion of a new story as part of the

requested feature.

An engineer related another instance of expanded requirements due to identity

uncertainties. Requirements intended to satisfy one of GridCo’s large, strategic

customers (“Customer B”) were prominent in the pool of requirements for the observed

and previous cycles. The engineer explained that initial rough estimation (T-shirt sizing)

was typically accurate, but also described an experience where that did not happen: “As

we looked at the requirement, we made some assumptions in putting together a T-shirt

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 86

TRAVELING OF REQUIREMENTS

size, and when they later went back to [Customer B], and said, alright, here's what we

think this is, here's the assumption we made, then they shot that down pretty quickly,

and said ‘no, you can't make that assumption.’ [We] brought it back, and that doubled

the particular requirement scope size. That's the only one that's really been off in its

estimation.”

A different type of expansion occurs when developers chose to re-architect

software “under the hood” (as one systems engineer described it) in the hope of

facilitating a future over-all reduction in work. Although this sort of refactoring was not

officially sanctioned, it sometimes occurred and caused small increases in initial

development time. In one notable instance, the refactoring work, which had been

advocated by development for several cycles but never accepted by product management

came in “through the back door” during a time when not enough work had been

decomposed. Developers, hopeful that their estimate of a nearly 50% reduction of a

particular kind of recurring future work would pay off, began working on the refactor.

This requirements was later officially added to the release.

A final type of expansion was observed in the data. During the final four sprints

of the release cycle, development is ideally complete, and the quality assurance, or

“hardening,” process begins. Defects found in the cycle are sent back to developers for

correction. Referring to previous cycles, one manager said, “the thing that kills us every

thing is the high number of defects we find during hardening.” When pressed for

clarification, this manager indicated the volume of defects were a problem, and largely

stemmed from the great number of dependencies in the code. Thus, this type of

expansion is a consequence of complexity uncertainty.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 87

TRAVELING OF REQUIREMENTS

One other noteworthy requirement set was expanded during the cycle. Due to

expanding international markets, GridCo wished to improve the localizations of its user

interface. After an initial framework was in place, requirements related to globalization

presented low identity and complexity uncertainties. As other requirements were

delayed or faced great uncertainty, addressing globalization requirements, work that

was initially intended to be accomplished in future cycles, grew to be a larger portion of

the release as an easy way to continue utilizing development resources.

8.3.4 Trimmed requirements

The count of requirements accepted into scope may expand; the inverse is also

true: requirements may be removed, or trimmed, from scope.

Requirements intended to satisfy contractual obligations to Customer B also

experienced trimming. Some of these obligations aligned with requirements already

slated for the observed cycle, but one manager estimated that nearly a quarter of the

capacity of the release was devoted to requirements contractually agreed to with

Customer B. By two months after NPD-1 (development sprint 5 of 14), these

requirements still had not settled sufficiently to be decomposed. GridCo scheduled

multiple daylong workshop sessions with Customer B to resolve these identity

uncertainties.5 The unresolved identity uncertainties of the work necessary to satisfy

Customer B were evident in multiple status meetings during sprints 5 and 6. During

sprint 6, NPD-2 had not yet occurred, and there was continuing concern voiced by

5 Amusingly, one of these identity uncertainties was resolving what was meant by “etc.” in some of the

contracted items.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 88

TRAVELING OF REQUIREMENTS

developers that the cycle was still over-subscribed. Product managers delayed removing

items from scope until the Customer B identity uncertainties were resolved. In the end,

forced removal was unnecessary because there was an overall reduction in the capacity

demands for the requirements particular to Customer B, which relieved much of the

capacity pressure in the release cycle. However, some of the requirements were moved

to the FW product group, which led to some indirect volatility.

The difference between removal and trimming, as with expansion and scope

creep, is centered on resolving identity and complexity uncertainties rather than the

volatility of demands. That is, demands do not change, but the understanding of them

does.

8.4 Cross-Layer Traveling

Cross layer travelling is important, because it highlights complexity uncertainties

arising from inter-dependent layers: requirements traveled between hardware and

software in virtuous (or vicious) cycles (Figure 8–3). At GridCo, this complexity

uncertainty manifested as schedule volatility for dependent components. Adding

support for new utility meters to the C&C software system was a great deal of work. For

example, adding support for only a few new meters caused the single largest portion of

work and uncertainty in the release cycle. Coordinating the timing of completion

between layers was problematic. In some cases, support for new HW was contractually

obligated, but the HW itself was still being developed. First releasing the HW and then

later releasing updated C&C SW to support it was an untenable option. As a

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 89

TRAVELING OF REQUIREMENTS

development manger explained, “software and hardware releases coincide because of

customer certification requirements.”

Figure 8–3: Cross-Layer Traveling of Requirements

Coordinating development between new HW, FW, and the supporting SW was a

major challenge; the resulting complex interdependencies affected requirements at each

of these layers. A change in a processor, or the data stored at the HW level necessitated a

change in FW that would almost certainly affect the SW layer. However, these

dependencies were cyclical: one manager explained, “for FW to complete, [it’s]

dependent on SW; for SW to complete [it’s] dependent on FW.” No matter which was

completed first, the additional rework was frequently assigned to different teams,

possibly in different sprints or even different release cycles. Given this cross-layer inter-

dependence, one manager speculated GridCo might “be better off with cross-functional

teams.”

For the product development group, reliance on the central information system

as well as coordinating documents and standards was essential, but insufficient. For

example, at one point a requirements change was made in the C&C SW that required

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 90

TRAVELING OF REQUIREMENTS

assumptions underlying SW at an intermediate network device to be challenged. The

original intermediate SW had been written as an application, and after the requirements

changed at a different level, it needed to be rewritten as a daemon.6

Dependencies were tracked in the central IS, but there was insufficient

assignment of responsibility for cross-layer coordination. One participant indicated—in

one of the rare times any participant was openly critical of the company—a major

frustration with the lack of coordinating project management across hardware,

firmware, and software layers, in that there was no orchestration of the critical path

between them. This participant requested special care when making these statements,

so as not to be seen as attacking any particular individual, indicating, “I’ve said enough

to get me into trouble.”

The coordination of HW, FW, and SW was a constant frustration. Development

of the SW layer required access to HW. Due to the mismatch between HW, FW, and SW

development schedules, the necessary HW was not scheduled to be delivered to the SW

team until late in the cycle. The SW managers’ preferred approach was to have a small

number of teams work for a longer period building domain knowledge, but volatility in

the HW and FW schedules necessitated utilizing more teams over fewer sprints. This

created an additional whiplash effect, as the addition of development teams meant not

only less productive teams (due to lack of focus and domain knowledge), but also that

either teams shared HW prototypes, resulting in slowdowns, or teams being delayed

6 In this case, “application” means a windowed program or executable with the potential for user

interaction. Conversely, a “daemon”, also called a “service” on some operating systems, is a program
that runs in the background without interaction from the user.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 91

TRAVELING OF REQUIREMENTS

further waiting for their own hardware. The situation was further complicated by

multiple HW iterations during the SW development cycle: to properly certify software

for use by customers, it needed to be written and tested against production versions of

hardware identical to what customers would receive. In another instance, requirements

were changed after they were decomposed to accommodate the unavailability of HW.

Even with the use of documented standards as a vertical coordination

mechanism, one firmware manager indicated that when the supporting SW is written

before the FW is official completed, it is typically necessary to go back and redo the FW

to compensate for instances when the documented interfaces were unclear.

During sprint 6 (about one month after NPD-1),

development fell sharply behind schedule. During a

heated status meeting, a manager indicated that

dependencies in the FW (complexity uncertainty) necessitated additional resources be

allocated to development. Hardware resources that were expected to be available were

announced as delayed until at least 60% through the release cycle. A development

manager explained in the meeting that if the necessary HW was incrementally delivered

from sprints 9 through 12, as anticipated, the necessary SW development work could be

accomplished, but there would be no opportunity to find or correct potential critical

defects. He continued, “I estimate about 80% confidence of full [development

completion] by [NPD-7] if firmware and [hardware] is complete by sprint 9. If that slips

one sprint, it’s closer to 50% confidence.” (These resources were not actually delivered

until after development on the cycle was complete; work on the dependent requirement

sets was done in a minor release, out of cycle.) A different manager indicated that the

“We have this issue
every release.”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 92

TRAVELING OF REQUIREMENTS

release date of a hardware unit that interacted with the C&C software was delayed, and

the release date was unpredictable, as the HW design had undergone a change from one

processor family to another, and that consequently the necessary work was

“unknowable” and “impossible to estimate.” At this point in the project, all managers

reported the release as high risk of falling behind, due to schedule volatility of

dependent HW and FW components. Another manager commented, “We have this issue

every release.”

To further complicate matters, the volatility from cross-layer dependencies

occurred at the same time as some significant identity concerns in an unrelated

requirements group. A product manager exclaimed, “if we didn’t have hardware

pressure, [the other requirements] wouldn’t be risky,” indicating the cycle could absorb

some uncertainty, but was struggling to handle multiple uncertainties with big potential

schedule impacts simultaneously.

8.5 Cross-Cycle Traveling

Perhaps the biggest advantage of developing recurrent software is cross-cycle

traveling of requirements (Figure 8–4). Future requirements thought to be highly

uncertain were initially introduced as preliminary investigative requirements. The

purpose of these investigative requirements was to identify which parts of the future

implementation were uncertain, in order to resolve as much uncertainty as possible in

future releases.

The requirements list for the release cycle was initially oversubscribed. However,

the promise of future releases allowed a low-impact way of delaying implementation of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 93

TRAVELING OF REQUIREMENTS

requirements for something of a higher immediate priority. When implementation of

HW-dependent requirements was delayed beyond the release date, other requirements

slated for a future cycle were moved forward, with little loss in efficiency.

Figure 8–4: Cross-Cycle Traveling of Requirements

Recurrent release cycles also allowed for some (not customer-facing)

development to be only partially finished in a release, with the promise of completion in

a future release.

In sprint 6, due to a confluence of factors—major requirements groups from a

particular customer were delayed due to identity uncertainty, and development to

support new FW and HW were delayed for volatility reasons—development managers

indicated during a status meeting that not enough requirements had been decomposed

to provide sufficient work for all development teams. As a consequence, some

development teams were tasked with complementing work outside the cycle. “I have

four [vendor] teams with nothing to do that are currently working defects,” one manager

noted. Capacity was not being fully utilized, and was consequently being lost as

developers were idle or doing low-priority work. The problem was exacerbated a few

sprints later when the major identity uncertainties with regard to a strategic customer

were clarified, and scope of included items decreased.

...C1 C2 C3

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 94

TRAVELING OF REQUIREMENTS

To address this unutilized capacity, requirements related to software localization

that had been investigated and prepared in a previous cycle—but had been withheld

from the observed release for capacity reasons—were added to the observed cycle. The

localizations were necessary for future strategic goals of the company, but had not

initially been included in the observed cycle, ranking below the line of available capacity.

However, due to the unexpected increase in immediate capacity, the localization

requirements were added. Had these requirements not been investigated and

decomposed in a previous cycle; and, had managers not had familiarity with the status

of localization work from previous cycles, these requirements would not have been

added to the release. A further benefit to adopting the localization requirements to the

current cycle was that its scope was variable: localization work had low uncertainty and

could be partially completed as capacity allowed with no noticeable effects to the user,

and then fully completed in a future cycle. This flexibility permitted managers to use this

requirement as a buffer to fill in work as space was available. In this manner, much of

the localization effort slated for a future release was accomplished in the observed

release.

As an additional but minor example, a developer reading a story concluded the

described end state was unintuitive for the user (as it relied on the user remembering a

number rather than a name, and search functionality was not available). The developer

reached out to the architecture team suggesting that intuitive naming and search

functionality be included. While waiting for a response, another team implemented the

story, however, the developer’s suggestion was included as a requirement for a future

release by the product manager.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 95

TRAVELING OF REQUIREMENTS

The ability to move requirements across cycles was an important tool for the

release cycle manager, not just in managing the scope of the release, but in adapting to

volatility from revealed uncertainties in development. As one participant described,

“Some features [related to a particular meter] were growing too much … to support

some functionality we didn’t need until next release. … As the teams were working

[they] kept learning more.” Consequently, a portion of the requirements (comprising an

estimated 600 person-days of work when HW, FW and SW layers were considered) was

moved to the next release. The manager continued, “It was moved because more

firmware resources were needed and firmware was strapped. Everything is strapped [for

time].”

Lastly, in addition to the forward traveling of requirements through time, the

recurrent nature of development permitted anticipatory work on requirements, even

before the requirements had been accepted and specified. The analysts understood their

time was a bottleneck to the development organization (as made starkly clear in the

incident discussed previously). Consequently, analysts and engineers relied on their

experience and knowledge-centric position within the organization to anticipate and

pre-work selected requirements. As one engineer said, “I knew there wouldn’t be enough

time in a release for design … [so] I’ll do up-front design for the most difficult things.”

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 96

DISCUSSION

9 DISCUSSION

Using GridCo as a reference, we relate our empirical analyses to theories of traveling,

work design, and recurrent packaged software. To conclude our engaged scholarship,

we discuss strengths and weaknesses of GridCo’s development to explicate

contributions and limitations of the study.

9.1 Traveling

Understanding how requirements travel in a particular organization permits researchers

a way to understand the strengths and weaknesses of the organization structure

surrounding product development, and how the structure may be best adapted to

address uncertainty. The three types of traveling revealed in the analysis (local, cross-

layer, and cross-cycle) gave insights into the workings of a complex software

organization, as its members worked to resolve task uncertainty in the recurrent release

of packaged software for electric grid management.

Figure 8–1 (Work Design) maps the typical travel of requirements across the

organization. The traveling constructs described in the analysis framework are

embedded in the display: each activity constructs or translates the requirement, and

requirements are shared between organizations and with the common information

system. At GridCo, the theorized differences between construction and translation did

not appear significant. It may be that translation, as defined in this dissertation, is

simply another form of construction, and that a broader definition of translation would

be more useful, such as the one by Nielsen et al. (2013), which describe translation as

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 97

DISCUSSION

transformation and movement as actors apply their knowledge to practical use. Or, it

may be that the management-centric level of analysis of this dissertation was at too high

of an organizational level to capture sufficient data about translation.

The strong use of an IS as requirements repository as a canonical source of truth

may have also limited the “translation” of requirements, in its original meaning by

Czarniawska and Joerges (1996). Except for individual construction work

(decomposition and writing computer code), most of the sharing of requirements and

construction effort (e.g., estimating and status updates) occurred in groups that crossed

organizational boundaries, so a group’s consistent understanding of requirements may

have also overshadowed possible changes due to translation. Certainly, the prolific use

of a common IS served to minimize variation in individuals’ understanding of

requirements.

As requirements traveled through the organization, uncertainties were resolved

at each step. Identity uncertainties tended to be resolved earlier in the requirement’s

lifecycle; complexity uncertainties were, by their nature, encountered later. Some

identity uncertainties began with customer interaction or negotiated contracts items (for

example, the requirement to support a particular meter, with no definition of

“support”). Other uncertainties resulted from misinterpretation of customer intent. In

both cases, these identity uncertainties were resolved by backtracking through the

development process, sometimes resulting in consultation or negotiation with

customers.

In our finding of localized traveling, the distinction between creep and expansion

(or removal and trimming) is centered on the type of uncertainty being resolved; the

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 98

DISCUSSION

former concerns volatility, while the latter addresses identity. This distinction may at

times be murky for a couple of reasons. First, uncertainty due to complexity may reveal

identity uncertainty and lead to volatility as well. Second, the observation may change

with the unit of analysis: requirements at the smallest level of work may indicate creep

or removal, but when considered as a full requirement or requirement group, this may

present as expansion or trimming.

Temporal considerations also have a part in how GridCo managed uncertainty in

requirements. Early in the project, prior to NPD-2, uncertainty was embraced with

rough estimates (T-shirt sizes) as the requirement was shared horizontally across the

organization to focus a shared vision, and requirements were added and removed from

scope, causing a great deal of volatility in the early part of the cycle. During the middle

of the project, horizontal coordination was insufficient to constrain the oversubscription

of cycle capacity, and guidance was sought along vertical lines. Following NPD-2,

process structures applied vertical reinforcement to travel paths as formal change

control (and consequently, hierarchical approval) became required. Based on

observation, this progression from “loose horizontal” to “strict vertical” over the life of

the project was consistent with other releases. As one manager said, “early [we] embrace

uncertainty, after, we want to restrict uncertainty and control it.”

Although not wholly related to the traveling of requirements, the structure of

development on maintenance—use of a separate “sustaining team” external to the

release—issues may limit the effects of double-loop learning (Argyris and Schon 1978;

Nerur and Balijepally 2007) predicted by theory. GridCo separates a cadre of four

development teams on a six-month rotation focused on maintenance issues. This has

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 99

DISCUSSION

the advantage of providing a more predictive level of staffing for project issues, and

creates a buffer of resources that in extreme circumstances were sometimes reallocated

between maintenance and work on the release, but at the potential cost of more real-

time learning at the team level.

9.2 Work Design

Our analyses of how requirements travelled at GridCo revealed interesting

insights into how structures, processes, systems and knowledge impacted the ability to

manage uncertainties in observed release cycle.

9.2.1 Structures, processes and systems

The discussion of work design (Chapter 5) focused primarily on horizontal (modular)

and vertical (hierarchical) boundaries in work design, and, following our understanding

of Sinha and Van de Ven (2005), tip-toed around addressing network problems, simply

noting they were the complex, entangled interaction of modular and hierarchical

concerns. Yet, in our observation, applying only horizontal and vertical descriptions was

insufficient to capture the richness of interaction: nearly every interaction could be

described as network.

Overall, GridCo used a primarily modular, functional organization design. Each of

the functions involved in the release cycle also had responsibilities for other products,

projects, and releases. Yet, the organization worked, and worked well. Against this basic

empirical finding, we may relate our analyses at GridCo to the core literature. Galbraith

(1973) assumes coordination occurs across vertical boundaries. Instead, at GridCo work

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 100

DISCUSSION

moved back and forth across functional boundaries at the same horizontal level,

requiring coordination of all parties. Sinha and Van de Ven (2005) describe network

boundaries in a way that at first blush implies the quantity of connections is of primary

importance, whereas this case exemplifies it is rather the necessity of coordination

between a multiplicity of participants (each, potentially, with a cross-functional role)

that exemplifies a network.

Mintzberg (1993) summarized Galbraith (1973) and other organizational

researchers, and explained the continuum of “liaison devices” organizations adopt to

overcome the deficiencies of purely functional or purely hierarchical organizational

designs. In particular, GirdCo demonstrated the middle two types of devices on the

continuum from simplest to most elaborate: standing committees and integrating

managers. (Liaison positions and a full matrix structure begin and end the list,

respectively.)

Perhaps the most continuously effective coordination mechanism at GridCo was

the “project status meetings,” attended by managers and directors across related

functional silos. Although the status meetings were technically a task force for the

release cycle, cycles for the C&C software overlapped, so the meeting would transition

from status of a soon-to-finish release to status of a just-beginning release quickly, with

no change in personnel. Status meetings were the primary mechanisms for cross-cycle

traveling; decisions regarding whether to move requirements forward or backward were

made and negotiated among this group of people.

Other meetings, including architecture and design meetings, evolved to included a

subset of status meeting attendees. These design meetings negotiated some of the

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 101

DISCUSSION

complex architectural uncertainties arising from dependencies across layers. The design

meetings also adapted to take over the rough estimation function that in the observed

cycle was accomplished through a plenary meeting, and thus accomplishing the same

task piecemeal and as needed over a period of weeks, rather than interrupting many

workers for an extended meeting.

The second organizational device, integrating managers, is “a liaison position with

formal authority” (Mintzberg 1993, p. 83). At Gridco, both the release cycle manager

and product portfolio manager had weak positional authority, and as Mintzberg (1993)

predicts, primarily exerted influence by negotiation and persuasion of those over whom

there was no formal authority. Some were more effective than others in this role. As was

the case at GridCo, “The effective integrating manager appears to require a high need for

affiliation and an ability to stand between conflicting groups and gain the acceptance of

both without being absorbed into either” (Mintzberg 1993, p. 84).

In combination, integrating managers and standing committees created

relationships that presented as a “local hub assembly” (Figure 9–1)7, a complete network

of connections of all stakeholders involved in the C&C release at the manager and

director levels. The assembly, a group gathered for a common purpose, much like a

standing committee or task force, was local to the release as well as to the parent

product development organization. Additionally, the assembly acted like a hub to the

greater product organization, in fashion similar to hub firms as described by Dhanaraj

7 Figure 9–1, while illustrative, is limited by two dimensions. Imagine instead five different functions,

each with a couple of specific specialists with a relevant stake in the release converging in a fully
connected graph.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 102

DISCUSSION

and Parkhe (2006). Orchestration of the release cycle was accomplished by the assembly

as it “pulls together and leverages the dispersed resources and capabilities of network

members” (Levéna et al. 2014, p. 158), under the direction of a process orchestrator. The

process orchestrator leveraged an organizational reliance on a strong, central IS, as well

as a regular structure of meetings and formal interaction opportunities to regularly align

the focus of the assembly. Occasionally, vertical directives were received by one

stakeholder, and had to be processed by the group. Conversely, there were occasional

problems that were passed up some—but usually not all—of the vertical reporting lines

of stakeholders. In this way, the “local hub assembly” formed the heart of the

coordination of the release cycle.

Figure 9–1: Coordination Through the Local Hub Assembly at GridCo

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 103

DISCUSSION

Here the duality between software and organization is again manifest.

Uncertainty is a function of work design while at the same time also conditions and

informs work design. The lower uncertainty (conditions of high programmability), such

as what existed at the lower, operational levels of the organization due to the detailed

deconstructions accomplished early in the process, permitted a more modular structure.

Situations of higher task uncertainty (low programmability) required, more organic,

tightly coupled structure in order to be responsive.

Other patterns described by Mintzberg (1993) were facially evident, including the

way GridCo used specific roles as knowledge leaders, and as a consequence created slack

resources (Galbraith 1973) while seeking standardized skills in a professional core that

worked independently from colleagues (Mintzberg 1993). Reinforcement of processes

and process orchestrators, what Mintzberg (1993) refers to as “technostructure” were

also strongly evident, as GridCo is a very process-driven organization. The release cycle

manager adopted this role.

Lastly, as has been described, there was a clear investment in vertical information

systems, which is predicted by Galbraith (1973) to reduce uncertainty by increasing

information processing capacity of the organization, a notion validated by multiple

information systems researchers. However, despite a vertical information system, much

of the data it provided was duplicated in multiple ways during coordination activities

such as status meetings. For example, status summaries stored in the system were often

read aloud during coordination meetings. Hence, a key function of the IS at GridCo was

to support sharing of existing documentation and as a constant reminder to all

participants what had been achieved and what plans had been committed to. The shared

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 104

DISCUSSION

requirements IS was used collaboratively in requirements estimation, as a meeting

guide for acceptance and review of completed requirements. Output from the vertical IS

also formed the bulk of status summary documents in a manner similar to a balanced

scorecard. In short, shared information systems were core to nearly every activity in

product development at GridCo.

Overall, it was the combination of and interactions between the release assembly

the process orchestrator that took center stage in dynamically organizing the release

cycle so the participants could successfully manage uncertainties. Backstage, these

mechanisms were enabled by Gridco’s established organizational structure, its vast

repertoire of processes, templates and standards, and, its extensive use of a

comprehensive and extensively shared IS.

9.2.2 Knowledge Centers

Requirements construction and architectural decisions at GridCo relied on

analysts and systems engineers, who worked in the same functional silo. As a whole,

these were experienced employees with extensive domain and product knowledge. As

they had primary responsibility for the deconstruction of all requirements in the queue,

the oversubscription of the release placed a great deal of strain on this function, and

eventually caused a bottleneck in the release.

This was a structural response to uncertainty, and had the benefit of permitting

development resources to be more fungible and scale more readily. Requirements were

deconstructed to the extent that even the newest development teams could accomplish

them; a necessary feature, for one development manager estimated two-to-three-year

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 105

DISCUSSION

ramp-up time for new developers to acquire enough domain knowledge to have full

productivity. Unfortunately, the centralized group of analysts and engineers with the

requisite domain knowledge could not scale as quickly. As one manager said, “We need

more systems engineers.”

However, as the primary knowledge center for product development, this group

unintentionally acted as a bottleneck to other decisions. Participants explained that any

architectural or design decision made in the development organization required a

second meeting to get the buy-in of these experts.

9.3 Recurrent Development of Packaged Software

Perhaps the most interesting finding specific to packaged software is the temporal

traveling of requirements across cycles, a key tool used by GridCo. This suggests some of

the observations of Sawyer (2000) are due not solely to the type of software being

developed, but also due to the recurrent nature of development. This may help bring

clarity to the muddle of definitions and distinctions between classifications of product

software (Xu and Brinkkemper 2007). Cross-cycle traveling also enabled

reconsideration in the following release of whether the pushed requirements were as

important as initially indicated, and thus provided an additional filter useful in

identifying the most important requirements. Requirements were not the only thing to

travel, however. In multiple instances, resources were temporarily shifted between

overlapping cycles.

One major benefit of cross-cycle traveling, was the minimal disruption caused by

introducing a requirement from a previous cycle. Typically, much of the work of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 106

DISCUSSION

uncertainty management, through activities such as deconstruction, had already been

accomplished; previously expended resources were not wasted, and there was no

noticeable loss in momentum.

A second benefit of embracing cross-cycle traveling was the shifting of

requirements with low-uncertainty forward and backward between cycles as a buffer or

hedge against uncertainty. When important but highly volatile work became available,

some low uncertainty requirements were shifted to the next cycle. Conversely, when

high volatility unexpectedly opened capacity, low uncertainty requirements, in this case,

international localizations prepared in a previous release and scheduled for a future

release, were shifted to the current cycle so available capacity was not wasted.

Benefits of recurrent development extended beyond cross-cycle traveling. During

a particular observation, senior developers were estimating story points for software

features necessary for support of a new utility meter in the command and control

software. Estimation of these stories occurred with surprisingly little discussion.

Additionally, some stories were seemingly duplicated. On investigating further, it

became clear that the stories being estimated were similar for all meters supported by

the software, and that support for new meters was added regularly. Thus, iterating

cycles not only increase domain knowledge, but may expose repeated patterns of

functionality to be implemented in similar ways, improving productivity not only in the

development, but also in the planning and coordination of development.

The shared experience of multiple iterations led, as expected, to a shared

vocabulary at GridCo that took some time for researchers to understand. This increased

organizational learning (Lyytinen and Rose 2006) and consequent clearer

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 107

DISCUSSION

communication, likely, over time, resulted in reduced uncertainty due to translation as

requirements traveled.

As predicted, cross-cycle traveling provides benefits beyond managing the

uncertainty of a particular requirement or release. Some requirements occurred in

multiple release cycles. Some requirements persisted “below the line” in multiple

releases, but not prioritized high enough to be developed in a particular release. GridCo

utilized investigative requirements as a tool to uncover uncertainties in developing a

future requirement. Such investigative requirements did not necessarily introduce

functionality in the then current release, but were fully realized in an initial release, but

is fully realized in a future one. These are examples of traveling that would not be

possible if development were recurrent, as it is in packaged software.

9.4 Engaged Scholarship

In return for site and data access, we agreed (Section 7.1) as part of our engaged

scholarship effort (Van de Ven 2007) to return to GridCo with a practical evaluation of

their organization and processes. The evaluation, summarized below, highlighted

strengths and difficulties observed during data collection, and presented options for

possible improvement.

9.4.1 Strengths

We saw GridCo as a mature organization that successfully coordinated across multiple

sites thanks to a strong, mature process culture. The firm as a whole regularly managed

hundreds, if not thousands of HW and SW projects. They had a history of successful

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 108

DISCUSSION

releases, which spoke to their ability to repeat successes. This repeatability (Humphrey

1989; Lyytinen and Rose 2006) was reinforced by adherence to firm-mandated NPD-

gates, combined with adaptive agile-like developments processes. This structure

improved coordination with the rest of the firm, beyond the stakeholders in the release

cycle as well as providing a structural short-term vision for the release (Parnas and

Clements 1986). Yet, despite the rigid structure, the organization remained adaptive,

and modified its processes to improve flow of information processing, as evidenced by

the change in how rough estimation was accomplished. This ambidextrous balance of

discipline and adaptability also provided performance management and social support

to actors within the organization (Gibson and Birkinshaw 2004; Napier et al. 2011).

Regular status meetings held functions accountable for their work. There was a

communal and sometimes negotiated understanding of expectations, and feedback

when expectations were not met, but also a willingness for parts of the organization to

compensate when work by another stakeholder was insufficient, as it occurred when

development utilized capacity that would otherwise have been wasted when insufficient

requirements had been decomposed.

The role of the process orchestrator and the local hub assembly in collectively

Figure 9–2: Manipulating the Triple Constraints of Project Management

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 109

DISCUSSION

coordinating the project was instrumental to the organization’s success. There was

regular effort in status meetings to agree on both unified internal and external

messaging to maintain an aligned vision of the release. The organization embraced

coordination cost as a necessity, and continuously reinforced and rewarded process

behavior that was productive, not just formal. For example, although status documents

were available via a shared information system, weekly external messaging to the firm

hierarchy was read aloud. At first, we wondered whether this behavior was superfluous,

but came to recognize that this over-communication was essential to building the almost

consistently unanimous consensus of the assembly.

One of the greatest strengths of GridCo was its acceptance of the constraints of

project management. The organization understood the trade-offs inherent in the triple-

constraints of the “Iron Triangle” (scope, resources and time) (Kapur 2004), and

stakeholders had support of their hierarchical leadership when making adjustments of

scope and resources to meet vertical demands. The C&C release typically manipulated

scope, as resources (e.g., personnel) and time were generally fixed (Figure 9–2).

Figure 9–3: Differences in Constraint Management in Software and Hardware

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 110

DISCUSSION

9.4.2 Difficulties

By far the most pressing challenge GridCo faced was the management of cross-layer

dependencies. HW and SW projects were supposedly timed to publicly release

simultaneously, but internal schedules prevented this during the observed period. In

development of SW, recurrent releases and the (comparatively) low cost of deployments

and upgrades permitted release managers to manipulate scope by easily moving

requirements to future cycles. HW development was not so lucky; their scope and

resources were static by comparison, and consequently HW projects adjusted their

release date as a response to encountered uncertainties. SW, on the other hand, was

under a strict schedule by vertical fiat, and adjusted scope as necessary to meet the

schedule (Figure 9–3) As a development manager indicated, “We’re agile in

requirements, but not agile in schedules.” In short, the scope flexibility of SW was

incompatible with time flexibility of HW. Managers responsible for the C&C release

attempted repeatedly in previous cycles to impose hard limits on completion status of

HW components included in the cycle’s scope, but were regularly overruled by

executives determined to keep contractual commitments. Thus, cross-layer traveling of

requirements dependent on HW and FW components introduced a great deal of

schedule uncertainty in the observed release. Major HW components were eventually

delivered so late that SW support, a major component of the release, was delayed and

released as a separate update for a specific customer two months after the cycle was to

have concluded.

Incomplete management of backlog requirements between release cycles also

posed a difficulty for GridCo. Both strategic planning and drafts of backlog lists for each

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 111

DISCUSSION

cycle were made more difficult by the lack of a unified backlog that persisted across

cycles. Product and product area managers maintained separate backlogs that were

combined at the start of each cycle, as one product manager described it, through

“Darwinian” negotiation. Consequently, a manager noted, “There's very little of what I

would call a true portfolio review in product management, except on a very ad hoc basis,

per release, as things are just about in front of us, to say, okay, here's how these things

are going to interrelate to produce a more cohesive product backlog.” Consequently,

rather than a reserve backlog providing a organization-wide roadmap of future

development, the backlog was made more volatile by frequent executive escalation of

priorities in the early stage of the observed cycle. Cross-layer dependencies compounded

the difficulties that arose from lack of a backlog. Multiple participants shared the view

that a lack a portfolio view of requirements to examine relationships between HW and

SW releases contributed to increased executive escalation of requirements early in

cycles. Further, this lack of a backlog limited the ability of the product development

group to communicate its plans to external entities within the company (e.g., sales).

Each SW cycle began significantly over-subscribed; a backlog of uncompleted

requirements is a sign of a healthy product, but an over-full backlog might indicate a

need for additional resources.

These difficulties combine to manifest a third area of trouble for GridCo: product

strategizing. Without a between-cycle backlog, there was no default way to communicate

a long-term product roadmap with the rest of the firm. Instead, releases tended to

experience increased volatility due to contractual demands from new customers through

sales. GridCo was very effective in sales, and entered several significant strategic

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 112

DISCUSSION

contracts before and during the observation period, but members of the product

development organization expressed concern that they lacked a long-term vision, such

as might be expressed in a shared, unified backlog. Consequently, strategic resource

planning was also hampered because it is difficult to plan for future resources without

understanding future scope. As one example, GridCo used an outsourced software

development vendor. The ramp-up time and quality of delivered code were somewhat

below expectations, and development managers wanted to move that capacity to in-

house and overseas captives. As one manager summarized, “They haven’t worked out

like we wanted”. Use of the vendor’s development resources was initially slated to ramp

down over a twelve-month period in a previous cycle, but demands of scope necessitated

those resources be fully utilized. Without a backlog to inform the discussion, product

development seemed to avoid addressing strategic ways of adjusting capacity (up or

down) to properly fulfill demands of scope.

9.4.3 Options

Elucidating the difficulties encountered by product development at GridCo makes

some avenues for potential improvement very clear. Strategic resource and scope

management would be improved through a unified product backlog that is shared

beyond product development and used as a basis for strategic resource planning. In

addition, the release cycle was quite long. Consequently, some participants had a

tendency to want to push development of requirements later in the cycle. In contrast,

shorter cycles would beneficially narrow the solution space for managing uncertainty by

constraining the schedule; and, requirements would be addressed or moved to a future

cycle for later consideration, rather than being reconsidered multiple times (and causing

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 113

DISCUSSION

thrashing in the project). Customers would likely not react well to shorter release cycles

(their independent certification requirements were typically about several months), but

shorter, interim releases could be considered only internally.

One method of gaining the benefits of shorter release cycles is a concept

discussed by (McConnell 1998, p. 38), called “Two-Phase Funding.” Although

McConnell (1998) describes two-phase funding from a financial perspective, the same

principles apply when resources are fixed, and scope is being manipulated to match

capacity. As a way to reduce variation, the first portion of the cycle is dedicated to the

most uncertain requirements with the primary intent of reducing their uncertainty in

the latter part of the cycle. This structural change might involve separate change control

windows for the early and late parts of the cycle, and could include formal deadlines and

completion standards for consideration of inclusion of requirements dependent on new

HW, thus also reducing the need to manage the volatile interactions of cross-layer

traveling. Early and late cycle windows would mean more frequent, but shorter ranking

discussions, and these discussions would be simpler due to the shorter time frames

involved. Similarly, such a change rewards discipline on low-uncertainty requirements,

and provides for adaptability on high-uncertainty requirements. Discussions of volatility

would be less common, leading to less thrashing during coordination. Lastly, the

additional deadlines inherent in a double window cycle might lead to small productivity

boosts due to deadline effects.

The final option presented to GridCo for consideration was allowing for a flexible

release window. The high volatility of HW-dependent requirements almost guaranteed

delays that were not apparent until well into the cycle. Time frames were fixed because

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 114

DISCUSSION

they had been communicated outside the firm; protecting those releases date and

instead providing release windows until schedules were less uncertain (for example, at

NPD-2) would provide an additional option for managing uncertainty.

9.5 Contributions

It is evident from even casual observation that GridCo is a very process-mature

organization. Actors at multiple levels rigorously document, adhere to, and, reinforce its

engineering and management processes. The release manager of the studied release

cycle claims a strong track record of successful releases (on time, full scope, within

budget). In addition, the market seems to be responding to the success of the

organization, as evidenced by GridCo winning contracts from increasingly large

customers (and correspondingly increasing revenue) over the past year. This has lead to

a very rapid growth in their development organization, maybe due to a successful

handling of uncertainty in software development; consequently, such rapid growth may

also reveal uncertainties. In any case, rapid growth affords a future opportunity to

investigate structural responses to uncertainty.

The primary findings of this dissertation speak directly to the initial research

questions. Local, cross-layer, and cross-cycle traveling of requirements are

organizational responses to managing uncertainty. As such, this dissertation contributes

to the under-represented requirements research in IS (Hassan and Mathiassen

Forthcoming) by exploring requirements practices in a complex software development

organization. Further, the notion of traveling (Czarniawska and Joerges 1996; Nielsen et

al. 2013) is further validated as an analysis tool for researchers in IS.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 115

DISCUSSION

Software development research as a whole benefits from research that considers

both uncertainty and work design (King 2013), and this dissertation answers recent calls

for modern work design research (Sinha and Van de Ven 2005). Software development

is accomplished in a wide range of organizational structures, and the discussion of

network hub assemblies contributes to field understanding of variations present in

firms. The traveling metaphor (Czarniawska and Joerges 1996) and the three types of

traveling observed at GridCo reveal new insights into management of uncertainties in

development practices.

Software organizations that must manage multiple product layers benefit from

understanding cross-layer traveling and the resulting whiplash effect of requirement

dependencies and volatility. Even though GridCo employs risk models to provide

management some confidence in cost–benefit and risk–rewards analyses, their models

may require revision. Complex multi-layer software projects, such as GridCo’s

centralized C&C system, rely on HW (and its associated FW) being completed to a

sufficient level before software development can begin. This means the work on later

software requirements—which may reside in a different release cycle than the HW

component—is subject to not only to its standard risk variance, but also to the sum of all

risks of the dependent projects. At GridCo, project and functional boundaries within the

organization were reinforced by release-focused processes, which have led some within

the organization to call for a more holistic management of the project portfolio, and

exploration of ways to span these boundaries with a more pragmatic approach

Development of packaged software (Xu and Brinkkemper 2007) is validated as

distinct from development of other software, in that enables additional methods of

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 116

DISCUSSION

managing uncertainty, as explained in cross-cycle traveling. The review of packaged

software literature (Chapter 3) highlighted some inconsistencies in how packaged

software is viewed and classified. The GridCo narrative is a useful data point in bringing

order to this emerging domain.

Uncertainties with regard to requirements, as exemplified by identity, volatility

and complexity uncertainties (Mathiassen et al. 2007), were evident throughout the

release cycle. Implicated uncertainties will change between identity, volatility and

complexity as requirements travel. The types of local traveling, as well as the different

perspectives introduced by cross-layer and cross-cycle traveling, allow insight into what

sorts of uncertainty might be expected, and a description of how those uncertainties

were handled at GridCo. The organization’s processes serve to enable and reinforce

coordination through structural boundary spanning both through the local hub

assembly of primary stakeholders and their respective functional hierarchies. However,

at times it also impedes the success of the organization as some of these processes are

ill-adapted to the uncertain nature of software, resulting in anomalies such as ex post

facto approval of changes to project scope, schedule and budget, or the beginning of

software development before requirements are accepted into a release. However, these

events where structure is ill-fitting may represent acceptable costs when compared with

the added complexity of utilizing different processes for different project types within

the same organization. This question is echoed by Child (1977, p. 175), who asks whether

an organization should “set a limit on its internal formalization in order to remain

adaptable, or should it allow this to rise as a means of coping administratively with the

internal complexity that tends to accompany large scale?”.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 117

DISCUSSION

Grounded in findings such as these, this research contributes to the IS

requirements management literature and the packaged software literature. As described

in Chapter 4, there is not a strong tradition of requirements-related research within the

IS discipline (Hassan and Mathiassen Forthcoming). Treating requirements as

expressions of uncertainty provides a connection to related fields of research in IS.

Examining requirements within the context of an organization led to uncovering new

knowledge about the sources of and responses to uncertainty in development of

software, contributing to both the IS and software development literature. Further, by

examining requirements in situ, this dissertation provided insight into software

development and contributes a modern narrative to existing knowledge of general

practices.

GridCo is a very different type of organization than the cases considered in

Sawyer (2000). Thus, this case may be useful in extricating industry and organization

effects from effects contingent on whether development is of packaged software or

custom development. When considered point-by-point, practices at GridCo may be

analyzed and presented as evidence or contradiction of Sawyer’s (2000) speculations.

Many of the descriptions and effects of packaged software (Sawyer 2000; Xu and

Brinkkemper 2007) have not yet been subjected to empirical analysis (Light and Sawyer

2007), so this dissertation is a novel entry in that regard.

Finally, consistent with the responsibilities laid out in the MoU, researchers

contributed to practice at GridCo by providing theory-informed summaries of

recommendations to key stakeholders at the research site (as described in Section 9.4).

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 118

DISCUSSION

9.6 Limitations

Any research is subject to limitations of scope and method. This research draws on a

single case (Miles and Huberman 1994; Yin 2009), which limits the viability of cross-

case comparison or generalization of findings to other contexts (Lee and Baskerville

2003). Researchers and practitioners in software development research, seem

particularly likely to overreach in claims of applicability to other contexts, without

consideration for differences between the contexts in the development method,

organizational dynamics, or type of product (Jackson 1995). However, these

disadvantages are weighed against the strengths of single-case research: attention to

contextual dynamics and integration of multiple perspectives resulting in rich

description (Mason 2007). Detailed description and rigorous analysis may enable future

researchers to confirm and expand these findings in other contexts. To ensure rigor and

validity, standard practices of empirical qualitative research were adopted (Miles and

Huberman 1994; Yin 2009).

Single-case studies do not provide as strong a basis for theory building as

multiple cases might (Yin 2009), yet single cases permit a richer description of observed

phenomena, which can, in turn, lead to strong theory regarding the research setting.

Although organization-level effects are difficult to generalize to other contexts, this is

not the intent of single case research (Siggelkow 2007). Conversely, observations of

multiple actors or artifacts within a consistent context permits investigation of the

behavior and attributes of these subjects with a stronger claim that contrasting effects

are not context-dependent.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 119

DISCUSSION

Generalization to populations or other contexts is not the intent or purpose of

interpretive research. Instead, interpretive research seeks to generalize descriptions

within a setting, and from there, generalize to theory (Lee and Baskerville 2003). This is

not a weakness of case study research, but rather a strength (Eisenhardt and Graebner

2007; Lee and Baskerville 2003).

Coding by a single researcher, as was done for this dissertation, is common in

interpretive studies (Cousins and Robey 2005; Schultze 2000), although it sometimes

raises concerns of researcher bias. However, as Eisenhardt and Graebner (2007, p. 25)

noted, “Although sometimes seen as ‘subjective,’ well-done theory building from cases is

surprisingly “objective,” because its close adherence to the data keeps researchers

‘honest.’” To mitigate researcher bias, the coding scheme was first dialectically iterated

to be as objective and clear as possible. Both researchers participated in challenging

interpretations in data collection, and conclusions reached through data reduction and

data displays. Analyses were iterated to confirm fit between data, theory, and the coding

framework. In all, these steps improved reliability of the interpretation and analysis

(Miles and Huberman 1994).

Quality interpretive research further protects against claims of bias by

triangulating data, using multiple sources and types of data, seeking feedback from key

informant on researcher interpretations, and, by iteratively refining their understanding

by rigorous immersion in the data (Miles and Huberman 1994; Yin 2009). The multiple

sources of data employed in analysis give strength our conclusions Importantly, these

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 120

DISCUSSION

findings were presented to key stakeholders at GridCo who concurred with the

interpretations of data and key findings.

There is a danger that the findings regarding the traveling of requirements, and

the types of traveling present at GridCo, will be applied to other contexts without

appropriate verification in those contexts, but that is a problem for future researchers.

9.7 Conclusion

We began by questioning how requirements travel, both socially and structurally

within an organization. RQ1 focused on construction, sharing, and translation of

requirements, while RQ2 examined traveling from the perspective of organizational

structure. At our level of analysis, it was sharing, more than construction or translation,

that moved to the forefront. Although the requirements construction life-cycle was

detailed in the analysis (e.g., Figure 8–1) and was useful in elucidating local traveling

and confirming that requirements do indeed travel and change, the interaction of

horizontal and vertical boundaries that informed cross-layer and cross-cycle traveling

was of even more interest. Additionally, the organizational structure—the local hub

assembly—mitigated the effect of these boundaries.

Both research questions constrained focus to “recurrent software development”

which is addressed by cross-cycle traveling. In addition, the recurrent nature of

development at GridCo enabled both extensive distributed domain knowledge and an

ease of coordination between actors that might have been less likely in other contexts.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 121

DISCUSSION

The three types of requirements traveling revealed in this dissertation—local,

cross-layer, and cross-cycle—form the basis for discussion of organization structure,

uncertainty resolution, and packaged software development, and provide real benefit to

the field of information systems development. Using requirements as a lens, we have

examined novel organizational structures in practice, and compared them to seminal

work on organizational contingency theory. We have also validated a modified

vocabulary of the traveling metaphor and applied it in IS research. These findings are

novel contributions to practice and theory.

T. Gregory | Dissertation Proposal 122

REFERENCES

10 REFERENCES

Argyris, C., and Schon, D. 1978. Organizational Learning: A Theory of Action Perspective.
Reading, MA: Addison-Wesley.

Austin, R.D., and Devin, L. 2009. "Research Commentary—Weighing the Benefits and Costs of
Flexibility in Making Software: Toward a Contingency Theory of the Determinants of
Development Process Design," Information Systems Research (20:3), pp. 462-477.

Balmer, S. 2013. "One Microsoft: Company realigns to enable innovation at greater speed,
efficiency [Press release]." Retrieved July 12, 2013, from
https://http://www.microsoft.com/en-us/news/Press/2013/Jul13/07-
11OneMicrosoft.aspx

Banker, R.D., Hu, N., Pavlou, P.A., and Luftman, J. 2011. "CIO reporting structure, strategic
positioning, and firm performance," MIS Quarterly (35:2), pp. 487-504.

Basili, V.R., and Boehm, B. 2001. "COTS-based systems top 10 list," Computer (34:5), pp. 91-95.
Baskerville, R., Pries-Heje, J., and Madsen, S. 2011. "Post-agility: What follows a decade of

agility?," Information and Software Technology (53:5), pp. 543-555.
Benbasat, I., and Zmud, R.W. 2003. "The Identity Crisis within the IS Discipline: Defining and

Communicating the Discipline's Core Properties," MIS Quarterly (27:2), pp. 183-194.
Benslimane, Y., Yang, Z., and Bahli, B. 2010. "Requirements uncertainty and standardization in

IS development projects: A survey of the IT sector in China," Industrial Engineering and
Engineering Management (IEEM), 2010 IEEE International Conference on, pp. 1097-
1101.

Boehm, B.W. 1991. "Software Risk Management: Principles and Practices," IEEE Software (8:1),
pp. 32-41.

Brooks, F.P. 1987. "No Silver bullet: Essence and accidents of software engineering," IEEE
Computer (20:4), pp. 10-19.

Cao, L., and Ramesh, B. 2008. "Agile requirements engineering practices: An empirical study,"
IEEE Software (25:1), pp. 60-67.

Carlile, P.R. 2002. "A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New
Product Development," Organization Science (13:4), pp. 442–455.

Carlile, P.R. 2004. "Transferring, Translating, and Transforming: An Integrative Framework for
Managing Knowledge Across Boundaries," Organization Science (15:5),
September/October 2004, pp. 555–568.

Carlile, P.R., and Rebentisch, E.S. 2003. "Into the Black Box: The Knowledge Transformation
Cycle," Management Science (49:9), September 1, 2003, pp. 1180-1195.

Carmel, E., and Becker, S. 1995. "A Process Model for Packaged Software Development," IEEE
Transactions on Engineering Management (42:1), pp. 50–61.

Carson, S.J., Madhok, A., and Wu, T. 2006. "Uncertainty, Opportunism, and Governance: The
effects of volatility and ambiguity on formal and relational contracting," Academy of
Management Journal (49:5).

Cheng, B.H.C., and Atlee, J.M. 2007. "Research Directions in Requirements Engineering," in:
Future of Software Engineering. IEEE.

Child, J. 1977. Organizations: A Guide to Problems and Practice. New York: Harper & Rowe.
Choudhury, V. 1997. "Strategic Choices in the Development of Interorganizational Information

Systems," Information Systems Research (8:1).
Cousins, K., and Robey, D. 2005. "Human Agency in a Wireless World: Patterns of Technology

Use in Nomadic Computing Environments," Information and Organization (15:2), pp.
151–180.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 123

REFERENCES

Czarniawska, B. 2009. "Emerging institutions: pyramids or anthills?," Organization Studies
(30:4), pp. 423-441.

Czarniawska, B., and Joerges, B. 1996. "Travels of Ideas," in Translating Organizational
Change, B. Czarniawska and G. Sevón (eds.). New York: Walter De Gruyter.

Davidson, E.J. 2002. "Technology Frames and Framing: A Socio-Cognitive Investigation of
Requirements Determination," MIS Quarterly (26:4), pp. 329-358.

Davis, A. 1993. Software Requirements: Objects, Functions and States. Upper Saddle River, NJ:
Prentice Hall.

Davis, G.B., Ein-Dor, P., King, W.R., and Torkzadeh, R. 2006. "IT Offshoring: History, prospects
and challenges," Journal of the Association for Information Systems (7:11), pp. 770–
795.

Davison, R.M., Martinsons, M.G., and Kock, N. 2004. "Principles of canonical action research,"
Information Systems Journal (14), pp. 65–86.

Dhanaraj, C., and Parkhe, A. 2006. "Orchestrating Innovation Networks," Academy of
Management Review (31:3), pp. 659–669.

Downey, H.K., Don, H., and Slocum, J.W., Jr. 1975. "Environmental Uncertainty: The Construct
and Its Application," Administrative Science Quarterly (20:4), pp. 613-629.

Downey, H.K., and Slocum, J.W. 1975. "Uncertainty: Measures, Research, and Sources of
Variation," The Academy of Management Journal (18:3), pp. 562-578.

Drazin, R., and Van de Ven, A.H. 1985. "Alternative Forms of Fit in Contingency Theory,"
Administrative Science Quarterly (30:4), pp. 514-539.

Dyreson, C. 1997. "A Bibliography on Uncertainty Management in Information Systems," in
Uncertainty Management in Information Systems, A. Motro and P. Smets (eds.).
Springer US, pp. 413-458.

Eisenhardt, K.M., and Graebner, M.E. 2007. "Theory Building from Cases: Opportunities and
Challenges," Academy of Management Journal (50:1), pp. 25–32.

Galbraith, J. 1973. Designing Complex Organizations. Assidon-Wesley.
Gibson, C.B., and Birkinshaw, J. 2004. "The Antecedents, Consequences, and Mediating Role of

Oranizational Ambidexterity," Academy of Management Journal (47:2), pp. 209–226.
Graham, I. 1998. Requirements Engineering and Rapid Development. Harlow, UK: Addison-

Wesley.
Harris, M.L., Hevner, A.R., and Collins, R.W. 2009. "Controls in Flexible Software

Development," Communications of the Association for Information Systems (24), pp.
757–776.

Hassan, N.R., and Mathiassen, L. Forthcoming. "Distilling Information Systems Knowledge:
Canonical Knowledge Areas for Information Systems Development," Submitted for
publication).

Henderson, R.M., and Clark, K.G. 1990. "Architectural Innovation: Reconfiguration of existing
product technologies and the failure of established firms," Administrative Science
Quarterly (35:1), pp. 61–82.

Heymans, P., and Dubois, E. 1998. "Scenario-Based Techniques for Supporting the Elaboration
and the Validation of Formal Requirements," Requirements Engineering (3:3-4), pp.
202–218.

Hickey, A.M. 1999. "Integrated scenario and process modeling support for collaborative
requirements elicitation." (Ph.D. dissertation), University of Arizona, Tucson.

Hickey, A.M., and Davis, A.M. 2004. "A Unified Model of Requirements Elicitation," Journal of
Management Information Systems (20:4), pp. 65-84.

Humphrey, W. 1989. Managing the Software Process. Reading, Massachusetts: Addison-
Wesley.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 124

REFERENCES

Iivari, J., Hirschheim, R., and Klein, H.K. 2004. "Towards a distinctive body of knowledge for
Information Systems experts: coding ISD process knowledge in two IS journals,"
Information Systems Journal (14:4), pp. 313-342.

Im, K.S., Grover, V., and Teng, J.T.C. 2013. "Research Note—Do Large Firms Become Smaller by
Using Information Technology?," Information Systems Research (24:2), June 1, 2013,
pp. 470-491.

Jackson, M. 1995. Software Requirements & Specifications: A lexicon of practice, principles
and prejudices. ACM Press.

Jarke, M., and Pohl, K. 1994. "Requirements engineering in 2001: (Virtually) managing a
changing reality," Software Engineering Journal (9:6), pp. 257–266.

Jauch, L.R., and Kraft, K.L. 1986. "Strategic management of uncertainty," The Academy of
Management Review (11:4), pp. 777-790.

Jiang, J.J., Klein, G., Wu, S.P.J., and Liang, T.P. 2009. "The relation of requirements
uncertainty and stakeholder perception gaps to project management performance,"
Journal of Systems and Software (82:5), pp. 801-808.

Jingyue, L., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., and Morisio, M. 2009.
"Development with Off-the-Shelf Components: 10 Facts," IEEE Software (26:2), pp. 80–
87.

Kapur, G.K. 2004. Project Management for Information, Technology, Business and
Certification. Prentice Hall.

Karlsson, L., Dahlstedt, Å.G., Regnell, B., Natt och Dag, J., and Persson, A. 2007. "Requirements
engineering challenges in market-driven software development – An interview study
with practitioners," Information and Software Technology (49:6), pp. 588-604.

King, J.L. 2013. "Balance of Trade in the Marketplace of Ideas," Journal of the Association for
Information Systems (14:4), pp. 192–197.

Klein, H.K., and Myers, M.D. 1999. "A Set of Principles for Conducting and Evaluating
Interpretive Field Studies in Information Systems," MIS Quarterly (23:1), pp. 67–94.

Kraut, R.E., and Streeter, L.A. 1995. "Coordination in software development," Communications
of the ACM (38:3), pp. 69–81.

Lee, A.S., and Baskerville, R.L. 2003. "Generalizing Generalizability in Information Systems
Research," Information Systems Research (14:3), pp. 221–243.

Levéna, P., Holmström, J., and Mathiassen, L. 2014. "Managing research and innovation
networks: Evidence from a government sponsored cross-industry program," Research
Policy (43), pp. 156–168.

Light, B., and Sawyer, S. 2007. "Locating packaged software in information systems research,"
European Journal of Information Systems (16:5), Oct 2007, pp. 527-530.

Liu, J.Y.-C., Chen, H.-G., Chen, C.C., and Sheu, T.S. 2011. "Relationships among interpersonal
conflict, requirements uncertainty, and software project performance," International
Journal of Project Management (29:5), 7//, pp. 547-556.

Lowry, P.B., Moody, G.D., Gaskin, J., Galletta, D.F., Humpherys, S., Barlow, J.B., and Wilson,
D.W. Forthcoming. "Evaluating journal quality and the Association for Information
Systems (AIS) Senior Scholars’ journal basket via bibliometric measures: Do expert
journal assessments add value?," MIS Quarterly).

Lyytinen, K., and Rose, G.M. 2006. "Information system development agility as organizational
learning," European Journal of Information Systems (15:2), pp. 183–199.

Mason, J. 2007. Qualitative Researching, (2nd ed.). London: Sage Publications.
Mathiassen, L., and Pedersen, K. 2008. "Managing uncertainty in organic development

projects," Communications of the Association for Information Systems (23:1), pp. 484–
500.

Mathiassen, L., Saarinen, T., Tuunanen, T., and Rossi, M. 2007. "A Contigency Model for
Requirements Development," Journal of the AIS (8:11), pp. 569–597.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 125

REFERENCES

McConnell, S. 1998. Software Project Survival Guide. Redmond, Washington: Microsoft Press.
McFarlan, F.W. 1981. "Portfolio approach to information systems," Harvard Business Review

(59), pp. 142–150.
Miles, M.B., and Huberman, A.M. 1994. Qualitative Data Analysis, (2nd ed.). Sage.
Miller, D., and Friesen, P.H. 1983. "Strategy-Making and Environment: The Third Link,"

Strategic Management Journal (4:3), pp. 221-235.
Milliken, F.J. 1987. "Three types of perceived uncertainty about the environment: State, effect,

and response uncertainty," The Academy of Management Review (12:1), pp. 133-143.
Mintzberg, H. 1980. "Structure in 5's: A Synthesis of the Research on Organization Design,"

Management Science (26:3), pp. 322-341.
Mintzberg, H. 1993. Structure in Fives: Desiging Effective Organizations. New Jersey:

Prentice-Hall, Inc.
Mitchell, R.J., Shepherd, D.A., and Sharfman, M.P. 2011. "Erratic strategic decisions: when and

why managers are inconsistent in strategic decision making," Strategic Management
Journal (32:7), pp. 683-704.

Morrissey, J.M. 1990. "Imprecise information and uncertainty in information systems," ACM
Transansactions on Information Systems (8:2), pp. 159–180.

Na, K.-S., Li, X., Simpson, J.T., and Kim, K.-Y. 2004. "Uncertainty profile and software project
performance: A cross-national comparison," Journal of Systems and Software (70:1–2),
pp. 155-163.

Napier, N.P., Mathiassen, L., and Robey, D. 2011. "Building contextual ambidexterity in a
software company to improve firm-level coordination," European Journal of
Information Systems (20:6), pp. 674-690.

Nerur, S., and Balijepally, V. 2007. "Theoretical Reflections on Agile Development
Methodologies," Communications of the ACM (50:3), pp. 79–83.

Newkirk, H.E., and Lederer, A.L. 2006. "The effectiveness of strategic information systems
planning under environmental uncertainty," Information & Management (43:4), pp.
481-501.

Nicolini, D. 2009. "Zooming in and out: studying practices by switching theoretical lenses and
trailing connections," Organization Studies (30:12), pp. 1391-1418.

Nidumolu, S. 1995. "The effect of coordination and uncertainty on software project
performance: residual performance risk as an intervening variable," Information
Systems Research (6:3), pp. 191-219.

Nidumolu, S.R. 1996. "Standardization, requirements uncertainty and software project
performance," Information and Management (31), pp. 135–150.

Nielsen, J.A., Mathiassen, L., and Newell, S. 2013. "Theorization and Translation in Information
Technology Institutionalization: Evidence from Danish Home Health Care," MIS
Quarterly (Forthcoming).

Nonaka, I. 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization
Science (5:1), pp. 14-37.

Orlikowski, W.J. 1996. "Improvising Organizational Transformation Over Time: A situated
change perspective," Information systems Research (7:1), pp. 63–92.

Orlikowski, W.J., and Baroudi, J.J. 1991. "Studying information technology in organizations:
Research approaches and assumptions," Information Systems Research (2:1), pp. 1-28.

Orlikowski, W.J., and Iacono, C.S. 2001. "Research Commentary: Desperately Seeking the ‘IT’ in
IT Research—A Call to Theorizing the IT Artifact," Information Systems Research (12:2),
pp. 121–134.

Parnas, D.L. 1972. "On the Criteria To Be Used in Decomposing Systems into Modules,"
Communications of the ACM (15:12), pp. 1053-1058.

Parnas, D.L., and Clements, P.C. 1986. "A rational design process: How and why to fake it,"
Software Engineering, IEEE Transactions on (SE-12:2), pp. 251-257.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 126

REFERENCES

Patton, M.Q. 2005. "Qualitative Research," in Encyclopedia of Statistics in Behavioral Science.
John Wiley & Sons, Ltd.

Pawson, R., Wong, G., and Owen, L. 2011. "Known Knowns, Known Unknowns, Unknown
Unknowns The Predicament of Evidence-Based Policy," American Journal of
Evaluation (32:4), pp. 518-546.

Pohl, K. 1994. "The three dimensions of requirements engineering: A framework and its
applications," Information Systems (19:3), pp. 243-258.

Pohl, K. 1996. Process-Centered Requirements Engineering. New York: Wiley.
Ramesh, B., Cao, L., and Baskerville, R. 2010. "Agile requirements engineering practices and

challenges: an empirical study," Information Systems Journal (20:5), pp. 449–480.
Rasmusson, J. 2011. The Agile Samurai: How Agile Masters Deliver Great Software. Pragmatic

Bookshelf.
Regnell, B., Höst, M., och Dag, J.N., Beremark, P., and Hjelm, T. 2001. "An industrial case study

on distributed prioritisation in market-driven requirements engineering for packaged
software," Requirements Engineering (6:1), pp. 51-62.

Robey, D., Smith, L.A., and Vijayasarathy, L.R. 1993. "Perceptions of conflict and success in
information system development projects," Journal of Management Information
Systems (10), pp. 123–139.

Sanchez, R., and Mahoney, J.T. 1996. "Modularity, Flexibility, and Knowledge Management in
Product and Organization Design," Strategic Management Journal (17), pp. 63–76.

Sawyer, S. 2000. "Packaged software: implications of the differences from custom approaches to
software development," European Journal of Information Systems (9:1), pp. 47-58.

Schultze, U. 2000. "A Confessional Account of an Ethnography About Knowledge Work," MIS
Quarterly (24:1), pp. 3–41.

Seaman, C.B. 1999. "Qualitative methods in empirical studies of software engineering,"
Software Engineering, IEEE Transactions on (25:4), pp. 557-572.

Siddiqi, J., and Shekaran, M.C. 1996. "Requirements Engineering: The Emerging Wisdom,"
IEEE Softw. (13:2), pp. 15-19.

Siggelkow, N. 2007. "Persuasion with case studies," Academy of Management Journal (50:1),
pp. 20-24.

Sillitti, A., Ceschi, M., Russo, B., and Succi, G. 2005. "Managing uncertainty in requirements: a
survey in documentation-driven and agile companies," Software Metrics, 2005. 11th
IEEE International Symposium: IEEE, pp. 10 pp.-17.

Simon, H.A. 1979. "Rational Decision Making in Business Organizations," The American
Economic Review (69:4), pp. 493-513.

Simon, H.A. 1996. The Sciences of the Artificial. MIT press.
Sinha, K.K., and Van de Ven, A.H. 2005. "Designing Work Within and Between Organizations,"

Organization Science (16:4), pp. 389-408.
Slaughter, S.A., Levine, L., Ramesh, B., Pries-Heje, J., and Baskerville, R. 2006. "Aligning

Software Processes with Strategy," MIS Quarterly), pp. 891–918.
Snowden , D.J., and Boone, M.E. 2007. "A Leader’s Framework for Decision Making," Harvard

Business Review), November, 2007.
SWEBOK. 2013. "Guide to the Software Engineering Body of Knowledge (SWEBOK V3)." IEEE.
Thayer, R., and Dorfman, M. 1994. Standards, Guidelines, and Examples on System and

Software Requirements Engineering. Los Alamitos, CA: IEEE Computer Society Press.
Thompson, F., and Perry, C. 2004. "Generalising results of an action research project in one

work place to other situations: Princip..." European Journal of Marketing (38:3/4).
Thompson, J.D. 1967. Organizations in Action. New York: McGraw-Hill.
Torchiano, M., and Morisio, M. 2004. "Overlooked aspects of COTS-based development,"

Software, IEEE (21:2), pp. 88-93.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 127

REFERENCES

Trist, E.L. 1981. "The sociotechnical perspective," in Perspectives on Organizational Behavior,
A.H. Van de Ven and W.F. Joyce (eds.). New York: John Wiley and Sons.

Van de Ven, A.H. 2007. Enaged Scholarship: A guide for organizational and social research.
Oxford: Oxford University Press.

Vlissides, J., Helm, R., Johnson, R., and Gamma, E. 1995. Design Patterns: Elements of
reusable object-oriented software.

Watson, H.J., and Frolick, M.N. 1993. "Determining Information Requirements for an EIS,"
MIS Quarterly (17:3), pp. 255–269.

Weber, R. 2003. "Still Desperately Seeking the IT Artifact," MIS Quarterly (27:2), 06//, pp. 183-
183.

Weigelt, C., and Miller, D.J. 2013. "Implications of internal organization structure for firm
boundaries," Strategic Management Journal (Forthcoming).

Williamson, O.E. 1991. "Comparative Economic Organization: The analysis of discrete structural
alternatives," Administrative Science Quarterly (36:2), pp. 269-296.

Xu, L., and Brinkkemper, S. 2007. "Concepts of product software," European Journal of
Information Systems (16:5), Oct 2007, pp. 531-541.

Yin, R.K. 2009. Case Study Research: Design and Methods, (4th ed.). SAGE Publications.
Zammuto, R.F., Griffith, T.L., Majchrzak, A., Dougherty, D.J., and Faraj, S. 2007. "Information

Technology and the Changing Fabric of Organization," Organization Science (18:5), pp.
749–762.

Zave, P. 1997. "Classification of research efforts in requirements engineering," ACM Computing
Surveys (29:4), pp. 315–321.

Zmud, R.W. 1980. "Management of large software development efforts," MIS Quarterly (4:2),
pp. 45-55.

T. Gregory | Dissertation Proposal 128

Appendix A: ISD Requirements Construction Classics

APPENDIX A: ISD REQUIREMENTS CONSTRUCTION CLASSICS

1. Agarwal, R., Sinha, A., and Tanniru, M. 1996. "Cognitive Fit in Requirements
Modeling: A Study of Object and Process Methodologies," Journal of Management
Information Systems (13:2), pp. 137-162.

Applies cognitive fit theory to requirements modeling. Experimental group

showed better performance in process-oriented modeling tasks when using a

process modeling tool.

2. Byrd, T.A., Cossick, K.L., and Zmud, R.W. 1992. "A Synthesis of Research on
Requirements Analysis and Knowledge Acquisition Techniques.," MIS Quarterly
(16:1), pp. 117-138.

Synthesizes "knowledge acquisition" and "requirements analysis" literature.

Categorizes elicitation techniques.

3. Davidson, E.J. 2002. "Technology Frames and Framing: A Socio-Cognitive
Investigation of Requirements Determination," MIS Quarterly (26:4), pp. 328-358.

Using an example of project failure, represents how changes in framing (of both

the focus of the organization and the focus of the project) affect requirements

priority. Concludes requirements are social constructions, fleshed out by often

undocumented social interactions.

4. Guinan, P.J., Cooperider, J.G., and Faraj, S. 1998. "Enabling Software Development
Team Performance During Requirements Definition: A Behavioral Versus Technical
Approach," Information Systems Research (9:2), pp. 101-125.

Team skill, management involvement, and little variation in team experience

led to more effective team processes during requirements development. Team

members engaged in positive boundary-spanning behavior (e.g., championing)

and negative boundary-spanning behavior (e.g., guarding). Guarding behavior,

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 129

Appendix A: ISD Requirements Construction Classics

that is, limiting information requested or released by a group, is shown to

negatively affect performance, a result contrary to some earlier research involving

different activities.

5. Hickey, A.M., and Davis, A.M. 2004. "A Unified Model of Requirements Elicitation,"
Journal of Management Information Systems (20:4), pp. 65-84.

Presents a unified model of requirements elicitation, synthesizing a great deal of

elicitation research. Provides guidance on comparing/contrasting elicitation

models.

6. Houdeshel, G., and Watson, H.J. 1987. "The Management Information and Decision
Support (MIDS) System at Lockheed-Georgia," MIS Quarterly (11:1), pp. 127-140.

Carefully defined requirements are one of many factors, such as strong

executive sponsorship, team approach to development, and evolutionary

development, that lead to the success of a specifically studied system. Although only

cursorily related to requirements, this paper suggests a complete set of

requirements up front would be "difficult or impossible" (p. 136), and successful

development occurred due to an evolutionary approach.

7. Majchrzak, A., Beath, C.M., Lim, R.A., and Chin, W.W. 2005. "Managing Client
Dialogues During Information Systems Design to Facilitate Client Learning," MIS
Quarterly (29:4), pp. 653-672.

Discusses "collaborative elaboration" as an elicitation technique and a way to

facilitate "client learning." Dialoguing with clients produces superior design phase

outcomes.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 130

Appendix A: ISD Requirements Construction Classics

8. Markus, M.L., Majchrzak, A., and Gasser, L. 2002. "A Design Theory for Systems
That Support Emergent Knowledge Processes," MIS Quarterly (26:3), pp. 179-212.

Design theory for systems with ambiguously defined users, unstructured

requirements, unpredictable work contexts, and tacit knowledge distributed across

experts and non-experts. (Example contexts are new product development,

strategic planning, organizational design.)

9. Montazemi, A.R., and Conrath, D.W. 1986. "The Use of Cognitive Mapping for
Information Requirements Analysis," MIS Quarterly (10:1), pp. 45-56.

Cognitive mapping is used to improve understanding of complex cause–effect

relationships. In the context of requirements analysis, this provides better

understanding of relationships between requirements.

10. Schenk, K.D., Vitalari, N.P., and Davis, S.K. 1998. "Differences between Novice and
Expert Systems Analysts: What Do We Know and What Do We Do?," Journal of
Management Information Systems (15:1), pp. 9-50.

Determines individual analyst's problem-solving skills are key to defining good

systems requirements, and identifies specific weaknesses that separate novice and

experienced analysts. Ability to identify and define problems, greater willingness to

make and discard hypotheses, and consideration of a greater number of

alternatives are some characteristics that distinguish novice and expert analysts.

11. Wand, Y., and Weber, R. 1995. "On the Deep-Structure of Information-Systems,"
Information Systems Journal (5:3), pp. 203-223.

Not about requirements construction processes, per se. Authors propose models

useful for examining the sufficiency of representational grammars.

Traveling of Requirements in the Development of Packaged Software

T. Gregory | Dissertation 131

Appendix A: ISD Requirements Construction Classics

12. Watson, H.J., and Frolick, M.N. 1993. "Determining Information Requirements for
an EIS," MIS Quarterly (17:3), pp. 255-269.

A mixture of methods—planning meetings, informal discussions with executive

users, and observation of usage context—were useful in elicitation and (pre-

development) validation of system requirements.

13. Wetherbe, J.C. 1991. "Executive Information Requirements - Getting It Right," MIS
Quarterly (15:1), pp. 51-65.

Information overload is given as a reason for lack of fit between systems and

users. Post-delivery revisions are costly, and can be prevented with up-front

requirements elicitation. Lack of information sharing between functions, use of

interviews for elicitation instead of group collaborative processes, questioning user

needs instead of use cases, and lack of prototyping are identified as hindering

development of useful systems.

	Georgia State University
	ScholarWorks @ Georgia State University
	6-27-2014

	Traveling of Requirements in the Development of Packaged Software: An Investigation of Work Design and Uncertainty
	Thomas Gregory
	Recommended Citation

	Dissertation 2014-06s (clean)

