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ABSTRACT 

In vertebrate and invertebrate systems, the role of glia-neuron interactions during 

development and behavior is becoming apparent. Recent studies have been aimed at 

characterizing glial-expressed proteins that affect the modulation of activities traditionally 

thought to be regulated by the neuron itself.  The soil nematode Caenorhabditis elegans has 

recently emerged as an important invertebrate model to study glial roles in nervous system 

function and development. My dissertation work focuses on the characterization of HLH-17, a C. 

elegans basic helix-loop-helix transcription factor that is strongly and constitutively expressed in 

the glial cells that associate with four of the cephalic (CEP) neurons in the head of the animal. 

The CEP neurons are four of eight dopaminergic neurons with well characterized roles in the 

modulation of a number of behavioral activities in the worm. Although HLH-17 is required for 

neither the specification nor the development of the CEPsh glia or the CEP neurons, it does have 

a defined role during dopamine responses. We show that HLH-17 functions upstream of the 

dopamine receptors DOP-1, DOP-3 and the dopamine transporter DAT-1 to affect DA-

dependent behaviors. Also, our microarray analyses provide preliminary evidence that HLH-17 

targets factors responsible for receiving and transducing signaling molecules that are involved in 

the modulation of synaptic events in the worm nervous system. Together these results point to a 

role for HLH-17 in glia-neuron interactions in C. elegans. My dissertation studies therefore 



provide further support for the role of glial-expressed proteins in the regulation of activities 

mediated by the nervous system.  
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1     GENERAL INTRODUCTION  

1.1 The C. elegans nervous system serves as a platform for 

neuroscience research 

A fundamental challenge in the field of neuroscience is determining how a behavior is 

generated by the actions of individual gene products. It is extremely challenging to address this 

phenomenon in most vertebrates due to their large and complex nervous systems. However, the 

small and well-characterized nervous system of C. elegans gives researchers a number of unique 

advantages for addressing the molecular and cellular mechanisms that modulate specific 

behaviors. Firstly, the well-defined anatomy of C. elegans has provided us with a complete 

reconstruction of its nervous system [1, 2], aiding in the formulation of hypothetical neural 

circuits that are vital to understanding behaviors at both molecular and functional levels [3, 4]. 

Additionally, there are only 302 neurons in the nematode. Since each of these neurons has a 

characteristic identity/morphology and a large portion of their synaptic connections are known, 

genetic studies are much less tedious to conduct. Secondly, the transparency, rapid generation 

time and ease of genetic manipulation in C. elegans allows us to genetically identify genes and 

molecularly confirm their roles during specific behavioral processes. Lastly, well-defined 

behavioral assays allow us to further characterize genetic and physiological influences on 

specific animal behaviors after they are initially identified [5-7]. 

A large number of proteins with roles in nervous system development and function were 

first identified in the nematode. For example, UNC-17, the vesicular acetylcholine transporter 

[8], and ODR-10, one of the only odorant receptors with a known function [9], were both first 

genetically identified in C. elegans. Additionally, proteins previously identified in other systems 
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but with unknown biological functions, have been linked to specific behaviors only through 

functional studies conducted in the worm [10, 11]. For instance, novel roles for LIN-12/Notch 

signaling in mammalian development and disease [12] were identified only after studies in C. 

elegans revealed the mechanism through which LIN-12/Notch proteins transduce signals during 

nematode development [13, 14]. Most recently, many C. elegans mutants have been used as 

models for human disease [15, 16] and drug studies [17, 18], providing powerful advancement in 

these fields of genetic research. For example, there are numerous C. elegans models of the 

protein misfolding disease, Alzheimer’s, in which the toxic outcomes of abnormally folded 

proteins have been examined [19, 20]. These models have led to the discovery of numerous 

Alzheimer’s modulating candidates making C. elegans well positioned to aid in drug discoveries 

used to expedite the development of new therapeutics.  

Despite the tremendous progress that researchers have made in the field of neuroscience, 

many questions still remain concerning how behaviors are modulated at the neural and molecular 

levels in C. elegans.  For example, although most neuronal connections have been identified in 

C. elegans, many aspects of the connections including the neurotransmitter(s) produced by each 

neuron, the receptors that respond to these neurotransmitters and the spatial and temporal 

connections made between neurons and behaviors, are still largely unknown. One approach to 

begin to address these unknowns is to characterize genes with specific roles during neuronal 

signaling. In C. elegans, gene products which directly regulate neurotransmitter biosynthesis, 

vesicular transport and reception have been well characterized; however, an increased effort to 

identify the factors which work upstream of these genes would allow researchers to more 

specifically identify cells/tissues in the nervous system. This would ultimately lead to an increase 

in the specificity of techniques like neuronal labeling and immunocytochemistry that help us to 
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better understand different aspects of neuronal connections. Interestingly, since the 

characterization of hlh-17 by our lab, reporter constructs driven by hlh-17’s promoter have been 

used as a marker for the CEPsh cells in C. elegans [21, 22], a technique that was previously 

unachievable specifically to mark the CEPsh cells only. My dissertation work therefore plays a 

pivotal part in helping us to better correlate the relationship between gene products and 

behaviors. 

1.2 Glial cells are important modulators of behavior 

To orchestrate the diverse range of animal behaviors, the nervous system is comprised of 

two major classes of cells, neurons and glia. Historically, most studies have focused on neuronal 

roles while more recent studies have also focused on glial roles and glia-neuron interactions that 

control behaviors. In general, worm glia function to (1) regulate the location and morphology of 

neuronal structures, (2) protect neurons from other cells by creating a barrier and (3) modulate 

neuronal activity [23-25]. Although glial cells have roles in nervous system development, the 

scope of my introduction will focus on their roles in behavior.  

There are three types of glial cells, 50 ectodermally-derived sheath (sh) (24) and socket 

(so) (26) cells and 6 mesodermally-derived GLR (Glia-Like cells in the nerve Ring) cells. Glia 

and the neurons with which they are associated are arranged in groups of sense organs 

commonly referred to as sensilla. There are six inner labial (IL) sensilla, six outer labial (OL) 

sensilla, four cephalic (CEP) sensilla and two amphids positioned in the head of the animal [1]. 

Each sensillum consists of one or more ciliated neurons that end in a channel, enclosed by one 

sheath and one socket cell (Figure 1).  The amphids are considered to be the main, anteriorly 

located, chemoreceptive organ in the animal [26]; most glia-based studies have been performed 

primarily in the context of this organ (some of these studies will be discussed further in 
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succeeding sections). The information processed by sensory organs are relayed to a central 

processing center, the nerve ring. The nerve ring, also known as the “brain” of the worm, is a 

synaptically dense region of dendrites, axon terminals and glial processes, containing synapses 

between sensory neurons and interneurons, and between interneurons [1]. In fact, of the 302 

neurons in the adult worm, 180 project processes into the nerve ring, making it the site of most 

synaptic interactions in the animal [1, 2]. 

To facilitate the processing of information needed to regulate behavioral events, glial 

cells are located at three types of neuronal junctions. Firstly, sheath and socket cells associate 

with dendrites of sensory neurons where they can detect sensory cues from the environment [27]. 

Secondly, they are positioned at neuron-neuron synapses where chemical messages can be 

communicated between the neurons. Lastly, GLR glia are located at neuromuscular junctions 

(GLRs) [28] where they presumably affect neuron-muscle communication. In vivo studies are 

vital for determining glial influence on neuronal activity. Unlike vertebrates and some 

invertebrates where the loss of glial cells causes neuronal death, the C. elegans nervous system 

does not require glia for neuronal survival, thereby permitting studies aimed at determining glial 

functions in vivo. In fact, there have been recent successful efforts aimed at developing methods 

to label and manipulate glial cells [29-31] and to isolate genes that may regulate glial functions 

in C. elegans [32].  

To study glial contributions to neuron function, Ohkura and Burglin (2011) set out to 

determine if the amphid sheath glia were required for the sensory neurons of the amphid sheath 

to function properly [24]. The amphid is composed of 12 sensory neurons (each is associated 

with one socket and one sheath glia cell) which are individually associated with specific 

behavior(s) [26, 27, 33, 34]. The ciliary ending of some sensory neurons that are exposed to the 
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environment can take up fluorescent dyes. This group showed that the amphid sheath is also 

stained with the dye which suggests that the sheath may interact with the sensory neurons they 

are associated with [24]. In a separate study, Bacaj et al, 2008, tested the consequences of 

ablating the amphid sheath glia following development [32]. In most cases, glia ablations caused 

animals to be defective in thermotaxis and chemotaxis behaviors mediated by a subset of the 

amphid sensory neurons. Interestingly, in some cases defects of neuronal dysfunction were also 

accompanied by structural defects at sites where the glial cells had been removed, while in other 

cases there was no evidence of structural abnormalities.  These data raised the possibility that 

glia-secreted proteins can affect neuronal activity. This possibility was supported by the 

identification of fig-1, a glial-expressed gene with similar structure to THBS1, a mammalian gene 

with important roles during synaptogenesis [35]. Although, fig-1 mutants did not display 

neuronal or glial developmental defects, they did exhibit defects in synapse formation [32]. 

These were the first studies that demonstrated that amphid glia play a vital role in the regulation 

of neuronal function in C. elegans. 

Studies by Han et al, 2013, and by Wang et al, 2008  further supported the requirement 

for glial-expressed proteins in the modulation of sensory behaviors in C. elegans [36, 37]. These 

studies demonstrated that proteins which encode channels in the glia, contribute to neuronal 

activity that affects behavioral responses. Firstly, the DEG/ENaC (Degenerin/Epithelial Na 

Channel) subunits, DELM-1 and DELM-2 (Degenerin Linked to Mechanosensation) that are 

expressed in the glia associated with OLQ and IL1 sensory neurons, are required for the 

modulation of nose touch and foraging behaviors mediated by those neurons. Consistent with 

earlier studies, Han et al, 2013 show that these subunits are not required for the structural 

development nor integrity of the OLQ and IL1 neurons or their associated glia [36].  Similarly, 
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another member of the DEG/ENaC family, ACD-1 (Acid-sensitive channel, Degenerin-like) is 

required in the amphid sheath glia to regulate sensory perception [37]. From these data it is 

postulated that DEG/ENaC channels located in the glia are required to regulate ion 

concentrations in the synapse that are responsible for controlling neuron excitability. Together 

these data demonstrate that glial-expressed proteins can affect neuronal function and they also 

provide examples of the types of proteins that can facilitate these roles. Many studies have 

demonstrated that neuron excitability can affect behavioral events. However, the mechanisms 

surrounding these affects are still elusive [38-40].  

1.3 The CEPsh cells are a unique set of glial cells 

The sheath cells of the cephalic sensilla (CEPsh) are associated with the four cephalic 

(CEP) neurons and are arranged in four-fold symmetry (dorsal left/right, ventral left/right) in the 

C. elegans head. Unlike sheath cells of other sensilla, the CEPsh cells exhibit a unique bipolar 

morphology with each sensory cell extending a ciliated dendrite to the tip of the nose and a flat, 

sheet-like process into a quadrant of the nerve ring (Figure 2) [1].  Functional studies in the 

CEPsh are limited; however, there are three unique qualities of the CEPsh that suggests that the 

CEPsh function similarly to vertebrate glia. Here I discuss how researchers have begun to 

investigate these three characteristics.  

Firstly, in C. elegans, UNC-6 is an evolutionarily conserved guidance cue secreted by 

numerous glia and neurons of the developing and mature nervous system [41, 42]; the expression 

of unc-6/netrin in the ventral left and right CEPsh suggests that this subset of CEPsh cells may 

be required for axon guidance and cell migration. To address this hypothesis, researchers 

examined the role of the CEPsh glia on axon guidance by the three sensory neurons that enter the 

nerve ring through the ventral ganglion, AWC, AFD and ADF neurons [30]. They demonstrated 
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that ablation of the ventral, but not the dorsal, CEPsh glia precursors caused pronounced defects 

in axon guidance and morphology of the AWC and AFD neurons, but not the more distally 

located ADF neuron. This result suggested that the CEPsh glia produce short-range signals that 

regulate axonal guidance during neurogenesis. Further analysis demonstrated that this glia-

derived signal requires UNC-6 to control AWC guidance. Together these preliminary studies 

strongly suggest that the CEPsh cells play spatial and neuron-specific roles during axon guidance 

and that these roles are at least partially mediated by UNC-6 in C. elegans.  

Secondly, during synapse formation in vertebrate and invertebrate systems, glia secrete 

proteins required for the establishment of postsynaptic connections [43]. It has been suggested 

that the CEPsh glia may be required for synapse formation due to its unique location enveloping 

synapse-rich regions of the nerve ring. The expression of unc-6 in the ventral CEPsh cells also 

supports this hypothesis since recent evidence shows that UNC-6 has a dual role in axon 

guidance and synaptogenesis [44]. In addition to axon guidance defects, unc-6 mutants also 

display defects in its synapse formation between the AIY amphid interneuron and the RIA 

interneuron of the nerve ring [31]. During development when AIY-RIA innervation takes place, 

unc-6 expression is required exclusively in the ventral CEPsh cells to regulate the pattern of the 

AIY presynapses [41]. To determine if the physical overlap between the CEPsh glia and the 

AIY-RIA synapses is important for mediating AIY-RIA innervation, Colon-Ramos et al, 2007,  

isolated mutants with altered CEPsh morphology and showed that the repositioning of the CEPsh 

by unc-34/enabled, a regulator of actin cytoskeleton, affects RIA axon guidance and AIY 

presynapses. These studies provide evidence that UNC-6/Netrin effects synaptogenesis from the 

ventral CEPsh glia cells. 
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Lastly, the CEPsh in C. elegans are regulated similarly to oligodendrocytes in vertebrates 

[30]. The Olig2 transcriptional regulator is important for oligodendrocyte development in 

vertebrates and its expression is required in discrete domains in ventral and dorsal regions of the 

developing spinal cord [45, 46]. In the ventral domain, the homeodomain transcription factors 

Nkx6.1/2 and Pax6 are required, while dorsal expression requires Pax7 (Figure 3) [47, 48]. 

Interestingly, the development of the CEPsh glia are regulated similarly to Olig2, the ventral 

CEPsh requires the Nkx/Hmx-related genes mls-2 and the dorsal CEPsh requires the Pax6/7-

related gene vab-3 (Figure 3) [30]. Additionally, Olig2 is most similar in sequence to hlh-17. My 

dissertation provides evidence that like Olig2, hlh-17 also plays a vital role in the support cells of 

the nervous system. These data show that there is a strong molecular similarity between 

vertebrate and nematode glia development. 

The data obtained provide molecular and functional support to the hypothesis that the 

CEPsh are the astrocytes of the worm. Due to the major roles of astrocytes in vertebrate systems, 

it is crucially important to better understand the roles of the CEPsh in the C. elegans nervous 

system. My dissertation work therefore provides much needed insight into the functional roles of 

these unique glial cells.  

 

1.4 My dissertation studies show that HLH-17 modulates behaviors 

regulated by the CEP neuron, possibly from the CEPsh glia  

In spite of the many roles that glia play in the nervous system, few glia-specific proteins 

have been functionally characterized. My dissertation studies help to support the importance of 

glia-neuron interactions in the nervous system and my work provides exciting new evidence that 

the expression of hlh-17 in the CEPsh is important for modulating behaviors mediated by the 
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CEP neurons in the C. elegans hermaphrodite. Similarly to other glia-specific proteins important 

for neuronal function, HLH-17 does not seem to be required for the development of the CEP 

neuron nor the CEPsh glia [30].  In chapter 2, we describe our characterization of HLH-17. We 

show that hlh-17 mutants are defective in behaviors mediated by the CEP dopaminergic neurons. 

These studies were the first piece of evidence that a factor expressed in the CEPsh glia could 

affect behaviors mediated by the CEP neuron. In Chapter 3, we further analyzed DA dependent 

behaviors in hlh-17 mutants. We show that HLH-17 modulates some of these behaviors by 

working upstream of the dopamine receptors DOP-1 and DOP-3 and the dopamine transporter 

DAT-1. We also show through rescue experiments that these behaviors are a direct result of the 

loss-of HLH-17. In chapter 4, we take a global look at how the loss-of HLH-17 affects gene 

expression in the hermaphrodite. Our microarray analyses show that HLH-17 regulates mostly 

membrane bound proteins responsible for signal transduction events that affect the animal’s 

ability to respond to stimuli. The identification of putative HLH-17 targets that are responsible 

for receiving (receptors) and transducing (transporters, enzymes) signaling molecules helped us 

to better understand how HLH-17 may modulate behaviors from the glia. In the last chapter, I 

focus on the foundation that my work has set for future studies aimed at further characterizing 

the CEPsh and HLH-17 in C. elegans.  

  



 

 

 

 
 

 

 

 

 

 

Figure 1 Amphid Sensilla 

Each amphid contains twelve sensory neurons, this image is simplified and only shows ADFL. 

The dendrite of ADFL (dark purple) 

(green). The socket cell (blue) wraps itself around the end

adapted from Altun, Z. F. and Hall, D. H. 2005. Handbook of 

WormAtlas. 
 

 

 

 

 

 

 

 

twelve sensory neurons, this image is simplified and only shows ADFL. 

(dark purple) penetrates the tubular ending made by the sheath cell

wraps itself around the end of the amphid channel. Picture 

adapted from Altun, Z. F. and Hall, D. H. 2005. Handbook of C. elegans Anatomy. In 
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of the amphid channel. Picture 
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Figure 2 Cephalic Sensilla 
A. Cephalic Sensilla. Simplified representative of CEP neuron and a CEPsh cell. Projections 

from the sheath cell are shown around the nerve ring. Socket cell and axons of the CEP neuron 

are omitted. B. Cross section of CEPsh cells. CEPsh (DL, VL, DR, VR) sep

from muscle and separate the hypodermis and muscle from the nerve ring. Also shown are the 

GLR (DL, VL, DR, VR) 
  

 

 

Cephalic Sensilla. Simplified representative of CEP neuron and a CEPsh cell. Projections 

from the sheath cell are shown around the nerve ring. Socket cell and axons of the CEP neuron 

Cross section of CEPsh cells. CEPsh (DL, VL, DR, VR) separate the hypodermis 

from muscle and separate the hypodermis and muscle from the nerve ring. Also shown are the 
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Figure 3 Transcriptional regulation of glial formation

In ventral C. elegans CEPsh glia and in ventral spinal cords, NKx family and Pax6

proteins regulate hlh-17 and Olig2 expression. In dorsal 

vertebrate spinal cords, a Pax7-related protein regulate 

represents a mode of regulation which has not yet been confirmed. 

Yoshimura et al, 2008. 
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2 MODULATION OF DOPAMINE-DEPENDENT BEHAVIORS BY THE C. 

ELEGANS OLIG HOMOLOG HLH-17 

 

2.1 Introduction 

 

In humans and other vertebrates, a critical balance of dopamine signaling is required for 

normal physical and behavioral functions.  Loss of dopamine signaling in humans is associated 

with Parkinson’s disease [49, 50] and is thought to affect various depressive states [51], levels of 

energy and activity [52] and sleep disorders [53-55].  At the other extreme, hyperactive 

dopamine signaling is associated with schizophrenia [56], Tourette’s syndrome[57], attention 

deficit hyperactivity disorder [58, 59] and addictive behaviors [60-62].  These disorders are 

mimicked in animal models with altered dopamine signaling.  Dopamine-deficient mice lack 

energy, do not display any environmentally stimulated, explorative behaviors, and are not 

motivated to engage in goal-directed activities [63, 64].  Likewise, when rats are treated with 

dopamine uptake inhibitors, which would result in hyperactive dopamine signaling, they display 

symptoms associated with schizophrenia and ADHD [65, 66]. Finally, dopamine signaling 

affects learning, memory, neural plasticity [67, 68] and adaptation in both vertebrates and 

invertebrates [69-71]. 

The nematode Caenorhabditis elegans is a suitable model for understanding dopamine 

signaling and DA dependent behaviors.  DA is synthesized in eight, well-characterized sensory 

neurons in both C. elegans sexes and in six additional sex-specific neurons in the C. elegans 

male (reviewed in[72]).   The dopaminergic neurons arise in pairs, and are protected by glial 
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support cells that act, in part, to provide substrates needed for guiding axonal processes during 

early development [73].   The anterior deirid (ADE) and posterior deirid (PDE) neuron pairs are 

each supported by their own glia.  The two pairs of cephalic neurons found in both sexes (CEP), 

and one pair found only in males (CEM) are supported by the sheath and socket cells of the 

cephalic sensilla.  Genes required for DA synthesis and transport in C. elegans have been 

identified, along with genes that encode D1-like, D2-like, and invertebrate specific DA receptors.  

Furthermore, the dopamine signaling pathway has been extensively reconstructed from the 

synthesis and release and subsequent re-uptake of the neurotransmitter by the pre-synaptic 

neurons, to its activation of transmembrane receptors, some of which are G-protein coupled 

receptors, located on post-synaptic and extrasynaptic neurons [74].   Signals from the activated 

DA receptors are then transduced to second-messenger molecules inside the cell, through the 

Gαo and Gαq subunits, to activate adenylate cyclase and inositol triphosphate, respectively [75]. 

Disruption of dopamine signaling at any of these levels has stereotypical effects on synaptic 

transmission, sensory plasticity, locomotion, defecation, and egg-laying [76-78].  DA also 

modulates behavioral responses in C. elegans, most notably mechanosensory locomotory 

responses to food and adaptive responses to chemical cues [79].  Recently, C. elegans has been 

used to model human and mammalian behaviors and conditions in response to altered dopamine 

signaling, including Parkinson’s disease, schizophrenia, cocaine and other drug dependencies, 

memory and behavioral adaptation [80-86].   

In a previous study, we found that the C. elegans gene for the basic helix-loop-helix 

transcription factor, HLH-17, is expressed at all developmental stages in the glial-like cells that 

ensheath the CEP and CEM dopaminergic neurons [87].  The functional role of HLH-17 in the 

cephalic sheath cells is unclear.  Reducing or eliminating hlh-17 expression resulted in delayed 
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egg-laying and slightly defective chemosensory phenotypes.  However, despite bearing 

significant homology to Olig2, a vertebrate protein required for axon guidance, the HLH-17 

protein is not required for the development and proper morphology of the dopaminergic neurons 

[30].  Here we show that behaviors controlled by DA are altered in hlh-17 (ns204) animals.  We 

show that mutations in the hlh-17 gene disrupts dopamine signaling at least in part by altering 

expression of the dopamine receptor genes, dop-1, dop-2, and dop-3, and the RGS protein gene, 

egl-10, which selectively inhibits G-protein signaling.  Finally, we show that the HLH-17 

paralogs, HLH-31 and HLH-32, do not function redundantly with HLH-17 in the DA dependent 

behaviors that we analyzed. 

 

2.2     Materials and Methods 

2.2.1 Nematode Strains and Maintenance 

The wild-type strain used in this work was the strain Bristol N2.  Other strains used were 

LX645 [dop-1(vs100); [88], LX703 [dop-3(vs106); [88], OS2649 [hlh-17(ns204); [30], and 

OS2929 [hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) ; [30].  Standard methods used for 

culturing C. elegans were as described by Lewis and Fleming, 1995.  Strains were maintained at 

20°C and all assays were at 22°C. 

2.2.2 Behavioral Assays 

For all assays except gustatory plasticity assays, cultures were synchronized by 

hypochlorite as previously described [87].  Measurements of rates of egg-laying behavior in 

response to DA and 5HT were as previously described [89].  Newly hatched L1 animals were 

allowed to feed on OP50 for 72 hours prior to the assay.   Individual animals were then rinsed 
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briefly in M9 and transferred into a well of a 48-well microtiter plate containing 50 µL of M9 

buffer +/- the appropriate drug.  DA was used in these assays at 3 mg/ml; serotonin (5HT) was 

used at 5 mg/ml. 

Immobilization assays were used as measurements of resistance to exogenous DA as 

described previously [88].  Young adult animals were transferred to NGM plates containing 0, 5, 

10, or 20 mM DA and incubated at 22°C for 40 minutes.  Animals were scored by visual 

inspection as being mobile if they initiated spontaneous body bends within 20 seconds.  Animals 

that did not move spontaneously, but responded to gentle prodding with a platinum wire were 

scored as immobile; those that did not respond to prodding were scored as paralyzed.   

Basal slowing response was measured using young adults as previously described [88]. 

Prior to the assay, animals were washed in sterile deionized water, placed on assay plates either 

with or without a fresh lawn of OP50, and allowed to recover for 2 minutes.   The number of 

body bends made by each animal (n=10 animals/strain/feeding condition) was counted for three 

consecutive 20-second intervals.     

Gustatory plasticity was measured as the response to 25 mM NaCl after pre-exposure to 

100 mM NaCl and was performed essentially as described previously [90, 91].  Mixed-staged 

cultures of C. elegans were enriched for gravid adults by incubating in ice-cold chemotaxis 

(CTX) buffer (minus NaCl) and aspirating away animals that were not heavy enough to sink to 

the bottom.  Naïve animals were rinsed three times in CTX buffer (without NaCl).  Pre-exposure 

to 100 mM NaCl was performed in CTX buffer for 20 minutes in the absence of food.   Animals 

were scored after 30 minutes on chemotaxis plates, and the chemotaxis index was calculated 

using the formula (A-C)/(A+C) where A represents the number of animals in the quadrant 

containing NaCl, and C represents the number of animals in the quadrant without NaCl [91].  
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Statistical significance was calculated using single factor ANOVA, with Bonferroni correction.  

As described previously [92], significance was determined by comparing the response of mutant 

animals to the response of wild-type animals under the same conditions.  Error bars represent the 

95% confidence interval. 

2.2.3 Analysis of Gene Expression 

The extraction of total RNA from L1 stage populations was performed using the RNeasy 

Plus Micro Kit (Qiagen, Inc.) essentially as directed by the manufacturer for purifying RNA 

from animals and cells.  Worms were collected from two 100 mM NGM-agar plates, rinsed 

twice in sterile, deionized water, and pelleted by centrifugation at 1,000 rpm for 1 min in a 15 ml 

conical tube.  The samples were transferred to 1. 5 ml microcentrifuge tubes, and frozen on dry 

ice.  Samples were subjected to two additional freeze/thaw cycles, resuspended in 0.1 ml of STE 

buffer (0.5% SDS, 5% 2-mercaptoethanol, 10 mM EDTA, 10 mM Tris-Cl pH 7.5) containing 0.5 

mg/ml proteinase K, and then incubated at 55°C for 30 minutes.  After incubation, the samples 

were mixed with 0.35 ml of RTL buffer (provided in RNeasy Plus Micro Kit, contents 

proprietary; Qiagen #1053393) and homogenized by two passages through a Qiashredder column 

(Qiagen, Inc) and were then processed as directed by the manufacturer. For the final elution step, 

the total RNA was recovered in 20 µL of sterile, nuclease-free water.  RNA purity and 

concentration was determined by UV spectroscopy at 260, 280, and 230 nm. RNA samples were 

only used if 260/230 ratios were equal to or greater than 1.7.  RNA quality was determined by 

denaturing gel electrophoresis.  Finally, we tested each RNA for genomic DNA contamination 

by performing PCR in the absence of reverse transcription with the endogenous control primer 

pairs.  cDNA synthesis reactions were performed using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems), as directed by the manufacturer, with each 20 µL 
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reaction containing 2.0 µg of total RNA.  Real-time PCR was performed on the 7500 Fast Real-

Time PCR System® using either the Fast Sybr Green or the Taqman Universal Master Mix 

(Applied Biosystems) and the appropriate gene specific primer/probes listed in Table 1.  Each 

reaction was performed in quadruplicate, and three biological replicates were tested for each 

gene.  Assays were performed using relative quantitation, with normalization against two 

different endogenous control genes.  The endogenous control genes were pmp-3 and cdc-42 for 

the Sybr green reactions and were pmp-3 and rrc-1 for the Taqman reactions.  Relative fold 

changes in expression were determined by setting the wild-type to an arbitrary level of one.  In 

the final determination of genes whose expression was significantly altered by loss-of hlh-17, we 

considered only those genes whose expression changed for an average of at least 1.5 fold over 

the course of three experiments and that showed a P-value less than 0.05 when evaluated by 

single factor ANOVA. 

2.3 Results 

2.3.1 HLH-17 Animals Are Resistant To Exogenous Dopamine 

 

C. elegans have 24 sheath cells that act with socket cells to enclose sensilla endings 

within a protected environment (for review, see www.wormatlas.org).  Though they do not form 

myelin like the glia in vertebrates, the C. elegans sheath cells are considered glia [93], and play 

roles in the regulation of dendrite extension and axon guidance.  In C. elegans, anterior processes 

of cephalic sheath cells enclose the dopaminergic CEP and CEM neurons of the cephalic 

sensilla.  The cephalic sheath also projects posterior processes that wrap around the outside of 

the nerve ring, the neural ganglion of the head. This portion of the CEPsh act to facilitate 

assembly and maintenance of the nerve ring (www.wormatlas.org; [72]).  We previously 
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demonstrated that the hlh-17 gene is expressed in cephalic sheath cells [87].  More recently, two 

other genes, HLH-32 and HLH-31, were identified in the genome that show 95% and 83% 

sequence similarity to HLH-17, respectively [30]. Thus far, expression of hlh-31 has not been 

confirmed, and expression of hlh-32 has only been detected in two unidentified neurons of the 

head [30].  Nevertheless, the strong degree of sequence similarity, and the inability to rule out a 

more extensive expression pattern for all three proteins, suggested that HLH-17, HLH-31, and 

HLH-32 could act redundantly though the extent of their functional overlap is unclear.  Because 

the cephalic sheath cells act as glia for the CEP/CEM neurons, we wondered if loss of hlh-17 or 

loss of hlh-17, hlh-31, and hlh-32 affects DA sensitive behaviors in C. elegans.   

Egg-laying in C. elegans is an established paradigm for the characterization of 

neurotransmitter pathways [94].  Egg-laying occurs through the contraction of muscles of the 

vulva, and wild-type animals regulate this behavior based on the availability of food.  When food 

is plentiful, wild-type animals lay eggs at an average rate of 10-12 eggs/hour (reviewed in [95]).  

Under conditions where food is less plentiful, wild-type animals lay eggs less frequently, 

retaining their eggs in the uterus until food becomes available.  Modulation of egg-laying 

behavior in response to food is mediated by antagonism between the neurotransmitters serotonin 

(5HT) and dopamine (DA).  As shown previously [79, 94, 96] and in Fig. 4, in wild-type animals 

exogenous DA significantly inhibits egg-laying, while 5HT significantly stimulates egg-laying 

when compared to egg laying in the absence of either neurotransmitter.  Also, as shown 

previously, DA can inhibit 5HT stimulation so that animals treated with both drugs lay eggs at 

the same rate as those not treated with neurotransmitters.  We found that in assays of egg-laying, 

both hlh-17 (ns204) and hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals are insensitive to 

exogenous DA, but remain sensitive to 5HT.  DA still inhibits 5HT stimulation of egg laying in 
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both strains; however, DA could only partially block the response to 5HT in hlh-17 (ns204) 

animals.    Finally, we noted that hlh-17 (ns204) animals lay eggs at a slower rate than wild-type 

animals.  The loss of hlh-31 and hlh-32 compensated for the defective egg-laying rates of hlh-17 

(ns204) animals, suggesting that, in the regulation of egg-laying, these proteins do not function 

redundantly with HLH-17.  

DA also regulates the locomotion circuit in C. elegans.  Endogenous DA is required for a 

phenomenon known as the basal slowing response (see below; [97]).  Additionally, wild-type 

animals become paralyzed when exposed to exogenous DA in a manner that is both dose-

dependent and exposure time-dependent [96]. This paralysis is thought to be the result of hyper-

activation of dopamine signaling and requires a functional D2-like receptor, DOP-3 [88].  We 

used this trait to measure the sensitivity of wild-type and mutant animals to increasing 

concentrations of exogenous DA.  In this immobilization assay, we scored animals as mobile if 

they moved within 20 seconds of observation, as immobile if they did not move on their own but 

were responsive to gentle prodding, or as paralyzed if they did not move even when prodded.     

As shown in Fig. 5, wild-type and mutant animals show a dose dependent sensitivity to 

exogenous DA.  All three groups of animals tested in our study were affected by concentrations 

of DA as low as 5mM; however, hlh-17 (ns204) animals were the least sensitive, with almost 

60% of the population remaining mobile after 40 minutes (Fig. 5A).  Wild-type animals were 

either immobilized or paralyzed after exposure to 10 mM DA; however, 48% of hlh-17 (ns204) 

animals and 18% hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals were still mobile.  In 

fact, at least 15% of both hlh-17 (ns204) animals and hlh-17(ns204); hlh-31(ns217); hlh-32 

(ns223) animals were moving even after exposure to 20 mM DA.   By comparing the fraction of 

animals in each of the three responsive states, we were able to differentiate between the 
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behaviors of the hlh-17 (ns204) animals and hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) 

animals.  After 40 minutes of exposure to 10 mM DA, for example, 100% of wild-type animals 

were motionless on plates, with a distended body posture. As shown in Fig 5B, approximately 

78% of those motionless animals responded to gentle prodding and were scored as immobile.  

The remaining 22% did not respond to prodding and were considered paralyzed.  At 20 mM DA, 

greater than 50% of wild-type animals were completely paralyzed after 40 minutes.  The 

responses of hlh-17 (ns204) animals were strikingly different from wild-type animals.  First, 

some fraction of hlh-17 (ns204) animals was mobile at all concentrations tested.  Second, only 

30% of hlh-17 (ns204) animals were paralyzed, even at the highest concentrations of DA tested.  

It was particularly interesting that the triple mutant animals shown an intermediate phenotype 

between the phenotypes of the wild-type and hlh-17 (ns204) animals.  First, a small fraction of 

hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals were paralyzed at 5 mM DA.  Second, 

greater than 30% of hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals were paralyzed by 10 

mM DA.  Third, the percentage of hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals that 

were paralyzed at 20 mM DA (approximately 48%) was not significantly different from the 

percentage of paralyzed wild-type animals (approximately 57%) at the same concentrations of 

DA.  Together, these results underscore our earlier observations that hlh-17 alters sensitivity to 

exogenous DA, and that HLH-31 and HLH-32 are not functionally redundant to HLH-17.      

 

2.3.2 HLH-17 Is Required For Dopamine Dependent Behaviors 

Wild-type, well-fed animals significantly slow their forward locomotion rate when they 

encounter a bacterial lawn [97].  This response is known as the basal slowing response, and has 

been shown to be mechanosensory in nature [79, 97].   Endogenous DA is thought to be released 



34 

by dopaminergic neurons when the animal contacts food [97, 98], and so the basal slowing 

response can be considered an assay for responsiveness to endogenous DA.  Basal slowing is 

measured by comparing the frequency of sinusoidal body bends in the presence of food to the 

frequency in the absence of food.  As shown previously [88, 97], and in our assays (Figure 6), 

wild-type animals slow by as much as 40% in the presence of food.  Interestingly, hlh-17 (ns204) 

animals do not alter their locomotion rates in the presence of food, an indication that dopamine 

signaling may be compromised. Animals with mutations in hlh-17, hlh-31, hlh-32 show less of a 

response than wild-type animals; however, the hlh-17 phenotype is rescued in these animals as 

they still slow significantly (21%) in the presence of food.   

 DA modulates several modes of behavioral plasticity in C. elegans, including 

gustatory plasticity, which is the ability to associate levels of salt in the environment with either 

negative or positive food cues [91, 99].  Gustatory plasticity can include a distinct behavioral 

change, from active attraction to active avoidance.  Naïve, wild-type animals are strongly 

attracted to low levels of sodium chloride, but are repulsed by higher concentrations. This 

stereotypical response is altered when wild-type animals are pre-exposed to high concentrations 

of sodium chloride, and is more dramatically altered when the sodium chloride is presented with 

a chemical that is normally repulsive to them. For example, wild-type animals that were pre-

exposed to 100mM sodium chloride are less attracted to 25 mM NaCl thirty minutes later [91].  

Likewise, wild-type animals that were pre-exposed to 100 mM NaCl in the presence of 500 mM 

glycerol avoided 25 mM sodium chloride in chemotaxis assays [91].   

 Gustatory plasticity involves signals from four pairs of chemosensory neurons 

[92] and requires DA, 5HT, and glutamate [91].  Naïve animals with mutations in either the DA 

receptor genes or in genes required for DA synthesis are attracted to 25 mM sodium chloride; 
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however, DA defective animals that are pre-exposed to 100 mM sodium chloride do not avoid 25 

mM sodium chloride as rigorously as wild-type animals [91].  Prolonged starvation, a negative 

food cue, together with pre-exposure to 100 mM sodium chloride, enhances gustatory plasticity 

in wild-type animals.  Animals with defects in DA or 5HT signaling still display enhanced 

gustatory plasticity, while animals with defects in glutamate receptors do not.    

To determine if hlh-17 (ns204) animals and hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) 

animals are defective in gustatory plasticity, we tested the attraction of naïve and pre-conditioned 

animals to 25 mM sodium chloride.  As shown in Fig. 7, naïve  hlh-17 (ns204) animals, as well 

as naïve animals with mutations in the D1-like receptor gene, dop-1, or the D2-like receptor 

gene, dop-3, show normal attraction to sodium chloride; however, these animals show 

significantly reduced levels of gustatory plasticity when compared to wild-type animals.  In 

agreement with the results from the basal slowing assays, gustatory plasticity is restored in hlh-

17(ns204); hlh-31(ns217); hlh-32 (ns223) animals. Taken together, these data are consistent with 

a model in which HLH-17 regulates the DA dependent behaviors in C. elegans.  

 

2.3.3 HLH-17 Regulates Expression of the Dopamine Receptor Genes 

 

In C. elegans, DA synthesis starts from the conversion of tyrosine into levadopa by the 

cat-2 gene product, tyrosine hydroxylase (reviewed in [74]). Subsequently, the aromatic amino 

acid decarboxylase, BAS-1, converts levadopa into DA which is then packaged into synaptic 

vesicles for release from pre-synaptic neurons by the vesicular monoamine transporter homolog, 

CAT-1 [100]. The neurotransmitter then binds to receptors either post-synaptically or 

extrasynaptically, or is returned to the pre-synaptic neuron by the DA transport protein, DAT-1.  
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C. elegans has one D1-like receptor, encoded by the dop-1 gene [101], and two D2-like G-

protein coupled receptors, encoded by the dop-2, and dop-3 genes [98, 102].  In C. elegans, the 

DOP-3 receptor is coupled to the Gαo homolog GOA-1, and is negatively regulated by the 

regulator of G protein signaling (RGS) homolog, EGL-10 [103].  Activities and behaviors 

mediated by the DOP-3 receptor can be antagonized by DOP-1 receptor signaling, which is 

coupled in C. elegans to the Gαq homolog, EGL-30. The RGS protein EAT-16 inhibits signaling 

by EGL-30 [103].   

The results from our behavioral analysis suggest that hlh-17 influences dopamine 

signaling.  Using reverse transcription, quantitative PCR (RT-qPCR), we measured the 

expression of cat-2, dop-1, dop-2, dop-3, eat-16, egl-10, goa-1, and egl-30 in wild-type, hlh-17 

(ns204), and hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals.  As shown in Table , the 

expression of the DA receptor genes dop-1, dop-2, and dop-3, and the RGS protein gene, egl-10, 

is significantly down-regulated in hlh-17 (ns204) animals (fold change >1.5, P-value < 0.05).   

This down-regulation was partially rescued in hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) 

animals.  Expression of dop-3 was not significantly different from wild-type in these animals 

(fold change = 1.25, P-value 0.09), and expression of dop-1, dop-3, and egl-10 was down-

regulated only slightly (fold change < 1.5, P-value < 0.05). The expression of the genes cat-2, 

egl-30, goa-1, and eat-16 was not significantly altered in either single or triple mutant animals.  

Based on these data, loss of hlh-17 activity would result in decreased signaling through 

the dop-1, dop-2, and dop-3 receptors and the hlh-17 (ns204) animals would be expected to 

phenocopy animals with mutations in the DA receptor genes.  Locomotion in C. elegans is 

directly controlled by the ventral cord motor neurons, which express both dop-1 and dop-3.  

Previous studies have shown that exogenous DA-induced paralysis is dependent upon DOP-3 
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and that the dop-1 phenotype is epistatic to the dop-3 phenotype [88].  As shown in Fig. 8, 35% 

of wild-type animals are completely paralyzed after 40 minutes of exposure to 10 mM DA.  

Under the same conditions, dop-1 animals are no more resistant to exogenous DA than are wild-

type animals; however, only 6.7% of dop-3 animals become paralyzed.  Interestingly, the 

phenotype of hlh-17 animals more closely resembles the phenotype of dop-3 animals than dop-1 

animals; approximately 8% of hlh-17 (ns204) animals become paralyzed.  The loss of hlh-31 and 

hlh-32 partially rescued the hlh-17 phenotype (13% paralyzed), though this difference was not 

statistically significant (p-value = 0.35).  Failure of the hlh-31 and hlh-32 mutations to enhance 

the resistance of hlh-17 animals to DA further supports our findings that hlh-31, hlh-32, and hlh-

17 are not redundant. 

2.4 Discussion 

DA is one of four biogenic amines that act in C. elegans to modulate environmentally 

responsive behaviors, including egg-laying, locomotion, and foraging.  Here we provide 

behavioral and molecular evidence that the transcriptional regulator HLH-17 mediates DA 

signaling in C. elegans by regulating the expression of the DA receptor genes and of the RGS 

protein gene, egl-10. Levels of dop-1, dop-2, and dop-3 mRNA are reduced by at least 2 fold in 

hlh-17 (ns204) animals; egl-10 mRNA is reduced by approximately 1.5 fold.  As would be 

expected from these expression studies, hlh-17 (ns204) animals phenocopy dop-1 and dop-3 

animals and are less responsive to exogenously applied DA and more defective in DA responsive 

behaviors than wild-type animals [88, 91, 97].  Exogenous DA does not inhibit basal egg-laying 

in hlh-17 (ns204) animals, and hlh-17 (ns204) animals are more resistant to DA-induced 

paralysis than wild-type animals.  Furthermore, hlh-17 (ns204) animals are defective in both 

basal slowing and gustatory plasticity, behaviors that are modulated, in part, by endogenous DA. 



38 

Here we also demonstrate that the paralogous genes hlh-31 and hlh-32 do not enhance hlh-17 

phenotypes. The ability of DA to inhibit basal egg-laying and to induce paralysis in hlh-17 

(ns204) animals is partially restored in hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals.  

Likewise, hlh-17(ns204); hlh-31(ns217); hlh-32 (ns223) animals’ show near normal gustatory 

plasticity and a significant basal slowing response. Taken together with the reduced effect on 

dop-1, dop-2, dop-3, and egl-10 gene expression, our data suggest that hlh-17, hlh-31 and hlh-32 

do not function redundantly in DA signaling.   

The partial rescue of hlh-17 (ns204) animals by mutations in hlh-31 and hlh-32 raises 

questions about the putative roles of HLH-31 and HLH-32 in dopamine signaling.  The inability 

to detect expression of hlh-31 [30] suggests that only hlh-32 contributes to the dopamine 

response.  While a mutant allele of hlh-32 is currently available, it is a different allele from the 

one used in this study and not appropriate for direct comparison.  We have not looked at the DA 

dependent behaviors in those strains; however, our current efforts are focused on making the 

appropriate single and double mutant strains by transgenic rescue of hlh-17(ns204); hlh-

31(ns217); hlh-32 (ns223) animals.  Future efforts will then include further characterization of 

HLH-32 interactions in dopamine signaling and with HLH-17.  

Genetic analyses of DA signaling have revealed both separate and overlapping roles for 

the DA receptors in regulating DA dependent behaviors.  All three of the DA receptors are 

involved in gustatory plasticity [91]; only DOP-3 is required for the basal slowing response [79, 

88].  Previous studies have also suggested that DOP-1 and DOP-3 play antagonistic roles in 

controlling locomotion [88] and the mechanosensory response to food [104].  This antagonism is 

believed to occur in part through the coupling of DOP-1 and DOP-3 to different Gα subunits and 

their respective RGS proteins [88]. The RGS protein EGL-10 enhances the GTPase activity of 
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GOA-1, effectively reducing both Gαo signaling [103, 105, 106] and, presumably, DA signaling 

through the DOP-3 receptor [88].  This relationship between EGL-10 and the DA receptor genes 

may explain why, in our assays of DA-induced paralysis, hlh-17 (ns204) animals more closely 

resemble dop-3 animals than they do dop-1 or dop-1; dop-3 animals [88].  The combined 

decrease in dop-3 activity and the decreased inhibition of DA signaling through DOP-1 would be 

consistent with the DA-induced paralysis phenotypes that we see here. This process of coupling 

the DA receptors to antagonistic Gα subunits is not unique to C. elegans, and is particularly 

prevalent in the mammalian brain [107-110].   

In C. elegans, egg-laying, food response, and gustatory plasticity are regulated by both 

DA and 5HT [91, 94, 97].  Glutamate is also involved in food response in C. elegans, and is 

required for both the attraction to NaCl and the enhanced gustatory plasticity responses after 

extended periods of starvation [91].  Though future studies will address the roles of hlh-17 in 

serotonin and glutamate signaling, the behavioral data presented here indirectly suggest that 

HLH-17 acts through DA signaling and not through 5HT or glutamate signaling.  First, 

exogenous 5HT stimulates egg-laying in wild-type and hlh-17 (ns204) animals; exogenous DA 

inhibits the 5HT stimulation of egg-laying even in hlh-17 (ns204) animals which are otherwise 

unresponsive to DA.  The ability of dopamine to block 5HT stimulation is dependent on MOD-1, 

an ionotropic 5HT receptor that is sensitive to DA [89].  Thus, it is likely that DA is acting in this 

instance through MOD-1 or some other 5HT receptor.  Second, hlh-17 (ns204) animals do not 

show a basal slowing response in the presence of food. Though 5HT modulates C. elegans 

behavior in response to food, DA mediates the basal slowing response which is thought to be 

mechanosensory in nature [97].  Serotonin is required for an enhanced, DA-independent slowing 

response that is not triggered by the mechanosensory neurons [97].   The expression of hlh-17 in 
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glial cells that support neurons that are mechanosensory in nature (see below) is consistent with 

our interpretation that DA signaling is affected in this assay. Third, hlh-17 (ns204) animals show 

reduced gustatory plasticity when compared to wild-type animals but still show significantly 

different responses to 25 mM NaCl when naïve versus when pre-exposed to 100 mM NaCl (P-

value = 3.4 8 10
-6

).  However, hlh-17 (ns204) animals are not defective in starvation-enhanced 

gustatory plasticity (Felton and Johnson, unpublished data) or in the attraction to NaCl.  These 

findings suggest that the behavioral defects that we see in hlh-17 (ns204) animals are not the 

result of altered glutamate signaling.     

hlh-17 is strongly expressed in the cephalic sheath cells throughout development [87],  

and also in the sheath or socket cells of the inner labial (IL) and outer labial (OL) [30].  While it 

is likely that the full expression profile for HLH-17 has not yet been determined, our findings 

raise rather intriguing questions about how HLH-17 regulates expression of the DA receptor 

genes and of egl-10 in wild-type animals.  The dop-3 gene is expressed in the neuronal support 

cells of the head, which includes the IL, OL, and CEP sensilla [88]; however, expression patterns 

for the dop-1, dop-2, and egl-10 genes do not overlap with the known expression of hlh-17. 

Yoshimura and others also detected weak and transient expression of hlh-17 in the commissures 

of some ventral cord motor neurons [30].  As dop-1 and dop-3 both are expressed in the 

GABAergic and cholinergic motor neurons [88], this finding raises the possibility that HLH-17 

functions within the glial cells and transiently within ventral motor neurons to regulate dopamine 

signaling, however, that HLH-17 functions primarily in glial cells to regulate expression of the 

DA receptors.  The involvement of glia cells in controlling DA signaling is not unprecedented.  

In mammals, for example, glia helps to clear extracellular DA from the synapse via DA 
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transporters [111].  Furthermore, functional DA receptors have been identified on vertebrate 

astrocytes and Muller cells [112-114].   

The bHLH proteins have been previously implicated in controlling the differentiation, 

specification, and maintenance of neuronal cells in vertebrate and invertebrate systems.  In 

vertebrates for example, Olig1 and Olig2 control the glia versus neuron cell fate decision [115] 

and act with the inhibitory HLH protein Id to maintain a balance between astroglia and 

oligodendrocytes during development [116].  Likewise, the bHLH protein Ngn2 controls 

differentiation of dopaminergic neurons in mice [117] and is also required for the specification of 

motor neurons [118].  Recently, it has been shown that Hand2 expression in postmitotic, 

differentiated sympathetic neurons is required to maintain noradrenergic properties of those 

neurons [119].  This role for Hand2 appears to be conserved in vertebrates, as mutations in 

Hand2 results in reduced levels of tyrosine hydroxylase and dopamine α-hydroxylase in the 

developing sympathetic ganglia of zebrafish, mice, and chick.   

Despite bearing significant sequence similarity to Olig and being primarily expressed in 

the C. elegans glia, HLH-17 does not affect glial development, and only weakly affects axon 

guidance of the non-dopaminergic, chemosensory neuron, ADF [30].  HLH-17 is also not likely 

to be a pro-neural gene; there is no indication that HLH-17 is required for either specification or 

the differentiation of dopaminergic neurons in C. elegans.  The data presented here suggest a role 

for HLH-17 in DA signaling, by controlling the production of proteins required for transducing 

the neurotransmitter signals. Bröhl and others (2008) recently described a transcriptional network 

involving the bHLH protein Ptf1a that coordinates the inhibitory neurotransmitter phenotype of 

dorsal horn neurons of the spinal cord.  Ptf1a acts through the of paired homeodomain protein, 

Pax-2 and of the Lim homeodomain proteins, Lhx1/5, to activate the gene for the inhibitory 
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neuropeptide protein NPY [120].  Our gene expression studies show that HLH-17 works 

upstream of the DA receptor genes.  These results do not eliminate the possibility that HLH-17 

acts in a manner similar to Ptf1a to regulate an unidentified gene whose product subsequently 

activates each of the DA receptor genes.  The existence of such a gene would provide a 

mechanism for the regulation of dop-1 and dop-3 by hlh-17 in a non-cell autonomous fashion. 

Future studies will perhaps identify other transcriptional elements required for HLH-17 

dependent regulation of DA response in C. elegans.   

 

 

Table 1 Taqman probe ID 

Gene 

Name 

 Taqman 

Probe 

ID 

 

  

Amplicon 

(bp) 

cat-2   CE02426732_m1 74 

dop-1   CE02494345_m1 71 

dop-2   CE02479829_m1 66 

dop-3   CE02496464_m1 88 

egl-10   CE02482855_m1 68 

goa-1   CE02409649_m1 71 

pmp-3   CE02485188_m1 71 

rrc-1   CE02499261_m1 65 
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Figure 4 Inhibition of egg-laying by DA 

5HT (5mg/ml) stimulates egg-laying in wild-type and hlh-17 (ns204) animals.  DA (3 mg/ml) 

inhibits both basal egg-laying and 5HT-stimulated egg-laying in wild-type animals, but does not 

inhibit basal egg-laying in hlh-17 (ns204) animals. Graph shows the average of 30 observations.  

Error margins indicate 95% confidence intervals.  Single astericks (*) indicate significant 

(single-factor ANOVA, P-value <0.05) differences in egg laying rates in water (black bars) when 

compared to rates in the neurotransmitter(s) indicated; double astericks (**) indicate significant 

differences in egg laying rates in 5HT (white bars) compared to rates in 5HT + DA (striped bars).  

 

  



 

Figure 5 DA-induced paralysis in 

A.  Dose response curve measuring the percentage of animals that remain mobile 

minutes at the indicated concentration of DA.  Each data point represents the mean for three 

trials totaling 60 animals.  Error bars represent 95% confidence intervals.  Statistical significance 

was measured using single factor ANOVA (P

concentration that remained mobile, were immobilized, or were paralyzed by exogenous DA.  

For each strain, this graph represents the distribution of at least 60 animals per DA concentration.

 
  

 

induced paralysis in hlh-17 (ns204) animals 

Dose response curve measuring the percentage of animals that remain mobile 

minutes at the indicated concentration of DA.  Each data point represents the mean for three 

trials totaling 60 animals.  Error bars represent 95% confidence intervals.  Statistical significance 

was measured using single factor ANOVA (P-value < 0.01).  B. Fraction of worms for each DA 

concentration that remained mobile, were immobilized, or were paralyzed by exogenous DA.  

For each strain, this graph represents the distribution of at least 60 animals per DA concentration.

44 

Dose response curve measuring the percentage of animals that remain mobile after 40 

minutes at the indicated concentration of DA.  Each data point represents the mean for three 

trials totaling 60 animals.  Error bars represent 95% confidence intervals.  Statistical significance 

Fraction of worms for each DA 

concentration that remained mobile, were immobilized, or were paralyzed by exogenous DA.  

For each strain, this graph represents the distribution of at least 60 animals per DA concentration. 
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Figure 6 Basal slowing response 

Analysis of the basal slowing response in hlh-17 (ns204) animals.  Locomotion rates were 

calculated in the absence (white bars) and presence (black bars) of bacteria and represent the 

average of 10 one-minute observations.  Error bars represent 95% confidence intervals. 

Statistical significance was measure using single factor ANOVA  

(* P-value < 0.05; ** P-value < 0.0001).  
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Figure 7 Gustatory plasticity 

Analysis of gustatory plasticity in hlh-17 (ns204) animals.  Responses to 25 mM NaCl after 

mock treatment (black bars) or after pre-exposed (gray bars) to 100 mM NaCl.  Error bars 

represent 95% confidence intervals. Significance was determined by comparing to wild-type 

animals under the same conditions (two-factor ANOVA with Bonferroni correction, * P-value 

<0.05, ** P-value < 0.01). 
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Figure 8 DA-induced paralysis in DA mutants 

Analysis of DA-induced paralysis in DA-receptor mutants and hlh-17 (ns204) animals. Animals 

were assayed as in Figure 2-2, except at a single concentration of DA (10mM). Each data point 

represents the mean for at least three experiments. Error bars represent 95% confidence intervals. 

Statistical significance was measured using single factor ANOVA (*P<0.005). 
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3 DOPAMINE SIGNALING IN C. ELEGANS IS MEDIATED IN PART BY HLH-17 

DEPENDENT REGULATION 

OF EXTRACELLULAR DOPAMINE LEVELS 

 

3.1 Introduction 

 

In C. elegans and other multicellular organisms, basic helix-loop-helix (bHLH) proteins 

coordinate a number of developmental events, including myogenesis [121] organ morphogenesis 

[122] and mesodermal development [123]. These proteins also play vital functions during 

neurogenesis [124, 125]. For example, the proneural gene hlh-14 is required to generate multiple 

neurons stemming from a variety cell lineage types, while HLH-3 is needed for the 

differentiation of hermaphrodite-specific motor neurons [126-128]. HLH-17 is the C. elegans 

homolog of the mammalian proneural family Olig [115, 129], but does not appear to play a role 

in neuronal specification during embryogenesis [30].  Our previous studies instead demonstrated 

that HLH-17 is required for normal behavioral responses to dopamine signaling [130].  

In vertebrates and invertebrates, dopamine signaling is associated with motivation, 

recognition and reward, memory and adaptation, hormonal regulation, and motor control [131-

134]. In humans, imbalances in dopamine signaling are associated with many neurological 

diseases, including Parkinson’s, Alzheimer’s, ADHD and substance abuse [135-137]. Dopamine 

signaling in C. elegans involves many of the same molecules as in mammals [74]. For example, 

dopamine is synthesized by the tyrosine hydroxylase enzyme CAT-2. Upon synthesis, dopamine 

is sequestered in presynaptic storage vesicles by the vesicular monoamine transporter CAT-1, 

where it remains until being released into the presynaptic cleft in response to a stimulus. Once in 
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the synapse, dopamine binds to and activates D1-like (DOP-1) and D-2 like receptors (DOP-2 

and DOP-3) that are positioned either pre-, post-, or extra-synaptically.  Unbound dopamine is 

taken back up into the presynaptic cell via reuptake by the dopamine transporter DAT-1.  

HLH-17 is expressed in the glia-like cells surrounding the CEP dopaminergic neurons 

[87] and in the sheath or socket cells of the inner labia and outer labia [30]. Our previous data 

revealed that HLH-17 affects dopamine signaling through the DOP-1, DOP-2 and DOP-3 

receptors as shown by the impaired response of hlh-17(ns204) animals to endogenous and 

exogenous dopamine.  hlh-17 (ns204) animals also have reduced levels of the dop-3 and dop-1 

mRNAs, and phenocopy dop-3 hypomorhs [88, 130]. Together, these data suggest that HLH-17 

functions upstream of the dopamine receptor genes and that the loss-of hlh-17 causes a reduction 

in dopamine receptor activity. 

Here we continue our characterization of the role of HLH-17 in dopamine signaling. Our 

data suggest that HLH-17 influences DA dependent behaviors by regulating genes that mediate 

levels of extracellular dopamine.  dat-1 mRNA levels are reduced, but not eliminated, in hlh-

17(ns204) animals.  Furthermore, hlh-17(ns204) animals display SWIP behavior in water that is 

an intermediate between the behavior in dat-1 animals and in wild-type animals and that is 

enhanced by treatment with the dopamine reuptake inhibitor, bupropion. We show that a null 

allele of dop-3 completely suppresses the SWIP phenotype of hlh-17 animals, supporting 

previous data that HLH-17 acts upstream of DOP-3.  Surprisingly, the SWIP phenotype of hlh-

17 animals is unaffected by treatment with the VMAT inhibitor reserpine or with the serotonin 

reuptake inhibitor, fluoxetine; however, this unresponsiveness is not due to reduced 

acetylcholine signaling.  Taken together our results suggest that HLH-17 influences extracellular 
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dopamine levels in C. elegans, in part by its regulation of the dopamine receptors and the 

dopamine transporter. 

3.2 Materials and methods 

3.2.1 Nematode Strains and Maintenance 

 

The following strains were used in this study: wild-type: Bristol strain (N2); RM2702 

[dat-1(ok157)]; OS2649: [hlh-17(ns204)]; and LX705 [dop-1 (vs100); dop-3 (vs106)]. OS2649 

was a gift from Dr. S. Shaham.  The strains CMJ2003 [hlh-17(ns204); dat-1(ok157)] and 

CMJ2004 [hlh-17(ns204); dop-1 (vs100); dop-3 (vs106)] were generated using traditional 

crossing techniques and the genotypes were confirmed by PCR. To generate CMJ2004, hlh-17 

(ns204) males were crossed with dop-1 (vs100); dop-3(vs106) hermaphrodites, and the F1 males 

were backcrossed to dop-1 (vs100); dop-3(vs106).  F2 hermaphrodites were separately cloned, 

and their progeny were genotyped by PCR.  The strain CMJ2005 [hlh-17(ns204); dat-1(ok157); 

dop-1 (vs100); dop-3 (vs106)] was generated by crossing CMJ2003 males with CMJ2004.  F1 

hermaphrodites were separately cloned, and their progeny were genotyped by PCR for hlh-17 

and dat-1.  The progeny of hermaphrodites that were confirmed to be homozygous for both hlh-

17 and dat-1 were then subcloned and their progeny screened for homozygosity for dop-3 by 

PCR and for rescue of SWIP behavior.   

The transgene, cmjEx22, is a 6.2 kb genomic fragment consisting of 2 kbp upstream of 

the hlh-17 translational start site, the entire hlh-17 coding region, the SV40 nuclear localization 

signal (NLS) and 850 bp of the sequences coding for green fluorescent protein (GFP).  The GFP 

sequences were amplified from pPD95.67 (a gift from A. Fire) using serial overlap PCR.  

Transgenic lines to rescue loss-of hlh-17 were produced by microinjecting the final PCR product 
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(cmjEx22) into hlh-17(ns204) animals, along with the pCFJ90 [Pmyo-2::mCherry::unc-54utr] co-

injection marker, using standard microinjection techniques[138], and is designated as CMJ2002 

[hlh-17(ns204); cmjEX22, pCFJ90(Pmyo-2::mCherry::unc54utr)] .   

Three separate lines (15.1, 15.3, and 3.1) were tested for rescue of SWIP, basal slowing 

response, and dopamine paralysis.  All three lines were able to at least partially rescue each of 

the phenotypes tested; however, the degree of rescue for each line was specific to the phenotype 

tested.  

Unless otherwise noted, strains were cultured on solid nematode growth media (NGM) 

containing OP50 at 20°C using standard methods and synchronized cultures were prepared by 

hypochlorite treatment of gravid adults, as previously described [139].  The following primers 

were used for genotyping: HLH17F: 5'-TCCCTGGGGACTCTCCTCG-3'; HLH17R: 5'-

CGATTTTTGCTGCTAATGGGCAACAC-3'; DAT1F: 5'-

CTATTCGGATATCTTGCCAATGCTATACC-3'; DAT1R: 5'-

CTATTCGGATATCTTGCCAATGCTATACC-3'; DOP3F: 5'-

CTATTCGGATATCTTGCCAATGCTATACC-3'; and DOP3R:  5'-

CTAACTCACCAGAAAATCAGAAACTGC-3'.      

 

 

3.2.2 Gene Expression Analysis  

Synchronized populations were collected at the L4 stage, pelleted and frozen at -80° C. 

Total RNA, cDNA synthesis, and real-time PCR were performed as previously described [130], 

except the cDNA was amplified from 1 µg of total RNA in 20 µL reactions.  Real-time PCR was 

performed with Taqman Gene Expression Assays (Applied Biosystems/Invitrogen) using relative 
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quantitation against glyceraldehyde 3-phosphate dehydrogenase (gpd-3) (Ce02616909_gH) as 

the endogenous control.  The probe sets used were: hlh-17(Ce02616669_m1), dat-

1(Ce02450896_g1), cat-1(Ce02495610_m1), mod-5 (Ce02415245_m1), dop-1 

(Ce02494345_m1), dop-2 (Ce02479824_m1) dop-3(Ce02496462_m1), lev-8 (Ce02501240_g1), 

and unc-43 (Ce02458977_m1).  Gene expression assays were done in triplicate, for at least three 

biological replicates. 

 

3.2.3 Behavioral Assays  

 

 Assays for dopamine paralysis and basal slowing response were as previously described 

[130], except animals were assayed at late L4 stage.   For Swimming Induced Paralysis (SWIP), 

approximately ten L4 stage animals were placed in 150 µL of water in a single well of 48-well 

tissue culture plate (CELLSTAR, Cat # 677180).  After 20 minutes animals were categorized as 

paralyzed if they failed to exert the normal thrashing behavior within a 20 second time frame 

[140]. For the SWIP assays conducted with inhibitors, animals were grown on NGM plates 

containing the appropriate drug (reserpine [0.6mM] (Cat#S1601), fluoxetine [145 µM] (Cat# 

S1333) and bupropion [10mM] (Cat#S2452)) and then analyzed in water.  All inhibitors were 

obtained from Selleckchem. Aldicarb-induced paralysis and levamisole-induced paralysis assays 

were conducted using standard protocols [141-143] with some modifications.  Plates containing 

aldicarb [1.0 mM] (FisherSci#US-PST-940) or levamisole [0.2 mM] (FisherSci#ICN15522805) 

were prepared one hour before use.  Drugs were prepared as 100 mM stocks in 70% ethanol, 

diluted in sterile M9 buffer, added to NGM plates already seeded with OP50 to the appropriate 

concentration, and allowed to diffuse into the media for one hour.  L4 stage animals were 
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manually selected to confirm their age and moved to plates using a platinum wire, and examined 

every hour for a 5 to 6 hour period.  Animals were categorized as paralyzed if they failed to 

move after prodding with a platinum wire.  

 

3.3 Results 

3.3.1 HLH-17 functions upstream of the D2-like dopamine receptor 

DOP-3 to regulate behavioral responses to dopamine 

 

The effects of dopamine signaling in C. elegans are mediated by the three heterotrimeric 

G-protein receptors,  DOP-1, DOP-2 and DOP-3 [144]. Our previous studies demonstrated that 

the mRNA levels of these three receptors are reduced in hlh-17(ns204) animals and that hlh-

17(ns204) animals phenocopy those carrying loss-of-function alleles of dop-3[130]; thus, we 

decided to conduct our behavioral analyses with  dop-1 (vs100); dop-3(vs106) animals to 

account for the possible antagonism between dop-1 and dop-3 during HLH-17 regulation. As 

shown in Figure 9A, and in our previous studies, fewer hlh-17(ns204) and dop-1 (vs100); dop-

3(vs106) animals than wild-type animals were paralyzed after 40 min exposure to 10 mM of 

exogenous DA, and both well-fed hlh-17(ns204) animals and well-fed dat-1(vs106) animals 

failed to exhibit the basal slowing response (BSR) when encountering a bacterial lawn (Figure 

9B).  In this study, we used an extragenic, translational reporter for hlh-17 to rescue the 

dopamine paralysis and basal slowing phenotypes of transgenic hlh-17(ns204) animals.  This 

reporter was able to restore dopamine sensitivity and to enhance BSR, showing that the 

previously reported phenotypes are indeed a result of loss of HLH-17 (Figure 9C).  We 

previously reported that a transcriptional reporter for hlh-17 drives expression in the glial-like, 
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cephalic sheath cells of the dopaminergic neurons [87], and others have detected weak hlh-17 

expression in the sheath or socket cells of the inner labia and outer labia [30].  The translational 

reporter used in this study was driven by the same promoter sequences used in the previous 

study, and was similarly expressed (data not shown).  This expression pattern weakly correlates 

with expression of the dopamine receptors in neuronal support cells of the head [88], and so we 

looked for genetic interactions between hlh-17 and dop-3.  As shown in Figure 9, the resistance 

to dopamine-induced paralysis and the basal slowing response of hlh-17(ns204); dop-1 (vs100);  

dop-3(vs106) is not significantly different from the resistance and slowing response phenotypes 

of dop-1 (vs100); dop-3(vs106) and hlh-17(ns204) animals (Figure 9), and is consistent with a 

model in which HLH-17 is functioning in the same genetic pathway as DOP-3 to modulate these 

behaviors.  Taken together, we conclude that HLH-17 influences behaviors that are mediated by 

dopamine through the transcriptional regulation of dop-3. Our existing data suggest that this 

regulation is indirect; however, it is possible that the transcriptional and translational constructs 

used in our studies do not fully report the wild-type expression pattern for hlh-17.   In fact, recent 

gene expression profiles from FACS sorted cells point to overlapping expression of hlh-17 and 

dop-3 in the dopamine neurons of late embryos, in panneuronal cells and the glutamate receptor 

neurons of L2 stage animals, and in the cephalic sheath of young adult animals [145] 

http://www.vanderbilt.edu/wormdoc/wormmap/WormViz.html.  Additionally, dopamine 

receptor genes are expressed in mammalian glial cells [146, 147] and further support the 

possibility that HLH-17 directly regulates dop-3 expression in the cephalic sheath and in selected 

neurons during C. elegans development. 
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3.3.2 hlh-17 mutants are defective in clearing dopamine from the 

synaptic cleft  

 

In our previous studies, the mRNA levels of genes required for dopamine synthesis, those 

encoding tyrosine hydroxylase gene (cat-2) and the aromatic amino acid decarboxylase (bas-1), 

were not affected by loss of hlh-17 [130].  This suggested that the presynaptic synthesis of 

dopamine is not compromised in hlh-17(ns204) animals.  Additionally, exogenous dopamine 

failed to repress egg-laying in naive hlh-17(ns204) animals; however, exogenous dopamine was 

able to repress the stimulation of egg-laying by the neurotransmitter, serotonin.  Though we did 

not further address the serotonin-responsiveness of hlh-17(ns204) animals, this result suggested 

the ability of hlh-17(ns204) animals to respond to exogenous dopamine may be mediated by the 

binding of the neurotransmitter to other non-dopaminergic receptors.  For example, dopamine 

can bind with low affinity to a number of the neurotransmitter receptors involved in serotonin-

stimulated egg-laying, including  MOD-1, SER-1, SER-2, and SER-7 [74, 89].   

 To further define the role of HLH-17 during dopamine signaling, we measured 

the mRNA levels of the genes encoding the vesicular monoamine transporter (VMAT), cat-1, 

and the dopamine reuptake transporter, dat-1, in hlh-17(ns204) animals.  As shown in Figure 

10A, dat-1, but not cat-1, mRNA levels, are decreased in hlh-17(ns204) animals. We also found 

that the mRNA levels for the dopamine receptor genes, dop-1, dop-2, and dop-3, are down 

regulated  in L4 stage animals, confirming that the decreased levels previously reported in L1 

stage animals [130] remain low in animals at the stage used for our behavior assays.  

Like the mammalian VMATs, CAT-1 mediates the packaging and transport of the 

biogenic amines into synaptic vesicles and is required for proper release of dopamine from 
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presynaptic neurons in C. elegans [100]. The dopamine transporter, DAT-1, is localized to the 

synapses of all dopaminergic neurons of C. elegans males and hermaphrodites [140], and is 

responsible for neurotransmitter clearance from the synaptic cleft [148, 149]. In otherwise WT 

animals, loss of dat-1 leads to increased activation of the DOP-3 receptors located on cholinergic 

motor neurons [88]. Consequently, dat-1 animals are paralyzed in water as a result of DOP-3 

hyperactivation; this behavior can be measured using a swimming induced paralysis (SWIP) 

assay [74, 140]. Swimming induced paralysis does not occur in cat-1 animals because dopamine 

is not efficiently packaged or subsequently released into the synaptic cleft. We reasoned that if 

hlh-17(ns204) animals synthesize and release normal levels of dopamine, but produce less DAT-

1, then they would be less efficient than wild-type animals at clearing extrasynpatic dopamine 

from the synaptic cleft.  To test this hypothesis, we conducted SWIP assays with wild-type, hlh-

17(ns204) and dat-1(ok157) animals.  As reported previously [140], and shown in Figure 10B, 

dat-1(ok157) animals, but not wild-type animals, have a strong SWIP response after 20 minutes 

in water.  The SWIP response of hlh-17(ns204) animals was an intermediate response, with 

approximately 40% of the animals becoming paralyzed after 20 minutes in water.  This 

phenotype was rescued by transgenic expression of HLH-17. The result suggests that loss of 

HLH-17 compromises the ability of mutant animals to clear dopamine from the synaptic cleft 

and could be interpreted as representing a partial, rather than complete, loss of dat-1 activity. 

 The SWIP phenotype seen in dat-1 animals is completely rescued by loss of 

DOP-3 [102]; hence, we reasoned that the reduced SWIP response of hlh-17(ns204)animals, 

which is an intermediate of the responses of wild-type and dat-1 animals, may be the result of 

having decreased levels of both dop-3 and dat-1.  To test this hypothesis, we compared the SWIP 

phenotypes of hlh-17(ns204); dat-1(ok157) animals and of hlh-17(ns204); dop-1 (vs100); dop-
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3(vs106) animals to those of dat-1(ok157) and dop-1 (vs100); dop-3(vs106) animals, 

respectively.  As shown in Figure 10B, complete loss of dat-1 activity enhanced the SWIP 

response of hlh-17(ns204) animals while complete loss of dop-3 activity significantly decreased 

the SWIP response.  Furthermore, the SWIP phenotypes of hlh-17(ns204); dop-1 (vs100); dop-

3(vs106) animals and hlh-17(ns204); dop-1 (vs100); dop-3(vs106); dat-1(ok157) animals were 

not significantly different from that of dop-1 (vs100); dop-3(vs106) animals (p-values = 0.574 

and 0.265, respectively).  Interestingly, loss of hlh-17 and dat-1 appears to be an additive effect: 

a comparison of the differences of the means shows that the difference for wild-type versus hlh-

17; dat-1 is equal to the sum of the differences for wild-type versus hlh-17 and wild-type versus 

dat-1. These results underscore the dependence of the SWIP phenotype on DOP-3.  Furthermore, 

the results suggest that the SWIP response is not mediated solely through dat-1, and that hlh-17 

may affect the SWIP phenotype through both dat-1-dependent and dat-1-independent 

mechanisms.  A dat-1-independent, dop-3 dependent mechanism for the SWIP phenotype is 

consistent with the results of a previously reported forward genetics screen [150] and suggests 

that the HLH-17 transcriptional network may include genes that act in parallel to dat-1. 

Our results from the dopamine paralysis assays and the egg-laying assays suggest that 

hlh-17(ns204) animals are less sensitive to exogenous dopamine, a result that is consistent with 

reduced dop-3 activity.  The results from assays for BSR and SWIP, both of which rely on 

normal synthesis and release of endogenous dopamine from presynaptic neurons, suggest that 

hlh-17(ns204) animals produce normal amounts of dopamine but are deficient in the ability to 

transport the dopamine.  This result is also consistent with reduced dop-3 activity.  Likewise, a 

failure in the ability to transport dopamine from the synaptic cleft is consistent with reduced dat-

1 activity, as is the SWIP phenotype of hlh-17(ns204) animals. From these results, we conclude 
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that HLH-17 functions to control extrasynpatic dopamine levels, in part by its regulation of dop-

3 and dat-1. 

 

3.3.3 hlh-17 mutants are responsive to reuptake inhibitors that are 

selective for dopamine, but not for serotonin  

 

Bupropion is a selective norepinephrine and dopamine reuptake inhibitor commonly used 

in mouse and human studies [151-153] and in the treatment of ADHD [154, 155] and depression 

[156, 157]. Reuptake inhibitors block the ability of a transporter to move a neurotransmitter from 

the synapse to the presynaptic neuron or the surrounding glial cells, thereby increasing 

extracellular concentrations which ultimately increase neurotransmission. We reasoned that the 

intermediate SWIP behavior of hlh-17(ns204) animals is because these animals still produce a 

small amount of functional DAT-1, and that treatment with bupropion would increase SWIP in 

hlh-17(ns204) animals.  As expected, pretreatment of hlh-17(ns204) animals with bupropion 

increased their SWIP response to that of untreated dat-1(ok157) animals (Figure 11A), 

supporting our mRNA studies showing that dat-1 expression is reduced but not completely 

eliminated in hlh-17(ns204) animals.  It has been shown previously that SWIP can be rescued in 

dat-1(ok157) animals by pretreatment with the dopamine antagonist reserpine [140], an 

antipsychotic drug that depletes vesicular dopamine stores by blocking the vesicular monoamine 

transporter (VMAT).  As shown in Figure 11B, pretreatment with reserpine reduced the SWIP 

responses of dat-1(ok157) animals, but did not affect SWIP in wild-type animals or in hlh-

17(ns204) animals. This result was unexpected because cat-1 mRNA levels are not affected in 

hlh-17(ns204) animals; however, others have reported reserpine insensitive mutants that show 
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SWIP behavior in a dat-1 dependent manner [150].  Bupropion pretreatment also increased 

SWIP in dat-1(ok157) animals, hlh-17(ns204); dat-1(ok157) animals; and hlh-17(ns204); dat-

1(ok157); dop-1 (vs100); dop-3(vs106) animals (Figure 11A).  Together, these results further 

emphasize that SWIP behavior may not be mediated solely through dopamine reuptake by DAT-

1.  The ability to induce SWIP behavior in dop-1 (vs100); dop-3 animals suggests that the 

mechanism may occur through a dopamine-independent mechanism.   

Although a role for 5HT during SWIP has not been reported to date, we measured the 

SWIP response of WT, hlh-17(ns204) and dat-1(ok157) animals after exposure to fluoxetine to 

test the possibility that the SWIP phenotype is also modulated through serotonin. Fluoxetine 

blocks the function of SERT/MOD-5, the serotonin reuptake transporter [158, 159]. As seen in 

Figure 11C, the SWIP response phenotype increased in WT animals that were pretreated with 

fluoxetine, but decreased in similarly treated dat-1(ok157) animals. These results can be 

explained by the action of fluoxetine, which is known to increase extracellular concentrations of 

dopamine [160, 161].  The excess dopamine in treated wild-type animals would phenocopy 

mutants that have increased extracellular levels of dopamine and have an increased SWIP 

response.  Fluoxetine can also aggressively inhibit any transport of dopamine by the serotonin 

transporters [161] so that treated dat-1 animals would show a reduced SWIP response, analogous 

to the reduced response of dat-1; dop-3 animals [140]. Interestingly, hlh-17(ns204) animals were 

insensitive to fluoxetine, though they have normal levels of mod-5 mRNA (see Figure 10A) and 

respond to exogenous serotonin in egg-laying assays [130].  Fluoxetine has previously been 

shown to act via both serotonin-dependent and serotonin-independent mechanisms in C. elegans 

[159, 162].  In future studies we will further explore the role of HLH-17 in serotonin signaling 

which may also address the mechanisms of fluoxetine resistance in hlh-17(ns204) animals.  
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3.3.4 hlh-17 animals are not defective in acetylcholine release  

 

It is possible that the SWIP response of hlh-17(ns204) animals is insensitive to both 

reserpine and fluoxetine because HLH-17 influences the activity of C. elegans biogenic amines 

in a manner that, with the exception of dopamine, does not involve the regulation of genes 

directly involved in neurotransmitter synthesis, packaging, or transport.  A more attractive, 

alternative possibility is that HLH-17 influences acetylcholine release, as the phenotypic effects 

of both reserpine [163] and fluoxetine [164, 165] are dependent on acetylcholine. In support of 

this possibility, the inhibitory effect of fluoxetine on acetylcholine release in rats is dependent on 

activity of the dopaminergic D2 receptors [165].  Furthermore, loss of dop-3 activity in C. 

elegans has recently been shown to increase acetylcholine release, while null alleles of genes 

required for acetylcholine release have been shown to rescue the SWIP phenotype in dat-

1(ok157) animals [166].  

We used aldicarb and levamisole sensitivity assays to examine acetylcholine release and 

acetylcholine reception, respectively in hlh-17(ns204) animals.  Aldicarb is an 

acetylcholinesterase inhibitor and thereby increases the concentration of acetylcholine in the 

neuromuscular junction.  Animals with reduced acetylcholine release are resistant to aldicarb-

induced paralysis, while those with increased acetylcholine release are more sensitive [166, 167].  

As shown in Figure 12A, hlh-17(ns204) animals are more sensitive to aldicarb than wild-type 

and dat-1(ok157) animals (p-value = 0.0428).  This result is consistent with the weak effects of 

the dop-3(v106) mutation on aldicarb sensitivity that was previously reported, and suggests that 
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acetylcholine release is otherwise normal in hlh-17(ns204) animals.  We also found that hlh-

17(ns204) animals are more sensitive to levamisole (p-value = 0.0002) (Figure 12B), a 

cholinergic agonist that binds selectively to acetylcholine receptors in body wall muscles [167].  

We are able to tentatively explain this increased sensitivity based on our unpublished microarray 

analysis which indicates that the activity of the nicotinic acetylcholine receptor gene, lev-8, is 

upregulated in hlh-17(ns204) animals.  Interestingly, our microarray data indicated that the gene 

encoding the calcium/calmodulin-dependent protein kinase UNC-43 is also upregulated.  

Mutants carrying gain-of-function alleles of unc-43 have previously been reported to have 

increased resistance to fluoxetine.  As shown in Figure 10A, we were able to validate these 

results using RT-qPCR analysis.  mRNA levels of unc-43 and lev-8 are increased in hlh-17 

animals, while the level of mod-5, a gene that was not differentially affected in our microarray 

analysis, remained unaffected. To our knowledge, loss of dopamine receptor activity, in 

particular dop-3, has not previously been tested; however, animals that are defective in dopamine 

synthesis display normal sensitivity to levamisole [168].  Taken together our results suggest that 

neither acetylcholine release nor acetylcholine reception is compromised in hlh-17(ns204) 

animals, and that the resistance to reserpine and fluoxetine may be mediated through other genes 

in the HLH-17 transcriptional network. 

3.4 Conclusion 

The Olig sub-family of bHLH transcription factors influences the specification of 

oligodendrocytes, myelin formation and axon pathfinding of motorneurons in both invertebrates 

and vertebrates [115, 169-171].  In C. elegans, HLH-17 is an Olig homolog that is expressed in 

sheath cells of the dopaminergic neurons; however, this protein has no known role in glial cell 

specification, neurite extension, or axon guidance [30]. The work presented here and in previous 
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studies points to a role for HLH-17 in controlling dopamine-dependent behaviors.  Specifically, 

our work suggests that HLH-17 is needed to clear extracellular dopamine from the synaptic cleft.  

First, hlh-17(ns204) animals have reduced mRNA levels for dat-1, dop-3, dop-2, and dop-1, but 

maintain normal levels of cat-1 and cat-2.  Second, the SWIP response of hlh-17(ns204) animals 

is consistent with reduced levels of dat-1 and dop-3, and is rescued when dop-3 activity is 

completely eliminated.  Third, hlh-17(ns204) animals are not defective in acetylcholine release, 

and in fact, show an increased sensitivity to aldicarb that is consistent with the increased 

acetylcholine release that occurs in animals with reduced dop-3 activity. 

 The bHLH transcription factor family has well established roles in neurogenesis 

and the specification and maintenance of neuronal identity.  In Drosophila, for example, the 

bHLH gene, lethal of scute, is required for cell-specific transcription of the dopaminergic H-cell 

neuron of the ventral nerve cord, and for specification of the non-midline dopaminergic neurons 

[170, 172]  In zebrafish, olig2 regulates expression of the gene encoding Sim1, a  bHLH-PAS 

protein that drives specification of the diencephalic dopaminergic neurons [173].  It is less clear, 

however, is whether HLH-17 plays a conserved role in the regulation of genes required for 

neurotransmitter signaling, in general, and dopamine signaling, in particular. The gene encoding 

the human dopamine reuptake transporter is regulated by the hairy/enhancer of split-like bHLH 

protein, HesR1.  HesR1 represses activity of the human DAT1 gene in cell culture by binding to 

sequences in the 3’ UTR [174].  HesR1 also affects dopamine receptor expression in mice, and 

hesr1 mutant mice show defects in dopamine dependent behaviors [175].  Although both are 

basic helix-loop helix proteins, HLH-17 shows no sequence similarity to HesR1, and is most 

similar to the human Olig-related proteins, bHLHb5/Beta3 and bHLHb4.  Neither of these 

proteins has been shown to directly regulate expression of the dopamine transporter or dopamine 
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receptor genes.  However, both proteins are part of the bHLH transcriptional network that drives 

retina development [176-178], and the dopamine receptors are critical for normal retinal function 

[142, 179-182]. Our own transgenic expression data shows strong expression of hlh-17 in the 

cephalic sheath cells of wild-type animals, which does not support the direct regulation of dat-1 

and dop-3 by HLH-17.   However, mRNA for both dop-3 and hlh-17 was recently detected in 

glutamate receptor neurons of L2-stage animals and in the cephalic sheath cells of young adult 

animals [145].  Furthermore, mRNA for dop-3, dat-1, and hlh-17 was detected in the dopamine 

neurons and pan-neuronal neurons of late embryos and L2-stage animals, respectively.  Taken 

together with the epistasis analysis presented in this study, these data support the possibility that 

HLH-17 is a direct regulator of dop-3 and dat-1.  However, further studies are in progress to 

confirm that prediction. Additionally, future studies are aimed at determining if HLH-17 affects 

dop-1 similarly to dop-3 by conducting behavioral analyses with hlh-17 (ns204); dop-1 (vs100) 

and hlh-17 (ns204); dop-3 (vs106) animals. 

Interestingly, the SWIP response in hlh-17(ns204) animals is enhanced by pre-treatment 

with bupropion, an anti-depressant and DAT inhibitor that is used to treat attention deficit 

hyperactivity disorder (ADHD) in adults and children [183, 184], but is unaffected by the 

antidepressant fluoxetine and the dopamine antagonist, reserpine.  This finding underscores the 

need to develop animal models of dopamine signaling that accurately reflect the effects of 

reduced expression of multiple neurotransmitter signaling pathway genes, rather than complete 

loss of function of a single gene.  Our future studies are aimed at exploiting hlh-17(ns204) for 

this purpose.    
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Figure 9 HLH-17 functions upstream of dop-3 to regulate DA signaling 

A. DA-induced paralysis: hlh-17(ns204), dop-1 (vs100); dop-3 (vs106), and hlh-17(ns204); dop-

1 (vs100); dop-3 (vs106) animals are less sensitive than wild-type (N2) animals to 10 mM DA. 

Transgenic expression of HLH-17:: GFP in hlh-17(ns204) animals rescues the DA induced 

paralysis phenotype. The bar for hlh-17R represents the average measurements from three 

biological replicas of three independent lines.  * represents statistical significance when 

compared to wild-type, n=10 animals/strain/rep for three biological replicas. B. Basal slowing 

response: Well-fed wild-type animals (N2) , but not hlh-17(ns204), dop-1 (vs100); dop-3 

(vs106), or hlh-17(ns204); dop-1 (vs100);  dop-3 (vs106) animals, move significantly slower in 

the presence of food (white bars) than in the absence of food (grey bars).   
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C. Transgenic expression of HLH-17:: GFP rescues the basal slowing response of hlh-17(ns204) 

animals. Three independent lines, 15.3, 15.1, and 3.1, were assayed.  In (B) and (C), five 

animals/rep/strain for a total of three biological replicas were assayed.  Each animal was 

analyzed for three separate 20 second intervals, so that the total number of observations was 15 

observations/rep/strain.  *, P<0.05; **, P<0.005; ***, P<0.0005. 
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Figure 10 Loss-of hlh-17 affects extracellular DA levels 

A. mRNA levels in L4-stage hlh-17(ns204) animals when normalized against mRNA levels in 

age-matched wild-type (N2) animals.  Light grey shading represents wild-type range of 

expression (1.0 +/-0.115).  The levels of cat-1 and mod-5 mRNA are not significantly affected in 

hlh-17(ns204) animals. B. hlh-17(ns204) animals demonstrate a SWIP behavior that is an 

intermediate of the behavior in N2 and dat-1(ok157) animals, and that is rescued by transgenic 

expression of HLH-17:: GFP. The bar for hlh-17R represents the average measurements from 

three biological replicas of three independent lines. For all strains except hlh-17R, n = 30 

animals/rep/strain.  For hlh-17R, n was equal to an average of at least 15 animals/line/biological 

rep (ranges was from 12 to 26) because of differences in transmission frequency of the transgene.  
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C. SWIP phenotype in double mutant hlh-17(ns204); dat-1(ok157) and hlh-17(ns204); dop-1 

(vs100); dop-3(vs106) animals is more similar to the phenotype in dat-1(ok157) and dop-1 

(vs100); dop-3(vs106) animals, respectively, than in wild-type animals.  The SWIP phenotype of 

hlh-17(ns204); dat-1(ok157); dop-1 (vs100); dop-3(vs106) animals is not significantly different 

from dop-1 (vs100); dop-3(vs106) or hlh-17(ns204); dop-1 (vs100); dop-3(vs106) animals. n = 

30 animals/rep/strain for three biological replicas.  *, P<0.05; **, P<0.005; ***, P<0.0005;  

****, P<0.0001. 
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Figure 11 hlh-17 animals respond selectively to reuptake inhibitors 

A. Pretreatment with the DAT reuptake inhibitor, bupropion, increases the SWIP phenotype of 

N2, hlh-17(ns204), dat-1(ok157) and hlh-17(ns204); dop-1 (vs100); dop-3(vs106) animals.  The 

ability of bupropion to enhance SWIP behavior is not dependent on DOP-3.  Assay shows results 

using a final concentration of 100 mM of bupropion; results with 10 mM of bupropion showed 

the same trend.  B, C. The SWIP phenotype in hlh-17 (ns204) animals is unaffected by 

pretreatment with reserpine (B) or fluoxetine (C).  In all panels, n = 30 animals/rep/strain, dark 

bars = minus inhibitor, light bars = plus inhibitor. *, P<0.05; **, P<0.005; ***, P<0.0005. 
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Figure 12 hlh-17 animals do not have reduced acetylcholine signaling 

A. hlh-17(ns204) animals are more susceptible to aldicarb induced paralysis than wild-type (p-

value=0.0428) and dat-1(ok157) animals (p-value=0.1319).  B. hlh-17(ns204) animals are more 

susceptible to levamisole induced paralysis than wild-type (p-value=0.0002) and dat-1(ok157) 

animals (p-value=0.0002). In all panels n = 30 animals/rep/strain. 
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4 ANALYSIS OF DIFFERENTIAL GENE EXPRESSION PROFILES FOR HLH-17 IN 

C.ELEGANS 

4.1 Introduction 

Living organisms continuously adapt to changing conditions in their environment in an 

effort to carry out normal cellular functions and to maintain system homeostasis. This is 

accomplished when cells interact with their environment, most often by reacting to chemicals 

found in their internal or external space [185]. The process by which the chemical signals are 

received and processed is termed signal transduction. Signal transduction occurs in a sequence of 

phases that allows the cells to transmit information that ultimately leads to specific responses, 

such as changes in enzymatic or ion-channel activity. The first phase in a signal transduction 

pathway is reception and consists of ligand-receptor binding [186]. Signaling molecules act as 

ligands that bind to receptors of their target cells that can either be positioned on the cell 

membrane or located intracellularly in the cytoplasm or nucleus [187]. There are many different 

types of signaling molecules that are involved in the transmission of information between cells 

including, but not limited to, neurotransmitters and peptide hormones.  Neurotransmitters carry 

signals between neurons or from neurons to other targets such as muscle cells [188]. Hormones 

can act at the synapse or travel to more distant sites to reach their hormonally responsive target 

cells [188].  

After reception, the next phase is transduction. In this phase the activated receptor 

triggers a cascade of gene-protein and protein-protein interactions within the cell that function to 

transmit the signal. In the final phase (response), the activation of specific target gene(s) allows 

the animal to respond to the stimulus [189]. A stimulus can lead to the activation of a large set of 

genes and can cause a number of different downstream events. These events are dependent upon 
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the specific set of genes that are activated and the order in which they are activated in response to 

the stimulus [189].  

Transcriptional regulatory networks are the central effectors needed to generate a 

response to a stimulus and consist of a collection of regulatory proteins that associate with genes 

across the genome [190]. The process of gene expression controls how the information within 

the genome is interpreted and how it is subsequently used to produce the proteins required for a 

specific response. Transcriptional regulatory networks generally consist of proteins that (1) 

provide structural components of the cell, (2) help to catalyze reactions such as the breakdown of 

food sources and (3) control the expression of genes needed to regulate specific processes in the 

cell [191]. The central machinery in a regulatory network are the transcription factors that work 

to activate and repress gene expression in a spatial and temporal specific manner, allowing the 

cell to respond to its environment and perform complex biological functions.  

Members of the bHLH (basic helix-loop-helix) transcription factor family act in a number 

of transcriptional regulatory networks required during embryonic development including 

networks that drive neurogenesis, cardiogenesis, myogenesis and hematopoiesis [192-195]. For 

example, the neurogenesis network that includes the proneural HLH gene lin-32 as the central 

effector is required for the development of touch sensory and male sensory neurons in C. 

elegans. Inputs from genes and proteins that affect the production, migration and outgrowth of 

the touch sensory neurons [196, 197] and those that are required for male sex organ 

determination [198] and anterior-posterior patterning during male sensory neuron development 

[199] represent two network motifs within the lin-32 network. 

In our lab, we are interested in constructing the transcriptional regulatory network which 

includes a recently characterized member of the bHLH family, HLH-17, as the central effector. 
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HLH-17 is weakly expressed at the L4 larval stage in the four cephalic (CEP) dopaminergic 

neurons and is strongly expressed at all developmental stages in the cephalic sheath (CEPsh) glia 

which surround these neurons in the head of the animal [30, 87]. The loss-of hlh-17 does not 

affect CEPsh generation nor differentiation; however, persistent expression in these cells 

suggests that HLH-17 may regulate CEPsh function post-developmentally [30]. Many of our 

initial studies were geared at addressing this possibility. We conducted behavioral analyses in 

hlh-17 mutants and identified a role for HLH-17 during the modulation of stimuli regulated by 

the CEP dopaminergic neurons in the hermaphrodite C. elegans [130, 200].  

Our most recent efforts to better understand the hlh-17 transcriptional regulatory network 

have been aimed at identifying targets of HLH-17 regulation. We hypothesized that some of the 

signaling pathways that are required for the animals’ ability to respond to stimuli may be altered 

in hlh-17 (ns204) mutants. In support of this hypothesis, we show here that the targets of HLH-

17 include genes whose products function in G-protein and peptide hormone signaling pathways. 

These factors mostly include membrane bound receptors, channels/transporters, enzymes and 

cell-adhesion molecules that allow G-protein and hormone signals to be transduced during the 

regulation of developmental and behavioral responses in C. elegans. Because we have previously 

shown that hlh-17 (ns204) mutants have altered responses during DA signaling, a G-protein 

signaling pathway, in this study, we decided to analyze the role of HLH-17 in the IIS 

(Insulin/IGF-1 signaling) pathway, a peptide hormone signaling pathway. We show here that 

hlh-17 (ns204) mutants have a reduced lifespan and defective responses to oxidative stress, 

which suggests that some outputs of insulin signaling are mediated by HLH-17. Together, our 

studies suggest that HLH-17 functions as a central effector in transcriptional regulatory networks 
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that modulate behavioral and developmental responses regulated specifically by the 

dopaminergic and IIS signaling pathways in C. elegans. 

 

4.2 Materials and Methods 

4.2.1 C. elegans growth and culture conditions 

 

The following strains were used: N2 Bristol wild-type; OS2649, hlh-17(ns204); OS2929, 

hlh-17(ns204); hlh-31(ns217); hlh-32(ns223). OS2649 and OS2929 was a gift from Dr. S. 

Shaham. Unless otherwise noted strains were cultured on solid nematode growth media (NGM) 

containing Escherichia coli strain OP50 at 20°C using standard methods [139]. Synchronous 

cultures of N2, OS2649 and OS2929 were prepared by hypochlorite treatment of gravid adults.  

Embryos were allowed to develop and hatch on NGM plates lacking peptone.  L1 stage animals 

were subsequently transferred to NGM plates seeded with OP50 and harvested at the L4 stage 

for use in behavioral assays. RNAi against daf-16 was administered by feeding as previously 

described [201]. 

4.2.2 Gene Expression Analysis 

Synchronized populations were collected at the L4 stage, pelleted and frozen at -80° C. 

Total RNA, cDNA synthesis, and real-time PCR was performed as previously described [130], 

except the cDNA was amplified from 1 µg of total RNA in 20 µL reactions.  Real-time PCR 

assays were performed with SYBR Green and TaqMan Gene Expression Assays (Applied 

Biosystems/Invitrogen). The endogenous control genes were pmp-3 and cdc-42 for the SYBR 

green reactions and glyceraldehyde 3-phosphate dehydrogenase (gpd-3) (Ce02616909_gH) for 

the TaqMan reactions. The primer sequences for the SYBR Green probes and the ID numbers for 
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the TaqMan probes used in this study are listed in Tables 2 and 3, respectively.   All gene 

expression assays were done in triplicate, for at least three biological replicates. 

 

4.2.3 Microarray Analysis 

A whole genome microarray using the strain OS2649 was conducted in the Genome 

Technology Access Center (GTAC) at the Washington University in St. Louis School of 

Medicine. Signal intensity data was extracted using Agilent Feature Extraction software (v11.5). 

Expression data was normalized using the quantile method. The ANOVA test was applied to 

identify differential probes between mRNA from OS2649 and N2 animals, and 2880 probes were 

significantly up-/down-regulated with a p-value of  p<0.01 and a False Discovery Rate of 

FDR<0.01. Gene Ontology (GO) was performed using the Gene Set Enrichment Analysis 

(GSEA) tool provided by the Broad Institute at MIT [202]. 

A whole genome microarray using the OS2929 strain was performed in the DNA/Protein 

Core Facility at Georgia State University. The GeneChip C. elegans Genome Array (Affymetrix) 

was used to compare global gene expression between mRNA from OS2929 and N2 animals. 

Data analysis was performed using the GeneSpring GX 11 software (Agilent). Probe intensity 

values were normalized using Robust Multichip Average (RMA)-algorithm. Statistical analysis 

was conducted using the Student’s T-test (p<0.05) and genes with significant expression were 

further filtered by fold change. A total of 4,518 probes were significantly up-/down-regulated. 

Gene Ontology (GO) analysis was performed using the Database for Annotation, Visualization 

and Integrated Discovery (DAVID), version 6.7 [203, 204]. 
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4.2.4 Behavioral Assays 

Lifespan assay. One hundred L4 stage animals/strain were selected and added to NGM 

plates containing 0.5mg/ml of 5-fluoro-2’-deoxyuridine (FUdR) to inhibit egg-laying and 

eliminate the need to separate offspring from the reproductive adult [205]. Animals were scored 

as live, dead or missing and transferred to new plates every other day. Animals were scored as 

dead if they failed to move in response to prodding with a platinum wire. All lifespan tests were 

repeated three times. Statistical analyses and survival curved were conducted using GraphPad 

Prism 6. 

Oxidative stress assay. Thirty animals/strain/rep were added to an NGM plate containing 

the appropriate drug and kept at 20 °C until survival was calculated either every hour or every 

day for juglone (60 µg/ml) and paraquat (3.7 µg/ml), respectively [206, 207]. Plates were 

prepared under a ventilated hood and each chemical was added separately to 100 µl of 100% 

ethanol. After the NGM was cooled, the liquid culture containing the appropriate drug was added 

and mixed gently just before pouring. Animals cultured on plates containing paraquat were 

transferred to freshly poured plates every two days. Each assay was conducted for three 

biological replicates. Survival comparisons were conducted as a compilation of all three 

replicates using GraphPad Prism 6. 

 

4.3 Results and Discussion  

4.3.1 Identifying HLH-17 transcriptional targets using two hlh-17 

mutant strains 

The goal of this work was to better understand the HLH-17 transcriptional regulatory 

network in the C. elegans hermaphrodite. Our approach was to identify targets of HLH-17 
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transcriptional regulation using gene expression microarray analysis. Previous functional studies 

conducted in our laboratory show that hlh-17 (ns204) mutants are defective in larval 

development, reproduction and in behaviors that require proper synaptic signaling [87, 130, 200]. 

We hypothesized that genes targeted by HLH-17 would be connected with the phenotypic 

defects displayed by the hlh-17(ns204) mutants. In C. elegans, HLH-17 shares sequence 

similarity to the uncharacterized HLH factors, HLH-31 and HLH-32. These three factors may 

therefore regulate some or all of the same transcriptional targets. To account for the potential 

functional similarities between these genes, we conducted two independent microarray 

experiments, separately comparing gene expression profiles of hlh-17 (ns204) mutants or hlh-

17(ns204); hlh-31(ns217); hlh-32(ns223) mutants to wild-type (N2) animals. 

We found that the expression of 1553 genes was affected by the loss of HLH-17 alone, of 

which 906 were up-regulated and 646 were down-regulated (Fig. 13, Appendix Table A.1). We 

assigned genes to functional groups using a gene ontology (GO) analysis, with the Gene Set 

Enrichment Analysis (GSEA) tool provided by the Broad Institute at MIT [202, 208]. There were 

a total of 68 clusters and many of the genes were clustered under ‘Integral to Membrane’ and 

‘Growth’ (Fig. 14, Table 4). We also found that the expression of 2274 genes, of which 971 were 

up-regulated and 1302 were down-regulated by the loss of HLH-17, HLH-31 and HLH-32 (Fig. 

15, Appendix Table A.2). We used the Database for Annotation, Visualization and Integrated 

Discovery (DAVID), version 6.7, to cluster related genes based on enriched Gene Ontology 

(GO) terms. There were a total of 59 clusters with many of the genes clustered under ‘Embryonic 

development ending in birth or hatching’ and ‘Nematode larval development’ (Fig. 16, Table 5).  

We used RT-qPCR to measure changes in mRNA levels of 32 genes that were identified 

in the hlh-17 (ns204) and the hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) arrays (Table 6). 
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Because we initially expected HLH-31 and HLH-32 to function redundantly to HLH-17, we 

initiated this study using the hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) array and validated 

seven well-characterized putative targets from that analysis. We also validated ten additional 

genes using mRNA from both hlh-17 (ns204) and hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) 

mutants. However, because this analysis and the behavior analyses described in previous 

chapters suggest that HLH-31/HLH-32 function antagonistically to HLH-17, we repeated the 

microarray analysis using hlh-17 (ns204) mutants and validated four additional genes that were 

differentially expressed in the hlh-17(ns204) array (indicated in bold in Table 6). We also 

conducted RT-qPCR for seven genes that were related to the previously studied behaviors in hlh-

17 (ns204) animals. Finally, we selected four genes that were uncharacterized to determine if 

HLH-17 regulated some genes whose functions are currently unknown. During our validation of 

the microarray results, we found that 84% of the 32 genes were significantly affected either in 

hlh-17 (ns204) mutants only, in hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) mutants only or in 

both strains (Table 6). Additionally, the direction of regulation (up-regulated versus down-

regulated) for 76% of the validated genes correlated with the results from the respective array. 

For example, the mRNA levels of ama-1 were found to be down-regulated by at least two-fold in 

both the hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) microarray and in the RT-qPCR analysis. 

For the remaining 24% of the validated genes, the RT-qPCR results compared to the microarray 

results either showed an opposite change or no change in expression, as in the case of cat-1 

which was down-regulated by two fold in the hlh-17 microarray but unaffected in the RT-qPCR 

analysis. 
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4.3.2 HLH-17 targets are membrane bound proteins with roles during 

signal transduction 

Genes clustered under ‘Integral to membrane’ account for the largest group (489) of 

genes whose expression was significantly affected in the hlh-17(ns204) microarray (Figure 14). 

Proteins positioned within the membrane are important because they facilitate functions that are 

vital to the survival of an organism. The process of signal transduction is an example of a 

molecular event that requires membrane bound proteins; therefore, it was not surprising that 

many of the genes clustered under ‘Integral to membrane’ exhibit signal transduction activity. 

For example, in addition to dop-3, the gene encoding the D2-like dopamine receptor, the HLH-

17 network includes gbb-2 which encodes a subunit of the GABA B receptor [209].  As 

indicated in Appendix Table A.1, some of the proteins that cluster under ‘Signal transduction’, 

and also cluster under ‘Integral to membrane’ account for another 153 of the genes affected by 

the loss-of HLH-17.  This result, together with the previously identified role for HLH-17 in the 

nervous system, led us to focus our analysis primarily on putative HLH-17 targets that are 

membrane bound: (1) receptors, (2) transporters and channels, (3) enzymes and (4) cell adhesion 

molecules with roles in signal transduction.  

Most of the genes clustered under ‘Signal transduction’ function in G-protein, steroid, or 

peptide hormone signaling pathways, though genes involved in Wnt, RTKRas/MAP kinase and 

TGF-β signaling were also included. In this section of this chapter, we will focus on genes 

involved in G-protein and steroid signaling; the succeeding section will emphasize genes 

involved in peptide hormone signaling, particularly involved in insulin/IGF1-like signaling. 

Genes involved in the HLH-17 transcriptional network underscore the influence of HLH-

17 on animal behavior through its action within signal transduction pathways. Firstly, receptors 
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play a crucial role in the initiation of signal transduction cascades. For example, binding of the 

neurotransmitter GABA (gamma-aminobutyric acid) to the G-protein coupled neuropeptide 

receptor NPR-1 initiates transcriptional changes in the neuromodulatory network needed to 

regulate social feeding behavior in C. elegans [210, 211]. Our hlh-17(ns204) microarray results 

identified 108 genes with receptor activity including the uncharacterized neuropeptide genes npr-

12, npr-16 and npr-31.  Of those 108 genes, 43 encode G-protein coupled receptors. We 

previously reported that the genes dop-3, ser-7 and gar-1, functioning during dopamine [88] 

serotonin [212] and acetylcholine [213] signaling, respectively, are down-regulated in hlh-

17(ns204) mutants [200]. Additionally, within this subgroup of 43 genes, 23 were members of 

the Serpentine GPCR family.  Although mostly uncharacterized, members of this family are 

widely expressed in chemosensory neurons and have a probable chemosensory function [214]. 

Gustatory plasticity is regulated, in part, by at least four pairs of chemosensory neurons in C. 

elegans [92]. Interestingly, we previously demonstrated that the loss-of HLH-17 compromises 

gustatory plasticity, a phenotype that is also seen in animals with reduced dopamine signaling 

[91, 130].  Possibly this phenotype is also a result of altered expression of the serpentine GCPR 

proteins in the HLH-17 network. 

Secondly, the ‘Signal transduction’ cluster included 28 genes involved in steroid 

hormone receptor signaling. Small lipophilic molecules, which include steroids, are able to 

diffuse across the plasma membrane and bind to hormone receptors located in the cytosol or 

nucleus. In C. elegans, proteins in this family are called nuclear hormone receptors (NHRs) 

[215]. Only 20 of the 284 NHR genes present in the C. elegans genome have been genetically 

characterized, to date; mutations in those genes affect developmental timing, diapause, sex 

determination, neural development, axon outgrowth and neuronal identity [216, 217].  Therefore, 
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it is not surprising that the 28 NHR genes affected by the loss-of HLH-17 are not characterized. 

Nevertheless, these data suggest that HLH-17 is a central effector in transcriptional regulatory 

networks in which NHRs play unidentified roles during developmental and behavioral events.  

Thirdly, following ligand-receptor binding, transporters and channels function to 

transduce signals by moving specific molecules across the plasma membrane. For example, 

sodium and potassium voltage gated ion channels in nerve cells passively transport ions across 

the membrane after ion binding triggers the channels to open, a vital action during signaling 

within these cells [218, 219].  kcc-2 and klp-11 are two genes in the HLH-17 network that fit 

under this category. kcc-2 encodes a channel that is required during GABA signaling to generate 

the cellular chloride gradient needed for synaptic transmission [220]. Likewise, klp-11 encodes 

an essential kinesin motor protein that is required to stabilize protein transport through the ciliary 

membranes of neurons [221, 222].  

Fourthly, membrane bound enzymes are important during signal transduction because 

they metabolize membrane components like lipids, proteins and cell wall oligosaccharides 

responsible for mediating the effects of specific cellular responses. This includes enzymes 

located within the subsynaptic membrane that control neurotransmitter levels by inactivating 

them. Sixty-four putative HLH-17 targets are membrane bound enzymes, most of which belong 

to the metallopeptidase family (23). Although most targets in this collection are uncharacterized, 

we surmise that HLH-17 influences signal transduction events that require enzymatic activity at 

the cell surface. In support of this, one well characterized metalloprotease that is also affected by 

the loss-of HLH-17 is the ADMATS protease, ADT-1. Loss-of ADT-1 compromises the 

regulation of extracellular matrix components possibly by inhibiting the binding of necessary 
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substrates needed during remodeling. Animals without functional ADT-1 develop a twisted 

pharynx as a result of the deficit [223].  

Fifthly and lastly, genes that encode cell adhesion molecules were also affected by the 

loss-of HLH-17. These molecules regulate embryonic development and morphogenesis by 

transducing signals from extracellular matrix components like collagen and fibronectin. HLH-17 

transcriptional targets linked to cell adhesion include deb-1, spon-1, unc-44, vha-12 and 

Y43F4A.1.  The gene vha-12 encodes an ortholog of subunit B of the cytoplasmic (V1) domain 

of vacuolar proton-translocating ATPase (V-ATPase) and is required maternally for early 

embryonic development [224]. Animals lacking vha-12 are uncoordinated due to decreased 

neurotransmission and have a dumpy phenotype often associated with defects in cuticle 

formation [225]. That vha-12 and other cell adhesion genes are part of the HLH-17 

transcriptional network underscores a probable role for HLH-17 during tissue remodeling and 

organogenesis, of which a number of HLH factors already have well characterized roles [226, 

227]. 

The loss-of HLH-17 affects the expression of membrane bound proteins involved in 

signal transduction events that regulate development and behavior. These microarray data, 

together with our behavioral studies, provide molecular and genetic support for our hypothesis 

that HLH-17 is required for C. elegans to respond to changes in the environment.  Furthermore, 

these data highlight the potential impact that HLH-17 may have on multiple signal transduction 

pathways including the recently described role in dopamine signaling.  
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4.3.3 HLH-17 targets play significant roles in the Insulin/IGF-1 

Signaling (IIS) Pathway 

 

Previous studies in our lab suggested that HLH-17 may influence the response to the 

insulin/IGF-1-like signaling (IIS) pathway [87]. In support of this possibility, genes related to 

insulin signaling were identified in our GO analysis and were clustered under ‘Determination of 

adult lifespan’, ‘Metabolic processes’, ‘Signal transduction’, ‘Reproduction’ and ‘Positive 

regulation of growth’.  These targets included, but were not limited to, nine insulin-like peptides 

(ILPs): ins-7, ins-11, ins-12, ins-24, ins-25, ins-31, ins-36, ins-38 and ins-39.  This group of 

targets also included four other neuropeptide-like genes, nlp-17, nlp-30, flp-10 and flp-20, that, 

like the ILPs, act as neuromodulators to regulate locomotion, social behavior, dauer formation 

and egg-laying [228-230].  

In C. elegans, IIS is mediated by the effects of insulin and ILPs that act through the DAF-

2 receptor. DAF-2 is responsible for activating a conserved PI3K (Phosphoinositide 3-kinase) 

pathway required for the regulation of the FOXO transcription factor, DAF-16 [231, 232] 

(Figure 17). DAF-16 activity mediates most outputs of the IIS pathway, regulating genes that 

play key roles in developmental timing, metabolism, reproduction, stress responses and lifespan 

[233-236]. However, increased stress resistance and lifespan resulting from reduced IIS are also 

regulated by the Nrf family transcription factor SKN-1 [237]. SKN-1 also functions downstream 

of DAF-2 but in parallel to DAF-16 in the p38 MAPK pathway [238, 239], targeting genes 

involved in Phase II detoxification [240] (Figure 17).  

To determine if HLH-17 functions in the insulin signaling pathway, we measured the 

mRNA levels of IIS-related genes in hlh-17 (ns204) mutants. We first found that daf-2 and skn-1 
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expression were up-regulated and that daf-16 expression was unaffected by the loss-of HLH-17 

(Fig. 18). We then measured skn-1 mRNA and the mRNAs which encode the proteins 

responsible for the state (normal/unstressed vs stressed) dependent regulation of SKN-1, 

including wdr-23, cul-4, gsk-3, pmk-1 and sek-1 in stressed and unstressed animals (Fig. 19). In 

normal animals, GSK-3 inhibits SKN-1 activity in the cytoplasm [237, 241] while nuclear SKN-

1 is recruited by WDR-23 to the CUL-4 ubiquitin ligase complex and is subsequently degraded 

[242]. In stressed animals PMK-1 and SEK-1 phosphorylate cytoplasmic SKN-1 so that it 

bypasses WDR-23 mediated degradation in the nucleus and activates genes involved in 

detoxification [238]. As indicated in Figure 19, wdr-23 and cul-4 mRNA levels were up-

regulated in both unstressed and stressed hlh-17(ns204) mutants. This suggests that HLH-17 

regulates genes whose products negatively regulate SKN-1 activity in normal cells. Currently we 

do not know if this increase in wdr-23 and cul-4 transcripts are indicative of increased WDR-23 

and CUL-4 protein levels. Future studies will determine if the increased wdr-23 and cul-4 

mRNAs lead to increased protein and ultimately to increased SKN-1 degradation in hlh-17 

(ns204) animals.  

 We next measured two IIS signaling outputs, lifespan and oxidative stress response, to 

validate the role of HLH-17 in IIS. We first analyzed lifespan. Reduced IIS in daf-2 mutants 

increases lifespan [243]; therefore, we hypothesized that increased daf-2 expression would 

decrease lifespan in hlh-17 (ns204) mutants. As expected, we found that the mean lifespan of 

hlh-17 (ns204) mutants was shorter (p-value 0.0076) than that of wild-type animals (Figure 20). 

This suggested that HLH-17 is required for lifespan in C. elegans. Previous studies suggest that 

neurons are the central lifespan-determining tissue; neuronally, not intestinally, expressed DAF-2 

is responsible for the decreased lifespan in daf-2 mutants [244]. To date HLH-17 expression has 
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only been identified within the nervous system. Therefore, HLH-17 may be critical regulator of 

lifespan in these tissues. Although it remains to be determined whether HLH-17 influences 

lifespan from within the glia or within the neurons.  

Next, to determine if HLH-17 functions in the same pathway as DAF-16 or in a parallel 

pathway to DAF-16 we measured the lifespan of hlh-17 (ns204) mutants subjected to daf-16 

RNAi (Figure 20). We found that the lifespan of N2/daf-16 RNAi animals was not significantly 

different from hlh-17 (ns204)/daf-16 RNAi animals (p-value 0.1495). This data suggests that 

daf-16 is in fact epistatic to HLH-17 in the IIS pathway required for lifespan.  

Lastly, we analyzed the oxidative stress response. Because reduced IIS in daf-2 animals 

promotes oxidative stress resistance [245], we hypothesized that the increased levels of daf-2 

would cause hlh-17 (ns204) animals to be less resistant to oxidative stress. To test this we treated 

young adult hlh-17(ns204) mutants and wild-type animals with juglone and paraquat, and 

calculated their survival rates in hours and days, respectively (Fig. 21). Contrary to our 

hypothesis, mean survival after exposure to both oxidants was significantly increased in hlh-17 

(ns204) animals (p-value <0.0001, <0.0001) indicating that like daf-2 animals, hlh-17 (ns204) 

animals are more resistant to oxidative stress than wild-type. This suggests that IIS is reduced in 

hlh-17 (ns204) animals despite the increase in daf-2 expression. Reduced IIS generally causes 

increases in both lifespan and oxidative stress resistance [246, 247].  In hlh-17 (ns204) animals 

these phenotypes are uncoupled, suggesting that HLH-17’s role in the IIS pathway is 

complicated. Future studies are aimed at determining how HLH-17 may affect both of these IIS 

outputs in a manner that would allow this uncoupling of phenotypes. Alternatively, other genes 

with well characterized roles in stress responses are also up-regulated in hlh-17 (ns204) animals. 

Interestingly, bli-3 is required for cuticle integrity and increased levels of this protein may 
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further account for reduced sensitivity to juglone and paraquat [248]. Thus HLH-17 probably 

normally functions to regulate a number of genes that affect the animals’ response to the 

environment and the decrease in sensitivity to juglone and paraquat seen in hlh-17 (ns204) 

animals is the result of a number of factors.  

The increased stress resistance seen in hlh-17 (ns204) animals suggests an increase in 

SKN-1 activity. Our studies therefore do not fully explain the biological relevance of HLH-17 

dependent regulation of wdr-23 and cul-4, two genes which encode proteins responsible for the 

negative regulation of SKN-1. However, a recent study has shown that increases in SKN-1 

activation result in defects in neuromuscular function; WDR-23 and CUL-4 can influence 

synaptic function by negatively regulating SKN-1 in the intestine [249], suggesting that stress 

detected by cells in the intestine can affect function of distant neuronal tissues. HLH-17 may be 

required in the nervous system for this detection. Likewise, the ability of HLH-17 to regulate the 

ILPs and other neuropeptides, as well as the NHRs that mediate endocrine control in C. elegans, 

(see above) support the requirement for HLH-17 in endocrine control in C. elegans. Together 

these data allude to the possible crosstalk between the nervous and endocrine systems and 

suggest that HLH-17 may play a major role in this interaction. Identifying functionally relevant 

targets that mediate the effects seen in hlh-17 mutants will be important to our understanding of 

how HLH-17 may affect behaviors regulated by the intestine from the CEPsh.  

Together, our data suggest that HLH-17 functions upstream of the DAF-2 transcriptional 

network to regulate IIS outputs. In one motif of this network, HLH-17 functions upstream of 

DAF-16 to regulate lifespan. Currently, we don’t know if HLH-17 affects the oxidative stress 

response through DAF-16, SKN-1 or other stress response factors. However, our data do suggest 

that HLH-17 functions from the nervous system to regulate these processes. Our current studies 
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are preliminary; there are still many unknown mechanisms and regulatory factors that may affect 

the behavioral defects that we see in hlh-17 (ns204) animals. It is also important to keep in mind 

that neuropeptide genes like ILPs in general are difficult to characterize because they have 

overlapping functions and many bind to some of the same receptors. Although many ILPs signal 

through the DAF-2 receptor, others signal through non-DAF-2 receptors. Thus, validating and 

characterizing the HLH-17 transcriptional regulatory network that involves ILPs will require the 

examination of subtle defects in hlh-17 (ns204) animals, the generation of animals with multiple 

deletions and the elimination of receptors to which these neuropeptides bind.  

4.3.4 HLH-17, HLH-31 and HLH-32 share some similar targets  

 

To construct the transcriptional network in which HLH-17 is the central effector, it was 

important for us to make a distinction between the genes that are regulated by HLH-17 only and 

those that are synergistically regulated by HLH-17, HLH-31 and HLH-32. To address this goal, 

we compared the two gene sets represented by the hlh-17 (ns204) and the hlh-17(ns204); hlh-

31(ns217); hlh-32(ns223) microarray analyses and compiled a list of genes that were 

significantly affected in both. As indicated in Figure 22, a total of 1553 genes that were 

significantly affected by the loss-of HLH-17, and 2274 genes affected by the loss HLH-17; 

HLH-31; HLH-32. A total of 173 genes were found to be present in both microarrays. Using 

DAVID, we found that these 173 genes clustered under categories that were almost identical to 

the top 10 GO terms for the hlh-17 (ns204) microarray (Table 7).  

To identify targets that may be regulated either redundantly or antagonistically by HLH-

17 and HLH-31/HLH-32 we compared the direction (up-regulated versus down-regulated) of 

transcriptional regulation in hlh-17 (ns204) mutants to the direction in hlh-17(ns204); hlh-
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31(ns217); hlh-32(ns223) mutants (Table 8). Most genes (67%) showed opposite changes in 

expression, suggesting an antagonistic relationship between HLH-17 and HLH-31/HLH-32. For 

example, apl-1 was up-regulated in the hlh-17 (ns204) microarray but down-regulated in the hlh-

17(ns204); hlh-31(ns217); hlh-32(ns223) microarray. Similarly, clec-107 is down-regulated by ~ 

32 fold in hlh-17 (ns204) animals but only down-regulated by ~ 7 fold in hlh-17(ns204); hlh-

31(ns217); hlh-32(ns223) animals. These findings correlate with our previous studies that show 

that these factors regulate DA-dependent behaviors in an antagonistic manner [130]. Likewise, 

our RT-qPCR results also provides support for this functional relationship. In most cases a gene 

up-regulated by the loss-of HLH-17 was down-regulated by the loss-of expression of all three ; 

sdc-2 was up-regulated by ~2 fold in hlh-17 (ns204) animals but down-regulated by ~2 fold in 

hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) animals. The remaining 33% of the genes showed 

the same direction of transcriptional change and very little difference in fold change, suggesting 

that neither HLH-31 nor HLH-32 affected the expression of those targets. For instance, kqt-2 was 

up-regulated by ~2 fold in hlh-17 (ns204) animals and by ~3 fold in hlh-17(ns204); hlh-

31(ns217); hlh-32(ns223) animals. Currently we are most interested in the genes that are 

uniquely targeted by HLH-17.  

4.4 Summary and Future Implications 

The data obtained from our microarray analyses of hlh-17 mutants suggest that HLH-17 

functions to regulate behaviors mediated by G-protein and IIS pathways in the hermaphrodite C. 

elegans. We’ve previously shown that HLH-17 works upstream of DOP-1, DOP-3 and DAT-1 

during dopamine signaling. We show here that HLH-17 affects behaviors regulated by the IIS 

pathway and have roles that are distinct from HLH-31 and HLH-32. Our future studies will be 

geared to better understanding the mechanisms and behaviors regulated by the HLH-17 
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transcriptional regulatory network. Likewise, our future studies will incorporate the hlh-

17(ns204); hlh-31(ns217); hlh-32(ns223) animals to help better determine how HLH-31 and 

HLH-32 may aid HLH-17 during the regulation of some of these behaviors. 
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Table 2 SYBR green primer sequences 

WormBase ID Gene Primer Sequence 

WBGene00000123 ama-1 5'-TTCCAAGCGCCGCTGCGCCATTGTC-3' (forward) 

5'-CAGAATTTCCAGCACTCGAGGAGCG-3' (reverse) 

WBGene00000390 cdc-42 5'-CTGCTGGACAGGAAGATTACG-3' (forward) 

5'-CTCGGACATTCTCGAATGAAG-3' (reverse) 

WBGene00000478 cfz-2 5'-GTTATGGACATGAAAAACAGGAAGAA-3' (forward) 

5'-CTCCACCAGCGGATAAAATTG-3' (reverse) 

WBGene00001031 dnj-13 5'-GAATAAGGAAGCTGGAGCTGAGAA-3' (forward) 

5'-TCATCGGAAAGAACATCGTAAGC-3' (reverse) 

WBGene00003911 pak-1 5'-CCAGCACCACCAATTCGTTT-3' (forward) 

5'-GCCGGTTTTTGGGTCATCT-3' (reverse) 

WBGene00004060 pmp-3 5'-GTTCCCGTGTTCATCACTCAT-3' (forward) 

5'-ACACCGTCGAGAAGCTGTAGA-3' (reverse) 

WBGene00004746 sdc-2 5'-CTCGACCGTGATCGTAAAAGG-3' (forward) 

5'-CAGTCAAACATGGATGCAAAATC-3' (reverse) 

WBGene00016925 srb-18 5'-GTTCAGTCGTTCCAACTATTTTTCAA-3' (forward) 

5'-AAGAATCCTGATAACATGTCCCATTT-3' (reverse) 

WBGene00006003 srx-112 5'-TTCCACCCGAATTGTTGGA-3' (forward) 

5'-TTATCAGAAACCCGACGAATGA-3' (reverse) 

WBGene00006816 unc-84 5'-GCGACTTACCATACGCAACCA-3' (forward) 

5'GGCAAGGATGGATCGTAGATTT-3' (reverse) 

WBGene00012882 Y45F10D.1 5'-GTCGCTTCAAATCAGTTCAGC-3' (forward) 

5'-GTTCTTGTCAAGTGATCCGACA-3' (reverse) 
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Table 3 Taqman probe ID numbers 

WormBase ID Gene Probe ID 

WBGene00000102 akt-1 Ce02421048_m1 

WBGene00000295 cat-1 Ce02495610_m1 

WBGene00000296 cat-2 Ce02426732_m1 

WBGene00000839 cul-4 Ce0243482_g1 

WBGene00000912 daf-16 Ce02422843_m1 

WBGene00000898 daf-2 Ce02444348_m1 

WBGene00000934 dat-1 Ce02450896_g1 

WBGene00001052 dop-1 Ce02494345_g1 

WBGene00001053 dop-2 Ce02479829_m1 

WBGene00020506 dop-3 Ce02496462_m1 

WBGene00009266 F30A10.9 Ce02412279_g1 

WBGene00001397 fat-5 Ce02488494_m1 

WBGene00001648 goa-1 Ce02489649_m1 

WBGene00001685 gpd-3 Ce02616409_gH 

WBGene00001527 gcs-1 Ce02436725_g1 

WBGene00001752 gst-4 Ce02458728_g1 

WBGene00002206 kin-24 Ce02458320_g1 

WBGene00003387 mod-5 Ce02415245_m1 

WBGene00004055 pmk-1 Ce02456381_g1 

WBGene00004060 pmp-3 Ce02485188_m1 

WBGene00004758 sek-1 Ce02491657_m1 

WBGene00004804 skn-1 Ce02407446_m1 

WBGene00004932 sod-3 Ce02404517_g1 

WBGene00006539 tbb-6 Ce02482610_si 

WBGene00006876 vab-10 Ce02423625_m1 

WBGene00008419 wdr-23 Ce02424745_m1 

WBGene00022201 Y71H10B.1 Ce02492998_m1 

WBGene00013593 Y87G2A.1 Ce02425354_m1 
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Table 4 Gene Ontology (GO) terms for the hlh-17 (ns204) microarray analysis 
Gene Ontology Terms Count of Gene 

Symbol 

GO:0016021(integral to membrane) 489 

GO:0040007(growth) 153 

GO:0005634(nucleus) 143 

GO:0030246(carbohydrate binding) 134 

GO:0009792(embryo development ending in birth or egg hatching) 123 

GO:0008270(zinc ion binding) 113 

GO:0007165(signal transduction) 153 

GO:0040011(locomotion) 91 

GO:0002119(nematode larval development) 74 

GO:0005524(ATP binding) 71 

GO:0010171(body morphogenesis) 67 

GO:0040035(hermaphrodite genitalia development) 60 

GO:0005515(protein binding) 53 

GO:0019915(lipid storage) 53 

GO:0055114(oxidation-reduction process) 52 

GO:0008340(determination of adult lifespan) 51 

GO:0019915(lipid storage) 42 

GO:0003700(sequence-specific DNA binding transcription factor 

activity) 

40 

GO:0043565(sequence-specific DNA binding) 40 

GO:0005622(intracellular) 33 

GO:0005737(cytoplasm) 33 

GO:0040035(hermaphrodite genitalia development) 33 

GO:0055085(transmembrane transport) 31 

GO:0010171(body morphogenesis) 29 

GO:0007186(G-protein coupled receptor signaling pathway) 28 

GO:0003824(catalytic activity) 27 

GO:0018991(oviposition) 27 

GO:0055114(oxidation-reduction process) 27 

GO:0006898(receptor-mediated endocytosis) 26 

GO:0006468(protein phosphorylation) 25 

GO:0016491(oxidoreductase activity) 25 

GO:0006810(transport) 24 

GO:0003707(steroid hormone receptor activity) 23 

GO:0004222(metalloendopeptidase activity) 23 

GO:0004672(protein kinase activity) 23 

GO:0005576(extracellular region) 23 

GO:0043401(steroid hormone mediated signaling pathway) 23 

GO:0040018(positive regulation of multicellular organism growth) 22 

GO:0002009(morphogenesis of an epithelium) 20 
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GO:0004713(protein tyrosine kinase activity) 19 

GO:0008237(metallopeptidase activity) 19 

GO:0016787(hydrolase activity) 19 

GO:0005975(carbohydrate metabolic process) 18 

GO:0006915(apoptotic process) 18 

GO:0018996(molting cycle, collagen and cuticulin-based cuticle) 18 

GO:0003677(DNA binding) 16 

GO:0005886(plasma membrane) 16 

GO:0007165(signal transduction) 16 

GO:0040017(positive regulation of locomotion) 15 

GO:0005215(transporter activity) 14 

GO:0004674(protein serine/threonine kinase activity) 13 

GO:0005509(calcium ion binding) 13 

GO:0007126(meiosis) 13 

GO:0003676(nucleic acid binding) 12 

GO:0005506(iron ion binding) 12 

GO:0005525(GTP binding) 12 

GO:0042302(structural constituent of cuticle) 12 

GO:0003924(GTPase activity) 11 

GO:0016758(transferase activity, transferring hexosyl groups) 11 

GO:0030259(lipid glycosylation) 11 

GO:0003674(molecular_function) 10 

GO:0006184(GTP catabolic process) 10 

GO:0006811(ion transport) 10 

GO:0007264(small GTPase mediated signal transduction) 10 

GO:0009055(electron carrier activity) 10 

GO:0020037(heme binding) 10 

GO:0040039(inductive cell migration) 10 

GO:0043025(neuronal cell body) 10 
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Table 5 Gene Ontology (GO) terms for the hlh-17; hlh-31; hlh-32 microarray analysis 
Gene Ontology (GO) Terms Count of Gene 

Symbol 

GO:0009792 embryonic development ending in birth 617 

GO:0002119 nematode larval development 457 

GO:0045927 positive regulation of growth 392 

GO:0043169~cation binding 364 

GO:0040007 growth 348 

GO:0000166 nucleotide binding 259 

GO:0003006~reproductive developmental process 256 

GO:0006355~regulation of transcription, DNA-dependent 137 

GO:0043232~intracellular non-membrane-bounded organelle 118 

GO:0007610~behavior 118 

GO:0019098~reproductive behavior 116 

GO:0018991~oviposition 113 

GO:0042303~molting cycle 112 

GO:0007049~cell cycle 110 

GO:0006508~proteolysis 104 

GO:0008104~protein localization 97 

GO:0040012~regulation of locomotion 90 

GO:0003723~RNA binding 90 

GO:0008340~determination of adult life span 90 

GO:0015031~protein transport 89 

GO:0005856~cytoskeleton 75 

GO:0007242~intracellular signaling cascade 73 

GO:0005525~GTP binding 62 

GO:0051276~chromosome organization 58 

GO:0007369~gastrulation 41 

GO:0005794~Golgi apparatus 40 

GO:0016477~cell migration 35 

GO:0006457~protein folding 35 

GO:0007264~small GTPase mediated signal transduction 35 

GO:0019842~vitamin binding 33 

GO:0008219~cell death 31 

GO:0040024~dauer larval development 30 

GO:0006511~ubiquitin-dependent protein catabolic process 29 

GO:0007155~cell adhesion 28 

GO:0046903~secretion 28 

GO:0006119~oxidative phosphorylation 27 

GO:0010629~negative regulation of gene expression 26 

GO:0009566~fertilization 25 

GO:0030182~neuron differentiation 24 

GO:0000785~chromatin 23 
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GO:0046983~protein dimerization activity 21 

GO:0005874~microtubule 19 

GO:0045333~cellular respiration 18 

GO:0031982~vesicle 17 

GO:0019899~enzyme binding 17 

GO:0065004~protein-DNA complex assembly 17 

GO:0006323~DNA packaging 17 

GO:0030117~membrane coat 16 

GO:0007588~excretion 16 

GO:0007409~axonogenesis 16 

GO:0031072~heat shock protein binding 15 

GO:0030421~defecation 15 

GO:0006096~glycolysis 13 

GO:0007498~mesoderm development 13 

GO:0016055~Wnt receptor signaling pathway 12 

GO:0009994~oocyte differentiation 11 

GO:0006898~receptor-mediated endocytosis 10 

GO:0005643~nuclear pore 10 

GO:0005773~vacuole 10 

GO:0009798~axis specification 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

Table 6 RT-qPCR validations 

Gene Description hlh-17 (ns204) 

hlh-17 (ns204) ; hlh-31 

(ns217); hlh-32 (ns223) 

Microarray 
RT-

qPCR 
Microarray RT-qPCR 

ama-1 
subunit of RNA 

pol. II -3.66 -2.13 

cdc-42 RHO GTPase -2.84 -1.89 

fat-5 
delta-9 fatty acid 

desaturase 3.44 -2.47 

kin-24 protein kinase 2.12 1.99 

pmp-3 ABC transporter -3.43 -3.01 

sod-3 
iron/magnese 

superoxide 

dismutase -1.62 -3.67 2.01 

vab-10 spectraplakin     -4.79 -2.73 

cfz-2 frizzled homolog 1.11 -2.8 -1.63 

cul-4 cullin 1.92 -4.44 -2.38 

dnj-13 
prokaryotic heat 

shock protein 1.29 -3.73 -1.64 

pak-1 
p21-Activated 

kinase -1.62 1.22 -5.71 -3.39 

sdc-2 
sex determination 

and dosage 

compensation 1.49 -12.32 -2.47 

skn-1 
bZIP transcription 

factor 1.32 -7.97 -2.78 

srb-18 
serpentine receptor, 

class B (beta) 1.04 3.19 2.16 

srx-112 
serpentine receptor, 

class X 1.11 2.44 1.99 

unc-84 
inner nuclear 

membrane 1.33 -4.21 -2.08 

wdr-23 
WD40 repeat 

containing protein   1.92 -5.97 -2.11 

akt-1 
serine/threonine 

kinase 2.53 -3.87 

cat-1 
vesicular 

monoamine 

transporter -2.36 1.01 

daf-16 
forkheadbox O 

(FOXO) homolgue 1.05 -2.84 
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daf-2 
receptor tyrosine 

kinase 3.47 2.79 

dop-1 
D1-like DA 

receptor -1.76 2.69 

dop-2 
D2-like DA 

receptor -2.29 2.13 

dop-3 
D2-like DA 

receptor 1.39 -3.09 

F30A10.9 uncharacterized 2.98 2.01 

gcs-1 
gamma glutamyl 

cysteine synthetase 1.09 -3.79 

goa-1 
G-protein, O, 

Alpha subunit 1.47 17.37 

gst-4 

glutathione-

requiring 

prostagladin D 

synthase 1.13 -2.28 

tbb-6 tubulin, beta 1.28 2.23 

Y45F10D.1 
Transposon 

(uncharacterized) 1.8 -1.13 

Y71H10B.1 uncharacterized 1.19 1.5 -5.24 

Y87G2A.1 uncharacterized -2.03 2.49 

†Genes validated using mRNA from hlh-17 (ns204) animals only 

*Uncharacterized genes validated following hlh-17 (ns204) microarray 
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Table 7 Top 10 GO terms for the microarray analyses 

*Similar GO terms among the three gene sets are indicated in bold font. 

 

 

Probe 

Count 

 

hlh-17 (ns204) GO Terms 

 

Probe 

Count 
Similarly expressed GO Terms 

 

Probe 

Count 

hlh-17 (ns204); hlh-31 (ns217); hlh-32 

(ns223) GO Terms 

489 GO:0016021 integral to 

membrane 

 63 GO:0016021 integral to membrane  617 GO:0009792 embryonic development  

153 GO:0040007 

growth 

   43 GO:0009792 embryo development 

ending in birth 

457 GO:0002119 nematode larval development   

143 GO:0005634 

nucleus 

   34 GO:0002119 nematode larval 

development 

392 GO:0045927 positive regulation of growth 

134 GO:0030246 carbohydrate 

binding 

 33 GO:0040011 locomotion   364 GO:0043169~cation binding   

123 GO:0009792 embryo 

development  

 27 GO:0040007 growth    348 GO:0040007 growth  

113 GO:0008270 zinc ion 

binding 

  23 GO:0005515 protein binding   259 GO:0000166 nucleotide binding   

153 GO:0007165 signal 

transduction 

 23 GO:0005524 ATP binding   256 GO:0003006~reproductive developmental 

process 

91 GO:0040011 locomotion   22 GO:0040010 positive regulation of growth 

rate 

137 GO:0006355~regulation of transcription, 

DNA-dependent 
  

74 GO:0002119 nematode larval 

development 

17 GO:0040035 hermaphrodite genitalia 

development 

118 GO:0043232~intracellular non-membrane 

organelle 

71 GO:0005524 ATP 

binding 

  13 GO:0008270 zinc ion 

binding 

  118 GO:0007610~behavior   
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Table 8 Similarly expressed genes 
 

 

 hlh-17 (ns204) 

microarray 

hlh-17(ns204); hlh-31(ns217); hlh-32(ns223) 

microarray 

  Gene Fold Change Direction Fold Change Direction 

* B0222.10 26.80 down 2.80 up 

 bli-5 2.67 down 3.29 down 

 C06E1.1 2.21 down 2.13 down 

 C07A12.2 1.62 down 2.19 down 

 C16C8.17 7.67 down 2.70 down 

* C28C12.3 21.48 down 2.57 up 

 cdk-9 1.31 down 2.06 down 

* clec-106 17.85 down 5.65 down 

* clec-107 31.79 down 6.54 down 

* clec-130 66.16 down 2.27 up 

* clec-183 30.89 down 3.28 down 

* clec-193 14.71 down 3.77 down 

 clec-203 2.81 down 2.89 down 

 clec-208 22.03 down 20.45 down 

* clec-94 46.94 down 2.32 up 

 cpt-3 5.27 down 2.18 down 

 cyk-1 1.09 down 2.79 down 

* cyk-4 1.36 down 2.50 up 

* D1022.2 36.42 down 2.08 down 

 dcr-1 1.11 down 7.05 down 

* ddx-23 1.05 down 3.05 up 

 dut-1 3.14 down 3.56 down 

 F21F3.6 1.12 down 4.47 down 

* F31F7.1 1.91 down 2.22 up 

* F35C5.3 23.09 down 3.27 down 

 F49C12.9 1.57 down 3.33 down 

* F56C3.8 22.27 down 2.14 up 

 F57A10.2 5.61 down 3.70 down 

 F58E10.3 1.20 down 5.21 down 

 hrp-1 1.15 down 3.28 down 

 ins-24 1.80 down 2.67 down 

* K11D12.6 38.72 down 2.37 down 

 knl-1 1.22 down 4.40 down 

 lips-14 2.07 down 2.73 down 

* lst-3 1.12 down 2.60 up 

* lst-4 1.44 down 2.42 up 
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* M6.4 1.56 down 2.67 up 

* M70.1 1.38 down 2.96 up 

* mel-11 1.20 down 2.63 up 

 mop-25.2 1.19 down 2.50 down 

* msh-6 1.23 down 2.02 up 

 npp-10 1.13 down 4.95 down 

* npp-14 1.21 down 3.69 up 

* pabp-2 1.40 down 2.10 up 

 par-2 1.31 down 5.23 down 

 pdk-1 1.62 down 8.56 down 

 pis-1 1.21 down 3.09 down 

* pnk-1 1.26 down 3.01 up 

 pqe-1 1.16 down 2.31 down 

* pqn-84 14.20 down 2.23 up 

* R05H10.1 2.54 down 2.01 up 

* R53.8 22.36 down 3.24 down 

 rad-26 1.14 down 4.64 down 

 rpa-2 1.29 down 3.26 down 

* rsa-2 1.30 down 3.59 up 

* sax-2 1.57 down 2.29 up 

* sel-10 1.27 down 3.18 up 

* set-17 1.37 down 2.52 up 

* snr-3 1.29 down 2.10 up 

* spe-8 1.33 down 2.29 up 

 srsx-34 1.78 down 3.55 down 

* syp-4 1.36 down 2.56 up 

* T02H6.9 36.95 down 3.12 down 

* T22G5.1 45.88 down 2.11 down 

 tag-312 1.35 down 4.25 down 

* tag-329 25.57 down 2.89 down 

* try-8 44.97 down 3.47 down 

* W02B3.7 8.14 down 2.35 up 

* Y49F6B.6 48.77 down 2.21 up 

 Y49G5A.1 2.71 down 2.61 down 

* Y74C10AR.2 32.62 down 2.35 down 

      

* aco-1 1.56 up 3.56 down 

 acs-17 1.39 up 3.37 up 

 * afd-1 1.23 up 2.46 down 

* ain-1 1.41 up 4.77 down 
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* bli-3 1.54 up 8.78 down 

* C03B1.2 3.28 up 3.68 down 

* C05D10.4 1.60 up 2.83 down 

 C06G4.6 4.50 up 2.27 up 

 C08G9.1 1.24 up 2.32 down 

* C17E7.13 2.81 up 3.08 down 

 C18B12.4 1.25 up 3.05 up 

* C24A3.4 1.30 up 2.54 up 

* C30G4.4 1.66 up 2.64 down 

 calu-1 1.52 up 2.02 up 

* cdr-1 1.72 up 2.25 down 

* ceh-37 1.39 up 3.66 down 

* clh-4 1.51 up 2.94 down 

* cnb-1 1.34 up 3.55 down 

 col-152 2.48 up 2.46 up 

 cutl-4 2.16 up 2.48 up 

 cyp-34A6 1.38 up 2.23 up 

* D2096.6 3.01 up 3.94 down 

* dgk-2 1.57 up 2.44 down 

* egl-44 1.28 up 4.63 down 

* F01G4.6 1.16 up 6.62 down 

* F09F7.4 1.14 up 6.48 down 

* F18F11.4 8.35 up 3.48 down 

 F38E9.4 2.15 up 2.04 up 

 F38E9.5 1.65 up 2.12 up 

 F48G7.10 1.77 up 2.68 up 

 gap-1 1.63 up 3.01 up 

* gar-1 1.52 up 3.80 down 

* gcy-3 4.07 up 2.79 down 

 gob-1 1.31 up 2.16 up 

* grl-22 2.27 up 2.27 down 

* grl-27 3.01 up 3.62 down 

* grl-28 2.47 up 4.18 down 

* gst-19 1.76 up 2.08 down 

* hbl-1 2.47 up 2.34 down 

 hum-4 1.78 up 2.98 up 

* K02E10.7 1.56 up 4.55 down 

 klp-11 1.46 up 2.19 up 

 kqt-2 1.44 up 2.68 up 

 ldb-1 1.39 up 2.30 up 

* lec-1 2.00 up 2.85 down 
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 let-721 1.09 up 2.82 up 

 let-756 1.97 up 2.05 up 

 lim-6 1.59 up 2.13 up 

 lim-9 1.17 up 2.34 up 

* lips-11 1.79 up 2.27 down 

* mab-31 1.41 up 4.26 down 

 miz-1 1.89 up 2.13 up 

 nas-12 2.44 up 2.63 up 

* nhr-116 1.36 up 7.08 down 

 nhr-34 1.24 up 2.01 up 

* nkat-1 1.46 up 2.15 down 

 nlp-17 1.30 up 2.38 up 

 nlp-30 3.70 up 2.22 up 

 nmy-1 1.47 up 2.43 up 

 nucb-1 1.52 up 2.24 up 

 nuo-4 1.34 up 2.16 up 

* oga-1 152.20 up 2.23 up 

 pms-2 1.37 up 2.98 up 

* pqn-26 3.12 up 3.36 down 

* pqn-89 1.68 up 4.87 down 

 R07G3.8 1.66 up 2.56 up 

 R11G1.6 1.40 up 3.71 up 

* R151.2 1.34 up 2.43 down 

* rhi-1 1.14 up 3.58 down 

 sar-1 1.13 up 2.39 up 

 sft-4 1.19 up 2.86 up 

* skr-19 1.20 up 2.35 down 

 soc-2 1.65 up 2.98 up 

* sptf-1 1.33 up 4.67 down 

 srd-74 1.45 up 2.12 up 

 srh-179 4.03 up 2.51 up 

 str-131 2.98 up 3.36 up 

 str-180 2.04 up 2.65 up 

* str-7 1.48 up 3.01 down 

* syd-9 1.61 up 3.91 down 

* T04B8.5 2.92 up 2.41 down 

* T06D8.3 3.00 up 3.34 down 

* T09B4.7 5.86 up 4.75 down 

* T15D6.8 4.68 up 2.35 down 

 T21D11.1 2.52 up 2.53 up 

 T23B3.2 1.53 up 2.40 up 
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* tat-4 1.33 up 2.48 down 

 tmd-2 1.60 up 2.90 up 

 tre-3 1.53 up 2.05 up 

 tsp-14 2.08 up 2.18 up 

* ucr-2.1 1.47 up 2.03 down 

* ugt-50 1.50 up 2.59 down 

 unc-43 1.67 up 2.24 up 

 unc-44 1.24 up 3.11 up 

* unc-62 1.39 up 9.08 down 

* vab-19 2.64 up 3.17 down 

 vha-12 1.39 up 2.18 up 

* vha-13 1.34 up 3.36 down 

* vha-14 1.27 up 4.02 down 

 vha-16 1.29 up 2.23 up 

 vha-8 1.34 up 2.19 up 

 Y22D7AL.14 2.30 up 2.04 up 

* Y23B4A.2 1.73 up 2.56 down 

 Y55F3AM.14 3.38 up 2.18 up 

 ZC434.7 1.11 up 2.09 up 

* zig-1 1.49 up 4.03 down 

* ZK909.3 2.41 up 2.16 down 

Genes in bold are putative targets of HLH-17 only. 

Genes with an asterisk (*) are presumably regulated antagonistically by HLH-17 and HLH-31/HLH-32. 
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hlh-17 (ns204) microarray 

1553 differentially expressed genes 

906 genes 

up-regulated 

646 genes 

down-regulated 

68 Gene Ontology (GO) clusters 

 

 

Figure 13 Flowchart of hlh-17 microarray 



Figure 14 Top 15 GO terms for hlh-17 microarray

Pie chart showing the distribution of hlh-17-regulated genes represented in the top 15 GO clusters. Gene annotations were derived 

from the Gene Set Enrichment Analysis (GSEA) tool provided by the Broad Institute at MIT.

cluster is indicated under each GO term. GO terms emphasized in text are indicated in bold font. 

 

microarray 

regulated genes represented in the top 15 GO clusters. Gene annotations were derived 

Gene Set Enrichment Analysis (GSEA) tool provided by the Broad Institute at MIT. Number of genes represented in each 

terms emphasized in text are indicated in bold font.  
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regulated genes represented in the top 15 GO clusters. Gene annotations were derived 

Number of genes represented in each 
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hlh-17 (ns204); hlh-31 (ns217); hlh-32 

(ns223) microarray 

2274 differentially  

expressed genes 

971 up-regulated 

genes 

1302 down-regulated 

genes 

59 Gene Ontology (GO) clusters 

 
 

 
 Figure 15 Flowchart of hlh-17; hlh-31; hlh-32 microarray 



Figure 16 Top 15 GO terms for hlh-17; hlh-31; hlh
Pie chart showing the distribution of hlh-17; hlh

were derived from the Database for Annotation, Visualization and Integrated Discovery (DAVID), version 6.7.

represented in each cluster is indicated under each GO term. 

 

31; hlh-32 microarray 

17; hlh-31; hlh-32-regulated genes represented in the top 15 GO clusters. Gene annotations 

Database for Annotation, Visualization and Integrated Discovery (DAVID), version 6.7.

ach cluster is indicated under each GO term.  
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regulated genes represented in the top 15 GO clusters. Gene annotations 

Database for Annotation, Visualization and Integrated Discovery (DAVID), version 6.7. Number of genes 



 

Figure 17 Regulation of genes required for stress resistance and lifespan in 

In the presence of an insulin-like ligand, the DAF

phosphorylation of AGE-1 leads to the activation of PDK

transcription factor DAF-16, causing its cytoplasmic retention. AKT

Constitutively expressed SKN-1 in the nucleus is recruited by WDR

targeted for degradation by the proteasome. Genes regulated by DAF

not activated when DAF-2 is active. In cells exposed to oxidants, phosphorylation of SKN

PMK-1) allows SKN-1 to bypass WDR-23 mediated inhibition and therefore activate th

detoxification. Likewise, an inactive DAF-2 receptor also inhibits the phosphorylation of DAF

nucleus and also regulate genes required during the stress response.

  

Regulation of genes required for stress resistance and lifespan in C. elegans 

like ligand, the DAF-2 receptor is activated and in turn activates the PI3 kinase AGE

1 leads to the activation of PDK-1 first, then to the activation of AKT-1. AKT-1 in turn phosphorylates the 

16, causing its cytoplasmic retention. AKT-1 along with GSK-3 also inhibit SKN-1 activity in the cytoplasm. 

1 in the nucleus is recruited by WDR-23 to the CUL-4 ubiquitin ligase complex where it is presumably 

targeted for degradation by the proteasome. Genes regulated by DAF-16 and SKN-1 required for lifespan and the stress response are 

In cells exposed to oxidants, phosphorylation of SKN-1 by the p38 MAPK pathway (SEK

23 mediated inhibition and therefore activate the expression of genes needed for 

2 receptor also inhibits the phosphorylation of DAF-16. This allows DAF

nucleus and also regulate genes required during the stress response. 
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PI3 kinase AGE-1. The 

1 in turn phosphorylates the 

1 activity in the cytoplasm. 

4 ubiquitin ligase complex where it is presumably 

quired for lifespan and the stress response are 

1 by the p38 MAPK pathway (SEK-1 and 

e expression of genes needed for 

16. This allows DAF-16 to enter the 



 

 

 

 

 

Figure 18 daf-2 and daf-16 expression levels

Total RNA was extracted from L4 animals grown on plates containing OP50 at 16 °C. Bars 

represent the mean +/- the standard errors of at least three 

Astericks indicate values where differences are statistically significantly (**** P<0.0001).
  

 

expression levels 

Total RNA was extracted from L4 animals grown on plates containing OP50 at 16 °C. Bars 

the standard errors of at least three independent RT-qPCR reactions. 

Astericks indicate values where differences are statistically significantly (**** P<0.0001).
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Total RNA was extracted from L4 animals grown on plates containing OP50 at 16 °C. Bars 

qPCR reactions. 

Astericks indicate values where differences are statistically significantly (**** P<0.0001). 
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Figure 19 Expression levels of SKN-1 mediated pathway genes 

Following exposure to juglone (60 µg/ml) for 1.75 hours, total RNA was extracted from L4 

animals grown on NGM plates containing OP50. Bars represent the mean +/- the standard errors 

of at least three independent RT-qPCR reactions. Astericks indicate values where differences are 

statistically significantly (* P<0.05, ** P<0.01, *** P<0.001). 
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Figure 20 Lifespan assay 

The shortened lifespan of hlh-17 animals requires daf-16. 

Survival curves of N2 (control), hlh-17 (ns204) animals, and the same indicated strains eating 

bacteria expressing daf-16 dsRNA.  hlh-17 (ns204) animals have a reduced lifespan (p-value 

0.0076). hlh-17 (ns204);daf-16 RNAi animals do not have altered responses to daf-16 RNAi 

(p-value 0.1495). Day zero corresponds to animals at the first day of adulthood. (n= 3, 1200 

worms).  

 

 



111 

 

Juglone

Time (Hrs)

%
 S

u
rv

iv
a
l

0 2 4 6
0

50

100

150

N2

hlh-17(ns204)

 

 

 

Paraquat

Time (Days)

%
 S

u
rv

iv
a
l

0 2 4 6 8 10
0

50

100

150

N2

hlh-17(ns204)

 

Figure 21 Oxidative stress assays 

N2 and hlh-17 (ns204) animals were scored for survival after being placed on NGM plates 

containing either juglone or paraquat for hours or days, respectively. A. Median survival was 1.5 

hours for N2 animals and 2 hours for hlh-17 (ns204) animals (****, p<0.0001). B. Median 

survival was 4 days for N2 animals and 6 days for hlh-17 (ns204) animals (****, p<0.0001). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Shared targets in the 
 

 

33%

Shared

hlh-17 

(ns204) 

microarray 

(2880 probes) 

1380 

 
 

Targets 

regulated by 

HLH-17 only 

 

Shared targets in the hlh-17 microarray analyses 

67%

33%

Shared Targets

Targets regulated 

antagonistically 

by HLH-17 and 

HLH-31/HLH-32

hlh-17

(ns217); 

(ns223) microarray 

(4518 probes)
173 

2101 

112 

17 (ns204); hlh-31 

(ns217); hlh-32 

(ns223) microarray  

(4518 probes) 



113 

5    GENERAL DISCUSSION 

The integrated actions of multiple signaling pathways contribute to the regulation of 

developmental and behavioral events in animal systems. Understanding the molecular 

mechanisms that govern these processes is a major goal of scientific research. Therefore, 

extensive efforts have been made to identify and characterize transcription factors which 

function in these pathways. Despite ongoing efforts made to better understand the molecular 

mechanisms underlying the DA signaling pathway in C. elegans [250-252], previous studies 

have not included a role for the bHLH factor HLH-17. The goal of my dissertation has been to 

determine if and how this protein could affect events mediated by DA signaling. My studies have 

led to the identification of a single protein, HLH-17, putative HLH-17 protein networks and a 

glia (CEPsh)-neuron (CEP) interaction that may not only affect DA signaling but may also affect 

multiple signaling pathways that contribute to development and behavior in C. elegans.  In this 

concluding chapter I provide a summary of my major findings, discuss the similarities between 

HLH-17 and a functionally comparable protein in the mouse and briefly introduce future 

research goals that will help to further our understanding of HLH-17’s role(s) in the 

hermaphrodite nervous system.  

Many members of the bHLH transcription factor family play vital roles in signaling 

pathways that regulate development and behavior. For instance, during neuronal differentiation, 

human TCF4 regulates genes involved in TGF-β and NF-kB signaling [253],  while, in 

Arabidopsis, the bHLH-type factors MYC2, MYC3 and MYC4 function together to negatively 

regulate two converging pathways of Jasmonates (JAs) signaling required during stress response 

and plant development [254, 255]. Interestingly, a study conducted in mice provides an example 

of a bHLH protein that functions similarly to HLH-17 [256] . In this study, Brunskill et al sought 
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to characterize mice deficient in Npas3 and demonstrated that it affects dopamine, serotonin and 

glutamate neurotransmitter signaling during normal brain development and function [256]. 

Similarly, my studies provide evidence that HLH-17 may also function in multiple signaling 

pathways to regulate comparable processes. Since the Brunskill et al study provides the most 

support for my data, my discussion will largely focus on functional similarities between these 

two bHLH factors. 

HLH-17 is important for normal growth and development 

My dissertation studies have helped to identify a developmental role for HLH-17 in the 

C. elegans nervous system. To begin with, three of the largest clusters in my microarray analyses 

are ‘Growth’, ‘Embryo Development’ and ‘Larval Development’, suggesting a regulatory role 

for HLH-17 in transcriptional networks that regulate these events. In support of this finding, 

many of the genes represented in these clusters function in signal transduction pathways. For 

example, nas-36 expression is affected by the loss-of HLH-17 and functions as an enzymatic 

regulator in the TGF-Beta signaling pathway during molting, a process that occurs at the end of 

each larval stage in development [257, 258]. Furthermore, since lifespan assays can be used as a 

means of measuring normal growth rate and development, the shortened lifespan of hlh-17 

(ns204) animals provides functional evidence that HLH-17 may be required to mediate these 

types of events in the worm. In addition, my molecular (RT-qPCR analyses) and behavioral 

studies show that HLH-17 functions upstream of the DAF-2 transcriptional network during the 

normal life cycle (lifespan) in C. elegans. 

Like HLH-17, Npas3 is also important during development. Loss-of Npas3 causes 

growth and brain development abnormalities in the mouse [256]. In C. elegans, the nerve ring is 

most similar by structure and function to the human brain. Although my studies did not include 
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an anatomical analysis of the nerve ring, there are three key points that suggest HLH-17 may 

play a part in nerve ring development. Firstly, HLH-17 is expressed in the CEPsh, the only set of 

glial cells that completely innervate the nerve ring. The unique morphology of the CEPsh 

suggests that these cells have specialized roles in nerve ring formation and function. Secondly, 

HLH-17 is expressed during nervous system development but is not required for the 

development of the CEPsh nor the dopaminergic neurons that the CEPsh surrounds [30, 87]. 

Therefore, it can be postulated that HLH-17 functions to regulate the development of the nerve 

ring from these unique glial cells. Likewise, loss-of Npas3 does not affect development of the 

neuronal structure in which it is expressed [259]. Future studies will be aimed at determining if 

nerve ring development is normal in hlh-17 (ns204) animals. A better defined spatial and 

temporal expression pattern of HLH-17 is also vital to determining if HLH-17 expression 

correlates with the expression of genes required for nerve ring development.  

 

HLH-17 is important for behavior 

My dissertation studies have also identified a role for HLH-17 during behavior. I have 

confirmed roles for HLH-17 in behaviors mediated by dopamine and the DAF-2 receptor. I 

showed that hlh-17 (ns204) animals have defective responses during egg-laying, basal slowing, 

locomotion following exposure to dopamine, SWIP, gustatory plasticity, lifespan and oxidative 

stress. Through RT-qPCR analyses, I also showed that HLH-17 works upstream of factors that 

help to mediate the effects of these behaviors. Likewise, Brunskill et al, 2005 show that Npas3 is 

required for DA dependent behaviors, however, they determined that DA receptor levels were 

normal in the brains of Npas3 mice [256]. This highlights two pitfalls of my study. First, I only 

analyzed mRNA expression levels in hlh-17 (ns204) animals, not protein levels. Second, I 
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conducted whole animal genetic studies and did not account for the possibility of structure 

specific differences in expression levels. Future goals are aimed at analyzing protein levels of 

DA specific proteins factors in the nerve ring of hlh-17 (ns204) animals.   

Although most of my studies centered on the role of HLH-17 during dopamine and DAF-

2 mediated behaviors, some of my assays also tested the possibility that HLH-17 functions in 

other signaling pathways. For instance, egg-laying, food response and gustatory plasticity are 

regulated by dopamine and 5-HT, while gustatory plasticity is mediated by dopamine and 

glutamate in C. elegans [91, 94, 97]. Although my studies suggest that hlh-17 (ns204) animals 

are defective in their responses mediated only by dopamine during these behaviors, it is possible 

that they also have altered responses to behaviors that are specific to 5-HT and glutamate. 

Preliminary gene expression analyses suggest that the loss-of hlh-17 does not affect the 

expression of the serotonin receptor MOD-5 [260]. However, future studies will be done to test 

these possibilities at the behavioral levels. 

Next, my pharmacological studies show that hlh-17 (ns204) animals have abnormal 

responses to the reuptake inhibitors, reserpine and fluoxetine, suggesting that HLH-17 may play 

a regulatory role in the pathways that respond to these inhibitors [260]. Similarly, Brunskill et al, 

2005 tested the effects of inhibitors on Npas3 mice and demonstrated that they have abnormal 

responses to inhibitors that affect the dopaminergic, serotonergic and glutamatergic signaling 

pathways [256]. Future work is aimed at determining specific roles of HLH-17 in multiple 

signaling pathways.   

Collectively, my studies suggest that HLH-17 is a transcriptional regulator required for 

the modulation of behavior from multiple signal transduction pathways in C. elegans. To date, 

we are uncertain about the exact mechanism by which HLH-17 may affect behavior from these 
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multiple inputs. An attractive possibility is that HLH-17 regulation may be specific to a protein 

that affects similar outputs of multiple signaling pathways. In support of this, Brunskill et al, 

2005 suggest that the synaptic protein PSD-95 may be a key determinant of the Npas3 

mechanism. They show that PSD-95 levels are reduced in Npas3 deficient mice and that this 

reduction is specific to PSD-95 because no other synaptic protein levels were altered [256]. This 

finding suggests that Npas3 is able to indirectly affect multiple pathways through its regulation 

of post-synaptically located PSD-95. It will be important to search for a similar mode of action 

for HLH-17 in C. elegans. My microarray studies have provided prioritized candidate genes and 

pathways for these future mechanistic studies.  

In conclusion, my dissertation studies have begun to identify HLH-17 as an important 

transcriptional regulator in the C. elegans nervous system. Better understanding the molecular 

mechanisms underlying development and behavior will give researchers more insight into how 

diseases and behavioral defects like Schizophrenia, Parkinson’s disease, ADHD, and drug-

addiction are manifested. Recent data demonstrate that major human behavioral defects are the 

result of dysfunctions in multiple signaling pathways and suggest that there is extensive cross-

talk between most pathways leading to the notion of signaling networks.  For instance, autism 

has been linked to defects in serotonin [261, 262] and WNT signaling [263] while other studies 

suggest that proteolytic and protein kinase C (PKC) pathways, underlie the pathogenesis of 

Huntington’s disease [264-267]. My work and the strong functional similarity between HLH-17 

and Npas3 suggest that bHLH transcription factors may play important roles in these signaling 

networks. My dissertation studies therefore provide a sound framework for future studies aimed 

at better understanding the role of HLH-17 in C. elegans. 
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APPENDICES  

Appendix A: Microarray Tables 

Appendix A.1 Genes differentially expressed in the hlh-17(ns204) microarray analysis 

Gene (down-

regulated) 

Fold Change  Gene (up-

regulated) 

Fold Change  

F56A4.3 -196.60 oga-1 152.20 

srbc-15 -184.45 flp-20 50.33 

F26D10.13 -145.24 F46F5.6 39.33 

srbc-15 -117.13 C25F9.1 15.09 

clec-217 -116.49 gmd-2 9.26 

clec-134 -113.33 Y51A2A.3 9.17 

F49F1.11 -108.96 ZC449.6 8.95 

F26D10.13 -107.16 Y46B2A.2 8.43 

R11G10.4 -101.56 E03H4.4 8.38 

F43C11.1 -100.96 F18F11.4 8.35 

ZK1290.11 -100.36 TC207055 7.80 

Y75B12B.13 -99.65 T26C5.2 7.47 

F26D10.13 -96.68 clec-21 7.04 

F46A8.3 -91.88 C40H5.3 6.90 

clec-181 -89.54 Y57G11C.42 6.84 

F49F1.9 -88.89 F59H6.5 6.56 

F46A8.8 -87.92 K08B12.1 6.53 

R11G10.4 -87.19 nhr-41 6.39 

K03B8.11 -86.43 C02F5.14 6.29 

nas-19 -86.13 CB394306 6.26 

C08E8.3 -85.46 T26C5.2 6.04 

CB393178 -84.24 lact-7 6.03 

clec-135 -83.67 F58H1.2 5.97 

Y6G8.5 -82.61 osm-8 5.94 

R11G10.4 -82.36 nas-23 5.93 

C33G3.5 -79.30 ins-11 5.90 

C48B4.12 -79.01 T09B4.7 5.86 
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Y75B12B.13 -78.56 F21G4.3 5.66 

F46A8.5 -76.76 F38A1.13 5.58 

F09C6.10 -75.69 C30B5.6 5.52 

F26D2.16 -74.86 D2023.1c 5.44 

F56A4.3 -73.48 CB394306 5.36 

R11G10.4 -72.49 col-172 5.29 

C16C8.8 -71.20 D1014.7 5.28 

nas-17 -70.40 F16G10.9 5.19 

M7.9 -69.46 C47F8.5 5.16 

F49F1.9 -68.51 nas-13 5.14 

C16C8.10 -67.12 C30B5.6 5.00 

TC205608 -66.93 Y75B12B.11 4.99 

Y75B12B.13 -66.68 srd-8 4.99 

clec-130 -66.16 T15D6.11 4.96 

F26C11.4 -65.53 F46F3.3 4.94 

K12H6.4 -64.97 col-56 4.93 

F28B1.9 -64.17 Y53F4B.26 4.91 

T19B10.12 -63.83 nas-23 4.90 

CB393178 -63.38 F07H5.8 4.90 

clec-161 -63.12 C26B9.7 4.87 

F01D4.10 -63.00 Y51H7C.10 4.83 

R11G10.4 -62.82 his-9 4.83 

F01D4.10 -62.57 ZK131.5 4.82 

hpo-33 -61.61 ZC434.3 4.80 

CB393178 -59.84 D1037.2 4.78 

C16C8.7 -59.70 F07H5.8 4.75 

ins-31 -59.49 C26B9.7 4.73 

Y49F6B.13 -59.43 his-9 4.70 

CB393178 -59.38 T15D6.8 4.68 

Y47D7A.11 -59.36 ZK131.5 4.68 

TC199291 -59.26 F46F3.3 4.66 

Y51B11A.1 -59.24 alh-13 4.63 

F43C11.12 -58.70 nas-23 4.58 
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Y49F6B.13 -57.90 C26B9.7 4.57 

F26C11.4 -57.48 cuti-1 4.54 

F58F9.8 -57.10 Y51H7C.10 4.51 

T26E3.6 -57.09 F16G10.8 4.50 

TC186275 -55.94 C06G4.6 4.50 

Y47D7A.11 -55.76 B0454.8 4.45 

F09C6.10 -55.18 cuti-1 4.43 

F58F9.8 -54.94 F46F3.3 4.37 

F17E9.3 -53.57 nas-14 4.36 

C06E2.9 -53.52 col-172 4.33 

K12H6.5 -53.43 C13C12.2 4.31 

C16C8.9 -52.06 his-9 4.31 

F01D4.10 -51.83 ZC513.2 4.29 

Y110A2AL.6 -51.71 grd-12 4.29 

T10D4.15 -51.33 alh-13 4.28 

F09C6.10 -51.17 F13C5.3 4.25 

hpo-2 -51.08 svh-1 4.20 

C06E2.9 -50.37 TC207055 4.14 

Y51H4A.26 -50.28 lpr-7 4.12 

F43C11.1 -49.85 nas-13 4.12 

ZK1290.1 -49.59 grl-28 4.10 

F46B6.13 -49.36 F15B9.8 4.10 

F59A1.16 -49.13 ZK131.5 4.09 

C06E2.9 -48.82 C25H3.15 4.08 

C16C8.19 -48.81 gcy-3 4.07 

Y49F6B.6 -48.77 srh-179 4.03 

R05H10.7 -48.54 lips-3 3.97 

C06E2.9 -48.46 F13C5.3 3.97 

F28B1.9 -48.08 R05A10.7 3.94 

K12H6.9 -48.01 lpr-7 3.94 

T16G12.10 -47.79 mec-1 3.92 

clec-197 -47.75 K01D12.8 3.88 

F58F9.6 -47.38 M01B2.8 3.88 
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F09C6.10 -47.37 K02C4.2 3.85 

clec-110 -47.33 Y53F4B.26 3.85 

T19B10.12 -47.23 lips-3 3.84 

clec-219 -47.09 T16G1.2 3.82 

clec-137 -47.09 F46C8.8 3.81 

clec-94 -46.94 D2005.6 3.80 

T16G12.10 -46.66 Y53F4B.26 3.80 

F40G9.7 -46.49 Y53F4B.7 3.79 

F59B2.12 -46.36 F23B2.3 3.79 

F01D4.10 -46.33 srw-145 3.78 

T22G5.1 -45.88 F08G2.1 3.78 

Y47D7A.11 -45.77 col-131 3.77 

F46B6.13 -45.33 ZC84.1 3.77 

try-8 -44.97 F35A5.4 3.77 

clec-95 -44.90 dsl-5 3.75 

Y46G5A.23 -44.83 F01D5.6 3.74 

F09C6.10 -44.83 F15B9.8 3.70 

T19B10.12 -44.57 nlp-30 3.70 

Y110A2AL.7 -44.04 F38A6.4 3.70 

Y47D7A.11 -43.96 Y37D8A.16 3.67 

C44B12.9 -43.78 ZK662.6 3.66 

C14F11.7 -43.36 K01D12.8 3.65 

C17H12.11 -42.46 Y44E3A.1 3.62 

clec-110 -42.16 nep-16 3.62 

scl-8 -42.16 F42F12.12 3.61 

F40G9.15 -42.01 TC201207 3.60 

ZC328.5 -41.96 H10E21.4 3.59 

C35E7.7 -41.73 ttr-52 3.56 

C06E2.9 -41.46 B0454.8 3.55 

F54B8.13 -41.43 sel-7 3.54 

NP022293 -41.39 R52.2 3.54 

Y43F8C.16 -41.31 Y53F4B.7 3.54 

C05B5.9 -41.26 clec-206 3.53 
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Y47D7A.2 -40.99 gly-1 3.53 

clec-110 -40.55 ND3 3.51 

T19B10.12 -40.39 F44A6.3 3.50 

F26C11.4 -39.39 Y51H7C.10 3.49 

F20A1.8 -38.99 pqn-90 3.49 

scl-15 -38.90 clec-230 3.48 

Y18D10A.2 -38.76 W04G3.12 3.47 

K11D12.6 -38.72 npax-2 3.47 

C09G12.5 -38.65 ptr-17 3.47 

T10B10.9 -38.63 Y53F4B.7 3.47 

clec-96 -38.55 T01B6.1 3.47 

F43C11.2 -38.43 M153.2 3.45 

F17B5.7 -37.93 ins-11 3.43 

K01D12.2 -37.85 C49F8.1 3.42 

Y47D7A.11 -37.66 K01D12.9 3.41 

F59A1.6 -37.64 Y55F3AM.14 3.38 

F43C11.1 -37.61 K09C8.7 3.38 

C44B12.9 -37.38 F59H6.5 3.36 

K03D3.5 -37.36 W04G3.7 3.36 

ZK39.9 -37.33 ZK250.9 3.35 

EB996415 -37.25 F33H12.6 3.34 

F01D4.10 -37.24 col-97 3.34 

K12H6.8 -36.96 Y75B12B.11 3.34 

T02H6.9 -36.95 C09B8.3 3.33 

fipr-18 -36.86 C28H8.5 3.33 

F42A6.2 -36.61 mec-1 3.32 

D1022.2 -36.42 C02E7.6 3.32 

Y116F11A.3 -36.31 ZK470.6 3.31 

ZC204.17 -36.25 ptr-1 3.31 

C35B1.3 -36.24 F07H5.8 3.31 

F25E5.7 -36.16 lips-7 3.30 

E02H9.1 -36.06 Y47D3B.10.2 3.29 

Y64G10A.2 -36.04 M03F4.6 3.29 
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clec-141 -36.01 ZK250.10 3.28 

clec-232 -35.92 C03B1.2 3.28 

F30A10.11 -35.92 lgc-21 3.28 

ZC178.2 -35.75 jud-4 3.27 

E02H9.1 -35.72 lys-10 3.27 

cwp-1 -35.56 clec-230 3.27 

F46B6.13 -35.46 mec-1 3.27 

TC202044 -35.36 clec-230 3.26 

E02H9.9 -35.22 T25E4.1 3.26 

M176.10 -35.18 C02E7.7 3.26 

D2096.5 -35.09 C38C6.6.2 3.25 

Y47D7A.11 -35.00 F13D2.4 3.25 

F46B6.13 -34.97 lips-7 3.24 

C44B12.9 -34.87 fip-6 3.24 

B0228.8 -34.52 gon-1 3.23 

T19B10.12 -34.08 lgc-21 3.22 

T02E9.6 -33.92 F20B10.3 3.22 

clec-263 -33.83 grl-27 3.21 

F17B5.7 -33.81 clec-230 3.21 

R03H10.4 -33.61 jud-4 3.20 

clec-158 -33.47 mab-7 3.19 

F54D12.9 -33.00 C03F11.2 3.19 

clec-92 -32.84 Y65B4BL.6 3.19 

Y74C10AR.2 -32.62 nas-23 3.18 

fip-7 -32.57 pes-8 3.18 

W02D7.12 -32.57 F41G3.3 3.16 

clec-138 -32.34 agmo-1 3.16 

F41D3.12 -32.24 F16H9.2 3.16 

TC208547 -32.17 M02G9.2 3.15 

Y43F8C.16 -32.12 F26F12.4 3.15 

clec-207 -32.08 C56C10.4 3.14 

clec-158 -32.02 C40H5.3 3.13 

TC190647 -31.87 alh-13 3.13 
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clec-107 -31.79 Y18H1A.9 3.13 

Y71G12B.5 -31.79 zig-3 3.13 

C06A12.8 -31.74 pqn-26 3.12 

Y87G2A.12 -31.64 C25B8.8 3.12 

Y47D7A.11 -31.62 Y65B4BL.6 3.12 

fipr-27 -31.52 lgc-21 3.11 

F26C11.4 -31.36 K02C4.2 3.10 

TC208547 -31.02 Y46G5A.36 3.10 

clec-183 -30.89 F23F1.2 3.10 

TC208547 -30.50 T17H7.7 3.10 

nas-24 -30.31 ZK180.5 3.09 

F56D2.8 -30.12 clec-230 3.09 

clec-136 -29.98 Y65B4BL.6 3.09 

lips-2 -29.83 F26G1.10 3.08 

F45D11.14 -29.75 C15C6.1 3.07 

F40G9.15 -29.57 F01G10.10 3.07 

Y87G2A.12 -29.30 suro-1 3.05 

Y6G8.5 -29.00 D2092.8 3.04 

C01G10.18 -28.91 col-70 3.03 

F34D6.8 -28.84 ptr-22 3.02 

Y47D7A.9 -28.82 F40H3.3 3.02 

F34D6.8 -28.80 Y51H7C.1 3.02 

ZC204.6 -28.79 F41F3.8 3.02 

B0207.5 -28.76 Y46B2A.2 3.02 

C44B12.9 -28.65 grl-27 3.01 

clc-4 -28.60 D2096.6 3.01 

Y50E8A.8 -28.33 C31B8.12 3.01 

Y47D7A.11 -27.94 T06D8.3 3.00 

EB996415 -27.77 clec-230 2.99 

F17B5.7 -27.66 C25F6.8 2.99 

F32B4.6 -27.54 F13H8.5 2.99 

F34D6.8 -27.52 F26A1.9 2.99 

F41D3.13 -26.80 jud-4 2.98 
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B0222.10 -26.80 str-131 2.98 

clec-130 -26.79 C30H6.5 2.98 

flp-23 -26.74 R10E11.9 2.97 

T10D4.15 -26.43 C10A4.9 2.97 

Y116A8C.44 -26.43 C30A5.10b 2.96 

clec-261 -26.41 cutl-5 2.96 

E02H9.1 -26.32 T24A6.21 2.96 

F25C8.1 -25.67 F13E9.8 2.96 

T02D1.7 -25.63 suro-1 2.95 

scl-9 -25.57 C10A4.9 2.95 

tag-329 -25.57 F41F3.8 2.95 

scl-24 -25.51 C30H6.5 2.95 

F34D6.8 -25.34 C35A5.10 2.95 

F54B8.13 -25.16 C02E7.6 2.95 

C49C3.11 -25.14 C53A3.1 2.94 

C44B12.9 -25.10 F10D11.6 2.93 

F19H6.5 -25.06 nas-13 2.93 

tag-329 -25.05 Y47D3B.6 2.93 

scl-25 -24.95 F41D3.5 2.93 

clec-157 -24.83 cutl-5 2.93 

clec-181 -24.50 T04B8.5 2.92 

TC208547 -24.22 TC178098 2.91 

scl-24 -24.14 C10A4.9 2.91 

Y47D7A.7 -23.89 K01D12.5 2.90 

Y47D7A.6 -23.73 T22B2.6 2.90 

T02E9.6 -23.50 phat-1 2.90 

F46B6.13 -23.28 C10A4.9 2.90 

F58A4.1 -23.16 B0403.5 2.89 

W09G12.6 -23.13 B0212.6 2.89 

M7.10 -23.12 Y43F4A.1 2.89 

F35C5.3 -23.09 R09H10.8 2.89 

clec-99 -22.84 jud-4 2.89 

F13E9.10 -22.81 TC187546 2.89 
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F28B1.2 -22.59 C15C8.8 2.89 

Y46D2A.3 -22.57 T27A10.5 2.89 

R53.8 -22.36 M195.2 2.89 

F56C3.8 -22.27 T22B2.6 2.88 

W07G1.7 -22.18 C50F7.9 2.88 

fipr-17 -22.15 swt-5 2.88 

F33E2.7 -22.10 C02E7.6 2.88 

R09E10.8 -22.03 F13B12.4 2.88 

clec-208 -22.03 F46F5.6 2.87 

cwp-2 -22.03 C15C8.8 2.87 

fipr-17 -21.99 C25F6.8 2.87 

TC208547 -21.91 F41F3.8 2.86 

T10D4.7 -21.77 C26F1.1 2.86 

K09C8.2 -21.64 C17F4.12 2.86 

C05B5.9 -21.60 T22B2.6 2.86 

F34D6.7 -21.57 C36E6.8 2.86 

C28C12.3 -21.48 suro-1 2.86 

clec-133 -21.37 F41F3.8 2.86 

fipr-17 -21.34 adt-1 2.85 

F34D6.8 -21.27 C40H5.4 2.85 

T24D8.6 -21.18 C35A5.10 2.85 

tag-329 -21.08 M153.3 2.84 

Y37F4.3 -21.03 F53H4.3 2.84 

clec-129 -21.00 Y61A9LA.7 2.84 

clec-104 -20.97 K09B3.1 2.84 

ZK39.9 -20.96 Y51H7C.10 2.84 

clec-159 -20.91 pqm-96 2.83 

fipr-17 -20.83 T24C12.4 2.83 

clec-109 -20.66 C06G1.1 2.83 

Y48G9A.6 -20.66 T05H4.7 2.83 

Y26D4A.16 -20.32 ZC21.9 2.83 

T22C1.12 -20.14 C25F6.8 2.82 

F11C7.6 -20.02 M110.9 2.82 
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F28C6.10 -19.84 T22B2.6 2.82 

F01D4.1 -19.45 R09H10.8 2.82 

F13E9.4 -19.42 C25B8.8 2.82 

F16G10.10 -19.28 C17E7.13 2.81 

flp-23 -18.95 T05H4.7 2.81 

cwp-2 -18.90 mec-1 2.81 

flp-23 -18.72 grl-28 2.81 

EB996415 -18.26 Y61A9LA.7 2.81 

clec-130 -18.25 T22B2.6 2.80 

clec-108 -18.21 clec-144 2.80 

flp-23 -18.19 C02F5.14 2.79 

Y25C1A.2 -18.16 ZC334.7 2.79 

scl-7 -18.05 T14E8.4 2.78 

F47C12.6 -17.98 nas-12 2.78 

T23G4.5 -17.96 clec-258 2.78 

clec-106 -17.85 nas-29 2.77 

abf-2 -17.79 pqm-96 2.77 

clec-125 -17.57 lin-32 2.77 

flp-23 -17.52 Y65B4BL.6 2.76 

clec-216 -17.26 T22B2.6 2.76 

F19H6.6 -17.18 srz-78 2.76 

nep-25 -17.12 F07H5.8 2.76 

flp-23 -17.03 Y57G11C.42 2.76 

F49C5.10 -16.96 F54B11.9 2.75 

F33E2.6 -16.89 F53A9.3 2.75 

F58F9.9 -16.87 T22B2.6 2.75 

clec-103 -16.84 nas-29 2.75 

F17B5.7 -16.64 K03D7.3 2.75 

flp-23 -16.32 T20B6.3 2.75 

K04F1.8 -16.12 F46F5.6 2.74 

Y62H9A.8 -16.03 oac-40 2.74 

F20B6.6 -15.96 F35A5.4 2.74 

F38E1.10 -15.75 nas-12 2.74 
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C45G9.10 -15.64 nas-38 2.73 

F41B5.6 -15.54 E01G6.1 2.73 

abf-1 -15.50 F46F5.6 2.73 

Y51A2D.8 -15.49 ets-10 2.73 

clec-126 -15.41 F46F5.6 2.72 

try-5 -15.36 F53H4.3 2.72 

K08C9.6 -15.09 TC182040 2.71 

K08C9.6 -15.08 F46F5.6 2.71 

K04H8.3 -15.01 F17E9.9 2.70 

TC202044 -14.92 B0238.13 2.70 

F17B5.7 -14.86 C36E6.8 2.69 

F56A4.9 -14.80 F33A8.10 2.69 

clec-193 -14.71 fip-6 2.69 

clec-130 -14.50 F46F5.6 2.69 

fip-3 -14.48 clec-229 2.68 

fipr-16 -14.42 ptr-9 2.68 

Y64G10A.10 -14.41 F53H4.3 2.68 

clec-124 -14.39 bli-5 2.67 

pqn-84 -14.20 nas-29 2.66 

K07E8.1 -14.08 T23F6.1 2.66 

clec-110 -13.69 C04G6.13 2.65 

F58F9.9 -13.62 aat-8 2.64 

clec-181 -13.36 vab-19 2.64 

F20B6.6 -13.15 T14E8.4 2.64 

F41D3.13 -12.93 Y48G8AL.1 2.64 

F41D3.13 -12.85 TC207055 2.64 

ZK39.9 -12.74 R13H4.8 2.64 

F49C5.10 -12.67 F35A5.4 2.63 

clec-109 -12.48 F41F3.8 2.63 

clec-193 -12.45 TC186189 2.63 

clec-216 -12.11 nas-13 2.63 

clec-221 -11.80 W08E12.6 2.62 

flp-23 -11.74 F59A1.5 2.62 
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F41D3.13 -11.69 C46H11.7 2.62 

C35B1.3 -11.68 Y48G8AL.1 2.61 

K08C9.6 -11.61 ZK909.3 2.61 

F30H5.5 -11.31 T23F6.1 2.61 

C35B1.3 -11.29 F39D8.3 2.60 

F25E5.3 -11.22 wrt-8 2.60 

F18G5.5 -11.17 C39B10.6 2.60 

W02B3.5 -11.09 nas-12 2.59 

C35B1.3 -10.85 lys-5 2.59 

Y116A8A.1 -10.83 Y47D7A.15 2.59 

C25F9.8 -10.80 B0403.5 2.59 

flp-23 -10.78 ifp-1 2.58 

K08C9.6 -10.60 ZC21.9 2.58 

Y51A2D.1 -10.45 R10D12.1 2.58 

Y71G12B.5 -10.39 Y47D7A.15 2.58 

F41D3.13 -10.27 T23F6.1 2.58 

F45D11.2 -10.14 T13C2.3 2.58 

F59A6.3 -10.04 F46G11.2 2.57 

W06D12.6 -9.96 sdha-1 2.57 

F13E9.9 -9.95 nas-36 2.57 

F46A8.4 -9.79 F09B12.3 2.56 

C35B1.3 -9.77 M03E7.4 2.56 

T12A2.5 -9.72 F47B7.4 2.55 

F58E6.4 -9.69 F49E10.4 2.55 

F47C12.12 -9.47 CELE_Y57G11C.42 2.54 

F15E11.15 -9.41 Y47D7A.15 2.54 

K10D11.4 -9.36 C26B2.8 2.53 

Y70G10A.2 -9.27 T21D11.1 2.52 

F30H5.5 -9.23 nas-12 2.52 

K02B12.9 -9.15 col-58 2.52 

F23A7.1 -9.11 T23F6.1 2.52 

T04A6.2 -9.11 C26B2.8 2.52 

clec-233 -9.04 F56F12.1 2.51 
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F26C11.3 -8.94 C47E8.9 2.51 

C35B1.3 -8.92 F32D8.3 2.51 

Y73F8A.10 -8.90 M153.5 2.51 

Y39B6A.9 -8.89 ZK909.3 2.50 

CELE_F46B3.14 -8.83 nas-29 2.50 

K02B12.9 -8.83 C47E8.9 2.50 

K02B12.9 -8.62 F14B8.5 2.49 

K02B12.9 -8.56 ZK909.3 2.49 

K02B12.9 -8.50 mam-8 2.49 

F47C12.7 -8.45 Y39B6A.8 2.49 

clec-132 -8.40 col-152 2.48 

Y46H3C.7 -8.35 F16H9.2 2.48 

B0286.6 -8.34 C27A2.5 2.48 

NP206106 -8.25 F14B8.5 2.48 

Y26D4A.17 -8.20 ZK909.3 2.47 

clec-216 -8.17 hbl-1 2.47 

K08C9.6 -8.16 grl-28 2.47 

W02B3.7 -8.14 fip-6 2.46 

F35C5.4 -8.11 egl-15 2.46 

F46B3.14 -7.98 ZK131.3 2.46 

C10G8.2 -7.88 TC209251 2.46 

F30H5.5 -7.80 D32358 2.45 

CELE_F49F1.3 -7.79 M01H9.5 2.45 

F15H9.7 -7.77 ZK105.5 2.45 

C16C8.17 -7.67 B0334.13 2.45 

F25D7.5 -7.65 C47A10.13 2.44 

C04B4.6 -7.62 K09B3.1 2.44 

T01A4.3 -7.61 C26B2.8 2.44 

F46B3.14 -7.48 C04B4.1 2.44 

clec-93 -7.44 F49E12.8 2.44 

Y64G10A.10 -7.43 nas-12 2.44 

clec-259 -7.43 cutl-14 2.43 

F30H5.5 -7.38 Y47D7A.15 2.43 
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fipr-16 -7.38 ZK909.3 2.41 

F02H6.6 -7.37 pqm-96 2.41 

Y38H6C.18 -7.35 T05D4.4 2.41 

Y7A5A.3 -7.20 nas-8 2.40 

F49C5.7 -7.09 ptr-17 2.40 

fipr-16 -7.07 C02F5.14 2.40 

C55C3.7 -7.04 sel-7 2.40 

C35B1.8 -6.82 cnp-2 2.40 

ZK39.9 -6.82 cut-4 2.40 

K02B12.6 -6.80 clec-228 2.39 

F16G10.2 -6.79 T05A7.9 2.38 

T04A6.2 -6.78 K03B8.6 2.38 

F18E9.7 -6.74 Y39B6A.8 2.37 

Y18H1A.8 -6.73 sri-14 2.37 

C16C10.9 -6.72 F39D8.3 2.37 

set-15 -6.70 grl-1 2.37 

F15E11.12 -6.66 pqn-29 2.37 

Y7A5A.3 -6.65 pxl-1 2.36 

Y43F8C.23 -6.61 F49E10.4 2.36 

Y67A10A.11 -6.60 Y39B6A.8 2.36 

C28H8.7 -6.59 Y41E3.22 2.36 

F40E12.1 -6.45 D2045.9 2.36 

F49F1.10 -6.40 Y39B6A.8 2.35 

C24A3.9 -6.35 K10B3.1 2.35 

Y67D8C.7 -6.27 D65308 2.35 

Y67D8C.7 -6.23 C26F1.1 2.35 

lov-1 -6.21 trx-3 2.35 

F09E10.1 -6.12 ZK596.3 2.35 

C49C8.6 -6.12 F25G6.7 2.34 

F11A3.4 -6.10 C12D12.3 2.34 

F07G6.8 -6.03 ceh-5 2.34 

xtr-2 -5.97 haf-9 2.34 

Y67D8C.7 -5.94 cnp-2 2.34 
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F11A3.4 -5.89 TC202604 2.34 

F28B1.3 -5.84 B0454.8 2.33 

her-1 -5.79 C52A10.2 2.33 

NP180076 -5.79 let-756 2.33 

F46B3.14 -5.75 col-75 2.33 

pkd-2 -5.69 F38B7.2 2.33 

Y43F8C.15 -5.67 hum-9 2.32 

F07G6.8 -5.67 F17C11.1 2.31 

F46B3.14 -5.66 Y54F10AM.8 2.31 

tyr-5 -5.65 Y22D7AL.14 2.30 

clec-147 -5.64 haf-9 2.30 

F57A10.2 -5.61 cutl-4 2.30 

F59A6.3 -5.49 ugt-51 2.30 

C24A3.9 -5.46 Y41E3.22 2.30 

F13A2.5 -5.33 T05A8.6 2.30 

trf-1 -5.32 F38B7.2 2.29 

cpt-3 -5.27 H08J11.2 2.29 

T05A8.7 -5.24 T19D7.6 2.29 

R01E6.5 -5.16 icl-1 2.29 

F59A6.3 -5.15 C49A9.5 2.29 

Y64G10A.10 -5.03 del-3 2.29 

dgn-3 -5.01 F49E10.4 2.28 

Y48G8AR.3 -4.96 ccb-2 2.28 

C08E3.14 -4.95 C47A10.13 2.28 

Y17G7B.23 -4.93 Y54F10AM.8 2.28 

F59D6.1 -4.93 ugt-51 2.28 

Y57E12AL.4 -4.90 grl-22 2.27 

her-1 -4.90 srx-13 2.27 

F10G2.2 -4.88 aakg-1 2.26 

F15E11.13 -4.84 icl-1 2.26 

EB996415 -4.76 F47B8.13 2.26 

F16G10.6 -4.75 haf-9 2.26 

clec-74 -4.73 Y41E3.22 2.25 
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Y7A5A.3 -4.73 F44G3.2 2.25 

C08E3.14 -4.71 icl-1 2.24 

ZK39.9 -4.71 col-2 2.24 

F09C6.13 -4.69 dao-6 2.23 

Y110A2AL.1 -4.68 C45G9.6 2.23 

ZK177.3 -4.67 snet-1 2.23 

F36H1.12 -4.67 cog-1 2.22 

F25D7.5 -4.67 clec-21 2.22 

M163.9 -4.66 F16H9.2 2.22 

F15H9.7 -4.65 cog-1 2.21 

Y54G2A.38 -4.63 K02A2.5 2.21 

F07G6.8 -4.61 F14B8.5 2.21 

T12A7.3 -4.55 F17C11.1 2.21 

T04A6.2 -4.55 R04B3.3 2.21 

F14H12.6 -4.54 D65291 2.20 

C32H11.4 -4.53 dapk-1 2.20 

E01G4.5 -4.47 C30H6.12 2.20 

C69955 -4.46 T24A11.3 2.19 

Y19D10B.7 -4.44 ZK131.1 2.19 

M163.9 -4.40 ugt-51 2.19 

Y70G10A.2 -4.38 cpz-2 2.19 

Y75B8A.33 -4.37 sox-2 2.18 

T08D10.4 -4.33 Y51H7C.10 2.18 

F02H6.6 -4.32 gst-23 2.18 

F46B3.15 -4.28 TC181947 2.17 

E01G4.5 -4.28 T26E4.10 2.17 

clec-74 -4.26 Y39B6A.8 2.17 

F11A3.4 -4.21 T09B9.2 2.16 

ZC376.1 -4.18 cutl-4 2.16 

M02D8.7 -4.14 F56F12.1 2.16 

Y47D7A.12 -4.13 rap-3 2.15 

F07G6.8 -4.10 sem-2 2.15 

Y70G10A.2 -4.08 F38E9.4 2.15 
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F29A7.3 -4.08 sox-2 2.14 

C07G3.10 -4.07 haf-9 2.13 

M199.9 -4.05 F56F12.1 2.13 

fipr-16 -4.02 C34E11.2 2.13 

F11A3.4 -4.02 F27D9.7 2.12 

Y51H7C.15 -3.99 clec-52 2.12 

T01B6.4 -3.98 Y54E10BL.1 2.12 

F07G6.8 -3.95 C14A11.1 2.11 

T28A8.2 -3.94 catp-3 2.11 

F59A6.11 -3.89 F26G1.11 2.11 

C24A3.9 -3.86 dyf-7 2.10 

F45D11.4 -3.83 egl-15 2.10 

W08F4.7 -3.82 lat-2 2.10 

Y13C8A.2 -3.82 M03E7.2 2.10 

F15E11.1 -3.81 catp-2 2.10 

NP176938 -3.80 TC196650 2.10 

acp-6 -3.79 R09H10.5 2.09 

M163.9 -3.77 D2045.8 2.09 

F11A3.4 -3.77 tsp-14 2.08 

C17G10.6 -3.73 F26A10.2 2.08 

clec-176 -3.66 Y37D8A.16 2.08 

str-55 -3.65 ugt-25 2.08 

C32H11.3 -3.61 C53A3.2 2.07 

W08F4.7 -3.60 F01D4.8 2.07 

M01B12.4 -3.58 Y37D8A.16 2.07 

Y24F12A.3 -3.53 Y38F1A.8 2.07 

Y68A4A.13 -3.52 F53C3.8 2.07 

C50H11.8 -3.50 inx-16 2.06 

F07G6.8 -3.48 TC207352 2.06 

C18F10.2 -3.47 nas-7 2.06 

ZK792.1a -3.46 C33A12.6 2.05 

T02G5.4 -3.45 C33E10.10 2.05 

Y50E8A.14 -3.43 paqr-3 2.05 
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W04A4.3 -3.43 Y113G7B.12 2.05 

H19N07.3 -3.42 C47A10.13 2.04 

T24E12.12 -3.39 K10H10.6 2.04 

Y13C8A.1 -3.39 sox-2 2.04 

K10B4.1 -3.38 str-163 2.04 

NP024506 -3.37 str-180 2.04 

F09C6.13 -3.37 Y41E3.22 2.04 

T24C2.2 -3.34 dyf-7 2.03 

M199.9 -3.26 F31D4.5 2.02 

dut-1 -3.14 nas-7 2.02 

TC201003 -3.12 F13H10.1 2.02 

F49C12.7 -3.10 F07A5.4 2.02 

T24E12.12 -3.05 T24A11.3 2.02 

F22B7.3 -3.05 dyf-7 2.02 

dut-1 -3.03 C33E10.10 2.02 

F16H6.6 -3.01 F02D8.1 2.01 

Y106G6H.10 -3.00 cdf-2 2.01 

F47C12.11 -2.97 lec-1 2.00 

dod-24 -2.95 C53A3.2 2.00 

C14C6.13 -2.94 dyf-7 2.00 

sri-20 -2.93 best-23 2.00 

H37A05.4 -2.91 F07A5.4 2.00 

tba-7 -2.89 R09H10.7 1.99 

C31H5.7 -2.89 sox-2 1.99 

C40H1.9 -2.89 Y43F8B.2 1.99 

C26E1.1 -2.89 sams-1 1.99 

T04A6.2 -2.87 F17C11.1 1.99 

T26H5.9 -2.86 F47E1.2 1.99 

C18A11.4 -2.85 K08C7.4 1.99 

H37A05.4 -2.84 T24A11.3 1.98 

C17F4.11 -2.83 T11F9.6 1.98 

clec-203 -2.81 ZC123.4 1.98 

oac-31 -2.81 nhr-77 1.98 
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Y11D7A.16 -2.80 K09H11.7 1.98 

F02H6.6 -2.80 F54D5.15 1.98 

T26H5.9 -2.79 let-756 1.97 

grd-3 -2.79 ugt-51 1.97 

D1086.2 -2.77 gon-1 1.97 

cwp-3 -2.77 C15H9.2 1.96 

M02D8.7 -2.76 nas-7 1.96 

ZC53.6 -2.73 sox-2 1.96 

Y49G5A.1 -2.71 F25E5.8 1.96 

C29F9.5 -2.70 F17C11.1 1.96 

Y11D7A.16 -2.68 ugt-8 1.96 

H37A05.4 -2.68 R05H5.7 1.95 

nspe-1 -2.68 sox-2 1.95 

K07A1.1 -2.66 EF491744 1.95 

pyc-1 -2.65 F34D6.6 1.94 

T26C11.8 -2.64 W02F12.2 1.93 

F14D7.11 -2.64 col-102 1.93 

tdc-1 -2.63 T24A11.3 1.93 

F28H6.7 -2.62 F13D2.4 1.93 

D2096.10 -2.62 mnm-2 1.93 

srw-33 -2.62 hlh-32 1.93 

TC204851 -2.61 ZK675.3b 1.93 

mab-23 -2.60 F19C6.5 1.93 

K07A1.1 -2.59 egl-15 1.92 

T24E12.12 -2.59 T11F9.6 1.92 

mab-23 -2.58 dgk-2 1.92 

clec-100 -2.57 zig-6 1.92 

R05H10.1 -2.54 F16F9.4 1.92 

Y7A5A.3 -2.53 C17B7.9 1.91 

H15N14.4 -2.51 best-23 1.91 

Y11D7A.16 -2.51 T24A11.3 1.91 

nspd-9 -2.49 C14H10.2 1.91 

F25B3.2 -2.46 col-34 1.91 
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nspe-1 -2.45 C14A11.1 1.91 

mab-23 -2.45 ifd-1 1.90 

nspe-1 -2.45 lin-44 1.90 

fbxb-7 -2.44 H23N18.4 1.90 

nspe-1 -2.42 fkh-7 1.89 

Y24F12A.3 -2.42 chw-1 1.89 

ZK829.1 -2.41 miz-1 1.89 

K07A1.13 -2.40 Y77E11A.14 1.89 

T21C9.11 -2.39 R05H5.7 1.89 

F31B9.2 -2.37 zig-6 1.89 

C43D7.4 -2.37 T11F9.6 1.89 

F47C12.11 -2.36 eff-1 1.88 

cat-1 -2.36 sox-2 1.88 

F40H6.5 -2.34 F46C3.3 1.88 

F28F9.2 -2.33 ZK593.3 1.87 

sdz-6 -2.32 T11F9.6 1.87 

C01B4.6 -2.31 gln-3 1.87 

ZK829.1 -2.30 lin-44 1.87 

F46B3.14 -2.30 C25H3.15 1.87 

dmsr-2 -2.29 F23F1.4 1.87 

clec-6 -2.28 ZK675.3b 1.87 

F59B2.11 -2.27 R102.11 1.87 

F45D11.1 -2.26 lin-44 1.86 

ins-25 -2.25 fbxa-6 1.86 

swt-6 -2.24 Y65B4A.2 1.86 

Y43B11AR.1 -2.23 K09H11.7 1.86 

C06E1.1 -2.21 gst-23 1.86 

R04A9.1 -2.20 T25D10.4 1.86 

ssp-31 -2.20 crb-1 1.85 

C43D7.4 -2.20 W02B12.13 1.85 

Y38E10A.2 -2.19 K07E8.6 1.85 

mab-23 -2.19 R07G3.8 1.85 

K07A1.1 -2.15 TC201289 1.85 
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C06E1.1 -2.14 R07E5.4 1.85 

C01B4.9 -2.13 TC192520 1.85 

F46B3.15 -2.12 unc-129 1.85 

ser-7 -2.12 lin-44 1.85 

T24E12.12 -2.11 F52E1.9 1.84 

ZC168.2 -2.11 H23N18.4 1.84 

F20B6.1 -2.11 ZK1307.7 1.84 

aqp-6 -2.11 gst-23 1.84 

F45D11.1 -2.10 nac-2 1.83 

T06G6.4 -2.10 Y57G11B.2 1.83 

faah-3 -2.09 Y57E12AR.1 1.83 

lips-14 -2.07 ugt-1 1.83 

swt-6 -2.06 nhr-277 1.83 

clec-112 -2.05 Y55D5A.4 1.83 

T28D6.3 -2.05 C52E2.4 1.82 

ins-25 -2.04 R12E2.6 1.82 

Y7A5A.5 -2.03 lin-44 1.82 

F55G11.5 -2.03 fbxa-6 1.82 

ins-25 -2.02 zig-4 1.82 

T02G5.3 -2.02 F18E9.4 1.82 

tph-1 -2.01 ZK470.2 1.82 

C06E1.1 -2.01 zig-6 1.82 

tph-1 -2.01 T12A7.6 1.81 

T13F3.7 -2.00 Y45F10D.14 1.81 

Y71F9AL.4 -2.00 gsto-3 1.81 

F01D5.2 -1.99 F23C8.11 1.81 

Y26D4A.19 -1.98 str-168 1.81 

Y38C1AA.12 -1.98 faah-2 1.81 

F07C3.3 -1.96 npa-1 1.80 

TC194584 -1.96 ZK180.2 1.80 

ssp-31 -1.95 TC197696 1.80 

W03G9.7 -1.95 T05E7.4 1.80 

Y40A1A.3 -1.95 T02D1.5 1.80 
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F47G9.6 -1.93 C06E2.1 1.80 

ins-39 -1.92 lam-1 1.80 

ser-7 -1.92 M88.4 1.80 

K07A1.17 -1.91 Y6G8.1 1.80 

F31F7.1 -1.91 K02E11.7 1.79 

Y110A2AL.4 -1.90 ZK54.3 1.79 

F31F7.1 -1.90 Y62H9A.12 1.79 

cat-1 -1.89 F30F8.5 1.79 

C15A11.7 -1.88 Y39A3CR.5 1.79 

hpo-15 -1.88 AC3.5.3 1.79 

Y75B8A.33 -1.88 lips-11 1.79 

F59B8.1 -1.87 Y17D7C.1 1.78 

TC199465 -1.87 C24H10.1 1.78 

K08D8.5 -1.87 EF491744 1.78 

F08H9.2 -1.87 unc-78 1.78 

K01D12.2 -1.86 str-7 1.78 

F42H11.2.2 -1.86 Y57E12AR.1 1.78 

F20B6.7 -1.85 C45B2.2 1.78 

ugt-3 -1.85 col-50 1.78 

nep-18 -1.84 C23H4.7 1.78 

F55G7.1 -1.84 hum-4 1.78 

T25B9.10 -1.83 Y57G11A.3 1.77 

W09C3.3 -1.83 C05A9.2 1.77 

K02A2.7 -1.83 F46C5.1 1.77 

TC203195 -1.83 K11E4.2 1.77 

nep-18 -1.82 F48G7.10 1.77 

K08D8.5 -1.82 C06B3.7 1.77 

F59B8.1a -1.82 W02B12.13 1.77 

F19C6.4 -1.81 F08A8.3 1.77 

oac-33 -1.81 F28H7.7 1.77 

K10C2.3 -1.80 gst-19 1.76 

TC203195 -1.80 pqn-89 1.76 

ins-24 -1.80 ZC373.5 1.76 
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riok-1 -1.79 F14E5.1 1.76 

K08D8.5 -1.79 Y57E12AR.1 1.76 

nep-18 -1.79 acp-5 1.76 

K08D8.5 -1.79 nhr-156 1.76 

  EF491744 1.75 

C52672 -1.79 NP023739 1.75 

F11D5.7 -1.78 nhr-58 1.75 

C32H11.1 -1.78 ugt-34 1.74 

srsx-34 -1.78 T07E3.4 1.74 

T28D6.3 -1.78 far-3 1.74 

F01D5.3 -1.77 C13C4.8 1.74 

T12B5.12 -1.77 T27E4.8 1.74 

K08D8.5 -1.75 Y57E12AR.1 1.73 

clec-12 -1.75 str-168 1.73 

T28D6.3 -1.75 H08J11.2 1.73 

TC203195 -1.74 M162.5 1.73 

T13A10.2 -1.74 F44A2.5 1.73 

B0238.9 -1.74 Y23B4A.2 1.73 

gad-2 -1.74 C01B10.10 1.72 

F31F7.1 -1.74 C30G4.4a.1 1.72 

ins-25 -1.74 T05E11.2 1.72 

TC203195 -1.73 R07G3.8 1.72 

C07B5.3 -1.73 str-168 1.72 

ZK896.4 -1.72 pmp-5 1.72 

F59B8.1a -1.72 TC207352 1.72 

K10D11.3 -1.72 ZK1307.7 1.72 

T23B7.3 -1.72 cdr-1 1.72 

F55G7.1 -1.71 ugt-34 1.72 

F21C10.11 -1.71 C36B7.5 1.71 

ins-7 -1.68 zig-9 1.71 

snb-7 -1.68 glt-5 1.71 

F11D5.7 -1.68 K09C4.6 1.71 

Y110A7A.2 -1.67 C13F10.1b 1.71 
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snb-5 -1.67 ifb-1 1.70 

Y19D10A.8 -1.67 T04F8.6 1.70 

B0310.3 -1.65 mef-2 1.70 

col-40 -1.65 lys-6 1.70 

F56A4.10 -1.65 srab-12 1.69 

T27E7.1 -1.65 npa-1 1.69 

Y50D4B.2 -1.64 T28H10.3 1.69 

Y45G12C.12 -1.64 dgk-2 1.69 

C29E4.13 -1.63 nlp-23 1.69 

B0507.8 -1.62 ZK1086.2 1.69 

pdk-1 -1.62 unc-49 1.69 

C08A9.1.2 -1.62 F18E9.4 1.69 

C01G6.10 -1.62 C30G4.4 1.69 

Y19D10A.11 -1.62 R10H1.1 1.69 

C07A12.2 -1.62 T02D1.5 1.69 

gpa-13 -1.61 spp-4 1.69 

C54C6.7 -1.61 ZC373.5 1.69 

ncx-6 -1.60 R11F4.3 1.68 

C53156 -1.60 mef-2 1.68 

F11D5.7 -1.59 K07D4.5 1.68 

W03B1.6 -1.59 TC200301 1.68 

C01B4.8 -1.58 dnj-24 1.68 

R05G6.1 -1.58 F13D2.4 1.68 

fog-1 -1.57 TC204135 1.68 

F49C12.9 -1.57 B0034.5 1.68 

sax-2 -1.57 F13B12.2 1.68 

F07B7.2 -1.57 C30G4.4 1.68 

ZK896.1 -1.57 pqn-89 1.68 

C03C10.7 -1.57 T02D1.5 1.68 

C30276 -1.56 T11B7.2 1.67 

C39H7.1 -1.56 F59B10.6 1.67 

T23B7.3 -1.56 C45B2.2 1.67 

ZC196.4 -1.56 K05B2.3 1.67 
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T01D3.6 -1.56 php-3 1.67 

M6.4 -1.56 snt-7 1.67 

Y57A10A.1 -1.55 F46C5.2 1.67 

Y11D7A.3 -1.55 pkc-2 1.67 

C60074 -1.55 ins-12 1.67 

C56250 -1.54 clec-170 1.67 

C38687 -1.54 unc-49 1.67 

D33204 -1.53 T07F10.6 1.67 

frpr-1 -1.53 T04C12.8 1.67 

Y26D4A.17 -1.53 R07G3.8 1.67 

F31D5.2 -1.53 unc-43 1.67 

C23H4.6 -1.53 C30G4.7 1.67 

kcc-3 -1.52 C30G4.4 1.66 

C60074 -1.52 R07G3.8 1.66 

TC208147 -1.51 T04F8.6 1.66 

TC187462 -1.51 ZK470.2 1.66 

C17D12.3 -1.51 F38E9.5 1.65 

C33D9.9 -1.51 ZK652.8 1.65 

K08D8.4 -1.51 C38H2.3 1.65 

H12D21.13 -1.50 ilys-3 1.65 

R02F2.8 -1.50 soc-2 1.65 

C56250 -1.50 F20D6.10 1.65 

fog-1 -1.50 F13B12.2 1.65 

C53318 -1.50 K11G9.5 1.65 

C15F1.8 -1.49 aakb-1 1.65 

cyc-2.2 -1.49 C55C3.1 1.65 

R102.1 -1.49 gnrr-3 1.65 

D33390 -1.49 C36B7.6 1.65 

D32534 -1.49 W07G4.5 1.65 

C27A7.5 -1.49 oac-54 1.64 

D33478 -1.48 srg-48 1.64 

TC178793 -1.48 K12C11.3 1.64 

TC191869 -1.48 ifb-1 1.64 
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D33478 -1.48 ins-38 1.64 

D32534 -1.47 Y45G12C.2.2 1.64 

ksr-2 -1.47 ZC373.5 1.64 

clec-4 -1.47 pmp-5 1.64 

W04A8.2 -1.47 T28H10.3 1.64 

rab-3 -1.46 T14G8.4 1.64 

C36759 -1.46 gap-1 1.63 

D32534 -1.46 F13G3.12 1.63 

Y50D4B.3 -1.46 elo-9 1.63 

tni-3 -1.45 K12C11.6 1.63 

C06A5.12 -1.45 dve-1 1.63 

fbxa-190 -1.45 C36B7.6 1.63 

lst-4 -1.44 T28H10.3 1.63 

W04A8.2 -1.44 math-50 1.62 

spe-15 -1.44 lim-6 1.62 

C28A5.2 -1.43 ZC15.4 1.62 

W02B12.15 -1.43 H36L18.2 1.62 

F27D4.1 -1.43 D71242 1.62 

C10385 -1.43 unc-45 1.62 

C06A5.12 -1.42 T28H10.3 1.62 

K08D8.6 -1.42 C23H4.3 1.62 

C10385 -1.42 inx-20 1.62 

fbxa-189 -1.42 nhr-284 1.62 

C09B9.4 -1.41 B0302.5 1.62 

cwp-4 -1.41 unc-44 1.62 

C01B4.7 -1.41 zip-9 1.61 

Y116A8A.10 -1.40 ifb-1 1.61 

pabp-2 -1.40 ifb-2 1.61 

K08D8.4 -1.40 F43G6.4 1.61 

D33478 -1.40 pfn-2 1.61 

ZK512.4 -1.40 Y37A1B.11 1.61 

D2096.12 -1.40 mpz-2 1.61 

C53134 -1.39 C35B8.4 1.61 
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F19F10.11 -1.39 F22H10.1 1.61 

TC178793 -1.39 M04C7.4 1.61 

F08F3.9 -1.39 syd-9 1.61 

W04A8.2 -1.39 C36B7.6 1.61 

F41G3.10 -1.38 Y58A7A.1 1.61 

ced-5 -1.38 C49F5.5 1.60 

F09E5.16 -1.38 Y77E11A.12 1.60 

C10385 -1.38 lev-8 1.60 

M70.1 -1.38 C06B8.2 1.60 

D33204 -1.38 clec-54 1.60 

ave-1 -1.38 C06B8.2b 1.60 

W04A8.2 -1.38 C05D10.4 1.60 

rod-1 -1.38 F09A5.3 1.60 

C03H5.4 -1.38 F28F5.6 1.60 

Y119D3B.12 -1.37 kel-8 1.60 

F55G11.2 -1.37 ZC196.9 1.60 

C29951 -1.37 ceh-18 1.60 

set-17 -1.37 TC188135 1.60 

ptc-1 -1.37 tmd-2 1.60 

spe-15 -1.37 K03E6.1 1.59 

dnj-22 -1.37 W05H9.3 1.59 

dnj-28 -1.37 dct-15 1.59 

C14A11.6 -1.36 glt-3 1.59 

F59E12.1 -1.36 lim-6 1.59 

F09E5.16 -1.36 inx-15 1.59 

T27E4.1 -1.36 npr-31 1.59 

H12D21.13 -1.36 twk-13 1.59 

clec-179 -1.36 K12C11.6 1.59 

cyk-4 -1.36 col-84 1.59 

F27D4.1 -1.36 ckb-2 1.59 

syp-4 -1.36 ifb-1 1.59 

tag-312 -1.35 gst-29 1.59 

C17H12.6 -1.35 K09H11.6 1.59 
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Y116F11B.10 -1.35 W03F8.10 1.58 

R10D12.8 -1.35 R09A8.5 1.58 

pnk-1 -1.35 twk-13 1.58 

Y57G11C.9 -1.35 vab-15 1.58 

C29951 -1.35 H40L08.2 1.58 

C09E7.8 -1.35 cor-1 1.58 

hcp-2 -1.35 prl-1 1.58 

Y54G2A.41 -1.35 sgk-1 1.58 

T27E4.1 -1.35 aco-1 1.58 

D33204 -1.34 W03F8.10 1.58 

F37C4.5 -1.34 F13H6.1b 1.58 

C56318 -1.33 prl-1 1.58 

K11D12.8 -1.33 K02E10.6 1.57 

TC207889 -1.33 T18D3.7 1.57 

C10C6.7 -1.33 C35B8.4 1.57 

C56318 -1.33 ZC334.12 1.57 

F37C4.5 -1.33 rgl-1 1.57 

K07D4.1 -1.33 gar-1 1.57 

F09E5.16 -1.33 C14A4.7 1.57 

madf-7 -1.33 aakb-1 1.57 

D33204 -1.33 T03F7.1.2 1.57 

spe-8 -1.33 zip-9 1.57 

B0564.11 -1.33 mpz-2 1.57 

C37017 -1.33 dve-1 1.57 

C30884 -1.32 dgk-2 1.57 

set-23 -1.32 C14F5.4 1.57 

Y54F10BM.9 -1.32 K02E10.7 1.56 

K03D7.1 -1.32 unc-89 1.56 

EC035882 -1.32 gsto-3 1.56 

Y32B12B.4 -1.32 col-153 1.56 

C55286 -1.32 cars-1 1.56 

pnc-1 -1.32 lgc-31 1.56 

ZK1098.1 -1.32 prl-1 1.56 
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ZK686.4 -1.32 mef-2 1.56 

dom-3 -1.31 F58F12.4 1.56 

W02D7.6 -1.31 F52H2.6 1.56 

Y54G2A.50 -1.31 C14A4.7 1.56 

par-2 -1.31 F21D12.3 1.56 

sid-1 -1.31 H36L18.2 1.55 

F54D12.4 -1.31 cwn-1 1.55 

cdk-9 -1.31 T05C3.6 1.55 

F57G4.9 -1.31 NP488953 1.55 

C56318 -1.31 B0554.7 1.55 

ess-2 -1.31 umps-1 1.55 

F37C4.5 -1.31 R03G5.1b.2 1.55 

ncs-7 -1.30 K10B3.6 1.55 

rsa-2 -1.30 R05H5.7 1.55 

F42G4.5 -1.30 C55F2.1 1.55 

Y54G11A.9 -1.30 C46G7.5 1.55 

Y20F4.5 -1.30 snt-7 1.55 

Y54G2A.50 -1.30 F19C6.2 1.55 

cat-4 -1.30 prl-1 1.55 

ZK550.4 -1.30 zig-1 1.55 

T10D4.6 -1.30 C18B2.3 1.55 

F09E5.16 -1.30 fah-1 1.54 

hpo-38 -1.30 Y44E3A.1 1.54 

H35B03.1 -1.29 lbp-3 1.54 

C06A5.5 -1.29 F59F5.5 1.54 

C55286 -1.29 ztf-16 1.54 

ZK381.1 -1.29 B0462.4 1.54 

rpa-2 -1.29 bli-3 1.54 

swp-1 -1.29 twk-13 1.53 

D33246 -1.29 F39C12.4 1.53 

F52C9.7.2 -1.29 ZK154.6 1.53 

TC207889 -1.29 T01E8.8 1.53 

snr-3 -1.29 dod-3 1.53 
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Y116A8C.16b -1.29 ndnf-1 1.53 

pabp-2 -1.29 F19C6.2 1.53 

glh-4 -1.28 ZC334.12 1.53 

Y48A5A.1 -1.28 F19C6.2 1.53 

ppw-1 -1.28 flr-2 1.53 

Y80D3A.9 -1.28 C34F6.5 1.53 

K06A5.1 -1.28 ztf-16 1.53 

C44C1.6 -1.28 F19C6.2 1.53 

Y67H2A.2 -1.28 F58F12.4 1.53 

npp-16 -1.28 tre-3 1.53 

frpr-14 -1.28 TC208144 1.53 

Y71H2B.4 -1.28 C15H9.5 1.53 

K09C4.1 -1.27 kel-8 1.53 

C55A6.9 -1.27 C27B7.7 1.53 

pme-3 -1.27 K12C11.6 1.53 

sel-10 -1.27 T23B3.2 1.53 

ZK897.1 -1.27 nhr-105 1.52 

Y116A8C.16a -1.27 nhr-97 1.52 

rad-50 -1.26 nucb-1 1.52 

ufd-3 -1.26 kel-8 1.52 

pnk-1 -1.26 F39C12.4 1.52 

swp-1 -1.26 T28H11.8 1.52 

rsd-2 -1.26 sto-5 1.52 

ZK1025.1 -1.26 calu-1 1.52 

Y48G1BL.4 -1.25 F39C12.4 1.52 

C06E1.9 -1.25 D71847 1.52 

C55286 -1.25 F36H1.6 1.52 

Y67D2.4 -1.25 ugt-5 1.52 

cpb-1 -1.25 TC209250 1.52 

snr-3 -1.25 F32D8.10 1.52 

mage-1 -1.24 kel-8 1.52 

math-43 -1.24 ttr-38 1.52 

T07A9.10 -1.24 unc-44 1.52 
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W04D2.6 -1.24 F41G3.18.1 1.52 

T28D6.5a -1.24 tag-253 1.52 

D33246 -1.24 ceh-37 1.52 

Y43C5A.3 -1.23 gar-1 1.52 

Y49E10.4 -1.23 mboa-7 1.52 

C26E6.9a -1.23 nhr-105 1.52 

cux-7 -1.23 F58F12.4 1.51 

msh-6 -1.23 eat-16 1.51 

K08H10.9 -1.23 ZC317.2 1.51 

ubxn-4 -1.23 F08G12.11 1.51 

T20D3.8 -1.23 clh-4 1.51 

F56D12.6 -1.23 shl-1 1.51 

mdt-26 -1.23 K07C11.8 1.51 

ceh-48 -1.23 kel-8 1.51 

pme-3 -1.22 kel-8 1.51 

ZK370.7 -1.22 C07B5.4 1.51 

hpo-10 -1.22 Y50E8A.1 1.51 

C41D11.3 -1.22 F41G3.18.2 1.51 

knl-1 -1.22 dhs-2 1.50 

eri-3 -1.22 C46C2.6 1.50 

C23G10.7 -1.21 Y44E3A.1 1.50 

B0495.2 -1.21 prx-5 1.50 

strd-1 -1.21 ugt-50 1.50 

pis-1 -1.21 apl-1 1.50 

npp-14 -1.21 F55F3.2 1.50 

ZC477.3 -1.21 acs-5 1.50 

ZK652.6 -1.21 C05D12.7 1.50 

B0035.16 -1.21 R05A10.4 1.50 

TC200571 -1.20 nhr-97 1.50 

F58E10.3 -1.20 F16H11.4 1.50 

mel-11 -1.20 F16H11.4 1.50 

K01G5.3 -1.20 T02D1.5 1.50 

mop-25.2 -1.19 nhr-105 1.50 
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C08B6.7 -1.19 mpz-2 1.50 

Y37E11B.6 -1.19 F41B4.3 1.50 

ZK1010.3 -1.19 nipi-3 1.50 

lact-3 -1.19 Y43B11AR.6 1.50 

T12E12.4a.1 -1.19 T11B7.4b 1.50 

B0001.3 -1.18 prx-3 1.50 

H34C03.2 -1.18 C34E7.3 1.50 

F43G6.11 -1.18 glr-8 1.50 

C15H11.4 -1.18 Y54E10A.16b 1.49 

C09G9.1 -1.18 cft-1 1.49 

F10G7.9 -1.18 eat-16 1.49 

R07E5.7 -1.18 T02H6.6 1.49 

Y41E3.7 -1.17 acs-17 1.49 

Y48C3A.8 -1.17 F36H1.6 1.49 

D2089.1a -1.17 zig-1 1.49 

cul-2 -1.17 Y54E10A.16b 1.49 

efa-6 -1.17 cyp-33C5 1.49 

npp-16 -1.17 bre-1 1.49 

ZK1127.6 -1.17 C43H6.1 1.49 

F38A5.13 -1.17 nhr-97 1.49 

ZK1127.12 -1.16 C14A4.7 1.49 

guk-1 -1.16 tag-163 1.49 

Y57A10A.7 -1.16 ceh-18 1.49 

pqe-1 -1.16 K03E6.7 1.49 

wsp-1 -1.16 C43H6.1 1.49 

jmjd-1.2 -1.16 F56F12.1 1.49 

C16A3.8 -1.16 ifb-1 1.48 

F55C12.5 -1.16 acs-5 1.48 

D34290 -1.15 mec-1 1.48 

C08F8.2 -1.15 fbxa-219 1.48 

symk-1 -1.15 str-7 1.48 

F44E2.10 -1.15 F28A10.3 1.48 

bpl-1 -1.15 T19C3.4 1.48 
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NP016715 -1.15 lbp-3 1.48 

Y73B3A.9 -1.15 spon-1 1.48 

hrp-1 -1.15 sto-5 1.48 

M01E5.3 -1.14 R05H5.7 1.48 

Y41E3.7 -1.14 cyp-25A3 1.48 

rad-26 -1.14 F54C8.4 1.48 

Y59A8A.1 -1.14 aagr-2 1.48 

tcer-1 -1.14 C43H6.1 1.48 

H06I04.1 -1.14 ZC334.12 1.48 

npp-10 -1.13 apl-1 1.48 

Y87G2A.10b -1.13 T08A9.13 1.48 

lst-3 -1.12 fbl-1 1.48 

rga-1 -1.12 acs-17 1.48 

Y116A8C.34.2 -1.12 lurp-1 1.47 

spe-5 -1.12 nmy-1 1.47 

Y41E3.7 -1.12 nhr-146 1.47 

F21F3.6 -1.12 ugt-5 1.47 

dcr-1 -1.11 nhr-105 1.47 

C05G5.3 -1.11 nhr-142 1.47 

T05A12.3 -1.11 T08A9.13 1.47 

R12C12.8 -1.10 pbo-5 1.47 

noca-1 -1.10 aagr-2 1.47 

F55A11.3 -1.09 acs-5 1.47 

cyk-1 -1.09 gst-33 1.47 

ddx-23 -1.05 nipi-3 1.47 

  ucr-2.1 1.47 

  elk-2 1.47 

  cal-2 1.47 

  ttr-48 1.47 

  cTel55X.1 1.47 

  dhs-2 1.47 

  C07B5.4 1.47 

  F59E11.7 1.47 



166 

  nhr-32 1.47 

  AF319615 1.47 

  nhr-143 1.46 

  Y39B6A.7 1.46 

  ugt-33 1.46 

  klp-11 1.46 

  M03A8.3 1.46 

  acs-17 1.46 

  col-187 1.46 

  ZC376.3 1.46 

  rcn-1 1.46 

  Y51H7BR.4 1.46 

  F48G7.9 1.46 

  ceh-18 1.46 

  nkat-1 1.46 

  ZC334.12 1.46 

  C50B8.6 1.46 

  F25H5.4.4 1.46 

  NP395157 1.46 

  prx-3 1.45 

  C06A8.8b 1.45 

  F35B12.9 1.45 

  T19C4.5 1.45 

  T23G5.6 1.45 

  mtrr-1 1.45 

  F01G4.6 1.45 

  F47F2.1 1.45 

  srd-74 1.45 

  R12E2.4a 1.45 

  ZK593.1 1.44 

  cars-1 1.44 

  kqt-2 1.44 

  mtrr-1 1.44 
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  nhr-104 1.44 

  TC189707 1.44 

  deb-1 1.44 

  NP435080 1.44 

  F59B1.2 1.44 

  cars-1 1.44 

  M60.6 1.43 

  F34H10.3 1.43 

  nhr-94 1.43 

  R09H10.5 1.43 

  nmr-2 1.43 

  ceh-18 1.43 

  ZK593.1 1.43 

  eat-16 1.43 

  Y48G1BR.1 1.43 

  pept-3 1.43 

  T26E4.9 1.43 

  T01G6.8 1.43 

  Y37F4.8 1.42 

  eat-16 1.42 

  F31E3.2 1.42 

  F31E3.2 1.42 

  ztf-16 1.42 

  R11G1.6 1.42 

  kgb-2 1.42 

  R11G10.3 1.42 

  R11G1.6 1.42 

  TC200062 1.42 

  dct-10 1.42 

  T28C6.8 1.42 

  C01B10.6 1.42 

  M60.6 1.41 

  ZK1193.4 1.41 
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  eat-16 1.41 

  F49E2.1 1.41 

  ain-1 1.41 

  npr-16 1.41 

  srh-70 1.41 

  mab-31 1.41 

  T01A4.3 1.41 

  F49E2.1 1.41 

  T21G5.2 1.41 

  odd-1 1.41 

  tag-163 1.41 

  pcp-5 1.41 

  unc-62 1.41 

  F08F3.10 1.41 

  F53H4.4 1.40 

  mtrr-1 1.40 

  F26F2.8 1.40 

  F22A3.2 1.40 

  F53H4.4 1.40 

  elt-7 1.40 

  C35B1.7 1.40 

  R11G1.6 1.40 

  egl-9 1.40 

  glb-17 1.40 

  C56G2.3 1.40 

  aat-2 1.40 

  C01B10.6 1.40 

  T02B11.4 1.40 

  B0280.8 1.40 

  Y69A2AR.7 1.40 

  C54D2.2 1.40 

  mup-2 1.40 

  C07B5.4 1.40 
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  C46E1.3 1.39 

  F49E2.1 1.39 

  alh-4 1.39 

  Y53F4B.42 1.39 

  F14B6.6 1.39 

  pkg-1 1.39 

  acs-17 1.39 

  Y66D12A.13 1.39 

  cdka-1 1.39 

  vha-12 1.39 

  Y47H10A.4 1.39 

  ceh-37 1.39 

  Y51H7BR.3 1.39 

  C54F6.6 1.39 

  clec-56 1.39 

  W10G11.17 1.39 

  T25F10.6 1.39 

  C24A3.4 1.39 

  F16H6.10 1.39 

  T04A11.14 1.39 

  Y18H1A.12 1.39 

  gpa-11 1.39 

  Y48B6A.6 1.39 

  unc-62 1.39 

  ldb-1 1.39 

  npr-12 1.38 

  nhr-19 1.38 

  C39B10.1 1.38 

  cyp-34A6 1.38 

  crh-1 1.38 

  prx-5 1.38 

  eat-16 1.38 

  nas-31 1.38 
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  F18G5.6 1.38 

  tag-163 1.38 

  F59E11.7 1.38 

  alh-12 1.38 

  T16G12.1 1.38 

  Y54G9A.9.1 1.38 

  R09F10.5 1.38 

  F42E11.1 1.38 

  T23F11.6 1.38 

  K08F8.1 1.38 

  C06G8.3a 1.38 

  gba-3 1.38 

  islo-1 1.37 

  ins-36 1.37 

  egl-9 1.37 

  Y97E10AR.2 1.37 

  R57.1 1.37 

  M04F3.4 1.37 

  nas-31 1.37 

  eat-16 1.37 

  glt-7 1.37 

  pms-2 1.37 

  dhs-18 1.37 

  C28G1.6 1.37 

  K06A9.2 1.37 

  R12E2.11 1.37 

  F53H4.4 1.37 

  C24A3.4 1.37 

  K08F8.1 1.37 

  ins-36 1.37 

  sptf-1 1.37 

  C06H5.6 1.36 

  R05G6.10 1.36 
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  C71236 1.36 

  T23G5.6 1.36 

  Y46H3A.4 1.36 

  glb-13 1.36 

  catp-5 1.36 

  F49E2.1 1.36 

  egl-9 1.36 

  egl-44 1.36 

  C33A11.1 1.36 

  K03H6.1 1.36 

  nhr-116 1.36 

  R05G6.10 1.36 

  C44B7.10.3 1.36 

  nas-31 1.36 

  C34D10.1 1.36 

  TC206236 1.35 

  dhs-21 1.35 

  F40G9.5 1.35 

  dop-3 1.35 

  egl-9 1.35 

  vha-16 1.35 

  T02D1.8 1.35 

  oat-1 1.35 

  C35E7.4 1.35 

  R151.2 1.34 

  Y59C2A.1 1.34 

  T21H8.5 1.34 

  ZC190.2 1.34 

  cnb-1 1.34 

  vha-13 1.34 

  TC189707 1.34 

  M04F3.4 1.34 

  oat-1 1.34 
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  vha-8 1.34 

  K09E2.3 1.34 

  sulp-4 1.34 

  M04F3.4 1.34 

  rhr-2 1.34 

  cex-2 1.34 

  Y18H1A.12 1.34 

  T01C1.4 1.34 

  Y51B9A.6 1.34 

  nuo-4 1.34 

  nhr-184 1.34 

  ztf-16 1.34 

  asm-1 1.34 

  snb-2 1.33 

  F02C12.1 1.33 

  Y69H2.15 1.33 

  oat-1 1.33 

  sptf-1 1.33 

  acl-8 1.33 

  F18G5.6 1.33 

  F13E6.4 1.33 

  cyp-33D3 1.33 

  H03A11.1 1.33 

  tat-4 1.33 

  mtp-18 1.33 

  R05F9.6 1.33 

  C17E7.10 1.33 

  T13H5.1 1.33 

  nhr-12 1.33 

  K08F8.1 1.33 

  unc-44 1.33 

  Y66H1B.3.1 1.32 

  fkb-1 1.32 
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  R07E3.7 1.32 

  H32K21.1 1.32 

  F10G8.5 1.32 

  R07D5.2 1.32 

  prx-13 1.32 

  H32K21.1 1.32 

  fkb-1 1.32 

  npr-31 1.32 

  Y56A3A.36 1.32 

  M04F3.4 1.31 

  D2021.4 1.31 

  nhr-184 1.31 

  unc-69 1.31 

  TC181997 1.31 

  gob-1 1.31 

  nas-31 1.31 

  ztf-16 1.31 

  M176.5 1.31 

  H32K21.1 1.31 

  H32K21.1 1.31 

  F17H10.1 1.31 

  H32K21.1 1.30 

  ZK180.2 1.30 

  ztf-16 1.30 

  pes-22 1.30 

  K02G10.1 1.30 

  C24A3.4 1.30 

  C33A11.1 1.30 

  Y57G11C.41 1.30 

  unc-44 1.30 

  nlp-17 1.30 

  K10B2.2 1.30 

  F53H4.4 1.30 
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  Y87G2A.4 1.30 

  oig-5 1.30 

  frpr-17 1.30 

  F53H4.4 1.30 

  btb-14 1.30 

  F13E6.4 1.30 

  F48E3.8 1.30 

  vps-45 1.30 

  C06H5.6 1.30 

  D1046.5 1.30 

  C53A3.1 1.29 

  T11B7.4b 1.29 

  F41G4.7 1.29 

  C06H5.6 1.29 

  egl-9 1.29 

  K12B6.9 1.29 

  C06H5.6 1.29 

  M01H9.4 1.29 

  mps-4 1.29 

  flp-10 1.29 

  lgc-47 1.29 

  F48E3.8 1.29 

  cpr-6 1.29 

  vha-16 1.29 

  C05C12.4 1.29 

  F41C3.8 1.28 

  T19E7.6 1.28 

  rab-19 1.28 

  Y119D3B.17 1.28 

  egl-44 1.28 

  C12D12.1 1.28 

  F32B6.2.2 1.28 

  ags-3 1.28 
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  T01G1.4 1.28 

  F55A11.6 1.28 

  nhr-184 1.28 

  vha-14 1.27 

  Y38C1AA.11 1.27 

  prx-11 1.27 

  T02B11.8 1.27 

  gpc-1 1.27 

  C09E8.1 1.27 

  rab-19 1.27 

  nhr-87 1.27 

  B0563.4 1.27 

  Y73B6BL.31 1.27 

  gbb-2 1.27 

  zig-7 1.27 

  Y56A3A.36 1.27 

  F13E6.4 1.27 

  acp-1 1.27 

  T02B11.8 1.27 

  R10E8.8 1.27 

  U68260 1.27 

  pdcd-2 1.26 

  Y77E11A.16 1.26 

  F52C9.3 1.26 

  F40A3.6 1.26 

  sft-4 1.26 

  flp-10 1.26 

  nhr-135 1.26 

  unc-98 1.26 

  pqn-42 1.26 

  T02B11.8 1.26 

  Y102E9.5 1.26 

  ZK742.6 1.26 
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  K12H4.7 1.26 

  nhr-205 1.26 

  C44B7.10.3 1.25 

  ZK180.2 1.25 

  shk-1 1.25 

  glb-23 1.25 

  unc-44 1.25 

  egl-9 1.25 

  T23B12.8 1.25 

  C08B6.10 1.25 

  F35C8.5 1.25 

  F49H12.3 1.25 

  shk-1 1.25 

  T02B11.8 1.25 

  C18B12.4 1.25 

  T04B2.5 1.24 

  T13H5.1 1.24 

  nhr-34 1.24 

  tag-89 1.24 

  clec-173 1.24 

  T23B12.8a 1.24 

  dhs-30 1.24 

  atgp-2 1.24 

  oig-2 1.24 

  C08G9.1 1.24 

  dmsr-1 1.24 

  ZK813.4 1.24 

  Y38C1AA.11 1.24 

  T20F5.3 1.24 

  unc-44 1.24 

  sfxn-1.5 1.24 

  D2096.9 1.23 

  Y63D3A.7.1 1.23 
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  flr-1 1.23 

  C46G7.2 1.23 

  K04C1.4 1.23 

  afd-1 1.23 

  Y63D3A.7.1 1.23 

  shk-1 1.23 

  C44H4.4 1.23 

  R57.1 1.23 

  gsr-1 1.22 

  F33H2.6 1.22 

  frpr-3 1.22 

  TC204028 1.22 

  C36A4.11 1.22 

  pes-9 1.22 

  ZK688.3 1.22 

  pxl-1 1.22 

  F48E8.4 1.22 

  F38B2.1c.4 1.22 

  shk-1 1.22 

  alh-8 1.21 

  C36A4.11 1.21 

  F38B2.1c.4 1.21 

  ZK1073.1 1.21 

  B0303.3 1.21 

  C24G6.2 1.21 

  Y63D3A.7.1 1.21 

  K07F5.15 1.21 

  skr-19 1.21 

  K04C2.7 1.21 

  Y102E9.5 1.21 

  T19D2.3 1.20 

  skr-19 1.20 

  C46731 1.20 
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  ZK180.2 1.20 

  K02D10.1 1.20 

  C29824 1.20 

  atgp-2 1.20 

  aco-2 1.20 

  T25G12.6 1.20 

  Y63D3A.7.1 1.20 

  C11G10.2 1.19 

  sft-4 1.19 

  trxr-1 1.19 

  spp-15 1.19 

  nhr-40 1.19 

  C26F1.9.1 1.19 

  ZK1073.1 1.19 

  Y73B6BL.31 1.19 

  ubh-1 1.19 

  F57E7.1 1.19 

  nhr-142 1.19 

  Y71H10B.1 1.19 

  bca-1 1.18 

  C45E1.4 1.18 

  lim-9 1.17 

  clec-51 1.17 

  R186.8 1.17 

  K07B1.2 1.17 

  C51E3.6 1.17 

  F01G4.6 1.16 

  lron-10 1.16 

  best-4 1.16 

  mrpl-12 1.16 

  F32H5.4 1.16 

  aco-2 1.15 

  C01H6.4 1.15 
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  F20D1.9 1.14 

  ugt-20 1.14 

  F09F7.4 1.14 

  rhi-1 1.14 

  syx-3 1.14 

  F26F4.10c 1.14 

  sar-1 1.13 

  lron-10 1.13 

  T08A11.1 1.13 

  rab-18 1.13 

  mrpl-2 1.13 

  CB400149 1.12 

  F42A10.9 1.12 

  ZC434.7 1.11 

  Y54E10BR.4 1.11 

  rab-18 1.11 

  ndx-6 1.11 

  F55A12.2 1.11 

  ZK512.4 1.11 

  T23F11.1 1.09 

  let-721 1.09 

  C26E6.11 1.07 

  glrx-22 1.05 

 

Appendix A.2 Genes differentially expressed in the hlh-17 (ns204); hlh-31(ns217); hlh-

32(ns223) microarray analysis 

Gene (down-regulated) Fold Change Gene (up-regulated) Fold Change 

T09B4.5 -32.17 Y57A10C.9 2.00 

F53B3.5  -22.39 col-151  2.00 

sma-1 -20.49 sru-27  2.01 

sma-1 -20.45 srbc-82  2.01 

erm-1 -19.29 B0034.2  2.01 
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tag-279 -18.70 F53A2.1  2.01 

inf-1  -18.36 lgc-52  2.01 

F53B3.5  -17.12 srw-55 2.02 

igcm-3 -16.99 R04B3.1  2.02 

inx-3  -16.02 add-1 2.02 

gsp-1  -14.81 sre-38  2.02 

tag-60 -14.42 lgc-42  2.02 

hmp-1 -13.94 E01G4.5  2.02 

sma-9 -13.69 F07C6.2  2.02 

hbl-1 -13.63 B0348.5  2.02 

rig-1 -13.38 str-217  2.02 

ptp-3 -13.20 Y75B8A.39 2.03 

pos-1  -13.17 clec-127 2.03 

mep-1  -13.05 K04F1.6  2.03 

atg-18 -12.91 F55A11.11 2.03 

F23F12.9 -12.73 vit-4  2.03 

K10C3.4  -12.43 K01D12.5  2.03 

sdc-2  -12.32 ugt-18  2.03 

dlg-1 -11.85 F57A10.2  2.03 

chitinase -11.68 Y116F11B.9 2.04 

rab-5  -11.41 C36C9.5  2.04 

xpo-1 -11.33 C36C5.14  2.04 

hmr-1 -11.32 F54D12.8 2.04 

ajm-1 -11.24 tra-1 2.04 

hmg-1.2 -11.17 F53G2.8  2.04 

mtm-3 -10.97 nhr-36  2.04 

cey-1  -10.94 C44H9.6  2.04 

cyb-1  -10.82 C32H11.3  2.04 

noah-1 -10.75 M6.4  2.04 

F26B1.2 -10.69 F28C6.2  2.04 

sca-1 -10.64 C07A12.2  2.05 

pha-4 -10.37 T10C6.10 2.05 

C53A3.2  -10.25 anc-1  2.05 
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rab-11.1  -10.19 WBGene00017553 2.05 

ajm-1 -10.18 sre-39  2.05 

Y75B8A.24 -10.17 F02D8.1  2.05 

T24G10.2  -10.16 ZK858.2 2.05 

rab-1 -10.12 ZK899.7 2.05 

sel-10 -10.10 gcy-22 2.05 

C10G11.7 -10.09 Y40H7A.4 2.05 

tag-192  -9.97 AC3.5  2.05 

C18E3.2  -9.93 Y47G6A.5 2.05 

hsr-9  -9.84  Y105E8A.1 2.06 

C10C6.6  -9.82 D1054.11 2.06 

F09G2.9  -9.71 T06E4.7  2.06 

ZK858.6 -9.70 fli-1  2.06 

T28B8.1  -9.66 unc-7  2.06 

C18A3.5 -9.61 F54C8.6  2.06 

set-1 -9.50 C42C1.6  2.06 

 Y46G5A.4 -9.49 stdh-2  2.06 

lsy-2 -9.48 T22E7.2 2.06 

tag-179  -9.46 pqn-62  2.06 

mcm-7 -9.31 Y51B9A.9 2.06 

arx-2  -9.30 W09G12.9  2.07 

eel-1  -9.08 unc-79 2.07 

spc-1 -9.06 grd-1 2.07 

F18C5.10  -8.95 F46A8.5  2.07 

mrck-1  -8.94 oac-45  2.07 

clec-87  -8.94 R106.1  2.07 

mrp-5 -8.89 F47F6.9  2.07 

spectrin  -8.85 Y54G11A.1 2.07 

T20F5.7  -8.82 sri-69  2.07 

ceh-32 -8.78 Y116A8C.29 2.08 

daf-19 -8.78 K10C9.4  2.08 

let-92  -8.68 C15F1.5 2.08 

tag-310 -8.57 W10G11.2  2.08 
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F35D2.3  -8.56 nhr-250  2.08 

Y57G11C.15 -8.48 R102.2 2.08 

rbr-2 -8.45 C06E1.7 2.10 

Y59A8B.10 -8.42 Y75B8A.33 2.10 

vps-26 -8.41 W01C9.2  2.10 

xbp-1 -8.41 tre-3  2.10 

swan-2  -8.35 str-255  2.10 

Y113G7B.17 -8.31 Y39A1A.17 2.10 

unc-43 -8.28 srx-39 2.10 

ain-1  -8.21 par-2 2.10 

cdh-4  -8.10 egg-1 2.10 

pab-2 -8.07 F07H5.7  2.10 

man-9 -8.02 msp-33  2.10 

tsp-9  -8.00 str-264  2.10 

paa-1  -7.98 srw-82  2.10 

F08C6.2 -7.98 F35C11.2  2.11 

skn-1 -7.97 F54D12.2  2.11 

ccf-1  -7.95 F07G6.3  2.11 

asd-1 -7.95 Y39G10AR.18 2.11 

arx-1  -7.89 K02B2.6  2.11 

nhr-34 -7.85 fhod-2  2.11 

lin-25  -7.76 fbxa-133 2.11 

pak-1 -7.73 F22B3.4  2.11 

abts-1 -7.72 lipase 2.11 

spas-1 -7.66 Y47G6A.25 2.11 

gei-4 -7.63  WBGene00011257 2.11 

C30A5.3  -7.61 srx-128  2.12 

ttyh-1 -7.58 F20C5.3  2.12 

WBGene00020683 -7.53 xbx-4 2.12 

tag-123  -7.45 F57A8.6  2.12 

F18A1.7  -7.44 WBGene00019261 2.12 

let-805 -7.42 kin-24 2.12 

E01A2.6 -7.40 WBGene00020897 2.12 
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R05D3.2  -7.37 Y32B12C.3 2.13 

unc-32 -7.37 R03H10.5 /// 

WBGene00019857 

2.13 

gap-2 -7.35 mop-25.2  2.13 

cam-1 -7.33 gcy-8  2.13 

atf-7 -7.32 F55G1.7 2.13 

ubc-3  -7.32 W03D8.8  2.13 

F22D6.2  -7.30 srz-100  2.13 

bath-43 -7.29 clec-223 2.13 

sax-3 -7.29 F37A4.5  2.13 

alg-2 -7.28 ifc-2 2.13 

cht-1  -7.26 fbxa-18  2.14 

egl-27 -7.22 Y53G8AR.7 2.14 

his-24  -7.19 K03A11.4  2.14 

apg-1  -7.18 col-78  2.14 

F20D1.1  -7.15 lim-6  2.14 

prp-8  -7.14 F41G4.7  2.14 

WBGene00016620 -7.14 ZK813.2 2.14 

fzr-1  -7.11 F13H10.1  2.15 

cdh-6  -7.10 srw-107  2.15 

ret-1 -7.09 lge-1  2.15 

mrg-1 -7.06 tag-243  2.16 

pup-2  -7.05 nhr-204  2.16 

mop-25.2 -7.05 ZC504.1 2.16 

rig-5 -7.04 R06B9.4  2.16 

tag-172 -7.01 nlp-23  2.16 

nhr-2  -7.01 Y39B6A.27 2.16 

trap-1  -6.99 Y37E11B.10 2.17 

pabp-2  -6.96 F54D10.8  2.17 

D2013.6  -6.95 csp-3  2.17 

anc-1  -6.95 dylt-2  2.17 

tag-169 -6.94 W05F2.4 2.17 

M163.1  -6.94 R13A5.7  2.17 

cyb-2.1  -6.93 gnrr-8  2.17 
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gdi-1 -6.91 E04A4.3  2.17 

acn-1 -6.83 C16D9.3  2.17 

dpl-1  -6.81 F28H1.4 2.18 

egl-46  -6.79 C30F12.4  2.18 

rsp-6 -6.76 dao-4  2.18 

clec-88 -6.76 nhr-78  2.18 

knl-1  -6.73 Y18H1A.1 2.18 

tag-333 -6.69 C28D4.8  2.18 

cfz-2 -6.69 srw-130  2.18 

noah-2  -6.67 M151.3  2.19 

gei-4 -6.67 F55C10.4  2.19 

dab-1 -6.63 E02H9.5  2.19 

bra-2  -6.61 Y23B4A.2 2.19 

ddx-19 -6.59 R10F2.5  2.19 

T08B6.5  -6.52 clec-131  2.19 

plk-1 -6.51 C04G2.11  2.20 

let-2 -6.48 sru-25  2.20 

pqn-53 -6.46 R08C7.5  2.20 

set-2 -6.45 F16H6.3  2.20 

Y57G11C.3 -6.44 F28F8.7  2.20 

cdk-1  -6.43 Y69A2AR.9 2.20 

frm-1 -6.39 srd-74  2.20 

B0001.6  -6.38 B0207.1  2.20 

isw-1  -6.34 F42G2.5  2.20 

C48A7.2  -6.33 F35E12.2  2.20 

rsp-3  -6.30 R160.4  2.21 

lst-1 -6.25 cutl-1  2.21 

cyl-1 -6.24 Y105C5A.9 2.21 

T05H10.4 -6.23 F58D5.6  2.21 

lam-3  -6.23 Y92H12BL.4 2.21 

pqn-95  -6.21 fbxa-214  2.21 

plp-1  -6.18 T26C11.2  2.22 

F47H4.1  -6.17 T06E8.2  2.22 
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cyb-2.2  -6.17 C04B4.1  2.22 

pqn-13 -6.16 F31D5.1  2.22 

smo-1  -6.16 F12A10.7  2.22 

D1007.5 -6.16 C18H2.3  2.22 

ceh-20 -6.15 M04D8.7  2.23 

F40F4.7  -6.15 srh-133  2.23 

hum-2 -6.15 srh-142  2.23 

pat-3  -6.14 tag-19  2.23 

F46F6.2 -6.13 K06H6.6 2.23 

F31E8.4  -6.12 tbb-6  2.23 

pbrm-1 -6.11 F56B6.6  2.23 

mbk-2 -6.09 F42G2.2  2.23 

frm-4 -6.08 srbc-14  2.23 

glit-1  -6.07 sri-42  2.23 

R02D5.1  -6.01 grl-22  2.23 

Y40D12A.1 -6.00 F35E12.6  2.23 

T05B9.1  -6.00 K06A4.6  2.23 

ZC262.3 -5.99 H09F14.1  2.23 

wdr-23 -5.97 T07A9.1  2.23 

daf-18  -5.96 str-78 2.23 

tsp-12  -5.94 Y6B3B.1 2.23 

imp-2  -5.92 Y40B10A.5 2.23 

unc-37 -5.91 F35A5.2  2.24 

fbn-1  -5.90 fat-7  2.24 

lgg-2  -5.90 K04G11.1  2.24 

lrp-2  -5.89 fbxa-72  2.24 

K08D10.1  -5.89 srbc-42 2.25 

R07E5.3  -5.87 R03H10.6  2.25 

lmp-1 -5.85 srz-53  2.25 

Y55F3BR.1 -5.84 F54E7.6 2.25 

C01B12.2  -5.84 fbxa-38  2.25 

fzy-1  -5.82 Y37E11AR.7 2.25 

ZK484.3 -5.82 odr-1 2.25 
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F40E10.6 -5.81 T07H6.4  2.25 

lmn-1 -5.81 lgc-19  2.25 

cap-2  -5.79 F07B7.2  2.25 

C25A1.4  -5.79 sqv-6  2.26 

dnj-13  -5.77 nas-16  2.26 

spk-1 -5.77 ugt-10  2.26 

patr-1  -5.77 F26F4.2  2.26 

ani-1  -5.75 kqt-3 2.26 

F13C5.2  -5.75 K09F5.4  2.26 

C27A12.7 -5.73 nhr-51  2.26 

fbp-1  -5.71 C29F4.2  2.26 

K10D3.4  -5.70 C43F9.7  2.27 

F56C9.10 -5.70 Y67A10A.11 2.27 

inf-1 -5.68 R10E4.11  2.27 

unc-84 -5.68 T15D6.5  2.27 

lag-1 -5.68 H28O16.2  2.27 

F47B7.2 -5.66 T09E11.6  2.27 

C06B8.7  -5.65 Y57G7A.5 2.27 

C33H5.18 -5.65 F34H10.1  2.28 

F22D3.2 -5.63 C37A5.1 2.28 

vha-12  -5.62 F07G11.3  2.28 

sip-1  -5.62 C16H3.1  2.28 

ubc-9  -5.60 Y49G5A.1 2.28 

zip-2 -5.56 cyp-35B3  2.28 

jmjd-2  -5.55 F38B2.3  2.28 

unc-62 -5.54 F47F2.3  2.28 

emb-9 -5.52 C30G4.5  2.28 

R10E4.1 -5.50 str-222  2.28 

C06G3.6  -5.46 F36D3.4  2.28 

ppn-1 -5.46 F56A11.6  2.28 

gpdh-2 -5.45 Y17G9B.6 2.29 

Y71G12B.8 -5.43 C02E7.7  2.29 

F48E3.3  -5.41 Y38E10A.13 2.29 
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C56G2.7  -5.41 mac-1  2.29 

R151.2 -5.40 str-60  2.29 

F56D2.6 -5.40 Y38H6C.9 2.29 

prp-17  -5.40 C41G6.13  2.29 

sex-1  -5.39 str-87  2.29 

C29H12.2  -5.37 F26F2.4  2.30 

lit-1 -5.37 Y39G10AR.16 2.30 

eif-3.B -5.36 C35A5.4  2.30 

aqp-2 -5.35 chitinase 2.30 

F54A5.1  -5.34 F49E11.7  2.30 

nurf-1 -5.33 ZK1290.7 2.30 

mtm-3 -5.33 T22H9.4  2.30 

mig-13 -5.30 F55C9.3  2.30 

spr-4 -5.29 sri-38  2.30 

hrp-1 -5.29 C07D8.2 2.30 

lin-40 -5.28 Y39G8B.7 2.30 

rsd-2 -5.28 T06D8.2  2.30 

tpi-1  -5.25 nhr-275  2.30 

cyk-4 -5.25 C44E4.2 2.30 

tbc-3 -5.25 nlp-29  2.31 

kin-20 -5.24 T13F3.6  2.31 

ccdc-47  -5.23 Y53F4B.17 2.31 

tam-1  -5.21 ZK783.3 2.31 

Y71F9AL.9 -5.21 R07A4.3  2.31 

csn-4  -5.21 Y57G7A.1 2.31 

F01G4.6 -5.21 srh-130  2.32 

lpr-3  -5.20 Y110A2AL.5 2.32 

calu-1 -5.18 clec-45  2.32 

ile-1 -5.18 acr-3  2.32 

F19B6.1 -5.18 ZC190.8 2.32 

xbx-6 -5.16 F35E8.9  2.32 

F47B10.1  -5.16 F40G12.11  2.33 

tag-147  -5.15 syn-4  2.33 



188 

ptr-4  -5.14 Y48A6B.7 2.33 

M05D6.2  -5.14 M04G7.1  2.33 

ZK938.2 -5.13 dsc-1  2.33 

C02B10.4  -5.13 str-27  2.34 

sym-5  -5.12  Y105E8B.11 2.34 

dgn-1  -5.09 ZC239.15 2.34 

sec-6 -5.09 str-23  2.34 

unc-68  -5.07 F28B1.1  2.34 

dsh-2 -5.06 C28A5.5  2.34 

cids-2 -5.05 srj-27  2.34 

hsp-60 -5.04 Y38H6C.21 2.34 

hmg-1.1  -5.04 Y53F4B.1 2.35 

gex-2  -5.04 T25D3.3 2.35 

vha-13  -5.04 C03F11.4  2.35 

let-418  -5.03 K02B9.3 2.35 

C49H3.9  -5.02 spg-7  2.35 

snr-2 -5.02 gsto-1 2.35 

dpy-30  -5.01 K08C9.6  2.35 

F55C5.8  -4.99 B0205.10  2.35 

T09A5.11  -4.97 WBGene00019349 2.35 

sgt-1  -4.97 col-120  2.36 

ZC247.1 -4.96 arf-1.1  2.36 

dcn-1 -4.95 cyp-33C7  2.36 

T08A11.2  -4.95 ZK418.2 2.36 

ZK507.6 -4.94 dgk-1 2.36 

dmd-6 -4.94 srh-122  2.36 

aph-2 -4.90 srh-105  2.36 

R166.2  -4.89 F35C5.3  2.36 

F58E10.3 -4.89 C17F3.1  2.36 

ftt-2 -4.89 C49G7.5  2.36 

rab-11.1 4 -4.85 F56G4.4  2.36 

trap-3  -4.84 Y34D9A.7 2.36 

F26F12.3 -4.83 F59A7.7  2.36 
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nhr-46 -4.82 F48G7.10  2.37 

unc-14  -4.82 C04C3.6  2.37 

emb-5  -4.82 M02F4.2  2.37 

ufd-2 -4.82 F58F9.6  2.37 

C35A5.8  -4.81 1-Oct 2.37 

F14E5.2 -4.79 K08D12.5  2.37 

arf-3  -4.79 WBGene00017026 2.38 

vha-2  -4.79 Y41G9A.3 2.38 

Y102A11A.8 -4.78 Y51A2D.1 2.38 

mlt-11 -4.77 F36F12.3 2.38 

M05B5.2  -4.75 F58F6.3  2.38 

knl-3  -4.75 Y54G2A.21 2.38 

F52G3.1  -4.73 C18H9.3  2.38 

cyb-2.2  -4.72 nhr-276  2.39 

ife-3 -4.72 srj-21  2.40 

B0303.3  -4.72 tag-293  2.40 

sca-1 -4.70 let-756  2.40 

ZK353.1 -4.70 K01A6.6  2.40 

rbc-1 -4.70 srh-109 2.40 

C34D4.4 -4.69 T10C6.7  2.40 

dif-1  -4.69 F13E9.9  2.40 

F52A8.1  -4.69 srw-10  2.40 

rgs-5 -4.68 F31E8.5  2.41 

cls-2  -4.68 cdr-1  2.41 

C05C8.7  -4.67 F21D9.3  2.41 

phosphofructokinase -4.67 C18B12.2  2.41 

tbc-12  -4.67 cyp-32A1  2.41 

rsd-3  -4.66 F38E9.4  2.41 

F59E12.9  -4.65 cyp-13A8  2.41 

yop-1 -4.65 clec-134  2.41 

C56E6.3 -4.64 Y69A2AR.20 2.41 

tbp-1  -4.64 WBGene00007472 2.41 

mdf-2 -4.63 C04H5.1  2.41 
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 WBGene00019295 -4.63 ZK380.4 2.42 

F25B4.2  -4.61 F53B2.5  2.42 

dgk-2 -4.60 C33D9.3 2.42 

hexokinase -4.60 nhr-37  2.42 

hil-3  -4.60 nhr-38  2.42 

uba-1 -4.59 F44F4.10  2.42 

npp-19 -4.57 Y39E4B.10 2.42 

R11A8.7 -4.57 C27D6.4 2.42 

K04C2.3 -4.56 srx-59  2.42 

inx-11  -4.55 grl-29  2.42 

apl-1 -4.55 C27H5.6  2.42 

T05H4.10 -4.55 srt-58  2.42 

lpr-4  -4.54 Y111B2A.24 2.43 

F54D5.5 -4.53 F38B2.2  2.43 

set-3 -4.53 nhr-255  2.43 

T26A5.6  -4.52 C05C10.1 2.43 

rpn-7  -4.49 egl-2  2.43 

vha-8  -4.48 Y53G8AM.2 2.43 

C46C2.2  -4.47 dyf-14 2.43 

C03C10.5  -4.46 C15C7.6  2.43 

F48F7.6  -4.45 flp-14  2.44 

C17E4.6  -4.45 nspd-4  2.44 

T06D10.1  -4.45 C40H1.2  2.44 

W01C8.5 -4.45 srbc-65  2.44 

rpt-2  -4.44 Y113G7A.13 2.44 

cul-4  -4.44 WBGene00008142 2.44 

F08G12.2  -4.43 clec-112  2.44 

F52E1.13 -4.43 srx-112 2.44 

cul-1  -4.42 Y39B6A.16 2.45 

F31E3.4  -4.42 C47F8.6  2.45 

hel-1 -4.42 F07G6.8  2.45 

pph-4.1  -4.41 Y55H10A.2 2.45 

mcm-7  -4.41 ceeh-2  2.45 
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T05H4.6  -4.41 C14C6.3  2.45 

R11H6.2  -4.40 nhr-115 2.46 

sms-1 -4.40 T07C12.11  2.46 

T19D12.1  -4.39 F10C2.3  2.46 

K02F2.2 -4.39 C01B12.5 2.46 

WBGene00009552 -4.37 C28C12.4  2.46 

WBGene00013919 -4.36 sre-26  2.46 

C40A11.6  -4.36 fbxa-126  2.46 

farl-11  -4.36 F46A8.4  2.46 

C44E4.4  -4.35 ugt-16  2.46 

ergo-1  -4.35 str-260  2.47 

tsp-14 -4.34 Y46E12A.3 2.47 

cav-1  -4.34 acc-1  2.47 

F59B8.2  -4.33 ZK856.5 2.47 

vab-10 -4.32 dac-1 2.47 

arx-5  -4.32 F47G3.1  2.47 

pqn-55  -4.31 srbc-12  2.47 

dnj-27 -4.31 col-116  2.47 

K05F1.6 -4.30 D1046.5  2.47 

flap-1 -4.30 F47G6.2  2.48 

hmr-1 -4.30 ZK218.11 2.48 

D1044.2 -4.30 srj-54  2.48 

F49E12.6  -4.30 clec-45  2.48 

rig-4  -4.30 T01G5.6  2.48 

rpn-1  -4.28 C25D7.12  2.48 

F56A8.3 -4.26 C12D5.4  2.48 

wrt-10 -4.26 M151.4  2.48 

gale-1 -4.23 F36D1.7  2.48 

Y39G10AR.10 -4.22 F54D10.7  2.48 

unc-44 -4.22 srw-113  2.49 

YER141W -4.22 Y116F11A.3 2.49 

rsp-1 -4.22 B0379.7  2.49 

unc-84 -4.21 Y39G8C.2 2.49 
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wwp-1 -4.20 ace-2  2.49 

tbc-9 -4.20 cyp-33C2 2.50 

pdi-2 -4.18 str-4  2.50 

act-1  -4.18 C46A5.2  2.50 

F33D11.9 -4.18 frm-5  2.50 

rnp-5  -4.17 F41G4.1  2.50 

ubh-4  -4.15 ZK353.4 2.50 

T19B10.2  -4.15 ncx-7 / 2.50 

dnj-5 -4.15 T13G4.7  2.50 

Y37D8A.10 -4.15 W02B3.4  2.51 

F11G11.5 -4.14 F27C1.10  2.51 

E04A4.5  -4.14 fbxa-209  2.51 

rbx-1  -4.14 srh-169  2.51 

ham-1  -4.14 C52E2.2  2.51 

sec-23  -4.13 ZC53.2 2.51 

unc-1 -4.12 WBGene00021553 2.51 

rap-2  -4.11 srg-24  2.51 

H19N07.4  -4.11 sre-40  2.51 

tag-125  -4.11 C24A11.1  2.52 

efk-1 -4.10 F09E5.10  2.52 

ile-2  -4.10 srsx-40  2.52 

lfi-1 -4.09 str-180 2.52 

unc-15 -4.08 F46B6.10  2.52 

ceh-21  -4.08 srab-7  2.52 

K09G1.1 -4.07 T05D4.5  2.53 

ape-1  -4.07 kin-26  2.54 

Y47G6A.18 -4.06 pqn-88  2.54 

nid-1  -4.06 K04F1.1  2.54 

4-

NITROPHENYLPHOSPHATASE 

-4.05 F02D10.4  2.55 

chd-3  -4.05 C10E2.2  2.55 

siah-1  -4.05 twk-34  2.55 

ugt-57  -4.05 K02F6.3  2.55 

T12E12.1  -4.04 Y40B1A.3 2.55 
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T21C9.4  -4.03 T24B8.7 2.55 

nhr-48 -4.02 T21D11.1  2.56 

car-1  -4.01 fbxa-12  2.56 

imp-1 -4.00 xtr-1 2.56 

kle-2  -4.00 F57F4.2  2.56 

C10E2.6  -4.00 W02H5.4  2.56 

smp-1 -3.99 sre-47  2.56 

skr-1  -3.99 srd-48  2.57 

C35E7.1  -3.99 F29G9.7  2.57 

tag-253 -3.98 nkcc-1 2.57 

rnr-1  -3.97 T25B9.6  2.57 

pqn-65 -3.97 xbx-1 2.57 

D1007.15  -3.96 H28G03.4 2.57 

top-2  -3.95 bath-33  2.57 

kin-25 -3.94 fbxa-112  2.57 

snb-1  -3.94 haf-8  2.57 

vha-1  -3.93 sru-44  2.57 

npp-10 -3.93 F54B8.4  2.58 

C05D10.4 -3.93 B0554.2  2.58 

flh-1 -3.93 sre-29  2.58 

phb-2  -3.92 F26F12.2  2.58 

F57A8.2 -3.91 E03H12.9  2.58 

npp-12  -3.91 srx-65  2.58 

sta-1 -3.91 sri-57  2.59 

mel-11 -3.90 C25G6.4  2.59 

pqe-1 -3.90 C03B1.5  2.59 

T20D3.11 -3.90 ssu-1  2.59 

Y55F3AM.3 -3.89 Y48G1A.1 2.59 

pccb-1 -3.89 srab-16  2.59 

D1081.7 -3.89 gei-3 2.60 

bath-9  -3.89 R11G11.3  2.60 

mlc-4  -3.88 F41D3.8  2.60 

bec-1  -3.88 C18D4.4  2.60 
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H17B01.1 -3.88 T15D6.8  2.60 

M01B12.4 -3.87 Y116A8C.4 2.61 

akt-1 -3.87 F38C2.1  2.61 

apa-2  -3.86 C45E1.4  2.61 

toca-1 -3.86 T07D3.5  2.61 

F22B5.10  -3.86 VC27A7L.1  2.61 

C32D5.11  -3.86 srd-35 2.61 

F15A4.2  -3.85 F26D2.3 2.62 

hda-1  -3.85 srh-79  2.62 

K01G5.5  -3.84 W06H3.3  2.62 

mel-32 -3.84 ZK856.4 2.62 

T26A5.5 -3.82 T22G5.1  2.62 

F46H5.2 -3.82 scl-21  2.62 

set-16  -3.82 C05D2.8  2.62 

him-17  -3.81 oac-27  2.62 

ent-1  -3.80 Y119D3B.13 2.63 

Y69A2AR.16 -3.80 K01A2.10  2.63 

hke-4.2 -3.80 srd-27  2.63 

cTel55X.1 -3.79 ZC204.13 2.63 

npp-1 -3.79 scl-10  2.63 

gcs-1  -3.79 R12G8.1  2.63 

ldb-1 -3.79 WBGene00011166 2.63 

Y57A10A.23 -3.79 R07E5.6  2.64 

mcm-2 -3.78 F10F2.2  2.64 

clec-91  -3.78 W06D4.3  2.64 

nuo-3 -3.77 F28F5.4  2.64 

Y48G10A.1 -3.77 Y22D7AL.11 2.64 

dim-1 -3.77 Y48E1B.7 2.64 

crb-1  -3.77 Y55F3BR.7 2.64 

T06D8.3  -3.77 Y51A2D.8 2.64 

T10C6.5  -3.76 nas-18  2.65 

vha-4  -3.76 srd-17  2.65 

Y44A6D.2 -3.76 nhr-287  2.65 
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ldb-1 -3.75 Y53F4A.2 2.65 

F36G3.1  -3.75 msp-74  2.65 

rab-6.2  -3.75 F58F12.3 2.65 

cey-4 -3.75 nhr-210  2.65 

M106.4 -3.74 Y105E8A.13 2.66 

his-72  -3.74 Y37E11B.10 2.66 

W07G4.4  -3.74 Y50D4A.4 2.66 

let-711  -3.74 Y53F4B.11 2.66 

ebp-1  -3.74 C26B2.2  2.66 

Y32H12A.5 -3.74 Y40B1A.1 2.67 

dnj-13  -3.73 srbc-66  2.67 

prp-4  -3.73 C49D10.7  2.67 

nuo-4 -3.72 Y110A2AL.9 2.67 

dlc-1  -3.72 col-180  2.68 

frs-1 -3.72 F12E12.12  2.68 

cdc-48.1  -3.72 F20B4.3 2.68 

tag-320  -3.71 srt-11  2.68 

ZK616.4 -3.71 B0524.3  2.68 

F30A10.10  -3.71 sri-47  2.68 

T20B12.7  -3.70 unc-33  2.68 

F25G6.8  -3.70 Y39F10A.3 2.69 

hyl-1  -3.69 dop-1 2.69 

K04F10.7  -3.69 sre-52  2.69 

aly-3 -3.69 F58E1.7  2.69 

F55C5.4  -3.69 F31D5.4  2.69 

T12D8.6  -3.69 K08D9.6  2.69 

kpc-1 -3.68 C31B8.4  2.69 

WBGene00008506 -3.68 nhr-5  2.70 

vab-1 -3.68 Y48E1B.8 2.70 

unc-71  -3.67 lact-6  2.70 

F59A3.4  -3.67 soc-2 2.70 

nduf-7  -3.67 K08C9.1  2.70 

ama-1  -3.66 F52C9.1 2.70 
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mat-1 -3.66 nlp-22  2.71 

ZC13.1 -3.66 Y66A7A.4 2.72 

Y105E8A.3 -3.65 clec-34  2.72 

sec-24.1  -3.65 K01A6.4  2.72 

tol-1  -3.65 C09B9.3  2.72 

hil-2 -3.64 T28F2.1  2.72 

R05F9.9  -3.64 clec-245  2.73 

lin-17 -3.63 Y116A8C.23 2.73 

WBGene00007904 -3.63 srw-1  2.73 

dpy-10 -3.62 K06A9.3  2.73 

WBGene00019477 -3.62 fbxa-43  2.73 

tba-2  -3.62 Y119C1B.6 2.73 

F44E2.7 -3.62 cyp-35B2  2.74 

C09G4.2 -3.61 F31F7.2  2.74 

F53B1.2  -3.61 srab-25  2.74 

F28H6.4  -3.60 dct-7  2.74 

C37H5.6 -3.60 Y47H9B.2 2.74 

sym-2  -3.59 clec-107  2.74 

C28H8.4  -3.58 fbxb-79 2.74 

spd-1  -3.58 clec-238  2.75 

klc-2 -3.58 F43C11.3  2.75 

ZK418.9 -3.58 F43C11.12  2.75 

F11E6.7  -3.58 vit-4  2.75 

pbs-7  -3.57 srw-108  2.76 

dpy-18  -3.57 srw-61  2.76 

F56A8.8  -3.57 gcy-29  2.76 

dao-3  -3.56 C36C5.5  2.76 

somi-1 -3.56 B0218.7  2.77 

R148.5 -3.56 srv-21  2.77 

K11G12.5  -3.56 str-103  2.77 

tag-175  -3.56 B0285.6  2.77 

ncx-2 -3.55 W06H8.6  2.77 

F16D3.4  -3.55 C44B9.1  2.77 
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cas-1 -3.55 WBGene00016862 2.78 

B0334.5  -3.55 gst-17  2.78 

M106.8 -3.55 WBGene00017550 2.78 

K08F4.1  -3.55 srd-60  2.78 

W02F12.5  -3.55 Y48B6A.5 2.78 

C43H6.4  -3.54 C28D4.4  2.78 

lin-26  -3.54 C14C6.12  2.78 

elo-6  -3.54 T11A5.1  2.78 

pas-5  -3.54 F14H12.2  2.79 

T02E9.5  -3.53 Y70G10A.2 2.79 

irs-1  -3.53 Y50E8A.2 2.79 

Y57G7A.10 -3.52 Y17G7B.8 2.79 

T05E11.3  -3.52 srj-37  2.79 

atn-1 -3.52 F20B4.4 2.79 

cutl-2  -3.51 ZK1248.7 2.79 

tag-335  -3.51 F15D3.5  2.79 

ZK484.1 -3.51 rol-1  2.80 

tir-1 -3.51 daf-2 2.80 

K04B12.2 -3.51 srd-66  2.80 

dcr-1 -3.51 C26E1.3  2.80 

erv-46  -3.51 ZC239.2 2.80 

F38E9.5  -3.51 F08D12.7  2.80 

pbs-3  -3.50 cyp-13A11  2.80 

T04B8.5 -3.50 msp-3  2.81 

egl-4 -3.50 C07G1.6  2.81 

ZK686.3 -3.50 W05H5.1 2.81 

rpc-1  -3.49 aat-4 2.81 

T19A6.1 -3.48 srw-84  2.81 

snap-1  -3.48 H10E21.2  2.81 

pdi-1  -3.48 srw-88 2.81 

F44F1.6 -3.47 WBGene00013479  2.82 

T19C4.1  -3.47 F20A1.6 2.82 

Y113G7B.17 -3.47 ugt-32  2.83 



198 

C37E2.1  -3.47 T25B9.4  2.83 

cdc-14 -3.46 ZK593.9 2.83 

mcm-4 -3.46 grd-4  2.83 

gip-1 -3.44 Y66D12A.11 2.83 

elt-1 -3.44 WBGene00009345 2.84 

F40F9.7 -3.44 nhr-173  2.84 

eat-20 -3.43 Y60A9.1 2.84 

M01A10.3  -3.43 T17A3.10  2.84 

WBGene00019819 -3.42 W04G5.9  2.84 

C01G6.4  -3.41 R06B9.1  2.84 

T22H6.2 -3.41 M03E7.1  2.85 

npp-17  -3.41 T24D5.1 2.85 

dpy-11 -3.41 W03G1.8  2.85 

pqn-18  -3.40 C29F7.6  2.86 

trap-4  -3.40 clec-115  2.86 

rab-21  -3.39 F23B2.3  2.86 

C08B11.9  -3.39 Y82E9BL.12 2.86 

ZK829.4 -3.39 H28G03.4 2.86 

F25B4.5  -3.39 Y54E2A.7 2.87 

T13C2.6 -3.38 Y49F6C.2 2.87 

W08E3.2  -3.38 bath-23  2.87 

ran-1 -3.38 R02F2.5  2.87 

F57G12.1  -3.37 srh-131  2.87 

cam-1 -3.37 F46F5.1  2.87 

T03F1.8 -3.37 K02F6.6  2.88 

D2096.8  -3.36 C15H11.1  2.88 

rpn-3  -3.36 oac-22 2.88 

inx-5  -3.36 F01F1.14  2.88 

M28.5  -3.35 R155.2  2.88 

hsp-3  -3.35 amt-3  2.89 

eft-4 -3.35 C16A11.3  2.89 

F25H5.3 -3.35 Y111B2A.4  2.89 

R07H5.8  -3.35 Y71H2AR.2 2.90 
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eya-1 -3.34 F56H6.2  2.90 

efn-2  -3.34 str-205  2.91 

C09F9.2  -3.34 F38E1.10  2.92 

oma-2  -3.33 srd-46  2.92 

ZC376.7 -3.33 R07E4.1 2.92 

F33G12.5  -3.32 C32H11.7  2.92 

ceh-41  -3.31 C38C3.6  2.92 

vhp-1 -3.31 oac-10 2.92 

tbb-2  -3.31 col-152 2.93 

ntl-2 -3.31 WBGene00017453 2.93 

bra-1  -3.31 T05A8.7  2.93 

unc-83 -3.31 C29F5.5  2.93 

C06A8.3  -3.31 clec-260  2.94 

pqn-14 -3.30 cnc-2  2.94 

T19A5.1  -3.30 C54F6.5  2.94 

Y60A3A.9 -3.30 sru-16  2.95 

sop-2  -3.30 sri-60  2.95 

Y47D3A.29 -3.29 egl-10  2.96 

ran-5  -3.29 F48B9.3  2.96 

lin-12  -3.28 F35C8.8  2.96 

C50B8.1  -3.28 F53E10.3 2.96 

ife-2  -3.28 fbxa-47  2.96 

gei-12  -3.28 C18A3.7  2.97 

C02E11.1 -3.28 C41H7.1  2.97 

D1046.3  -3.27 oac-4  2.97 

fib-1  -3.27 F36H9.4  2.97 

pat-6  -3.27 cwp-5 2.98 

atp-3 -3.27 srw-68 2.98 

T05F1.1 -3.25 gcy-19 2.98 

casy-1 -3.25 F56B3.3  2.98 

F46E10.2  -3.25 R12E2.6  2.98 

let-19  -3.24 str-37  2.99 

aco-1  -3.24 F47G4.5  2.99 
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cap-1  -3.24 Y62H9A.14 2.99 

C54G7.2  -3.24 gld-2 2.99 

lin-28 -3.24 unc-63 2.99 

C35E7.5 -3.23 F35E8.6  2.99 

T07C4.3 -3.23 C56E10.3 3.00 

tag-72  -3.23 T15D6.9  3.00 

T04F8.2  -3.23 K02D10.3  3.00 

act-2 -3.22 C06C6.7 3.00 

H42K12.3 -3.21 Y105C5A.24 3.00 

sur-2 -3.21 wht-4 3.01 

bus-17  -3.20 clec-263  3.01 

srs-2  -3.19 sru-29  3.01 

qdpr-1 -3.18 W05F2.7  3.01 

inx-7  -3.18 B0507.6 3.01 

daf-5  -3.18 Y6D1A.1 3.02 

nsf-1 -3.17 srh-123 3.02 

gbh-2 -3.17 K04C1.5  3.02 

K01A2.3  -3.17 srh-32 3.02 

his-32  -3.16 K01A11.1 3.02 

C18E9.10  -3.16 C50A2.2  3.02 

frm-5  -3.16 F22B3.7  3.02 

pdk-1 -3.15 zig-2 3.02 

Y71G12B.11 -3.15 F46F5.5  3.03 

npp-4  -3.15 Y110A2AL.2 3.03 

C32D5.10  -3.15 C34D10.2 3.04 

oga-1 -3.14 C30B5.5  3.04 

R10E11.3 -3.14 sra-27  3.05 

sli-1 -3.14 F47G9.4  3.05 

bre-3 -3.14 tag-336  3.06 

ptr-10  -3.13 ZK218.5 3.06 

WBGene00011089 -3.13 W02G9.3  3.07 

F40F9.6 -3.13 try-8 3.07 

inx-2  -3.13 C50E3.11  3.08 



201 

npp-3 -3.12 sra-14 3.08 

B0395.3  -3.12 K09C4.2  3.08 

dnj-25  -3.12 F54H5.3 3.09 

tag-349 -3.12 F11D11.3  3.09 

baf-1  -3.12 C29F5.3  3.09 

cgt-3 -3.12 tag-80  3.09 

syd-9 -3.11 str-257 3.09 

F53C3.13 -3.11 T04C9.2  3.09 

tre-1  -3.11 ZK1290.10 3.10 

cct-5 -3.11 Y71H2B.1 3.10 

gln-6  -3.11 ZK402.2 3.10 

pac-1 -3.11 K02F6.2  3.10 

ZK682.2 -3.10 acr-23 3.10 

F57C7.1 -3.10 F16B12.1  3.11 

M05D6.6  -3.10 rnp-6 3.11 

ZK512.1 -3.10 C25H3.10 3.11 

ttm-1 -3.10 sru-12  3.11 

ZK673.2 -3.10 Y55D5A.4 3.11 

C29H12.6  -3.10 srbc-40  3.11 

spt-5  -3.10 T28A11.18  3.12 

F52E1.9  -3.10 F56A4.11  3.12 

flh-2  -3.09 sre-33  3.12 

Y47D3B.6 -3.09 cpt-3  3.12 

icp-1  -3.08 H25K10.4  3.13 

ftn-2  -3.08 fbxa-81  3.13 

F52D1.1  -3.08 F31F4.11  3.13 

F38A5.1 -3.08 srh-271  3.13 

cap-1  -3.07 clec-106  3.14 

ZK856.10 -3.07 sru-11  3.14 

elb-1  -3.07 sri-11  3.14 

F54D7.2  -3.07 grd-16  3.14 

F19B6.1 -3.06 srh-186  3.14 

acdh-3  -3.06 K08H2.5  3.15 



202 

T21H8.1 -3.06 clh-4 3.15 

fmo-2  -3.06 F20B6.6 3.16 

aly-1  -3.05 pqn-11  3.17 

rfc-2  -3.05 M117.6  3.17 

srgp-1  -3.05 F23D12.1 3.17 

R02F2.1 -3.05 jip-1 3.17 

C11E4.1  -3.05 srx-4  3.18 

sym-5  -3.04 clec-116  3.18 

hbl-1 -3.04 C26B9.2  3.18 

lin-24  -3.04 srb-18  3.19 

R05F9.1 -3.04 srh-272 3.19 

hrp-2 -3.04 tag-312  3.20 

dpy-2  -3.04 ZK1240.2 3.20 

ubq-1 -3.04 R01H2.1  3.20 

eat-6  -3.03 srh-295  3.20 

C28H8.9 -3.03 Y69A2AR.14 3.21 

C17E4.10 -3.03 F49H12.2  3.21 

rpa-2  -3.03 srg-2  3.21 

gob-1 -3.02 hil-8  3.22 

T01E8.4  -3.02 hlh-26  3.24 

wht-2 -3.02 snt-2  3.24 

rpb-6 -3.02 T20B12.5  3.25 

ZK632.10 -3.02 T07D10.3 3.25 

nhr-3  -3.02 Y43F8C.11 3.25 

T24F1.2  -3.01 Y60C6A.1 3.25 

B0041.5  -3.01 M04G7.2 3.26 

C18D11.1  -3.01 acr-21  3.26 

gei-13  -3.01 ZK355.3 3.26 

F32A7.5 -3.01 cyp-14A4 3.27 

mlt-8 -3.01 F59D6.4  3.28 

cdc-25.2  -3.01 T26C11.3 3.29 

C49F8.3 -3.00 F21F3.2  3.29 

coh-1  -3.00 F49E2.5 3.29 



203 

gdi-1 -3.00 C10C6.3  3.30 

aqp-4  -3.00 clec-130  3.30 

ubxn-3 -3.00 vab-19  3.30 

cyn-8 -3.00 F33E2.6  3.30 

trap-3  -3.00 Y49F6B.6 3.31 

egl-45  -3.00 Y47H9B.2 3.31 

F54B3.3  -3.00 F21E9.6  3.31 

vbh-1 -2.99 egl-38  3.33 

K08E7.1  -2.99 srh-231  3.33 

T12G3.4  -2.99 unc-10 3.33 

par-5  -2.99 Y71G12B.2 3.34 

R02F2.1 -2.98 ZC404.10 3.35 

M176.3  -2.98 C49G7.12 3.35 

ftt-2 -2.98 F56H6.13  3.37 

SR-famC -2.98 nkat-1  3.37 

D1044.2 -2.98 C08A9.3  3.37 

Y22D7AL.14 -2.98 Y40B1A.2 3.38 

Y25C1A.5 -2.97 Y57G7A.5 3.38 

Y54E5A.7 -2.97 srh-220  3.39 

WBGene00015232 -2.96 bath-21  3.39 

Y73B6BL.33 -2.96 Y17D7B.2 3.40 

eat-20 -2.96 F02H6.1  3.41 

C31C9.2  -2.96 ZK355.4 3.41 

F17C11.9 -2.95 F19H6.5  3.41 

fce-1  -2.95 ugt-30 3.42 

F08G12.1  -2.95 sra-39  3.42 

tbg-1  -2.95 C35B1.4  3.42 

psa-4  -2.94 F36D1.4 3.43 

his-72 -2.94 fat-5 3.44 

hke-4.2  -2.94 ZC404.1 3.44 

trs-1 -2.94 F44D12.8 3.44 

tbx-2  -2.94 K03D3.2 3.44 

atg-4.1  -2.93 cyp-35A3  3.45 



204 

vha-17  -2.93 oac-38 3.45 

pdi-3  -2.93 btb-18  3.45 

F46H5.3 -2.92 fbxb-52  3.45 

gfi-1  -2.92 col-148  3.45 

ace-3  -2.92 T10E9.6  3.46 

F16B12.6  -2.92 cnc-7  3.46 

Y71G12B.23 -2.92 F36D1.5  3.46 

pqn-32 -2.91 srx-24 3.47 

Y17G7B.10 -2.91 F36D1.6  3.48 

ubc-7  -2.91 R13D11.10  3.48 

Y4C6B.1 -2.90 nlp-42  3.49 

srp-7 -2.90 F18G5.5 3.49 

tba-2  -2.90 F13A2.4  3.49 

K08D12.3 -2.90 srx-28 3.51 

emb-27  -2.90 irk-1 3.52 

K05C4.2  -2.89 C46H11.1  3.52 

erp72  -2.89 egl-20  3.52 

ZK154.4 -2.89 srxa-9  3.52 

C06H5.7  -2.89 T23D5.3  3.53 

K08E3.5 -2.89 srw-85 3.54 

T20B12.7  -2.89 srab-17  3.54 

rha-1  -2.89 srw-2  3.55 

fmo-4  -2.89 srg-31  3.56 

F38E9.5  -2.88 sri-54  3.59 

exos-3  -2.87 K09F6.7  3.59 

snf-1  -2.86 M01G12.2  3.61 

rpb-7  -2.86 drh-1 3.62 

uaf-1 -2.86 R11G10.2  3.62 

F15B9.8  -2.85 F36G9.13  3.62 

rgr-1 -2.85 F33E2.10  3.65 

rab-7  -2.85 F49E2.5 3.66 

rnp-3 -2.85 str-256  3.66 

nit-1 -2.84 Y53H1B.4 3.67 
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Y48G9A.3 -2.84 C50B6.1 3.67 

egl-9 -2.84 WY54G2A.20 3.68 

F10C5.2  -2.84 K04H4.5  3.70 

rnp-6 -2.84 fbxa-40  3.73 

H19N07.4  -2.84 fbxa-84  3.74 

cdc-25.1  -2.83 cdh-12  3.75 

C47D12.2  -2.83 Y47D3B.4 3.75 

fib-1  -2.82 T01B6.4  3.79 

mig-5 -2.82 C50H2.5  3.81 

mex-6  -2.82 F56H6.4  3.83 

Y46G5A.8 -2.81 Y19D10A.4 3.89 

H24K24.3  -2.81 F44B9.9  3.90 

T23B12.2  -2.81 clec-150  3.90 

F40F8.11  -2.80 srz-13  3.91 

pbs-2  -2.80 ZC239.14 3.94 

apb-1 -2.80 srd-43  3.95 

F43D9.1  -2.80 F44D12.6  3.99 

Y23H5A.3 -2.80 cyp-14A2  4.04 

cfz-2 -2.80 T19H12.3  4.11 

C56G2.4 -2.79 fip-2  4.13 

C05G5.4  -2.79 C07D8.3 4.23 

rad-26  -2.79 F35F10.6  4.25 

Y48A6B.3 -2.79 F43C11.4  4.40 

C02B10.5  -2.78 C52E4.8  4.42 

sna-2  -2.78 ins-24  4.42 

dpy-26  -2.78 ZK813.1 4.45 

dhhc-1  -2.78 C14E2.1  4.49 

cyn-5  -2.78 Y22D7AR.1 4.49 

sqrd-1  -2.78 clec-208  5.07 

T01G9.2 -2.78 F49E2.5 5.14 

F43G6.4  -2.78 cnc-7  5.77 

act-1  -2.77   

atp-5  -2.77   



206 

F43G9.2 -2.76   

C36E8.1  -2.76   

pha-4 -2.76   

lin-1  -2.76   

dpy-11  -2.75   

mtx-1  -2.75   

H28G03.1 -2.75   

pmr-1 -2.74   

C14F11.6  -2.73   

F37B12.3  -2.73   

F32E10.6  -2.73   

C26B9.3  -2.72   

him-4 -2.71   

lev-11 -2.71   

atf-7 -2.71   

WBGene00019298 -2.71   

Y69A2AR.31 -2.71   

Y57G11C.9 -2.70   

F07A11.4  -2.70   

Y67A10A.7 -2.70   

col-76  -2.70   

ost-1  -2.70   

hil-5  -2.70   

nuo-1  -2.70   

unc-2 -2.69   

C13B9.3  -2.68   

F30A10.6  -2.68   

F47A4.5  -2.68   

sup-17  -2.68   

cdk-7  -2.68   

T14G10.5 -2.67   

cpt-2 -2.67   

tag-131  -2.67   



207 

ZK899.2 -2.67   

K12H4.4  -2.66   

D1043.1 -2.66   

C15C6.1  -2.66   

T23F2.5  -2.66   

pct-1 -2.66   

set-10 -2.66   

gas-1  -2.66   

fbxb-37  -2.65   

Y39A1A.8 -2.65   

WBGene00019624 -2.65   

ung-1 -2.65   

elt-6  -2.65   

lam-2  -2.65   

K11H12.8 -2.65   

daf-3 -2.65   

F13C5.2  -2.65   

Y57E12AL.6 -2.65   

ztf-12 -2.64   

K04H4.2 -2.64   

F26E4.12  -2.64   

dhs-29  -2.64   

nhr-237  -2.64   

mps-2 -2.63   

ben-1  -2.63   

C53D5.2  -2.63   

sop-2  -2.63   

rgs-8.1  -2.63   

H03E18.1 -2.62   

hcf-1  -2.62   

WBGene00019620 -2.62   

bub-1  -2.61   

ZK353.9 -2.61   



208 

atg-7  -2.61   

pst-1 -2.61   

C06E7.4  -2.61   

hch-1 -2.61   

M01E5.6  -2.60   

C45G3.5  -2.60   

gei-17 -2.60   

Y37A1B.17 -2.60   

M18.6  -2.60   

T09E8.3  -2.59   

Y45G5AM.6 -2.59   

npp-5  -2.59   

F53E10.1  -2.59   

H17B01.4 -2.59   

unc-37  -2.58   

C28A5.1 -2.58   

fbxb-107  -2.58   

F56C9.3  -2.58   

phy-2  -2.58   

egl-27 -2.58   

syn-3  -2.58   

cnb-1  -2.58   

T25E4.1  -2.57   

pmt-2  -2.57   

Y44A6C.1 -2.57   

W02B12.10  -2.57   

asp-1  -2.57   

ZK370.4 -2.57   

unc-112  -2.57   

alh-9  -2.57   

F18H3.4  -2.56   

lec-1 -2.56   

ain-1  -2.56   



209 

Y54E10BR.5 -2.56   

dgn-1  -2.56   

skr-9  -2.55   

F25B5.2  -2.55   

vab-1 -2.55   

Y60A3A.14 -2.54   

dcn-1 -2.54   

gpc-2  -2.54   

nurf-1 -2.54   

mps-2 -2.54   

atf-5  -2.53   

Y47D9A.1 -2.53   

patr-1  -2.53   

vps-39 -2.53   

gfi-4 -2.52   

snt-4  -2.52   

F43E2.7 -2.52   

mbk-1  -2.51   

ZK809.3 -2.51   

mlp-1 -2.51   

R08E5.3  -2.50   

ham-2 -2.50   

rpb-8  -2.50   

Y57G11C.33 -2.50   

F30B5.4  -2.50   

fbxb-24  -2.50   

K10H10.1  -2.50   

exc-9  -2.50   

snr-4  -2.49   

Y73B3A.18 -2.49   

scd-1 -2.49   

C02D5.2 -2.49   

mak-2 -2.49   



210 

C24A3.2 -2.49   

R11.4  -2.49   

nsy-1  -2.48   

C34F6.8  -2.48   

vha-19  -2.48   

fum-1 -2.47   

rpb-2 -2.47   

nhr-4 -2.47   

aly-2  -2.47   

B0495.8 -2.47   

smc-4  -2.47   

abl-1 -2.46   

F38H4.10  -2.46   

cdc-14 -2.46   

F22D3.2 -2.46   

T16H12.4  -2.45   

tgt-2  -2.45   

isp-1  -2.45   

cct-4 -2.45   

tag-135 -2.45   

C27F2.8  -2.45   

F32D1.5  -2.45   

lim-9 -2.45   

his-71  -2.44   

F41C3.4  -2.44   

Y25C1A.7 -2.44   

Y22D7AL.10 -2.44   

F57B1.6 -2.44   

his-17  -2.43   

F10D11.2  -2.43   

zer-1 -2.43   

cpt-1  -2.43   

pfd-5  -2.43   



211 

C14C11.7  -2.43   

pbs-5  -2.43   

lgg-1  -2.42   

K09E2.3  -2.42   

F41D9.2 -2.42   

lpr-3  -2.42   

Y82E9BR.17 -2.42   

C17G10.9 -2.41   

tag-294  -2.41   

R03E1.2  -2.41   

C49H3.9  -2.40   

clic-1  -2.40   

ZK154.1 -2.40   

rgs-7 -2.40   

Y5F2A.4 -2.40   

fkb-2  -2.40   

C47C12.4  -2.40   

WBGene00010704 -2.39   

C27H2.2 -2.39   

C30B5.2 -2.39   

mog-1  -2.39   

R151.6  -2.39   

W02D3.4  -2.39   

F13E6.1  -2.39   

hmp-2  -2.38   

hcp-4  -2.38   

gpdh-2 -2.38   

R08C7.2 -2.38   

unc-112  -2.38   

cgp-1  -2.38   

R53.4  -2.38   

F41G3.6  -2.37   

Y64G10A.7 -2.37   



212 

sdhb-1  -2.37   

idi-1  -2.37   

C06A6.2 -2.37   

rsa-2 -2.37   

T22E7.1 -2.37   

haf-4  -2.36   

dpy-7  -2.36   

skr-10  -2.36   

C05D11.7 -2.36   

unc-97  -2.36   

F21F3.6  -2.35   

daf-1 -2.35   

pnk-1 -2.35   

T09B4.1  -2.35   

asp-4 -2.35   

vha-9  -2.35   

B0336.3  -2.35   

ubxn-2 -2.35   

psa-4  -2.35   

K10C8.3 -2.34   

mlt-11 -2.34   

hel-308 -2.34   

pqn-74  -2.34   

F02E9.10 -2.34   

prkl-1 -2.33   

Y38F2AR.9 -2.33   

C24H10.2 -2.33   

rpn-9  -2.33   

ldh-1  -2.32   

tag-192  -2.32   

bath-38  -2.31   

tag-170  -2.31   

K02E10.4 -2.31   



213 

T05D4.1  -2.31   

WBGene00008971 -2.31   

C34C12.8  -2.31   

spd-5 -2.31   

hid-1 -2.30   

pqn-51  -2.30   

C08B11.3  -2.30   

T01E8.5  -2.30   

 ZC8.6 -2.30   

pqn-85  -2.29   

gad-1  -2.29   

npl-4.1  -2.29   

acs-16  -2.29   

dct-18  -2.29   

R05G6.7  -2.29   

dnj-19  -2.29   

F23H11.3  -2.29   

ttll-4 -2.28   

stau-1  -2.28   

pir-1 -2.28   

phosphofructokinase -2.28   

F31C3.3  -2.28   

Y105C5B.12 -2.27   

ash-2 -2.27   

sel-9  -2.27   

wrt-2 -2.27   

sec-3  -2.26   

1-Jun -2.26   

fkb-6  -2.26   

F53A2.3  -2.25   

sphk-1 -2.25   

F11A10.2  -2.25   

K08D12.3 -2.25   



214 

pqn-46  -2.25   

ZK675.4 -2.24   

R06C7.1  -2.24   

xbx-6 -2.24   

ncx-3  -2.24   

acy-1  -2.24   

npp-5  -2.24   

T23G11.6 -2.24   

F14B8.2  -2.24   

C07E3.6  -2.24   

pat-3  -2.24   

F02E9.5 -2.24   

F20D1.1  -2.23   

hpk-1 -2.23   

npp-13 -2.23   

fbxb-42 -2.23   

dsh-2  -2.23   

C54E4.2 -2.23   

ubxn-4  -2.23   

cpl-1  -2.23   

ZC308.4 -2.22   

ula-1  -2.22   

pqn-39  -2.22   

T20H4.5  -2.22   

F52H2.7  -2.22   

acn-1 -2.22   

tag-232 -2.22   

ttll-5  -2.22   

ndg-4 -2.21   

hrd-1  -2.21   

nuo-2 -2.21   

pis-1 -2.20   

tag-173  -2.20   



215 

C17C3.1 -2.20   

R107.5 -2.20   

scm-1  -2.20   

ugt-50 -2.19   

B0303.14  -2.19   

unc-60 -2.19   

mdl-1  -2.19   

npl-4.2 -2.19   

F22G12.4 -2.19   

Y45G5AM.9 -2.19   

R10E12.2  -2.18   

cco-2  -2.18   

tag-297  -2.18   

mec-7  -2.18   

col-121  -2.17   

alx-1 -2.17   

knl-1  -2.17   

Y111B2A.3 -2.17   

F36D4.5 -2.17   

WBGene00001562 -2.16   

phg-1 -2.16   

WBGene00008986 -2.16   

C48B6.10  -2.16   

Y17G9B.5 -2.16   

apl-1 -2.16   

ify-1  -2.15   

K02C4.3  -2.15   

F54B11.5  -2.15   

somi-1 -2.15   

tat-4 -2.15   

C05D11.10  -2.14   

ntl-2 -2.14   

C37E2.1  -2.14   



216 
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