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ABSTRACT 

TRAVELING OF REQUIREMENTS IN  
THE DEVELOPMENT OF PACKAGED SOFTWARE: 

AN INVESTIGATION OF WORK DESIGN AND UNCERTAINTY 

BY 

THOMAS A. GREGORY 

27 June 2014 

 

Committee Chair: Dr. Lars Mathiassen 

Major Academic Unit: Center for Process Innovation 

 

Software requirements, and how they are constructed, shared and translated across 
software organizations, express uncertainties that software developers need to address 
through appropriate structuring of the process and the organization at large. To gain 
new insights into this important phenomenon, we rely on theory of work design and the 
travelling metaphor to undertake an in-depth qualitative inquiry into recurrent 
development of packaged software for the utility industry. Using the particular context 
of software provider GridCo, we examine how requirements are constructed, shared, 
and translated as they travel across vertical and horizontal boundaries. In revealing 
insights into these practices, we contribute to theory by conceptualizing how 
requirements travel, not just locally, but across organizations and time, thereby 
uncovering new knowledge about the responses to requirement uncertainty in 
development of packaged software. We also contribute to theory by providing narrative 
accounts of in situ requirements processes and by revealing practical consequences of 
organization structure on managing uncertainty. 
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ABSTRACT 

ABSTRACT 

Software requirements, and how they are constructed, shared and translated across 

software organizations, express uncertainties that software developers need to address 

through appropriate structuring of the process and the organization at large. To gain 

new insights into this important phenomenon, we rely on theory of work design and the 

travelling metaphor to undertake an in-depth qualitative inquiry into recurrent 

development of packaged software for the utility industry. Using the particular context 

of software provider GridCo, we examine how requirements are constructed, shared, 

and translated as they travel across vertical and horizontal boundaries. In revealing 

insights into these practices, we contribute to theory by conceptualizing how 

requirements travel, not just locally, but across organizations and time, thereby 

uncovering new knowledge about the responses to requirement uncertainty in 

development of packaged software. We also contribute to theory by providing narrative 

accounts of in situ requirements processes and by revealing practical consequences of 

organization structure on managing uncertainty. 

 



T. Gregory | Dissertation Proposal  2 
INTRODUCTION 

1 INTRODUCTION 

1.1 Research Domain 

Software is inherently complex (Brooks 1987), making its development a highly risky 

(Boehm 1991) and uncertain (Mathiassen and Pedersen 2008) activity. Yet, the 

outcomes of software development, as with development of any other product 

(Henderson and Clark 1990), are affected in multiple ways by the organizational context 

in which it is developed. We set out with the assumption that software requirements, 

and how they are constructed, shared and translated as they travel across the software 

organization, are expressions of uncertainties that software developers face and need to 

address through appropriate structuring of the process and the organization at large. 

Requirements are necessarily interpreted and negotiated as they travel through an 

organization on a journey intended to resolve the gap of uncertainty between customer 

needs and market options, on the one hand, and released software on the other. Thus, 

we use the lenses of uncertainty and work design to investigate the management and 

organization of software development as a complex human activity from the perspective 

of software requirements. 

Software requirements are strongly analogous to task uncertainty, and are useful 

focal points for uncovering specific uncertainties in the development of software. By 

considering types of uncertainty developers might encounter (identity, complexity, and 

volatility uncertainties) (Mathiassen et al. 2007), the consequences to implementation 

of requirements and the task uncertainties they represent may be more fully elucidated. 

Moreover, adopting the language of task uncertainty (Galbraith 1973) enables the 
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simultaneous investigation of work design in software development. Sinha and Van de 

Ven (2005) argued for reopening the study of work design within and between 

organizations, and provided a brief review of contingency theory. Contingency theory 

suggests that organizations build structures and processes to adapt to tasks and contexts 

(Drazin and Van de Ven 1985), and the consequences of these structures and processes 

are expressed as tradeoffs between mutually desirable, but exclusive goals. Thus, 

products developed in and between organizations, including software, may reflect 

attributes of the processes used to create them. Simultaneously, the organization adapts 

itself to the products it creates. As requirements must necessarily travel across vertical 

and horizontal boundaries, the selection, negotiation and interpretation of requirements 

is likely to change depending on how the development activity is structured. Hence, 

examining how requirements travel (Czarniawska and Joerges 1996) may help tease 

apart and understand this duality between the software and the organizational structure 

under which it is developed. 

This collection of theories, namely, traveling (Czarniawska and Joerges 1996), 

organization contingency (Galbraith 1973), and uncertainty (Mathiassen et al. 2007), 

emerge naturally from the focus on requirements as they interact with and are adapted 

to the needs of their situating organization. Examining requirements across a system of 

development aligns naturally with conventional IS perspectives. The notion that 

requirements evolve throughout their life is readily explained by traveling theory. A view 

of organizational structure is necessary to describe where requirements travel, and we 

rely on the seminal work of Galbraith (1973) as well as modern simplifications (Sinha 

and Van de Ven 2005). Lastly, we utilize uncertainty not only because it is a core 
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underlying concept of information processing in contingency theory, but also because it 

explains why requirements travel. 

Using a specific corporate context of recurrent development of packaged 

software, this study looks deeply into uncertainties encountered during development 

and addresses the problems organizations face in ensuring requirements are effectively 

constructed, shared, and translated as they travel across vertical and horizontal 

boundaries, not only within a particular release cycle, but also between connected 

releases. The context of packaged software allows for temporal effects as development is 

recurrent—the same product is iterated over multiple releases—and this may be 

reflected in the traveling behavior of requirements. In addition to richer insight in 

uncertainty in a software development context, this research extends the sparse 

packaged software literature by providing evidence to confirm or challenge the field’s 

understanding of the nature and contextual effects on packaged software development. 

1.2 Research Questions  

In order to respond to these general themes of software requirements and work design, 

it is necessary to examine in detail how requirements behave in particular 

organizational contexts: 

RQ 1: How are requirements constructed, shared, and translated in recurrent 

development of packaged software? 

Zooming in (Nicolini 2009) on the relationship between work design and requirements, 

we adopt the traveling metaphor (Czarniawska and Joerges 1996; Nielsen et al. 2013) in 

conjunction with the notion of boundaries (Carlile 2002) to examine how requirements 
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change within and across boundaries in their journey towards software delivery. In an 

organizational context, such boundaries might be horizontal or vertical (Sinha and Van 

de Ven 2005). This leads to the second research question: 

RQ 2: How do requirements travel across vertical and horizontal boundaries in 

recurrent development of packaged software? 

In addressing these questions, this dissertation seeks contribution to theory by 

uncovering new knowledge about the sources of and responses to requirement 

uncertainty in recurrent development of packaged software. In this way, it answers 

recent calls (Austin and Devin 2009) for inductive qualitative research of design of 

software processes based on contextual factors. Further, it contributes to theory by 

providing detailed accounts of an organization’s contextual responses to managing 

requirements as they travel across boundaries, reaffirming the need for process 

reinforcement that supports the role of boundary spanners. 

Despite the wealth of requirements research in the software engineering 

tradition, based on evidence from analyses (Hassan and Mathiassen Forthcoming) and 

reviews of requirements literature in information systems (Mathiassen et al. 2007), little 

is known in the information systems (IS) field. Especially, we lack knowledge about the 

human dynamics involved in constructing and translating requirements as multiple 

actors negotiate meaning and resolve uncertainty across organizational boundaries. 

Additionally, the consideration of software requirements in packaged software is novel 

within the scope of IS literature, as compared with traditional, in-house or outsourced 

software development. 
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This dissertation seeks to answer these research questions via an empirical 

qualitative study. We list the consequential contributions to knowledge in Table 1-1. 

1.3 Summary of Dissertation 

This dissertation presents relevant research and extant theory; describes the empirical 

setting, methodology, and analysis; and discusses findings and contributions to theory 

according to the following structure:  

Table 1-1: Contributions to Knowledge 

Target Gap Contribution 

IS research Sparse requirements 
literature in IS; 
requirements under-
represented in literature 
 
Sparse application of 
traveling metaphor in IS 
literature 

Exploration of requirements 
practices as they unfold in an 
organization 
 
 
Reinforce utility of traveling 
metaphor to support process 
studies and theory building 

Software development 
research 

Software development 
should be examined in the 
context of its 
implementing 
organization 
 
Uncertainty avoidance 
and mitigation 

Investigation of connection 
between work design and 
uncertainty in software 
development 
 
 
Traveling metaphor reveals new 
insights into management of 
uncertainties in development 
practices 

Packaged software 
research  

Area is under-studied and 
only speculatively defined 
 
 
Lack of grounded 
concepts about 
development of packaged 
software 
 

A detailed empirical account of 
packaged software development 
informs beliefs 
 
Conceptualization of the 
different ways in which packaged 
software requirements travel and 
consequences for organizing the 
process  
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• Chapter 2 considers uncertainty as it appears in different literature streams, 

and connects uncertainty to both the study of organizations and software 

development. Task uncertainty is explained, and differentiated from 

requirements uncertainty and environmental uncertainty. 

• Chapter 3 reviews the packaged software literature and makes the case for 

studying the domain of packaged software. The anticipated effects of packaged 

software on organizations and development processes are contrasted with 

development of other types of software. 

• Chapter 4 summarizes the requirements management literature both from 

software engineering and information systems perspectives and emphasizes the 

lack of interactions between the two streams. Requirements processes are 

described as iterative and parallel. Requirements are related to uncertainty. 

• Chapter 5 presents modern and seminal theory of work design and how it 

relates to uncertainty. Horizontal and vertical work design structures are 

explicated. The problems arising from particular work design structures are 

highlighted and framed as uncertainties. Organizations are similar to software in 

the sense that they are the result of design as well as emergence. 

• Chapter 6 presents and adapts the “travel of ideas” literature. The central 

concept of “traveling” is discussed and further dissected to provide greater clarity 

in a software development context. 

• Chapter 7 describes the setting and design for this research, and details data 

and method of collection. We use a qualitative, case study method. GridCo has a 
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structured new product development (NDP) method. Analysis is delineated, and 

the intended coding scheme is justified. 

• Chapter 8 describes how requirements at GridCo traveled in certain ways 

within and across release cycles as participants addressed uncertainties. We 

identified and analyzed three major categories of traveling behavior: local, cross-

layer and cross-cycle. 

• Chapter 9 using GridCo in relating analyses to theories of traveling, work 

design, and recurrent packaged software. Strengths and weaknesses of GridCo’s 

development practiced are presented as engaged scholarship. We summarize 

contributions and limitations. 
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2 UNCERTAINTY 

Uncertainty is defined and discussed based on different literature streams. 

Uncertainty is connected to both the study of organizations and software development. 

Task uncertainty is explained, and differentiated from requirements uncertainty and 

environmental uncertainty. 

2.1 Uncertainty in Information Systems and Organization Research 

Uncertainty is no stranger to information systems research, and has many facets. 

Broadly speaking, uncertainty is the absence of complete information, and has been 

called by Thompson (1967) the primary issue facing senior managers (Nidumolu 1995). 

Uncertainty includes (to paraphrase former U.S. Secretary of Defense Donald Rumsfeld) 

both known-unknowns and unknown-unknowns (Pawson et al. 2011). 

The concept of uncertainty appears in most streams of IS and organization 

research, as decisions must be made and work produced in the absence of complete 

information. Consequently, uncertainty appears in strategy (Jauch and Kraft 1986; 

Milliken 1987), Transaction Cost Economics (TCE) (Williamson 1991), software 

development (Nidumolu 1995), project management (Jiang et al. 2009), requirements 

management (Nidumolu 1996), and the study of work design (Galbraith 1973), just to 

name a few. The term “uncertain” is also applied to information, particularly in the 

fields of database and knowledge base systems, where uncertainty is used to mean “the 

representation of and query support for information that is fuzzy, unknown, partially 
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known, vague, uncertain, probabilistic, indefinite, disjunctive, possible, maybe, 

incomplete, approximate, erroneous, or imprecise” (Dyreson 1997, p. 413). 

As Downey and Slocum (1975, p. 562) point out in their review of what came to 

be known as “environmental uncertainty” in the strategy literature, “uncertainty is a 

term which is used daily in a variety of ways. This everyday acquaintance with 

uncertainty can be seductive in that it is all too easy to assume that one knows what he is 

talking about.” Certainly, each research domain seems to have subtly different 

definitions of uncertainty that are not always reconcilable. 

One of the most basic questions in comparing literature on uncertainty is 

determining whether it is an objective or perceptive state (Downey et al. 1975; Downey 

and Slocum 1975; Milliken 1987). The fields of information processing, decision 

sciences, and computer engineering refer to uncertainty as an objective property of 

information, when a result is between states, unknown or incomplete (Dyreson 1997). In 

contrast, most organizational and strategy research takes the psychological viewpoint 

that uncertainty is a state faced by some deciding actor, which may occur because of 

missing, incomplete, conflicting, transient, or complex information. 

A common subcategory of uncertainty, particularly in the governance literature, 

is ambiguity, the absence of information in decision making or the unknowability of 

outcomes, including a lack of understanding of cause–effect relationships, unknown 

variables, or unknown alternatives (Carson et al. 2006; Milliken 1987). Imprecision of 

data (Morrissey 1990) similarly results in ambiguity. Ambiguity is a consequence of 

complex, dynamic, or emergent systems (Snowden and Boone 2007). This wild 

combination of too much and not enough information is attributed by some software 
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development researchers to communication gaps, and are labeled identity concerns 

(Mathiassen et al. 2007). 

Other classifications of uncertainty include volatility, the unpredictable rate of 

change in market demand or supply availability (Carson et al. 2006), as well as 

technological uncertainty, which indicates future changes in technology are unknown 

and could led to significantly different future costs for a considered technology or render 

it obsolete (Choudhury 1997). Strategy researchers use a similar construct, dynamism, 

or the rate and unpredictability of environmental change (Miller and Friesen 1983; 

Newkirk and Lederer 2006).1 Within software development research, volatility concerns 

may arise because of changing market pressures, customer preferences, or business 

needs, to list a few of many reasons, and may manifest as budget or schedule changes. 

As in TCE, a basic assumption behind uncertainty is bounded rationality, the finite 

ability of humans to access, store, and process information (Simon 1979). Although 

generally unspoken, the assumption of bounded rationality undergirds the information 

processing perspective (e.g., Galbraith 1973) typical of research in organization 

                                                   
1  Strategy research considers the broader label, environmental uncertainty, with three dimensions: 

dynamism, heterogeneity (complexity of factors in the environment), and hostility (degree of 
external competition) (Miller and Friesen 1983), although a review of resource-based view (RBV) 
literature applies munificence (the extent to which a business can grow) instead of hostility (Wade 
and Hulland, 2004). Although now collectively labeled environmental uncertainty, under the 
original conception only dynamism was considered uncertainty (Miller and Friesen 1983), and was 
defined similarly to the constructs volatility and demand uncertainty in other streams as mentioned 
above. However, because of bounded rationality, heterogeneity and hostility increase the likelihood 
of ambiguity, so collectively considering the three dimensions as uncertainty is appropriate. This is 
particularly true, as these three dimensions have been shown to interact when considering the 
extent to which managers make erratic strategic decisions. 

 Mitchell, R.J., Shepherd, D.A., and Sharfman, M.P. 2011. "Erratic strategic decisions: when and why 

Wade, M., and Hulland, J. 2004. “The Resource-Based View and Information Systems Research: 
Review, extension, and suggestions for future research,” MIS Quarterly (28:1), pp. 107-142. 
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structure and work design. Because of bounded rationality, uncertainties resulting from 

ambiguity are magnified when decision makers are also faced with complexity; the two 

facets of uncertainty are deeply intertwined. Thus, software development, a highly 

complex endeavor, is guaranteed to encounter uncertainty. 

2.2 Uncertainty in Software Development 

Uncertainty pervades software development (Brooks 1987) and its attendant processes, 

such as project management and requirements management. Zmud (1980) described 

the effects of uncertainty in software development, saying, “most difficulties can be 

traced to the uncertainty that pervades software development.” 

One facet of the uncertainty found in software development has been called 

requirements uncertainty, meaning “the difference in the information necessary to 

identify user requirements and the amount of information possessed by the developers” 

(Nidumolu 1995, p. 136). Although this definition is useful, it too narrowly considers 

only the relationships between users, requirements, and developers. An earlier and 

more general concept, task uncertainty, captures the essence of requirements 

uncertainty. 

Galbraith (1973, p. 5), defines task uncertainty as “the difference between the 

amount of information required to perform the task and the amount of information 

already possessed by the organization.” Software development is the act of creating 

information (as represented by, for example, source code), and is, by its nature, 

uncertain, and so a simpler but perhaps less precise definition of task uncertainty in a 

software development context is the difference between what has been done and what 
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has yet to be done in response to specific customer needs and market demands. This 

difference is expressed in agreed upon requirements and the completion status of the 

next software release. 

Galbraith (1973) argues for a correlation between the amount of information to 

be processed and the level of task uncertainty. By this definition, the potential for 

uncertainty in software development grows with the size of the software, as the amount 

of information needing processing—for example, the size of the code base—increases 

over time, and the possibility of unintended interactions between modules increases. 

Developers attempt to manage growing complexity over time with the use of software 

patterns and modularization, but it is the nature of software—as with other endeavors—

to become more complex, and thus more uncertain, over time. The same argument 

applies to a growing organization faced with an increasing number of strategic 

customers whose demands must be satisfied: as their number increases, the potential 

for unintended negative interactions likewise increases, as does uncertainty. 

Conversely, the potential for uncertainty decreases as the amount of information 

already possessed by the organization increases. Although over time, uncertainty is 

expected to go both up and down simultaneously, the resulting dynamics suggests a net 

increase in uncertainty over time. Knowledge as represented by a growing code base as 

well as the increasing institutional knowledge of developers over time tends to reduce 

overall uncertainty, but this benefit is mitigated by the increased complexity and 

increased likelihood of ambiguity. 
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Task uncertainty is also a function of the way the organization is structured.2 The 

design of an organization itself leads to additional uncertainties (Sinha and Van de Ven 

2005), and thus as the organization grows uncertainty will tend to increase (as 

evidenced by coordination cost (e.g., Kraut and Streeter 1995)), although this can be 

mitigated with strategies such as vertical information systems. Galbraith (1973) 

advocates hierarchical structures, in part because coordination costs are limited to 

logarithmic rather than exponential growth. However, any mitigation of uncertainty is 

limited by the cognitive ability of participants (Galbraith 1973). 

As previously noted, a major distinction between requirements uncertainty and 

task uncertainty (on which it is based), is its narrow focus. Requirements uncertainty 

considers only information available from users, whereas task uncertainty encompasses 

all information needed to complete a task, including the tools used in the development 

process or understanding of appropriate software patterns or previous solutions which 

might be applicable to the problem being considered. Further information not 

encompassed by requirements uncertainty but within the umbrella of task uncertainty 

might include the extant state of the code being modified, and any feedback regarding 

iterative development steps, including such trivialities as syntax errors or more 

substantive feedback such as failed unit tests. In software development, some of this 

information (e.g., test feedback) is not available until a solution has been attempted. 

Galbraith’s (1973) broader definition of task uncertainty, which references the 

                                                   
2 Here the duality between software and organization is again manifest. Uncertainty is a function of 

work design while at the same time also conditions and informs work design. The lower the task 
uncertainty, the more structure one can use in designing work (high programmability); the higher 
the task uncertainty, the more organic structures would need to be applied (low programmability). 
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information required to perform a task, must thus necessarily include information that 

reflects whether the task was completed. In the context of software development, this 

suggests the outcome of development effort is uncertain until it is completed, a view 

consistent with the industry understanding of uncertainty in software development 

(Brooks 1987). 

2.3 Uncertainty in Software Requirements 

Researchers have adopted numerous categorizations for uncertainty in requirements 

and software development, including Mathiassen et al. (2007), who separate uncertainty 

into:3 

1. Identity, the knowing of requirements caused by communications gaps4; 

2. Volatility, the changing of requirements whether for internal or external 

reasons, such changes in market and customer preferences, budget or 

priority changes, or timing and schedule changes; and  

3. Complexity, the difficulty in specifying and communicating requirements, 

as well as the cognitive load required to understand the effects of 

implementation due to, for example, dynamic systems, lack of modularity, 

or quantity of constituent components or connections. 

                                                   
3  More precisely, Mathiassen et al. (2007) describe these as risks rather than dimensions of 

uncertainty. This distinction will be addressed later (Section 2.4). 
4  In requirements management literature, communications gaps are almost always in reference to 

gaps in communication with customers. However, as these breakdowns can occur anywhere along 
the potentially numerous organizational and process boundaries that separate users from the 
developers writing source code, it is more useful to simply refer to these as communications gaps. 
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The approach of Mathiassen et al. (2007) both aligns and diverges from earlier 

work by Nidumolu (1996), who identifies a flavor of uncertainty mentioned previously, 

requirements uncertainty, in reference to the uncertainties encountered during 

management of software requirements. Requirements uncertainty stems from the 

information processing viewpoint of Galbraith (1973), and is defined as the difference 

between the information possessed by developers and the information necessary to 

determine end-user requirements (Liu et al. 2011; Nidumolu 1996). Other researchers 

have temporally bounded the idea of requirements uncertainty as occurring in only the 

planning or analysis phases of the IS development process, with consequences felt in 

design, implementation, and maintenance phases (e.g., Benslimane et al. 2010), 

although it is not clear whether this interpretation is commonly held. An increase in 

requirements uncertainty has been shown to have a positive relationship with inter-

personal conflict among stakeholders (Liu et al. 2011). Both requirements uncertainty 

and interpersonal conflict are primary factors for the all-to-common failures in software 

development (Liu et al. 2011; McFarlan 1981; Robey et al. 1993). 

Nidumolu (1996, p. 136) described three dimensions of requirements 

uncertainty: 

1. “Requirements diversity, the extent to which users differ among 

themselves in their requirements”;  

2.  “Requirements instability, the extent of changes in user requirements”; 

3.  “Requirements analyzability, the extent to which the process for 

converting user needs to a set of requirements specifications can be 

reduced to mechanical steps or objective procedures.” 
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These dimensions match closely with the conclusions of Mathiassen et al. (2007). 

Requirements diversity is a subset of potential identity issues, requirements instability 

maps directly to volatility, and analyzability is a reasonable proxy for complexity. The 

primary difference between these descriptions is that Mathiassen et al. (2007) seem to 

be taking a broader view of the development process. 

Software requirements are strongly analogous to, and representations of, task 

uncertainty. In an information-heavy context like software development, requirements 

document goals to be achieved, and thus represent the difference between what needs to 

be done and what has been done. Requirements are statements intended to define these 

gaps, and are thus attempts at setting boundaries around task uncertainty so that it 

might be managed during the development process. This dissertation consequently 

treats requirements as expressions of task uncertainty, with the expectation that the 

organization reveals additional uncertainty (identity, complexity, volatility) as it 

attempts to resolve acknowledged task uncertainty. In doing so, this research uses 

requirements as a point of entry to examine simultaneously the theoretical 

consequences of uncertainty in contingent organization design. 

2.4 Uncertainty and Risk 

Uncertainty and risk have a close relationship. Partly due to the differing perspectives 

on uncertainty, some researchers have considered uncertainty and risk as separate 

constructs, while others view them as interchangeable. We shall attempt here to 

untangle the difference. 
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Risk, most simply, is the probability of a future negative event multiplied by the 

adverse impact on outcomes of the event (Boehm 1991). Both the probability and impact 

are uncertain because outcomes are unknowable (otherwise, they would be certain, and 

there would be no risk), and an actor undertaking risk analysis likely lacks a complete 

understanding of cause–effect relationships or fails to consider unknown variables 

(Milliken 1987). Impact and probability are both uncertain due to the complexity of 

contributing factors, and ambiguity in understanding the cause–effect relationships 

involved in predicting outcomes. So, risks involve uncertainties, but with respect to a 

desired outcome. Uncertainties may imply risks, because events may occur in 

addressing the uncertainty and these events may have adverse effects on outcomes. 

However, not all uncertainties imply risks, as there may be no comparative final state, or 

the difference between possessed information and sufficient information may have no 

bearing on a desired final state.  

Risk concerns itself with negative outcomes (it considers only adverse effects), yet 

is connected inexorably to uncertainty. Like two sides of the same coin, uncertainty 

considers the gap prior to an event, while risk considers the (negative) outcomes of an 

event. 

In software development and project management, the final state is presumed to 

be program completion or delivery; at a somewhat more micro scale, completion of a 

software requirement. Thus, the software development literature sometimes use the 

terms uncertainty and risk interchangeably (e.g., Ramesh et al. 2010)5. This research 

                                                   
5  Unfortunately, the same development literature also occasionally conflates risk with risky behaviors 

(that is, behaviors that increase risk). 
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considers uncertainty to be a psychological state of an actor, while risk is defined as an 

objective (albeit, objectively uncertain) probable outcome. Still, not many researchers in 

software development respect this distinction, and it is sometimes useful to treat risks 

identified by some researchers as uncertainties. 

In the narrower field of requirements uncertainty, by definition, requirements 

uncertainty occurs at early project stages, while “residual performance risk”, by 

definition, is risk that occurs at later stages of a project (Na et al. 2004; Nidumolu 1995; 

Nidumolu 1996). Research into requirements uncertainty takes the view that 

requirements uncertainty is a driver of performance risk, and views performance risk as 

the difficulty in estimating what a project’s performance is likely to be, that is, a lack of 

information about project outcomes. This research stream considers requirements 

uncertainty as a lack of information regarding the inputs to a project (Nidumolu 1995). 

Nidumolu (1996), in choosing to define risk constructs as occurring after the design and 

analysis phases, frames the distinction between uncertainty and risk partly as temporal, 

suggesting that performance risk as measured at different times in a project would vary 

greatly, as major decisions (i.e. more information) such as elapsed time or project costs 

would become available as the project progressed. 

Given our focus on how requirements travel across vertical and horizontal 

boundaries, it is the broader task uncertainty—not the narrower perspective of 

requirements uncertainty—that is of interest. Outcomes from one part of the 

organization or process may be inputs to a different part. Yet, the distinction between 

focus on inputs and outcomes is useful, because it highlights the traveling of 
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information across organizational boundaries. Further, understanding that risks are an 

obverse of uncertainty permits the inclusion of a broader range of uncertainty research. 



T. Gregory | Dissertation Proposal  21 
 
PACKAGED SOFTWARE 

3 PACKAGED SOFTWARE 

This chapter reviews packaged software literature, and makes the case for the domain 

of packaged software. The anticipated effects of packaged software on organizations 

and development processes are contrasted with development of other types of 

software. 

3.1 What is Packaged Software? 

The study of packaged software (Carmel and Becker 1995) is a distinct subset of the IS 

development literature. Packaged software is usually contrasted with custom 

development; it imposes different demands and constraints on the development process 

that are not found in all settings, such as time-to-market pressures, particularly at the 

industry and firm level (Sawyer 2000). Within the requirements engineering literature, 

the notion that packaged software behaves differently is being accepted (Regnell et al. 

2001), noting in particular that time pressures often lead to incremental releases, 

accomplished by recurrent development. As Xu and Brinkkemper (2007, p. 533) point 

out, “The boundaries distinguishing shrink-wrapped software, commercial off-the-shelf 

software (COTS), packaged and commercial software are blurred, but the principle of 

‘Make one, sell many’ is a common to them all.” 

A similar notion exists in the software engineering and requirements literature, 

where packaged software may be referred to as market-driven software (e.g., Karlsson et 

al. 2007) or as COTS (Commercial Off-The-Shelf). No standard empirical definition of 

COTS exists, although Torchiano and Morisio (2004) adopted a broad definition for 
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their empirical study (“[software] acquired from a vendor and used as-is or with minor 

modifications” p.90), and COTS software has been described as systems which meet the 

following criteria (Basili and Boehm 2001): 

• The buyer has no access to developed source code, 

• The vendor controls development, 

• The software serves multiple customers (non-trivial install base). 

In addition, it has been hypothesized that COTS products typically have a new 

release every eight or nine months, although there is wide variation in the population of 

COTS products (Basili and Boehm 2001). Although the weakened bargaining position of 

customers relative to providers of COTS software suggests customers or integrators 

(those using COTS components to build a COTS-based system, or CBS) would have no 

input into COTS development, some researchers assert an interaction with a COTS 

software component provider is important (Jingyue et al. 2009; Torchiano and Morisio 

2004). 

As may be seen from these definitions, the vast bulk of COTS research is 

regarding development of systems with COTS components, rather than of the COTS 

software itself, so its applicability to this research is limited. It does, however, provide 

validation for the claim that development of packaged software imposes unique 

contextual constraints as compared with software development generally, or “one-and-

done” internal software projects commonly reported on in the IS literature. 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  23 
 
PACKAGED SOFTWARE 

 
Figure 3–1: Product Software as described by Xu and Brinkkemper (2007) 

Thankfully, Xu and Brinkkemper (2007) attempted to clarify murky boundaries and 

synthesize the several terms used in research under the umbrella “product software”: 

• Shrink-wrapped software is the mass-produced type typically sold in 

stores, boxed and shrink-wrapped. More modernly, this category might 

include software downloadable from the Internet, such as via the Mac App 

Store. Shrink-wrapped software is intended for large volumes of 

customers. 

• COTS software, as with shrink-wrapped software, targets a market rather 

than individual customers. In contrast to shrink-wrapped software, it may 

be a component rather than a stand-alone software package. Further, 

COTS software may be part of a complex system (“complex COTS” or 

“customized information system”). 

• “Packaged software describes ready-made software products that can be 

readily obtained from software vendors and which generally require little 
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modification or customization” (Xu and Brinkkemper 2007, p. 534). 

According to Xu and Brinkkemper (2007), packaged software modernly 

refers to large enterprise software systems, such as ERPs and CRMs, that 

although despite being available “out of the box”, often require some 

customization to be ready for use that may take weeks or months for large 

packages. 

• Commercial software is controlled by licensing restrictions, and is 

typically available via retail outlets. 

The difficulty with the classification scheme presented by Xu and Brinkkemper 

(2007) is that categorizations are based on multiple dimensions that are not kept 

consistent throughout: market versus niche orientation, retail channels utilized (and 

this dimension is inadequately elucidated for modern software delivery), and whether 

source code is publicly, privately, or not at all available to the end user. The distinction 

between COTS and shrink-wrapped software is not clear, except for a reference to its 

physical packaging, which is becoming less and less relevant in an era of digital 

distribution. Using the language of Xu and Brinkkemper (2007), it is similarly difficult 

to distinguish between COTS software and packaged software. This, indeed, may be 

their point (despite their diagram), that as a field we have attempted to classify software 

on changing and vague external attributes rather than focusing on the different 

pressures that affect its development. 

Considering open source software as a distinct category further muddies these 

classifications. Most definitions of shrink-wrapped software, COTS, and packaged 

software suggest the software source is, by definition, not available. It is not clear, 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  25 
 
PACKAGED SOFTWARE 

however, whether this distinction marks useful differences in how software is developed 

by formal organizations. For example, the source code for Mozilla Firefox is publicly 

available1, although only the smallest fraction of users even views it. Similarly, the open 

source database MySQL2 meets all of the criteria for packaged package software except 

source code availability; it has been developed by a corporation throughout its history3, 

and is likely to experience many of the same effects during its development as other 

packaged systems. The same could be said of SugarCRM4, or any other large open 

source system with a community–enterprise (or similar) dual-licensing model. The 

distinction of whether a packaged software product is open source (itself a muddy term) 

is then only useful if measurable effects of that classification are distinct from closed 

source packaged software products. It may be that the effects researchers have observed 

in open source development stem from the nature of the software (packaged versus 

custom), rather than the license of the resulting source code. Torchiano and Morisio 

(2004) concur that open source software can act as a COTS product, particularly in 

situations where the packaged source code, although available, is not modified, and the 

software is treated as if it were closed source. 

                                                   
1 https://developer.mozilla.org 
2 http://dev.mysql.com 
3 MySQL was initially published in 1995 by MySQL AB, which was purchased by Sun Microsystems in 

2008, who were then wholly acquired by Oracle in 2010. 
4 http://www.sugarcrm.com 
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3.2 Research Opportunity 

Although packaged software has demonstrably unique characteristics, it is still 

considered “a poorly understood phenomena in the information systems research 

community” (Light and Sawyer 2007, p. 527). A special issue of the European Journal 

of Information Systems (EJIS) in 2007 brought attention to the issue, but packaged 

software remains poorly represented in published research. In their editorial 

introducing the issue, Light and Sawyer (2007) argue that although ERP systems, which 

are manifestations of packaged software, have been widely studied in IS, such research 

tended to be too specific to ERPs, or too broadly generalized to systems development, 

without consideration for the differences between packaged and custom software. The 

special issue adopted the same slant as the reviewed requirements literature, as three of 

the five articles in the special issue of EJIS emphasized the consumption and use of 

packaged software, rather than its production. 

This suggests the packaged software literature is immature, incomplete, or simply 

muddied by its mixing with research on custom or internal development. There is an 

opportunity for researchers to tease apart which effects are due to market orientation 

(custom, niche market, mass market), customer segmentation (business market, 

consumer market, or both), source code availability (open, community–premium 

hybrid, or closed), or product complexity (stand-alone applications versus systems). In 

short, we as researchers have done a disservice to our field by considering all software 

development to be alike, and have not developed a consistent language to permit the 

teasing apart of observed effects based on characteristics of the developed software. 
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Additionally, one under-emphasized aspect of packaged software is that its 

development is recurrent, meaning the same organization regularly revisits the code 

base and produces incremental versions for the market. Such iterating leads to a shared 

vocabulary and increased organizational learning, which may, over time, result in 

reduced uncertainty due to translation as requirements travel. Further, one particular 

form of traveling is that a requirement may occur in multiple release cycles: a 

requirement may be in a backlog but not prioritized high enough to receive attention in 

a particular release. Alternatively, the organization may spend some time developing 

toward a requirement that is not included in an initial release, but is fully realized in a 

future one. Thus, requirements in packaged software may not only travel across an 

organization but also in time across releases. This is in addition to any refinement or 

elaboration that might occur (features related to a specific requirement expand or evolve 

over time). These are examples of traveling that would not be possible if development 

were not recurrent, as it is in packaged software. 

3.3 Contrasting “Packaged” and “Custom” Software 

For simplicity, this paper adopts two broad categories of software, packaged software, 

and custom software. In general, custom software targets a single customer (or trivially 

few customers), whether the organization itself or, in the case of contract development, 

via an outsourcing arraignment. It is produced in or for a single project (Torchiano and 

Morisio 2004). Packaged software, on the other hand, targets more than a trivial 

number of customers, which leads to different behaviors in exploring and managing 

software requirements (Sawyer 2000; Xu and Brinkkemper 2007). Packaged software is 
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intended to be a “going concern” (as accountants might say it), that is, to have an 

extended useful life, and is developed over recurring cycles with the intention of long-

term maintenance and improvement. As Xu and Brinkkemper (2007) point out, this has 

implications for the likely level of care taken in architecting the software. Packaged 

software faces time-to-market pressures (Sawyer 2000; Xu and Brinkkemper 2007), 

although this may also be true of contracted custom software. More specifically, 

packaged software organizations are more likely concerned with maintaining schedules 

than with project costs (Sawyer 2000). 

Some of these effects (e.g., differences in requirements management) may 

depend on the complexity of the developed product instead of on whether the software 

is packaged or custom; it may be that the greater the complexity of the software, the 

more likely it is to be productized so that development costs are shared among multiple 

customers. Some of the observed effects may also be industry-level effects. 

Using two small case studies and a review of practitioner and academic literature, 

(Sawyer 2000) proposed what is probably the most well thought-out list of differences 

between packaged and custom development (Table 3-1). There are some weaknesses in 

Sawyer’s (2000) analysis—which should be expected, as Sawyer (2000) refers to these 

as empirical speculations rather than empirical results—namely the similarities in the 

sampled teams: all were focused on “small” products or product components (rather 

than complex systems or networks of products), all were delivering a first-generation 

product (rather than a new version of an existing product), and two of the three teams 

studied were in small, isolated settings. Still, Sawyer’s (2000) article is perhaps the most 
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comprehensive examination of the differences between product and custom 

development. 

Packaged software companies’ emphasis on time constraints rather than cost 

constraints has already been noted; Sawyer’s (2000) contended this was because 

packaged software companies tended to be very rich (large and established) or very poor 

Table 3-1: Differences Between Packaged and Custom Software (Sawyer, 2000) 

 Packaged software Custom software 
Industry • Time to market 

pressures 
• Success measures: 

profit, market share, 
mind share 

• Cost pressures 
• Success measures: 

satisfaction, user 
acceptance, ROI 

Software Development • Line positions 
• User is distant and 

less involved 
• Process is immature 
• Somewhat integrated 

design and 
development 

• Design control via 
coordination 

• Staff positions 
• User is close and more 

involved 
• Process is more 

mature 
• Separated design and 

development 
• Design control via 

consensus building 
Cultural Milieu • Entrepreneurial 

• Individualistic 
• Bureaucratic 
• Less individualistic 

Teams • Less likely to have 
matrix/project 
structure, more likely 
to be self-managed 

• Involved in entire 
development cycle 

• More cohesive, 
motivated, jelled 

• Opportunities for 
large financial 
rewards 

• Likelier to be small, 
collocated 

• Share a vision of their 
product(s) 

• Matrix managed and 
project focused 

• People assigned to 
multiple projects 

• Work together as 
needed 

• Salary-based 
• Grow larger over time 

and tend to disperse 
• Rely on formal 

specifications/docume
nts 

Table content wholly from Sawyer (2000), p. 50 
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(just starting out). Other differences between packaged software and custom software 

deserve mention as well (Table 3-1). Sawyer (2000) speculated packaged software 

companies would measure success by profit and market share, while internal or custom 

development would measure use, satisfaction or return on investment. The software 

development teams in packaged software organizations were more likely to be central to 

the organization’s structure and focused on individual skill and individual achievement, 

and processes are adapted or evolve around an individual’s strengths. In contrast, 

developers in custom software development, Sawyer (2000) contends, are typically 

relegated to staff positions where process dominates and development resources are 

fungible. Developers of packaged software are more likely to be separated from users by 

intermediaries, more likely to have incentives based on project success, and more likely 

to be self-organizing (Sawyer 2000).  

Despite the arguments of Sawyer (2000), many of these team-level effects may 

have more to do with the size of the organization than with the type of software being 

developed, for reasons that will be discussed in the research findings.
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4 REQUIREMENTS MANAGEMENT 

Requirements management literature is summarized using both software engineering 

and information systems perspectives, emphasizing the lack of interactions between 

the two streams. Requirements processes are described as iterative and parallel. 

Requirements are related to uncertainty. 

Requirements and requirements management exist at an interesting intersection in the 

literature. The software engineering (SE) side provides a robust literature, with 

specialized conferences and journals examining specific aspects of requirements 

engineering, including elicitation, analysis, specification, and validation. However, it 

does so without typically examining organizational or systemic considerations. In 

contrast, the IS literature on requirements lacks the strong canonical foundation found 

in SE literature, and tends to address processes and approaches in a fragmented way 

(Hassan and Mathiassen Forthcoming)1. External reviews of the whole of requirements 

literature provide a basis for categorizing uncertainties revealed through requirements 

during the software development process. 

Collectively, requirements engineering activities, along with integration of 

requirements engineering activities into project management are considered by this 

dissertation to constitute “requirements management.”  

                                                   
1 This is perhaps analogous to the state of agile development method in IS literature described by 

Baskerville, R., Pries-Heje, J., and Madsen, S. 2011. "Post-agility: What follows a decade of agility?," 
Information and Software Technology (53:5), pp. 543-555., that is, requirements management and 
requirements construction are something generally understood at a high level but it is difficult to 
describe current contributions with precision. 
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4.1 Requirements in the SE Literature 

As with many bodies of knowledge, software practices may be usefully categorized as 

“generally accepted”, part of specialized sub-fields, or those practices still being tested 

and researched.2 The “Software Engineering Body of Knowledge” (SWEBOK) adopts 

this approach, and includes only generally accepted practices. With this in mind, any 

rigorous description of requirements practices beyond “generally accepted practice” is 

useful to the field as a whole, as descriptions of practice are used to refine the body of 

knowledge as the field progresses. SWEBOK has gone through several iterations, and its 

third version (dubbed SWEBOK V3) was released at the end of 2013, having completed 

its public review period. In contrast, SE review articles highlight the breadth of the field 

and suggest directions for future research in requirements engineering (Cheng and Atlee 

2007) and requirements management. 

A requirement is in SE defined as “a property that must be exhibited by software 

developed or adapted to solve a particular problem … An essential property of all 

software requirements is that they be verifiable” (SWEBOK 2013, p. 2-4). Working with 

software requirements is “not a discrete, front-end activity of the software life cycle, but 

rather a process initiated at the beginning of a project and continuing to be refined 

throughout the life cycle” (SWEBOK 2013, p. 2-4). Despite this espoused integrated 

view, SE researchers make the distinction between requirements engineering as a pre-

                                                   
2 This general taxonomy is used by IEEE in the development of SWEBOK, and is adapted from the 

“Project Management Body of Knowledge.” 

A Guide to the Project Management Body of Knowledge, 2000 ed., Project Management Institute, 
www.pmi.org. 
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development activities by which requirements are built from nascent ideas in to fully 

formed descriptions of architecture, function, and expectation, and requirements 

management, or the umbrella of activities involved in managing large numbers of 

requirements, such as ensuring traceability or analyzing trends (such as stability) in 

requirements over time (Cheng and Atlee 2007). However, in this dissertation we treat 

requirements engineering and management activities collectively as requirements 

management. 

Broadly, SWEBOK separates requirements activities into elicitation, analysis, 

specification, and validation. SE literature tends to treat them as discrete and 

consecutive, but these need not be sequential; for example, analysis and specification 

may be alternative and iterative. Nor need these activities precede the beginning of 

development. Uncertainties may arise during development that require additional 

specification (and thus, potentially, analysis and validation). Of these activities, 

validation is perhaps the most motley, referring both to verification that requirements 

are understandable (implying uncertainties may arise) and meet company standards—a 

characteristic, it should be said, that is not fully knowable a priori—and also referring to 

the application acceptance tests on the developed software to ensure requirements have 

been met. 

However, despite its strengths in developing a common vocabulary and basis for 

discussion, SWEBOK does not provide much discussion of management of 

requirements (beyond suggesting they be managed via a change control process). It also 

does not consider the effect of vertical information systems on requirements 

management (beyond suggesting ad hoc methods—such as using spreadsheets—may be 
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less effective) nor does it discuss sources of uncertainty as requirements are 

communicated across vertical and horizontal boundaries in large organizations. 

Implicit in the background of discussion of agile requirements is the fundamental 

nature of requirements: to transfer the desire of a stakeholder to the understanding of 

the developer, and express that desire in working software. Thus, agile methods serve to 

reduce degrees of separation and permit dialog between requirements holders 

(customers) and developers as a means to manage uncertainty, with the dual goals of 1) 

reducing interpretation errors, 2) overcoming uncertainty through speedy feedback (Cao 

and Ramesh 2008). In the agile SE literature, requirements engineering is formally 

recognized as parallel, iterative and incremental, in a way designed to separate it from 

“traditional” requirements engineering (Cao and Ramesh 2008), even though these 

activates exhibit the same traits in “traditional” settings (Hickey and Davis 2004).  

4.2 Requirements in the IS Literature 

Despite the desire of much SE literature to treat requirements as infallible directives 

(c.f., Sillitti et al. 2005), IS researchers know that requirements have inherent 

uncertainties, and reflect the culture, knowledge, and (possibly flawed) interpretations 

of those writing them (King 2013). Although software developers might wish to eschew 

the uncertainty inherent in requirements—as evidenced by the continued development 

of formal specification requirements languages (e.g., Heymans and Dubois 1998), which 

constitutes its own niche area within the requirements literature—uncertainties remain 

in requirements so long as they are interpreted by developers. Investigation of the 

human aspect of requirements construction seems to naturally fall within the domain of 
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IS development (ISD) research. Unfortunately, ISD literature has little to say about 

these facets of requirements construction. That is not to say these topic are untreated in 

the IS literature; the “classic” paper by Davidson (2002) serves as an excellent counter-

example. Still, requirements construction as a body of knowledge remains unsettled and 

infrequent within IS research (Hassan and Mathiassen Forthcoming). 

Iivari et al. (2004) argued that requirements construction—identification and 

specification of the needs of users—should be one of the knowledge areas for which IS 

researchers could provide “distinctive competence” (p. 322) that contributes to a settled 

body of knowledge, and further argued “requirements construction continues to be the 

major bottleneck in ISD” (p. 323). Indeed, in their analysis of articles in MIS Quarterly 

and Information Systems Journal between 1996 and 2000, requirements construction 

was a prominently featured topic, although spread across a number of development 

contexts (e.g., business process redesign, groupware, decision support systems, etc.), 

representing a fragmentation of knowledge and approaches. 

More recently, Hassan and Mathiassen (Forthcoming) argued for a settled 

contribution and body of knowledge in the IS literature3 through citation and n-gram 

analysis of classics4. They demonstrated requirements construction classics represented 

a tiny fraction (3%) of ISD classics, only thirteen articles, despite being one of the 

categories Iivari et al. (2004) and King (2013) claim IS researchers should be able to 

                                                   
3 Their search was confined to the Senior Scholars Basket of Journals, a list of the top eight journals in 

the field: MIS Quarterly, Information Systems Research, Journal of Management Information 
Systems, European Journal of Information Systems, Information Systems Journal, Journal of 
Strategic Information Systems, Journal of the AIS, and Journal of Information Technology. 

4 To be designated a “classic,” an article must have been cited at least forty times over a decade. 
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offer a distinctive contribution. Of the thirteen requirements construction classics 

(Appendix A), only a couple are modern considerations of requirements processes. Two 

are a mix of very specific context with an internal customer (executive information 

systems) and contain requirements advice that while valuable, represents generally 

accepted practices. Another article considers the systems analyst. The remainder use 

requirements processes as a context or example application for exploring broader 

theories of knowledge sharing, cognitive fit, project failure, modeling and boundary 

spanning.  

The consequence of the IS tradition considering these broader theories is 

grander, more generalizable theories, which may be contributing to the neglect of ISD 

research focusing on requirements construction. This is, perhaps, an example of the 

trend Benbasat and Zmud (2003) identify when they claim IS researchers are “under-

investigating phenomena intimately associated with IT-based systems and 

overestimating phenomena distantly associated with IT-based systems” (p.183). Maybe, 

similar to what Weber (2003) observed regarding the state of research on conceptual 

models and designing databases in the 1980s, requirements construction has been 

co-opted by related disciplines (in this case SE).5 This explanation is supported by 

recent journal analyses (Lowry et al. Forthcoming), which take the position that most 

                                                   
5 Perhaps the other reason Weber (2003) describes is also true: IS researchers as a whole may not 

have sufficient undergraduate, post-graduate, or professional experience to examine the details of 
systems development or requirements construction with confidence. Both of these arguments seem 
to imply research on requirements construction and management is, contrary to the claims of Iivari 
et al. (2004) and King (2013), best suited to sister disciplines than to IS. This is counter to my 
experience and expectation, but I will not delve further into that discussion here. 
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publications of the ACM and IEEE—perhaps the most likely outlets for requirements-

related research—are not widely considered “IS journals.”6 

An alternative, if somewhat trite, explanation for the dearth of ISD requirements 

classics is that the ISD field is volatile, and although it has existed for some time, began 

to mature at the same time it was being disrupted by agile methods. Thus, while there 

may be excellent requirements construction papers in IS outlets, such papers may not 

yet be old enough to be considered classics. 

Despite the lack of a canonical, classical foundation, when considering 

requirements and uncertainty via the traveling of ideas metaphor, this research aligns 

with the tradition in the IS literature of seeking broader theories of knowledge sharing 

and uncertainty management in the context of requirements construction. However, it 

also refocuses attention on the relevant IT artifact (Orlikowski and Iacono 2001): the 

requirement. In doing so, this research anticipates a deep understanding of 

requirements construction practices as they unfold within and between units as an 

important area of ISD research. 

4.3 Contrasting IS and SE Requirements Literature 

IS and SE approach the study of requirements differently (Table 4–1). Whereas SE 

literature tends to focus on individual steps of requirements engineering, with 

occasional perspectives on requirements management, IS literature tends to adopt a 

                                                   
6 And if outlets are not IS journals, they would likely not be on tenure-quality publication lists for top 

IS researchers, meaning there is little incentive for non-tenured faculty to consider requirements 
research. 
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more holistic and contextual approach. Additionally, SE literature seems to take as 

assumed that requirements management is extrinsic to development; conversely, IS 

researchers tend to take the view that requirements management is a development 

activity, even though use of a computer programming language may not be implicated. 

IS researchers recognize—perhaps more explicitly than evidenced in SE—that 

although requirements management models typically show the steps of elicitation, 

analysis, specification, and validation as discrete and sequential, in practice they almost 

always occur iteratively and in parallel (Hickey and Davis 2004) (Figure 4-2), meaning 

requirements both advance and regress, and may be utilized in multiple stages 

simultaneously. This is particularly true in weaker forms of requirements management 

as practiced in agile methods (Ramesh et al. 2010). More than in related fields, IS are 

more likely to apply theories of reasoning, sense-making, and social interaction. IS 

researchers seem to consider contingent contextual factors and holistic system-wide 

consequences when selecting or recommending requirements methods, which may 

contribute to the lack of cohesion discussed by Hassan and Mathiassen (Forthcoming).  

Table 4–1: Contrasting streams of requirements literature 

    Software Engineering     Information Systems 

• Focused 
• Problem & solution are 

distinct spaces 
• Examines process steps 
• Requirements management 

distinct from development 

• Contextual 
• Problem & solution spaces 

interact 
• Examines process flow 
• Requirements management part 

of development 
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Figure 4–1: Parallel Model of the Requirements Process, per Hickey and Davis (2004)7 

As Hickey and Davis (2004) noted, IS researchers, as with SE researchers, use a 

multitude of terms to describe the same requirements management activities, although 

this has perhaps settled somewhat since the publication of SWEBOK: 

“There is little uniformity in the industry concerning 
names given to these activities (Siddiqi and Shekaran 1996). 
For example, to paraphrase Hickey (1999), Davis (1993) de-
fines two activities: problem analysis and product descrip-
tion. Graham (1998) defines two activities: requirements 
elicitation and requirements analysis. Zave (1997) defines 
three activities: elicitation, validation, and specification. 
Jarke and Pohl (1994) define three activities: elicitation, 
expression, and validation. Pohl (1996) defines four activi-
ties: elicitation, negotiation, specification/documentation, 
and validation/verification. Finally, Thayer and Dorfman 
(1994) define five activities: elicitation, analysis, specifica-
tion, verification, and management.” (footnote, p. 82; 
internal citations reformatted) 

Additionally, (Hickey and Davis 2004) demonstrated, as previously mentioned, 

that the requirements activities occur iteratively and in parallel. (Figure 4-2) This is 
                                                   

7 Hickey and Davis (2004) use “triage” to mean determining which groups or requirements will be 
addressed in a release. Some authors (e.g., Ramesh, et al., 2010) consider this part of analysis, 
offering yet another example of unsettled definitions. 
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consistent with research by Davidson (2002), who treats requirements as social 

constructions elucidated over time through social interaction as actors engage in 

resolving ambiguity. Davidson (2002) also found that because of the social nature of 

requirements, interactions were not consistently recorded in requirements documents. 

Thus, the requirements documents inconsistently addressed the assumptions 

underlying particular requirements (even if later uncovered), and tended to reduce the 

value of the documents. In both of these studies, however, uncertainty is best 

represented by identity concerns; complexity and volatility as aspects of uncertainty are 

not obviously considered. 

On a more basic level, however, the different fields of requirements and IS 

consider the nature of “development” and where it exists in the organization in 

drastically different ways. Cheng and Atlee (2007) describe the difference this way: 

“In general, the research challenges faced by 
requirements-engineering community are distinct from 
those faced by the general software-engineering community, 
because requirements reside primarily in the problem space, 
whereas other software artifacts reside primarily in the 
solution space. That is, requirements descriptions, ideally, 
are written entirely in terms of the environment, describing 
how the environment is to be affected by the proposed 
system. In contrast, other software artifacts focus on the 
behavior of the proposed system, and are written in terms of 
internal software entities and properties. Stated another way, 
requirements engineering is about defining precisely the 
problem that the software is supposed to solve (i.e., defining 
what the software is to do), whereas other SE activities are 
about defining and refining a proposed software solution." 
(emphasis original) 

The distinction between problem and solution spaces exists in academic 

requirements research, despite the apparent incongruity of portions of the requirements 
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management domain such as analysis, modeling, and verification residing in, or at the 

very least bridging, the problem and solution spaces.  

Although requirements may flow into the firm from multiple sources, IS 

researchers tend to either observe the vendor–client dyad or scope their research to the 

boundaries of the firm. This dissertation adopts the latter approach, and is thus less 

concerned with discovery that often occurs via connections beyond firm boundaries (as 

discussed in the robust requirements elicitation literature), but focuses on those 

interactions that exist within the firm’s processes, such as requirement exposition, as 

well as the traveling and translation of requirements into software. This narrower focus 

aligns with the accepted requirements engineering dimensions of specification, 

representation and agreement (Pohl 1994). Although creation of the formal requirement 

artifact ideally relies on interactions with customers, the actual artifact creation, that is, 

instantiating the idea as an artifact usable by stakeholders within the firm for the 

purpose of software development, is an activity that often occurs within firm 

boundaries. 

IS researchers challenge the inherent assumptions of much of the requirements 

literature, particularly as it applies to “traditional” (or “plan-based”) development (as 

opposed to “agile”, “organic”, “ad hoc”, or “flexible” development).8 These assumptions 

generally presume, contrary to what is asserted in this research, that most uncertainty 

                                                   
8 For a discussion of the differences in software methodologies, see, e.g.: 

Baskerville, R., Pries-Heje, J., and Madsen, S. 2011. "Post-agility: What follows a decade of agility?," 
Information and Software Technology (53:5), pp. 543-555. 

Harris, M.L., Hevner, A.R., and Collins, R.W. 2009. "Controls in Flexible Software Development," 
Communications of the Association for Information Systems (24), pp. 757–776. 
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can be resolved prior to development. More specifically, these assumptions include 

(Ramesh et al. 2010; Sillitti et al. 2005):  

• The customer is able to specify all needs up front, prior to development. 

• One or more stakeholders are in charge of requirements gathering activity. 

• The development team readily understands customer needs. 

The first of these seems to assume a context of a single customer (or markedly few 

customers), contrary to the assumptions of packaged software. The second seems to 

imply requirements construction activities take place within a single function (although 

the phrasing “... or more” offers enough wiggle room to be so universally true as to be 

unhelpful). The last of these assumptions is challenged by the already cited literature on 

requirements uncertainty. None of these assumptions are wholly useful in the intended 

context of this research (discussed more fully in Chapter 7). This may be because 

development practices in modern software organizations blur the line between flexible 

and plan-based methods (Baskerville et al. 2011; Harris et al. 2009). 

Lastly, the literature on both sides—SE and IS—is preoccupied with the process 

by which we manage requirements (whether through emphasis on steps or flow), with 

insufficient emphasis on the product for which requirements are managed. The 

differences between software products developed by organizations is so large that any 

claim to a generalized process is weakly grounded (Lee and Baskerville 2003; Thompson 

and Perry 2004). Processes and steps that work well for one organization and product 

may not work for another. 
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Attempts have been made to synthesize the whole of requirements literature. 

Mathiassen et al. (2007) reviewed 116 articles across both IS and SE streams. As part of 

their review, they classified requirements techniques as discovery, prioritization, 

experimentation, and specification techniques. Unsurprisingly, these activities reflect, 

but do not map directly to, the commonly held list of requirements activities discussed 

earlier: elicitation, analysis, specification and verification. Such deviation in language is 

understandable, even expected, as these classifications were derived from reviewing 

literature that labels these activities inconsistently, so new language is likely less 

ambiguous. 

The review by Mathiassen et al. (2007) is useful because they identified the three 

flavors of uncertainty (identity, volatility, and complexity), discussed previously (Section 

2.3), and successfully applied them in a summary of the requirements literature. We 

adopt these labels for this research, and approach the setting through the IS tradition, 

contextually and holistically. 
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5 WORK DESIGN AND UNCERTAINTY 

Modern and seminal theory of work design is presented and related to uncertainty. 

Horizontal and vertical work design structures are explicated. The problems arising 

from particular work design structures are highlighted, and framed as uncertainties. 

Organizations are similar to software in the sense that they are the result of design as 

well as emergence. 

5.1 Work Design 

In framing uncertainty as an information processing problem, Galbraith (1973) suggests 

the management of uncertainty is one of the purposes of organizations, which can be 

responded to with differentiation or integration strategies.1 The contingency theory of 

organization structure was a response to addressing uncertainty in organizations. The 

contingency view, that an organization’s success depends on the match between the 

uncertainty an organization faces and its structural ability to process information in 

response to uncertainty, is commonly held in the organization (Sinha and Van de Ven 

2005), information systems (Nidumolu 1995), and project management literature (Jiang 

et al. 2009). This is sometimes referred to as the information processing view, with the 

argument that organizations can adopt strategies and structure changes to process more 

information, although this approach loses some of the richness of early work (Galbraith 

1973; Sinha and Van de Ven 2005). 

                                                   
1  Similar concerns exist in the development of software, where questions of tight and loose coupling 

between modules are addressed. 
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Work design is the system of procedures for organizing work (Sinha and Van de 

Ven 2005). It goes beyond individual jobs and examines the broader view of the 

organization or system along with its attendant support services (Mintzberg 1980; Trist 

1981). Work design is reflected in the study of organizations’ internal structure, and can 

affect an organization’s ability to access and utilize knowledge and allocate resources 

(Weigelt and Miller 2013). 

Galbraith’s (1973) original theory included response strategies to an 

organizations need to increase information processing (whether due to poor 

performance or additional information). Although presented as complementary 

mechanisms and responses to work design, organizations rarely appear fully formed (or 

fully designed), but rather tend to emerge over time. The common view is that 

uncertainty leads to responsive structural changes and eventual equilibrium, but an 

organization’s structure is both designed and organic as it constantly reacts to 

uncertainty (Jauch and Kraft 1986). This is a classic question of design or emergence, 

and organizations are, as other artifacts (software!), the result of both. 

Within the software development literature, there is discussion about the most 

appropriate work design for software organizations (Austin and Devin 2009). While 

often framed as a tension between plan-based and flexible software processes (Harris et 

al. 2009), software processes are adopted based on organization strategy and goals 

(Slaughter et al. 2006), which reinforces the notion that these discussions of the 

development process are, at their core, work design issues and attempts to mitigate the 

uncertainty inherent in software development. 
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Although the work design literature concerns itself with organizations, its 

underlying principles apply generally to both work systems and the products produced 

from these work systems. Parnas (1972), in his classical work on modularity for 

software, refers to a software module as “a piece of work”, hence directly relating the 

design of the software to the design of the related development work. Similarly, the 

general literature on industrial design and innovation emphasizes the duality between 

the structuring of the producing organization and the architecture of the product being 

produced and it points to both being nearly decomposable and reflective of each other 

(Sanchez and Mahoney 1996; Simon 1996). With this commonality, software 

organization design and software product design become analogies for each other.  

5.2 Contingency Theory 

In describing organization design strategies, Galbraith (1973) lists several alternatives, 

most of which can be characterized as facets of the “horizontal” and “vertical” labels 

used by Sinha and Van de Ven (2005). The first three strategies relate to vertical 

structures, and comprise a “mechanistic bureaucracy.” First, “rules or programs” are 

imposed on sub-units as a standardized way of coordinating work. Rules fill the same 

roles for organizations as habits do for individuals, and are particularly useful for 

repeated work (Galbraith 1973, p. 10). Such rules or programs, however, require 

attention and reinforcement by hierarchical authorities tasked with reinforcing 

processes (Mintzberg 1980). The resulting assumption is that procedures are directed 

rather than organically coordinated between units. The hierarchy (Galbraith’s second 

strategy), addresses situations not covered by rule or tradition, and is expected to 
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respond in a way that considers all affected sub-tasks. Thus, hierarchy, which is the 

epitome of vertical work design, is used to coordinate “in addition to, not instead of, the 

use of rules” (Galbraith 1973, p. 12). Targeting or goal setting is a third method 

employed by vertical coordinators in work design, whereby outcome controls (such as 

goals, requirements, schedules, and design constraints) are set as boundaries for the 

task, and the organizational unit need not seek approval for work within those 

boundaries. Additionally, Galbraith (1973) lists four response strategies intended to 

address failings in the mechanistic model. Creating slack resources, through reducing 

the level of performance required of an organizational unit, and creating self-contained 

units (that cross functional boundaries) are two strategies designed to reduce the need 

for information processing and coordination between units. Similarly, the strategies of 

investment in vertical information systems and the creation of lateral relations are 

intended to increase the information processing capacity of units2 (Galbraith 1973). The 

four response strategies are suggested as an exhaustive description of an organization’s 

possible responses to uncertainty, with slack resources (reduced performance) occurring 

by default.  

5.3 Horizontal and Vertical Work Design 

Modern work design literature recognizes two primary types of boundaries within a 

work system. These boundaries are imposed with the intention of breaking work into 

independent pieces. Vertical division of work, or hierarchical division, exists within a 
                                                   

2  Even though investment in vertical information systems is a “response”, modern designers of work 
systems would do well to consider the impact of information systems when designing work. For 
example, it is not unusual for self-organizing agile development teams to be built around a central 
information system. 
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unit, and may include access to resources or knowledge within the strata of a unit. 

Vertical division may refer to an organization’s administrative hierarchy viewed as a 

collection of subordination and authority relationships, of which there may be one or 

more, or it may refer to hierarchical decomposition of a work product. Horizontal 

division of work, or modular division (sometimes called “differentiation”), is the 

imposition of modular boundaries on tasks that may be split in sequence or parallel 

between organizations. Horizontal boundaries are often related to knowledge or 

function. Such splits may be within a firm or may cross boundaries of multiple firms in a 

network (Sinha and Van de Ven 2005).  

The defining of internal structures, with consideration of responses to anticipated 

and actual hierarchical and modular problems, reflect “allocation of decision rights to 

subunits completing distinct jobs and the coordination among those subunits” (Weigelt 

and Miller 2013, p. 2). In other words, work design is the allocation (or withholding) of 

decision rights, and the modularization—and thus necessary coordination—or work 

across subunits. Moreover, division of work may be tightly or loosely coupled. In a 

vertical division, a subunit may be granted autonomy or constrained by structures, 

budget authority, and accountability. Lateral coordination represents the extent to 

which horizontally divided work units align to complete a task (Weigelt and Miller 

2013).  

In combination, horizontal and vertical divisions of work enable variegated 

configurations. In each case, knowledge boundaries exist between work divisions that 

must be crossed for successful coordination. However, as Sinha and Van de Ven (2005) 

explain, these divisions reveal problems of modularity and hierarchy, respectively. 
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Further, when horizontal and vertical divisions of work interact, as they do in practice, a 

third type, known as network problems, also becomes manifest (See Figure 5-1). Within 

the domain of software systems, problems of division of work are often solved by 

identification and application of repeating patterns (e.g., Vlissides et al. 1995). Patterns 

of organizational design exist as well, although they tend to be rougher and less detailed 

than software development patterns. 

 

Figure 5–1: Conceptualizing Work Design Problems (Sinha and Van de Ven 2005) 

A modularity problem considers the division of work and separation of responsibilities 

between units. Functional and cross-functional teams are examples of organizational 

solutions to modularity problems, as are functional and product-silo organization 

structures. Microsoft’s recently announced reorganization from a product division to a 

functional division of responsibility (Balmer 2013) is an example of (primarily) 

horizontal work design. Outsourcing decisions are also examples of organizational 

modularity problems. Modular work coordinated between units, which may reside in 
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multiple firms, combine to form modern value chains that comprise work systems. 

Within the domain of software systems, the model–view–controller pattern permits a 

separation of concerns within computer code. It has the additional advantage of 

applying structural rules to a software work system, such that a developer within that 

system has insight, based on the rules of the system, into where a particular work item 

should be. This lessens cognitive load, and improves efficiency, as the need to process 

information is reduced.  

In contrast to the modular, loosely-coupled approach, integrated systems and 

organizations are better suited for tasks that are ill-structured, difficult to decompose, 

time constrained, or otherwise require a greater need for coordination (Weigelt and 

Miller 2013). Although it is the antithesis of the modular approach, the choice to adopt 

an integrated structure is also a horizontal work design decision. As with software, there 

are trade-offs in adopting the integrated approach to designing organization units. It 

does bounded tasks quickly and well, but as integrated structures grow in size internal 

coordination and maintenance also grows exponentially, in contrast to modularized 

processes which may be easier to coordinate and maintain. 

A hierarchy problem considers the coordination and control of work, and 

allocation of decision rights and knowledge across hierarchical levels of a work system. 

For example, a hierarchical problem recently considered in IS literature is the ideal 

reporting structure of the CIO (Banker et al. 2011). Within the domain of software 

systems, and more specifically object-oriented systems, vertical structures may be 

expressed by the relationship between a base class (also called superclass) and a 

subclass. At a high level, the base class, or “senior” object in the code “hierarchy”, 
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defines general rules for the system; the subclass is granted decision authority for 

specific instances of the subclass, applicable to its more targeted needs. The overall 

structure is simplified and easier to manage when general rules defined at higher levels 

of the object hierarchy are applied across multiple subclasses. This sort of “embedded 

coordination,” through the application and use of standardized interfaces, acts as 

hierarchical coordination “without the need to continually exercise authority—enabling 

effective coordination of processes without the tight coupling of organizational 

structures” (Sanchez and Mahoney 1996, p. 63). In organizations, such standardization 

of controls, an imposition of hierarchical authority, is another example of how vertical 

structures are put in place to reduce uncertainty, and thus project risk (Na et al. 2004; 

Nidumolu 1996). 

Although not explored fully in this dissertation, network problems consider the 

aggregation of and interaction between horizontal and vertical work designs (Sinha and 

Van de Ven 2005).  

5.4 Work Design and Information Systems 

Galbraith would not have been able to predict the strong effect of technology and 

information systems on organizations. As Orlikowski (1996) demonstrated, technology 

facilitates modularization of processes and sharing of knowledge across horizontal 

boundaries. Additionally, some of the earliest uses of enterprise information systems 

were to enable views of information across vertical boundaries, as evidenced by the 

requirement construction classics dealing with executive information systems (Watson 

and Frolick 1993). Digitization of processes (although not technically a “vertical” 
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information system, as Galbraith (1973) predicted), has also led to increased modularity 

as evidenced by a boom in outsourcing (Davis et al. 2006). Yet one of the biggest 

challenges organizations face in outsourcing is maintaining coordination across 

horizontal boundaries beyond the firm. 

Perhaps the biggest weakness—and yet most prescient claim—of early 

contingency theory was an underestimation of the magnitude of the effects of 

information systems on organizations. Indeed, Im et al. (2013) offered empirical 

evidence that firms were processing more information with fewer people by investing in 

information systems. In their variance time-lagged study, they also found IT use is both 

an antecedent and a consequence of organizational change. Consistent with the 

predictions of Galbraith, as coordination activities increased, firms would invest in 

information systems, seemingly as a cost control measure. Such investment would then, 

over time, decrease coordination costs, and eventually the size of the firm. The evidence 

is clear that information systems are reducing coordination cost across both vertical and 

horizontal work boundaries. 

Although interest in contingency theory and the structure of organizations waned 

in the late 1970s, there have been several recent calls in top journals (Sinha and Van de 

Ven 2005; Zammuto et al. 2007) to reapply contingency theory to modern, technology-

enabled organizations. Governance and strategy research have also been criticized for 

ignoring the internal structure of organizations (Weigelt and Miller 2013). The core of 

contingency theory is that task uncertainty, as originally described by Galbraith (1973) 

and others, leads to contingent organization structures. Considering requirements as 

expressions of task uncertainty (Galbraith 1973) in a software development 
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organization, and following them as they travel through the organization will reveal 

conditional uncertainties useful for the study of how software development work may be 

designed. In pursuing such efforts, Sinha and Van de Ven (2005, p. 389) highlight three 

types of categorical issues relevant to organizational researchers in their call to reopen 

the study of work design,: “(1) defining the boundaries of work systems, (2) examining 

how the system is nested in a hierarchy within and between organizations, and (3) 

determining interactions between the elements of a work system.” 
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6 TRAVELING OF IDEAS 

The “travel of ideas” literature is presented and adapted. The central concept of 

“traveling” is discussed and further dissected to provide greater clarity in a software 

development context. 

6.1 The “Traveling” Metaphor 

In explaining the travel of ideas metaphor, Czarniawska and Joerges (1996) argue that 

in order to become useful, management ideas are sent to places other than where they 

emerged. Along the way, these ideas are translated into new kind of objects, and this 

translation is a necessary step in their travel. Czarniawska (2009) summarized how 

ideas are changed as they move from place to place, arguing the sharing of an idea 

requires it be newly interpreted. Interpretation and reinterpretation occur every time an 

idea moves from one place to another or from one point in time to another. Even when 

captured in an information system, it is still (re)interpreted as the idea passes from the 

user to the system and from the system to the user. At each time or place, the idea is 

recreated differently. Although this concept of interpretation is broadly described in the 

traveling literature and organization studies as “translation,” in practice, particularly in 

the context of requirements and software development, expressing the traveling of ideas 

simply in terms of translation (in its original meaning) is overly broad. To compensate, 

this research adapts the traveling framework utilizing concepts from the knowledge 

management and requirements literature. 
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Carlile (2004) describes how knowledge may have syntactic or semantic aspects. 

Syntactic boundaries may be represented by source code, formal specification 

languages, domain specific languages, or more generally, a common lexicon shared by a 

group. To share an idea is to transfer it across a social boundary while preserving the 

lexical context used to express it; sharing occurs with a common syntax. However, even 

with a common syntax, sematic differences arise (Carlile 2004); sharing of knowledge 

may lead to differing interpretations between the sender and the receiver. As 

Czarniawska (2009, p. 425) acknowledges, “a thing moved from one place to another 

cannot emerge unchanged: to set something in a new place or another point in time is to 

construct it anew” (p. 425). Because sharing may lead to negotiation and trade-offs 

between actors, it’s considered to exist at the semantic level (Carlile 2004), and such 

discussions are only possible with a shared syntax. The syntax is itself negotiated over 

time as actors make trade-offs and share understanding, but such negotiations are only 

successful when the syntax is settled. 

An idea may be translated from one syntax to another. This can be as “simple” as 

documenting tacit knowledge, or storing knowledge in an information system. This 

definition of translation is much narrower than the one applied by Czarniawska (2009). 

Explicitly documenting tacit knowledge, as might occur during requirements processes, 

has been recognized as one of the most critical processes in organizations (Nonaka 

1994). When a developer expresses a requirement in code, she expresses the idea anew 

using the syntax of a programming language. A systems analyst documenting his 

understanding of a requirement is also engaged in translation. Just as with sharing, 

translation necessarily results in change to the idea, as the nature of syntaxes causes 
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ideas to be expressed differently due to idioms of a given syntax.1 Translation may 

uncover ambiguous meanings (the semantic level); just as linguistic translation can 

introduce or mask connotations, so too can syntactic translation of ideas. It is for 

perhaps this reason that Carlile (2004) describe the documentation of tacit knowledge 

as a semantic, rather than syntactic endeavor, although he recognizes that semantic 

discussions occur when the idea being presented is novel, or dependencies make 

meanings ambiguous. It is because of translation between syntaxes (such as the 

language of external users and internal product managers) that parties attempting to 

communicate can begin to share knowledge. Because it involves different syntaxes, 

translation typically occurs across technology boundaries rather than social ones, 

although strong social boundaries (firms, cultures, countries) also adopt differing 

syntax. For example, the storage, retrieval and transformation cycle as described by 

Carlile and Rebentisch (2003) highlight the effects of translation. Using the vocabulary 

of traveling as adapted in this research, it might be rebranded as a construction–

sharing–translation cycle. 

As already noted, requirements, expressions of ideas, undergo change—

unintended or not—as they are specified. Specification and other uncertainty reduction 

activities construct, or flesh out an idea. This occurs through investigation and 

elicitation (Hickey and Davis 2004), and is a consequence of work done within or across 

boundaries. Construction might include such activities as developing test cases for 

software, and in such cases would accompany either sharing or translation, as 
                                                   

1 A possible exception to the transformation of an idea during translation might be translating a 
simple idea from one formal language (e.g., programming language; as opposed to natural 
language) to another, particularly where the two language have similar syntax. 
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construction might occur through negotiated understanding across social boundaries, or 

through the actions of a single person translating their understanding by expressing it in 

requirements or source code. In a software development setting, construction activities 

include documenting procedures to validate requirements such as test plans or test 

cases. 

6.2  Conceptualizing Traveling 

It is important to note that “translation” in the traveling of ideas literature is used 

differently than by Carlile (2004). A casual reader of Carlile (2004) might assume from 

the figures and descriptions that translation is inexorably tied to the semantic level. 

While this is true, in that successful translation requires consistent semantic 

understanding, the translation is necessarily occurring because knowledge is expressed 

in different domains, and thus in different syntaxes. 

In contrast, the actor-network theory on which the traveling metaphor 

(Czarniawska 2009; Czarniawska and Joerges 1996) is based, uses “translation” to mean 

any reinterpretation or instantiation as an idea is expressed over time and space. Some 

IS research that adopts the traveling metaphor combines theorization (the building of 

ideas) with translation (the implementation of ideas) and therefore uses a more targeted 

view in which translation means “how IT ideas are reinterpreted and implemented in 

particular organizational settings” (Nielsen et al. 2013, p. 6). However, even this 

interpretation is too broad. An even narrower view, which treats translation as 

reinstating to a new syntax is more consistent with the common definition of translation 

and adopted for this dissertation.  
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In the same vein, Carlile (2004) expresses transformation as occurring at the 

pragmatic level of interaction, which is only possible when syntactic and semantic 

differences have been settled. Much the same way as construction is defined here, 

pragmatic action, such as determining whether to move a requirement forward through 

the development process or to discard or postpone it is the trigger for construction. 

Although Carlile (2004) uses “transform” to mean pragmatic interaction, Carlile (2002) 

clarifies the pragmatic approach is centered around localized knowledge that is invested 

and embedded in practice, and that boundary objects that cross pragmatic boundaries 

do so with the purpose of not only being used for representing and learning about an 

idea, but also for transforming an idea. Accordingly, in this dissertation, we use 

travelling of requirements to include constructing, sharing, and translating 

requirements combined with the understanding that each new instantiation of a 

requirements is newly interpreted, and may have new meaning for each actor. 

In summary, the traveling metaphor is a good complement to the information 

processing perspective of organizations (Galbraith 1973). Further, complex sets of 

horizontal and vertical boundaries combine to form networks (Sinha and Van de Ven 

2005) through which requirements travel. When combined with the study of work 

design, the concepts of constructing, sharing, and translating describe the journey of 

requirements as they travel through organizations.  
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7 RESEARCH METHODOLOGY 

The setting and design of this research are described. We use a qualitative, case study 

method. GridCo has a structured new product development (NDP) method. Analysis is 

delineated, and the intended coding scheme is justified. 

7.1  Qualitative Case Study 

This research adopts a single-site, longitudinal qualitative case study, which is useful for 

studying contextual factors, particularly organizational structure. Moreover, case studies 

bring nuance and depth to complex data (Mason 2007), and are appropriate for 

addressing “how” and “why” questions, particularly in real life contexts (Yin 2009). The 

blend of technical and human-behavioral aspects of software development lends itself to 

qualitative study (Seaman 1999). Thus, qualitative methods are the best fit for the 

research objectives. 

Further, as the research unfolds, qualitative methods permit a recursive cycle of 

inductive reasoning, data analysis, and comparison to extant literature (Eisenhardt and 

Graebner 2007). Although this may be most notable in the application of the packaged 

software domain, which is uncovered and explored more thoroughly as data collection 

progresses, this benefit of the case method applies to other included foundational 

theories as well. As an additional example, the traveling metaphor fit the goals of the 

research well, but was not, in its original form (Czarniawska 2009; Czarniawska and 

Joerges 1996) descriptive enough to inform rich coding of data. Recursive application of 
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reasoning, comparison to observational data, and inductive theory building permitted 

development of a more descriptive framework as presented in the previous sections. 

As with most qualitative research, this dissertation adopts an interpretive 

perspective (Klein and Myers 1999). Interpretive researchers consider reality to be 

socially constructed, and assume actors behave according to their respective subjective 

perceptions (Orlikowski and Baroudi 1991). Socially constructed artifacts may include 

language, shared meanings, information systems and documents (Klein and Myers 

1999). Other researchers have treated requirements as social constructions (Davidson 

2002). Interpretive research considers phenomena of interest from the contextual 

framework of its participants, in their natural setting. Thus it is important to engage in 

the research setting through observation and interaction (Orlikowski and Baroudi 1991). 

The interpretive perspective aligns well with longitudinal case studies. 

Following initial meetings that occurred in December 2012, we prepared a 

memorandum of understanding (MoU), also called a researcher–client agreement 

(Davison et al. 2004). The MoU highlights the role of the researchers and confirms the 

willingness of GridCo to share particular kinds of data, provide access to employees, and 

permit observation. It also stipulates that the researchers are responsible for reporting 

key findings and recommendations to the company. The MoU was signed by both 

company officers and the researchers before research began in earnest. Additionally, the 

Institutional Review Board (IRB) for Georgia State University reviewed and approved 

this human-subjects research. 
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7.2 Research Setting 

The research occurred at a medium-sized development arm of GridCo1, a large multi-

national provider of power and smart-grid solutions. The company produces a product 

ecosystem of utility meters, network storage and routing components, and command-

and-control software (“GridWare”) that must operate not only on legacy systems, but 

interoperate with competitor systems and meters, and adhere to common standards 

using a variety of communication media (e.g., Internet, radio frequency, power-line 

carrier and cellular). The development arm of GridCo is composed of several hundreds 

of people. GridCo builds hardware, firmware, and administrative control software via a 

hybrid process of plan-based and flexible development, using more than 35 small 

software development teams at multiple locations in the U.S., an offshore captive in 

India, as well as outsourced development providers.  

For several reasons, the industry is dominated by a handful of incumbents 

(including GridCo). Because customers tend to be large utility providers, the potential 

market is limited, and there is thus strong competition for a relatively small number of 

customers. Although GridWare meets the definition of package software as outlined in 

this dissertation, GridCo both does and does not exhibit the attributes Sawyer (2000) 

ascribes to organizations developing packaged software (See Chapter 9). 

                                                   
1 This is, of course, a pseudonym. 
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This research is primarily concerned with a single release cycle of the GridWare 

command-and-control system during 2013 that was planned to last 36 weeks. We 

observed meetings from related projects as part of data collection in order to build a 

richer picture of the release cycle and to observe behaviors similar to those employed 

Table 7–1: Overview of NPD Stages at GridCo 

Stage Milestone Stage Description Contextual Application 
Discover NPD-0 

Start 
Not technically part of the 
defined and gated NPD 
process, but listed in the 
company’s documentation. 
Documentation states, 
“Ideas are captured and 
scored using a 
standardized, cross-
functional metric.”  

No formal ranking or filter 
processes at this stage were 
observed. Methods of 
weighting and ranking other 
than contractual demands 
(sometimes with financial 
penalties) were not 
referenced by participants. 
Data imply customer 
meetings, contracts, and 
internal R&D are filtered 
through product area 
managers at this stage.  

Scope NPD-1 
Scope Ask 
Sprint 1/18 

The scope for the next cycle 
is considered, and sized 
(roughly estimated). High-
level scope for the cycle is 
communicated to 
executives and project 
leaders. 

Backlog list is almost always 
oversubscribed, and exists 
only for current cycle. 
Development work 
commenced before scope 
document complete. Formal 
scope ask delivered after 
cycle already started. 

Commit NPD-2 
Scope 
Commit 
Sprint 3/18 

Scope is determined 
feasible and approved. A 
particular scope is 
committed to for the cycle. 
Development formally 
begins. Change control 
implemented for further 
scope/budget changes. 

Software development has 
already been occurring 
throughout the cycle. Scope 
commit actually occurred in 
sprint 9, mid-way through 
the cycle. 

Develop NPD-5 
Feature 
Complete 
Sprint 14/18 

Actual development should 
be completed by this stage. 
The product is ready for 
verification, testing. 

Some few items remained, 
and were continued to be 
worked, when this stage was 
to begin. 

Verify NPD-6 
Testing 
Complete 
Sprint 18/18 

Testing is complete.  
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but which we could not observe directly for timing reasons. Development of the 

GridWare system for the observed release cycle depended on related hardware and 

firmware projects, which increased both the volatility and complexity of the observed 

requirements. 

GridCo uses a series of stage gates that overlay a common technology NPD 

process. Ostensibly, “gates” describe “go/no-go” decision points; while this was allegedly 

true for some gates at GridCo, more than one participant intimated that inertia as well 

as market and contractual demands made continuation of the release cycle all but 

certain. Indeed, GridCo’s NPD overview document read, “The stages are ‘soft’ meaning 

that work in a subsequent stage can start before all the deliverables of a prior stage are 

complete.” So in practice, these gates functioned more like milestones. Table 7–1 lists 

the stages, the end-of-stage milestones, a brief description of each stage, and brief 

comments about how the stage was implemented at GridCo. These are marked with 

labels that correspond to stages of GridCo’s NPD process. 

Observant readers may note that stages in the above table seemingly skip over 

NPD-3 and NPD-4. Although GridCo utilizes these interim stages for hardware 

processes, they are not present in software processes. This NPD process is universally 

mandated at GridCo.  

Perhaps the most interesting point regarding the application of the stated NPD 

process, was that not only did development work commence before scope was finalized, 

it commenced before the high-level scope for the release was trimmed to an 

accomplishable size, with nothing formally more concrete than knowing of some 

contractual obligations that would certainly be part of the final scope. The initial NPD-1 
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date was delayed from February 10th to March 10th (and eventually delivered March 

12th), two sprints into the 18-sprint project. 

Similarly, the deliverable scope for the release cycle was not committed to until 

the cycle was half over. This NPD-2 deliverable was a formal event that involved 

multiple layers of local review as well as presentation to an executive global approval 

board. The project manager faced internal pressure from his superiors to move the 

NPD-2 (scope commit) date earlier in the release cycle. Several participants indicated 

the NPD-2 date had a tendency to move later in the cycle than they would like, but 

provided no argument for having it earlier other than doing so would be less 

embarrassing to explain to the executive global approval board. (The NPD-2 review, per 

the global process, includes a budget and resources request to accomplish the described 

scope, although most of those personnel resources have already been utilized.) 

Indeed, a “late” NPD-2 benefited the cycle as scope was flexible up to that time; 

any scope changes following NPD-2 approval required change control and executive 

oversight. This permitted multiple scope changes early in the cycle resulting not only 

from identity and complexity reasons, but also due to unpreparedness of bottle-necked 

preliminary work. 

Thus, it is important to understand that while employees at GridCo considered 

this release cycle (and previous cycles) a success, the scope documents against which 

cycles were evaluated were not set until the middle of the cycle when many uncertainties 

have already been resolved. 
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7.3 Data Collection 

Data collection occurred over a ten month period, and included interviews and clarifying 

conversations with fifteen key informants, observations of planning, estimation, review, 

and approval meetings at multiple hierarchical levels, as well as process documents, 

meeting and project status summary documents, organization charts, conversations 

with the company liaisons, and electronic records (Table 7-2). We typically captured 

data from interviews and researcher meetings with stakeholders as audio recordings, 

although some subjects requested certain comments not be recorded. Following most 

meetings and interviews where both researchers were present (most researcher–

stakeholder meetings, and about half of the interviews), researchers met and reflected 

on interpretations of observed interactions, and engaged in dialectic reflection and 

investigator triangulation (Patton 2005; Yin 2009). These dialogues were also 

documented. In all cases, researcher notes and observations provided additional sources 

of data. Importantly, researchers were also given access to the central information 

system used to store requirements. Towards the end of the engagement, the key findings 

of the study were presented to the release cycle manager for feedback and discussions. 
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Functional requirements, which are represented as “user stories”, along with 

testing requirements, are stored in a vertical information system at GridCo. Multiple 

views of this data were available. Requirement completion over time was available via 

project status documents, which are also stored in a central (but separate) information 

system. We had access to these documents as well. 

Each interview lasted between 1 and 1.5 hours. We selected interview subjects to 

include a mix of positions across both horizontal and vertical boundaries. Interviewees 

came from across the breadth of the involved processes, and included vice presidents, 

project and product managers, business analysts, architects, software development 

Table 7-2: Summary of data sources 

Data source Explanation 

Employee Interviews Structured or semi-structured interviews regarding perceptions of 
requirements, uncertainty, and project stumbling blocks. 

Researcher–Stakeholder 
Meetings 

Meetings to define scope of research, summarize practices, 
describe organization structure, and present key results from the 
study. Differ from interviews in that these meetings were driven 
by company stakeholders or collaboratively with researchers.  

Meeting observations Unobtrusive observations of regularly scheduled project meetings. 
Project documentation Project plans, status reports, meeting summaries, stack rankings, 

change control requests, approvals, and other decision documents 
produced during the course of the studied release cycles. 

Requirements Metadata, user stories, decomposition, acceptance criteria, as 
stored in the common information system. 

Clarifying conversations Personal conversation with key informants intended to clarify 
observations or validate interpretations. 

Dialectic reflection Post data-collection researcher meetings intended to challenge 
and align perspective to improve reliability. The timing of these 
meetings also served as an additional opportunity to document 
and flesh out observations and impressions that might not have 
been otherwise recorded. 

Research notes All other notes taken during the research. e.g., design of interview 
or survey instruments, literature reviews, theories investigated, 
and reviewer feedback. 
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managers, release managers, and stakeholders in research and development and quality 

assurance roles. The perspectives of multiple stakeholders are necessary to contrast 

interpretations of the internal boundaries of the organization and to enable rigorous 

analysis of conclusions. Together, the broad view of the company offered by multiple 

stakeholders and rich sets of artifact data across the complete release cycle permitted 

triangulation of findings to enhance reliability.  

Specifically, data were collected from interviews with 15 stakeholders (two were 

interviewed twice), 6 discussion meetings, 27 meeting observations, and 12 clarifying 

conversations, and a final review meeting in which study results were presented and 

discussed, comprising dozens of hours of recorded audio and more than 200 pages of 

researcher notes. Official project status update documents, proposals, and presentation 

slides were also collected. Data from meeting observations was well saturated, and was 

complemented with official summary documents from many of the observed meetings. 

Although this research was initially scoped at the boundary of the firm, this limit 

was examined over the course of data collection. Product managers were used as proxies 

for interaction with GridCo’s customers, and as a means to validate the scoping decision. 

As expected, data decreased in relevance close to the periphery, thus the scope 

boundaries of the research was validated (Yin 2009). 

In addition, GridCo permitted access to its central information systems, including 

not only the central requirements repository, but also a document repository with 

meeting summary and output documents. Participants relied heavily on the centralized 

information system as the source of knowledge. As a project manager said, the IS was 

used as the canonical version of “the truth.” 
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7.4 Coding Structure 

The most preferred strategy for analyzing case study data is reliance on theory (Yin 

2009). The theories developed in the preceding chapters formed the basis for coding 

(Table 8-2). Some codes commonly appeared in concert with others. For example, 

sharing occurs across a boundary, so data on sharing are typically accompanied by 

indications of the observed work structure. The traveling constructs, sharing, 

translating, and constructing, represent times when uncertainty is likely to be manifest. 

In addition to the theory-based codes, the position(s) of the actor(s) involved were also 

captured.  

It is important the list of codes is sufficiently descriptive, mutually exclusive, and 

(within the scope of the research), collectively exhaustive. The descriptive framework for 

categorizing requirements groups combined with the theoretically derived descriptions 

(Table 8-2) were designed to encompass the who, the what (requirement), the when 

(travel), the where (work design), and the why (uncertainty) so that we could properly 

address the “how” of the research questions. Although this framework is anticipated to 

be sufficient, coding is an iterative process that is informed by both theory and data 

(Miles and Huberman 1994). These codes, combined with the data displays, present a 

sufficiently rich picture to validate the findings presented in this dissertation.  
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Table 7–3: Framework for Analyzing Traveling of Requirements 

Theory Code Summary 
Uncertainty 
(Mathiassen et al. 2007) 

Identity Difficulty in the knowing of requirements 
caused by communications gaps. 

Volatility The changing of requirements whether 
for internal or external reasons (e.g., 
time, budget, changing market or 
customer preferences). 

Complexity Difficulty in specifying and 
communicating requirements; includes 
the cognitive load required to understand 
the effects of implementation. 

Work Design 
(Nidumolu 1995; Sinha and 
Van de Ven 2005) 
Contingency Theory 
(Galbraith 1973) 
Boundaries 
(Carlile 2002) 

Horizontal Modular or serial work design. May 
involve mutual adjustment. 

Vertical Formal coordination within a 
hierarchical structure. Decomposition. 
Encompasses Galbraith’s 
conceptualizations of both hierarchy and 
targeting. 

Network Complex combinations of horizontal 
and/or vertical boundaries. Included for 
completeness. 

Travel of Ideas 
(Czarniawska 2009; 
Czarniawska and Joerges 
1996) 

Share The movement of an idea across a 
boundary. Encompasses changes that 
occur due to interpretations. 

 Translate The (re)enacting or materializing of an 
idea in a different form, using a different 
syntax. 

 Construct The explication of an idea within a given 
syntactic/semantic context. 

7.5 Data Analysis Strategy 

Analyzing case study evidence is one of the most difficult aspects of case study research 

(Yin 2009, p. 127). Preliminary analysis validated the research frame and study scope. 

To begin, we placed evidence in a matrix of categories and created data displays to 

provide rich pictures of processes, events, and temporal ordering (Miles and Huberman 

1994; Yin 2009). Data displays summarized the organizational context, and highlighted 

the work design relationships discussed by Sinha and Van de Ven (2005) (i.e., 
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horizontal, vertical, and network relationships) and early contingency theorists. These 

displays were iterated against the data to present an accurate and informative synthesis. 

The bulk of analysis centered on identifying indications of uncertainty within the 

data, and coding these utterances using the various research lenses described 

previously, particularly the work design strategies employed, as well as classifying the 

type of uncertainty represented. We used the types of uncertainty (identity, volatility 

and complexity) as indicators of the difficulty actors encounter in attempting to 

accomplish their tasks of sharing, translating, and constructing requirements within the 

organizational structure and the boundaries created by vertical and horizontal work 

design (Sinha and Van de Ven 2005). 

To assist in selection of specific groups of requirements for in-depth analysis—

and consequently, to support data reduction (Miles and Huberman 1994)—we 

articulated a diverse set of general requirements traveling behaviors. We developed 

these categorizations based on our professional and academic experience as likely 

representing interesting types of requirements. We initially categorized the 

requirements (or groups of requirements) we observed at GridCo into one or more of 

these categories of travelling: 

1. Requirements that behaved as expected (few manifestations of 

uncertainty).2 

2. Requirements that were added to the release cycle. 
                                                   

2 Although requirements in this last group are something of an endangered species, they are also, 
with few exceptions, uninteresting. The only exception may be those requirements that originated 
within the development and architecture teams, which may be the reason they consequently seemed 
to exhibit little uncertainty in their construction. 
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3. Requirements that expanded in scope. 

4. Requirements that contracted in scope. 

5. Requirements that were removed from the release cycle. 

Although these categories suitably described important traveling behavior within 

a release cycle, it eventually became evident they did not represent the complexity of 

observed traveling behavior. We therefore attempted multiple ways of collating and 

displaying data, which led to the creation and refinement of additional data displays that 

reflected the traveling we observed from multiple perspectives: the process, the 

organization structure, temporal structure, and the release cycles of the product itself. 

Via categorization of behaviors identified through iterative refinement of these 

data displays, we identified select groups of requirements described in interviews and 

project documents that reveal the series of events that led to a resolution of task 

uncertainty over the life of each group of requirements, and selected those with enough 

data for narrative completeness. These strings of events reflect the process progression, 

the organizational structures involved, and the accomplished traveling activity at 

GridCo, which in turn led to identification of emergent patterns. Simplified displays of 

release cycle traveling (localized, cross-layer, and cross-cycle) summarized high level-

views of how requirements are constructed, shared, and translated (RQ1) and how 

requirements travel (RQ2). These data displays provided a conceptual foundation for 

positioning richer detail within its natural context. Models and storylines developed by 

pattern-matching and explanation-building (Yin 2009) of aggregated and coded data 

were then subject to verification and attempted disconfirmation through triangulation 

of the multiple available sources of data. 
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8 TRAVELING OF REQUIREMENTS 

At GridCo, requirements traveled in certain ways within and across release cycles as 

participants addressed uncertainties. We identified and analyzed three major 

categories of traveling behavior: local, cross-layer and cross-cycle. 

8.1 Types of Traveling 

Our original intention in examining traveling of requirements was to consider 

five types of observed behavior, which we label “localized traveling” that individually 

and collectively describe the fate of requirements over the course of release execution. 

However, while each requirement (or set of requirements) may be described using 

localized language, it became evident that such framing alone was insufficient to fully 

capture how requirements traveled. Cross-layer and cross-cycle traveling introduced 

changes to the project’s scope across other parts of the company and over time, and 

reveal additional insights into how requirements travel. Cross-layer traveling describes 

the experience of requirements with dependencies across multiple hardware, firmware, 

and software layers. Requirements with dependencies across layers were subject to mid-

stream modification (identity uncertainties) and whiplash effects (volatility). 

Requirements also traveled across cycles, moving between consecutive, overlapping 

release cycles. This cross-cycle traveling was a response to volatility, and additionally 

served to postpone or reduce future identity uncertainties. Each of these types of 

traveling occurred against the backdrop of the standardized NPD (new product 

development) procedures and a fixed organizational structure at GridCo. 
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8.2 The Expected Journey 

An overview of the work design at GridCo for the observed cycle (Figure 8–1) 

outlines the expected journey of requirements. Requirements were expected to travel 

horizontally between functions as tasks were performed. As described in the NPD 

process, the product portfolio manager considered requirements for inclusion in the 

cycle based on input from product managers and (for large products) product area 

managers. These product managers interfaced directly with customers, and acted as 

customer representatives during the cycle. Planning the centralized C&C system 

required input from multiple product managers, as the system is a hub in a network of 

HW and SW products. In theory, developers or the in-house R&D group might present 

requirements to product (area) managers. However, in the observed cycle, the vast 

majority of requirements (both by count and by share of effort) in the backlog at the 

start of the cycle were contractual obligations to current and future customers, which we 

interpreted as vertical demands.1 

There was not an overall, continuously maintained backlog of requirements. 

Rather, a backlog was (re)created for each cycle, based largely on imminent customer 

obligations, and made more volatile by the interventions of directors and executives 

through vertical lines. 

                                                   
1 The included requirements were so weighted toward future contractual demands that one 

participant exclaimed, “It would be nice if we sold the stuff we did, rather than the stuff we’re going 
to do!” 
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Figure 8–1: Work Design 

Prior to the release cycle getting underway, the product portfolio manager 

constructed a list of items desired for completion 

in the cycle (“Backlog”). These items were assigned 

rough effort estimates in a plenary meeting of 

product managers, systems engineers, architects, 

senior developers, and quality assurance; 

essentially every senior person from product 

development with responsibilities in the cycle was 

there. These initial estimates (represented as “T-
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Table 8–1: Initial Estimation Ranges 
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shirt sizes”, as shown in Table 8–1) reflected a range of story points2, and were later 

combined with risk estimates as part of a Monte Carlo simulation to estimate the size of 

the cycle’s capacity and the risk of over-subscription. These tasks were in place to reduce 

uncertainty (by providing an abstraction layer to manage complexity and other 

uncertainties), and reflected additional construction of information about the 

requirements via horizontal coordination. 

In a retrospective interview months later, a project manager indicated the 

backlog review meeting was perhaps too big a production for what it accomplished, and 

further indicated practice had since been modified so estimation was accomplished (in 

the following cycle) by a smaller group of people considering fewer items on more 

regular basis during an already existing meeting. However, at the time of the backlog 

review meeting, the portfolio manager indicated to those present that the plenary 

estimation meeting was necessary in order to have enough information to push back on 

superiors who were apparently demanding items be included that exceeded the capacity 

of the cycle. Some in the room, perhaps jokingly, indicated the “critical” items slated for 

the cycle represented four times the available capacity. The portfolio manager intimated 

following the meeting that the project was 25% over capacity before the meeting even 

started. The observed meeting was insufficient to size all of requirements on the 

backlog. In fact, several participants mentioned the over-subscription of work items (as 

compared with resources and time-to-completion) as a common occurrence at the start 

                                                   
2 “Story points” are something of an abstract concept representing “nebulous units of time” 

Rasmusson, J. 2011. The Agile Samurai: How Agile Masters Deliver Great Software. Pragmatic 
Bookshelf., and are sometimes called “ideal days.” The actual unit used is not important, the intent 
is to bring focus to the relative size of different tasks (ibid.). At GridCo, management estimated a 
story point was roughly equivalent to four or five hours of a developer’s time. 
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of cycles. In the cycle following the one observed, a product manager estimated in a 

meeting that the over-subscription of the next cycle was an estimated 20%. 

Following initial estimation, backlog items were re-ranked with executive input 

by the portfolio manager. The project cycle was still over-subscribed, but the work of 

further constructing requirements more fully commenced. Although we have described 

the development process here in a sequential manner, in practice it operated in multiple 

concurrent iterations such that decomposition of some requirements was concurrent 

with writing of computer code. Coding commenced with decomposed requirements 

from a previous cycle; decomposition could then occur in manageable chunks at a pace 

slightly ahead of the software developers.  

A central group of architects and business analysts decomposed (constructed) 

backlog items that had been stack ranked and marked for inclusion in the cycle and 

shared via a central information system. Decomposition included translating high-level 

requirement descriptions into detailed user stories. As part of the decomposition 

process, requirements were broken into smaller chunks. As a director described, “[T]he 

story shouldn't be larger than about seven [story points] worth of work… In general 

that's the number we're using because of the sprint size that we have, and the amount of 

work that we believe the teams can complete within that [time frame].” When the story 

is complete, a senior developer and senior QA analyst, in concert with the business 

analyst responsible for constructing the story, gives the story a finer estimation of 

development story points and QA story points. If a particular requirement significantly 
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exceeds seven points, it was usually split into multiple stories3, although this outcome 

was negotiated between development, QA, and systems engineering during the 

decomposition process. Participants offered several examples from their information 

system of requirements—collections of stories—comprised of upwards of 70 stories. 

Translating high-level requirements into stories and properly constructing stories 

includes not only detailed architectural explanations of the work to be done, but also 

steps to verify requirement completion and any acceptance criteria. Stories were 

consciously detailed in order to unravel complexity and guard against identity 

uncertainties. A systems engineer explained, “We don't know when we're decomposing 

these stories what team is going to get this, and where that team is going to be located. 

… We now have maybe 20-plus teams working on this product, with a wide variety of 

skill level.” Consequently, stories were decomposed to be as specific as possible, so even 

the lowest-skilled teams could accomplish them. 

Stories were shared with software developers using the same central information 

system that stored the requirements. When identity uncertainties arose in the 

interpretation (translation) of a story, developers tended to contact the person who 

authored the story, and, as appropriate, a member of the architecture team and product 

manager (representing horizontal and network connections). Responses that materially 

altered the design of the story or its test procedures were appended to the story in the 

                                                   
3 Although each story is itself a requirement, in describing process at GridCo this paper will use 

“story” to indicate a small unit of work, and, in general, “requirement” to specify a collection of 
related stories. The phrase “requirement group” means a collection of requirements with a similar 
theme (e.g., security) or similar purpose (e.g., related to a specific piece of hard ware, or intended 
for a particular customer). 
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information system; although we observed this practice, it’s not clear how common the 

practice was. 

In addition to communication across horizontal boundaries, we observed 

travelling across vertical lines. In the above examples (identity and complexity 

resolution and suggestions), vertical stakeholders were copied on the email 

conversations, but did not participate. However, when schedule uncertainties arose 

related to third-party actors—external vendors or internal dependencies on other 

projects—the observed communication was almost exclusively vertical first. Those high 

enough on the vertical chain would then communicate across horizontal boundaries and 

with product and project managers to determine whether items should remain in scope. 

Lastly, acceptance of each story required certification by the developer and QA 

personnel assigned to the story. The delivered software was demoed to the business 

analyst, who, as author of the story, held ultimate responsibility for acceptance. 

This standard procedure of gross estimation and ranking, decomposition, 

development, and acceptance worked for many of the included requirements. 

Accordingly, minor uncertainties were easily resolved using expected horizontal and 

vertical communication lines. 

Among the backlog items slated for the release, the set of requirements that most 

closely adhered to this ideal process were either small in size (fewer than 20 story 

points) or related to security. These requirements, even at a high level, were 

understandable to developers and relied on common industry practices. Consequently, 
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there was low identity uncertainty; complexity was similarly low because developers 

tended to already possess relevant domain knowledge. 

8.3 Localized Traveling 

Figure 8-2 illustrates the observed localized traveling of requirements. 

Representing the requirements accepted into a release cycle’s scope as a circle, we 

identified five different types of localized travelling: (A) requirements implemented as 

expected (the dot within the circle); (B) requirements added to scope (the incoming 

arrow); (C) requirements removed from scope (the outgoing arrow); (D) requirements 

discovered to be more complex than expected (the expanded circle); and, (E) 

requirements discovered to be less complex than expected (the contracted circle). In 

general, (A) represents low uncertainty, (B) and (C) represent high volatility 

uncertainty, while (D) and (E) represent high complexity or identity uncertainties. We 

accounted for our observations of requirements that travelled locally as expected (A) in 

the previous section, and this description serves as a baseline for the our accounts of the 

other forms of localized travelling provided below. 
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Figure 8–2: Local Traveling of Requirements 

8.3.1 Added requirements 

Often termed “scope creep,” requirements are commonly added to projects after 

work has begun. Two general categories of requirements were added to scope as the 

cycle progressed. The first batch occurred early in the project, before the scope was 

partially or formally fixed (NPD-1 and NPD-2, respectively.) The second collection of 

added requirements occurred after scope had settled as a consequence of failed 

coordination between horizontal departments. 

Scope was not finalized by the first sprint, even though development had begun. 

Not only was scope still changing, the rank order of requirements was also changing. A 

system engineer commented, “Up until two days ago, there were no security features in 

[this cycle], now, around five of the top ten [requirements] are security features. … This 

changing of priorities is common. We may see it change again.” 

Two sprints (four weeks) into the cycle, scope had still not been finalized. The 

NPD-1 date was initially targeted for the first sprint, but was very quickly pushed back to 

the middle of Sprint 3. The NPD-2 deliverable, originally scheduled for Sprint 3, was 

consequently pushed back to Sprint 5. Scope was still shifting early in the project, which 
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was problematic, as decomposition and development occurred concurrently. A project 

report4 from the middle of the first sprint indicated. “The current scope for [this cycle] is 

still not set, but the [development] teams are working from a list of six items which has 

recently changed from the original list of six.” 

A development manager expressed frustration about the later NPD-2 date in a 

meeting: “We will be 5 sprints in, and not everything will be decomposed. [I’m] already 

assigning work to teams, but without guidance about the eventual task list, [we’re] 

assigning based on the current work, not on the best overall fit.” The over-subscription 

of requirements in the cycle meant that analysts had more requirements to decompose 

than could possibly be worked. Both the initial reduced list of scope and the eventually 

decomposed requirements are examples of goal-setting or targeting, indications of 

vertical control. The responsible functional groups retain decision rights, even though 

the responsible functions were treated as functionally and socially horizontal within the 

organization. From an organization design perspective, scope definition and 

requirements construction both constrain and determine outcome controls for later 

work, and are thus vertical connections. There was general discontent with the way the 

project was over-subscribed, and that scope definition was overlapping the development 

schedule by too much, and thus causing development resources to be slack. 

Despite frustration with a moving scope target, development teams still had 

enough decomposed work. Due in part to delays with firmware dependencies in the 

                                                   
4 Project cycle status was reported to executive and international oversight weekly. Due to the number 

of projects in progress at the company, only those projects self-reporting as “yellow” or “red” (as 
opposed to “green”) received attention in the executive review meetings. 
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previous cycle, some requirements were change controlled out of the previous cycle. 

Additionally, the NPD-5 date of the previous cycle was change-controlled from 

coinciding with the start date of the observed cycle to overlapping with the first two 

sprints of the observed cycle. The lateness of the previous cycle may have added to 

delays in finalizing scope. Although the previous development and the scope definition 

were handled by different groups within the product organization (software and product 

management, respectively), completing the scope definition required coordination. 

A more interesting set of requirements was added during sprint 8, midway 

through the project, shortly before project scope had officially committed. Due to 

multiple competing demands on the business analysts and systems engineers, not 

enough stories had been fully decomposed to match the developers’ capacity for the 

sprint. To prevent the unutilized capacity from being wasted, development began 

implementing architectural changes they had proposed in a previous release cycle, 

although these requirements were officially slated for a future release. Interestingly, 

while not fully decomposed, senior developers had enough familiarity with the intended 

requirement to deliver code for the sprint. Although discussed later (Section 8.5, Cross-

Cycle Traveling), these architectural changes—which created a modular structure for 

more easily adding support for new meter types to the utility network—had been passed 

over multiple times for inclusion in the release cycle, in favor of contractual customer 

demands. However, to best utilize otherwise slack development resources, these 

architectural improvements were added into scope, not through the normal vertical 

channels (although they were later formally accepted as part of scope), but by the 

developers. This presents something of an anomaly from a work design perspective, as 
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the slack was caused by inadequate vertical coordination, but it was filled by the 

reciprocal relationship through mutual coordination, a horizontal work design 

mechanism. 

8.3.2 Removed requirements 

As with added requirements, there were two primary categories of removed 

requirements: those removed while the scope was still churning, and those removed 

after the scope was fixed at NPD-2. 

The backlog list was quite volatile through NPP-1, 

as items moved in and out for reasons including 

availability of hardware, support of third-party vendors, 

discovered defects, changing customer requirements, 

and executive support. Such volatility was essential to the release cycle: after NPD-1, a 

product manager estimated scope still exceeded capacity by between 123% and 137%. 

One manager expressed frustration with the constantly changing requirements list, 

saying , “We should make butter in this company, as much as we churn scope.” Volatility 

in accepted requirements continued up to NPD-2. 

Removal was an essential task in order to accomplish NPD-2. Not only were 

project resources insufficient for the requested scope, those resources were being used 

(“burned”) by the passage of time, although not necessarily fully utilized. In sprint 6, for 

example, development managers reported they had assigned work “below the line” 

(likely to be outside of the cycle scope) to developers, because sufficient work “above the 

line” had not been properly decomposed. To the apparent exasperation of others present 

“We should make 
butter in this 

company, as much 
as we churn scope.” 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  84 
 
TRAVELING OF REQUIREMENTS 

in the status meeting, a product manager asked, “If they’re working items below the line, 

does that mean capacity has changed above the line?” The answer from several present 

was a resounding, “Yes!” As development had started, any time not spent on items above 

the line was irrecoverable. 

After scope had settled, other requirements were removed from scope, for 

reasons of volatility. Early in the cycle, a requirement to support a particular wireless 

communications protocol was added to the requirements list, as it had been recently 

change-controlled out of the previous release as the hardware and firmware necessary 

for development and testing had not arrived from the third-party vendor in time. This 

requirement remained in the observed cycle through NPD-2 without significant 

development progress, despite receiving regular attention from product and project 

management. Project and product managers were frustrated, and moved the problem up 

the hierarchy. The release manager eventually explained that despite multiple 

negotiations the vendor was unwilling to provide their newest hardware and firmware 

versions as the vendor suspected GridCo was developing their own internal versions of 

the same. Due to this and other schedule troubles with the vendor, GridCo felt it 

necessary to fully control development of the communications HW and FW in-house, 

and eventually ceased its relationship with that vendor. However, enough time had 

lapsed waiting on and negotiating with the vendor that the necessary HW and FW were 

not ready in time for inclusion in the observed cycle either. Because of the volatility 

uncertainty encountered, this requirement was removed from the project via change 

control after NPD-2. However, this uncertainty was managed throughout by constant 

follow-up and horizontal coordination. In addition, product and project managers 
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regularly sought guidance from vertical authorities on how to address the third-party 

vendor, for information on the status of the internal replication project, and advice on 

strategic fit of the requirement. 

8.3.3 Expanded requirements 

Requirements expand as uncertainty is revealed during the development process, 

often during translation or construction. Expansion differs from addition (scope creep) 

in that it is not the addition of new requirements (volatility), but rather the result of a 

deeper understanding of existing requirements (e.g., identity or complexity 

uncertainties). 

In one example of expansion growing from identity uncertainty, senior 

developers asked questions about the scope of a decomposed requirement during an 

estimation meeting. The requirement introduced a software process that might, in 

certain circumstances, lead to a failure condition. However, steps to recover from the 

failed state were not specified in the requirement, and developers questioned how that 

should occur. This led to the creation and inclusion of a new story as part of the 

requested feature. 

An engineer related another instance of expanded requirements due to identity 

uncertainties. Requirements intended to satisfy one of GridCo’s large, strategic 

customers (“Customer B”) were prominent in the pool of requirements for the observed 

and previous cycles. The engineer explained that initial rough estimation (T-shirt sizing) 

was typically accurate, but also described an experience where that did not happen: “As 

we looked at the requirement, we made some assumptions in putting together a T-shirt 
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size, and when they later went back to [Customer B], and said, alright, here's what we 

think this is, here's the assumption we made, then they shot that down pretty quickly, 

and said ‘no, you can't make that assumption.’ [We] brought it back, and that doubled 

the particular requirement scope size. That's the only one that's really been off in its 

estimation.” 

A different type of expansion occurs when developers chose to re-architect 

software “under the hood” (as one systems engineer described it) in the hope of 

facilitating a future over-all reduction in work. Although this sort of refactoring was not 

officially sanctioned, it sometimes occurred and caused small increases in initial 

development time. In one notable instance, the refactoring work, which had been 

advocated by development for several cycles but never accepted by product management 

came in “through the back door” during a time when not enough work had been 

decomposed. Developers, hopeful that their estimate of a nearly 50% reduction of a 

particular kind of recurring future work would pay off, began working on the refactor. 

This requirements was later officially added to the release. 

A final type of expansion was observed in the data. During the final four sprints 

of the release cycle, development is ideally complete, and the quality assurance, or 

“hardening,” process begins. Defects found in the cycle are sent back to developers for 

correction. Referring to previous cycles, one manager said, “the thing that kills us every 

thing is the high number of defects we find during hardening.” When pressed for 

clarification, this manager indicated the volume of defects were a problem, and largely 

stemmed from the great number of dependencies in the code. Thus, this type of 

expansion is a consequence of complexity uncertainty. 
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One other noteworthy requirement set was expanded during the cycle. Due to 

expanding international markets, GridCo wished to improve the localizations of its user 

interface. After an initial framework was in place, requirements related to globalization 

presented low identity and complexity uncertainties. As other requirements were 

delayed or faced great uncertainty, addressing globalization requirements, work that 

was initially intended to be accomplished in future cycles, grew to be a larger portion of 

the release as an easy way to continue utilizing development resources. 

8.3.4 Trimmed requirements 

The count of requirements accepted into scope may expand; the inverse is also 

true: requirements may be removed, or trimmed, from scope. 

Requirements intended to satisfy contractual obligations to Customer B also 

experienced trimming. Some of these obligations aligned with requirements already 

slated for the observed cycle, but one manager estimated that nearly a quarter of the 

capacity of the release was devoted to requirements contractually agreed to with 

Customer B. By two months after NPD-1 (development sprint 5 of 14), these 

requirements still had not settled sufficiently to be decomposed. GridCo scheduled 

multiple daylong workshop sessions with Customer B to resolve these identity 

uncertainties.5 The unresolved identity uncertainties of the work necessary to satisfy 

Customer B were evident in multiple status meetings during sprints 5 and 6. During 

sprint 6, NPD-2 had not yet occurred, and there was continuing concern voiced by 

                                                   
5 Amusingly, one of these identity uncertainties was resolving what was meant by “etc.” in some of the 

contracted items. 
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developers that the cycle was still over-subscribed. Product managers delayed removing 

items from scope until the Customer B identity uncertainties were resolved. In the end, 

forced removal was unnecessary because there was an overall reduction in the capacity 

demands for the requirements particular to Customer B, which relieved much of the 

capacity pressure in the release cycle. However, some of the requirements were moved 

to the FW product group, which led to some indirect volatility. 

The difference between removal and trimming, as with expansion and scope 

creep, is centered on resolving identity and complexity uncertainties rather than the 

volatility of demands. That is, demands do not change, but the understanding of them 

does. 

8.4 Cross-Layer Traveling 

Cross layer travelling is important, because it highlights complexity uncertainties 

arising from inter-dependent layers: requirements traveled between hardware and 

software in virtuous (or vicious) cycles (Figure 8–3). At GridCo, this complexity 

uncertainty manifested as schedule volatility for dependent components. Adding 

support for new utility meters to the C&C software system was a great deal of work. For 

example, adding support for only a few new meters caused the single largest portion of 

work and uncertainty in the release cycle. Coordinating the timing of completion 

between layers was problematic. In some cases, support for new HW was contractually 

obligated, but the HW itself was still being developed. First releasing the HW and then 

later releasing updated C&C SW to support it was an untenable option. As a 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  89 
 
TRAVELING OF REQUIREMENTS 

development manger explained, “software and hardware releases coincide because of 

customer certification requirements.” 

 

Figure 8–3: Cross-Layer Traveling of Requirements 

Coordinating development between new HW, FW, and the supporting SW was a 

major challenge; the resulting complex interdependencies affected requirements at each 

of these layers. A change in a processor, or the data stored at the HW level necessitated a 

change in FW that would almost certainly affect the SW layer. However, these 

dependencies were cyclical: one manager explained, “for FW to complete, [it’s] 

dependent on SW; for SW to complete [it’s] dependent on FW.” No matter which was 

completed first, the additional rework was frequently assigned to different teams, 

possibly in different sprints or even different release cycles. Given this cross-layer inter-

dependence, one manager speculated GridCo might “be better off with cross-functional 

teams.” 

For the product development group, reliance on the central information system 

as well as coordinating documents and standards was essential, but insufficient. For 

example, at one point a requirements change was made in the C&C SW that required 
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assumptions underlying SW at an intermediate network device to be challenged. The 

original intermediate SW had been written as an application, and after the requirements 

changed at a different level, it needed to be rewritten as a daemon.6 

Dependencies were tracked in the central IS, but there was insufficient 

assignment of responsibility for cross-layer coordination. One participant indicated—in 

one of the rare times any participant was openly critical of the company—a major 

frustration with the lack of coordinating project management across hardware, 

firmware, and software layers, in that there was no orchestration of the critical path 

between them. This participant requested special care when making these statements, 

so as not to be seen as attacking any particular individual, indicating, “I’ve said enough 

to get me into trouble.” 

The coordination of HW, FW, and SW was a constant frustration. Development 

of the SW layer required access to HW. Due to the mismatch between HW, FW, and SW 

development schedules, the necessary HW was not scheduled to be delivered to the SW 

team until late in the cycle. The SW managers’ preferred approach was to have a small 

number of teams work for a longer period building domain knowledge, but volatility in 

the HW and FW schedules necessitated utilizing more teams over fewer sprints. This 

created an additional whiplash effect, as the addition of development teams meant not 

only less productive teams (due to lack of focus and domain knowledge), but also that 

either teams shared HW prototypes, resulting in slowdowns, or teams being delayed 

                                                   
6 In this case, “application” means a windowed program or executable with the potential for user 

interaction. Conversely, a “daemon”, also called a “service” on some operating systems, is a program 
that runs in the background without interaction from the user. 
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further waiting for their own hardware. The situation was further complicated by 

multiple HW iterations during the SW development cycle: to properly certify software 

for use by customers, it needed to be written and tested against production versions of 

hardware identical to what customers would receive. In another instance, requirements 

were changed after they were decomposed to accommodate the unavailability of HW. 

Even with the use of documented standards as a vertical coordination 

mechanism, one firmware manager indicated that when the supporting SW is written 

before the FW is official completed, it is typically necessary to go back and redo the FW 

to compensate for instances when the documented interfaces were unclear. 

During sprint 6 (about one month after NPD-1), 

development fell sharply behind schedule. During a 

heated status meeting, a manager indicated that 

dependencies in the FW (complexity uncertainty) necessitated additional resources be 

allocated to development. Hardware resources that were expected to be available were 

announced as delayed until at least 60% through the release cycle. A development 

manager explained in the meeting that if the necessary HW was incrementally delivered 

from sprints 9 through 12, as anticipated, the necessary SW development work could be 

accomplished, but there would be no opportunity to find or correct potential critical 

defects. He continued, “I estimate about 80% confidence of full [development 

completion] by [NPD-7] if firmware and [hardware] is complete by sprint 9. If that slips 

one sprint, it’s closer to 50% confidence.” (These resources were not actually delivered 

until after development on the cycle was complete; work on the dependent requirement 

sets was done in a minor release, out of cycle.) A different manager indicated that the 

“We have this issue 
every release.” 
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release date of a hardware unit that interacted with the C&C software was delayed, and 

the release date was unpredictable, as the HW design had undergone a change from one 

processor family to another, and that consequently the necessary work was 

“unknowable” and “impossible to estimate.” At this point in the project, all managers 

reported the release as high risk of falling behind, due to schedule volatility of 

dependent HW and FW components. Another manager commented, “We have this issue 

every release.” 

To further complicate matters, the volatility from cross-layer dependencies 

occurred at the same time as some significant identity concerns in an unrelated 

requirements group. A product manager exclaimed, “if we didn’t have hardware 

pressure, [the other requirements] wouldn’t be risky,” indicating the cycle could absorb 

some uncertainty, but was struggling to handle multiple uncertainties with big potential 

schedule impacts simultaneously. 

8.5 Cross-Cycle Traveling 

Perhaps the biggest advantage of developing recurrent software is cross-cycle 

traveling of requirements (Figure 8–4). Future requirements thought to be highly 

uncertain were initially introduced as preliminary investigative requirements. The 

purpose of these investigative requirements was to identify which parts of the future 

implementation were uncertain, in order to resolve as much uncertainty as possible in 

future releases. 

The requirements list for the release cycle was initially oversubscribed. However, 

the promise of future releases allowed a low-impact way of delaying implementation of 
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requirements for something of a higher immediate priority. When implementation of 

HW-dependent requirements was delayed beyond the release date, other requirements 

slated for a future cycle were moved forward, with little loss in efficiency. 

 

Figure 8–4: Cross-Cycle Traveling of Requirements 

Recurrent release cycles also allowed for some (not customer-facing) 

development to be only partially finished in a release, with the promise of completion in 

a future release.  

In sprint 6, due to a confluence of factors—major requirements groups from a 

particular customer were delayed due to identity uncertainty, and development to 

support new FW and HW were delayed for volatility reasons—development managers 

indicated during a status meeting that not enough requirements had been decomposed 

to provide sufficient work for all development teams. As a consequence, some 

development teams were tasked with complementing work outside the cycle. “I have 

four [vendor] teams with nothing to do that are currently working defects,” one manager 

noted. Capacity was not being fully utilized, and was consequently being lost as 

developers were idle or doing low-priority work. The problem was exacerbated a few 

sprints later when the major identity uncertainties with regard to a strategic customer 

were clarified, and scope of included items decreased. 

...C1 C2 C3



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  94 
 
TRAVELING OF REQUIREMENTS 

To address this unutilized capacity, requirements related to software localization 

that had been investigated and prepared in a previous cycle—but had been withheld 

from the observed release for capacity reasons—were added to the observed cycle. The 

localizations were necessary for future strategic goals of the company, but had not 

initially been included in the observed cycle, ranking below the line of available capacity. 

However, due to the unexpected increase in immediate capacity, the localization 

requirements were added. Had these requirements not been investigated and 

decomposed in a previous cycle; and, had managers not had familiarity with the status 

of localization work from previous cycles, these requirements would not have been 

added to the release. A further benefit to adopting the localization requirements to the 

current cycle was that its scope was variable: localization work had low uncertainty and 

could be partially completed as capacity allowed with no noticeable effects to the user, 

and then fully completed in a future cycle. This flexibility permitted managers to use this 

requirement as a buffer to fill in work as space was available. In this manner, much of 

the localization effort slated for a future release was accomplished in the observed 

release. 

As an additional but minor example, a developer reading a story concluded the 

described end state was unintuitive for the user (as it relied on the user remembering a 

number rather than a name, and search functionality was not available). The developer 

reached out to the architecture team suggesting that intuitive naming and search 

functionality be included. While waiting for a response, another team implemented the 

story, however, the developer’s suggestion was included as a requirement for a future 

release by the product manager. 
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The ability to move requirements across cycles was an important tool for the 

release cycle manager, not just in managing the scope of the release, but in adapting to 

volatility from revealed uncertainties in development. As one participant described, 

“Some features [related to a particular meter] were growing too much … to support 

some functionality we didn’t need until next release. … As the teams were working 

[they] kept learning more.” Consequently, a portion of the requirements (comprising an 

estimated 600 person-days of work when HW, FW and SW layers were considered) was 

moved to the next release. The manager continued, “It was moved because more 

firmware resources were needed and firmware was strapped. Everything is strapped [for 

time].” 

Lastly, in addition to the forward traveling of requirements through time, the 

recurrent nature of development permitted anticipatory work on requirements, even 

before the requirements had been accepted and specified. The analysts understood their 

time was a bottleneck to the development organization (as made starkly clear in the 

incident discussed previously). Consequently, analysts and engineers relied on their 

experience and knowledge-centric position within the organization to anticipate and 

pre-work selected requirements. As one engineer said, “I knew there wouldn’t be enough 

time in a release for design … [so] I’ll do up-front design for the most difficult things.” 
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9 DISCUSSION 

Using GridCo as a reference, we relate our empirical analyses to theories of traveling, 

work design, and recurrent packaged software. To conclude our engaged scholarship, 

we discuss strengths and weaknesses of GridCo’s development to explicate 

contributions and limitations of the study. 

9.1 Traveling 

Understanding how requirements travel in a particular organization permits researchers 

a way to understand the strengths and weaknesses of the organization structure 

surrounding product development, and how the structure may be best adapted to 

address uncertainty. The three types of traveling revealed in the analysis (local, cross-

layer, and cross-cycle) gave insights into the workings of a complex software 

organization, as its members worked to resolve task uncertainty in the recurrent release 

of packaged software for electric grid management.  

Figure 8–1 (Work Design) maps the typical travel of requirements across the 

organization. The traveling constructs described in the analysis framework are 

embedded in the display: each activity constructs or translates the requirement, and 

requirements are shared between organizations and with the common information 

system. At GridCo, the theorized differences between construction and translation did 

not appear significant. It may be that translation, as defined in this dissertation, is 

simply another form of construction, and that a broader definition of translation would 

be more useful, such as the one by Nielsen et al. (2013), which describe translation as 
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transformation and movement as actors apply their knowledge to practical use. Or, it 

may be that the management-centric level of analysis of this dissertation was at too high 

of an organizational level to capture sufficient data about translation. 

The strong use of an IS as requirements repository as a canonical source of truth 

may have also limited the “translation” of requirements, in its original meaning by 

Czarniawska and Joerges (1996). Except for individual construction work 

(decomposition and writing computer code), most of the sharing of requirements and 

construction effort (e.g., estimating and status updates) occurred in groups that crossed 

organizational boundaries, so a group’s consistent understanding of requirements may 

have also overshadowed possible changes due to translation. Certainly, the prolific use 

of a common IS served to minimize variation in individuals’ understanding of 

requirements. 

As requirements traveled through the organization, uncertainties were resolved 

at each step. Identity uncertainties tended to be resolved earlier in the requirement’s 

lifecycle; complexity uncertainties were, by their nature, encountered later. Some 

identity uncertainties began with customer interaction or negotiated contracts items (for 

example, the requirement to support a particular meter, with no definition of 

“support”). Other uncertainties resulted from misinterpretation of customer intent. In 

both cases, these identity uncertainties were resolved by backtracking through the 

development process, sometimes resulting in consultation or negotiation with 

customers. 

In our finding of localized traveling, the distinction between creep and expansion 

(or removal and trimming) is centered on the type of uncertainty being resolved; the 
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former concerns volatility, while the latter addresses identity. This distinction may at 

times be murky for a couple of reasons. First, uncertainty due to complexity may reveal 

identity uncertainty and lead to volatility as well. Second, the observation may change 

with the unit of analysis: requirements at the smallest level of work may indicate creep 

or removal, but when considered as a full requirement or requirement group, this may 

present as expansion or trimming. 

Temporal considerations also have a part in how GridCo managed uncertainty in 

requirements. Early in the project, prior to NPD-2, uncertainty was embraced with 

rough estimates (T-shirt sizes) as the requirement was shared horizontally across the 

organization to focus a shared vision, and requirements were added and removed from 

scope, causing a great deal of volatility in the early part of the cycle. During the middle 

of the project, horizontal coordination was insufficient to constrain the oversubscription 

of cycle capacity, and guidance was sought along vertical lines. Following NPD-2, 

process structures applied vertical reinforcement to travel paths as formal change 

control (and consequently, hierarchical approval) became required. Based on 

observation, this progression from “loose horizontal” to “strict vertical” over the life of 

the project was consistent with other releases. As one manager said, “early [we] embrace 

uncertainty, after, we want to restrict uncertainty and control it.” 

Although not wholly related to the traveling of requirements, the structure of 

development on maintenance—use of a separate “sustaining team” external to the 

release—issues may limit the effects of double-loop learning (Argyris and Schon 1978; 

Nerur and Balijepally 2007) predicted by theory. GridCo separates a cadre of four 

development teams on a six-month rotation focused on maintenance issues. This has 
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the advantage of providing a more predictive level of staffing for project issues, and 

creates a buffer of resources that in extreme circumstances were sometimes reallocated 

between maintenance and work on the release, but at the potential cost of more real-

time learning at the team level.  

9.2 Work Design 

Our analyses of how requirements travelled at GridCo revealed interesting 

insights into how structures, processes, systems and knowledge impacted the ability to 

manage uncertainties in observed release cycle. 

9.2.1 Structures, processes and systems 

The discussion of work design (Chapter 5) focused primarily on horizontal (modular) 

and vertical (hierarchical) boundaries in work design, and, following our understanding 

of Sinha and Van de Ven (2005), tip-toed around addressing network problems, simply 

noting they were the complex, entangled interaction of modular and hierarchical 

concerns. Yet, in our observation, applying only horizontal and vertical descriptions was 

insufficient to capture the richness of interaction: nearly every interaction could be 

described as network. 

Overall, GridCo used a primarily modular, functional organization design. Each of 

the functions involved in the release cycle also had responsibilities for other products, 

projects, and releases. Yet, the organization worked, and worked well. Against this basic 

empirical finding, we may relate our analyses at GridCo to the core literature. Galbraith 

(1973) assumes coordination occurs across vertical boundaries. Instead, at GridCo work 
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moved back and forth across functional boundaries at the same horizontal level, 

requiring coordination of all parties. Sinha and Van de Ven (2005) describe network 

boundaries in a way that at first blush implies the quantity of connections is of primary 

importance, whereas this case exemplifies it is rather the necessity of coordination 

between a multiplicity of participants (each, potentially, with a cross-functional role) 

that exemplifies a network. 

Mintzberg (1993) summarized Galbraith (1973) and other organizational 

researchers, and explained the continuum of “liaison devices” organizations adopt to 

overcome the deficiencies of purely functional or purely hierarchical organizational 

designs. In particular, GirdCo demonstrated the middle two types of devices on the 

continuum from simplest to most elaborate: standing committees and integrating 

managers. (Liaison positions and a full matrix structure begin and end the list, 

respectively.)  

Perhaps the most continuously effective coordination mechanism at GridCo was 

the “project status meetings,” attended by managers and directors across related 

functional silos. Although the status meetings were technically a task force for the 

release cycle, cycles for the C&C software overlapped, so the meeting would transition 

from status of a soon-to-finish release to status of a just-beginning release quickly, with 

no change in personnel. Status meetings were the primary mechanisms for cross-cycle 

traveling; decisions regarding whether to move requirements forward or backward were 

made and negotiated among this group of people.  

Other meetings, including architecture and design meetings, evolved to included a 

subset of status meeting attendees. These design meetings negotiated some of the 
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complex architectural uncertainties arising from dependencies across layers. The design 

meetings also adapted to take over the rough estimation function that in the observed 

cycle was accomplished through a plenary meeting, and thus accomplishing the same 

task piecemeal and as needed over a period of weeks, rather than interrupting many 

workers for an extended meeting.  

The second organizational device, integrating managers, is “a liaison position with 

formal authority” (Mintzberg 1993, p. 83). At Gridco, both the release cycle manager 

and product portfolio manager had weak positional authority, and as Mintzberg (1993) 

predicts, primarily exerted influence by negotiation and persuasion of those over whom 

there was no formal authority. Some were more effective than others in this role. As was 

the case at GridCo, “The effective integrating manager appears to require a high need for 

affiliation and an ability to stand between conflicting groups and gain the acceptance of 

both without being absorbed into either” (Mintzberg 1993, p. 84).  

In combination, integrating managers and standing committees created 

relationships that presented as a “local hub assembly” (Figure 9–1)7, a complete network 

of connections of all stakeholders involved in the C&C release at the manager and 

director levels. The assembly, a group gathered for a common purpose, much like a 

standing committee or task force, was local to the release as well as to the parent 

product development organization. Additionally, the assembly acted like a hub to the 

greater product organization, in fashion similar to hub firms as described by Dhanaraj 

                                                   
7 Figure 9–1, while illustrative, is limited by two dimensions. Imagine instead five different functions, 

each with a couple of specific specialists with a relevant stake in the release converging in a fully 
connected graph. 
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and Parkhe (2006). Orchestration of the release cycle was accomplished by the assembly 

as it “pulls together and leverages the dispersed resources and capabilities of network 

members” (Levéna et al. 2014, p. 158), under the direction of a process orchestrator. The 

process orchestrator leveraged an organizational reliance on a strong, central IS, as well 

as a regular structure of meetings and formal interaction opportunities to regularly align 

the focus of the assembly. Occasionally, vertical directives were received by one 

stakeholder, and had to be processed by the group. Conversely, there were occasional 

problems that were passed up some—but usually not all—of the vertical reporting lines 

of stakeholders. In this way, the “local hub assembly” formed the heart of the 

coordination of the release cycle. 

 

Figure 9–1: Coordination Through the Local Hub Assembly at GridCo 
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Here the duality between software and organization is again manifest. 

Uncertainty is a function of work design while at the same time also conditions and 

informs work design. The lower uncertainty (conditions of high programmability), such 

as what existed at the lower, operational levels of the organization due to the detailed 

deconstructions accomplished early in the process, permitted a more modular structure. 

Situations of higher task uncertainty (low programmability) required, more organic, 

tightly coupled structure in order to be responsive. 

Other patterns described by Mintzberg (1993) were facially evident, including the 

way GridCo used specific roles as knowledge leaders, and as a consequence created slack 

resources (Galbraith 1973) while seeking standardized skills in a professional core that 

worked independently from colleagues (Mintzberg 1993). Reinforcement of processes 

and process orchestrators, what Mintzberg (1993) refers to as “technostructure” were 

also strongly evident, as GridCo is a very process-driven organization. The release cycle 

manager adopted this role. 

Lastly, as has been described, there was a clear investment in vertical information 

systems, which is predicted by Galbraith (1973) to reduce uncertainty by increasing 

information processing capacity of the organization, a notion validated by multiple 

information systems researchers. However, despite a vertical information system, much 

of the data it provided was duplicated in multiple ways during coordination activities 

such as status meetings. For example, status summaries stored in the system were often 

read aloud during coordination meetings. Hence, a key function of the IS at GridCo was 

to support sharing of existing documentation and as a constant reminder to all 

participants what had been achieved and what plans had been committed to. The shared 
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requirements IS was used collaboratively in requirements estimation, as a meeting 

guide for acceptance and review of completed requirements. Output from the vertical IS 

also formed the bulk of status summary documents in a manner similar to a balanced 

scorecard. In short, shared information systems were core to nearly every activity in 

product development at GridCo. 

Overall, it was the combination of and interactions between the release assembly 

the process orchestrator that took center stage in dynamically organizing the release 

cycle so the participants could successfully manage uncertainties. Backstage, these 

mechanisms were enabled by Gridco’s established organizational structure, its vast 

repertoire of processes, templates and standards, and, its extensive use of a 

comprehensive and extensively shared IS. 

9.2.2 Knowledge Centers 

Requirements construction and architectural decisions at GridCo relied on 

analysts and systems engineers, who worked in the same functional silo. As a whole, 

these were experienced employees with extensive domain and product knowledge. As 

they had primary responsibility for the deconstruction of all requirements in the queue, 

the oversubscription of the release placed a great deal of strain on this function, and 

eventually caused a bottleneck in the release.  

This was a structural response to uncertainty, and had the benefit of permitting 

development resources to be more fungible and scale more readily. Requirements were 

deconstructed to the extent that even the newest development teams could accomplish 

them; a necessary feature, for one development manager estimated two-to-three-year 
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ramp-up time for new developers to acquire enough domain knowledge to have full 

productivity. Unfortunately, the centralized group of analysts and engineers with the 

requisite domain knowledge could not scale as quickly. As one manager said, “We need 

more systems engineers.” 

However, as the primary knowledge center for product development, this group 

unintentionally acted as a bottleneck to other decisions. Participants explained that any 

architectural or design decision made in the development organization required a 

second meeting to get the buy-in of these experts. 

9.3 Recurrent Development of Packaged Software 

Perhaps the most interesting finding specific to packaged software is the temporal 

traveling of requirements across cycles, a key tool used by GridCo. This suggests some of 

the observations of Sawyer (2000) are due not solely to the type of software being 

developed, but also due to the recurrent nature of development. This may help bring 

clarity to the muddle of definitions and distinctions between classifications of product 

software (Xu and Brinkkemper 2007). Cross-cycle traveling also enabled 

reconsideration in the following release of whether the pushed requirements were as 

important as initially indicated, and thus provided an additional filter useful in 

identifying the most important requirements. Requirements were not the only thing to 

travel, however. In multiple instances, resources were temporarily shifted between 

overlapping cycles.  

One major benefit of cross-cycle traveling, was the minimal disruption caused by 

introducing a requirement from a previous cycle. Typically, much of the work of 
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uncertainty management, through activities such as deconstruction, had already been 

accomplished; previously expended resources were not wasted, and there was no 

noticeable loss in momentum. 

A second benefit of embracing cross-cycle traveling was the shifting of 

requirements with low-uncertainty forward and backward between cycles as a buffer or 

hedge against uncertainty. When important but highly volatile work became available, 

some low uncertainty requirements were shifted to the next cycle. Conversely, when 

high volatility unexpectedly opened capacity, low uncertainty requirements, in this case, 

international localizations prepared in a previous release and scheduled for a future 

release, were shifted to the current cycle so available capacity was not wasted. 

Benefits of recurrent development extended beyond cross-cycle traveling. During 

a particular observation, senior developers were estimating story points for software 

features necessary for support of a new utility meter in the command and control 

software. Estimation of these stories occurred with surprisingly little discussion. 

Additionally, some stories were seemingly duplicated. On investigating further, it 

became clear that the stories being estimated were similar for all meters supported by 

the software, and that support for new meters was added regularly. Thus, iterating 

cycles not only increase domain knowledge, but may expose repeated patterns of 

functionality to be implemented in similar ways, improving productivity not only in the 

development, but also in the planning and coordination of development. 

The shared experience of multiple iterations led, as expected, to a shared 

vocabulary at GridCo that took some time for researchers to understand. This increased 

organizational learning (Lyytinen and Rose 2006) and consequent clearer 
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communication, likely, over time, resulted in reduced uncertainty due to translation as 

requirements traveled.  

As predicted, cross-cycle traveling provides benefits beyond managing the 

uncertainty of a particular requirement or release. Some requirements occurred in 

multiple release cycles. Some requirements persisted “below the line” in multiple 

releases, but not prioritized high enough to be developed in a particular release. GridCo 

utilized investigative requirements as a tool to uncover uncertainties in developing a 

future requirement. Such investigative requirements did not necessarily introduce 

functionality in the then current release, but were fully realized in an initial release, but 

is fully realized in a future one. These are examples of traveling that would not be 

possible if development were recurrent, as it is in packaged software. 

9.4 Engaged Scholarship 

In return for site and data access, we agreed (Section 7.1) as part of our engaged 

scholarship effort (Van de Ven 2007) to return to GridCo with a practical evaluation of 

their organization and processes. The evaluation, summarized below, highlighted 

strengths and difficulties observed during data collection, and presented options for 

possible improvement. 

9.4.1 Strengths 

We saw GridCo as a mature organization that successfully coordinated across multiple 

sites thanks to a strong, mature process culture. The firm as a whole regularly managed 

hundreds, if not thousands of HW and SW projects. They had a history of successful 
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releases, which spoke to their ability to repeat successes. This repeatability (Humphrey 

1989; Lyytinen and Rose 2006) was reinforced by adherence to firm-mandated NPD-

gates, combined with adaptive agile-like developments processes. This structure 

improved coordination with the rest of the firm, beyond the stakeholders in the release 

cycle as well as providing a structural short-term vision for the release (Parnas and 

Clements 1986). Yet, despite the rigid structure, the organization remained adaptive, 

and modified its processes to improve flow of information processing, as evidenced by 

the change in how rough estimation was accomplished. This ambidextrous balance of 

discipline and adaptability also provided performance management and social support 

to actors within the organization (Gibson and Birkinshaw 2004; Napier et al. 2011). 

Regular status meetings held functions accountable for their work. There was a 

communal and sometimes negotiated understanding of expectations, and feedback 

when expectations were not met, but also a willingness for parts of the organization to 

compensate when work by another stakeholder was insufficient, as it occurred when 

development utilized capacity that would otherwise have been wasted when insufficient 

requirements had been decomposed. 

The role of the process orchestrator and the local hub assembly in collectively 

 

Figure 9–2: Manipulating the Triple Constraints of Project Management 
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coordinating the project was instrumental to the organization’s success. There was 

regular effort in status meetings to agree on both unified internal and external 

messaging to maintain an aligned vision of the release. The organization embraced 

coordination cost as a necessity, and continuously reinforced and rewarded process 

behavior that was productive, not just formal. For example, although status documents 

were available via a shared information system, weekly external messaging to the firm 

hierarchy was read aloud. At first, we wondered whether this behavior was superfluous, 

but came to recognize that this over-communication was essential to building the almost 

consistently unanimous consensus of the assembly. 

One of the greatest strengths of GridCo was its acceptance of the constraints of 

project management. The organization understood the trade-offs inherent in the triple-

constraints of the “Iron Triangle” (scope, resources and time) (Kapur 2004), and 

stakeholders had support of their hierarchical leadership when making adjustments of 

scope and resources to meet vertical demands. The C&C release typically manipulated 

scope, as resources (e.g., personnel) and time were generally fixed (Figure 9–2). 

 

Figure 9–3: Differences in Constraint Management in Software and Hardware 
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9.4.2 Difficulties 

By far the most pressing challenge GridCo faced was the management of cross-layer 

dependencies. HW and SW projects were supposedly timed to publicly release 

simultaneously, but internal schedules prevented this during the observed period. In 

development of SW, recurrent releases and the (comparatively) low cost of deployments 

and upgrades permitted release managers to manipulate scope by easily moving 

requirements to future cycles. HW development was not so lucky; their scope and 

resources were static by comparison, and consequently HW projects adjusted their 

release date as a response to encountered uncertainties. SW, on the other hand, was 

under a strict schedule by vertical fiat, and adjusted scope as necessary to meet the 

schedule (Figure 9–3) As a development manager indicated, “We’re agile in 

requirements, but not agile in schedules.” In short, the scope flexibility of SW was 

incompatible with time flexibility of HW. Managers responsible for the C&C release 

attempted repeatedly in previous cycles to impose hard limits on completion status of 

HW components included in the cycle’s scope, but were regularly overruled by 

executives determined to keep contractual commitments. Thus, cross-layer traveling of 

requirements dependent on HW and FW components introduced a great deal of 

schedule uncertainty in the observed release. Major HW components were eventually 

delivered so late that SW support, a major component of the release, was delayed and 

released as a separate update for a specific customer two months after the cycle was to 

have concluded. 

Incomplete management of backlog requirements between release cycles also 

posed a difficulty for GridCo. Both strategic planning and drafts of backlog lists for each 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  111 
 
DISCUSSION 

cycle were made more difficult by the lack of a unified backlog that persisted across 

cycles. Product and product area managers maintained separate backlogs that were 

combined at the start of each cycle, as one product manager described it, through 

“Darwinian” negotiation. Consequently, a manager noted, “There's very little of what I 

would call a true portfolio review in product management, except on a very ad hoc basis, 

per release, as things are just about in front of us, to say, okay, here's how these things 

are going to interrelate to produce a more cohesive product backlog.” Consequently, 

rather than a reserve backlog providing a organization-wide roadmap of future 

development, the backlog was made more volatile by frequent executive escalation of 

priorities in the early stage of the observed cycle. Cross-layer dependencies compounded 

the difficulties that arose from lack of a backlog. Multiple participants shared the view 

that a lack a portfolio view of requirements to examine relationships between HW and 

SW releases contributed to increased executive escalation of requirements early in 

cycles. Further, this lack of a backlog limited the ability of the product development 

group to communicate its plans to external entities within the company (e.g., sales). 

Each SW cycle began significantly over-subscribed; a backlog of uncompleted 

requirements is a sign of a healthy product, but an over-full backlog might indicate a 

need for additional resources. 

These difficulties combine to manifest a third area of trouble for GridCo: product 

strategizing. Without a between-cycle backlog, there was no default way to communicate 

a long-term product roadmap with the rest of the firm. Instead, releases tended to 

experience increased volatility due to contractual demands from new customers through 

sales. GridCo was very effective in sales, and entered several significant strategic 
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contracts before and during the observation period, but members of the product 

development organization expressed concern that they lacked a long-term vision, such 

as might be expressed in a shared, unified backlog. Consequently, strategic resource 

planning was also hampered because it is difficult to plan for future resources without 

understanding future scope. As one example, GridCo used an outsourced software 

development vendor. The ramp-up time and quality of delivered code were somewhat 

below expectations, and development managers wanted to move that capacity to in-

house and overseas captives. As one manager summarized, “They haven’t worked out 

like we wanted”. Use of the vendor’s development resources was initially slated to ramp 

down over a twelve-month period in a previous cycle, but demands of scope necessitated 

those resources be fully utilized. Without a backlog to inform the discussion, product 

development seemed to avoid addressing strategic ways of adjusting capacity (up or 

down) to properly fulfill demands of scope. 

9.4.3 Options 

Elucidating the difficulties encountered by product development at GridCo makes 

some avenues for potential improvement very clear. Strategic resource and scope 

management would be improved through a unified product backlog that is shared 

beyond product development and used as a basis for strategic resource planning. In 

addition, the release cycle was quite long. Consequently, some participants had a 

tendency to want to push development of requirements later in the cycle. In contrast, 

shorter cycles would beneficially narrow the solution space for managing uncertainty by 

constraining the schedule; and, requirements would be addressed or moved to a future 

cycle for later consideration, rather than being reconsidered multiple times (and causing 
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thrashing in the project). Customers would likely not react well to shorter release cycles 

(their independent certification requirements were typically about several months), but 

shorter, interim releases could be considered only internally.  

One method of gaining the benefits of shorter release cycles is a concept 

discussed by (McConnell 1998, p. 38), called “Two-Phase Funding.” Although 

McConnell (1998) describes two-phase funding from a financial perspective, the same 

principles apply when resources are fixed, and scope is being manipulated to match 

capacity. As a way to reduce variation, the first portion of the cycle is dedicated to the 

most uncertain requirements with the primary intent of reducing their uncertainty in 

the latter part of the cycle. This structural change might involve separate change control 

windows for the early and late parts of the cycle, and could include formal deadlines and 

completion standards for consideration of inclusion of requirements dependent on new 

HW, thus also reducing the need to manage the volatile interactions of cross-layer 

traveling. Early and late cycle windows would mean more frequent, but shorter ranking 

discussions, and these discussions would be simpler due to the shorter time frames 

involved. Similarly, such a change rewards discipline on low-uncertainty requirements, 

and provides for adaptability on high-uncertainty requirements. Discussions of volatility 

would be less common, leading to less thrashing during coordination. Lastly, the 

additional deadlines inherent in a double window cycle might lead to small productivity 

boosts due to deadline effects. 

The final option presented to GridCo for consideration was allowing for a flexible 

release window. The high volatility of HW-dependent requirements almost guaranteed 

delays that were not apparent until well into the cycle. Time frames were fixed because 



Traveling of Requirements in the Development of Packaged Software 

T. Gregory | Dissertation  114 
 
DISCUSSION 

they had been communicated outside the firm; protecting those releases date and 

instead providing release windows until schedules were less uncertain (for example, at 

NPD-2) would provide an additional option for managing uncertainty. 

9.5 Contributions 

It is evident from even casual observation that GridCo is a very process-mature 

organization. Actors at multiple levels rigorously document, adhere to, and, reinforce its 

engineering and management processes. The release manager of the studied release 

cycle claims a strong track record of successful releases (on time, full scope, within 

budget). In addition, the market seems to be responding to the success of the 

organization, as evidenced by GridCo winning contracts from increasingly large 

customers (and correspondingly increasing revenue) over the past year. This has lead to 

a very rapid growth in their development organization, maybe due to a successful 

handling of uncertainty in software development; consequently, such rapid growth may 

also reveal uncertainties. In any case, rapid growth affords a future opportunity to 

investigate structural responses to uncertainty. 

The primary findings of this dissertation speak directly to the initial research 

questions. Local, cross-layer, and cross-cycle traveling of requirements are 

organizational responses to managing uncertainty. As such, this dissertation contributes 

to the under-represented requirements research in IS (Hassan and Mathiassen 

Forthcoming) by exploring requirements practices in a complex software development 

organization. Further, the notion of traveling (Czarniawska and Joerges 1996; Nielsen et 

al. 2013) is further validated as an analysis tool for researchers in IS. 
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Software development research as a whole benefits from research that considers 

both uncertainty and work design (King 2013), and this dissertation answers recent calls 

for modern work design research (Sinha and Van de Ven 2005). Software development 

is accomplished in a wide range of organizational structures, and the discussion of 

network hub assemblies contributes to field understanding of variations present in 

firms. The traveling metaphor (Czarniawska and Joerges 1996) and the three types of 

traveling observed at GridCo reveal new insights into management of uncertainties in 

development practices. 

Software organizations that must manage multiple product layers benefit from 

understanding cross-layer traveling and the resulting whiplash effect of requirement 

dependencies and volatility. Even though GridCo employs risk models to provide 

management some confidence in cost–benefit and risk–rewards analyses, their models 

may require revision. Complex multi-layer software projects, such as GridCo’s 

centralized C&C system, rely on HW (and its associated FW) being completed to a 

sufficient level before software development can begin. This means the work on later 

software requirements—which may reside in a different release cycle than the HW 

component—is subject to not only to its standard risk variance, but also to the sum of all 

risks of the dependent projects. At GridCo, project and functional boundaries within the 

organization were reinforced by release-focused processes, which have led some within 

the organization to call for a more holistic management of the project portfolio, and 

exploration of ways to span these boundaries with a more pragmatic approach 

Development of packaged software (Xu and Brinkkemper 2007) is validated as 

distinct from development of other software, in that enables additional methods of 
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managing uncertainty, as explained in cross-cycle traveling. The review of packaged 

software literature (Chapter 3) highlighted some inconsistencies in how packaged 

software is viewed and classified. The GridCo narrative is a useful data point in bringing 

order to this emerging domain. 

Uncertainties with regard to requirements, as exemplified by identity, volatility 

and complexity uncertainties (Mathiassen et al. 2007), were evident throughout the 

release cycle. Implicated uncertainties will change between identity, volatility and 

complexity as requirements travel. The types of local traveling, as well as the different 

perspectives introduced by cross-layer and cross-cycle traveling, allow insight into what 

sorts of uncertainty might be expected, and a description of how those uncertainties 

were handled at GridCo. The organization’s processes serve to enable and reinforce 

coordination through structural boundary spanning both through the local hub 

assembly of primary stakeholders and their respective functional hierarchies. However, 

at times it also impedes the success of the organization as some of these processes are 

ill-adapted to the uncertain nature of software, resulting in anomalies such as ex post 

facto approval of changes to project scope, schedule and budget, or the beginning of 

software development before requirements are accepted into a release. However, these 

events where structure is ill-fitting may represent acceptable costs when compared with 

the added complexity of utilizing different processes for different project types within 

the same organization. This question is echoed by Child (1977, p. 175), who asks whether 

an organization should “set a limit on its internal formalization in order to remain 

adaptable, or should it allow this to rise as a means of coping administratively with the 

internal complexity that tends to accompany large scale?”. 
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Grounded in findings such as these, this research contributes to the IS 

requirements management literature and the packaged software literature. As described 

in Chapter 4, there is not a strong tradition of requirements-related research within the 

IS discipline (Hassan and Mathiassen Forthcoming). Treating requirements as 

expressions of uncertainty provides a connection to related fields of research in IS. 

Examining requirements within the context of an organization led to uncovering new 

knowledge about the sources of and responses to uncertainty in development of 

software, contributing to both the IS and software development literature. Further, by 

examining requirements in situ, this dissertation provided insight into software 

development and contributes a modern narrative to existing knowledge of general 

practices. 

GridCo is a very different type of organization than the cases considered in 

Sawyer (2000). Thus, this case may be useful in extricating industry and organization 

effects from effects contingent on whether development is of packaged software or 

custom development. When considered point-by-point, practices at GridCo may be 

analyzed and presented as evidence or contradiction of Sawyer’s (2000) speculations. 

Many of the descriptions and effects of packaged software (Sawyer 2000; Xu and 

Brinkkemper 2007) have not yet been subjected to empirical analysis (Light and Sawyer 

2007), so this dissertation is a novel entry in that regard. 

Finally, consistent with the responsibilities laid out in the MoU, researchers 

contributed to practice at GridCo by providing theory-informed summaries of 

recommendations to key stakeholders at the research site (as described in Section 9.4).  
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9.6 Limitations 

Any research is subject to limitations of scope and method. This research draws on a 

single case (Miles and Huberman 1994; Yin 2009), which limits the viability of cross-

case comparison or generalization of findings to other contexts (Lee and Baskerville 

2003). Researchers and practitioners in software development research, seem 

particularly likely to overreach in claims of applicability to other contexts, without 

consideration for differences between the contexts in the development method, 

organizational dynamics, or type of product (Jackson 1995). However, these 

disadvantages are weighed against the strengths of single-case research: attention to 

contextual dynamics and integration of multiple perspectives resulting in rich 

description (Mason 2007). Detailed description and rigorous analysis may enable future 

researchers to confirm and expand these findings in other contexts. To ensure rigor and 

validity, standard practices of empirical qualitative research were adopted (Miles and 

Huberman 1994; Yin 2009). 

Single-case studies do not provide as strong a basis for theory building as 

multiple cases might (Yin 2009), yet single cases permit a richer description of observed 

phenomena, which can, in turn, lead to strong theory regarding the research setting. 

Although organization-level effects are difficult to generalize to other contexts, this is 

not the intent of single case research (Siggelkow 2007). Conversely, observations of 

multiple actors or artifacts within a consistent context permits investigation of the 

behavior and attributes of these subjects with a stronger claim that contrasting effects 

are not context-dependent. 
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Generalization to populations or other contexts is not the intent or purpose of 

interpretive research. Instead, interpretive research seeks to generalize descriptions 

within a setting, and from there, generalize to theory (Lee and Baskerville 2003). This is 

not a weakness of case study research, but rather a strength (Eisenhardt and Graebner 

2007; Lee and Baskerville 2003). 

Coding by a single researcher, as was done for this dissertation, is common in 

interpretive studies (Cousins and Robey 2005; Schultze 2000), although it sometimes 

raises concerns of researcher bias. However, as Eisenhardt and Graebner (2007, p. 25) 

noted, “Although sometimes seen as ‘subjective,’ well-done theory building from cases is 

surprisingly “objective,” because its close adherence to the data keeps researchers 

‘honest.’” To mitigate researcher bias, the coding scheme was first dialectically iterated 

to be as objective and clear as possible. Both researchers participated in challenging 

interpretations in data collection, and conclusions reached through data reduction and 

data displays. Analyses were iterated to confirm fit between data, theory, and the coding 

framework. In all, these steps improved reliability of the interpretation and analysis 

(Miles and Huberman 1994). 

Quality interpretive research further protects against claims of bias by 

triangulating data, using multiple sources and types of data, seeking feedback from key 

informant on researcher interpretations, and, by iteratively refining their understanding 

by rigorous immersion in the data (Miles and Huberman 1994; Yin 2009). The multiple 

sources of data employed in analysis give strength our conclusions Importantly, these 
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findings were presented to key stakeholders at GridCo who concurred with the 

interpretations of data and key findings. 

There is a danger that the findings regarding the traveling of requirements, and 

the types of traveling present at GridCo, will be applied to other contexts without 

appropriate verification in those contexts, but that is a problem for future researchers. 

9.7 Conclusion 

We began by questioning how requirements travel, both socially and structurally 

within an organization. RQ1 focused on construction, sharing, and translation of 

requirements, while RQ2 examined traveling from the perspective of organizational 

structure. At our level of analysis, it was sharing, more than construction or translation, 

that moved to the forefront. Although the requirements construction life-cycle was 

detailed in the analysis (e.g., Figure 8–1) and was useful in elucidating local traveling 

and confirming that requirements do indeed travel and change, the interaction of 

horizontal and vertical boundaries that informed cross-layer and cross-cycle traveling 

was of even more interest. Additionally, the organizational structure—the local hub 

assembly—mitigated the effect of these boundaries. 

Both research questions constrained focus to “recurrent software development” 

which is addressed by cross-cycle traveling. In addition, the recurrent nature of 

development at GridCo enabled both extensive distributed domain knowledge and an 

ease of coordination between actors that might have been less likely in other contexts. 
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The three types of requirements traveling revealed in this dissertation—local, 

cross-layer, and cross-cycle—form the basis for discussion of organization structure, 

uncertainty resolution, and packaged software development, and provide real benefit to 

the field of information systems development. Using requirements as a lens, we have 

examined novel organizational structures in practice, and compared them to seminal 

work on organizational contingency theory. We have also validated a modified 

vocabulary of the traveling metaphor and applied it in IS research. These findings are 

novel contributions to practice and theory. 
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APPENDIX A: ISD REQUIREMENTS CONSTRUCTION CLASSICS 

1. Agarwal, R., Sinha, A., and Tanniru, M. 1996. "Cognitive Fit in Requirements 
Modeling: A Study of Object and Process Methodologies," Journal of Management 
Information Systems (13:2), pp. 137-162. 

Applies cognitive fit theory to requirements modeling. Experimental group 

showed better performance in process-oriented modeling tasks when using a 

process modeling tool. 

2. Byrd, T.A., Cossick, K.L., and Zmud, R.W. 1992. "A Synthesis of Research on 
Requirements Analysis and Knowledge Acquisition Techniques.," MIS Quarterly 
(16:1), pp. 117-138. 

Synthesizes "knowledge acquisition" and "requirements analysis" literature. 

Categorizes elicitation techniques. 

3. Davidson, E.J. 2002. "Technology Frames and Framing: A Socio-Cognitive 
Investigation of Requirements Determination," MIS Quarterly (26:4), pp. 328-358. 

Using an example of project failure, represents how changes in framing (of both 

the focus of the organization and the focus of the project) affect requirements 

priority. Concludes requirements are social constructions, fleshed out by often 

undocumented social interactions. 

4. Guinan, P.J., Cooperider, J.G., and Faraj, S. 1998. "Enabling Software Development 
Team Performance During Requirements Definition: A Behavioral Versus Technical 
Approach," Information Systems Research (9:2), pp. 101-125. 

Team skill, management involvement, and little variation in team experience 

led to more effective team processes during requirements development. Team 

members engaged in positive boundary-spanning behavior (e.g., championing) 

and negative boundary-spanning behavior (e.g., guarding). Guarding behavior, 
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that is, limiting information requested or released by a group, is shown to 

negatively affect performance, a result contrary to some earlier research involving 

different activities. 

5. Hickey, A.M., and Davis, A.M. 2004. "A Unified Model of Requirements Elicitation," 
Journal of Management Information Systems (20:4), pp. 65-84. 

Presents a unified model of requirements elicitation, synthesizing a great deal of 

elicitation research. Provides guidance on comparing/contrasting elicitation 

models.  

6. Houdeshel, G., and Watson, H.J. 1987. "The Management Information and Decision 
Support (MIDS) System at Lockheed-Georgia," MIS Quarterly (11:1), pp. 127-140. 

Carefully defined requirements are one of many factors, such as strong 

executive sponsorship, team approach to development, and evolutionary 

development, that lead to the success of a specifically studied system. Although only 

cursorily related to requirements, this paper suggests a complete set of 

requirements up front would be "difficult or impossible" (p. 136), and successful 

development occurred due to an evolutionary approach. 

7. Majchrzak, A., Beath, C.M., Lim, R.A., and Chin, W.W. 2005. "Managing Client 
Dialogues During Information Systems Design to Facilitate Client Learning," MIS 
Quarterly (29:4), pp. 653-672. 

Discusses "collaborative elaboration" as an elicitation technique and a way to 

facilitate "client learning." Dialoguing with clients produces superior design phase 

outcomes. 
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8. Markus, M.L., Majchrzak, A., and Gasser, L. 2002. "A Design Theory for Systems 
That Support Emergent Knowledge Processes," MIS Quarterly (26:3), pp. 179-212. 

Design theory for systems with ambiguously defined users, unstructured 

requirements, unpredictable work contexts, and tacit knowledge distributed across 

experts and non-experts. (Example contexts are new product development, 

strategic planning, organizational design.) 

9. Montazemi, A.R., and Conrath, D.W. 1986. "The Use of Cognitive Mapping for 
Information Requirements Analysis," MIS Quarterly (10:1), pp. 45-56. 

Cognitive mapping is used to improve understanding of complex cause–effect 

relationships. In the context of requirements analysis, this provides better 

understanding of relationships between requirements. 

10. Schenk, K.D., Vitalari, N.P., and Davis, S.K. 1998. "Differences between Novice and 
Expert Systems Analysts: What Do We Know and What Do We Do?," Journal of 
Management Information Systems (15:1), pp. 9-50. 

Determines individual analyst's problem-solving skills are key to defining good 

systems requirements, and identifies specific weaknesses that separate novice and 

experienced analysts. Ability to identify and define problems, greater willingness to 

make and discard hypotheses, and consideration of a greater number of 

alternatives are some characteristics that distinguish novice and expert analysts. 

11. Wand, Y., and Weber, R. 1995. "On the Deep-Structure of Information-Systems," 
Information Systems Journal (5:3), pp. 203-223. 

Not about requirements construction processes, per se. Authors propose models 

useful for examining the sufficiency of representational grammars. 
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12. Watson, H.J., and Frolick, M.N. 1993. "Determining Information Requirements for 
an EIS," MIS Quarterly (17:3), pp. 255-269. 

A mixture of methods—planning meetings, informal discussions with executive 

users, and observation of usage context—were useful in elicitation and (pre-

development) validation of system requirements. 

13. Wetherbe, J.C. 1991. "Executive Information Requirements - Getting It Right," MIS 
Quarterly (15:1), pp. 51-65. 

Information overload is given as a reason for lack of fit between systems and 

users. Post-delivery revisions are costly, and can be prevented with up-front 

requirements elicitation. Lack of information sharing between functions, use of 

interviews for elicitation instead of group collaborative processes, questioning user 

needs instead of use cases, and lack of prototyping are identified as hindering 

development of useful systems. 
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