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ABSTRACT 

Biological research is becoming increasingly database driven and statistical learning can 

be used to discover patterns in the biological data. In the thesis, the supervised learning 

approaches are utilized to analyze the Oxford Parkinson’s disease detection data and build 

models for prediction or classification. We construct predictive models based on training set, 

evaluate their performance by applying these models to an independent test set, and find the 

best methods for predicting whether people have Parkinson’s disease. The proposed artificial 

neural network procedure outperforms with the best and highest prediction accuracy, while 

the logistic and probit regressions are preferred statistical models which can offer better 

interpretation with the higher prediction accuracy compared to other proposed data mining 

approaches. 
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1 INTRODUCTION 

1.1 Chapter Overview 

 

This chapter will describe the Parkinson’s disease (PD) and the PD dataset to be used in 

this thesis. There are particular needs and opportunities where data mining techniques can be 

used to discover knowledge from a biological data set and predict diseases. This chapter is 

organized as follows. (i) Section 1.2 discusses the Parkinson’s disease and (ii) Section 1.3 

describes the PD dataset created by Max Little of the University of Oxford. 

1.2 Parkinson’s Disease 

 

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder disease 

which includes symptoms such as tremors, rigidity, bradykinesia, and flat facial expression 

symptoms (Marsden, 1994). Additional experimental and clinical observations prove that PD 

patients are good candidates for contracting a dynamical disease (Beuter and Vasilakos, 

1995). PD also impairs patients’ other functions such as walking, mood, behavior, thinking, 

and sensation. Symptoms of PD include reduced loudness, breathiness, roughness, decreased 

energy in the higher parts of the harmonic spectrum and exaggerated vocal tremor (Beuter 

and Vasilakos, 1995). Nowadays, in North America over one million people have been 

impaired by PD, and most of them are over the age of 50. Data shows that the probability of a 

person developing PD dramatically increases after age of 60. Although medication may 

relieve symptoms, PD patients are not able to fully recover (Beuter and Vasilakos, 1995).  

As a type of neurological disease, the Parkinson’s disease (PD) may affect phonation of 

the patients. Approximately 90% of the patients display types of vocal impairments including 

vocal sound (dysphonia) and speech (dysarthria) (Ho et al., 2008). Considering that clinical 

intervention is difficult to provide for elderly patients, telemonitering systems are useful for 

detecting PD by analyzing vocal signals. Thus, this thesis utilizes the dataset for PD 



2 

 

prediction that focuses on speech signals.  

1.3 PD Dataset 

 

The dataset to be used was created by Max Little of the University of Oxford, in 

collaboration with the National Center for Voice and Speech, Denver, Colorado, who 

recorded the speech signals (Little et al., 2007). The Oxford PD dataset has 195 voices 

recordings from 31 people, and each of which has 22 features (called “predictors” or 

“explanatory variables” throughout this study). Among these 31 individuals, 23 of them are 

healthy. As a range of biomedical voice measurements, these 22 features include the mean of 

vocal fundamental frequency, the maximum, minimum, variation of fundamental frequency, 

variation in amplitude, ratio of noise to tonal components on the voice, nonlinear dynamical 

complexity, signal fractal scaling exponents, and nonlinear measures of fundamental 

frequency variations. All features describing characteristics of the speech presented in the 

records are computed from voice and speech signals. The detailed characteristics of each 

feature are shown in Table 1.1. Furthermore, each observation is labeled by a response 

variable indicating whether the people have PD or not. The response variable is called “status” 

in the PD dataset. 

Mining bioinformatics is an emerging area at the intersection between bioinformatics and 

data mining. Mining bioinformatics presents benefits to the data mining, bioinformatics, and 

medicine communities. This thesis demonstrates several data mining techniques for 

classifying individuals with PD (status=1) or without PD (status=0) and differentiating 

healthy people from those with PD by finding the patterns within the dataset and constructing 

predictive models. 
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Table 1.1 Characteristic Features of PD Dataset (Adapted From Ramani and Sivagami, 2011) 

Feature 

Number 

Feature  

Name 

Description 

F1 MDVP: Fo (Hz) Average vocal fundamental 

F2 MDVP: Fhi (Hz) Maximum vocal fundamental frequency 

F3 MDVP: Flo (Hz) Minimum vocal fundamental frequency 

F4 MDVP: Jitter (%) Kay Pentax MDVP jitter as percentage 

F5 MDVP: Jitter (Abs) Kay Pentax MDVP absolute jitter in 

microseconds 

F6 MDVP: RAP Kay Pentax MDVP relative amplitude 

perturbation 

F7 MDVP: PPQ Kay Pentax MDVP five-point period 

perturbation quotient 

F8 Jitter: DDP Average absolute difference of differences 

between cycles, divided by the average period 

F9 MDVP: Shimmer Key Pentax MDVP local shimmer 

F10 MDVP: Shimmer (dB) Key Pentax MDVP local shimmer in decibels 

F11 Shimmer: APQ3 3 point amplitude perturbation quotient 

F12 Shimmer: APQ5 5 point amplitude perturbation quotient 

F13 MDVP: APQ Kay Pentax MDVP eleven-point amplitude 

perturbation quotient  

F14 Shimmer: DDA Average absolute difference between 

consecutive differences between the amplitude 

of consecutive periods 

F15 NHR Noise to harmonic ratio 

F16 HNR Harmonics to noise ratio 

F17 RPDE Recurrence period density entropy 

F18 DFA Detrended fluctuation analysis 

F19 spread1 Nonlinear measure of fundamental frequency 

F20 spread2 Nonlinear measure of fundamental frequency 

F21 D2 Pitch period entropy 

F22 PPE Pitch  
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2 METHODOLOGY OVERVIEW 

2.1 Chapter Overview 

 

Most of the statistical learning problems can be solved by supervised methods. This 

chapter introduces the concept of supervised learning to be demonstrated on the PD dataset in 

the next few chapters. This chapter is organized as follows. (i) Section 2.2 provides the 

introduction of supervised learning and (ii) Section 2.3 provides the purpose of current study.  

2.2 Supervised learning 

 

In the domain of the supervised learning, for each observation of the predictor 

measurement(s)            , there is an associated response measurement     The aim of 

supervised learning is to specify a relationship between the predictors and response (which is 

also called the “dependent” variable throughout this thesis). Many classical statistical 

learning methods, such as linear regression, decision trees, logistic regression, and support 

vector machine are in the domain of supervised learning. Typically, to apply supervised data 

mining techniques, the values of the dependent variable must be known for an adequately 

large part of the dataset, and the goal of the supervised learning algorithm is to minimize the 

prediction error with respect to given inputs. Many supervised learning data mining projects 

use a large amount of observations. Usually these observations are separated into the training 

set and test set. The date set used to construct the data mining model is called the training 

dataset, which contains most of the data points. However, most algorithms work very hard on 

the training dataset and tend to over-fit the data. Consequentially, the discovered relationship 

between response and predictors in the training set might not hold in general. As the test set is 

independent from the training set, and it can be used to evaluate the performance of a model 

by making a prediction against the test set using a model that has been developed based on 

the training set. Usually, the test set is used to obtain the performance characteristics, such as 
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accuracy rate, specificity, sensitivity, false positive rate, false negative rate, and so on. These 

criteria can provide a reasonable estimate for developing a model of the completely unseen 

data. 

2.3 Purpose of the Study 
 

The current effort applies numerous supervised learning algorithms, such as generalized 

linear model (logistic and probit regression), linear and quadratic discriminant analysis, 

decision trees, random forest, support vector machine, artificial neural network, etc., to 

analyze the PD dataset. The objective of this thesis is to perform supervised learning 

algorithms on the PD dataset and evaluate their performance in discriminating healthy people 

from PD patients. The following chapters are dedicated to discuss and apply various 

statistical learning algorithms to predict potential PD patients.  
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3 DATA EXPLORATION 

3.1 Chapter Overview 

 

This chapter provides the explanatory data analysis of the PD data and explains the 

training and test sets to be used for model construction and evaluation. This chapter is 

organized as follows. (i) Section 3.2 provides the exploratory data analysis and (ii) Section 

3.3 shows the training set and test set of the PD dataset.  

3.2 Exploratory Data Analysis 

 

The measurements in the PD dataset have been generally introduced in Section 1.3. In 

order to better elucidate, this Section shows the quantitative and exploratory data analyses of 

the dataset. 

Table 3.1 describes basic statistics of all observations by each feature. It is obvious that 

the magnitude of these variables varies a lot. Thus, all feature variables are normalized for the 

further statistical analysis and learning. Based on the normalized dataset, Figure 3.1 shows 

the scatter plot matrix of partial features in the PD dataset and Figure 3.2 displays the boxplot 

of partial features (F1, F2, F4, F5, F7, F8, F9, F11, F14, F17, F20, and F22) by two groups 

with “status” = 1 and “status” = 0. It is noted that the distribution of some features are 

significantly different between healthy subjects (status=0) and disease (status=1). This gives 

us the opportunity to find the relationship between explanatory variables (22 features from F1 

to F22) and the dependent variable (healthy status is 0 or 1), and build decent models to 

predict potential PD patients.   
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Table 3.1 Basic Statistics of All Explanatory Variables 

 

Feature Number Mean StDev Minimum Q1 Median Q3 Maximum 

F1 154.23 41.39 88.33 117.57 148.79 182.77 260.11 

F2 197.1 91.49 102.1 134.9 175.8 224.2 592.0 

F3 116.32 43.52 65.48 84.29 104.31 140.02 239.17 

F4 0.006 0.005 0.002 0.003 0.005 0.007 0.033 

F5 4.4e-05 3.5e-05 7.0e-06 2.0e-05 3.0e-05 6.0e-05 2.6e-04 

F6 0.003 0.003 0.001 0.002 0.003 0.004 0.02 

F7 0.0034 0.003 0.001 0.002 0.0027 0.0034 0.02 

F8 0.010 0.009 0.002 0.005 0.007 0.012 0.064 

F9 0.030 0.019 0.001 0.017 0.023 0.038 0.119 

F10 0.282 0.195 0.085 0.149 0.221 0.350 1.302 

F11 0.016 0.010 0.005 0.008 0.013 0.020 0.056 

F12 0.018 0.012 0.006 0.010 0.013 0.022 0.079 

F13 0.024 0.017 0.007 0.013 0.018 0.029 0.138 

F14 0.047 0.03 0.014 0.027 0.039 0.061 0.169 

F15 0.025 0.04 0.001 0.006 0.117 0.026 0.315 

F16 21.886 4.426 8.441 19.198 22.085 25.076 33.047 

F17 0.499 0.104 0.257 0.421 0.496 0.588 0.685 

F18 0.718 0.055 0.574 0.674 0.722 0.761 0.825 

F19 -5.684 1.09 -7.965 -6.450 -5.721 -5.046 -2.434 

F20 0.227 0.083 0.006 0.174 0.219 0.279 0.450 

F21 2.382 0.383 1.423 2.099 2.362 2.636 3.671 

F22 0.206 0.09 0.045 0.137 0.194 0.207 0.527 
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Figure 3.1 The Scatter Plot Matrix of Partial Explanatory Variables
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Figure 3.2 The Boxplot of Partial Explanatory Variables 
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3.3 The Training and Test Sets 
 

For supervised learning, each observation paired consists of an input object and a desired 

output value. A supervised learning algorithm analyzes the training dataset and produces an 

inferred function, which should predict the correct output value for any valid input object. 

This requires the learning algorithm to generalize from the training dataset to unseen 

situations in a "reasonable" way.  

Prior to applying any learning algorithm against the PD dataset, the dataset is split into 

training and test sets as discussed in the Section 2.2. For the current study, two-thirds (2/3) of 

the observations are used as the training set and one-third (1/3) are used as the test set. All 

statistical learning methods discussed in this thesis are applied to the same training and test 

sets. The histogram of response - “status” in the training set, test set, and original set (before 

splitting) is shown in Figure 3.3 to ensure that the ratios of the number of observations with 

PD to those without PD in different datasets are approximately equal. 
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Figure 3.3 Histogram of Response in the Test Set, Training Set, and Original Set 
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4 STEPWISE LOGISTIC REGRESSION  

4.1 Chapter Overview 

 

This chapter will review and apply logistic regression model to the PD data. This chapter 

is organized as follows. (i) Section 4.2 provides the review of the logistic regression, (ii) 

Section 4.3 shows the application of the method, and (iii) Section 4.4 evaluates the 

performance of the model in predicting potential PD patients.   

4.2 Review of the Method 
 

Generalized linear model (GLM) is an extension of ordinary least square (OLS) linear 

regression model and allows the models to fit to the data following any member of a set of 

exponential-family distribution, which includes the normal, binomial, Poisson, gamma, and 

other distributions. The GLM generalizes the linear regression model by introducing a link 

function which transforms the expectation of the response variable to the linear model. As the 

logit link function is one of the most popular binomial functions, when response variables are 

binary (taking only the values of 0 and 1), the logistic regression can be applied to binary 

response and measures the relationship between a categorical response and one or many 

categorical or numerical explanatory variables. 

For logistic regression, suppose x is a p -dimensional vector of explanatory variables and 

y  is the binary response (for example, 1y  if a disease is present and 0y   if a disease is 

not present). Then the probability  Pr 1y   x  is the response probability to be modeled, 

and the logistic regression has the form: log
1






 
  

 

'
β x or equivalently 

1

e

e













'

'

β x

β x
, 

where  is the intercept parameter and  
'

1 2, , , p  β  is the vector of p  dimensional 

slope parameters. The above formulas reveal that the probability of response 1y  is equal to 

the value of logistic function of the linear regression model. Unlike the OLS linear regression, 
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the logistic regression coefficients are usually estimated by using maximum likelihood 

estimation techniques. 

As in many other regression models, deciding significant variables is essential in GLM 

as well. The response variable is more often only related to a subset of explanatory variables, 

but not all of them. It is preferred to yield a model with better prediction accuracy and 

interpretation. There are several classical and effective techniques for this purpose, and two 

popular ideas for variable selection for the GLM are: (i) subset selection, which identifies a 

subset of all predictors that are believed to be related to the response, and (ii) regularization, 

which penalizes models with the extreme coefficient of the regression model. For the 

regularization, the ridge regression and the lasso are two well-known methods for shrinking 

the regression coefficients towards zero by penalizing models with extreme parameter values. 

These two regularized regression algorithms will not be demonstrated in this study, and we 

only use the subset selection method to identify the final regression models. For example, 

employing massive computational power, “exhaustive regression” is designed to look at all 

possible linear models and recommends the best one. However, the exhaustive regression 

cannot be applied easily with too many explanatory variables due to computational 

constraints. The stepwise method explores a more restricted set of models, which is 

computationally efficient and an attractive alternative to the best subset selection. There are 

three classical approaches of stepwise methods: (i) forward selection, (ii) backward selection, 

and (iii) mixed selection.  

In this study, we apply the stepwise method on GLM to select the most significant 

variables to make prediction and choose a model by evaluating Akaike information criterion 

( 2 2log LAIC p     , where L is the likelihood and p is the number of estimated 

parameters in the GLM.) in a backward stepwise algorithm. To seek the model in a set of 

candidate models that gives the best balance between model fit and complexity, the model 
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with lowest AIC is preferred.    

4.3 Application of the Method  
 

For the PD data, we have 195 observations in the original dataset; however we have split 

the data into the training set, which has 131 observations, and the test set, which has 64 

observations. In this section, the logistic regression (with stepwise) is constructed based on 

the training set.  

One of the critical assumptions of regression is that the independent variables are not the 

linear combination of each other. Before building the logistic regression model, we will 

calculate the VIF (variance inflation factor) for each variable. The variable with VIF greater 

than 5 should not be included in the regression model. A common rule of thumb is that if the 

VIF is greater than 5, then the multicollinearity is high. Table 4.1 displays the VIF of all 

variables and we will see that only variables F2, F3, F17, F18, F20, and F22 have the VIFs 

less than 5, which means that we will only use these six variables for building the logistic 

regression model. 
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Table 4.1 VIF for Each Variable 

Variable VIF 

F1 8.36 

F2 1.79 

F3 2.71 

F4 206.28 

F5 57.15 

F6 1535941.54 

F7 126.78 

F8 1535616.63 

F9 808.62 

F10 121.70 

F11 17442562.63 

F12 100.48 

F13 70.09 

F14 17431523.44 

F15 14.93 

F16 8.68 

F17 3.90 

F18 3.69 

F19 19.36 

F20 2.68 

F21 3.49 

F22 29.93 

  

The R function - “glm” with link function “logit” is used to build a logistic regression 

model between the dependent variable and the potential predictors, and the R function – 

“stepAIC” is used to perform stepwise model selection by AIC. The main effects regression 

model will be constructed as follows.  

  

The initial full model is: 

Status ~ F2 + F3 + F17 + F18 + F20 + F21 . 

The final model after stepwise selection is:  

Status ~ F2 + F17 + F18 + F20 + F21 . 

 



16 

 

Table 4.2 provides the summary results for the initial model’s estimates, and Table 4.3 

provides the summary results for the final model’s estimates (after stepwise selection). We 

find that the final model is with the lowest AIC of 106.44 and all the parameter estimates for 

selected predictors (F2, F17, F18, F20, and F21) are roughly significant (at 0.1 level). The 

performance of the final main effects model will be evaluated against the test dataset in the 

next section.  
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Table 4.2 Initial Main Effects Model (Full Model) Estimates of Logistic Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 1.77 0.35 5.12 0.00 

F2 -0.51 0.29 -1.74 0.08 

F3 -0.36 0.31 -1.14 0.26 

F17 0.46 0.33 1.40 0.16 

F18 0.70 0.35 1.99 0.05 

F20 0.63 0.41 1.55 0.12 

F21 1.19 0.43 2.76 0.01 

  

 

 

Table 4.3 Final Main Effects Model Estimates of Logistic Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 1.83 0.35 5.28 0.00 

F2 -0.49 0.29 -1.68 0.09 

F17 0.61 0.30 2.03 0.04 

F18 0.78 0.34 2.29 0.02 

F20 0.64 0.40 1.61 0.11 

F21 1.18 0.42 2.84 0.00 
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The above logistic regression model is a main effects model. However, we might believe 

that including interaction terms in the regression can make the model more flexible and 

expect a better regression model. Interaction effects represent the combined effects of 

variables on the dependent variable. The impact of one variable depends on the level of the 

other variable when an interaction effect is present. To test if interactions are significant in the 

logistic regression model, we will construct a new logistic regression model with interaction 

terms (only two-way interactions will be considered in this study). The variable selection 

scheme will be applied to remove unnecessary interaction terms and determine whether the 

interaction terms are needed in the predictive model. The variable selection scheme can also 

compare the performance of the regression model with and without interactions in predicting 

potential Parkinson’s disease.  

The initial full model with main effects and interactions is: 

 

Status ~ F2 + F3 + F17 + F18 + F20 + F21 + F2 × F3 + F2 × F17 

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 + 

F3 × F20 + F3 × F21 + F17 × F18 + F17 × F20 + F17 × F21 

+ F18 × F20 + F18 × F21 + .F20 × F21

  

 

After the stepwise selection by AIC, we have the final model as:  

.

Status ~ F2 + F3 + F17 + F18 + F20 + F21  

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 

+ F3 × F21 + F17 × F20 + F18 × F20 + F18 × F21  

 

 

The summary results for the initial main effects and interactions model’s estimates and 

the final model’s estimates are provided by Tables 4.4 and 4.5, respectively. We observe that 

almost all the parameter estimates for predictors in the final model are significant (at 0.1 

level), but the regressors F17 and F21 have relatively large p-values. The reason for including 

the predictors F17 and F12 in the model is due to the hierarchical principle, which states that 

if we include an interaction in a model, we should also include the main effects, even if the 

p-values associated with their coefficients are not significant (James et al., 2013). We note 
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that the AIC of the final model is 84.90, while the AIC of the full model is 93.35. The 

performance of the final main effects and interactions model will be evaluated against the test 

dataset in the next section. Furthermore, we will compare performance of the models with the 

interaction and without interaction for the recommendation of the prediction model. 
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Table 4.4 Initial Main Effects and Interactions Model (Full Model) Estimates of Logistic 

Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 5.95 1.97 3.02 0.00 

F2 3.19 2.92 1.09 0.27 

F3 -2.09 1.39 -1.50 0.13 

F17 0.60 1.15 0.52 0.60 

F18 2.54 1.44 1.77 0.08 

F20 5.83 2.35 2.48 0.01 

F21 0.34 1.59 0.21 0.83 

F2:F3 -2.80 2.29 -1.22 0.22 

F2:F17 0.00 1.45 0.00 1.00 

F2:F18 5.77 2.44 2.36 0.02 

F2:F20 11.17 4.03 2.77 0.01 

F2:F21 -5.67 2.23 -2.54 0.01 

F3:F17 -1.49 1.19 -1.25 0.21 

F3:F18 -2.73 1.42 -1.91 0.06 

F3:F20 -0.33 2.23 -0.15 0.88 

F3:F21 2.71 2.11 1.28 0.20 

F17:F18 0.71 0.67 1.06 0.29 

F17:F20 1.27 0.97 1.30 0.19 

F17:F21 0.07 1.31 0.06 0.95 

F18:F20 2.02 1.03 1.96 0.05 

F18:F21 -2.57 1.21 -2.13 0.03 

F20:F21 -0.26 1.09 -0.24 0.81 
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Table 4.5 Final Main Effects and Interactions Model Estimates of Logistic Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 5.65 1.63 3.48 0.00 

F2 4.63 2.33 1.99 0.05 

F3 -2.20 1.14 -1.93 0.05 

F17 0.73 0.60 1.21 0.22 

F18 2.69 1.37 1.97 0.05 

F20 5.86 1.91 3.08 0.00 

F21 -0.08 0.99 -0.08 0.94 

F2:F18 5.09 2.13 2.40 0.02 

F2:F20 11.10 3.30 3.36 0.00 

F2:F21 -5.28 1.79 -2.96 0.00 

F3:F17 -1.38 0.82 -1.69 0.09 

F3:F18 -2.46 1.16 -2.11 0.03 

F3:F21 1.59 0.84 1.90 0.06 

F17:F20 1.51 0.85 1.77 0.08 

F18:F20 1.96 0.97 2.02 0.04 

F18:F21 -2.23 1.07 -2.08 0.04 
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4.4 Model evaluation 
 

The model performance is quantified by scoring the test set and computing the predicted 

probability of PD for each patient. Using the cut-off value of 0.5 for the predicted probability 

of Parkinson’s disease, we derive the proportion of observations in the test set correctly 

classified as PD patients or correctly classified as non-PD patients by the logistic regression 

model. The sensitivity and specificity are achieved at the same time. Figures 4.1 and 4.2 

below display the posterior probability of each observation with Parkinson’s disease for the 

main effects model and the model with main effects and interactions. Tables 4.6 and 4.7 

provide the summary results (cut-off value of 0.5) of applying the model to the test set for 

these two models respectively. 

 

Table 4.6 Actual versus Predicted Parkinson’s Disease in the Test Set (Main Effects Logistic 

Regression Model) 

 

 
Predicted 

 Actual 0 1 Total 

0 12 5 17 

1 3 44 47 

Total 15 49 64 

 

Table 4.7 Actual versus Predicted Parkinson’s Disease in the Test Set (Main Effects and 

Interactions Logistic Regression Model) 

 

 
Predicted 

 Actual 0 1 Total 

0 15 2 17 

1 4 43 47 

Total 19 45 64 
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Figure 4.1 The Posterior Probability of Each Observation in the Test Set (Main Effects 

Logistic Regression Model) 

 



24 

 

 

Figure 4.2 The Posterior Probability of Each Observation in the Test Set (Main Effects and 

Interactions Logistic Regression Model) 
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By comparing the above two confusion matrixes, we observe that the main effects and 

interaction models offers us a better prediction performance. For this better logistic 

regression model, out of a total of 64 observations in the test set sample, 47 are classified as 

PD patients while 17 are classified as non-PD patients. The predicted observations with PD 

are 45 against 19 observations without PD. Forty-three observations with PD are correctly 

predicted while 15 observations without PD are correctly predicted. This leads to a proportion 

of correctly predicted observations of about 90.32%. The sensitivity is 91.49%, which 

indicates that 91.49% of observations in the test set identified as “PD patients” are classified 

by the predictive model as “PD patients”. The specificity is 88.24%, which indicates that the 

88.24% of observations in the test set actually identified as “Non-PD patients” are truly 

classified by the predictive model as “Non-PD patients.” 

However, we notice that the threshold (cut-off value) used above is fixed at 0.5 and the 

performance of the models might be improved if we vary the thresholds. The ROC (Receiver 

Operating Characteristic) curve is a popular graph that illustrates the performance of a binary 

classifier through simultaneously displaying the true positive and false positive rates for all 

possible thresholds. Figure 4.3 displays a sample of ROC curve in red. The dotted line 

represents the “no information” classifier, and the ideal ROC curve passes through the top left 

corner, indicating a high true positive rate and low false positive rate. The overall 

performance of a classifier, summarized over all possible thresholds, is given by the area 

under the ROC curve (AUC). As an ideal ROC curve passes through the top left corner. A 

larger area under the curve (AUC) implies a better classifier. The ROC analysis provides 

tools to compare and select possibly optimal models. 
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Figure 4.3 A Sample of ROC Curve 
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Back to the logistic regression, for both final models, we adjust the cut-off value from 0 

to 1 and observe the false positive and true positive rates of the prediction in the test set. 

Figure 4.4 shows the ROC curves of both logistic regression models. The ROC curves 

conclude that logistic regression model with main effects and interaction terms is better than 

the main effects model, which is consistent with the conclusion we get by comparing the 

fusion matrixes. 

 

 

  
Figure 4.4 The ROC Curves for Logistic Regression Models 
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5 STEPWISE PROBIT REGRESSION  

5.1 Chapter Overview 

 

This chapter reviews and applies a probit regression model to the PD data. This chapter 

is organized as follows. (i) Section 5.2 provides the review of the probit regression, (ii) 

Section 5.3 shows the application of the method, and (iii) Section 5.4 evaluates the 

performance of the model in predicting potential PD patients.   

5.2 Review of the Method 
 

 

The probit regression is very similar to the logistic regression discussed in the previous 

chapter. As a generalized linear model, the probit regression, which employs the probit link 

function, is another type of regression when the dependent variable is binary. Again, let us 

suppose the x is a vector of explanatory variables and y  is the binary response (0 or 1), then

   Pr 1y    '
x β x , where Pr denotes the probability and is the cumulative 

distribution function (CDF) of the standard Gaussian/Normal distribution response model. 

The maximum likelihood estimation method can be used to estimate the probit regression 

model. 

5.3 Application of the Method  
 

In this section, the probit regression (with stepwise) is constructed based on the training 

set as usual. As in the previous analysis for the logistic regression, the main effects model and 

the model with main effects and interactions terms are thoroughly explored in this section. 

The R function - “glm” with link function “probit” is used to build a probit regression 

model, and the R function - “stepAIC” is used to perform stepwise model selection by AIC. 

We conduct the analysis for the main effects from Section 4.3’s VIF calculation to the 

probit regression model. 
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From it we start with the following initial full model: 

.Status ~ F2 + F3 + F17 + F18 + F20 + F21  

The final model after stepwise selection is:  

.Status ~ F2 + F17 + F18 + F20 + F21
 

 

 Tables 5.1 and 5.2 provide the summary results for the estimates of the initial and final 

models respectively. We find that the final model comes with the lowest AIC of 106.39 and 

all parameter estimates for final predictors (F2, F17, F18, F20, and F21) are significant or 

nearly significant (at 0.1 level). 

 

 

Table 5.1 Initial Main Effects Model (Full Model) Estimates of Probit Regression 

 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 1.00 0.18 5.47 0.00 

F2 -0.30 0.16 -1.83 0.07 

F3 -0.22 0.18 -1.24 0.21 

F17 0.27 0.19 1.45 0.15 

F18 0.39 0.20 2.01 0.04 

F20 0.36 0.22 1.58 0.11 

F21 0.66 0.23 2.83 0.00 

  

 

Table 5.2 Final Main Effects Model Estimates of Probit Regression 

 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 1.04 0.18 5.69 0.00 

F2 -0.29 0.16 -1.76 0.08 

F17 0.36 0.17 2.12 0.03 

F18 0.45 0.19 2.37 0.02 

F20 0.35 0.22 1.58 0.11 

F21 0.67 0.23 2.97 0.00 
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To test whether adding the interaction terms can improve the prediction performance, we 

conduct the analysis for the probit regression model with main effects and interactions. As we 

did in the previous chapter, we only consider the two-way interactions to avoid making the 

model unnecessarily complicated and over-fitting. 

  

The initial model with main effects and interaction terms is: 

 

Status ~ F2 + F3 + F17 + F18 + F20 + F21 + F2 × F3 + F2 × F17 

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 + 

F3 × F20 + F3 × F21 + F17 × F18 + F17 × F20 + F17 × F21 

+ F18 × F20 + F18 × F21 + .F20 × F21

  

 

After the stepwise selection by AIC, we have the final model as:  

.

Status ~ F2 + F3 + F17 + F18 + F20 + F21  

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 

+ F3 × F21 + F17 × F20 + F18 × F20 + F18 × F21 

 

 

Tables 5.3 and 5.4 provide the results for the estimates of the full and final models. The 

final model with main effects and interactions comes with AIC value of 84.3 and almost all 

its predictors are significant (at 0.1 level). We may notice that the predictors F17 and F21 

have relatively large p-values, but they are still included in the final model, this is due to the 

hierarchical principle that has been discussed in Section 4.3.  

In the next section, we will evaluate and compare the performance of the model with 

main effect terms and the model with main effects and interactions terms. 
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Table 5.3 Initial Main Effects and Interactions Model (Full Model) Estimates of Probit 

Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 3.33 1.07 3.12 0.00 

F2 1.93 1.59 1.22 0.22 

F3 -1.18 0.76 -1.55 0.12 

F17 0.30 0.61 0.50 0.62 

F18 1.46 0.78 1.87 0.06 

F20 3.43 1.27 2.70 0.01 

F21 0.04 0.86 0.04 0.96 

F2:F3 -1.43 1.24 -1.16 0.25 

F2:F17 -0.01 0.82 -0.02 0.99 

F2:F18 3.24 1.33 2.44 0.01 

F2:F20 6.58 2.22 2.96 0.00 

F2:F21 -3.30 1.22 -2.70 0.01 

F3:F17 -0.90 0.67 -1.35 0.18 

F3:F18 -1.56 0.79 -1.97 0.05 

F3:F20 -0.10 1.22 -0.08 0.93 

F3:F21 1.42 1.15 1.23 0.22 

F17:F18 0.37 0.38 0.97 0.33 

F17:F20 0.78 0.51 1.52 0.13 

F17:F21 -0.06 0.70 -0.08 0.94 

F18:F20 1.17 0.58 2.00 0.05 

F18:F21 -1.46 0.67 -2.19 0.03 

F20:F21 -0.14 0.58 -0.24 0.81 
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Table 5.4 Final Main Effects and Interactions Model Estimates of Probit Regression 

 

Estimate Std. Error Z Value Pr(>|z|) 

(Intercept) 3.20 0.87 3.69 0.00 

F2 2.62 1.26 2.08 0.04 

F3 -1.16 0.61 -1.90 0.06 

F17 0.45 0.34 1.33 0.19 

F18 1.56 0.74 2.10 0.04 

F20 3.32 1.03 3.23 0.00 

F21 -0.03 0.54 -0.05 0.96 

F2:F18 2.88 1.16 2.48 0.01 

F2:F20 6.35 1.80 3.53 0.00 

F2:F21 -2.97 0.98 -3.04 0.00 

F3:F17 -0.76 0.45 -1.71 0.09 

F3:F18 -1.38 0.64 -2.16 0.03 

F3:F21 0.92 0.45 2.06 0.04 

F17:F20 0.86 0.45 1.92 0.06 

F18:F20 1.11 0.54 2.05 0.04 

F18:F21 -1.26 0.58 -2.16 0.03 

  

 

  



33 

 

5.4 Model evaluation 
 

The model performance is quantified by scoring the test set and computing for each 

patient the predicted probability of PD. Using the cut-off value of 0.5 for predicted 

probability of Parkinson’s disease, we can calculate the accuracy, sensitivity, and specificity 

for the probit regression model by using the test set.  

Figures 5.1 and 5.2 display the posterior probability of each observation with Parkinson’s 

disease for the final main effects model and main effects and interactions model respectively. 

Tables 5.5 and 5.6 provide the confusion matrixes that summarize results (cut-off value of 0.5) 

of applying both models to the test set separately. 

 

Table 5.5 Actual versus Predicted Parkinson’s Disease in the Test Set (Main Effects Probit 

Regression Model) 

 

 
Predicted 

 Actual 0 1 Total 

0 12 5 17 

1 4 43 47 

Total 16 48 64 

 

  Table 5.6 Actual versus Predicted Parkinson’s Disease in the Test Set (Main Effects and 

Interactions Probit Regression Model) 

 

 
Predicted 

 Actual 0 1 Total 

0 15 2 17 

1 4 43 47 

Total 19 45 64 
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Figure 5.1 The Posterior Probability of Each Observation in the Test Set (Main Effects Probit 

Regression Model) 
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Figure 5.2 The Posterior Probability of Each Observation in the Test Set (Main Effects and 

Interactions Probit Regression Model) 
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For the probit regression, confusion matrixes reveal that the model with main effects and 

interactions is better and its overall correct classification rate is 90.63%, its sensitivity is 

91.4%, and its specificity is 88.24%. Furthermore, Figure 5.3 shows ROC curves for both 

models, which demonstrate that the probit regression model with main effects and 

interactions outperforms the main effects model.  

   
Figure 5.3 The ROC Curves for Probit Regression Models  
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6 LINEAR/QUADRATIC DISCRIMINANT ANALYSIS 

6.1 Chapter Overview 

 

This chapter reviews and applies Linear/ Quadratic Discriminant Analysis to the PD data. 

The sections of this chapter are organized as follows. (i) Section 6.2 provides the review of 

the Linear/Quadratic Discriminant Analysis, (ii) Section 6.3 shows the application of the 

method, and (iii) Section 6.4 evaluates the performance of the models.  

6.2 Review of the Method 
 

 

Assume that we have a set of observations X  with a known class Y  and we would 

like to predict Y  given only an observation x. To do this, it is assumed that 

 1 2 p
X = X , X , , X follows a multivariate normal distribution with a class-specified mean 

vector and a common variance-covariance matrix. We write ~ ( )NX μ,Σ , where μ  (the 

mean of X ) is a vector with p  components, and Σ  is the p p variance-covariance 

matrix. Furthermore, the multivariate normal distribution has the form:  

 
 

   1

1 2

1 1
, , , exp
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p

f x x x

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 
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Σ

, where Σ  is the determinant of 

Σ . The linear discriminant analysis (LDA) classifier assumes that the observation in the k
th

 

class comes from a multivariate normal distribution  ,kN  Σ , which k is a class-specific 

mean vector and Σ  is the common variance-covariance matrix across all classes. Moreover, 

let   Pr( , )kf X X y k  x  denotes the density function of X for an observation that 

comes from the k
th

 class, and k  denotes the prior probability that a randomly chosen 

observation comes from the k
th

 class. The Bayes’ theorem shows that 
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. Under the aforementioned assumptions, by combining the 
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density function for the k
th

 class with the Bayes’ theorem, the optimal solution is to predict 

observation X  x  as being from the class with the largest value of

  1 2 logk k   T -1 T -1

k k
x x Σ μ μ Σ μ , which is a linear function of x . The x implies that the 

LDA decision rule depends on x  only through a linear combination of its elements. In the 

application, we have to estimate , ,i i    (where i = 1,2,..,k) using training data: 

k kN N


 where kN is the number of class-k observations and N  is the number of all 

observations; 
i

k i kg k
x N




 ; and     

1

ˆ ˆ  ˆ    /
i

K T

i k i kk g k
x x N K 

 
    Σ .   

For the LDA classifier, we assume that the observations within each class are from a 

multivariate normal distribution with a class-specified mean vector and a common 

variance-covariance matrix. For the quadratic discriminate analysis (QDA) classifier, we 

assume that each class has its own variance-covariance matrix. In the QDA, we suppose that 

the observation in the k
th

 class comes from a multivariate normal distribution  ,k kN  Σ , 

where k  and k  are a class-specific mean vector and a variance-covariance matrix 

respectively. Under this assumption the Bayes’ optimal solution suggests to assign an 

observation X  x  to the class with the largest value of

     11 2 log
T

k k k   
k k

x x -μ Σ x-μ , which is a quadratic function of x . The estimates 

of , ,i i i    (where i = 1, 2,..., k) are similar to those for LDA except that the 

variance-covariance matrix should be calculated for each class.  

6.3 Application of the Method  
 

In this section, the LDA and QDA models are constructed based on the training set. The 

R function – “lda” and “qda” in the “MASS” package are used to build these models. We 

perform the LDA and QDA on the training set in order to predict potential PD patients. For 

the training set, the prior probability of the PD patients and non-PD patients are 0.24 and 0.76 
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respectively. Table 6.1 shows the mean of each feature in two groups (status=0 and status=1). 

 

Table 6.1 Group Means of Each Feature in the Training Set 

 

  F1 F2 F3 F4 F5 

0 0.3826484 0.3161087 0.4693384 -0.4226056 -0.4907257 

1 -0.3666264 -0.2695731 -0.2295525 0.1816655 0.2653796 

  F6 F7 F8 F9 F10 

0 -0.4275901 -0.44707 -0.4274885 -0.6340664 -0.5962047 

1 0.1793565 0.196682 0.1793766 0.2562279 0.2406064 

  F11 F12 F13 F14 F15 

0 -0.6054963 -0.6115498 -0.6125951 -0.6055192 -0.2746026 

1 0.253561 0.246001 0.2410501 0.2535492 0.1162346 

  F16 F17 F18 F19 F20 

0 0.526126 -0.4372229 -0.4479111 -0.8962023 -0.7089082 

1 -0.2749772 0.244182 0.270581 0.3318493 0.2544097 

  F21 F22       

0 -0.60200699 -0.8556873       

1 0.09608217 0.3227712       

 

 

6.4 Model evaluation 
 

The LDA and QDA models fit to the 131 training observations and their performances 

are quantified by scoring the test set and computing for each patient the predicted probability 

of PD. Then using the cut-off value of 0.5 for predicted probability of Parkinson’s disease, we 

derive correct classification rate, sensitivity, and specificity in the test set. Tables 6.2 and 6.3 

show their prediction performances (LDA and QDA respectively) on the test set with 64 

observations (cut-off value of 0.5). Figures 6.1 and 6.2 display the posterior probability of 

each observation of Parkinson’s disease for LDA and QDA respectively. 
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Table 6.2 Actual Versus Predicted Parkinson’s Disease in the Test Set (LDA) 

 

 
Predicted 

 Actual 0 1 Total 

0 12 5 17 

1 4 43 47 

Total 16 48 64 

 

Table 6.3 Actual Versus Predicted Parkinson’s Disease in the Test Set (QDA) 

 

 
Predicted 

 Actual 0 1 Total 

0 11 6 17 

1 0 47 47 

Total 11 53 64 
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Figure 6.1 The Posterior Probability of Each Observation in the Test Set (LDA) 
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Figure 6.2 The Posterior Probability of Each Observation in the Test Set (QDA) 
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In summary, the LDA leads to a proportion of correctly predicted observations of 85.94%, 

with the sensitivity of 91.49% and the specificity of 70.59%. The QDA leads to a proportion 

of correctly predicted observations of 90.63% with the sensitivity of 100% and the specificity 

of 64.71%. Figure 6.3 shows the ROC curves of LDA and QDA.  

 

 

Figure 6.3 The ROC Curves of LDA and QDA 
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7 CLASSIFICATION TREE AND RANDOM FOREST 

7.1 Chapter Overview 

 

This chapter will review and apply Classification Tree and Random Forest to the PD data. 

The sections of this chapter are organized as follows. (i) Section 7.2 provides the review of 

the Classification Tree and Random Forest, (ii) Section 7.3 shows the application of the 

method, and (iii) Section 7.4 evaluates the performance of the models.   

7.2 Review of the Method 
 

The classification trees are used to predict the classes of observations or objects from 

their measurement(s) on explanatory variable(s). For the classification tree, response of each 

observation is a qualitative rather than a quantitative variable while the explanatory variables 

can be qualitative or quantitative.  

To grow a classification tree, we start with a single node and then look for a binary split 

which gives the lowest misclassification error  ˆ1 mk
k

E Max p  , Gini index

 
1

ˆ ˆ1
K

mk mkk
G p p


   , or cross-entropy  

1
ˆ ˆlog

K

mk mkk
D p p


  , where ˆ

mkp  represents 

the proportion of training observations in the m
th

 node that are from the k
th

 class. Then we can 

take each of the new nodes and repeat this process until it reaches a stopping criterion. 

Practically when building a classification tree, the Gini index and cross-entropy are preferred 

to measure the quality of a particular split, as both of them are more sensitive to changes in 

the node purity than the misclassification rate. However, the resulting tree will often be too 

large and generate good prediction on the training set, but usually be to over-fit for the data 

and give a poor prediction on the unseen test set. Thus, the pruning is typically necessary to 

avoid the over-fit problem by removing some nodes of the tree that provide little power to the 

classification. The reduced error pruning and cost complexity pruning are the two most 

popular algorithms. More details about how to prune a tree can be found in many academic 
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publications (e.g., James et al. 2013, Hastie et al. 2012, etc.).  

The bagging (also known as bootstrap aggregating) tree is to fit many large trees (without 

pruning) by repeatedly resampling the training set data with replacement and predict the class 

of the observation by majority vote. Generally the bagging tree generates a smoother decision 

boundary by averaging the results of many trees. The random forest is another popular 

algorithm from the refinement of the bagging tree. Random forest tries to improve the 

performance of bagging trees by decorrelating the trees. At each tree split, the bagging tree 

treats all explanatory variables (predictors) as candidates to split the tree, while in random 

forest, a random sample of m  variables is drawn from predictors, and only those m

predictors are considered as candidates for splitting. The reason for doing this is that if one or 

a few variables are very strong predictors for the response variable, these variables are always 

selected in many bagging trees, causing these trees to be correlated. However, the random 

forest overcomes this problem by forcing each split to use only a subset of the predictors. 

Typically we set m p  or  logm p , where p  is the number of explanatory variables. 

7.3 Application of the Method  
 

In this section, the classification tree and random forest are constructed based on the 

training set. The R function - “rpart” in “rpart” package is used to build a classification tree. 

We use two different metrics to measure the “best” split, which are Gini Impurity and 

Information Gain (Entropy), and perform classification tree analysis on the training set in 

order to predict potential PD patients.  

Table 7.1 shows the classification rules of Gini tree, and Figure 7.1 shows the change of 

   and relative error in the full Gini tree due to the increase of split. We observe that split 

number =4 gives the largest    and the smallest relative error. Figure 7.2 displays the plot 

of the Gini tree.  
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Table 7.1 The Classification Rules of Gini Tree  

 

 node  split  n  loss  yval (yprob)   

1) root 131 31 1 (0.23664122 0.76335878) 

 2) F22<-0.8051341 27 6 0 (0.77777778 0.22222222) 

 4) F16<0.8757867 17 0 0 (1.00000000 0.00000000) * 

5) F16>=0.8757867 10 4 1 (0.40000000 0.60000000) * 

3) F22>=-0.8051341 104 10 1 (0.09615385 0.90384615) 

 6) F11<-0.6470057 23 9 1 (0.39130435 0.60869565) 

 12) F1<-0.8756242 9 0 0 (1.00000000 0.00000000) * 

13) F1>=-0.8756242 14 0 1 (0.00000000 1.00000000) * 

7) F11>=-0.6470057 81 1 1 (0.01234568 0.98765432) * 

 

Where * denotes terminal node 

 

 

 

 

 
Figure 7.1 Tree Trace Plot of Gini Tree 
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Figure 7.2 The Plot of Gini Tree 
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Table 7.2 shows the classification rules of the Entropy tree, and Figure 7.3 shows the 

change of r-square and relative error in the full Entropy tree due to the increase of split. We 

observe that split number =4 gives the largest r-square and the smallest relative error. Figure 

7.4 displays the plot of the Entropy tree.  

 

Table 7.2 The Classification Rules of Entropy Tree 

 

 node  split  n  loss  yval (yprob)   

1) root 131 31 1 (0.23664122 0.76335878) 

 2) F22<-0.8051341 27 6 0 (0.77777778 0.22222222) 

 4) F16<0.8757867 17 0 0 (1.00000000 0.00000000) * 

5) F16>=0.8757867 10 4 1 (0.40000000 0.60000000) * 

3) F22>=-0.8051341 104 10 1 (0.09615385 0.90384615) 

 6) F10<-0.4733814 29 10 1 (0.34482759 0.65517241) 

 12) F1<-0.8756242 10 1 0 (0.90000000 0.10000000) * 

13) F1>=-0.8756242 19 1 1 (0.05263158 0.94736842) * 

7) F10>=-0.4733814 75 0 1 (0.00000000 1.00000000) * 

 

Where * denotes terminal node 
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Figure 7.3 The Trace Plot of Entropy Tree 
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Figure 7.4 The Plot of Entropy Tree 
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As we have discussed in the previous section, random forests are an ensemble learning 

algorithm that operate by constructing many decision trees at training time and the predicted 

result of each observation is the mode of the classes output by individual trees. The R 

function – “randomForest” in “randomForest” package is used to build random forest. Figure 

7.5 shows the prediction error rates when the number of decision trees are increasing and it is 

noticed that error continues to decrease, but finally it becomes constant as we increase 

number of classification trees. 

 

 

Figure 7.5 The Trace Plot of Random Forest (ntree=200) 
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Another important application of the random forest is to identify the importance of each 

feature by the decrease of overall accuracy or Gini Index when we are doing the classification 

analysis. Table 7.3 shows the importance of each factor and Figure 7.6 shows that in graph 

(The predictors are ordered top-to-bottom as most-to-least important). We observe that first 

five most important factors are F22, F19, F1, F18, and F2 by quantifying the decrease of Gini 

index among all trees. 

 

Table 7.3 The Importance of Each Variable in Random Forest 

 

Var 0 1 MeanDecreaseAccuracy MeanDecreaseGini 

F1 6.6488753 5.0000082 7.258872 2.776957 

F2 5.1753964 2.378408 5.399501 2.543734 

F3 3.1469658 2.1654111 3.376613 1.689876 

F4 -2.3438043 2.6523531 1.356546 0.98642 

F5 3.2612629 2.0855413 3.951474 1.185995 

F6 3.3405569 2.5949376 3.790752 2.217774 

F7 1.6823303 1.612651 2.632906 1.019866 

F8 2.3977386 2.3356408 2.839247 1.347622 

F9 2.1655812 4.1777227 4.501735 2.061103 

F10 1.7472195 4.4371111 4.957006 1.151341 

F11 -1.320507 5.1063803 4.53669 1.980359 

F12 1.727472 3.9661194 4.645844 2.436768 

F13 3.0110325 4.1549737 4.565424 2.183272 

F14 0.5133293 5.0482592 5.158688 2.066224 

F15 3.9634925 -0.1600499 2.989674 1.528073 

F16 1.1994597 3.3966511 3.294367 1.323129 

F17 -0.9408771 3.389013 2.307588 1.692024 

F18 5.1237611 2.3893952 5.242597 2.56485 

F19 6.3906007 7.0522474 7.879941 4.5328 

F20 5.0118959 2.2594543 4.339337 2.302739 

F21 4.0860417 0.9123728 3.549615 1.930101 

F22 7.9656179 7.7836152 9.323918 5.459736 
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Figure 7.6 The Variable Importance Plot Using RF (ntree=200) 
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7.4 Model evaluation 
 

The classification tree and random forest fit to the 131 training observations and their 

performances are quantified by scoring the test set and computing for each patient the 

predicted probability of PD. Then using the cut-off value of 0.5 for predicted probability of 

Parkinson’s disease, we derive correct classification rate, sensitivity, and specificity in the test 

set. Tables 7.4, 7.5, and 7.6 show their prediction performances (classification tree - Gini, 

classification tree - Entropy, and random forest) on the test set (cut-off value of 0.5).   

 

Table 7.4 Actual versus Predicted Parkinson’s Disease in the Test Set (Gini Tree) 

 

 
Predicted 

 Actual 0 1 Total 

0 7 10 17 

1 3 44 47 

Total 10 54 64 

 

 

Table 7.5 Actual versus Predicted Parkinson’s Disease in the Test Set (Entropy Tree) 

 

 
Predicted 

 Actual 0 1 Total 

0 7 10 17 

1 3 44 47 

Total 10 54 64 
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Table 7.6 Actual versus Predicted Parkinson’s Disease in the Test Set (Random Forest) 

 

 
Predicted 

 Actual 0 1 Total 

0 14 3 17 

1 4 43 47 

Total 18 46 64 

 

 

According to the calculation, the classification tree (including Gini and Entropy) has the 

correct classification rate as 79.69%, the sensitivity as 93.62%, and the specificity as 41.18%. 

For random forest, we notice that the correct classification rate is 89.06%, the sensitivity is 

91.49%, and the specificity is 82.35%. Figures 7.7 shows the ROC curves of classification 

tree (Gini tree and Entropy tree) and random forest. 
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Figure 7.7 The ROC Curves of Classification Tree and Random Forest 
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8 SUPPORT VECTOR MACHINE 

8.1 Chapter Overview 

 

This chapter reviews and applies support vector machine to the PD data. The sections of 

this chapter are organized as follows. (i) Section 8.2 provides the review of the support vector 

machine, (ii) Section 8.3 shows the application of the method, and (iii) Section 8.4 evaluates 

the performance of the model.   

8.2 Review of the Method 
 

The support vector machine (SVM) is a non-probabilistic binary linear classifier and can 

be used for prediction analysis by constructing a hyperplane in a high dimensional space. 

More specifically, SVM is seeking to construct a  1p  dimensional hyperplane to separate 

the p -dimensional data points, where p  is number of explanatory variable(s). There could 

be many candidate hyperplanes classifying the data, and usually we choose the hyperplane 

with the maximized distance to the nearest data point on each side.  

For linear SVM, for any observation i , suppose ix  is a p -dimensional vector of 

explanatory variables and  1,1iy    is the binary response. In the training dataset, we look 

for the maximum-margin hyperplane separating all data points with 1y   and 1y   . Any 

separating hyperplane in the p-dimensional space can be written as the set of points x  

satisfying bw x , where  is the dot product and w is the normal vector to the hyperplane. 

If the data points are linearly separable, we could select two hyperplanes parallel to 

separating hyperplane that cut through the closest data points on either side (which means 

that no data points exist between these two hyperplanes) and try to maximize the distance 

between them. These two hyperplanes, usually called support hyperplanes, can be written as 

b  w x  and b  w x , which are equivalent to 1b w x  and 1b w x  by 
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scaling the function. Then, the distance between the these two hyperplanes and the separating 

hyperplans is  1 1d b b    w w  and  1 1d b b    w w , so the 

distance between these two support hyperplanes is 2 w . With above definition and 

formulation, for each data point i , we have constraints 1 1ib y     w x  and 

1 1ib y    w x  , which can be rewritten as   1 0iy b i   w x . Finally, we can 

get the optimization problem  min w  with subject to   1 0iy b i   w x . This 

optimization problem can be solved by standard quadratic programming techniques after 

some mathematical formula manipulations. The above linear SVM can still be applied to the 

non-separable case by introducing the concept of soft margin. Although the SVM is 

introduced as a linear classifier, the algorithm can be extended to be a non-linear classifier by 

applying the kernel trick, which aims to gain the linearly separation by mapping the data to a 

higher dimensional space. Some common kernels include polynomial kernel, radial kernel, 

sigmod kernel, etc.  

8.3 Application of the Method  
 

In this section, the SVM with different kernels are constructed based on the training set. 

There are two packages in R that can be used to build SVM - “e1071” and “svmpath". In this 

chapter, R function - “svm” in “e1071” package is employed to construct SVM on the 

training set in order to predict potential PD patients. The function “svm” give us the 

opportunity to apply different kernels to SVM and the kernels used in this study include 

“Linear Kernel”. “Polynomial Kernel” (with degree = 3), “Radial Basis Kernel”, and 

“Sigmoid Kernel”. 

Moreover, cross validation is used in this section for model selection within each kernel. 

In general, the cross validation aims to estimate the accuracy of the performance of a learning 

model in practice, to select the appropriate level of flexibility of the model, and to ensure the 
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validity of the model. The goal of the cross validation is to define a dataset to “test” the 

model in the training phase to avoid problems like over fitting, so the idea is to split the 

training set into a set of data points to train with and a set of data points to validate on. The 

learning model is trained using the new training set and tested on the validation set in order to 

determine the model flexibility and which particular model to be chosen. We have to be 

aware that the validation set that was used as a part of training is different from the 

standalone test set, which is used to estimate how well the learning model works as a whole 

on unseen data. Since the cross validation is a mean of the resampling method, to reduce the 

variability, multiple rounds of cross validation are performed using different partition and the 

validation results are calculated by averaging over all rounds. Two widely used approaches 

are leave-one-out cross validation and k-fold cross validation, and in this chapter we use 

10-fold cross validation to train the model.  

8.4 Model evaluation 
 

The model performance is quantified by scoring the test set and computing for each 

patient the predicted probability of PD. Then using the cut-off value of 0.5 for predicted 

probability of Parkinson’s disease, we derive the proportion of observations correctly 

classified as PD patients or correctly classified as non-PD patients by the SVMs (with various 

kernels), and the achieved sensitivity and specificity in the test set. Tables 8.1, 8.2, 8.3, and 

8.4 provide the summary results (cut-off value of 0.5) of applying the models to the test set. 

Figures 8.1, 8.2, 8.3, and 8.4 display the posterior probability of each observation with 

Parkinson’s disease. 
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Table 8.1 Actual versus Predicted Parkinson’s Disease in the Test Set (SVM - Linear Kernel) 

 

 
Predicted 

 Actual 0 1 Total 

0 8 9 17 

1 0 47 47 

Total 8 56 64 

 

 

 

Table 8.2 Actual versus Predicted Parkinson’s Disease in the Test Set (SVM - Polynomial 

Kernel) 

 

 
Predicted 

 Actual 0 1 Total 

0 9 8 17 

1 1 46 47 

Total 10 54 64 
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Table 8.3 Actual versus Predicted Parkinson’s Disease in the Test Set (SVM - Radial Basis 

Kernel) 

 

 
Predicted 

 Actual 0 1 Total 

0 12 5 17 

1 1 46 47 

Total 13 51 64 

 

 

Table 8.4 Actual versus Predicted Parkinson’s Disease in the Test Set (SVM - Sigmoid 

Kernel) 

 

 
Predicted 

 Actual 0 1 Total 

0 0 17 17 

1 0 47 47 

Total 0 64 64 
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Figure 8.1 The Posterior Probability of Each Observation in the Test Set (SVM - Linear 

Kernel) 
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Figure 8.2 The Posterior Probability of Each Observation in the Test Set (SVM - Polynomial 

Kernel) 
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Figure 8.3 The Posterior Probability of Each Observation in the Test Set (SVM - Radial 

Basis Kernel) 
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Figure 8.4 The Posterior Probability of Each Observation in the Test Set (SVM - Sigmoid 

Kernel) 
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The above confusion matrix shows that SVM with radial basis kernel gives a proportion 

of correctly predicted observations 90.63% and it is the best classifier among all SVMs, but 

SVM with Sigmoid kernel only gives a proportion of correctly predicted observations 73.44% 

and its prediction accuracy is the worst when comparing with other SVMs. Furthermore, 

according to the calculation, it is obvious that these SVMs with various kernels have different 

sensitivities and specificities. Figure 8.5 shows the ROC curves of SVMs with different 

kernels. 

 

Figure 8.5 The ROC Curves of SVMs 
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9 ARTIFICIAL NEURAL NETWORK 

9.1 Chapter Overview 

 

This chapter reviews and applies Artificial Neural Network (ANN) to the PD data. The 

sections of this chapter are organized as follows. (i) Section 9.2 provides the review of the 

Artificial Neural Network, (ii) Section 9.3 shows the application of the method, and (iii) 

Section 9.4 evaluates the performance of the model.  

9.2 Review of the Method 
 

The artificial neural network (ANN) attempts to simulate the biological nervous 

systems, e.g., the human brain to process information. The network has a large amount of 

highly interconnected proceeding elements, which are called neurons (or processing elements 

and units), working in unison to solve specific problems. The network is connected with 

coefficients (weights), which constitute the neural structure and are organized in layers. The 

learning process of ANN typically involves adjustments to the synaptic connections between 

the neurons. In ANN, each neuron has weighted inputs, transfer function, and one output. The 

transfer function, the weights, and the structure of the network determine the behavior of an 

artificial neural network. The activation signal, which is constituted by the weighted sum of 

inputs, passes through the transfer function to produce a single output of neuron. The transfer 

function can be linear or non-linear. In order to obtain the desired output from the network, 

the input weights of each neuron need to be adjusted and optimized during the training 

process until the network reaches the desired prediction accuracy.   

As in the above discussion, the learning process of ANN can be treated as a problem of 

updating the network architecture and connection weights so that the network can handle a 

particular task efficiently. The two best known ANN are self-organizing ANN and 

back-propagation ANN. More introductions to the modeling and learning of ANN are 



68 

 

provided by Hastie et al. (2012), Jain and Mao (1996), Dreiseitl and Ohno-Machado (2002), 

etc. 

Last but not least, the ANN has a wide range of applications, including classification, 

prediction, clustering, etc., which implies that ANN is not just belonging to the domain of 

supervised learning, but also can be used as an unsupervised learning technique. However, in 

this study the ANN is purposely designed for supervised learning for potential PD patient 

prediction. 

9.3 Application of the Method  
 

In this section, the ANNs with different number of hidden layers are constructed based on 

the training set. R function - “nnet” in “nnet” package is employed to construct SVM on the 

training set in order to predict potential PD patients. When applying the function, we have the 

opportunity to set up the number of nodes in the hidden layer. We pick 5, 10, and 20 nodes to 

compare the model performance with various numbers of hidden layers. The input weights of 

each neuron in ANN are provided in Appendix A. 

9.4 Model evaluation 
 

The model performance is quantified by scoring the test set and computing for each 

patient the predicted probability of PD. Then using the cut-off value of 0.5 for predicted 

probability of Parkinson’s disease, we derive the proportion of observations correctly 

classified as PD patients or correctly classified as non-PD patients by the ANNs (with various 

number of nodes in the hidden layer), and the achieved sensitivity and specificity in the test 

set. Tables 9.1, 9.2, and 9.3 provide the summary results (cut-off value of 0.5) of applying the 

models to the test set. Figures 9.1, 9.2, and 9.3 display the posterior probability of each 

observation with Parkinson’s disease. 
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Table 9.1 Actual versus Predicted Parkinson’s Disease in the Test Set (ANN with 5 Nodes in 

the Hidden Layer) 

 

 
Predicted 

 Actual 0 1 Total 

0 16 1 17 

1 4 43 47 

Total 20 44 64 

 

 

Table 9.2 Actual versus Predicted Parkinson’s Disease in the Test Set (ANN with 10 Nodes 

in the Hidden Layer) 

 

 
Predicted 

 Actual 0 1 Total 

0 17 0 17 

1 2 45 47 

Total 19 45 64 

 

 

 

 

Table 9.3 Actual versus Predicted Parkinson’s Disease in the Test Set (ANN with 20 Nodes 

in the Hidden Layer) 

 

 
Predicted 

 Actual 0 1 Total 

0 17 0 17 

1 2 45 47 

Total 19 45 64 
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Figure 9.1 The Posterior Probability of Each Observation in the Test Set (ANN with 5 Nodes 

in the Hidden Layer) 
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Figure 9.2 The Posterior Probability of Each Observation in the Test Set (ANN with 10 

Nodes in the Hidden Layer) 
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Figure 9.3 The Posterior Probability of Each Observation in the Test Set (ANN with 20 

Nodes in the Hidden Layer) 
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Based on above analysis and calculation, the ANN with 5 nodes can predict the potential 

PD patients with an accuracy rate as 92.19%. At the same time, the model comes with the 

sensitivity of 91.49% and the specificity of 94.12%. On the other hand, the ANNs with 10 

and 20 nodes in the hidden layer lead to a proportion of correctly predicted observations of 

96.88%, and their sensitivities and specificities are 95.74% and 100% respectively. Figure 9.4 

shows the ROC curves of ANNs with various number of nodes in the hidden layer. 

 

 

 

Figure 9.4 The ROC Curves of ANNs 
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10 DISCUSSIONS AND CONCLUSION 

10.1 Chapter Overview 

 

This chapter presents the discussions and conclusion of this study. This chapter is 

organized as follows. (i) Section 10.2 provides the summary results, (ii) Section 10.3 gives 

the recommendations, and (iii) Section 10.4 discusses the future work.  

10.2 Summary Results 
 

With the preceding analysis and discussion, various data mining methods (supervised 

learning algorithm) are applied to the training set for model construction. The performance of 

each model is evaluated against the test set by finding the correct classification rate, 

sensitivity, and specificity.  

Table 10.1 gives the quantification of these three metrics for each model (with cut-off 

value 0.5). Figure 10.1 shows a comparison of different learning algorithms by overall correct 

classification rates. It is noted that the best model is ANN (10 or 20 nodes in the hidden layer) 

with the highest correct classification rate as 96.88%, while the SVM with sigmoid kernel is 

the worst classifier with the lowest correct classification rates as 73.44%.  

However, the above misclassification rates for all models are calculated with a threshold 

value of 0.5, and in order to have a more comprehensive comparisons, ROC curves can be 

utilized to compare the performance of each model. As discussed in Section 4.4, a model with 

perfect discrimination has a ROC curve that passes through the upper left corner (0% false 

positive, 100% true positive), and the closer the ROC curve is to the upper left corner, the 

higher the overall accuracy of the model is. By comparing ROC curves for all models, we 

observe that ROC curves of SVM with radial basis kernel ANN with node=20 most close to 

the top left corner. 
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Figure 10.1 Comparison of Learning Algorithms by Overall Correct Classification Rate 
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Table 10.1 The Performance of Each Data Mining Model  

Learning Algorithm 
Sensitivity 

Rate 

Specificity 

Rate 

Correct 

Classification 

Rate 

logistic Regression (Stepwise) 93.62% 82.35% 90.63% 

probit Regression (Stepwise) 93.62% 82.35% 90.63% 

LDA 91.49% 70.59% 85.94% 

QDA 100% 64.71% 90.63% 

Gini Tree 93.62% 41.18% 79.69% 

Entropy Tree 93.62% 41.18% 79.69% 

Random Forest 91.49% 82.35% 89.06% 

SVM w/ Linear Kernel 100% 47.06% 85.94% 

SVM w/ Polynomial Kernel (3) 97.84% 52.94% 85.94% 

SVM w/ Radial Basis Kernel 97.84% 70.59% 90.63% 

SVM w/ Sigmoid Kernel 100.00% 0.00% 73.44% 

ANN (5 nodes) 91.49% 94.12% 92.19% 

ANN (10 nodes) 95.74% 100.00% 96.88% 

ANN (20 nodes) 95.74% 100.00% 96.88% 
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10.3 Recommendations 
 

Several supervised learning methods are applied in this study for a possible suitable 

model to predict the potential PD patients. Based on the above analysis, we have the 

following recommendation. ANNs (with 20 nodes or 10 nodes) provide the lowest overall 

misclassification rates, and if the prediction accuracy is the only and major concern, ANN 

models are preferred. However, if considering the balance between the prediction accuracy 

and model interpretation, we recommend using GLMs including the logistic regression and 

probit regression models, which are able to reveal the most significant factors in the 

prediction of potential PD patients.  

We notice that only 6 out of the 22 features are used to construct final regression model, 

which has a correct classification rate higher than 90%. The regressions imply that predictors 

F2, F3, F17, F18, F20, are F21 are the most important variables for the prediction of 

Parkinson’s disease. The models formulized as follows: 

Logistic Regression:

5.65 4.63 2.20 0.73 2.69 5.86

0.08 5.09 11.10 5.28

1.38 2.46 1.59

1.51 1.96

F2 F3 + F17 + F18 + F20 

 F21 + F2 × F18 + F2 × F20 F2 × F21 

 F3 × F17  F3 × F18 + F3 × F21

1
p =

1+ex
 

+ F17 × F20 + F  

-

18

p

×

      

     

    

  2.23 F20  F18 × F21 

  
  
  
  
  
    

,  

where exp  is an Exponential function and p denotes the probability of Parkinson’s 

disease. 

Probit Regression:

3.20 2.62 1.16 0.45 1.56 3.32

0.03 2.88 6.35 2.97

0.76 1.38 0.92

0.86 1.11 1.

F2 F3 + F17 + F18 + F20 

 F21 + F2 × F18 + F2 × F20 F2 × F21 

 F3 × F17  F3 × F18 + F3 × F21 

+ F17 × F20 + F18 × F  

=

20

p

      

     

    

  



26  F18 × F21 

 
 
 
 







,  

where  is the Cumulative Distribution Function (CDF) of the standard normal distribution 
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and p denotes the probability of Parkinson’s disease. 

The model implementation implies that giving the concerns patients the measure of F2- 

maximum vocal fundamental frequency, F3 - minimum vocal fundamental frequency, F17 - 

recurrence period density entropy, F18 - detrended fluctuation analysis, F20 - nonlinear 

measure of fundamental frequency, and F21 - pitch period entropy. Once these measurements 

are captured, we can apply the formula above (logistic or probit regression models) to obtain 

the probability, p , of the patients with Parkinson’s disease, then use the cut-off value of 0.5 

to classify the patient into the group with Parkinson’s disease if p is greater than 0.5. 

Otherwise we classify the patient into the group without Parkinson’s disease.  

10.4 Discussions 
 

This section discusses potential concerns with GLM and the estimates of each model’s 

discrimination. 

The full logistic regression ( with main effects and interactions) model in Chapter 4 

includes 6 features, F2, F3, F17, F18, F20, and F22, and all possible two-way interactions 

among them, and the final recommended model is built on initial model with the variable 

selection scheme. Above initial features are preliminarily selected by using VIF. However, a 

reader might believe that if we include all 22 variables and two-way interactions in the full 

model, it can make the model much more flexible and expect a better regression model. Thus, 

we will construct a new logistic regression model with all 22 features and interaction terms. 

The variable selection scheme is applied to remove unnecessary features and interaction 

terms, and determine the discrimination ability of the new model. 

 As the original PD dataset has 22 features, if we include all 2-way interactions with 

original predictors in the initial GLM model, we will have 22+22*21/2=253 regressors. Since 

we only have 131 observations in the training set, it is impossible to find a single logistic 

regression model for prediction due to the restriction that the sample size needs to be larger 
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than the number of predictors (Lim et al, 2009). Thus, this time we proceed by adding a 

single 2-way interaction with the original 22 variables in the logistic regression model. Then, 

for each model, we use the stepwise variable selection method to remove all unnecessary 

predictors. Two hundred and thirty one (231=22*21/2) distinct logistic regression models 

have to be constructed and examined thoroughly and these models have the following pattern.  

Model1:

1 2.

Model 2:

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22 F F

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + 

 

1 3.

Model3:

F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22 F F

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18

 

1 4.

Model 228:

19 22.

Model 229:

 + F19 + F20 + F21 +  F22 F F

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22 F F

Status ~ 

 

 

20 21.

Model 230:

F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22 F F

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F

 

20 22.

Model 231:

11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22 F F

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 +

 

21 22. F20 + F21 +  F22 F F   
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   All models above with two-way interactions are treated as full models, and unnecessary 

terms are removed by performing stepwise model selection, where AIC is used as a main 

criterion. After comparing all finalized 231 models, the following logistic regression model 

with the lowest AIC value of 60.71 is nominated as a recommended model for predicting 

potential Parkinson’s disease: 

.Status ~ F7 + F8 + F10 + F14 + F16 + F17 + F19 + F20 + F14×F19  

Its corresponding full model is: 

.

Status ~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11 + F12 + 

F13 + F14 + F15 + F16 + F17 + F18 + F19 + F20 + F21 +  F22+F14× F19
 

 Table 10.2 provides the estimation of the final recommended logistic regression model. 

To evaluate its performance, we apply this logistic regression model with main effects and 

interaction terms, score the test set, and compute the predicted probability of PD for each 

patient. Table 10.3 shows the confusion matrix after applying the model to the test set (cut-off 

value of 0.5), and the accuracy of the above regression model is 92.19%, which is slightly 

higher than the previous recommended model with accuracy of 90.32% in Chapter 4.  
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Table 10.2 Final Model Estimates of Logistic Regression 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 11.63 3.20 3.64 0.00 

F7 -35.07 10.02 -3.50 0.00 

F8 23.57 7.11 3.31 0.00 

F10 26.13 8.63 3.03 0.00 

F14 -9.28 4.93 -1.88 0.06 

F16 -3.75 1.78 -2.11 0.04 

F17 -0.85 0.54 -1.58 0.11 

F19 20.57 5.85 3.52 0.00 

F20 1.56 0.71 2.20 0.03 

F14:F19 19.69 5.92 3.32 0.00 

 

 

Table 10.3 Actual versus Predicted Parkinson’s Disease in the Test (Logistic Regression)  

 
Predicted 

 Actual 0 1 Total 

0 15 2 17 

1 3 44 47 

Total 18 46 64 
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The recent analysis might suggest using the above recommended model for the 

Parkinson’s disease prediction due to the higher prediction accuracy. However, this prediction 

accuracy is based on the cut-off value of 0.5. To have a more comprehensive comparison of 

the above recommended model and the model recommended in Chapter 4, the ROC curves 

can be utilized. Figure 10.2 displays the ROC curves, where model A (referred the model 

with the lowest AIC among 231 models) is

Status ~ F7 + F8 + F10 + F14 + F16 + F17 + F19 + F20 + F14×F19  

and model B (referred the model obtained by the VIF method) is 

.

Status ~ F2 + F3 + F17 + F18 + F20 + F21  

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 

+ F3 × F21 + F17 × F20 + F18 × F20 + F18 × F21

 

.

 

 

Figure 10.2 ROC Curves for the Comparison of Recommended Logistic Regression Models  
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By comparing the area under each ROC curve (AUC) in Figure 10.2, we notice that 

model B obtained by the VIF method is preferred in general. Thus, from the perspective of 

discrimination ability, the model recommended in Chapter 4 outperforms the model A 

mentioned above.  

A similar analysis can be conducted for the probit regression discussed in Chapter 5. As 

in the previously noted analysis on the logistic regression, after performing two hundred and 

thirty one pribit regressions with stepwise variables selection, we get the best model with 

lowest AIC below. 

.Status ~ F7 + F8 + F10 + F14 + F16 + F17 + F19 + F20 + F14×F19  

Table 10.4 presents the estimation of the current recommended probit regression model 

and Table 10.5 displays the confusion matrix and indicates the model’s accuracy is 92.19%. 

To compare the discrimination ability of the current model and previously recommended 

model in the Section 10.3, we draw the ROC curves for both models in Figure 10.3 and 

suggest that Model B is better than Model A in predicting the potential Parkinson’s disease 

patients, as the area under ROC curve of Model B is larger than that of Model A, where 

model A (which is with the lowest AIC among 231 models) is 

Status ~ F7 + F8 + F10 + F14 + F16 + F17 + F19 + F20 + F14×F19  

and model B (which is obtained by the VIF method) is 

.

Status ~ F2 + F3 + F17 + F18 + F20 + F21  

+ F2 × F18 + F2 × F20 + F2 × F21 + F3 × F17 + F3 × F18 

+ F3 × F21 + F17 × F20 + F18 × F20 + F18 × F21  
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Table 10.4 Final Model Estimates of Probit Regression 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 6.48 1.65 3.93 0.00 

F7 -19.67 5.23 -3.76 0.00 

F8 13.20 3.72 3.55 0.00 

F10 15.02 4.61 3.26 0.00 

F14 -5.59 2.69 -2.08 0.04 

F16 -2.03 0.95 -2.14 0.03 

F17 -0.49 0.29 -1.70 0.09 

F19 11.38 3.05 3.73 0.00 

F20 0.90 0.40 2.24 0.02 

F14:F19 10.80 3.12 3.46 0.00 

 

 

Table 10.5 Actual versus Predicted Parkinson’s Disease in the Test (Probit Regression)  

 
Predicted 

 Actual 0 1 Total 

0 15 2 17 

1 3 44 47 

Total 18 46 64 
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Figure 10.3 ROC Curves for the Comparison of Recommended Probit Regression Models 
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Another concern is how to provide an unbiased estimate of a model’s discrimination, 

which is a measure of how well the classes in the dates are separated (Dreiseitl and 

Ohno-Machado, 2002). Throughout previous chapters, we employ a portion of the original 

data set as a test set that is not used in the model building process to calculate the correct 

classification rate, sensitivity, and specificity of each model. Table 10.1 displays the 

performance of each data mining model on the test set. We use these measures to compare 

and recommend models for potential Parkinson’s disease prediction. However we have to 

keep in mind that all of these estimates are based on one specific split of the original data set 

into the training and test sets.  

Due to the limit of time and space, we do not split the original data into the training and 

test sets multiple times, and repeat the model building and evaluation process for all 

predictive models based on each partition. To obtain a comprehensive evaluation and 

comparison of the above discussed data mining techniques, we can build and evaluate each 

model many times based on multiple partitions, and then utilize statistical tests to determine 

whether one model exceeds another one in discrimination ability. In this section, we 

demonstrate how to carefully assess the logistic regression and the Gini classification tree 

through multiple splits of original data set into training and test sets. For each split, the 

training set is used to build and estimate the logistic regression (main effects and interactions) 

model and the Gini classification tree, and the test set is used to assess models’ accuracy, 

sensitivity, and specificity. 

After we randomly split the original data into training and test sets, and build and 

evaluate both models for 200 times, Tables 10.6 and 10.7 show the statistics (mean and 

variance) of three evaluation metrics for both models and Figure 10.4 displays boxplots for 

accuracy, sensitivity, and specificity (the recommended logistic regression model in Chapter 

4 and Gini classification tree in Chapter 7). We notice that, for the logistic regression model, 
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the average of correct classification rate is 85.25% with a variance of 0.17%, and for the Gini 

tree, the average correct classification rate as 83.39% with a variance of 0.33%. Furthermore, 

the paired Wilcoxon signed-rank test reveals that logistic regression significantly outperforms 

the Gini classification tree by comparing the correct classification rates of two models (with 

p-value= 0.00).  

The above discussion suggests a better understanding of the prediction power of the 

logistic regression model and the Gini classification tree on the PD data set, and demonstrates 

how to compare models more comprehensively through multiple training and test sets splits, 

as well as the statistical test. The similar comparisons can be extended to all other data 

mining methods used in this thesis.  
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Table 10.6 The Mean and Variance of Accuracy, Sensitivity, and Specificity for Logistic 

Regression 

 
Accuracy Sensitivity Specificity 

Mean 85.25% 90.52% 69.88% 

Variance 0.17% 0.23% 1.38% 

 

 

 

Table 10.7 The Mean and Variance of Accuracy, Sensitivity, and Specificity for Gini 

Classification Tree 

 
Accuracy Sensitivity Specificity 

Mean 83.40% 91.24% 60.53% 

Variance 0.33% 0.40% 2.96% 
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Figure 10.4 Boxplots for Accuracy, Sensitivity, and Specificity for Logistic Regression 

Model and Gini Classification Tree 
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10.5 Future Work 
 

In the future applications, one might consider utilizing other supervised learning 

techniques to predict potential PD patients. For example, ensemble-based classifiers can be 

used to improve the prediction performance by using multiple learning algorithms (Rokach, 

2010). Boosting Algorithm can turn weak learner into a strong learner, and examples of 

boosting algorithms are “AdaBoost”, “Boosting Tree”, “Gradient Boosting”, etc. The use of 

these advanced algorithms would improve the accuracy of the predictive model. 

Moreover, we may consider applying the dimension reduction techniques to the dataset 

before conducting the data mining analysis. For instance, the Principle Component Analysis 

(PCA) is a well-known dimension reduction procedure. The statistical learning algorithms 

can be applied to the first few principle components for model building after an orthogonal 

linear transformation, which is more computationally efficient.  

Another potential project is to use the cost-sensitive learning and make the study more 

practical by building the classifiers taking into account of the misclassification costs. The 

misclassification cost is not considered explicitly in this thesis. However different types of 

classification errors (false positive and false negative) often incur different costs. In many 

applications, correct classification of the rare class may have greater value than correct 

classification of the majority class. 
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APPENDICES 

Appendix A: The Input Weights of Each Neuron for ANN 
 

The following part shows the input weights of each neuron for ANN with different 

number of nodes in the hidden layer.  

 5 nodes in the hidden layer 

 

> summary(parkinsons.nn5) 
a 22-5-1 network with 121 weights 
options were - entropy fitting  decay=0.001 
  b->h1  i1->h1  i2->h1  i3->h1  i4->h1  i5->h1  i6->h1  i7->h1  i8->h1  i
9->h1 i10->h1 i11->h1 i12->h1 i13->h1 i14->h1 i15->h1 i16->h1 i17->h1 i18->
h1  
  -1.95   -3.63   -0.52    1.17    0.23    2.23   -1.49    2.19   -1.49   
 0.62    0.47   -0.17    1.47    2.13   -0.18   -2.29    1.95    0.24    1.
94  
i19->h1 i20->h1 i21->h1 i22->h1  
   0.11    4.37   -2.48    1.62  
  b->h2  i1->h2  i2->h2  i3->h2  i4->h2  i5->h2  i6->h2  i7->h2  i8->h2  i
9->h2 i10->h2 i11->h2 i12->h2 i13->h2 i14->h2 i15->h2 i16->h2 i17->h2 i18->
h2  
  -2.92    0.75    0.38    0.52    0.72    0.87   -1.03    0.55   -1.03   
 0.00    0.15    0.06    0.07    0.27    0.06    1.06    0.44    1.78    0.
03  
i19->h2 i20->h2 i21->h2 i22->h2  
  -1.57   -0.60   -0.68   -1.42  
  b->h3  i1->h3  i2->h3  i3->h3  i4->h3  i5->h3  i6->h3  i7->h3  i8->h3  i
9->h3 i10->h3 i11->h3 i12->h3 i13->h3 i14->h3 i15->h3 i16->h3 i17->h3 i18->
h3  
   0.03   -0.99   -1.20   -0.46    0.04   -0.23    1.16    0.42    1.16   
 0.41    0.48    1.03    0.54   -0.50    1.03    0.48   -1.00    1.95    2.
73  
i19->h3 i20->h3 i21->h3 i22->h3  
   1.95    1.50   -0.43    1.97  
  b->h4  i1->h4  i2->h4  i3->h4  i4->h4  i5->h4  i6->h4  i7->h4  i8->h4  i
9->h4 i10->h4 i11->h4 i12->h4 i13->h4 i14->h4 i15->h4 i16->h4 i17->h4 i18->
h4  
   3.13   -3.99   -0.89    1.03   -0.34    0.35   -0.62   -3.64   -0.61   
 0.39    0.53    0.19   -1.27    0.93    0.19    1.25   -1.87   -4.90   -0.
13  
i19->h4 i20->h4 i21->h4 i22->h4  
   1.66    5.91   -0.38   -0.29  
  b->h5  i1->h5  i2->h5  i3->h5  i4->h5  i5->h5  i6->h5  i7->h5  i8->h5  i
9->h5 i10->h5 i11->h5 i12->h5 i13->h5 i14->h5 i15->h5 i16->h5 i17->h5 i18->
h5  
   0.03   -0.99   -1.20   -0.46    0.04   -0.23    1.15    0.42    1.16   
 0.41    0.48    1.03    0.54   -0.50    1.03    0.47   -0.99    1.95    2.
73  
i19->h5 i20->h5 i21->h5 i22->h5  
   1.95    1.50   -0.43    1.97  
  b->o  h1->o  h2->o  h3->o  h4->o  h5->o  
 -4.87 -13.89  -4.42   7.68  12.82   7.67  
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 10 nodes in the hidden layer 

 
> summary(parkinsons.nn10) 
a 22-10-1 network with 241 weights 
options were - entropy fitting  decay=0.001 
  b->h1  i1->h1  i2->h1  i3->h1  i4->h1  i5->h1  i6->h1  i7->h1  i8->h1  i
9->h1 i10->h1 i11->h1 i12->h1 i13->h1 i14->h1 i15->h1 i16->h1 i17->h1 i18->
h1  
  -0.06   -0.47   -0.35   -0.40    0.02    0.11    0.68    0.15    0.68   
 0.45    0.42    0.78    0.39   -0.08    0.78    0.27   -0.80    1.10    1.
36  
i19->h1 i20->h1 i21->h1 i22->h1  
   1.18    0.65   -0.96    1.09  
  b->h2  i1->h2  i2->h2  i3->h2  i4->h2  i5->h2  i6->h2  i7->h2  i8->h2  i
9->h2 i10->h2 i11->h2 i12->h2 i13->h2 i14->h2 i15->h2 i16->h2 i17->h2 i18->
h2  
   0.63   -1.44   -0.28   -1.29   -0.79   -0.45    0.32   -0.28    0.31   
 0.12    0.11   -0.29    0.23    0.68   -0.29   -0.31    1.02    2.14   -2.
86  
i19->h2 i20->h2 i21->h2 i22->h2  
   1.26   -0.49    0.57    0.99  
  b->h3  i1->h3  i2->h3  i3->h3  i4->h3  i5->h3  i6->h3  i7->h3  i8->h3  i
9->h3 i10->h3 i11->h3 i12->h3 i13->h3 i14->h3 i15->h3 i16->h3 i17->h3 i18->
h3  
   0.88    5.29    0.23    1.44   -0.22   -1.64    1.42   -0.18    1.40   
-1.23   -0.98   -0.95   -1.23   -1.77   -0.95    0.72    0.55   -0.01   -0.
39  
i19->h3 i20->h3 i21->h3 i22->h3  
   0.82    0.36    1.38    0.02  
  b->h4  i1->h4  i2->h4  i3->h4  i4->h4  i5->h4  i6->h4  i7->h4  i8->h4  i
9->h4 i10->h4 i11->h4 i12->h4 i13->h4 i14->h4 i15->h4 i16->h4 i17->h4 i18->
h4  
   1.00   -2.26    0.36    0.00   -0.92   -0.38    0.37   -0.95    0.37   
 0.24    0.59   -0.02    0.23   -0.01   -0.02    0.69    0.04   -2.76    0.
97  
i19->h4 i20->h4 i21->h4 i22->h4  
   1.58    0.51   -1.18    1.00  
  b->h5  i1->h5  i2->h5  i3->h5  i4->h5  i5->h5  i6->h5  i7->h5  i8->h5  i
9->h5 i10->h5 i11->h5 i12->h5 i13->h5 i14->h5 i15->h5 i16->h5 i17->h5 i18->
h5  
  -0.32   -0.39   -0.42   -0.10    0.11    0.31    0.65    0.15    0.65   
 0.52    0.48    0.75    0.43    0.08    0.75    0.28   -0.93    0.93    1.
12  
i19->h5 i20->h5 i21->h5 i22->h5  
   0.95    0.02   -1.16    0.89  
  b->h6  i1->h6  i2->h6  i3->h6  i4->h6  i5->h6  i6->h6  i7->h6  i8->h6  i
9->h6 i10->h6 i11->h6 i12->h6 i13->h6 i14->h6 i15->h6 i16->h6 i17->h6 i18->
h6  
  -0.62   -2.23    1.55    1.88    0.29    1.60   -1.50    1.30   -1.51   
 0.43   -0.02    0.34    0.93    1.39    0.33   -1.40    3.93    1.56    2.
21  
i19->h6 i20->h6 i21->h6 i22->h6  
   0.57    1.88   -0.89    1.33  
  b->h7  i1->h7  i2->h7  i3->h7  i4->h7  i5->h7  i6->h7  i7->h7  i8->h7  i
9->h7 i10->h7 i11->h7 i12->h7 i13->h7 i14->h7 i15->h7 i16->h7 i17->h7 i18->
h7  
  -2.35    2.15    0.17   -0.88    0.22   -0.13   -0.03    1.23   -0.03   
-0.28   -0.40   -0.66    0.65    0.29   -0.66   -0.24   -0.93    2.27   -2.
11  
i19->h7 i20->h7 i21->h7 i22->h7  
  -0.52   -2.82    0.81   -0.04  
  b->h8  i1->h8  i2->h8  i3->h8  i4->h8  i5->h8  i6->h8  i7->h8  i8->h8  i
9->h8 i10->h8 i11->h8 i12->h8 i13->h8 i14->h8 i15->h8 i16->h8 i17->h8 i18->
h8  
  -1.50    0.50   -1.16   -2.96    0.63    0.63    0.09    0.25    0.09   
-0.64   -0.69   -0.11   -0.49   -0.90   -0.11   -0.19    0.46    0.13   -1.
14  
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i19->h8 i20->h8 i21->h8 i22->h8  
  -2.12   -2.61   -0.98   -1.37  
  b->h9  i1->h9  i2->h9  i3->h9  i4->h9  i5->h9  i6->h9  i7->h9  i8->h9  i
9->h9 i10->h9 i11->h9 i12->h9 i13->h9 i14->h9 i15->h9 i16->h9 i17->h9 i18->
h9  
   1.80   -2.07   -0.54   -0.63   -0.63   -0.22   -0.80   -0.77   -0.80   
-0.09   -0.15   -0.30   -0.18    0.17   -0.30   -0.65   -0.54    0.34   -0.
25  
i19->h9 i20->h9 i21->h9 i22->h9  
   0.85    0.76   -0.49    0.41  
  b->h10  i1->h10  i2->h10  i3->h10  i4->h10  i5->h10  i6->h10  i7->h10  i
8->h10  i9->h10 i10->h10 i11->h10 i12->h10 i13->h10 i14->h10 i15->h10 i16->
h10  
   -0.31    -0.40    -0.42    -0.12     0.11     0.30     0.65     0.15   
  0.65     0.51     0.47     0.75     0.43     0.07     0.75     0.28    -
0.92  
i17->h10 i18->h10 i19->h10 i20->h10 i21->h10 i22->h10  
    0.94     1.13     0.96     0.06    -1.15     0.90  
  b->o  h1->o  h2->o  h3->o  h4->o  h5->o  h6->o  h7->o  h8->o  h9->o h10->
o  
 -1.43   4.03   5.04   7.93   5.04   3.84  -8.87  -7.40  -8.20   4.28   3.
84  

 

 

 20 nodes in the hidden layer 

 
> summary(parkinsons.nn20) 
a 22-20-1 network with 481 weights 
options were - entropy fitting  decay=0.001 
  b->h1  i1->h1  i2->h1  i3->h1  i4->h1  i5->h1  i6->h1  i7->h1  i8->h1  i
9->h1 i10->h1 i11->h1 i12->h1 i13->h1 i14->h1 i15->h1 i16->h1 i17->h1 i18->
h1  
   1.28   -1.16   -0.92   -0.62   -0.34   -0.07   -0.45   -0.41   -0.45   
 0.02    0.04   -0.15   -0.07    0.23   -0.15   -0.25   -0.13    0.18   -0.
24  
i19->h1 i20->h1 i21->h1 i22->h1  
   0.35    0.66   -0.36    0.19  
  b->h2  i1->h2  i2->h2  i3->h2  i4->h2  i5->h2  i6->h2  i7->h2  i8->h2  i
9->h2 i10->h2 i11->h2 i12->h2 i13->h2 i14->h2 i15->h2 i16->h2 i17->h2 i18->
h2  
  -0.67   -0.14    0.27   -1.49    0.35    0.47   -0.31    0.25   -0.31   
-0.44   -0.36   -0.60   -0.30   -0.09   -0.60   -0.14    0.99   -0.55   -1.
21  
i19->h2 i20->h2 i21->h2 i22->h2  
  -0.97   -0.15    0.39   -0.55  
  b->h3  i1->h3  i2->h3  i3->h3  i4->h3  i5->h3  i6->h3  i7->h3  i8->h3  i
9->h3 i10->h3 i11->h3 i12->h3 i13->h3 i14->h3 i15->h3 i16->h3 i17->h3 i18->
h3  
  -0.20   -0.56   -0.68   -0.39    0.11    0.26    0.72    0.07    0.72   
 0.47    0.44    0.78    0.32   -0.06    0.78    0.40   -1.04    0.78    1.
32  
i19->h3 i20->h3 i21->h3 i22->h3  
   0.92    0.49   -1.02    0.80  
  b->h4  i1->h4  i2->h4  i3->h4  i4->h4  i5->h4  i6->h4  i7->h4  i8->h4  i
9->h4 i10->h4 i11->h4 i12->h4 i13->h4 i14->h4 i15->h4 i16->h4 i17->h4 i18->
h4  
  -1.35   -0.85   -0.20    0.87    0.38    0.61   -0.33    0.27   -0.33   
 0.21    0.17    0.41    0.19    0.16    0.40   -0.19    1.14   -0.46    2.
43  
i19->h4 i20->h4 i21->h4 i22->h4  
  -0.10    1.80   -0.53   -0.01  
  b->h5  i1->h5  i2->h5  i3->h5  i4->h5  i5->h5  i6->h5  i7->h5  i8->h5  i
9->h5 i10->h5 i11->h5 i12->h5 i13->h5 i14->h5 i15->h5 i16->h5 i17->h5 i18->
h5  
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  -0.94   -0.06   -0.54   -1.41    0.34    0.34    0.00    0.25    0.00   
-0.51   -0.51   -0.33   -0.25   -0.53   -0.33   -0.14    0.11    0.03   -0.
64  
i19->h5 i20->h5 i21->h5 i22->h5  
  -1.14   -1.84   -0.44   -0.79  
  b->h6  i1->h6  i2->h6  i3->h6  i4->h6  i5->h6  i6->h6  i7->h6  i8->h6  i
9->h6 i10->h6 i11->h6 i12->h6 i13->h6 i14->h6 i15->h6 i16->h6 i17->h6 i18->
h6  
   0.39   -0.01   -0.39   -0.89   -0.21    0.06    0.16   -0.14    0.16   
-0.41   -0.40   -0.84   -0.33    0.28   -0.83   -0.41    0.67    3.18   -2.
26  
i19->h6 i20->h6 i21->h6 i22->h6  
   0.95    0.23    0.34    0.83  
  b->h7  i1->h7  i2->h7  i3->h7  i4->h7  i5->h7  i6->h7  i7->h7  i8->h7  i
9->h7 i10->h7 i11->h7 i12->h7 i13->h7 i14->h7 i15->h7 i16->h7 i17->h7 i18->
h7  
   1.77   -1.63   -0.18    0.71   -0.18    0.09    0.06   -0.90    0.06   
 0.26    0.47    0.38   -0.38    0.00    0.38    0.30    0.44   -1.76    1.
76  
i19->h7 i20->h7 i21->h7 i22->h7  
   0.04    1.82   -0.76   -0.18  
  b->h8  i1->h8  i2->h8  i3->h8  i4->h8  i5->h8  i6->h8  i7->h8  i8->h8  i
9->h8 i10->h8 i11->h8 i12->h8 i13->h8 i14->h8 i15->h8 i16->h8 i17->h8 i18->
h8  
   1.29   -1.17   -0.92   -0.62   -0.34   -0.07   -0.46   -0.41   -0.46   
 0.02    0.04   -0.15   -0.07    0.23   -0.15   -0.25   -0.14    0.18   -0.
24  
i19->h8 i20->h8 i21->h8 i22->h8  
   0.35    0.66   -0.36    0.19  
  b->h9  i1->h9  i2->h9  i3->h9  i4->h9  i5->h9  i6->h9  i7->h9  i8->h9  i
9->h9 i10->h9 i11->h9 i12->h9 i13->h9 i14->h9 i15->h9 i16->h9 i17->h9 i18->
h9  
   1.29   -1.16   -0.92   -0.62   -0.34   -0.07   -0.45   -0.41   -0.45   
 0.02    0.04   -0.15   -0.07    0.23   -0.15   -0.25   -0.14    0.18   -0.
24  
i19->h9 i20->h9 i21->h9 i22->h9  
   0.35    0.66   -0.37    0.19  
  b->h10  i1->h10  i2->h10  i3->h10  i4->h10  i5->h10  i6->h10  i7->h10  i
8->h10  i9->h10 i10->h10 i11->h10 i12->h10 i13->h10 i14->h10 i15->h10 i16->
h10  
    1.48    -0.74    -0.24    -1.39    -0.02    -0.51     1.25     0.08   
  1.26    -0.44    -0.28    -0.25    -0.47    -0.87    -0.25    -0.29    -
0.46  
i17->h10 i18->h10 i19->h10 i20->h10 i21->h10 i22->h10  
   -3.23     1.33     1.50     0.03    -0.12     1.34  
  b->h11  i1->h11  i2->h11  i3->h11  i4->h11  i5->h11  i6->h11  i7->h11  i
8->h11  i9->h11 i10->h11 i11->h11 i12->h11 i13->h11 i14->h11 i15->h11 i16->
h11  
    0.43    -2.21    -0.03     0.13    -0.47    -0.07     0.59    -0.52   
  0.59     0.13     0.47     0.08    -0.06    -0.13     0.08     0.46     
0.79  
i17->h11 i18->h11 i19->h11 i20->h11 i21->h11 i22->h11  
   -3.40     0.54     1.01     1.06    -1.44     0.93  
  b->h12  i1->h12  i2->h12  i3->h12  i4->h12  i5->h12  i6->h12  i7->h12  i
8->h12  i9->h12 i10->h12 i11->h12 i12->h12 i13->h12 i14->h12 i15->h12 i16->
h12  
   -1.89    -2.48    -0.52    -0.57    -0.02     0.78    -0.96     0.36   
 -0.96     0.15     0.03     0.14     0.32     0.30     0.14    -0.57     
0.60  
i17->h12 i18->h12 i19->h12 i20->h12 i21->h12 i22->h12  
    0.73     0.56     0.37     1.16    -1.14     0.52  
  b->h13  i1->h13  i2->h13  i3->h13  i4->h13  i5->h13  i6->h13  i7->h13  i
8->h13  i9->h13 i10->h13 i11->h13 i12->h13 i13->h13 i14->h13 i15->h13 i16->
h13  
   -0.84    -1.31    -0.02     0.84     0.20     0.67    -0.93     0.76   
 -0.93     0.27     0.11     0.07     0.52     0.89     0.07    -0.75     
1.94  
i17->h13 i18->h13 i19->h13 i20->h13 i21->h13 i22->h13  
    0.78     1.35     0.72     1.98    -1.39     1.21  
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  b->h14  i1->h14  i2->h14  i3->h14  i4->h14  i5->h14  i6->h14  i7->h14  i
8->h14  i9->h14 i10->h14 i11->h14 i12->h14 i13->h14 i14->h14 i15->h14 i16->
h14  
   -0.56    -0.90    -0.72    -0.87     1.19     0.85     0.18     0.67   
  0.18    -0.07    -0.17     0.39    -0.28    -0.43     0.39    -0.23    -
0.52  
i17->h14 i18->h14 i19->h14 i20->h14 i21->h14 i22->h14  
   -1.71     2.47     0.14     1.95     0.43     0.06  
  b->h15  i1->h15  i2->h15  i3->h15  i4->h15  i5->h15  i6->h15  i7->h15  i
8->h15  i9->h15 i10->h15 i11->h15 i12->h15 i13->h15 i14->h15 i15->h15 i16->
h15  
    1.00     0.04     0.59     1.55    -0.37    -0.36    -0.02    -0.25   
 -0.02     0.52     0.53     0.32     0.26     0.55     0.32     0.15    -
0.15  
i17->h15 i18->h15 i19->h15 i20->h15 i21->h15 i22->h15  
   -0.03     0.71     1.23     1.91     0.49     0.86  
  b->h16  i1->h16  i2->h16  i3->h16  i4->h16  i5->h16  i6->h16  i7->h16  i
8->h16  i9->h16 i10->h16 i11->h16 i12->h16 i13->h16 i14->h16 i15->h16 i16->
h16  
   -0.66    -0.13     0.27    -1.48     0.35     0.46    -0.31     0.25   
 -0.31    -0.43    -0.36    -0.60    -0.30    -0.09    -0.60    -0.14     
0.99  
i17->h16 i18->h16 i19->h16 i20->h16 i21->h16 i22->h16  
   -0.55    -1.20    -0.97    -0.14     0.39    -0.54  
  b->h17  i1->h17  i2->h17  i3->h17  i4->h17  i5->h17  i6->h17  i7->h17  i
8->h17  i9->h17 i10->h17 i11->h17 i12->h17 i13->h17 i14->h17 i15->h17 i16->
h17  
   -0.21    -3.45    -0.05    -1.06     0.07     1.13    -0.85     0.27   
 -0.85     0.78     0.64     0.73     0.83     0.92     0.73    -0.44    -
0.22  
i17->h17 i18->h17 i19->h17 i20->h17 i21->h17 i22->h17  
    0.38     0.56    -0.26    -0.31    -1.19     0.10  
  b->h18  i1->h18  i2->h18  i3->h18  i4->h18  i5->h18  i6->h18  i7->h18  i
8->h18  i9->h18 i10->h18 i11->h18 i12->h18 i13->h18 i14->h18 i15->h18 i16->
h18  
   -1.02     1.00     0.81     0.55     0.31     0.08     0.37     0.37   
  0.37    -0.01    -0.02     0.13     0.07    -0.17     0.13     0.21     
0.10  
i17->h18 i18->h18 i19->h18 i20->h18 i21->h18 i22->h18  
   -0.15     0.22    -0.30    -0.52     0.34    -0.17  
  b->h19  i1->h19  i2->h19  i3->h19  i4->h19  i5->h19  i6->h19  i7->h19  i
8->h19  i9->h19 i10->h19 i11->h19 i12->h19 i13->h19 i14->h19 i15->h19 i16->
h19  
   -0.21    -0.56    -0.68    -0.40     0.11     0.26     0.72     0.07   
  0.72     0.47     0.44     0.78     0.32    -0.06     0.78     0.40    -
1.04  
i17->h19 i18->h19 i19->h19 i20->h19 i21->h19 i22->h19  
    0.78     1.32     0.92     0.49    -1.02     0.80  
  b->h20  i1->h20  i2->h20  i3->h20  i4->h20  i5->h20  i6->h20  i7->h20  i
8->h20  i9->h20 i10->h20 i11->h20 i12->h20 i13->h20 i14->h20 i15->h20 i16->
h20  
   -0.09     0.14     0.06    -0.43     0.32     0.46    -0.10     0.54   
 -0.10    -0.30    -0.35    -0.09     0.00    -0.39    -0.09    -0.22    -
0.31  
i17->h20 i18->h20 i19->h20 i20->h20 i21->h20 i22->h20  
    0.74     0.97    -0.60    -1.86    -0.51    -0.35  
  b->o  h1->o  h2->o  h3->o  h4->o  h5->o  h6->o  h7->o  h8->o  h9->o h10->
o h11->o h12->o h13->o h14->o h15->o h16->o h17->o h18->o h19->o h20->o  
  0.14   2.33  -3.30   3.85  -3.50  -3.62   4.95   4.74   2.34   2.33   5.
67   5.17  -4.50  -4.48  -4.19   3.94  -3.28  -4.71  -1.76   3.85  -3.00  
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