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by 
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Under the Direction of Yi Jiang, PhD 

 

 

ABSTRACT 

The objective of the thesis is to model the behavior of the reaction between two species of 

bacteria and antibiotics by building an ordinary differential equation (ODE) system under a 

list of assumptions. With the ODE, we analyze equilibrium points and the stability of these 

equilibrium points to forecast the trend of each species of bacteria and antibiotics. We test the 

validity of the model assumptions. Based on these outcomes, we show that: 1. Both 

equilibrium points and eigenvalues differ in orders of magnitude.  2. Some figures which 

were generated using different initial values do not make any sense.  3. There were abnormal 

values of the variables sensitivity. 

. 

INDEX WORDS: Ordinary Differential Equations, Population dynamics, Multiple species 

Bacteria, Antibiotics, Simulation, Equilibrium Points.  



A MATHEMATICAL MODEL FOR POPULATION DYNAMICS OF  

ANTIBIOTIC TREATMENT 

 

by 

 

 

 

 

SIYU TIAN 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Arts 

in the College of Arts and Sciences 

Georgia State University 

2014 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Siyu Tian 

2014  



A MATHEMATICAL MODEL FOR POPULATION DYNAMICS OF  

ANTIBIOTIC TREATMENT 

 

by 

 

 

SIYU TIAN 

 

 

Committee Chair:             Yi Jiang           

Committee:        Remus Osan 

      Xin Qi 

 

 

Electronic Version Approved: 

 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

 December 2014



   

 

iv

ACKNOWLEDGEMENTS 

Foremost, I would like to express my sincere gratitude to my advisor Dr.Jiang for the 

continuous support of my Master study and research, for her patience, motivation, enthusiasm, 

and immense knowledge. Her guidance helped me in all the time of research and writing of this 

thesis. I could not have imagined having a better advisor and mentor for my Master study. 

             Besides my advisor, I would like to thank the rest of my thesis committee: Dr.Osan and 

Dr.Qi, for their encouragement, insightful comments, and hard questions.



 v

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................ iv 

LIST OF TABLES .......................................................................................................... vii 

LIST OF FIGURES ....................................................................................................... viii 

1     INTRODUCTION ......................................................................................................1 

1.1 Model Background .............................................................................................. 2 

1.2 Purpose of the Study ........................................................................................... 3 

2    MATERIALS AND METHODS ................................................................................2 

2.1 Model Explanation .............................................................................................. 4 

2.2 Establishment of equations ................................................................................. 5 

2.2.1 Setting up the equations for the population of bacteria .................................. 5 

2.2.2 Setting up the equations for the population of antbiotic ................................. 5 

2.3      Standardized the Units in the System ............................................................... 6 

2.3.1 Standardize units of measurement ................................................................... 6 

2.3.2 Standardize units of parameters ....................................................................... 6 

2.4 Convert the experimental data and Calculate the unknown Paremeters ...... 7 

2.5 Rescale and Non-dimensionalize the System’s Equation................................. 8 

3    RESULTS ....................................................................................................................12 

3.1 Stability of the Solution  ................................................................................... 12 

3.1.1 Equilibrium points for the Non-demensionalized system  ............................. 12 



 vi

3.1.2 Solve the eigenvalues ...................................................................................... 12 

3.2 Variables SensitivityAnalysis ........................................................................... 13 

3.3 Plot for different initial conditions .................................................................. 15 

4     CONCLUSIONS .......................................................................................................24 

4.1 Developing Model .............................................................................................. 24 

REFERENCES ................................................................................................................26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

LIST OF TABLES 

Table 1 Variables and parameters' definition and unit ....................................................... 8 

Table 2 Variables and parameters' value ............................................................................ 9 

Table 3 Parameters' value after Nondimensionalize ......................................................... 11 

Table 4 The eigenvalues for each equilibrium points ....................................................... 13 

Table 5 Parameter sensitivity ............................................................................................ 14 

 

  



 viii

LIST OF FIGURES 

Figure 1 The original model ............................................................................................... 5 

Figure 2 The diagram of the simplified model ................................................................... 6 

Figure 3 Absence of bacteria ............................................................................................ 15 

Figure 4 Concentration of bacteria-A with absence of bacteria-B ................................... 16 

Figure 5 Concentration of antibiotic with absence of bacteria-A ..................................... 17 

Figure 6 A large amount of bacteria-A ............................................................................. 18 

Figure 7 Concentration of bacteria-A with a large initial value ....................................... 19 

Figure 8 A large amount of antibiotic-A........................................................................... 20 

Figure 9 Concentration of antibiotic � A with a large inital value .............................. 20 

Figure 10 Concentration of bacteria-A with different initial value .................................. 21 

Figure 11 Concentration of antibiotic-A with different initial value to bacteria-A .......... 22 

Figure 12 Concentration of bacteria-B with different initial value................................... 23 

Figure 13 Concentration of antibiotic-B with different initial value of bacteria-B .......... 23 

 



 1

1 INTRODUCTION  

1.1    Explanation of data and experiment  

The data used for this analysis came from Dr. Eric Gilbert’s lab of the Biology 

department at Georgia State University.  In this experiment, two bacterial population of E.coli 

were prepared. One is referred to as the “
r

Amp” strain (bacteria-A) which is sensitive to 

spectinomycin (antibiotic-A) and resistant to ampicillin (antibiotic-B). Another is referred to as 

the “
r

Spt” (bacteria-B) and it is sensitive to ampicillin and resistant to spectinomycin. “For 

chemostat experiments, inocula of the 
r

Amp or 
r

Sptstrain were grown overnight in a shaking 

incubator at 37°C and 200 rpm in LB broth containing either 400 ppm ampicillin or 100 ppm 

spectinomycin, respectively.” ]4[  

A 250-mL well-sealed sidearm flasks which contained a Pharmed tube for the intake 

of air was used for chemostat experiments. A 2L Pyrex bottles which contained recourse and 

antibiotics incubated in a 37°C water bath and pumped into the chemostat. The chemostat was 

maintained the temperature within CC
oo

5.037 ± . A magnetic was used to keep contents well 

mixed and a Bunsen burner was used to maintain aseptic conditions. A sample was collected to 

measure, centrifuged,  resuspended and stored under certain condition at each time point. 

Meanwhile, the ampicillin flow was maintained at 1
min5.4

−
⋅ml , and the spectinomycin flow 

was maintained at 1
min8.3

−
⋅ml . 

In Dr.Gilbert’s paper, he made a conclusion that:” In well-mixed planktonic cultures, 

cells that cannot coaggregate move past one another and do not establish interactions that have 

a spatial component.” ]4[  
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1.2 Model background 

1.2.1 Population Dynamics Model 

In wildlife management, people use population dynamics model as a tool to keep track of 

four factors of population dynamics. The four factors are birth(B), death(D), 

immigration(I) and emigration(E). So the  population dynamics model can be noted as: 

EIDBNN −+−+= 01  

Where 0N  is the number of population at time 0. 

 

1.2.2 Bacterial Growth Model 

To describe the bacterial growth, a simplest model could be used is: 

rN
dt

dN
= , 

N is the bacterial density, r is the growth rate. If r > 0 , we can get 
rt

eNtN 0)( = with 

initial condition 0)0( NN = . This model is under the assumption of infinite resources for 

bacteria to grow. 

1.2.3    Lotka-Volterra Model 

Our model is based on the Lotka-Volterra equations, which is also known as the predator-

prey equations.  Lotka-Volterra equations are first-order, non-linear and ODE equations. This 

model was built by Alfred J. Lotka in 1910. It is always used to simulate the dynamical systems 

for biology, especially for the interaction between two species, one for fox and another one for 

rabbit. 

The populations of two species change over time to two equations: 
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)(

)(

xy
dt

dy

yx
dt

dx

δγ

βα

−−=

−=

 

 

Where, 

x is the size of population of the rabbits; 

y is the size of population of the foxes; 

t represents the time; 

α , β ,δand γ are the parameters describing the relationship between two species. 

In order to use this system of equations, we have certain assumptions on the environment 

and the change of  the rabbits and foxes population are under certain assumptions: 

1. There are sufficient foods available for the rabbits all the time. 

2. The size of population of foxes only depends on the population of rabbits. 

3. The growth rate of population is proportional to its size. 

4. There is no limit for foxes’ appetite. 
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1.3 Purpose of the Study  

This report provides a differential equations model to simulate and understand the 

dynamics of commensal or mutualistic bacterial interaction in the presence of antibiotics. 

This text aims to answer question like “If I change the density of bacteria at time 0, how 

will it behave?”, “How sensitive are the parameters to the whole system?” “If my model is 

wrong, how could I change it?”, and some more. 
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2     MATERIALS AND METHODS 

2.1 Model Explanation 

2.1.1 The Original Model 

 

Figure 1 The original model 

 

Two strains of bacteria, bacteria-A (A) and bacteria-B (B), are growing in the same dish 

at the rates of 
Aα  and 

Bα  respectively.  In the meantime, two types of antibiotics, Antibiotic-A 

(
AC ) and Antibiotic-B(

BC ), are added into the dish. Antibiotic-A kills Bacteria-A at the rate of 

Aγ , and Antibiotic-B kills Bacteria-B at the rate of 
Bγ . Antibiotics A and B are provided at a 

constant rate, with 
Aω for Antibiotic-A  and 

Bω for Antibiotic-B. Furthermore, Bacteria-A secretes 

at rate 
Aβ  Enzyme SA (

AE )  , which degrades Antibiotic-B at rate 
Bδ . Similarly, Bacteria-B 

secretes at rate 
Bβ  Enzyme SB (

BE ) , which degrades Antibiotic-A at rate 
Aδ . 

We assume that the reaction is a first-order reaction, which means that the rate only 

depends on one reactant concentration. The differential equation describing first order kinetics is: 

Rate = d[A]/dt=k[A]. So the chemical reaction between bacteria and antibiotic is:  A + 
AC � 0, B 

+ 
BC �0,  

AE + 
BC �0 and 

BE +
AC �0. 

 

2.1.2    The Simplify Model 



For the original model, we assumed that 

bacteria, and in the degradation process, 

the enzymes to reduce 2 parameters. 

 

Figure 2 The diagram of the simplified model

                                                                                                  

2.2 Establishment of equations

2.2.1   Setting up the equations

According to the model, the population of bacteria is determined

reproduction of itself and the 

and bacteria-B are as follows:

 

 

2.2.2   Setting up the equations

In the same model

components, such as the constant inflow rate, the consumption of killing correlative 

For the original model, we assumed that antibiotics disappear when they kill

process, antibiotics disappear as well. So we can 

to reduce 2 parameters.  

 

The diagram of the simplified model 
                                                                                                   

Establishment of equations 

Setting up the equations for the population of bacteria 

According to the model, the population of bacteria is determined 

reproduction of itself and the killing effect of Antibiotic. So the equations for bacteria

B are as follows: 

                 (1) 

                 (2) 

equations for the population of antibiotic 

model we have mentioned, the population of antibiotic has three 

components, such as the constant inflow rate, the consumption of killing correlative 
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disappear when they kill 

So we can effectively skip 

by the 

ntibiotic. So the equations for bacteria-A 

ntibiotic has three 

components, such as the constant inflow rate, the consumption of killing correlative 
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bacteria and inhibition by another bacteria. So the equations for antibiotic-A and 

antibiotic-B can be set up as the following: 

 

 

���
�� � �� � �� ·  · !� � "� · !� · #              (3) 

��$
�� � �% � �% · # · !% � "% · !% ·                   (4) 

2.3 Standardized the units in the System 

2.3.1    Standard units of measurement 

The unit of time is 1 minute (min). The unit of mass is 1 gram (g). The unit of capacity 

is milliliter (ml). 

 

2.3.2    Standard units of parameters 

To develop the model, the first step is to equalize and define meaningful units for 

both sides of each equation. The units of each parameter are as follows: 

 

[A]=[B]= #/mL 

[!% ]=[!�]= #/mL 

&�%
�� ' � &��

�� ' � #/(mL min) 

[�%]=[��]=#/(mL min) 

[(%]=[(�]= 1/min 

[�%]=[��]= mL/(# min) 
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Table 1 Variables and parameters' definition and unit 

 

Variables or 

parameters 

Definition units 

Variables 

A The population of bacteria-A #/mL 

!% The population of antibiotic-A #/mL 

B The population of bacteria-B #/mL 

!� The population of antibiotic-B #/mL 

Parameters 

(% The growth rate of bacteria-A )*+,- 

(� The growth rate of bacteria-B )*+,- 

�% The killing rate of antibiotic-A mL/(#*min) 

�� The killing rate of antibiotic-B mL/(#*min) 

�% The flow-in rate of antibiotic-A #/(mL*min) 

�� The flow-in rate of antibiotic-B #/(mL*min) 

"% The inhibition of bacteria-A mL/(#*min) 

"� The inhibition of bacteria-B mL/(#*min) 

 

2.4  Convert the experimental data and Calculate the unknown Parameters 

The conversion of unit becomes necessary due to the difference between the units 

of experimental data and the units we set in the above equations. As the equilibrium point 
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is the value of dx/dt if dx/dt=0 for all t, we can then calculate the rest of the unknown 

parameters. 

Table 2 Variables and parameters' value 

 

Variables or parameters Values 

Variables 

A 2 / 102 

!% 0.27576 / 1078 

B 2 / 109 

!� 0.543596 / 1078 

Parameters  

(% 0.028333 

(� 0.0216667 

�% 0.102746 / 10,78 

�� 3.9858 / 10,77 

�% 4.3088 / 10-2 

�� 7.1725 / 10-2 

"% 6.5972 / 10,-8 

"� 7.8125 / 10,-- 
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2.5 Rescale and Nondimensionalize the System’s Equation 

Substantial differences between each variable and parameter’s order of magnitude are 

represented by the data shown in Table 2. To reduce the number of variables and analyze the 

behavior of the system we simplified the system by rescaling and nondimensionalizing it. 

The calculation process is as follows: 

Write the differential equation system in terms of the new variables: 

 

# � #= · > 

!% � !%
= · !? 

 �  = · @ 

!� � !�
= · !A 

 

Apply the chain rule, to get: 

 

            
�?
�� � (% · > � �% · > · !%

= · !?                                  (5) 

��B
�� � C$

�$
= � �% · > · #= · !? � "� ·  = · !? · @          (6) 

            
�A
�� � (� · @ � �� · @ · !�

= · !A                                 (7) 

��D
�� � C�

��
= � �� · @ ·  = · !A � "% · #= · !A · >           (8) 
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Table 3 Parameters' value after Nondimensionalize 

Parameters Values 

(%
=  0.028333 

(�
=  0.0216667 

�%
= 0.0283 

��
=  0.0217 

�%
=  0.0156 

��
=  0.0132 

"%
= 0.0156 

"�
=  0.0132 

 

 

 

  

 

 

 

 

 



 12 

3     RESULTS 

3.1   Stability of the Solution  

3.1.1    equilibrium points for the nondimensionalized equations system 

Set equations (5)-(8) equals to 0, 

 

(% · > � �% · > · !%
= · !? � 0 

�%
!%

= � �% · > · #= · !? � "� ·  = · !? · @ � 0 

(� · @ � �� · @ · !�
= · !A � 0 

C�
��

= � �� · @ ·  = · !A � "% · #= · !A · >=0 

 

There are three solutions: 

 

E>-, !?G , @-, !AGH � I7.6038 = 10--, 1 , 0 , 1.13151 = 10,-7J 

E>7, !?K , @7, !AKH � I 0 , 6.0416 = 10,-7 , 1.6552 = 10-- , 1 ) 

E>L, !?M , @L, !AMH � I1, 1 , 1 ,1J 

3.1.2    solve the eigenvalues 

Use Jacobian of the system to find the eigenvalue of each equilibrium point. 
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Table 4 The eigenvalues for each equilibrium points 
 

 

As we can see, eigenvalues from the first and the second equilibrium points both have a 

quite small negative number on the order of 9 and 10. 

Because we have nondimensionalized the system, the third equilibrium point is matter-of-

course, we ignore this one for now. 

 

3.2  Variables Sensitivity Analysis 

As we know even the most accurate ode system still cannot predict or reproduce it its 

parameter values are not correct. 

The goal of doing variables sensitivity analysis is to determine the parameter vector that 

decreases the difference between the data from experiment and the ODE system. 

If a model is sensitive to a parameter’s value, then no matter what value of that parameter 

is closely regulated, or uncertainties in the parameter will translate into unstable in the predicted 

system behavior. 

equilibrium point eigenvalues 

E>-, !?G , @-, !AGH 

I7.6038 = 10--, 1 , 0 , 1.13151 = 10,-7J 

 

(0.0217, -1.0033*10^10, 0.0146, -0.0303) 

E>7, !?K , @7, !AKH 

I 0 , 6.0416 = 10,-7 , 1.6552 = 10-- , 1 ) 

 

(-2.5862*10^9, 0.0283, 0.0116, -0.0247) 

E>L, !?M , @L, !AMH 

I1, 1 , 1 ,1J 

 

(-0.0072-0.0174i, -0.0072 + 0.0174i, 

0.0130, -0.0274) 



 14 

The sensitivities at Steady-State can be calculated using a forward difference 

approximation: 

 

j

jijji

ij
p

tpytppy
tS

∆

−∆+
=

),(),(
)( , 

where S is the sensitivity, y is the vector of variables, p is the parameter. 

 

One percent of each parameter value was selected as the step size. 

Table 5 Parameter sensitivity 

 

 A AC  B BC  

(% 0 1 -1 0 

(�  -1 0 0 1 

�% 0 0 1 0 

�� 1 0 0 0 

�% 0 -1 1 0 

��  1 0 0 -1 

"% -1 0 0 0 

"� 0 0 -1 0 

 

There three distinct values in the table, they are 1, 0, -1. 
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If the result is 0, which means the variable and the corresponding parameter independent. 

The positive result means the value of equilibrium point of the variable increased by enlarging 

the corresponding parameter. Similarly, the negative result shows value of equilibrium point of 

the variable decreased by enlarging the corresponding parameter. But only three distinct results 

in the table is abnormal and meaningless to analysis. 

3.3 Plots for different initial conditions  

                     Initial value: A � 0, CP � 0, B � 0, CR � 0 

 

The purpose of this simulation is to check the flow-in rate for both antibiotic-A and 

antibiotic-B. As we can see they increased linearly. After 50 minutes, antibiotic-A (Line-2) 

reached a value of 0.78 (number per ml), and antibiotic-B (Line-4) reached a value of 0.66 

(number per ml). 
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Figure 3 Absence of bacteria 
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Figure 4 Concentration of bacteria-A with absence of bacteria-B 
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STUVUWX YWXZ[: \ � ]^^, _\ � ^, ` � ^, _` � ^ 

Figure 5 Concentration of antibiotic with absence of bacteria-A 

 

The concentration of bacteria-A (Line-1) reached a maximum around 247 (number per 

ml) at approximately 65 minutes. In the same instant the concentration of antibiotic-A (Line-2) 

reached 1(number per ml) and the concentration of antibiotic-B was very close to zero. This 

means that at 65 minutes, bacteria-A and antibiotic-A reached equilibrium. Antibiotic-A declined 

afterwards because antibiotic-B was provided continuously. But it is worthwhile to note that the 

concentration of antibiotic-A was mostly unaffected. We conjecture that the antibiotic has a high 

killing rate. 

We got a similar result when we set the initial value of bacteria-B is equal 100, and rest 

set to 0. 
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Figure 6 A large amount of bacteria-A 
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STUVUWX YWXZ[: \ � ]^^, _\ � ], ` � ], _` � ] 

Figure 7 Concentration of bacteria-A with a large initial value 

 

With a large amount of bacteria-A, antibiotic-B (Line-4) was severely depressed and 

reduced to a low concentration in a very short time (4 minutes). The low concentration of 

antibiotic-B caused bacteria-B (Line-3) to grow linearly at first, but started growing 

exponentially around 35 minutes. The reason for the fall in the concentration of antibiotic-A 

(Line-2) was the same as for antibiotic-B, but the process was slower because the bacteria-B had 

a lower initial value. It is not difficult to understand why bacteria-A (Line-1) was growing 

rapidly from the beginning. This is similarly true for a large amount of bacteria-B. 
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Figure 8 A large amount of antibiotic-A 

 

                 Initial value: A � 1, CP � 100, B � 1, CR � 1 
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aUbZc[ Error!  Bookmark not deiined. 9 _jTk[TVcWVUjT jl WTVUmUjVUk

� \ nUVo W XWcb[ UTUVWX YWXZ[ 

As the initial value of antibiotic-A was assigned a very high number, the bacteria-A 

(Line-1) was killed within 2 minutes leading to an increase of antibiotic-B (Line-4). Then as the 

antibiotic-B kept soaring, the decrease of bacteria-B (Line-3) was an inevitable result. 

But the trend of antibiotic-A (Line-2) was unexpected. The decrease of bacteria-A as 

bacteria-B was provided continuously was supposed to increase the concentration of antibiotic-

A. This result runs counter to the forecast. So we infer that the inhibition of bacteria-B is much 

higher than the flow-in rate of antibiotic-B. 

 

Figure 9 Concentration of bacteria-A with different initial value 
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Figure 10 Concentration of antibiotic-A with different initial value to bacteria-A 

 

 FIG 7.1 and FIG 7.2 have the same initial values with bacteria-A = 100, 200, 500 and 

bacteria-B = antibiotic-A = antibiotic-B = 0; 

FIG 7.1 is the plot of concentration of bacteria-A.  

FIG 7.2 is the plot of concentration of antibiotic-A.  

Bacteria-A = 100 (Line 1), bacteria-A = 200 (Line 2), bacteria-A = 500 (Line 3). 

In this condition, as the concentration level of bacteria-A increases and eventually 

reaches equilibrium the concentration level of antibiotic –A will become lower over time. But in 

the FIG 1.1 these three lines reached the peak at the same time. In FIG 1.2 these three lines 

which represent concentration of antibiotic-A are almost entirely overlapped. 

This problem happened in the similar situation when initial values to bacteria-B are set at 

different amount such as100,200, 500 and the remaining values at zero.(FIG 8.1 & 8.2) 
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Figure 11 Concentration of bacteria-B with different initial value 
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Figure 12 Concentration of antibiotic-B with different initial value of bacteria-B 
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4     CONCLUSIONS 

Despite some interesting figures and some reasonable explanations for them, the OED 

model was wrong. 

The reasons why we reached this conclusion are: 

1. Both equilibrium points and eigenvalues differ in orders of magnitude. 

2. Some figures which were generated using different initial values do not make any sense. The 

increase in the concentration of the corresponding bacteria did not cause a reduction in the 

concentration of the antibiotic.  

3. There were abnormal values of the variables sensitivity. 

 

We think the main problem may lie in the assumptions: 

1. The growth rate of bacteria is resource concentration-independent. 

2. The killing rate of antibiotic is bacteria density-independent. 

3. The inhibition rate of bacteria is antibiotic density-independent. 

 

So we need to adjust one or more of these assumptions to reissue the model. 

We should develop a more complex model to simulate population dynamics of antibiotic 

reaction. 

4.1 Developing Model 

In order to re-describe the relationship between the killing rate of the antibiotic and the 

concentration of the bacteria, the Hill function was introduced. 

So that, 

A

AA
HA

A

+
⋅= γγ '

, 
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where 
Aγ  is antibiotic-A killing rate from the last model, 

AH  is the ligand 

concentration producing half occupation related to bacteria-A, and A is the concentration of 

the bacteria-A.( Set the Hill coefficient to 1). 

Similarly, the relationship between the concentration of the antibiotic-A and 

inhibition ratio of bacteria-B is, 

ACA

A

AA
HC

C
KK

+
⋅='  

 

In this developing model, the growth rate of bacteria was the same as the last model. 

Then, the developing model is  
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