
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

Fall 12-18-2014

Discrepancy Principle and Stable Parameter
Estimation in Avian Influenza
Linda DeCamp

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
DeCamp, Linda, "Discrepancy Principle and Stable Parameter Estimation in Avian Influenza." Thesis, Georgia State University, 2014.
https://scholarworks.gsu.edu/math_theses/144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71425768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DISCREPANCY PRINCIPLE AND STABLE PARAMETER ESTIMATION IN AVIAN

INFLUENZA

by

LINDA DECAMP

Under the Direction of Alexandra Smirnova, PhD

ABSTRACT

In the case of a linear ill-posed problem with noisy data, a version of an a posteriori

parameter selection discrepancy principle (DP) [1] is justified for an arbitrary regularization

strategy under very general assumptions on the operator and the stabilizer. Its efficiency

is demonstrated for a practically important inverse problem in avian influenza. We refer to

our result as an abstract discrepancy principle (ADP), which shows that applicability of the

DP largely depends on the level of noise in the data rather than the method used for the

construction of a specific regularization procedure.

INDEX WORDS: epidemiology, regularization, discrepancy principle.

DISCREPANCY PRINCIPLE AND STABLE PARAMETER ESTIMATION IN AVIAN

INFLUENZA

by

LINDA DECAMP

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2014

Copyright by
Linda deCamp

2014

DISCREPANCY PRINCIPLE AND STABLE PARAMETER ESTIMATION IN AVIAN

INFLUENZA

by

LINDA DECAMP

Committee Chair: Alexandra Smirnova

Committee: Vladimir Bondarenko

Michael Stewart

Changyong Zhong

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2014

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

PART 1 INTRODUCTION 1

PART 2 AVIAN INFLUENZA MODEL 3

PART 3 REGULARIZATION STRATEGIES AND DISCUSSION 9

3.1 The Tikhonov Regularization Algorithm 9

3.2 Lavrentiev’s Stabilizing Scheme . 11

3.3 The Local Regularization Approach 11

3.4 Stable Numerical Differentiation with Legendre Polynomials . . 13

3.5 The Discrepancy Principle . 15

PART 4 NUMERICAL RESULTS 18

4.1 Test Experiments with Simulated Data 18

4.2 Reconstruction with Real Data . 19

PART 5 ABSTRACT DISCREPANCY PRINCIPLE 26

PART 6 CONCLUSIONS AND FUTURE WORK 31

REFERENCES . 32

APPENDICES . 37

v

Appendix A MATLAB CODE - MAIN 37

Appendix B MATLAB CODE - TIKHONOV 53

Appendix C MATLAB CODE - LAVRENTIEV 60

Appendix D MATLAB CODE - LOCAL 66

Appendix E MATLAB CODE - LEGENDRE 72

vi

LIST OF TABLES

Table 2.1 Definitions of the Parameters in the Model 4

Table 2.2 Relative errors and matrix condition numbers for decreasing h 7

Table 4.1 Finding α by Discrepancy Principle - Simulated 19

Table 4.2 Cumulative number of confirmed H5N1 human cases 20

Table 4.3 Poultry Outbreaks . 21

Table 4.4 Determination of α by Discrepancy - World 22

Table 4.5 Determination of α by Discrepancy - Indonesia 23

vii

LIST OF FIGURES

Figure 2.1 Noisy C(t) and the resulting β(t) (unregularized) - Simulated Data . 6

Figure 2.2 Behavior of Error . 8

Figure 4.1 Computation of β using Discrepancy Principle - Simulated 19

Figure 4.2 Cumulative human infections H5N1 20

Figure 4.3 Poultry Outbreaks . 21

Figure 4.4 Determining β(t) using various regularization methods - World . . . 22

Figure 4.5 Determining β(t) using various regularization methods - Indonesia . 23

1

PART 1 Introduction

Avian influenza belongs to a group of viruses known as Influenza A. The influenza

A virus has many subtypes which are based on two surface proteins called hemagglutinin

(referred to as H) and neuraminidase (N). The highly pathogenic avian influenza (HPAI) is

of subtype H5N1. The virus occurs naturally in the wild bird population where it causes

only mild symptoms. In this case it is referred to as low pathogenic avian influenza (LPAI).

However, among domestic bird populations - chickens, ducks and turkeys - this virus exhibits

as a highly contagious and virulent strain. The highly pathogenic avian influenza (HPAI)

can kill up to 90-100% of the entire poultry flock within 48 hours [4]. Other species may

be infected with HPAI through contact with secretions/excretions of infected birds. Horses,

pigs, cats and humans have contracted the disease; for these species, the disease exhibits

a high mortality rate [5]. The first documented case of HPAI of subtype H5N1 human

infection was in 1997; the infected boy died. As of December 2013, 648 human cases have

been reported to the World Health Organization (WHO) of which 384 have died, a mortality

rate in excess of 60% [2, 6].

In the last century, the world has faced 5 major influenza pandemics. The most notable

among these is the 1918 Spanish Flu pandemic which originated from avian influenza viruses.

These pandemics occur when new strains of influenza are created by mutation (reassortment)

of an existing, animal based strain. When humans are effective transmitters of the virus and

generally have minimal immunity against the disease, a pandemic results [7, 8]. Though

H5N1 is currently zoonotic, the mutability of influenza A viruses coupled with the high

human mortality rate are significant motivators to investigate the parameters of this disease.

2

Several authors have analyzed the effectiveness of the today’s control measures taken for

avian influenza [9–11].

One of the major challenges in the study of HPAI is to estimate the transmission rate

accurately so that the government agencies can develop adequate control strategies and

safety measures. The transmission rate of a virus is equal to the transmission probability

times the number of contacts with infected individuals. However, measuring the probability

of a contact resulting in a disease is extremely difficult since it depends on a number of

factors such as age, genetics, immunity, etc. For avian influenza of subtype H5N1 this

probability varies in time due to temperature fluctuations, wild bird migrations, and other

environmental changes [12]. In our study of avian influenza, instead of directly measuring

the probability of the transmission, we propose to use the information available on human

and poultry HPAI outbreaks, as well as other related data, to approximate a bird-to-human

transmission rate by solving the underlying inverse problem [13]. To that end, this paper is

organized as follows. The disease model for HPAI H5N1 is described in the next section. The

necessity of using regularization methods for computing the transmission rate is explained.

Four regularizations algorithms for solving linear inverse problems are described and related

to the model. Particular emphasis is given to a priori and a posteriori stopping rules for

these methods. Numerical experiments are then performed, first on simulated data for a

prototype problem and then on real data. The qualitative and quantitative study of the

computed solutions indicates that for real data, our numerical results capture a number of

important properties that the highly pathogenic avian influenza (HPAI) transmission rate

does, indeed, exhibit. The simulation study shows that the method introduced in this paper

performs satisfactorily. Results of these experiments point to generalized stopping rule for all

methods and this idea is formalized with a theorem and proof. Conclusions and discussions

of anticipated future work complete the paper.

3

PART 2 Avian Influenza Model

Up until recently, models developed with annualized data primarily utilized constant

bird-to-human transmission rates [9, 10, 14–16]. With the advent of more timely and frequent

reporting, the data can be seen to ebb and swell over time. Following Martcheva and Tuncer

[11, 12], we replace transmission rate with a time-dependent function and describe the avian

influenza dynamics by the SI (susceptible-infected) model. According to this model, the

human population is divided into two classes: susceptible humans, S(t), and infected humans,

I(t). Assuming that humans recover with no immunity to the disease, we do not include

the recovery class in the model. Similarly, the domestic bird population is divided into

susceptible birds, Sb(t), and birds infected with highly pathogenic avian influenza, Ib(t). For

poultry, the recovery class is omitted due to an extremely high virulence. In the proposed

SI model, the rate of change in the number of susceptible humans is given by the following

non-autonomous differential equation

dS

dt
= Λ− β(t)Ib(t)S(t)− µS(t). (2.1)

For susceptible humans, µ and β(t) are the natural death rate and the bird-to-human HPAI

transmission rate, respectively, which results in the force of infection being β(t)Ib(t)S(t).

The remaining parameter, Λ, is the growth rate of humans which combines the birth of new

individuals as well as recruitment from the recovery class. These parameters are listed in

Table 2.1. For this paper, µ and Λ are held as constant. Integrating β(τ)Ib(τ)S(τ) from the

initial time, 0, to time equal to t, one obtains the cumulative number of HPAI human cases

4

over the period from 0 to t:

C(t) =

t∫
0

β(τ)S(τ)Ib(τ) dτ + C(0), t ∈ (0, T). (2.2)

The inverse problem of practical importance is to evaluate the time-dependent transmission

rate, β(t), given the number of poultry outbreaks, Ib(t), the number of confirmed H5N1

human cases, C(t), and the constant parameters Λ, µ and S(0). Both Ib(t) and C(t) are

measured with some level of noise.

Table (2.1) Definitions of the Parameters in the Model

Parameter Meaning
S(t) Susceptible humans
Ib(t) Birds infected with HPAI

Λ Birth/recruitment rate of humans
µ Natural death rate of humans

C(t) Cumulative number of human cases
β(t) Transmission rate from birds to humans

There are two basic solution approaches. We may solve equation (2.1) for S = S(β(t), t)

S(β(t), t) = e
−

t∫
0

(β(τ)Ib(τ)+µ)dτ

Λ

t∫
0

e

u∫
0

(β(τ)Ib(τ)+µ)dτ
du+ S(0)

 . (2.3)

Substituting this into the integral equation (2.2), one obtains

t∫
0

S(β(τ), τ)Ib(τ)β(τ)dτ = C(t)− C(0). (2.4)

In this solution method, we benefit from the lack of noise in the kernel. However, we are

presented with the necessity of utilizing an iterative method to solve this nonlinear equation

to obtain β(t). Alternatively, we may solve equation (2.1) for S = S(C(t), t). Equation (2.2)

5

combined with (2.1) implies

dS

dt
= Λ− µS − dC

dt
. (2.5)

If C(t) is known, we can view (2.5) as a linear ODE with respect to S = S(C(t), t) (susceptible

humans). We can solve this linear nonhomogeneous problem to obtain

S(C(t), t) =

S0 +

t∫
0

[
Λ− dC

dτ

]
eµτdτ

 e−µt (2.6)

or, alternatively, by expanding and integrating

S (C(t), t) =

(
S0 −

Λ

µ
+ C(0)

)
e−µt +

Λ

µ
− C(t) + µ

t∫
0

C(τ)e−µ(t−τ)dτ. (2.7)

The last expression is preferable because it does not contain differentiation of noisy data.

Using (2.7), one can find β(t), bird-to-human transmission rate, from the following linear

Volterra integral equation of the first kind [13]

Aβ(t) :=

t∫
0

K(C(τ), τ)β(τ)dτ = f(t), f(t) := C(t)− C(0),

K(C(τ), τ) := S(C(τ), τ)Ib(τ), t ∈ (0, T). (2.8)

For now, assume that A : X → Y with X = Y = L2(0, T) over the field R or C. As one can

see from (2.8), the linearity comes at the expense of noise contamination both in the kernel

of the operator and in the right hand side.

Note that the kernel in (2.8) does not depend on t so that we can view the equation

as a differentiation problem. Then one will have to carry out numerical differentiation of

noisy data, which is known to be an unstable procedure. A seemingly ’natural’ approach

that avoids numerical differentiation is to discretize equation (2.8) and get a linear system

with a triangular matrix.

6

0 5 10 15 20 25 30 35 40 45
−2

−1

0

1

2

3

4

5

6

C
exact

C
data

0 5 10 15 20 25 30 35 40 45
−30

−20

−10

0

10

20

30

β
exact

β
Unreg

data

Figure (2.1) Noisy C(t) and the resulting β(t) (unregularized) - Simulated Data

Consider a simple example. Assume

C(t) = ηt+
σ sin(γt) + γ cos(γt)

(σ2 + γ2) exp(σt)
. (2.9)

This yields the following exact solution to our inverse problem:

β(t) =
(η exp(σt)− sin(γt))γ

Ib(t){S0γ + 1− cos(γt)}
. (2.10)

We take

Ib(t) = σ(sin(γt) + 2), (2.11)

and set parameter values as follows: S0 = 10, η = .05, σ = .01, γ = π/6. The time interval

is 48 months. Function (2.9) possesses some (but not all) features of the actual model for

the cumulative number of human cases (seasonal fluctuations, for example). The graph of

C(t) with no noise and with 25% noise is shown in Figure ??. Figure ?? shows the graph

for the corresponding analytic solution β and the graph of the solution obtained by solving

the discretized equation Aβ = fδ directly with the noisy data fδ. The analytic solution

illustrates a near-periodic transmission rate; the solution obtained with noisy data fails to

accurately depict the true solution.

7

One would think that increasing the number of grid points for numerical integration

would improve accuracy. However, in practice, such an approach exacerbates the problem.

This can be shown by comparing the true solution, β̂ = A−1f , with the computed solution,

βδ = A−1fδ, which gives us ‖β̂ − βδ‖ ≤ ‖A−1‖‖f − fδ‖. Dividing both sides by ‖β̂‖ gives

‖β̂ − βδ‖
‖β̂‖

≤ ‖A−1‖‖f − fδ‖
‖β̂‖

, (2.12)

the relative error of β, which is bounded above. Now

‖f‖ = ‖Aβ̂‖ ≤ ‖A‖‖β̂‖ implies
1

‖β̂‖
≤ ‖A‖
‖f‖

. (2.13)

Substituting estimate (2.13) into (2.12) implies

‖β̂ − βδ‖
‖β̂‖

≤ ‖A−1‖‖A‖︸ ︷︷ ︸
cond(A)

‖f − fδ‖
‖f‖

(2.14)

showing that the relative error of β̂ is bounded above by the condition number of the matrix

A times the relative error of f . As Table 2.2 illustrates, decreasing the step size in the

discretization of the integral produces an increasing condition number of the corresponding

matrix. As a result the noise in the data becomes magnified and negatively impacts the

quality of the computed solution. This points to the necessity of incorporating a regulariza-

Table (2.2) Relative errors for β(t) and matrix condition numbers for decreasing h

h Relative Error Cond(A)
0.200 1.97442259 1069
0.100 2.06413754 2179
0.050 2.11201994 4399
0.010 2.15146989 22166
0.005 2.15646443 44375

tion procedure into numerical algorithm, i.e., sacrificing some accuracy to achieve stability.

Instead of computing βδ = A−1fδ, we evaluate βα,δ := Rαfδ, replacing A−1 with Rα, its

8

α

e
rr

o
r

Optimal

Error Due to Noise

Error Due to Method

Total Error

α
opt

Figure (2.2) Behavior of Error

approximate, to gain stability. With this replacement, the error estimate changes as follows

‖βα,δ − β̂‖
‖β̂‖

=
‖Rαfδ − β̂‖
‖β̂‖

=
‖Rαfδ ±Rαf − β̂‖

‖β̂‖
≤ ‖Rαfδ −Rαf‖

‖β̂‖
+
‖Rαf − β̂‖
‖β̂‖

≤ ‖Rα‖‖A‖
‖fδ − f‖
‖f‖

+
‖A‖‖RαAβ̂ − β̂‖

‖f‖

≤ ‖Rα‖‖A‖
δ

‖f‖
+
‖A‖‖(RαA− I)β̂‖

‖f‖
:= E1(α) + E2(α), (2.15)

and it accumulates two sources of error E(α) = E1(α) + E2(α): the first term is the error

due to noise and the second term is the error due to the numerical method. It has been

shown [17] that if A is not boundedly invertible, ‖Rα‖ cannot be uniformly bounded. As a

result, it is noted that ‖Rα‖‖fδ − f‖ → ∞ and ‖RαAβ − β‖ → 0 as α → 0 and there is

an optimal α that minimizes this sum (see Figure ?? for example). In the next chapter, we

select Rα by Tikhonov’s, Lavrentiev’s and local regularization algorithms for solving integral

equation (2.8). Additionally, we will use Legendre polynomial approach for stable numerical

differentiation.

9

PART 3 Regularization Strategies and Discussion

3.1 The Tikhonov Regularization Algorithm

Tikhonov’s regularization [18, 19] is one of the most known regularizing algorithms. For

this method, instead of solving Aβ = fδ, we consider the following minimization problem

min
β
{‖fδ − Aβ‖2 + α‖β‖2}, α > 0, (3.1)

which results in the normal equation

A∗Aβ + αβ = A∗fδ and Rα = (A∗A+ αI)−1A∗. (3.2)

While the penalty term α||β||2 incorporates smoothness (that we expect to have in our case),

different penalty functionals can be used for other types of a priori information, like sparsity,

discontinuity, etc. Tikhonov’s regularization is one of those stabilizing algorithms that will

never let you down considering the properties of A∗A. However, this regularization method

does not conserve the Volterra structure of our original operator, and results in a dense

matrix at the discrete level.

For Tikhonov’s algorithm, setting β̂ as the exact solution, we have

E(α) = ‖[A∗A+ αI]−1A∗‖‖A‖ δ

‖f‖
+
‖A‖‖([A∗A+ αI]−1A∗A− I)β̂‖

‖f‖
(3.3)

10

as the total error for the method, analogous to (2.15). For the error due to noise, we have

E1(α) = ‖[A∗A+ αI]−1A∗‖‖A‖ δ

‖f‖
≤ sup

λ∈σ(A∗A)

√
λ

(λ+ α)
‖A‖ δ

‖f‖
≤ ‖A‖δ

2
√
α‖f‖

(3.4)

and it is expected that

E1(α)→∞ as α→ 0, (3.5)

where σ(B) denotes the spectrum of the operator B. Addressing the error due to the

numerical method, we notice that A defined in (2.8) is one-to-one. Hence the range A∗(Y)

is dense in X . So, for ε > 0, there is β̃ = A∗z̃ ∈ A∗(Y) such that ‖β̂ − β̃‖ < ε‖f‖
2‖A‖ . Thus one

has

E2(α) =
‖([A∗A+ αI]−1A∗A− I)β̂‖‖A‖

‖f‖

≤ ‖([A
∗A+ αI]−1A∗A− I)(β̂ − β̃)‖‖A‖

‖f‖
+
‖([A∗A+ αI]−1A∗A− I)A∗z̃‖‖A‖

‖f‖

≤ ‖[A∗A+ αI]−1A∗A− [A∗A+ αI]−1[A∗A+ αI]‖‖β̂ − β̃‖‖A‖
‖f‖

+
‖ ([A∗A+ αI]−1A∗A− [A∗A+ αI]−1[A∗A+ αI])A∗‖‖z̃‖‖A‖

‖f‖

≤ α‖A∗A+ αI]−1‖‖β̂ − β̃‖‖A‖
‖f‖

+
α‖[A∗A+ αI]−1A∗‖‖z̃‖‖A‖

‖f‖

≤ ε

2
+

√
α‖z̃‖‖A‖
2‖f‖

≤ ε

2
+
ε

2
= ε for sufficiently small α. (3.6)

This proves that E2(α)→ 0 as α→ 0 although one can observe from above that convergence

of E2(α) to 0 can be arbitrarily slow. However, if we additionally assume that β̂ ∈ A∗(Y),

i.e. β̃ = β̂, then we have

E2(α) ≤
√
α‖ẑ‖‖A‖
2‖f‖

. (3.7)

And the total error for the method is

E(α) ≤ ‖A‖δ
2
√
α‖f‖

+

√
α‖ẑ‖‖A‖
2‖f‖

=
‖A‖
2‖f‖

[
δ√
α

+
√
α‖ẑ‖

]
, (3.8)

11

αopt =
δ

‖ẑ‖
and E(αopt) =

‖A‖
‖f‖

√
‖ẑ‖δ. (3.9)

We can see that one can minimize E(α) to obtain an optimal value of α. However, this

determination will depend on ‖ẑ‖ which is not available a priori. Though we will not seek

to describe the error in the descriptions of the remaining methods, it has been shown that

prior knowledge about the exact solution is necessary to determine the optimal α in each of

these methods [13, 20]. Rather than pursuing such an a priori method, we will instead use

an a posteriori algorithm for choosing α that depends on the noise level only.

3.2 Lavrentiev’s Stabilizing Scheme

In the attempt to keep the lower triangular form of A, we apply Lavrentiev’s regular-

ization procedure [21]

Aβ + αβ = fδ, (3.10)

which allows for the following solution

β = (A+ αI)−1fδ, (3.11)

and the regularizer being Rα = (A + αI)−1. The structure of the operator is maintained

in this algorithm, and the penalty term can potentially increase stability of the equation by

shifting the spectrum of the operator away from zero. Lavrentiev’s method has been justified

for non-negative and self-adjoint linear operators. Clearly, A defined in (2.8) does not satisfy

these conditions, therefore, we use Lavrentiev’s method with reservations. However, for some

data sets, the stability stands to improve by shifting the spectrum while the structure is

preserved.

3.3 The Local Regularization Approach

As opposed to Lavrentiev’s and Tikhonov’s regularization schemes, in the local regu-

larization method [22] the penalty term is extracted from the original operator rather than

12

added to it. To illustrate the idea of local regularization, we consider a general Volterra-type

integral equation

Aβ = fδ, Aβ(t) :=

t∫
0

K(t, τ)β(τ)dτ, (3.12)

A : L2(0, T) → L2(0, T). Following [23], suppose that (3.12) is satisfied on the extended

domain [0, T +α], α > 0. If necessary, we can reduce the value of T . To regularize, we write

this equation in the form

t∫
0

K(t+ ρ, τ)β(τ)dτ +

t+ρ∫
t

K(t+ ρ, τ)β(τ)dτ = fδ(t+ ρ), (3.13)

t ∈ (0, T), ρ ∈ (0, α),

and modify (3.13) by assuming that β(τ) = β(t) for all τ ∈ [t, t + ρ]. That results in a

Volterra integral equation of the second kind

t∫
0

K(t+ ρ, τ)β(τ)dτ +

t+ρ∫
t

K(t+ ρ, τ)dτβ(t) = fδ(t+ ρ), (3.14)

where ρ can be viewed as a regularization parameter. However since fδ is noise contaminated,

it is beneficial to take its average over the interval [t, t + α] to approximate f(t). To this

end, we integrate both sides of (3.14) to obtain

1

α

t∫
0

α∫
0

K(t+ ρ, τ)dρ β(τ)dτ +
1

α

α∫
0

t+ρ∫
t

K(t+ ρ, τ)dτ dρ β(t) (3.15)

= 1
α

α∫
0

fδ(t+ ρ)dρ, t ∈ (0, T).

From the above, one arrives at a local regularization procedure in the form

Aαβ + λαβ = gα, λα :=
1

α

α∫
0

t+ρ∫
t

K(t+ ρ, τ)dτ dρ, (3.16)

13

Aαβ :=
t∫

0

Kα(t, τ)β(τ)dτ, and Kα(t, τ) := 1
α

α∫
0

K(t+ ρ, τ)dρ,

where Aα and gα are the averaged operator and the averaged data, respectively. As one can

see, this regularization does not change the structure of the operator. Additionally, since

λα is allowed to be time-dependent, the penalty is more sensitive, thus helping to prevent

over-regularizing of computed solutions. One concludes from (2.8) that in the case of our

particular inverse problem, the kernel of the operator A does not depend on the variable t.

This yields Aα = A, and the locally regularized equation takes the form

Aβ + λαβ = gα, gα =
1

α

α∫
0

fδ(t+ ρ)dρ, (3.17)

λα(t) =
1

α

α∫
0

t+ρ∫
t

K(C(τ), τ)dτdρ =
1

α

α∫
0

K(C(s+ t), s+ t)(α− s)ds. (3.18)

3.4 Stable Numerical Differentiation with Legendre Polynomials

Our next routine for the estimation of β(t) has been largely motivated by [24, 25], where

it was argued that the singular system of the integral operator has limitations preventing

it from accurately approximating the derivatives of some (even trivial) analytic functions.

Based on this observation, it has been suggested that regularization algorithms applied to

Volterra’s integral equation of the first kind are not always beneficial for stable numerical

differentiation of noise contaminated partial data. Thus in [25], it is recommended to look

for some other basis, which does not have the restrictions that the singular system of the

integral operator would unavoidably impose. Since in our case Cδ(t) is the cumulative

number of infections from birds to humans, it results from reporting methods that may not

be consistently timely and noise-free.

In this section, in place of considering Volterra’s equation (2.8), we solve for β(t) using

14

expressions (2.7)-(2.8):

β(t) =
(Cδ(t))

′

Ib(t)

[(
S0 − Λ

µ
+ Cδ(0)

)
e−µt + Λ

µ
− Cδ(t) + µ

t∫
0

Cδ(τ)e−µ(t−τ)dτ

] . (3.19)

Differentiation of noisy data is ill-posed since any small perturbation in the function may lead

to large errors in the computed derivative. So, any measured data requires a regularization

procedure to be used along with a numerical differentiation scheme. One can try to smooth

Cδ(t) and differentiate in a stable manner by using finite differences with a step size being a

noise-dependent regularization parameter. Alternatively, prior to differentiation, the noisy

data Cδ(t) can be splined and then approximated by a finite combination of orthogonal

polynomials. Then the number of polynomials can be interpreted as a reciprocal of the

regularization parameter. For example, if one takes Legendre polynomials [20, 25, 26], then

P (n)(t) =
1

2nn!

dn

dt
[(t2 − 1)n],

which are L2-orthogonal on [−1, 1]:

∫ 1

−1

P (n)(t)P (m)(t) dt =
2

2n+ 1
δ∗n,m.

The Legendre expansion of C(t), re-scaled to [−1, 1], is given by

C(t) =
∞∑
n=0

C(n)P (n)(t), with C(n) =
2n+ 1

2

∫ 1

−1

C(t)P (n)(t) dt.

Hence, for stable numerical differentiation to be carried out, the noisy data can be filtered

as

Cδ(t) ≈
m∑
n=0

C(n)
δ P (n)(t).

For this approach, the regularization parameter α∗(δ) = 1
m(δ)

with m being the number of

terms in the summation.

15

3.5 The Discrepancy Principle

The main idea of the discrepancy principle states that solving the operator equation

with error less than the noise is not reasonable since that would give a solution to the noisy

equation rather than the exact one. For an ill-posed problem, that is not a desirable situation,

in general. Finding a regularization parameter from the discrepancy principle (DP) for a

linear ill-posed problem Aβ = f was first proposed by V. Morozov [1, 27, 28], who suggested

computing α = α(δ, fδ) > 0 so that the corresponding Tikhonov [18, 19] solution β = βα(δ,fδ),

i.e. the solution to the equation

αβ + A∗Aβ = A∗fδ, (3.20)

satisfies the condition

||Aβα(δ,fδ) − fδ|| = δ. (3.21)

It has been established in [1, 27] that

(a) βα(δ,fδ) −→ β̂ as δ −→ 0 and

(b) ||βα(δ,fδ) − β̂|| ≤ 2
√
δE if β̂ = A∗ẑ ∈ A∗(H) with ||ẑ|| ≤ E,

provided that A is a linear, compact and one-to-one operator with the dense range in a

Hilbert space H, ||f − fδ|| ≤ δ ≤ ||fδ||, and E is a constant. It was also shown in [1, 27]

that for Tikhonov’s regularization, the DP guarantees optimal convergence rates up to a

certain saturation point (i.e. for ν ∈ (0, 1/2] where β̂ ∈ R((A∗A)ν)) and sub-optimal rates

above that point. This indicates that the order of convergence O(
√
δ) is the best possible for

the Tikhonov solution with a stabilizing parameter selected by the DP. For stochastic white

noise, in a finite-dimensional setting with the error in each element of fδ having standard

deviation δ, a similar estimate holds ”in expectation” as the size of the space approaches

infinity [29, 30].

16

In [31–33], the discrepancy principle in the form

‖Aβα(δ,fδ)− fδ‖ = δ1−ε, 0 < ε < 1 (3.22)

has been justified for the case of a regularized solution constructed through a special filter

Rαfδ := θ(A∗A,α)A∗fδ, (3.23)

where θ = θ(σ, α) with α > 0, σ ∈ [0, ||A||2], and the following conditions hold

sup
σ∈[0,||A||2]

|θ(σ, α)
√
σ| ≤ C1α

−1/2, (3.24)

sup
σ∈[0,||A||2]

|θ(σ, α)σ − 1|σp ≤ C2(p)αp, p ≥ 1

2
, (3.25)

sup
σ∈[0,||A||2]

|θ(σ, α)σ − 1| ≤ C3. (3.26)

Here C1 and C3 are constants and C2 is a function of p. This generalization allowed the use

of a noisy operator (see also [34]), as well as the development of saturation-free regularizing

algorithms based on the DP. For example, the DP for the spectral cut-off filter

θ(σ, α) :=

1
σ
, σ ≥ α,

0, 0 ≤ σ < α,
(3.27)

yields optimal convergence rates [28, 35] for any ν > 0. Additionally, for a self-adjoint

operator A, discrepancy principle (3.22) has been investigated for a special regularizer

Rαfδ := θ(A,α)fδ, with θ = θ(σ, α) defined on the spectrum of A rather than A∗A in

its first variable [31, 32]. This family of methods includes Lavrentiev’s regularization [21]

among other procedures. Since then there has been an enormous effort to further develop

the original discrepancy principle while still retaining optimal orders of convergence both for

linear [36–42] and nonlinear [19, 40, 42–45] inverse problems.

In the numerical experiments that follow, the discrepancy principle (3.22) will be applied

17

to all methods consistently. The results of these experiments have motivated the formulation

and justification of a theorem on Abstract Discrepancy Principle applied to regularization

strategies without any specific structure.

18

PART 4 Numerical Results

In what follows, we present two sets of experiments. In the first subsection, we test the

algorithms and the stopping rule on simulated noisy data and compare our reconstructions

with the exact analytic solution. Then, numerical experiments with real data are conducted

and analyzed in the next subsection.

4.1 Test Experiments with Simulated Data

For the initial testing and comparison, we conduct numerical simulations for C(t), β(t)

and Ib(t) given in (2.9)-(2.11) As a reference point, for the numerical differentiation approach,

we also look at

C ′(t) = η − sin(γt) exp(−σt). (4.1)

Employing all four regularization methods to noisy data values results in the graph

shown in Figure ??. Using the discrepancy principle (3.22) with ε = 0.13 for δ = 0.25‖f‖,

we stop the regularization when ‖Aβα∗ − fδ‖ ≤ δ1−ε for the first time. Table 4.1 gives the

progression of discrepancy for each method pending the changes in the appropriate regu-

larization parameter. From Figure ??, we see that all methods improve the un-regularized

solution. With the exception of the Lavrentiev stabilizing method, the other three schemes

do a credible job of approximating actual β(t) for this model function. The unsatisfac-

tory performance of Lavrentiev’s regularization is not surprising here, since the A is not

self-adjoint in the case of a Volterra type integral operator.

19

0 5 10 15 20 25 30 35 40 45
−10

−5

0

5

10

15

20

25

30

β
Unreg

data

β
Local

data

α=2.20

β
Tikhonov

data

α=0.015

β
Lavrentiev

data

α=0.06

β
Legendre

data

 m=12

β
Exact

Figure (4.1) Computation of β using Discrepancy Principle - Simulated data

Table (4.1) Finding regularization parameter by Discrepancy Principle - Simulated data

Tikhonov Lavrentiev Local Legendre
α Discrepancy α Discrepancy α Discrepancy m Discrepancy

0.030 0.37567 0.075 0.341159 2.50 0.326267 9 0.583911
0.025 0.353222 0.070 0.326477 2.40 0.316249 10 0.432386
0.020 0.327423 0.065 0.311227 2.30 0.3063 11 0.430368
0.015 0.296755 0.060 0.295342 2.20 0.296307 12 0.241102

4.2 Reconstruction with Real Data

In this subsection, we experiment with two different data sets collected by N. Tuncer

[13]. In the first case, we work with data obtained from all countries where highly pathogenic

avian influenza (HPAI) of subtype H5N1 has been observed. In the second case, we focus on

Indonesia, one of the countries where most cases are seen, and use data for Indonesia only.

In both experiments, we evaluate the time-dependent transmission rate β(t) of the avian

influenza model using cumulative number of infected H5N1 human cases and the number of

infected poultry.

20

World Indonesia

Figure (4.2) Cumulative human infections H5N1 [2]

Table (4.2) Cumulative number of confirmed H5N1 human cases [2]

W=World (07/08− 12/11) and I=Indonesia (07/08− 06/11)
Month W I Month W I Month W I Month W I

1 385 135 12 433 141 23 498 165 34 549 176
2 385 135 13 436 141 24 499 165 35 549 176
3 387 137 14 440 141 25 502 167 36 562 178
4 387 137 15 442 141 26 505 168 37 562 –
5 387 137 16 442 141 27 505 168 38 564 –
6 391 139 17 444 141 28 507 170 39 564 –
7 403 141 18 467 161 29 508 170 40 564 –
8 408 141 19 471 161 30 512 171 41 564 –
9 413 141 20 478 163 31 518 171 42 564 –
10 421 141 21 492 163 32 525 171
11 431 141 22 495 163 33 538 175

Current world population is estimated to be 7 billion. Data related to humans is given

in units of 105 individuals, and so human population is set to 70,000 [11, 12]. The average

life expectancy is approximately 70 years and t is given in months, therefore µ = 1/(70 ∗

12)month−1. Since in a pre-pandemic scenario the total world population remains essentially

unchanged, the estimate above tells us Λ
µ
≈ 70, 000, which results in Λ = 1000/12 births per

month given in 105 individuals. We assume that initially all humans are susceptible so that

S(0) = 70, 000 for the world population experiment. For Indonesia, S(0) = 242, 325, 638/105.

The data for cumulative number of H5N1 human cases is given by the World Health

Organization (WHO) web site. However, at that web site, only data from August 2011 to

21

World Indonesia

Figure (4.3) Poultry Outbreaks [3]

Table (4.3) Poultry Outbreaks [3]

W=World (07/08− 12/11) and I=Indonesia (07/08− 06/11).
Month W I Month W I Month W I Month W I

1 44 34 12 206 187 23 81 49 34 118 202
2 106 91 13 148 139 24 54 31 35 118 202
3 100 90 14 109 100 25 61 39 36 118 202
4 37 32 15 97 87 26 59 44 37 43.6 –
5 47 36 16 20 11 27 70 52 38 43.6 –
6 83 54 17 56 42 28 85 59 39 43.6 –
7 129 102 18 130 105 29 73 50 40 35.6 –
8 250 168 19 254 169 30 129 87 41 35.6 –
9 242 202 20 356 212 31 349 172 42 35.6 –
10 136 108 21 196 98 32 326 211
11 151 126 22 128 89 33 151 206.5∗

August 2012 was available. After several email communications, N. Tuncer obtained the

archived data C(t) from January 2004 to December 2011 (see Table 4.2 and Figure 4.2).

The Food and Agriculture Organization of the United Nations (FAO) provides informa-

tion about the number of poultry outbreaks starting from July 2008 to December 2011. This

information is presented in Table 4.3 and Figure 4.3. The total poultry population was 20.4

billion poultry units worldwide in 2008 [3], and data related to poultry is given in units of

107. For the model 2.8, we require the number of infected poultry for each geographical set.

The FAO reports the total number of outbreaks. Thus, the number of infected poultry, Ib(t),

22

5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

5

6
x 10

−7

β

Unreg
data

β
Tikhonov

data

α=0.01075

β
Lavrentiev

data

α=3.30

β
Local

data

α=0.700

β
Legendre

data

 m=12

Figure (4.4) Determining β(t) using various regularization methods - World

Table (4.4) Determination of Regularization Parameter by Discrepancy - World.

Tikhonov Lavrentiev Local Legendre
α Discrepancy α Discrepancy α Discrepancy m Discrepancy

0.0125 0.0054325 3.575 0.0053487 0.77000 0.0055791 8 0.0090900
0.012 0.0053127 3.5 0.0052477 0.75000 0.0054104 9 0.0072021
0.0115 0.0051896 3.425 0.0051474 0.73000 0.0052426 10 0.0055490
0.011 0.0050631 3.35 0.0050479 0.71000 0.0050756 11 0.0052604

0.01075 0.0049984 3.3 0.0049820 0.70000 0.0049922 12 0.0049884

23

5 10 15 20 25 30 35
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−5

β

Unreg
data

β
Tikhonov

data

α=0.048

β
Lavrentiev

data

α=2.60

β
Local

data

α=0.303

β
Legendre

data

 m=37

Figure (4.5) Determining β(t) using various regularization methods - Indonesia

Table (4.5) Determination of Regularization Parameter by Discrepancy - Indonesia.

Tikhonov Lavrentiev Local Legendre
α Discrepancy α Discrepancy α Discrepancy m Discrepancy

0.055 0.0056013 2.95 0.0055021 0.313 0.0053755 33 0.0062549
0.053 0.0054053 2.85 0.0053413 0.31 0.0052539 34 0.0059120
0.051 0.0052115 2.75 0.0051784 0.307 0.0051338 35 0.0058171
0.049 0.0050199 2.65 0.0050133 0.304 0.0050152 36 0.0057698
0.048 0.0049250 2.6 0.0049299 0.303 0.0049760 37 0.0041646

24

can be computed by estimating the average poultry farm size and multiplying this by the

number of outbreaks. Worldwide farm size varies from hundreds to several thousands in the

countries affected by the H5N1 virus. We take the average worldwide farm size to be 1000.

Poultry farm size in Indonesia has a much smaller range: over 97.5% of farms in Indonesia

are in the range of 222 to 834. We take the weighted average farm size for Indonesia to be

682 [13].

For each method, we maintain the same discretization step size, h = 0.01, to generate

the lower triangular matrix A. Due to the values used in constructing A, we are presented

with different scales for each data set. To facilitate comparison, the following procedure

is used. For Indonesia data, the matrix A has a maximum value of 0.7244; for the World

data set, this maximum is 26.3448. The minimum in both cases is 0. Our regularization

parameter for Lavrentiev’s stabilizing algorithm is scaled through dividing by this maximum

in both cases. The effect of this division is to present α as the shifting of the spectrum of

the matrix whose values lie in the interval [0, 1]. For the Tikhonov regularization method,

we employ a similar procedure. In this case, we use maximum and minimum entries of A∗A.

For Indonesia, this maximum is 566.9428; for World it is 1.391× 106. The minimum values

for this matrix are 0.0138 and 3.0028, respectively, and can be disregarded in the scaling.

Finally, for local regularization, α is the length of the interval, where the unknown function

β remains unchanged.

In the numerical experiments using simulated data, all methods, with the exception of

Lavrentiev’s regularization algorithm, reconstructed the model solution in a stable and accu-

rate manner. In contrast, with real data, Lavrientiev’s algorithm was among the consistent

performers. Tikhonov’s algorithm was the top performer with all data sets, both simulated

and real, and was best at reducing the significant negative component of the unregularized

solution occurring at the approximate middle range of the graphs for real data (Figures 4.4

and 4.5). We do not expect the bird to human transmission rate to be negative. Stable

numerical differentiation with Legendre polynomials performs poorly for real data, while for

the simulated data it is one of the best. We suspect this has to do with discontinuity of

25

real data, especially for Indonesia, which was not reporting infected human cases in calendar

year 2009, and then reported them all at once at the end of December 2009 [3, 13]. For

all methods, this reporting anomaly results in an artificial jump in the number of H5N1

infected human cases (see Figure 4.2). As a result, all regularizing algorithms show a rapid

increase in the bird-to-human transmission rate around December 2009 that is not entirely

appropriate. The remaining oscillations can be attributed to seasonality due to temperature

fluctuations, environmental changes, and other natural factors.

26

PART 5 Abstract Discrepancy Principle

In this section, we formulate the main theoretical result of this thesis, Theorem 2.1 [46],

for a linear irregular operator equation

Aβ = f, A : X → Y , (5.1)

with noise contaminated data fδ, ||f − fδ|| ≤ δ.

Theorem 2.1. Let the operator A between two Banach spaces X and Y be linear, one-

to-one and bounded with a dense range. Suppose also that in the noise-free case, the exact

equation, Aβ = f, is solvable and β̂ is a solution. Assume that a family of operators

Rα : Y → X , α > 0, generates a regularization strategy in the following sense

lim
α→0+

RαAβ = β for all β ∈ X , (5.2)

and the operator function Rα is strongly continuous with respect to α for any α > 0 such

that

lim
α→∞

||ARα|| = 0, sup
α≥0
||I−ARα|| = c <∞, sup

α≥0
||Rα|| ||(A−ARαA)β̂|| = D <∞, (5.3)

where c and D are constants. Let f be given by its δ-approximation

||f − fδ|| ≤ δ, (5.4)

27

and a regularized solution to (5.1) be defined as βα := Rαfδ. Suppose α = α(δ, fδ) is selected

by the Discrepancy Principle:

||Aβα(δ,fδ) − fδ|| = δ1−ε, 1 > ε > 0, (5.5)

where we assume δ1−ε < ||fδ||. Then α = α(δ, fδ) satisfying equation (5.5) exists, and

lim
δ→0
||Rα(δ,fδ)fδ − β̂|| = 0. (5.6)

Proof of Theorem 2.1. First, we verify that

lim
α→∞

||Aβα − fδ|| = ||fδ||, (5.7)

lim
α→0+

||Aβα − fδ|| = 0, (5.8)

and the mapping α −→ ||Aβα − fδ|| is continuous. (5.9)

Indeed, since by (5.3) limα→∞ ||ARα|| = 0, one concludes that

lim
α→∞

||Aβα − fδ|| ≤ lim
α→∞

{
||ARα|| ||fδ||+ ||fδ||

}
= ||fδ||,

and

lim
α→∞

||Aβα − fδ|| ≥ lim
α→∞

{
||fδ|| − ||ARα|| ||fδ||

}
= ||fδ||,

which yields (5.7). Now fix any ε > 0. Since the range of A is dense in Y , there exists

β̃ ∈ Y with ||Aβ̃ − fδ|| ≤ ε
3(c+1)

≤ ε
3
. By (5.2), there is ᾱ > 0, such that for any α ∈ (0, ᾱ],

||RαAβ̃ − β̃|| ≤ ε
3||A|| . Hence, for any α ∈ (0, ᾱ], one gets

||Aβα − fδ|| = ||ARα(fδ − Aβ̃ + Aβ̃)− fδ)|| ≤ ||ARα|| ||fδ − Aβ̃||

+||A(RαAβ̃ − β̃ + β̃)− fδ|| ≤ ||ARα|| ||fδ − Aβ̃||+ ||A|| ||RαAβ̃ − β̃||

28

+||Aβ̃ − fδ|| ≤ (c+ 1)
ε

3(c+ 1)
+ ||A|| ε

3||A||
+
ε

3
≤ ε.

Continuity of φ(α) := ||Aβα − fδ|| follows from strong continuity of Rα. Since 0 ≤ δ1−ε <

||fδ||, Equation (5.5) is solvable for α.

At the next step, we prove relationship (5.6), the main part of the theorem. One has

||Rα(δ,fδ)fδ − β̂|| ≤ ||Rα(δ,fδ)|| δ + ||Rα(δ,fδ)Aβ̂ − β̂||.

Let us show that

||Rα(δ,fδ)Aβ̂ − β̂|| → 0 as δ → 0. (5.10)

Suppose

lim sup
δ→0

α(δ, fδ) = α̃. (5.11)

From (5.7), one derives that α̃ <∞. Indeed, assume the opposite. Let {δm}, limm→∞ δm = 0,

be a sequence such that limm→∞ αm = ∞, where αm := α(δm, fδm). Then (5.3) and (5.11)

yield

lim
m→∞

||Aβαm − fδm|| ≥ lim
δ→0
||fδ|| − lim

α→∞
||Aβα|| = ||f ||.

On the other hand, by (5.5) limδ→0 ||Aβα(δ,fδ) − fδ|| = limδ→0 δ
1−ε = 0. This contradiction

shows that α̃ <∞. Two cases are possible:

(i) α̃ = 0. Then (5.10) follows from (5.2).

(ii) 0 < α̃ < ∞. Take an arbitrary sequence {δn} such that limn→∞ δn = 0. If the

sequence {αn}, αn := α(δn, fδn), is convergent then limn→∞ αn = α̂ ≤ α̃. By (5.3), one

obtains

lim
n→∞

||Aβαn−fδn|| = lim
n→∞

||ARαnfδn−fδn|| ≤ lim
n→∞

{
||(ARαn−I)f ||+||ARαn−I||δn

}
= ||ARα̂f−f ||,

and

lim
n→∞

||Aβαn − fδn|| ≥ lim
n→∞

{
||(ARα − I)f || − ||ARαn − I||δn

}
= ||ARα̂f − f ||.

29

At the same time, by (5.5)

lim
n→∞

||Aβαn − fδn|| = δ1−ε
n = 0.

Therefore, ||ARα̂f − f || = 0 and Rα̂f = β̂. So, from the strong continuity of the operator

Rα,

lim
n→∞

||RαnAβ̂ − β̂|| = lim
n→∞

||Rαnf −Rα̂f || = 0.

Hence, if the sequence {αn} is convergent, then limδ→0 ||Rα(δ,fδ)Aβ̂ − β̂|| = 0. If {αn} does

not converge, then ||Rα(δ,fδ)Aβ̂ − β̂|| still goes to zero. Indeed, assume

lim sup
n→∞

||RαnAβ̂ − β̂|| = d, 0 < d ≤ ∞. (5.12)

There is a subsequence {αk}, αk := α(δnk , fδnk), such that limk→∞ ||RαkAβ̂ − β̂|| = d. Now,

if one takes {αkj}, αkj := α(δnkj , fδnkj
), which converges to some ᾰ ≤ α̃, then, by the above

argument, limj→∞ ||RkjAβ̂ − β̂|| = 0. On the other hand, by (5.12) this limit is equal to d.

This contradiction proves that (5.10) holds.

The last step of the proof is to check that limδ→0 ||Rα(δ,fδ)|| δ = 0. Conditions (5.3)-(5.5)

imply

||Aβ̂ − ARαAβ̂|| ≥ ||ARαfδ − fδ|| − ||I − ARα|| ||f − fδ|| ≥ δ1−ε − cδ.

From the above, one derives

Dδε ≥ ||Rα(δ,fδ)|| ||Aβ̂ − ARα(δ,fδ)Aβ̂|| δ
ε ≥ δ(1− cδε)||Rα(δ,fδ)||. (5.13)

Estimate (5.13) completes the proof. �

Remark 2.2 In order to verify the third condition in (5.3), one has to use some a priori

information about the true solution β̂. Oftentimes, the mere existence is enough, while in

some cases, additional requirements are to be imposed.

Remark 2.3 For a number of important algorithms, the regularization parameter α takes

30

discrete values. For instance, when stable numerical differentiation with Legendre polyno-

mials is used, α = 1, 1/2, 1/3,...1/n,... . Suppose α∗ and α∗∗ are the two values of α such

that

||Aβα∗(δ,fδ) − fδ|| ≤ δ1−ε < ||Aβα∗∗(δ,fδ) − fδ||. (5.14)

Let us take the value of α equal to α∗. Clearly, limδ→0 ||Rα∗(δ,fδ)Aβ̂ − β̂|| = 0, since in the

proof of this part the identity ||Aβα(δ,fδ)−fδ|| = δ1−ε can easily be replaced with the estimate

from above, ||Aβα∗(δ,fδ) − fδ|| ≤ δ1−ε. In order to justify

lim
δ→0
||Rα∗(δ,fδ)||δ = 0, (5.15)

let us additionally assume that for any two consecutive values of α, α(1) > α(2), one has

||Rα(1) ||
||Rα(2) ||

≥ ν > 0. (5.16)

Then, following (5.13), one concludes

Dδε ≥ ||Rα∗∗(δ,fδ)|| ||Aβ̂ − ARα∗∗(δ,fδ)Aβ̂|| δ
ε ≥ δ(1− cδε)||Rα∗∗(δ,fδ)||

= δ(1− cδε)||Rα∗(δ,fδ)||
||Rα∗∗(δ,fδ)||
||Rα∗(δ,fδ)||

≥ δ(1− cδε)||Rα∗(δ,fδ)||ν, (5.17)

which yields (5.15).

This observation serves as an important practical tool even for the algorithms where the

regularization parameter α is continuous, since in the process of numerical implementation it

allows verification of condition (5.5) on a discrete collection of grid points {αi}, i = 1, 2, ..., I,

(and satisfy the inequality rather than identity) without solving nonlinear equation (5.5) by,

say, Newton’s method.

If the first condition in (5.3) no longer makes sense in a discrete case (see subsection

3.4), then one can assume that Rα = 0 for sufficiently large values of α.

31

PART 6 Conclusions and Future Work

As one can see from Figure ?? and Table 4.1, with the exception of the Lavrentiev

regularization, the three remaining schemes provide a very accurate and stable reconstruction

of the model solution. The Lavrentiev method is not justified in our case, and we essentially

take our chances with it. However, for the real data, Lavreniev’s reconstruction is consistent

with other regularized solutions and seems to perform satisfactory. The Tikhonov stabilizing

algorithm is a clear winner in case of the real data (a textbook example of what regularization

should and should not do). Surprisingly, stable numerical differentiation with Legendre

polynomials fails for real data, while for for the simulated data it is one of the best. We

suspect it has to do with discontinuity of real data, especially for Indonesia, which was not

reporting infected human cases in calendar year 2009, and then reported them all at once at

the end of December 2009 [3, 13]. This results in an artificial jump in the number of H5N1

infected human cases (see Figure 4.2). Consequently, all regularizing algorithms show a rapid

increase in the bird-to-human transmission rate around December 2009 that is not entirely

accurate, as shown in Figures 4.4 and 4.5. The remaining oscillations can be attributed

to seasonality due to temperature fluctuations, environmental changes, and other natural

factors. The next step in this approach will be to generalize ADP in the case of nonlinear

ill-posed problems and to further explore its numerical efficiency.

32

REFERENCES

[1] V. A. Morozov, “Choice of parameter for the solution of functional equations by the

regularization method,” in Soviet Math. Doklady, vol. 8, 1967, pp. 1000–1003.

[2] “Confirmed human cases of avian influenza A(H5N1),” World Health Organization.

[Online]. Available: http://www.who.int/influenza/human animal interface/H5N1

cumulative table archives/en/index.html

[3] Food and Agriculture Organization of the United Nations, “FAO statistics, Country-

STAT,” www.fao.org.

[4] D. Kaye and C. R. Pringle, “Avian influenza viruses and their implication for human

health,” Clinical infectious diseases, vol. 40, no. 1, pp. 108–112, 2005.

[5] R. Webster, K. Shortridge, and Y. Kawaoka, “Influenza: interspecies transmission and

emergence of new pandemics,” FEMS Immunology & Medical Microbiology, vol. 18,

no. 4, pp. 275–279, 1997.

[6] D. M. Morens and A. S. Fauci, “The 1918 influenza pandemic: insights for the 21st

century,” Journal of Infectious Diseases, vol. 195, no. 7, pp. 1018–1028, 2007.

[7] R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M.

Sessions, X. Xu, E. Skepner, V. Deyde et al., “Antigenic and genetic characteristics of

swine-origin 2009 A (H1N1) influenza viruses circulating in humans,” Science, vol. 325,

no. 5937, pp. 197–201, 2009.

[8] J. Oxford, “Influenza a pandemics of the 20th century with special reference to 1918:

virology, pathology and epidemiology,” Reviews in medical virology, vol. 10, no. 2, pp.

119–133, 2000.

http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html

33

[9] S. Iwami, Y. Takeuchi, A. Korobeinikov, and X. Liu, “Prevention of avian influenza

epidemic: What policy should we choose?” Journal of theoretical biology, vol. 252,

no. 4, pp. 732–741, 2008.

[10] S. Iwami, Y. Takeuchi, and X. Liu, “Avian flu pandemic: Can we prevent it?” Journal

of theoretical biology, vol. 257, no. 1, pp. 181–190, 2009.

[11] N. Tuncer and M. Martcheva, “Modeling seasonality in avian influenza H5N1,” Journal

of Biological Systems, vol. 21, no. 04, 2013.

[12] M. Martcheva, “Avian influenza: Modeling and implications for control,” Math. Mod.

Nat. Phenom., to appear.

[13] A. Smirnova and N. Tuncer, “Estimating time-dependent transmission rate of avian

influenza via stable numerical algorithm,” Journal of Inverse and Ill-Posed Problems,

vol. 0, no. ISSN (Online) 1569–3945, 2013.

[14] S. Iwami, Y. Takeuchi, and X. Liu, “Avian–human influenza epidemic model,” Mathe-

matical biosciences, vol. 207, no. 1, pp. 1–25, 2007.

[15] K. I. Kim, Z. Lin, and L. Zhang, “Avian-human influenza epidemic model with diffu-

sion,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 313–322, 2010.

[16] J. Lucchetti, M. Roy, and M. Martcheva, “An avian influenza model and its fit to human

avian influenza cases,” Advances in Disease Epidemiology, pp. 1–30, 2009.

[17] A. Kirsch, An introduction to the mathematical theory of inverse problems. Springer,

2011, vol. 120.

[18] A. N. Tikhonov, Numerical methods for the solution of ill-posed problems. Kluwer

Academic Publishers, 1995.

[19] A. Tikhonov, A. Leonov, and A. Yagola, “Nonlinear ill-posed problems,” Nonlinear

ill-posed problems, London: Chapman & Hall, 1998, 2 vols. Applied mathematics and

mathematical computation, v. 14, ISBN 0412786605, vol. 1, 1998.

34

[20] Z. Zhao, “A truncated legendre spectral method for solving numerical differentiation,”

International Journal of Computer Mathematics, vol. 87, no. 14, pp. 3209–3217, 2010.

[21] M. M. Lavrent‘ev, V. G. Romanov, and S. P. Shishatskĭı, Ill-posed problems of mathe-

matical physics and analysis. AMS Bookstore, 1986, vol. 64.

[22] P. K. Lamm, “Full convergence of sequential local regularization methods for volterra

inverse problems,” Inverse problems, vol. 21, no. 3, p. 785, 2005.

[23] C. D. Brooks and P. K. Lamm, “A generalized approach to local regularization of linear

volterra problems in lp spaces,” Inverse Problems, vol. 27, no. 5, p. 055010, 2011.

[24] J. Flemming, B. Hofmann, and P. Mathé, “Sharp converse results for the regularization

error using distance functions,” Inverse Problems, vol. 27, no. 2, p. 025006, 2011.

[25] S. Lu, V. Naumova, and S. V. Pereverzev, “Legendre polynomials as a recommended

basis for numerical differentiation in the presence of stochastic white noise,” Journal of

Inverse and Ill-posed Problems, vol. 21, no. 2, pp. 193–216, 2013.

[26] T. Dolgopolova and V. K. Ivanov, “On numerical differentiation,” USSR Computational

Mathematics and Mathematical Physics, vol. 6, no. 3, pp. 223–232, 1966.

[27] V. A. Morozov, “The error principle in the solution of operational equations by the

regularization method,” USSR Computational Mathematics and Mathematical Physics,

vol. 8, no. 2, pp. 63–87, 1968.

[28] V. A. Morozov, Z. Nashed, and A. Aries, Methods for solving incorrectly posed problems.

Springer-Verlag New York, 1984.

[29] C. R. Vogel, Computational methods for inverse problems. Siam, 2002, vol. 10.

[30] F. Bauer and M. A. Lukas, “Comparing parameter choice methods for regularization

of ill-posed problems,” Mathematics and Computers in Simulation, vol. 81, no. 9, pp.

1795–1841, 2011.

35

[31] A. B. Bakushinskii, “Principle of the residual in the case of a perturbed operator for

general regularizing algorithms,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi

Fiziki, vol. 22, no. 4, pp. 989–993, 1982.

[32] A. Bakushinsky and A. Goncharsky, Ill-posed problems: theory and applications.

Springer Netherlands, 1994.

[33] A. Leonov and A. Yagola, “Special regularizing methods for ill-posed problems with

sourcewise represented solutions,” Inverse Problems, vol. 14, no. 6, p. 1539, 1998.

[34] A. Goncharskii, A. S. Leonov, and A. G. Yagola, “A generalized discrepancy principle,”

USSR Computational Mathematics and Mathematical Physics, vol. 13, no. 2, pp. 25–37,

1973.

[35] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the

first kind. Pitman Boston, 1984, vol. 105.

[36] H. Engl, “Discrepancy principles for tikhonov regularization of ill-posed problems lead-

ing to optimal convergence rates,” Journal of optimization theory and applications,

vol. 52, no. 2, pp. 209–215, 1987.

[37] H. W. Engl and A. Neubauer, Optimal Discrepancy Principles for the Tikh0n0v Regu-

larization of Integral Equations of the First Kind. Springer, 1985.

[38] H. Gfrerer, “An a posteriori parameter choice for ordinary and iterated tikhonov regu-

larization of ill-posed problems leading to optimal convergence rates,” Mathematics of

computation, vol. 49, no. 180, pp. 507–522, 1987.

[39] A. Neubauer, “An a posteriori parameter choice for tikhonov regularization in hilbert

scales leading to optimal convergence rates,” SIAM journal on numerical analysis,

vol. 25, no. 6, pp. 1313–1326, 1988.

[40] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative regularization methods for

nonlinear ill-posed problems. Walter de Gruyter, 2008, vol. 6.

36

[41] U. Hämarik, R. Palm, and T. Raus, “A family of rules for parameter choice in tikhonov

regularization of ill-posed problems with inexact noise level,” Journal of Computational

and Applied Mathematics, vol. 236, no. 8, pp. 2146–2157, 2012.

[42] Q. Jin, “Further convergence results on the general iteratively regularized gauss-newton

methods under the discrepancy principle,” Mathematics of Computation, vol. 82, no.

283, pp. 1647–1665, 2013.

[43] A. S. Leonov, “Choice of regularization parameter for non-linear ill-posed problems with

approximately specified operator,” USSR Computational Mathematics and Mathemati-

cal Physics, vol. 19, no. 6, pp. 1–15, 1979.

[44] A. Leonov, “Accuracy-order optimality of the generalized residual principle and some

algorithms of solving nonlinear ill-posed problems with approximate data,” Siberian

Mathematical Journal, vol. 29, no. 6, pp. 940–947, 1988.

[45] Q. Jin and U. Tautenhahn, “On the discrepancy principle for some newton type methods

for solving nonlinear inverse problems,” Numerische Mathematik, vol. 111, no. 4, pp.

509–558, 2009.

[46] A. Smirnova, A. B. Bakushinskii, and L. deCamp, “On application of asymptotic gen-

eralized discrepancy principle to the analysis of epidemiology models,” Applicable Anal-

ysis, 2014, under revision.

37

Appendix A Matlab Code - Main Program

function beta_local_tk_lv_leg_real

%%%

%

% beta_local_tk_lv_real is calling program for 4 subroutines that

% determine appropriate parameters for solving the inverse problem of

% determining the beta transmission rate for avian bird flu.

%

% The main program requests user input for computations for either World

% or Indonesia. Values for the following parameters are set based on this

% choice:

%

% Parameter

% mu - Natural death rate of humans - set at 1/(70*12)

% S0 - Initial population of Susceptible humans - set at 70000 and given

% in units of 10^5

% A - Birth rate of humans - set at 1000/12 - keeping susceptible

% population stable for time frame used

% delta - estimated noise - 0.005 for both World and Indonesia

% Tau - multiplier for delta (used more for simulated)

% a,b - Start and End months corresponding to data available

% sw - this is switch parameter to notify subprograms as to whether real

% or simulated data is being used

38

% C_data - given for either World or Indonesia and is the cumulative

% number of human infections

% I_data - given for either World or Indonesia and is number of infected

% poultry

% For each method, a starting alpha (m) and a step size is given. For

% Tikhonov, Lavrentiev, and Local we have the appendages of TK, LV and LC

% respectively. For Legendre, we have the appendage LG.

% For each data set, the grid is set for plotting

%

%

% Calling subroutines:

% This program calls the routine for determining parameter using the 4

% different regularization methods. In general, these routines operate as

% follows:

% Method is called and the data sets and parameter values are passed to

% the subroutine. The spline for determined beta transmission rate, the

% determined alpha (m), and in the case of Tikhonov and Lavrentiev, the

% maximum value of the matrix used is passed back so that upon plotting

% and displaying these methods display comparable alpha values.

% The call to the Tikhonov method also passes back the unregularized

% solution which is common to all methods.

%

% Plotting takes place after all methods are called and are displayed in

% one plot.

%

% This program can be modified to work with simulated data in the

% following fashion:

%

39

% 1) Comment out the input portion of the code

%

% 2) Set parameter values for the following under the model problem for

% which an exact solution can be analytically determined (see paper)

% mu, S0, A, gamma

% Set beginning and ending time

% a and b

% Set delta for amount of noise in data

% delta

% Set initial alpha (m) values and step sizes for methods

% (The setup used in paper for simulated is coded and commented out)

%

% 3) Include these program lines before subprogram calls:

% C_data = C_exact(t_data,A,mu,gamma).*(1 + delta*(1-2*rand(1,N)));

% for i=1:N

% I_data(i)=.01.*(sin(gamma.*i)+2);

% end

%

% 4) Uncomment plot command for ’beta_exact’

%

%%

close all

fprintf(1,’Choose W for World data, I for Indonesia.\n’);

fprintf(1,’ \n’);

p=input(’ ’,’s’);

if p== ’W’

40

mu = 1/(70*12);

S0 = 70000;

A = 1000/12;

delta = 0.005;

Tau = 1;

a = 1; b = 42;

sw = 1;

C_data=C_dataW;

I_data=I_dataW;

alphaLV = 94.84128; %World Lavrentiev initial

alphaLVstep = .5*1.31724; %World Lavrentiev step size alpha

alphaTK = 19474.00; %World Tikhonov initial

alphaTKstep = .5*695.5; %World Tikhonov step size alpha

mLG = 6; %World Legendre initial

mLGstep = 1; %World Legendre step size m

LGsw = 1; %Switch to modify data vec Real

alphaLC = 0.78; %World Local initial

alphaLCstep = 0.005; %World Local step size alpha

ax = [a b -3*10^-7 6*10^-7];

t_data = a:1:b; %time data vector set up

N = length(t_data); %length of time data vector

else

mu = 1/(70*12);

S0 = 242325638/10^5;

A = 1000/12;

delta = 0.005;

Tau = 1;

41

a = 1; b = 36;

sw = 1;

C_data=C_dataI;

I_data=I_dataI;

alphaLV = 2.1732; %Indonesia Lavrentiev initial

alphaLVstep = 0.03622; %Indonesia Lavrentiev step size alpha

alphaTK = 31.181854; %Indonesia Tikhonov initial

alphaTKstep = 0.566943; %Indonesia Tikhonov step size alpha

mLG = 30; %Indonesia Legendre initial

mLGstep = 1; %Indonesia Legendre step size m

LGsw = 1; %Switch to modify data vec Real

alphaLC = 0.315; %Indonesia Local initial

alphaLCstep = 0.001; %Indonesia Local step size alpha

ax = [a b -2*10^-5 2*10^-5];

t_data = a:1:b; %time data vector set up

N = length(t_data); %length of time data vector

end

%%%

% %%%% For use with simulated data

% %%%% Uncomment these parameter definitions, change as desired

%

%

% mu = .01;

% S0 = 10;

% A = .05;

% gamma = pi/6;

% delta = 0.5;

% Tau = 0.6;

42

% a = 0; b = 4;

% sw = 0;

% alphaLV = 0.1; %World Lavrentiev initial

% alphaLVstep = 0.005; %World Lavrentiev step size alpha

% alphaTK = 0.05; %World Tikhonov initial

% alphaTKstep = 0.005; %World Tikhonov step size alpha

% mLG = 6; %World Legendre initial

% mLGstep = 1; %World Legendre step size m

% LGsw = 0; %Switch to NOT modify data vec

% alphaLC = 3; %World Local initial

% alphaLCstep = 0.1; %World Local step size alpha

% ax = [a b -10 30];

% t_data = a:1:b; %time data vector set up

% N = length(t_data); %length of time data vector

% C_data = zeros(1,N);

% I_data = zeros(1,N);

% C_data = C_exact(t_data,A,mu,gamma).*(1 + delta*(1-2*rand(1,N)));

% for i=1:N

% I_data(i)=.01.*(sin(gamma.*i)+2);

% end

%%

%%%%% Calling Sub-programs for Methods %%%%%

[pp_data_tk,pp_data_unreg,alphatk,maxMvtk] = ...

beta_tikhonov_real_data_sub(C_data,I_data,...

mu,S0,A,a,b,alphaTK,alphaTKstep,Tau,delta,sw);

43

[pp_data_lv,alphalv,maxMvlv] = ...

beta_lavrentiev_real_data_sub(C_data,I_data,...

mu,S0,A,a,b,alphaLV,alphaLVstep,Tau,delta,sw);

[pp_data_local,alpha] = ...

beta_local_real_data_sub(C_data,I_data,...

mu,S0,A,a,b,alphaLC,alphaLCstep,Tau,delta);

[pp_data_lg,m] = beta_legendre_real_data_modified_sub(C_data,I_data,...

mu,S0,A,a,b,mLG,mLGstep,Tau,delta,LGsw);

%%%%% Plot Sequence for Beta %%%%%

figure

hold all

fplot(@(x)[ppval(pp_data_unreg,x)],[a b],’*-k’);

[~,~,~,current_entries] = legend;

legend([current_entries ...

{sprintf(’\\beta_{Unreg_{data}}’)}],’Location’,’NorthEast’);

fplot(@(x)[ppval(pp_data_tk,x)],[a b],’*-b’);

[~,~,~,current_entries] = legend;

legend([current_entries ...

{sprintf(’\\beta_{Tikhonov_{data}}\\alpha=%3.3f’,...

alphatk/maxMvtk)}],’Location’,’NorthEast’);

fplot(@(x)[ppval(pp_data_lv,x)],[a b],’*-g’);

[~,~,~,current_entries] = legend;

legend([current_entries ...

44

{sprintf(’\\beta_{Lavrentiev_{data}}\\alpha=%2.2f’,...

alphalv/maxMvlv)}],’Location’,’NorthEast’);

fplot(@(x)[ppval(pp_data_local,x)],[a b-alpha],’*-r’);

[~,~,~,current_entries] = legend;

legend([current_entries ...

{sprintf(’\\beta_{Local_{data}}\\alpha=%3.3f’,...

alpha)}],’Location’,’NorthEast’);

fplot(@(x)[ppval(pp_data_lg,x)],[a+1 b],’*-m’);

[~,~,~,current_entries] = legend;

legend([current_entries ...

{sprintf(’\\beta_{Legendre_{data}} m=%2.0f’,...

m)}],’Location’,’NorthEast’);

%fplot(@(x)[beta_exact(x,A,mu,gamma,S0)],[a b],’*-c’);

%[~,~,~,current_entries] = legend;

% legend([current_entries ...

% {sprintf(’\\beta_{Exact}’)}],’Location’,’NorthEast’);

fplot(@(x)[0],[a b],’-r’);

axis(ax);

hold off

fprintf(’ %12.8f %12.8f\n’, maxMvlv, maxMvtk); %Comment out if desired

45

%%

%

% The following functions can be used when modifying the calling program

% to use simulated data

function y = C_exact(t,A,mu,gamma)

y = A.*t+(mu.*sin(gamma.*t)+gamma.*cos(gamma.*t))./...

((mu^2+gamma^2).*exp(mu.*t));

function y = C_spline(t,t_data,C_data)

pp = spline(t_data,C_data);

y = ppval(pp,t);

function y = beta_exact(t,A,mu,gamma,S0)

y = (A.*exp(mu.*t)-sin(gamma.*t))./(Ib(gamma,t).*...

(S0-(cos(gamma.*t)-1)./gamma));

function y = Ib(t,t_data,I_data)

pp = spline(t_data,I_data);

y = ppval(pp,t);

%%%%% Real Data %%%%%

% ---%

function IHd = I_dataW

46

%IHd = ones(1,length(y));

IHd(1) = 0.00440000000000000;

IHd(2) = 0.0106000000000000;

IHd(3) = 0.0100000000000000;

IHd(4) = 0.00370000000000000;

IHd(5) = 0.00470000000000000;

IHd(6) = 0.00830000000000000;

IHd(7) = 0.0129000000000000;

IHd(8) = 0.0250000000000000;

IHd(9) = 0.0242000000000000;

IHd(10) = 0.0136000000000000;

IHd(11) = 0.0151000000000000;

IHd(12) = 0.0206000000000000;

IHd(13) = 0.0148000000000000;

IHd(14) = 0.0109000000000000;

IHd(15) = 0.00970000000000000;

IHd(16) = 0.00200000000000000;

IHd(17) = 0.00560000000000000;

IHd(18) = 0.0130000000000000;

IHd(19) = 0.0254000000000000;

IHd(20) = 0.0356000000000000;

IHd(21) = 0.0196000000000000;

IHd(22) = 0.0128000000000000;

IHd(23) = 0.00810000000000000;

IHd(24) = 0.00540000000000000;

IHd(25) = 0.00610000000000000;

IHd(26) = 0.00590000000000000;

IHd(27) = 0.00700000000000000;

47

IHd(28) = 0.00850000000000000;

IHd(29) = 0.00730000000000000;

IHd(30) = 0.0129000000000000;

IHd(31) = 0.0349000000000000;

IHd(32) = 0.0326000000000000;

IHd(33) = 0.0151000000000000;

IHd(34) = 0.0118000000000000;

IHd(35) = 0.0118000000000000;

IHd(36) = 0.0118000000000000;

IHd(37) = 0.00436000000000000;

IHd(38) = 0.00436000000000000;

IHd(39) = 0.00436000000000000;

IHd(40) = 0.00356000000000000;

IHd(41) = 0.00356000000000000;

IHd(42) = 0.00356000000000000;

% ---%

% ---%

function Cexp = C_dataW

Cexp(1) = 0.00385000000000000;

Cexp(2) = 0.00385000000000000;

Cexp(3) = 0.00387000000000000;

Cexp(4) = 0.00387000000000000;

Cexp(5) = 0.00387000000000000;

Cexp(6) = 0.00391000000000000;

Cexp(7) = 0.00403000000000000;

Cexp(8) = 0.00408000000000000;

48

Cexp(9) = 0.00413000000000000;

Cexp(10) = 0.00421000000000000;

Cexp(11) = 0.00431000000000000;

Cexp(12) = 0.00433000000000000;

Cexp(13) = 0.00436000000000000;

Cexp(14) = 0.00440000000000000;

Cexp(15) = 0.00442000000000000;

Cexp(16) = 0.00442000000000000;

Cexp(17) = 0.00444000000000000;

Cexp(18) = 0.00467000000000000;

Cexp(19) = 0.00471000000000000;

Cexp(20) = 0.00478000000000000;

Cexp(21) = 0.00492000000000000;

Cexp(22) = 0.00495000000000000;

Cexp(23) = 0.00498000000000000;

Cexp(24) = 0.00499000000000000;

Cexp(25) = 0.00502000000000000;

Cexp(26) = 0.00505000000000000;

Cexp(27) = 0.00505000000000000;

Cexp(28) = 0.00507000000000000;

Cexp(29) = 0.00508000000000000;

Cexp(30) = 0.00512000000000000;

Cexp(31) = 0.00518000000000000;

Cexp(32) = 0.00525000000000000;

Cexp(33) = 0.00538000000000000;

Cexp(34) = 0.00549000000000000;

Cexp(35) = 0.00549000000000000;

Cexp(36) = 0.00562000000000000;

49

Cexp(37) = 0.00562000000000000;

Cexp(38) = 0.00564000000000000;

Cexp(39) = 0.00564000000000000;

Cexp(40) = 0.00564000000000000;

Cexp(41) = 0.00564000000000000;

Cexp(42) = 0.00564000000000000;

% ---%

function IHd = I_dataI

%IHd = ones(1,length(y));

IHd(1) = 0.0023188;

IHd(2) = 0.0062062;

IHd(3) = 0.006138;

IHd(4) = 0.0021824;

IHd(5) = 0.0024552;

IHd(6) = 0.0036828;

IHd(7) = 0.0069564;

IHd(8) = 0.0114576;

IHd(9) = 0.0137764;

IHd(10) = 0.0073656;

IHd(11) = 0.0085932;

IHd(12) = 0.0127534;

IHd(13) = 0.0094798;

IHd(14) = 0.00682;

IHd(15) = 0.0059334;

IHd(16) = 0.0007502;

IHd(17) = 0.0028644;

50

IHd(18) = 0.007161;

IHd(19) = 0.0115258;

IHd(20) = 0.0144584;

IHd(21) = 0.0066836;

IHd(22) = 0.0060698;

IHd(23) = 0.0033418;

IHd(24) = 0.0021142;

IHd(25) = 0.0026598;

IHd(26) = 0.0030008;

IHd(27) = 0.0035464;

IHd(28) = 0.0040238;

IHd(29) = 0.00341;

IHd(30) = 0.0059334;

IHd(31) = 0.0117304;

IHd(32) = 0.0143902;

IHd(33) = 0.0140833; % missing data, average taken

IHd(34) = 0.0137764;

IHd(35) = 0.0137764;

IHd(36) = 0.0137764;

% ---%

% ---%

function Cexp = C_dataI

Cexp(1) = 0.00135;

Cexp(2) = 0.00135;

Cexp(3) = 0.00137;

51

Cexp(4) = 0.00137;

Cexp(5) = 0.00137;

Cexp(6) = 0.00139;

Cexp(7) = 0.00141;

Cexp(8) = 0.00141;

Cexp(9) = 0.00141;

Cexp(10) = 0.00141;

Cexp(11) = 0.00141;

Cexp(12) = 0.00141;

Cexp(13) = 0.00141;

Cexp(14) = 0.00141;

Cexp(15) = 0.00141;

Cexp(16) = 0.00141;

Cexp(17) = 0.00141;

Cexp(18) = 0.00161;

Cexp(19) = 0.00161;

Cexp(20) = 0.00163;

Cexp(21) = 0.00163;

Cexp(22) = 0.00163;

Cexp(23) = 0.00165;

Cexp(24) = 0.00165;

Cexp(25) = 0.00167;

Cexp(26) = 0.00168;

Cexp(27) = 0.00168;

Cexp(28) = 0.00170;

Cexp(29) = 0.00170;

Cexp(30) = 0.00171;

Cexp(31) = 0.00171;

52

Cexp(32) = 0.00171;

Cexp(33) = 0.00175;

Cexp(34) = 0.00176;

Cexp(35) = 0.00176;

Cexp(36) = 0.00178;

%Cexp(37) = 0.00178;

%Cexp(38) = 0.00178;

%Cexp(39) = 0.00178;

%Cexp(40) = 0.00178;

%Cexp(41) = 0.00178;

%Cexp(41)= 0.00178;

53

Appendix B Matlab Code - Tikhonov’s algroithm subprogram

function [pp_data,pp_data_unreg,alpha,maxMv] = ...

beta_tikhonov_real_data_sub(C_data,I_data,...

mu,S0,A,a,b,alpha0,alphastep,Tau,delta,sw)

%...

% Inverse linear problem for transmission coefficient beta(t)

%...

%

% Called from beta_local_tk_lv_leg_real.m

%

% Inputs:

% C(t) = supplied human incidence

% IHd(t) = number of birds infected

% S0 = initial number of susceptible humans

% mu = natural death rate of humans

% A = birth rate of humans

% a b = start and end time

% alpha0 = initial alpha

% alphastep = step size to change alpha

% Tau = Multiplier for given delta

% delta = noise

% sw = switch: 1 for real data, 0 for simulated

54

%

%...

% Real data for the inverse problem

%...

t_data = a:1:b;

h = 0.01;

z = a+h:h:b;

K = length(z);

%%%

%%%

% This method builds a lower triangular matrix - the A matrix described in

% the paper. The (1,1) cell of the matrix is set calculating the K of the

% volterra integral described. The iteration then proceeds building

% subsequent rows and RHS from 2 to K (A is a K x K matrix). The method

% requires the build of A, the multiplication of A’ with A and the RHS and

% the addition of the penalty term, alpha*Identity to A’*A. We use \ to

% solve for beta. The resulting vector for beta is splined using the K

% values of the z vector and passed back to calling program. In addition,

% maximum values of the A’*A matrix are also passed back so that

% comparable alpha’s may be generated from the different methods.

%

%

C_d = C_spline(z,t_data,C_data); %spline all points - data

I_b = Ib(z,t_data,I_data); %spline all points - data bird

Vector_for_matrix_data = zeros(1,K); %zero vector for matrix build

Q_d(1,1) = quad(@(tau)(C_spline(tau,...

55

t_data,C_data).*exp(mu.*tau)),a,z(1)); %set (1,1) value

discrepancy = 100; M = 0;

alpha=alpha0;

disp(’_________________________________’)

disp(’M alpha discrepancy ’)

disp(’_________________________________’)

while discrepancy - Tau*delta > 0 && M < 25

f_data = zeros(K,1); %zero RHS vector

Matrix_data = zeros(K); %zero A matrix

%%%

%%%

%%%%% Build A matrix, by rows %%%%%

for j = 1:K

if j >= 2;

Q_d(1,j) = Q_d(1,j-1) + quad(@(tau)(C_spline(tau,...

t_data,C_data).*exp(mu.*tau)),z(j-1),z(j));

end

%%%%% Vector_for_matrix_data holds row data and additional

%%%%% calculations replace zeros and are then used to

%%%%% replace rows of A matrix

Vector_for_matrix_data(1,j) = I_b(j).*((S0-A/mu + ...

56

C_spline(a,t_data,C_data) + ...

mu.*Q_d(1,j)).*exp(-mu.*z(j))+A/mu-C_d(j)).*h;

f_data(j,1) = C_d(j)-C_spline(a,t_data,C_data);

Matrix_data(j,1:j) = Vector_for_matrix_data(1,1:j);

end

V=Matrix_data’*Matrix_data;

if sw == 1

maxMv=max(max(V,[],2));

else

maxMv=1;

end

f_data_tr = Matrix_data’*f_data;

Matrix_data_tr = Matrix_data’*Matrix_data + ...

alpha*eye(K); %the method

w = Matrix_data_tr\f_data_tr; %solve for beta

pp_data = spline(z,w); %set spline for beta

%set A to beta matrix for use in discrepancy

A_to_beta = (Matrix_data*w)’;

%calculate for use in discrepancy

A_data = spline(z,A_to_beta);

%%%

%%%

57

discrepancy = sqrt(quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)-ppval(A_data,x))...

.^2,a,b)./quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)).^2,a,b));

M = M + 1;

fprintf(’%6.2f %12.8f %12.8f\n’, M, alpha, discrepancy);

alpha = alpha - alphastep;

end

alpha = alpha + alphastep;

%%%

%%%

%%%% Calculation unregularized solution

f_data = zeros(K,1);

for j = 1:K

if j >= 2;

Q_d(1,j) = Q_d(1,j-1) + quad(@(tau)(C_spline(tau,...

t_data,C_data).*exp(mu.*tau)),z(j-1),z(j));

end

58

Vector_for_matrix_data(1,j) = I_b(j).*((S0-A/mu + ...

C_spline(a,t_data,C_data) + ...

mu.*Q_d(1,j)).*exp(-mu.*z(j))+A/mu-C_d(j)).*h;

f_data(j,1) = C_d(j)-C_spline(a,t_data,C_data);

Matrix_data(j,1:j) = Vector_for_matrix_data(1,1:j);

end

w = Matrix_data\f_data;

pp_data_unreg = spline(z,w);

%%%

%%%

Matrix_data’*Matrix_data(1,1);

% ---%

% FUNCTION DEFINITIONS

% ---%

function y = C_spline(t,t_data,C_data)

pp = spline(t_data,C_data);

y = ppval(pp,t);

%%%

%%%

function y = Ib(t,t_data,I_data)

pp = spline(t_data,I_data);

59

y = ppval(pp,t);

60

Appendix C Matlab Code - Lavrentiev’s algroithm subprogram

function [pp_data,alpha,maxMv]=beta_lavrentiev_real_data_sub(C_data,...

I_data,mu,S0,A,a,b,alpha0,alphastep,Tau,delta,sw)

%...

% Inverse linear problem for transmission coefficient beta(t)

%...

%

% Called from beta_local_tk_lv_leg_real.m

%

% Inputs:

% C(t) = supplied human incidence

% IHd(t) = number of birds infected

% S0 = initial number of susceptible humans

% mu = natural death rate of humans

% A = birth rate of humans

% a b = start and end time

% alpha0 = initial alpha

% alphastep = step size to change alpha

% Tau = Multiplier for given delta

% delta = noise

% sw = switch: 1 for real data, 0 for simulated

%

61

%...

% Real data for the inverse problem

%...

t_data = a:1:b;

h = 0.01;

z = a+h:h:b;

K = length(z);

%%%

%%%

% This method builds a lower triangular matrix - the A matrix described in

% the paper. The (1,1) cell of the matrix is set calculating the K of the

% volterra integral described. The iteration then proceeds building

% subsequent rows and RHS from 2 to K (A is a K x K matrix). To A, we add

% the penalty term, alpha*Identity matrix and use \ to solve for beta. The

% resulting vector for beta is splined using the K values of the z vector

% and passed back to calling program. In addition, maximum values of the

% A matrix are also passed back so that comparable alpha’s may be

% generated from the different methods.

%

%

C_d = C_spline(z,t_data,C_data); %spline all points - data

I_b = Ib(z,t_data,I_data); %spline all points - data bird

Vector_for_matrix_data = zeros(1,K); %zero vector for matrix build

Q_d(1,1) = quad(@(tau)(C_spline(tau,t_data,C_data).*exp(mu.*tau))...

,a,z(1)); %set (1,1) value

62

discrepancy = 100; M = 0;

alpha = alpha0;

disp(’_________________________________’)

disp(’M alpha discrepancy ’)

disp(’_________________________________’)

while discrepancy - Tau*delta > 0 && M < 25

f_data = zeros(K,1); %zero RHS vector

Matrix_data = zeros(K); %zero A matrix

%%%

%%%

%%%%% Build A matrix, by rows %%%%%

for j = 1:K

if j >= 2;

Q_d(1,j) = Q_d(1,j-1) + quad(@(tau)(C_spline(tau,...

t_data,C_data).*exp(mu.*tau)),z(j-1),z(j));

%cummulate

end

%%%%% Vector_for_matrix_data holds row data and additional

%%%%% calculations replace zeros and are then used to

%%%%% replace rows of A matrix

63

Vector_for_matrix_data(1,j) = I_b(j).*((S0-A/mu + ...

C_spline(a,t_data,C_data) + ...

mu.*Q_d(1,j)).*exp(-mu.*z(j))+A/mu-C_d(j)).*h;

f_data(j,1) = C_d(j)-C_spline(a,t_data,C_data);

%Calculate RHS

Matrix_data(j,1:j) = Vector_for_matrix_data(1,1:j);

%incorporate for new row calculated

end

V=Matrix_data;

if sw == 1

maxMv=max(max(V,[],2));

else

maxMv=1;

end

f_data_tr = f_data;

Matrix_data_tr = Matrix_data + alpha*eye(K); %the method

w = Matrix_data_tr\f_data_tr; %solve for beta

pp_data = spline(z,w); %set spline for beta

%set A to beta matrix for use in discrepancy

A_to_beta = (Matrix_data*w)’;

%calculate for use in discrepancy

A_data = spline(z,A_to_beta);

%%%

64

%%%

discrepancy = sqrt(quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)-ppval(A_data,x))...

.^2,a,b)./quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)).^2,a,b));

M = M + 1;

fprintf(’%6.2f %12.8f %12.8f\n’, M, alpha, discrepancy);

alpha=alpha-alphastep;

end

alpha = alpha + alphastep;

%%%

%%%

%%%% Calculation unregularized solution

f_data = zeros(K,1);

for j = 1:K

if j >= 2;

Q_d(1,j) = Q_d(1,j-1) + quad(@(tau)(C_spline...

(tau,t_data,C_data).*exp(mu.*tau)),z(j-1),z(j));

end

Vector_for_matrix_data(1,j) = I_b(j).*((S0-A/mu + ...

65

C_spline(a,t_data,C_data) + ...

mu.*Q_d(1,j)).*exp(-mu.*z(j))+A/mu-C_d(j)).*h;

f_data(j,1) = C_d(j)-C_spline(a,t_data,C_data);

Matrix_data(j,1:j) = Vector_for_matrix_data(1,1:j);

end

w = Matrix_data\f_data;

pp_data_unreg = spline(z,w);

%%%

%%%

% ---%

% FUNCTION DEFINITIONS

% ---%

function y = C_spline(t,t_data,C_data)

pp = spline(t_data,C_data);

y = ppval(pp,t);

%%%

%%%

function y = Ib(t,t_data,I_data)

pp = spline(t_data,I_data);

y = ppval(pp,t);

66

Appendix D Matlab Code - Local regularization algroithm

subprogram

function [pp_data2,alpha] = beta_local_real_data_sub(C_data,I_data,...

mu,S0,A,a,b,alpha0,alphastep,Tau,delta);

h=.01;

alpha=0;

t_data = a:1:b;

N = length(t_data);

alpha_0 = 0; %or some other fixed value

%set ups and basic information.

%h will determine size of matrix and discretization of problem

%40 is partition size for first set of integrals

%much of allocation and setup can be done initially:

%lambda, g, vector for matrix exact/data are sized

%Matrices for A_exact and A_data are sized

%A weight and evaluation vector for quadrature is obtained

%C_exact and C_spline and Ib(t) are determined

%Integrals for C_exact and C_data used in kernal are obtained

%These are used to create the A matrix for both exact and data

%Matrix_data_base is used in discrepancy loop, only calculated once

%g_alpha exact is determined and w vector for this exact is calculated

%(splined for appx to beta)

%testing code is commented out, expose to view rel error in partition sizes

67

step=h/40;

z = a+h:h:b;

K = length(z);

C_d = C_spline(z,t_data,C_data);

I_b = Ib(z,t_data,I_data);

Vector_for_matrix_data = zeros(1,K);

Matrix_data_base=zeros(K);

[s, w1, m] = mpquad(a,b,step);

Q_d = cumsum(C_spline(s,t_data,C_data).*exp(mu.*s).*w1,2);

Q_d = Q_d(40:40:end);

Vector_for_matrix_data = I_b.*((S0-A/mu+C_spline(a,t_data,C_data) + ...

mu.*Q_d).*exp(-mu.*z)+A/mu-C_d).*h;

Matrix_data_base = tril(ones(length(Vector_for_matrix_data),1)*...

Vector_for_matrix_data);

discrepancy = 100;

M = 0;

alpha = alpha0;

disp(’__________________________________’)

disp(’M alpha discrepancy ’)

disp(’__________________________________’)

while discrepancy - Tau*delta > 0 && M < 25,

lambda_data = zeros(K,1);

g_alpha_data = zeros(K,1);

step2=(alpha)/(40);

68

z2 = repmat(z,[40 1]);

%set up matrix for longer vector for s quad dim: 40 x K

s1 = [step2/2:step2:alpha-step2/2];

%vector for mp integration of s from 0 to alpha

s2 = transpose(repmat(s1, [K 1]));

%replicate the vector for mp integration of s on K columns

s2a = s2(:)’;

%convert s matrix to vector 40*K

z2=z2+s2;

%add matrix of t values plus s values

z2 = z2(:)’;

%convert matrix to vector

[s, w1, m] = mpquad(0,alpha,step2);

%determine weight vector for quadrature

w2 = transpose(repmat(w1, [K 1]));

%replicate weight vector 40 x K

w2 = w2(:)’;

%convert weight matrix to vector

Vector_for_matrix_data_s = zeros(1,length(z2)); %set up vector for s data

C_ds = C_spline(z2,t_data,C_data);

%calculate C data on t plus s vector of length 40*K

I_bs = Ib(z2,t_data,I_data);;

%calculate Ib vector on t plus s vector of length 40*K

Q_ds = C_spline(z2,t_data,C_data).*exp(mu.*z2).*w2;

%calculate inner integral of S(C(t),t) on t plus s vector

69

%calculate integral S(C(t+s),t+s)Ib(t+s)(alpha-s)

Vector_for_matrix_data_s = (I_bs.*((S0-A/mu+C_spline(a,t_data,C_data) + ...

mu.*Q_ds).*exp(-mu.*z2)+A/mu-C_ds).*(alpha-s2a).*step2);

%calculate lambda data - penalty

lambda_data = accumarray(reshape(repmat(1:K,40,1),{},1),...

Vector_for_matrix_data_s)./alpha;

g_alpha_data = zeros(K,1);

Matrix_data=Matrix_data_base;

% calculate RHS

if alpha == 0;

g_alpha_data = (C_d-C_spline(a,t_data,C_data)*ones(1,length(z)))’;

lambda_data = zeros(K,1);

else

for j = 1:K

g_alpha_data(j,1) = quad(@(rho)(C_spline(z(j) + ...

rho,t_data,C_data)-C_spline(a,t_data,C_data)),0,alpha)./alpha;

end

end

%solve

Matrix_data = Matrix_data_base + diag(lambda_data);

w = Matrix_data\g_alpha_data;

pp_data2 = spline(z,w);

%set A to beta matrix for use in discrepancy

A_to_beta2 = (g_alpha_data - lambda_data.*w)’;

%calculate for use in discrepancy

A_data = spline(z,A_to_beta2);

70

%calculate discrepancy

discrepancy = sqrt(quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)-ppval(A_data,x))...

.^2,a,b-alpha)./quad(@(x)(C_spline(x,t_data,C_data) - ...

C_spline(a,t_data,C_data)).^2,a,b-alpha));

M = M + 1;

fprintf(’%6.2f %12.8f %12.8f \n’, M, alpha, discrepancy);

alpha = alpha - alphastep;

end

alpha = alpha + alphastep;

%%%

%%%

function [s, w, m] = mpquad(a,b,step)

s = a+step/2:step:b-step/2;

m = length(s);

h = (b-a)/m;

w = h*ones(1,m);

function y = C_spline(t,t_data,C_data)

pp = spline(t_data,C_data);

y = ppval(pp,t);

function y = Ib(t,t_data,I_data)

pp = spline(t_data,I_data);

71

y = ppval(pp,t);

72

Appendix E Matlab Code - Legendre approximation subprogram

function [ppdata,m]=beta_legendre_real_data_modified_sub(C_dataD,I_data,...

mu,S0,A,a,b,minit,mstep,Tau,delta,LGsw);

%...

% Inverse linear problem for transmission coefficient beta(t)

%...

%

% Inputs:

% C(t) = supplied human incidence

% IHd(t) = number of birds infected

% S0 = initial number of susceptible humans

% mu = natural death rate of humans

% A

% a b

% minit = initial number of polynomials

% mstep = step size to change m

%

%...

% Real data for the inverse problem

%...

t_data = a:1:b;

73

h = 0.01;

z = a+h:h:b;

K = length(z);

C_d = C_spline(z,t_data,C_dataD);

I_b = Ib(z,t_data,I_data);

m=minit;

discrepancy = 100; M = 0;

disp(’________________________________’)

disp(’ M m discrepancy ’)

disp(’________________________________’)

while discrepancy - Tau*delta > 0 && M < 15,

m = m + mstep;

c = zeros(m+1,1);

if LGsw == 1

C_data = 1E3*C_dataD;

else

C_data = C_dataD;

end

for j = 1:m+1

%c(j,1) = quad(@(t)fun_(t,j-1,t_data,C_data,a,b),-1,1, 1E-13);

c(j,1) = quad(@(t)fun_(t,j-1,t_data,C_data,a,b),-1,1, 1E-9); %use this m>18

end

74

discrepancy = sqrt(quad(@(x)(C_spline(x,t_data,C_data) - ...

approx_(x,m,c,a,b)).^2,a,b)./...

quad(@(x)(C_spline(x,t_data,C_data)).^2,a,b));

M = M + 1;

fprintf(’%6.2f %6.2f %12.8f\n’,M,m,discrepancy);

end

ppdata=spline(z,beta_approx_spline(z,m,c,a,b,A,mu,S0,t_data, I_data,LGsw));

% ---%

% FUNCTION DEFINITIONS

% ---%

function y = C_spline(t,t_data,C_data)

pp = spline(t_data,C_data);

y = ppval(pp,t);

function P = leg(x,j)

if j == 0

P1 = 1; P = P1;

elseif j == 1

P2 = x; P = P2;

75

else

P1 = 1; P2 = x;

for k = 2:j

P3 = ((2*(k-1)+1).*x.*P2 - (k-1).*P1)./k;

P1 = P2; P2 = P3;

end

P = P3;

end

P = P.*sqrt((2*j+1)/2);

function y = fun_(t,j,t_data,C_data,a,b)

x = ((b - a).*t + a + b)./2;

y = C_spline(x,t_data,C_data).*leg(t,j);

function y = approx_(x,m,c,a,b)

t = (2.*x - a - b)./(b - a);

y = 0;

for j = 1:m+1

y = y + c(j).*leg(t,j-1);

end

%%%

function P_prime = leg_prime(x,j)

if j == 0

P1_prime = 0; P_prime = P1_prime;

elseif j == 1

76

P2_prime = 1; P_prime = P2_prime;

else

P1_prime = 0; P2_prime = 1;

P1 = 1; P2 = x;

for k = 2:j

P3_prime = ((2*(k-1)+1).*(x.*P2_prime + P2) - ...

(k-1).*P1_prime)./k;

P1_prime = P2_prime; P2_prime = P3_prime;

P3 = ((2*(k-1)+1).*x.*P2 - (k-1).*P1)./k;

P1 = P2; P2 = P3;

end

P_prime = P3_prime;

end

P_prime = P_prime.*sqrt((2*j+1)/2);

function y = approx_derivative_spline(x,m,c,a,b)

t = (2.*x - a - b)./(b - a);

y = 0;

for j = 1:m+1

y = y + c(j).*leg_prime(t,j-1);

end

y = 2.*y./(b - a);

function y = Ib(t,t_data,I_data)

pp = spline(t_data,I_data);

y = ppval(pp,t);

77

function y = beta_approx_spline(t,m,c,a,b,A,mu,S0,t_data, I_data,LGsw)

n = length(t);

y = zeros(1,n);

if LGsw == 1

I_data = 1E3*I_data;

for i = 1:n

%y(1,i) = approx_derivative_spline(t(i),m,c,a,b)./...

%(Ib(gamma,t(i)).*(S0.*exp(-mu.*t(i))+quad(@(tau)...

%((A-approx_derivative_spline(tau,m,c,a,b)).*...

%exp(-mu.*(t(i)-tau))),a,t(i))));

y(1,i) = approx_derivative_spline(t(i),m,c,a,b)./...

(Ib(t(i),t_data,I_data).*((S0-A/mu+1E-3*...

approx_(a,m,c,a,b)).*exp(-mu.*t(i))+A/mu-1E-3*...

approx_(t(i),m,c,a,b)+mu.*quad(@(tau)(1E-3*...

approx_(tau,m,c,a,b).*exp(-mu.*(t(i)-tau))),a,t(i))));

end

else

I_data = I_data;

for i = 1:n

y(1,i) = approx_derivative_spline(t(i),m,c,a,b)./...

(Ib(t(i),t_data,I_data).*((S0-A/mu+approx_(a,m,c,a,b))...

.*exp(-mu.*t(i))+A/mu-approx_(t(i),m,c,a,b)+mu.*...

quad(@(tau)(approx_(tau,m,c,a,b).*exp(-mu.*(t(i)-...

tau))),a,t(i))));

end

end

	Georgia State University
	ScholarWorks @ Georgia State University
	Fall 12-18-2014

	Discrepancy Principle and Stable Parameter Estimation in Avian Influenza
	Linda DeCamp
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Avian Influenza Model
	Regularization Strategies and Discussion
	The Tikhonov Regularization Algorithm
	Lavrentiev's Stabilizing Scheme
	The Local Regularization Approach
	Stable Numerical Differentiation with Legendre Polynomials
	The Discrepancy Principle

	Numerical Results
	Test Experiments with Simulated Data
	Reconstruction with Real Data

	Abstract Discrepancy Principle
	Conclusions and Future Work
	References
	APPENDICES
	Matlab Code - Main
	Matlab Code - Tikhonov
	Matlab Code - Lavrentiev
	Matlab Code - Local
	Matlab Code - Legendre

