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ABSTRACT 

HIV-1 protease (PR) is an effective target protein for drugs in anti-retroviral therapy (ART). Using 

PR inhibitors (PIs) in clinical therapy successfully reduces mortality of HIV infected patients. However, drug 

resistant variants are selected in AIDS patients because of the fast evolution of the viral genome. 

Structural, kinetic and MD simulations of PR variants with or without substrate or PIs were used to better 

understand the molecular basis of drug resistance.  Information obtained from these extensive studies 

will benefit the design of more effective inhibitor in ART. 

Amprenavir (APV) inhibition of PRWT, and single mutants of PRV32I, PRI50V, PRI54M, PRI54V, PRI84V and 

PRL90M were studied and X-ray crystal structures of PR variants complexes with APV were solved at 

resolutions of 1.02-1.85 Å to identify structural alterations. Crystal structures of PRWT, PRV32I and PRI47V 

were solved at resolutions of 1.20-1.40 Å. Reaction intermediates were captured in the substrate binding 

cavity, which represent three consecutive steps in the catalytic reaction of HIV PR. HIV-1 PR20 variant is a 



multi-drug resistant variant from a clinical isolate and it is of utility to investigate the mechanisms of 

resistance. The crystal structures of PR20 with inactivating mutation D25N have been determined at 1.45-

1.75 Å resolution, and three distinct flap conformations, open, twisted and tucked, were observed. These 

studies help understand molecular basis of drug resistance and provide clues for design of inhibitors to 

combat multi-drug resistant PR.  

The evaluation of electrostatic force in MD simulations is the computationally intensive work, 

which is of order (N2) with integration of all atom pairs. AMMP invokes Amortized FMM in summation 

of electrostatic force, which reduced work load to (N). A hybrid, CPU and GPU, parallel implementation 

of Amortized FMM was developed and improves the elapsed time of MD simulation 20 fold faster than 

CPU based parallelization. 
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 INTRODUCTION  

1.1 HIV-1 Life Cycle 

Human immunodeficiency virus type 1 (HIV-1) is the pathogen, first reported in 1984, of acquired 

immune deficiency syndrome (AIDS) [1]. Estimations from UNAIDS in 2013 show that globally, 35.3 (32.2–

38.8) million people live with HIV and each year there are 2.3 million new HIV infections [2].  HIV is a 

member of the retroviruses family and there are two major subtypes, HIV-1 and HIV-2. The originally 

identified virus is the type 1 HIV and is more virulent than type 2 [3]. The major type causing AIDS around 

world is HIV-1. 

HIV attacks and destroys specific CD4 T cells of the human’s immune system, causing a significant 

deterioration of the body’s defenses and reduced ability to fight various diseases. The general steps of life 

cycle of HIV are shown in Figure 1-1. Viral particle consists of proteins and genome encoded by a ~9-kb 

positive–sense RNA. The life cycle begins from the viral envelope glycoprotein gp120 of HIV recognizing 

and binding to receptor CD4 on host cell surface [4]. This induces conformational changes of the viral 

envelope glycoprotein gp120 and gp41 and fuses viral particle with the host cell membrane [5]. The 

genomic RNA, two copies of single-strand RNA, of HIV is released into the cytosol of the host cell and is 

reversed transcribed into viral cDNA by viral RT [6]. Pre-integration complex formed by viral cDNA, MA, 

IN and other viral proteins is further imported into nucleus by the help of viral accessory protein, Vpr [7, 

8]. Viral cDNA is inserted into host genome with the help of viral IN. Subsequently the replication of the 

genome of infected host cell also replicates viral genome. The viral genome codes three polyproteins: 

Gag, Gag-Pol and Env, which are afterward proteolyzed into functional and structural proteins by viral and 

human proteases. Gag and Gag-Pol polyproteins share the same starting codon, however, ribosomal 

frame shift between NC and p6 during translation of Gag polyprotein results in Gag-Pol polyprotein [9]. 

The uncleaved viral polyproteins and viral RNA are assembled at the interior of the cell membrane and  
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Figure 1-1 The life cycle of HIV. 
 General essential steps in HIV-1 life cycle [10]. 
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bud from the surface of membrane as immature virions. At this stage, the virus cannot infect other host 

cells. The PR precursor in the Gag-Pol polyprotein hydrolyzes itself by folding and dimerizing in the 

immature virion to release mature PR  [11, 12]. Active HIV PR cleaves Gag and Gag-Pol polyproteins into 

individual proteins. The rates of cleavage differ up to hundred fold between different cleavage sites, and 

the correct order of cleavage of Gag and Gag-Pol polyproteins into individual proteins is necessary for 

maturation of virions [13]. Thus, PR is a valuable drug target since inhibition of PR catalytic activity results 

in immature noninfectious virions [14, 15]. 

The general structural features of the mature HIV-1 virion are shown in Figure 1-2. The core and the 

outer membrane envelope are composed of four Gag proteins and two Env proteins which correspond to 

matrix (MA), capsid (CA), nucleocapsid (NC), p6, surface unit glycoprotein (SU), and transmembrane (TM). 

Essential enzymatic functions are carried out by three Gag-Pol proteins which are protease (PR), reverse 

transcriptase (RT), and integrase (IN). These enzymes are encapsulated within the virus particle. In 

addition to these proteins, there are many accessory proteins found, such as Vif, Vpr, Nef, Tat, Rev [16, 

17]. 
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Figure 1-2 The known structures of HIV-1 proteins and protein fragments [17]. 
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1.2 Structural Features of HIV-1 PR 

HIV-1 PR is the enzyme responsible for the cleavage of viral Gag and Gag-Pol polyproteins into 

mature, functional proteins. Currently, more than 400 structures of HIV-1 PR complexed with or without 

various inhibitors have been deposited to the Protein Data Bank server (http://www.pdb.org). The 

structural features of PR are shown in Figure 1-3. The dimeric aspartic protease is composed of residues 

1-99 and 1’-99’[18]. The substrate binding cavity formed by residues 8, 23-30, 32, 45-50, 53, 56, 76, 80-82 

and 84 accommodates and recognizes 7 amino acids of peptide substrate. The conserved catalytic triplets, 

Asp25-Thr26-Gly27, from both subunits provide the key elements for formation of the enzyme active 

site[18]. In the substrate binding cavity, Asp25, Gly27, Asp29 and Gly48 provide hydrogen bonds with 

main chain atoms of substrate[19]; residues with hydrophobic interactions with substrate are Leu23, 

Gly27, Ala28, Val32, Lys45, Ile47, Met46, Gly48, Gly49, Ile50, Phe53, Leu76, Thr80, Pro81, Val82 and 

Ile84[20]; polar side chains or distal main chain groups in longer peptides can interact with Arg8, Asp30 

and Lys45[21]. The amino acid side chains of substrate peptide, P4 to P3’, and corresponding substrate 

binding site, subsites S4 to S3’ are shown in Figure 1-4 [22]. Important residues in each substrate binding 

subsite are also shown in the figure. Based on composition of residues around each subsite, S1 and S1’ 

subsites are hydrophobic and prefer hydrophobic amino acids in corresponding P1 and P1’ subsites[22]. 

S2 and S2’ subsites are hydrophobic and can bind polar residues at P2 and P2’. The rest of subsites at both 

ends are solvent accessible, thus the preferred amino acids in P3-P4 and P3’-P4’ are more varied.  

Binding of substrate or inhibitor goes together with large structural changes on two glycine-rich 

flaps, residues 45 to 55 from each subunit. Mutagenesis study on Gly-rich region, Gly48, Gly49, Gly51 and 

Gly52, of the flaps show this region is crucial for PR activities [23]. Disrupting flexibility of flaps could lead 

to the reduced catalytic activities of the PR[19]; For the apo form of PR, significant structural changes on 

flaps are observed in various techniques, such as X-ray crystallography, pulsed electron paramagnetic 

resonance (EPR) spectroscopy and molecular dynamic studies[24, 25]. Three main categories, closed,  
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Figure 1-3 The structure of HIV-1 PR dimer complexed with DRV. 
Conserved N- and C- terminal β-sheets, flaps 80’s loop are represented in blue, yellow and red, 
respectively. Catalytic dyad of Asp25, Asp25’ is indicated as magenta sticks. DRV is located in the center 
of substrate binding cavity and is represented in grey.   
 
 
 

 
 

 
Figure 1-4 Schematic diagram of a substrate (P4-P3’) bound to HIV-1 PR (S4-S3’) subsites. 
The scissile bond is indicated by a red star. Substrate binding subsites are colored as red arcs. Residues 
contributing to the substrate binding cavity are labeled  
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semi-open and open conformation, of flap are defined based on observation in different crystal structures 

of the apo-forms of PR (Figure 1-5) [25]. Closed flap is typically observed in PR complexed with substrate 

/ inhibitor; thus it prevents entrance of substrate as well as leaving of captured substrate. The tips of the 

closed flaps are interlocked over the bound substrate or inhibitor, and the main chain Cα of Ile50 and 

Gly51 lie parallel to each other in the tips of the two flaps. In the semi-open conformation the tips of the 

flaps switch their interactions compared to the closed conformation. In the open conformation, tips of 

the flaps are shifted up and separated from each other. The tips of the opened flaps lose hydrogen bond 

and Van der Waals interactions to the opposite flap and 80’ loop, residues 78 to 85, thus the active site 

cavity is exposed for the access of substrate / inhibitor.  

Unlike cellular aspartic proteases where the active form is monomeric, the dimeric form of HIV-1 

PR is crucial for its proteolytic activities [26]. The homodimeric form of PR is stabilized via noncovalent 

interactions at the dimer interface between residues from two subunits [27]. Four-stranded terminal -

sheet of each monomer (residues 1-4, 96-99, 1`-4` and 96`-99`), tips of the flaps, catalytic triplets and salt 

bridges between D29 and R87 of one monomer and R8' of the opposite monomer are important elements 

in HIV-1 PR dimer interface [28]. Todd et al. using thermodynamic analysis to evaluate dimer interface of 

HIV-1 PR showed that the beta sheet formed by the four termini contributes 75% of the total Gibbs energy, 

the active site residues (T26, G27 and D29) are also important contributors for dimer stability, and the 

lesser contributors are flap residues (G49, I50 and G51) [29]. Site direct mutagenesis of F99A disrupts the 

dimeric interface and produces monomeric PR[30]. Crystallographic analysis of HIV-1 PR also shows 50% 

of the intermonomeric ionic and hydrogen bond interactions are contributed by the C-termini of each 

monomer [28]. Because PR activity depends on dimerization, residues are highly conserved at the dimer 

interface with low mutation rates even after inhibitor treatments [31, 32]. Thus, instead of targeting on 

the substrate binding cavity,  the N- and C-terminal residues are suggested as second target region for 

rational drug development against retrovirus [28]. Schramm et al. designed short lipopeptides that mimic  
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Figure 1-5 Top view of different conformations of flaps are shown: 
(a) wild type PR complexed with DRV shown as closed flap( PDBID: 2IEN, colored red), (b) unliganded PR 
with F53L mutation represented as semi-opened flap (PDB ID: 2G69, colored magenta), (c) unliganded 
wild type PR shown as opened flap (PDB ID: 1HHP, colored blue). 
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interface between terminal peptide fragment, and these peptide display ki values in the nanomolar range 

[33]. Bannwarth et al. synthes tripeptides targeting dimer interface, the dimerization inhibitor successfully 

inhibits dimerization of PR[34]. Nevertheless, no dimerization inhibitor has been approved by FDA [35]. 

1.3 Catalytic Mechanism of HIV-1 PR 

The HIV-1 PR activity is blocked by pepstatin, a natural product that selectively inhibits aspartic 

protease family members, indicating that HIV-1 PR is a member of aspartic protease family [36, 37] . The 

substitution of Asp25 to Asn25 leads to the production of immature viral particles, which shows that the 

Asp25 of each subunit is the residue critical for catalytic activity [38].  

The peptide bond of substrate is hydrolyzed by catalytic Asp dyad, and the catalytic process is 

affected by the atoms surrounding the Asp25 / Asp25’ within the protein microenvironment. Several 

studies have been done experimentally or theoretically to study reaction mechanism of peptide cleavage 

by HIV-1 PR. 18O-exchange mass spectrometry experiment with HIV-1 PR suggests a nucleophile water 

attacks carbonyl carbon at scissile bond and forms reversible and metastable reaction intermediate, gem-

diol structure [39]. Experiments done by kinetics method and NMR show that two aspartate 25 groups in 

the dimer have distinct protonization states [40, 41]. The combined neutron crystallography and X-ray 

crystallography study on HIV PR complexed with transition-state inhibitor KNI-272 and with 

perdeuterated PR with APV indicated different protonation of the catalytic aspartic dyad [42, 43]. 

However, the type of inhibitor captured in active site cavity might affect the location of hydrogen atom 

and the hydrogen bond at catalytic aspartic dyad. Still, the protonation state of catalytic aspartic dyad 

might be different when hydrolysable substrate is captured in active site cavity, and the protonation state 

may change during the course of the reaction. 

Different proteolytic models have been proposed to illustrate the catalytic mechanism of aspartic 

protease based on experimental results. However, the detailed catalytic mechanism is still controversial. 

The general acid and general base mechanism, proposed by Suguna in 1987, is widely accepted 
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mechanism for aspartic PR family [44]. The proposed mechanism is based on observation of a 1.8 Å crystal 

structure of Rhizopys chinensis PR complexed with a substrate analog. In the first step of general acid-

base mechanism, one of the aspartate groups in the protonated state acts as an acid to polarize carbonyl 

oxygen at scissile bond, while the other aspartate group is deprotonated and acts as a base to attack the 

lytic water (Figure 1-6). The lytic water subsequently attacks carbonyl carbon at scissile bond and forms a 

metastable tetrahedral intermediate (TI). One proton originated from TI further transfers to the amide 

nitrogen at scissile bond. The protonated nitrogen reduces stability of TI and causes peptide bond 

breakage producing two products. Hyland proposed a similar model, based on general acid / general base 

model, for HIV-1 PR[41].  

In addition to the proposed lytic water molecule bridging the catalytic aspartic dyad, a second water 

molecule connects two tips of the flaps. This water molecule makes hydrogen bond interactions between 

two carbonyl oxygens of the substrate at both sides of the scissile bond and amide nitrogen of Ile50 of 

each monomer. This water molecule has been observed in most of the dimer structures in the closed 

conformation and has been proposed to be involved in the catalytic reaction [19]. 
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Figure 1-6 The proposed general acid-base catalysis mechanism for aspartic PR [45]. 
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1.4 Design of HIV-1 Protease Inhibitors 

HIV-1 PR is responsible for maturation of viral particle. In viral maturation, the viral precursor 

polyproteins Gag and Gag-Pol are cleaved into the structural and enzymatic proteins by HIV-1 PR [18, 46]. 

Thus, PR is one of the target enzymes to inhibit HIV life cycle and the uses of PIs in antiretroviral treatment 

has been successful in extending life span of HIV infected patients[47]. Presently, 9 drugs, saquinavir, 

ritonavir, indinavir, nelfinavir, lopinavir, atazanavir, fosamprenavir, tipranavir, and darunavir, are 

approved by FDA (Figure 1-7) [48]. Except tipranavir, the rest of PIs are peptidomimetic agents. The first 

designs of PIs benefited from the designs of inhibitors of eukaryotic aspartic proteases, which mimic the 

transition state diol structure formed during hydrolysis of the peptide bond [49]. Thus, except fos-

amprenavir is a phosphate ester pro-drug, 8 inhibitors have a hydroxyl moiety in order to block catalytic 

activities. X-ray crystallographic structures of PR complexed with substrate analog solved in 1989, and 

later, guided the design of PIs to improve the binding affinity and specificity [50-52]. Structure-guided 

drug design is one of the powerful approaches in drug development while three dimensional structures 

of target protein are available or predicted accurately[53]. Structural analyses of PR complexed with 

substrate analogs show that residues 25-29 and 48-50 have hydrogen bonds and hydrophobic interactions 

to substrates or inhibitors [54, 55]. Saquinavir, approved in 1995, was the first PI and keeps many features 

of substrates [56, 57]. Since that time, drug resistant mutations emerged quickly after SQV applied in 

clinic. Structural analysis of mutant PRs that are resistant to SQV reveals altered the interactions between 

PR and inhibitors [56]. Similar alterations on PR structures are also observed for drug resistant PR 

complexed with indinavir, ritonavir or nelfinavir, respectively [58-60]. Nevertheless, other disadvantages 

appear in first generation inhibitors in clinic, such as large molecular weight, poor bioavailability, faster 

plasma clearance rates, low tolerance, and toxicity [48]. The X-ray structural analysis of HIV-1 PR and its 

drug resistant variants reveals that the structures of main chain atoms of residues are stable between 

mutants and wild type PR[61]. Additionally, some amino acids are conserved in PR [32], because
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Figure 1-7 Currently approved FDA drugs for HIV PR. 
Based on the structural similarities to the peptide substrates, these PIs can be grouped into first 
generation PIs that keep peptide-like properties from the substrate (SQV, RTV, IDV and NFV) and second 
generation PIs that have fewer structural similarities to substrate. (LPV, ATV, FPV, TPV, DRV ) [48] 
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substitutions on conserved residues may inactivate PR [30, 62]. Therefore, the next generation inhibitor 

DRV was designed based on Dr. Ghosh’s backbone-binding concept by increasing the interactions with 

main chain atoms, conserved amino acids that are critical for PR activities and lower peptidomimetic 

similarities [61, 63]. Based on this strategy, backbone atoms and conserved residues in S2-S2’ subsites will 

be the target to maximize the hydrogen bond interactions with inhibitor [64]. Sulfonamide isostere and 

bis-tetrahydrofuran (bis-THF) moieties are introduced in the P2 /P2’ group of Darunavir (DRV). In wild type 

PR, the binding affinity of DRV is hundred fold higher than for APV, ATV, LPV [65]. FDA approved DRV for 

clinical use in 2006 and it was successfully applied in AIDS therapy [66, 67]. Analyses of X-ray structures of 

wild type PR complexed with DRV show that DRV has more hydrogen bond interactions with PR than seen 

in wild type PR complexed with SQV and these polar interactions are maintained in drug resistant mutants 

[58, 68-70]. In summary, the effectiveness of DRV in combating HIV/AIDS demonstrates the success of 

using the backbone-binding strategy for design of inhibitors.  

1.5 Viral Mutations and Drug Resistance 

The evolution of HIV happens naturally as sequence polymorphism of HIV is observed prior the 

drug treatment due to the absence of a 3’-5’exonuclease proofreading activity in HIV RT [71-73]. 

Approximately half of the PR residues show sequence polymorphisms that explain why the drug resistant 

mutations exist before PI treatment in some infections [74]. Thus, in reality, there is no single wild type 

PR because it is the mixture of various HIV sequences. Furthermore, concurrent infection of HIV with 

different sequences might boost the sequence diversity through genetic recombination [75, 76]. At the 

end, the dynamic equilibrium of these minor variants in HIV infected patients is changed to select drug 

resistant mutations under drug pressure. Drug resistant mutations in PR not only alter the binding to the 

drug but also can ultimately change the enzymatic properties such as catalytic activity or stability, 

furthermore, mutations on the processing sites of Gag and Gag-Pol polyproteins compensate for drug 

resistant mutations that lower catalytic activity [77-81]. In addition, drug resistant mutations on PR 
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sequence are not limited to the substitution of residues and include amino acid insertion on substrate and 

PR sequence [82-85], however, fewer studies have focused on the impact of drug resistance after insertion 

or deletion of PR sequences.  

The development of vaccines to prevent HIV infections still is extremely challenging [86, 87]. 

Currently antiretroviral therapy depends on Highly Active Anti-retroviral Therapy (HAART), introduced in 

1996. HAART successfully reduces death rates with HIV infection, as the consequence, there are more 

patients living with HIV [88]. HAART uses the combinations from more than 20 different drugs, including 

inhibitors of the HIV-1 enzymes, RT, PR and IN, and inhibitors of cell entry and fusion. Nevertheless, the 

effectiveness of HAART cannot fully eradicate HIV from infected persons, because infected host cell DNA 

contains viral genome and many drugs cannot cross into the brain which has a reservoir of HIV infected 

cells.[89]. In addition, the key challenge of antiretroviral therapy is the rapid evolution of the drug 

resistant mutants because these mutants escape from the drug treatment.[90]. Thus, the gathering of 

sequences of drug resistant mutants will be critical for researchers and clinicians to establish correlations 

between mutant and resistance. Several HIV drug resistance databases have been built in order to provide 

prevalence and trend of resistant mutations of clinical inhibitors [91, 92]. 

Drug resistance is selected by combining several resistance mutations, many drug resistant 

mutations identified in clinical isolates significantly increase resistance to a PI. For licensed PIs, more than 

60 mutations have been observed in 36 residues and reported as drug resistant mutations by the 

International AIDS Society-US panel (Figure 1-8) [31]. Extensive studies have been done to seek the 

molecular basis of drug resistance. Based on the association of the resistance mutations to PIs, these 

selected mutations can be classified as 15 major mutations, causing drug resistance to one or more PIs 

themselves, and 21 accessory mutations, appearing with other mutations [93]. Also the location of the 

mutation on PR can be identified as active site, flap region, dimer interface and distal mutations that alter 

residues not in the active site cavity and flap. Currently, crystallographic analyses by comparing wild type 
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PR and its single mutants have identified the molecular mechanisms for drug resistance to PI which are: 

1) mutations that reduced interactions with inhibitor: the sites of these mutations are L23, D30, V32, M46, 

I47, G48, I50, V82, and I84. These mutations surround the active site cavity and lead to the decreased 

binding with various inhibitors. 2) mutation that shifts main chain atoms: various mutations on V82 in the 

active site cavity are found in resistant mutants [94]. Structural studies of V82A mutant display shifting on 

main chain atoms to accommodate the inhibitors [60, 68, 95]. Nevertheless, the structural changes on 

main chain atoms do not fully compensate for the loss of hydrophobic interactions with inhibitor due to 

substitution of a smaller side chain [21, 68, 95]. 3) mutations altering the dimer interface: Dimeric PR is 

essential for PR activity, the reduced stability of PR as well as reduced interactions between two subunits 

were observed in L24I, I50V and F53L [18, 96]. Thus, the mutations on dimer interface are considered as 

one of mechanisms to produce drug resistance. 4) active site cavity alterations from the changes in distal 

mutations [20]. Unlike the mutations listed above, distal mutations normally cause subtle and variable 

effects [58, 60, 97]. For instance, structural changes caused by mutations G73S, N88S and L90M alter the 

interactions or network of interactions leading to the active site, thus having an indirect interference on 

the interaction with inhibitors [18, 96, 98, 99].  

Different PIs select for different mutations, although there are overlaps. Generally, a single drug 

resistant mutation does not show significant resistance to specific PI in phenotype, accumulation of more 

resistant mutations is required to produce high level resistance and alter the phenotype. Multi drug 

resistance in clinical isolate may result from the combined usage of different PIs in HAART, which causes 

extreme multidrug resistance. Previous studies of single and double mutations indicate that the structural 

alternations caused by single mutants are usually observed in the double mutants, too. However, the 

other properties of PR may not be conserved [58, 100]. Clinical isolate PR variant MDR769 possesses 10 

resistant mutations at L10I, M36V, M46L, I54V, I62V, L63P, A71V, V82A, I84V, and L90M, and reveals 2000- 
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Figure 1-8 List of mutations that have been associated with resistance to PIs [101]. 
The bold number indicates major mutations for the corresponding PI. 
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and 700- fold reduced susceptibility to DRV and RTV compared to wild type PR [59, 102]. Dierynck et al. 

did the kinetic study based on surface plasmon resonance sensor for five clinical isolated multi drug 

resistant variants that possess 10 - 14 resistant substitutions, these mutants display poorer binding affinity 

due to the faster dissociation rate [103].  Compared to wild type PR, PR20 harboring 20 mutations [Q7K, 

L10F, I13V, I15V, D30N, V32I, L33F, E35D, M36I, S37N, I47V, I54L, Q58E, I62V, L63P, A71V, I84V, N88D, 

L89T and L90M] increases dissociation constants(KL) of DRV and SQV by 8,000 and 2,000 fold, respectively 

[104]. The drug resistance mechanisms are not easy to identify in variants with multiple mutations, the 

structural changes might be contributed by the combination of major and minor mutations. X-ray crystal 

structures of MDR769 show altered PR conformation and reveal unusual wide open flaps and expanded 

S1/S1’ and S3/S3’ subsites [102, 105]. Hydrogen bonds and van der Waals interactions are lost between 

MDR769 and RTV [59]. The alteration of hydrophobic pocket in substrate binding cavity is reported in 

structures of MDR769 V82T complexed with DRV and TPV [106]. PRP51 with 14 amino acid substitutions 

that selected for resistance of DRV, which display wide open flap conformation, reveals unusual binding 

orientation of DRV in substrate binding cavity [107]. Structural analyses of multi drug resistant mutations 

indicate that combination of multiple mutations simultaneously show compensating structural changes, 

altered interactions with inhibitor and significant widening of the substrate binding cavity. 

1.6 Theory of molecular dynamics simulations 

It is difficult to analyze properties of the individual components in the complicated system, for 

instance macromolecule complex, because biological system is a macro system including numerous 

protein and solvent molecules. Molecular Dynamics (MD) simulation which also referred to as “in silico 

experiment” or “virtual experiment” uses computational method that models biological macromolecules 

as a micro system in order to study the molecular motion, vibration and thermodynamics. Thus, MD 

simulation represents a different way to observe phenomena and predict properties for proteins that 

cannot easily be observed experimentally. The first molecular dynamic studies applied in biological system 
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were the simulation of bovine pancreatic trypsin inhibitor, which appeared in 1977[108]. Now, more and 

more researchers use MD simulation to address problems, such as molecular motion, vibration and 

thermodynamics of proteins, and to guide wet laboratory experiment and/or to explain the experimental 

results. 

Based on Born-Oppenheimer approximation, an atom can be treated separately as the electrons 

and nucleus [109]. The lighter electrons are approximated and represented as potential energy, and the 

simulation of heavier nucleus representing the mass of the atom follows classical Newtonian dynamics. 

Force fields are used to define potential energy of each atom in the system, and each atom type has 

specific parameters for its force fields that are obtained by empirical fitting from experimental data. Force 

fields can be simply expressed as bonding and nonbonding potential energies in biological and chemical 

systems: 

Vtotal = Σ(Vbonding + Vnonbonding) 

V (conformations) = Ebonds + Eangles + Etorsion + Evdw + Eelectrostatic  

The van der Waals interaction is calculated by the Lennard-Jones potential and paired ionic 

interaction is evaluated from Coulomb's law. The chemical and physical properties of proteins make the 

number of bond, angle and torsion terms a fixed number and the steps for calculating these forces are 

fixed and relative to the size of system. The nonbonded interactions calculated from all pairs of atoms are 

built dynamically since the atom moves to a new position after each time step, and the step for direct 

summation of long range interaction is the square of the number of atoms. Thus, calculations on 

nonbonded interaction are the most time-consuming work for MD simulation. The “cut-off radius” is 

introduced to restrict calculation and save CPU time. This method calculates nonbonded interactions for 

the atoms located within a specific distance. However, truncating the energy function leads to an 

unrealistic variation in energy [110, 111]. Two numerical algorithms, Ewald method using Fourier 
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transform and fast multiple method (FMM) invoking multipole expansion, are applied to compute long 

range nonbonded terms to minimize energy drift and CPU usage [112, 113].  

The atomic positions of each atom in the system are computed by the integration of the equations 

of motion. Algorithms like the Leap-frog algorithm, computes the position of an atom at time  

r(t + Δt) = r(t) + v( t + ½  Δt ) Δt 

The velocities are calculated from  
 
v( t + ½  Δt ) = v( t – ½ Δt ) + a( t ) Δt 
 
Where, a is the acceleration calculated from the energy expression based on Newton’s law. 

Velocities are explicitly calculated in Leap-frog algorithm; however, they are not calculated at the same 

time as the positions. Thus, large fluctuations in energy and violate conservation of energy are made by 

small variations in predict atomic locations. Predict and correct algorithm is proposed that calculations 

include midpoint of forces to improve the accuracy of new atomic positions of each atom in the system, 

which improves stability of molecular dynamics simulation [111].  

r(t + Δt) = r(t) + (v(t-½  Δt )+v( t + ½  Δt )) Δt/2 

1.7 Molecular Dynamics Simulation and HIV PR 

Molecular dynamics simulation is suitable for studying various molecular basis questions that 

cannot be directly observed by experimental instruments. Toth et al. used molecular dynamics to study 

the mechanism of flap opening and propose that polar interactions between the flaps are responsible for 

stabilizing the semi-open flap [114]. Previous study by Hamelberg et al. showed that the formation of loop 

conformation on flap is contributed by its fast trans−cis isomerization of the Gly-Gly ω-bonds and this loop 

conformation is critical to flexibility of flap [115]. Combined studies of NMR and MD simulation show that 

the drug resistant mutations located on flap region alter enzyme kinetic property in turn-over rate and 

drug binding [116]. Scott et al. discover the tips of the flap are curling in 10 ns MD simulation, which refers 

as drug resistant mechanism [117]. Harrison et al. report all atom simulation of PR / substrate complex to 
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explore protonation state of two catalytic Asp [118]. Maturation of HIV PR is studied by using explicit 

solvent MD simulation, which indicates that dimerization is the rate-determining step [119]. Additionally, 

atoms in the system are assigned with kinetic energy under certain temperature, therefore changes on 

binding energy can be used to help the design of novel inhibitor as well as the studies on drug resistant 

mutations [120-124]. 

1.8 Parallel Computing  

Parallel computing is a type of computation that uses multiple resources concurrently to solve 

computational problem. Currently, three programming models, shared memory, distributed memory and 

GPU-accelerated computing, have been broadly applied for parallelizing MD algorithms [125-129].  

Distributed memory system refers to a computing system that is composed of several individual nodes 

(Figure 1-9). Node is the building block of large system. Each node has its own processor and memory 

space, each processor is limited to address local memory. Several nodes are connected through variety of 

networks to build larger system and data as well as memory space is passed from node to node. Message 

Passing Interface (MPI) is popular library for programming in distributed system [130]. The advantage of 

distributed system is that it is easy to build a scalable many processors system, for example the system 

with more than 1,000 processors. The disadvantages of using MPI to parallelize serial code are that it is 

complex to split data into different nodes and to transfer data between nodes; thus it is difficult design 

high performance parallel algorithm in distributed system.  

Shared memory system is the system in which software uses multiple cores or threads working with the 

same memory space simultaneously (Figure 1-10 A). Parallel computing by shared memory model has 

been broadly applied for parallelizing MD algorithms. Open Multi-Processing (OpenMP) is the industry 

standard library and is easily implemented for most computationally intensive loops by adding directives 
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Figure 1-9 Distributed Memory Model. 
Each node has its own CPU and memory, nodes are connected by high speed network.  

 

 

 

 
Figure 1-10 Shared Memory Model. 
 (a) The basic unit in shared memory model has multiple processing units, all the processing units 
maintain the same memory space. (b) fork-join parallelism starts from single thread as serial code, and 
threads are created as needed to process data in parallel.  
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to the sequential code [131]. The OpenMP program is executed as “fork-join” model (Figure 1-10 B). The 

starting thread is the master thread that executes sequentially until the start of the loop region. The loop 

region is divided to several small loops and a number of threads are generated to execute each small loop 

in parallel, which is the scenario of fork method. Each small loop is assigned by one thread and has unique 

start and stop point. The join scenario happens while the team of threads is destroyed after finishing 

massive computation and merging data into main memory space. Thus, the master thread takes the 

control of program again and executes sequential code until the next loop region. The advantage of using 

OpenMP is that it uses directives to guide compiler to parallelize job. Thus, the sequential code is easier 

to transform to parallel version since the details of the parallelism is controlled by the compiler. However, 

it is expensive to build a system with more than 100 cores, which restricts the scalability of performance. 

In additional to CPU based parallel computing, recently, performance of parallel computing are 

greatly improved by using general purpose graphics processing unit (GP-GPU). Traditionally, GPU is 

designed to provide real time 3D effects for computational graphics, for example, in gaming and building 

3D models. Now, GPU is wildly applied in scientific calculation because of the extraordinary computational 

capability provided by GPU. GPU-accelerated computing applies modern graphics card which equipped 

with CUDA cores (Compute Unified Device Architecture) or Stream processors to accelerate calculation. 

Parallel programming with GPU is a heterogeneous model, namely data is processed by CPU and GPU. The 

programming model of parallel programming with GPU is heterogeneous programming (Figure 1-11 A). 

One thread on CPU controls the flow of the program. Hundreds of thousands of threads on GPU are 

created with identical kernel function, these threads are grouped into blocks and a collection of thread 

blocks is a grid that runs on GPU for data processing (Figure 1-11 B). CPU and GPU maintain their own 

memory space separately; thus, developers write code to move data between host and device, the 

sequential codes and some light loops are performed on CPU, computationally intensive loops are 

executed by thousands of threads on GPU concurrently. The disadvantage for GPU-accelerated computing 
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Figure 1-11 Parallel programming with Compute Unified Device Architecture. 
(a) Heterogeneous Programming using CPU and CUDA cores. (b) Diagram of thread blocks in GPU. From 
the website: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model 
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is low portability. The code written with CUDA library is only workable for NVIDIA’s GPU. 

In addition, three programming models do not need to be considered as three different options 

for the implementation of parallel algorithm. A cluster of nodes that equipped with multi cores and GPUs 

can be constructed, and scalable MD code can be executed on cluster by mixing parallel computing models 

to maximize performance. 

1.9 Rational for the studies 

Inhibition of PR activity produces immature and noninfectious virions, which suggests HIV-1 PR is 

a good target for anti-retrovirus therapy [14, 15]. To date, nine PR inhibitors (PIs) have been approved for 

AIDS therapy. However, drug resistance arises after HIV exposure to drugs. In addition to the high 

mutation rate of HIV-1 PR, reported drug resistance related mutations occupy ~40% of its sequence [132]. 

Therefore, it is required to understand how PR acquires drug resistance through these mutations to 

develop new PIs with high effectiveness against drug resistant mutants. Here, the overall goal is focused 

on understanding the structural changes in HIV-1 PR and its mutant complexes with inhibitors or 

substrates. Our overall research hypothesis is: Structural changes in mutants are responsible for altered 

properties of PR and resistance to drugs. 

The designs of amprenavir (APV) and saquinavir (SQV) are based on different concepts, 

maximizing hydrophilic interactions and maximizing hydrophobic interactions, respectively. This radical 

difference in design is also reflected by the different patterns of drug resistant mutations for APV and SQV 

[132]. Here we propose comparative analysis of structural changes in drug resistant mutants complexed 

with different inhibitors to further understand how mutants respond to different PIs. HIV-1 PR and 

mutants will be crystallized with APV in order to compare to SQV structures obtained from previous 

studies of our laboratory. 
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Aspartyl proteases play important roles in a number of biological processes, but the proteolytic 

mechanism is still not fully understood [45]. The presence of a metastable reaction intermediate is 

proposed based on isotope exchange experiment [39]. X-ray crystallographic analysis is a powerful tool to 

study catalytic mechanisms [133]. However, previous research done by X-ray crystallography provides 

limited information due to low resolution [134, 135]. Reaction intermediates observed in crystal 

structures of HIV protease and its mutants will be analyzed in order to better understand the proteolytic 

mechanism.  

More than 400 HIV-1 PR structures have been deposited on Protein Data Bank (PDB) server. 

Interestingly, there are only few structures of clinically isolated mutants showing high levels of resistance 

to various PIs. Clinical isolate mutant, PR20, harboring 20 substitutions significantly reduces binding affinity 

to clinical inhibitors [103]. The crystallographic study of structural changes of PR20 complexed with APV 

and SQV will aid in understanding the molecular basis of high drug resistance. 

The significant increase in dissociation rate to various PIs indicates that these 20 mutations alter 

the molecular properties of PR20 [103]. However, the crystallographic analysis of inhibitor bound mutants 

might only show small structural changes, which might not fully reflect the structural properties caused 

by the mutations. MD simulations imitating the atomic motion in solution allow insight into structural 

motions. MD simulation will be applied to study changes in molecular motion of PR20 relative to wild-type 

enzyme. 

Proteins are macromolecules, thus all atom MD simulations are computationally expensive. In 

practice, the size of the system and the number of iterations limit most MD simulations to the nanosecond 

scale. However, this time scale is shorter than many important protein processes, such as folding and flap 

motion, that are microsecond to millisecond events [136, 137]. The performance of molecular mechanics 

and dynamics program, AMMP, was improved by invoking amortized Fast Multipole Method, a multi-time 

step algorithm[111]. However, it is still a challenge to use AMMP in a large system or longtime simulation 
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because AMMP only uses a single core in the calculation. In addition to applying numerical algorithms to 

speedup simulation, modern parallel techniques, multi-core processors and graphics cards are different 

approaches to accelerate the performance. Therefore, the design of an efficient parallel algorithm is an 

effective way to improve the calculation capability for large scale and long timescale MD simulations. 
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 AMPRENAVIR COMPLEXES WITH HIV-1 PROTEASE AND ITS DRUG RESISTANT MUTANTS ALTERING 

HYDROPHOBIC CLUSTERS 

 (Published: Shen CH, Wang YF, Kovalevsky AY, Harrison RW, Weber IT. 2010. Amprenavir complexes 

with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J. 2010 

Sep;277(18):3699-714) 

2.1 Abstract 

The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were 

analyzed with wild type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and 

L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02 

to 1.85 Å reveal the structural changes due to the mutations. Substitution of the larger side chains in 

PRV32I, PRI54M and PRL90M resulted in formation of new hydrophobic contacts with flap residues, residues 

79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions 

in the PRI50V and PRI54V structures. The PRI84V-APV complex had lost hydrophobic contacts with APV, the 

PRV32I-APV complex showed increased hydrophobic contacts within the hydrophobic cluster, and the PRI50V 

complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in 

PRI84V-APV, PRV32I-APV and PRI50V-APV were related to their reduced inhibition by APV of 6-, 10- and 30-

fold, respectively, relative to wild type PR. The APV complexes were compared with saquinavir (SQV) 

complexes. The PR dimers had distinct rearrangements of the flaps and 80’s loops that adapt to the 

different P1’ groups of the inhibitors while maintaining contacts within the hydrophobic cluster. These 

small changes in the loops and weak internal interactions produce the different patterns of resistant 

mutations for the two drugs. 
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2.2 Introduction 

Currently, about 33 million people worldwide are estimated to be infected with human 

immunodeficiency virus (HIV) in the AIDS pandemic [138]. Despite the effectiveness of highly active anti-

retroviral therapy (HAART) the virus cannot be fully eradicated [89]. Furthermore, development of 

vaccines has been extremely challenging [86]. HAART uses more than 20 different drugs, including 

inhibitors of the HIV-1 enzymes, reverse transcriptase (RT), protease (PR) and integrase, as well as 

inhibitors of cell entry and fusion.  The major challenge limiting current therapy is the rapid evolution of 

drug resistance due to the high mutation rate caused by the absence of a proof-reading function in HIV 

RT [71].  

HIV-1 PR is the enzyme responsible for the cleavage of the viral Gag and Gag-Pol polyproteins into 

mature, functional proteins. PR is a valuable drug target since inhibition of PR activity results in immature 

noninfectious virions [14, 15]. PR is a dimeric aspartic protease composed of residues 1-99 and 1'-99'. The 

conserved catalytic triplets, Asp25-Thr26-Gly27, from both subunits provide the key elements for 

formation of the enzyme active site. Inhibitors and substrates bind in the active site cavity between the 

catalytic residues and the flexible flaps comprising residues 45-55 and 45'-55' [52]. 

Amprenavir (APV) was the first HIV-1 PR inhibitor (PI) to include a sulfonamide group (Figure 2-1 A). 

Similar to other PIs, APV contains a hydroxyethylamine core that mimics the transition state of the 

enzyme. Unlike the first generation PIs, such as saquinavir (SQV), APV was designed to maximize 

hydrophilic interactions with PR [139]. The sulfonamide group increases the water solubility of APV (60 

g/mL) compared to SQV (36 g/mL) [140]. The crystal structures of PR complexes with APV [139, 141] 

and SQV[95, 142]  demonstrated the critical PR-PI interactions.  

HIV-1 resistance to PIs arises mainly from accumulation of PR mutations. Conservative mutations of 

hydrophobic residues are common in PI resistance, including V32I, I50V, I54V/M, I84V and L90M that are the 

focus of this study [143]. The location of these mutations in the PR dimer structure is shown in Figure 2-1 B.  
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Figure 2-1 
(A) The chemical structures of APV and SQV. (B) The structure of PR dimer with the sites of mutation 
Val32, Ile50, Ile54, Ile84 and Leu90 indicated by green sticks for side chain atoms in both subunits. Amino 
acids are labeled in one subunit only. APV is shown in magenta sticks. The amino acids in the inner 
hydrophobic cluster are indicated by numbered red spheres, and the amino acids in the outer hydrophobic 
cluster are shown as blue spheres. 
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Multi-drug-resistant mutation V32I, which alters a residue in the active site cavity, appears in about 20% 

of patients treated with APV[144] and is associated with high levels of drug resistance to 

lopinavir/ritonavir [143]. Ile50 and Ile54 are located in the flap region, which is important for catalysis and 

binding of substrates or inhibitors [96, 139]. Mutations of flap residues can alter the protein stability or 

binding of inhibitors [70, 96, 145, 146]. PR with mutation I50V shows 9-fold worse inhibition by DRV 

relative to wild type enzyme [147], and 50- and 20- fold decreased inhibition by IDV and SQV [70, 146]. 

Unlike Ile50, Ile54 does not directly interact with APV, but mutations of Ile54 are frequent in APV 

resistance and the I54M mutation causes 6-fold increased IC50 [148]. Mutation I54V appears in resistance 

to IDV, LPV, nelfinavir (NFV) and SQV [143]. I54V in combination with other mutations, especially V82A 

[149, 150], decreases the susceptibility to PI therapy [70]. I84V, which is located in the active site cavity, 

significantly reduces drug susceptibility to APV [151]. L90M is commonly found during PI treatment [144] 

and is resistant to all currently used PIs, with major effects on NFV and SQV [143].  

Mutations of hydrophobic residues are found in more than half of drug resistant mutants [143, 152] 

and several of these mutations show altered PR stability [60, 146]. Hydrophobic interactions play an 

important role in protein stability. Aliphatic groups reportedly contribute about 70% of the hydrophobic 

interactions in proteins [153]. Removing a methyl group in the protein hydrophobic core affects protein 

folding and decreases the protein stability in mutant proteins [154]. In HIV PR, two clusters of methyl 

groups have been identified; one inner cluster surrounding the active site cavity and the second cluster in 

an outer hydrophobic core, as shown in Figure 2-1 B [152]. Drug resistant mutations V32I, I50V, I54V/M, 

and I84V belong to the inner cluster around the active site, while L90M is in the second outer cluster.  

In order to establish a better understanding of the mechanism of resistance to APV, atomic and high 

resolution crystal structures have been determined of APV complexes with wild type PR and its mutants 

containing single substitutions of Val32, Ile50, Ile54, Ile84 and Leu90. HIV-1 PR mutations can have distinct 

effects on the binding of different inhibitors. Therefore, the structural effects of APV and SQV were 
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compared for wild type PR and mutants PRI50V, PRI54M, and PRI54V complexes, using previously reported 

SQV complexes [70, 95]. Exploring the changes in PR due to binding of two different inhibitors will give 

insight into the mechanisms of resistance and help in the design of new inhibitors.  

2.3 Experimental Procedures 

2.3.1 Protein Expression and Purification. 

The HIV-1 PR and mutants were constructed with five mutations Q7K, L33I, L63I, C67A, and C95A to 

prevent cysteine-thiol oxidation and diminish autoproteolysis [155]. The expression, purification and 

refolding methods are described in [97, 155].  

2.3.2 Kinetic Assays 

The fluorogenic substrate Abz-Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2, where Abz is anthranilic acid 

and Nle is norleucine, (Bachem) with sequence derived from the p2/NC cleavage site of the Gag 

polyprotein was used in kinetic assays. Proteases were diluted in reaction buffer (100 mM MES, pH 5.6, 

400mM sodium chloride, 1 mM EDTA, and 5% glycerol). 10 μ

reaction buffer and 2μL Dimethyl Sulfoxide (DMSO) or APV (dissolved in DMSO) and incubated at 37 ºC 

for 5 min. Then, the reaction was initialized with addition of 90 μL substrate. The reaction was monitored 

over 5 min in the POLARstar OPTIMA microplate reader at wavelengths of 340 nm and 420 nm for 

excitation and emission. Data analysis used the program SigmaPlot 9.0 (SPSS Inc., Chicago, IL). Km and 

kcat values were obtained by standard data-fitting with the Michaelis-Menten equation. The Ki value was 

obtained from the IC50 values estimated from an inhibitor dose-response curve using the equation Ki = 

(IC50-[E]/2)/(1+[S]/Km), where [E] and [S] are the PR and substrate concentrations.   

2.3.3 Crystallographic Analysis 

Inhibitor APV (from AIDS reagent program) was dissolved in DMSO by vortex-mixing. The mixture 

was incubated on ice prior to centrifugation to remove any insoluble material. The inhibitor was mixed 
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with protein in molar ratios from 2:1 to 10:1. The crystallization trials employed the hanging drop method 

using equal volumes of enzyme-inhibitor and reservoir solution. PRWT-APV was crystallized from 0.1M 

MES, pH 5.6, and 0.6-0.8 M sodium chloride. Crystals of PRV32I-APV, PRI50V-APV, and PRI54M-APV were grown 

from 0.1M sodium acetate, pH 4.6-5.4, and 0.6-1.2 M sodium chloride. The other mutant complexes were 

crystallized using 0.1M sodium acetate, pH 3.8-4.2, and 0.1-0.2 M sodium iodide. Single crystals were 

mounted on fiber loops with 20 to 30 % (v/v) glycerol as cryoprotectant in the reservoir solution. X-ray 

diffraction data were collected at the SER-CAT beamline of the Advanced Photon Source, Argonne 

National Laboratories. Diffraction data were integrated, scaled, and merged using the HKL2000 package 

[156]. PRWT-APV, PRV32I-APV and PRI50V-APV were solved by molecular replacement program Phaser [157] 

with structure 2QCI[158] as the starting model.  The other complexes were solved by MOLREP [159], using 

2F8G as the starting model [147]. The crystal structures were refined using SHELX-97 [160], except that 

the lower resolution structure of PRI84V-APV was refined with REFMAC 5.2 [161]. The diffraction-data 

precision indicator (DPI) was used for determining the accuracy in the atomic positions [54]. The molecular 

graphics program COOT was used for map display and model building [162]. Structural figures were made 

by PyMol [163]. The structures were compared by superimposing their Cα atoms and using HIVAGENT 

[164] to calculate the distance between two atoms. The cut-off distances for different interactions were 

as described in [69]. 

2.4 Results 

2.4.1 APV inhibition of PR and mutants 

The kinetic parameters and inhibition constants of APV for PRWT and the drug-resistant mutants 

PRV32I, PRI50V, PRI54M, PRI54V, PRI84V and PRL90M are shown in Table 2-1. The lowest catalytic efficiency (kcat/Km) 

values were seen for PRV32I and PRI50V, with 30% and 10% of the PRWT value, respectively. PRL90M showed a 

surprisingly high 11-fold increase in catalytic efficiency, whereas the other mutants were similar to PRWT.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t1
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t1
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Table 2-1 Kinetic parameters for substrate hydrolysis and inhibition of amprenavir. 
 

 
Km  

(μM) 
kcat (/min) 

kcat/Km 
(μM/min) 

Relative 
kcat/Km 

Ki (nM) 
Relative 

Ki 

WT* 30±5 190±20 6.5±1.3 1.0 0.15±0.04 1 

V32I 65±6 120±10 1.8±0.2 0.3 1.5±0.2 10 

I50V* 109±8 68±5 0.6±0.03 0.1 4.5±0.6 30 

I54M* 41±5 300±40 7.3±0.8 1.1 0.50±0.06 3 

I54V* 43±6 130±20 3.1±0.9 0.5 0.41±0.05 3 

I84V 73±6 320±30 4.4±0.5 0.7 0.9±0.2 6 

L90M 13±2 950±120 73±13 11.2 0.16±0.01 1 

* Km and kcat values from [70] 
Error in kcat/Km is calculated as (A/B) +/- (1/B2)(square root(B2a2 +A2b2)), where A is kcat, a is kcat 
error, B is Km, and b is error in Km.   
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The kcat/Km values for PRL90M appear to depend on the substrate, however, as only a modest three-fold 

increase relative to PRWT was observed using a different substrate with the sequence derived from the 

MA/CA rather than the p2/NC cleavage site [147]. The six mutants and PRWT were assayed for inhibition 

by APV (Table 2-1). APV showed subnanomolar inhibition with a Ki of 0.16 nMfor PRWT and PRL90M. 

PRI54M and PRI54V showed modestly increased (three-fold) relative Ki values. The largest increases in Ki of 

six-, 10- and 30-fold were observed for PRI84V, PRV32I and PRI50V, respectively, relative to PRWT. The 

substantially decreased inhibition of PRV32I and PRI50V suggested the loss of interactions with APV. 

2.4.2 Crystal Structures of APV Complexes 

The crystal structures of PR and drug-resistant mutants PRV32I, PRI50V, PRI54M, PRI54V, PRI84V and 

PRL90M were determined in their complexes with APV at resolutions of 1.02–1.85 Å to investigate the 

structural changes. The crystallographic data are summarized in Table 2-2. All structures were determined 

in space group P21212. The asymmetric unit contains one PR dimer of residues 1–99 and 1′–99′ as well as 

APV. The lowest resolution structure of PRI84V was refined to an R-factor of 0.20 with isotropic B-factors 

and solvent molecules. The other structures were refined at 1.50–1.02 Å resolution to R-factors of 0.12–

0.16, including anisotropic B-factors, hydrogen atoms and solvent molecules. PRWT had the highest 

resolution and lowest R-factor, concomitant with the lowest average B-factors for the protein and 

inhibitor atoms.  

Because of the high resolution of the diffraction data, all structures except for PRI84V–APV, were 

modeled with more than 150 water molecules, ions and other small molecules from the crystallization 

solutions, including many with partial occupancy (Table 2-2). The solvent molecules were identified by the 

shape and intensity of the electron density and the potential for interactions with other molecules. The 

nonwater-solvent molecules were: a single sodium ion, three chloride ions, two partial glycerol molecules 

in PRWT–APV; one sodium ion, three chloride ions in PRV32I–APV; three sodium ions, seven chloride ions, 

two partial acetate ions in PRI50V–APV; one sodium ions, three chloride, two partial acetate ions in PRI54M– 

http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t1
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t1
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
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Table 2-2 Crystallographic Data Collection and Refinement Statistics 
 

 PR PRV32I PRI50V PRI54M PRI54V PRI84V
* PRL90M 

Space group P21212 P21212 P21212 P21212 P21212 P21212 P21212 

Unit cell dimensions: 
(Å) 

       

  a 58.11 57.77 57.95 58.12 57.50 59.51 57.94 

  b 85.97 86.13 86.01 85.91 86.00 86.88 85.91 

  c 46.42 46.28 46.21 46.10 45.95 45.44 46.10 

Resolution range (Å) 50-1.02 50-1.20 50-1.29 50-1.16 50-1.50 50-1.85 50-1.35 

Unique reflections 113,227 66,626 55,569 73,638 37,010 18,138 50,443 

bRmerge (%) overalla  
5.7  

(38.2) 
8.1  

(44.2) 
7.0  

(40.2) 
7.2  

(35.7) 
6.0 

(46.2) 
9.7 

(34.5) 
5.5 

(46.2) 

I/σ(I) overalla  
15.3  
(2.6) 

11.3  
(2.5) 

15.2  
(2.3) 

20.1 
(2.1) 

16.8 
(2.4) 

15.8 
(5.8) 

17.9 
(2.5) 

Completeness (%) 
overalla  

95.8 
(65.0) 

91.6 
(62.7) 

93.9 
(70.4) 

91.8  
(58.9) 

99.7 
(99.2) 

93.2 
(76.6) 

97.8 
(97.3) 

Data range for 
refinement (Å) 

10-1.02 10-1.20 10-1.29 10-1.16 10-1.50 10-1.85 10-1.35 

  cR (%) 12.4 16.4 15.5 15.4 14.9 19.9 14.3 

  dRfree (%) 14.2 20.1 19.3 18.8 19.7 23.6 19.9 

No. of solvent atoms  
(total occupancies) 

292 
(207.3) 

151 
(129.8) 

177 
(143.6) 

242 
(221.5) 

152 
(128.5) 

84 
(84) 

211 
(202.5) 

RMS deviation from 
ideality 

       

  Bonds (Å) 0.017 0.013 0.012 0.016 0.010 0.014 0.012 

  Angle distance (Å) 0.036 0.031 0.030 0.033 0.029 1.546e 0.030 

Average B-factors (Å2)        

  Main-chain atoms 10.8 16.0 14.4 14.2 23.2 25.6 20.3 

  Side-chain atoms 14.8 21.4 20.7 20.8 28.8 28.3 23.6 

  Inhibitor 10.5 16.9 17.1 17.8 28.5 23.7 16.1 

  Solvent 20.8 25.6 24.3 36.1 47.0 49.5 39.9 

Relative occupancy of 
APV  

0.7/0.3 - 0.6/0.4 - - - - 

RMS deviation with 
PR 

- 0.154 0.187 0.328 0.261 0.381 0.192 

RMS deviation from 
SQV complex (Å) 

0.87  - 0.285 0.356 0.317 0.356 - 

*Refined using REFMAC 5.0, all others were refined with SHELX-97 
aValues in parentheses are given for the highest resolution shell. 
bRmerge = hkl|Ihkl - Ihkl|/hklIhkl.  
cR = |Fobs-Fcal|/Fobs.  
dRfree = test(|Fobs|-|Fcal|)2/test|Fobs|2.  
edegree 
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APV; 19 iodide ions in PRI54V–APV; 33 iodide ions in PRI84V–APV; and 19 iodide ions in PRL90M–APV. However, 

many iodide ions had partial occupancy. They were identified by the high peaks in electron density maps, 

abnormal B-factors and contact distances of 3.4–3.8 Å to nitrogen atoms. 

Alternative conformations were modeled for residues in all crystal structures. Alternative conformations 

were modeled for a total of 48, 13, 28, 11, 1, 8 residues in PRWT–APV, PRV32I–APV, PRI50V–APV, PRI54M–APV, 

PRI54V–APV, PRI84V–APV and PRL90M–APV structures, respectively. APV was observed in two alternative 

orientations related by a rotation of 180° in the complexes with PRWT and PRI50V with relative occupancies 

of 0.7/0.3 and 0.6/0.4, respectively. The highest resolution structure, PRWT–APV, showed the most 

alternative conformations for main chain and side chain residues. Several residues in the active site cavity 

showed two alternative conformations and were refined with the same relative occupancies as for APV. 

Surface residues with longer flexible side chains, such as Trp6, Arg8, Glu21, Glu34, Ser37, Lys45, Met46, 

Lys55, Arg57, Gln61 and Glu65, were refined with alternative conformations. Also, some internal 

hydrophobic residues, such as Ile64, Leu97, showed a second conformation for the side chain. At the other 

extreme, the lowest resolution structure of PRI84V–APV showed only one residue, Leu97, with an 

alternative side chain conformation. In all the structures, the two catalytic Asp25 residues showed 

negative difference density around the carboxylate oxygens. This phenomenon might be caused by 

radiation damage in the carboxylate side chains, especially due to their location at the active site, as 

described in [165].  

The accuracy in the atomic positions was evaluated by the diffraction data precision indicator 

(DPI), which is calculated in sfcheck from the resolution, R-factor, completeness and observed data [166]. 

The highest resolution structure of PRWT–APV had the lowest DPI value of 0.02 Å, whereas the lowest 

resolution structure of PRI84V–APV had the highest DPI value of 0.13 Å (Table 2-2). We estimate that 

significant differences in interatomic distances should be at least three-fold larger than the DPI value [52]. 

Hence, structural changes > 0.06 Å are significant for PRWT–APV and > 0.4 Å for PRI84V–APV at the two 

http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.07771.x/full#t2
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extremes of resolution. The quality of the crystal structures is illustrated by the 2Fo–Fc electron density 

maps for the mutated residues (Figure 2-2). The mutated residues had single conformations, except for 

the side chains of Met54, Val54 and Met90 in one subunit that were refined with relative occupancies of 

0.6/0.4, 0.7/0.3 and 0.5/0.5, respectively. Overall, the mutants and wild-type enzyme had very similar 

structures, probably because they shared the same crystallographic unit cell. The PRI54M, PRI54V and 

PRI84V complexes had RMS deviations for the Cα atoms ranging from 0.26 to 0.38 Å compared with the 

wild-type structure. The structures of PRV32I, PRI50V and PRL90M were more similar to PRWT with RMS 

deviations of 0.15–0.19 Å for the main chain atoms. 

2.4.3 PR interactions with APV and the influence of alternative conformations 

The atomic resolution crystal structure of PRWT–APV was refined with two differently populated 

conformations for the inhibitor and several residues forming the binding site with relative occupancies of 

0.7/0.3 (Figure 2-3 A). Residues Arg8, Asp30, Val32, Lys45, Gly48, Ile50 and Pro81 showed alternative 

conformations in both subunits, and Asp25′ had two alternative conformations for the side chain. 

Alternative conformations were also refined for the main chain of residues 24′, 29′, 30, 30′, 31, 31′, 48, 

48′, 79′ and 80′ around the inhibitor binding site. Moreover, the conserved water molecule between the 

flaps and the inhibitor showed two alternative positions. Similar, although less extensive, disorder in the 

inhibitor binding site has been observed in other atomic resolution crystal structures of this enzyme [69, 

95]. In fact, the highest resolution structure reported to date (0.84 Å) of PRV32I with DRV comprised two 

distinct populations for the entire dimer with inhibitor and one conformer contained an unusual second 

binding site for DRV [69]. Moreover, a similar asymmetric arrangement of Asp25/25′ with a single 

conformation for Asp25 and two conformations for Asp25′ was observed in the crystal structure of PRWT–

GRL0255A [167]. Only single conformations were apparent for APV in the mutant protease structures, 

with the exception of PRI50V. However, the mutant structures were refined with lower resolution data 

where alternative conformations may be less clearly resolved than for the PRWT–APV structure. 
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Figure 2-2 2Fo–Fc electron density maps for the mutated residue in:  
PRV32I, PRI50V, PRI54M, PRI54V, PRI84V and PRL90M complexes with APV. 
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Figure 2-3 Inhibitor binding site in PRWT–APV. 
 (A) APV and PR residues in the binding site with alternative conformations. Omit maps for major (green) 
and minor (magenta) conformations of APV, interacting PR residues Asp25, Gly48 and Asp30 from both 
subunits, and the conserved flap water are contoured at a level of 3.5 σ. (B) Hydrogen bond, C-H···O and 
H2O···π interactions between PR (gray) and APV (cyan). Hydrogen bond interactions are indicated by 
dashed lines. C-H···O and H2O···π interactions are indicated by dotted lines. 
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APV interactions with PRWT were analyzed in terms of the hydrogen bond, C-H···O and H2O···π interactions, 

as described for the PRV32I complex with DRV [69]. The polar interactions of the major conformation of 

APV with PRWT are illustrated in Figure 2-3 B. The central hydroxyl group of APV formed strong hydrogen 

bond interactions with the carboxylate oxygens of the catalytic residues Asp25 and Asp25′. APV formed 

four direct hydrogen bonds with the main chain amide of Asp30′, the carbonyl oxygen of Gly27′, and the 

amide and carbonyl oxygen of Asp30. Water molecules make important contributions to the binding site. 

The flap water molecule (H2OA in Figure 2-3 B), which is conserved in almost all PR–inhibitor complexes, 

formed a tetrahedral arrangement of hydrogen bonds connecting the amide nitrogen atoms of Ile50/50′ 

in the flap region with the sulfonamide oxygen and the carbamate carbonyl oxygen of APV. The second 

conserved water (H2OB) bridged APV and the PR main chain by hydrogen bonds to the carbonyl of Gly27 

and the amide of Asp29 and a H2O···π interaction with the aniline group of APV. The interactions of 

H2OB are conserved in PR complexes with DRV and antiviral inhibitors based on the same chemical 

scaffold [158, 167]. The third water, H2OC, which is conserved in these APV complexes and in DRV 

complexes, mediated hydrogen bond interactions between the carboxylate of Asp30 and aniline NH2 of 

APV. Also, several C-H···O interactions linked the PR main chain to APV: the carbonyl oxygens of Gly48′ 

and Asp30′ interacted with the tetrahydrafuran (THF) moiety, Gly27 carbonyl oxygen with the isopropyl 

group, Gly48 carbonyl oxygen with the aniline ring, the sulfonamide oxygens of APV to Gly49 and Ile50′, 

APV carbonyl oxygen with Gly49′ and APV oxygen to Gly27′ (Figure 2-3). The C-H···O interactions formed 

by the PR amides and carbonyl oxygens mimic the conserved hydrogen bond interactions observed in PR 

complexes with peptide analogs  [21, 168].  

The minor APV conformation refined with 0.3 relative occupancy lay in the opposite orientation 

to the major conformation and interacted with the opposite subunits of the PR dimer. The minor 

conformation of APV retained almost identical hydrogen bond, C-H···O and H2O···π interactions to the 

major conformation, with the following exceptions (Table 2-3). The hydrogen bond between the aniline  
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Table 2-3 Hydrogen bond interactions between HIV-1 protease and APV. 

 
  

 PR 
a(.7/.3) 

PRV32I 
PRI50V  

a (.6/.4) 
PRI54M PRI54V PRI84V PRL90M 

APVN1-H2OC/ 3.0/ - 2.9 2.7/ - 2.9 3.0 3.3 3.1 

H2OC- Asp30OD2/ 
APVN1-Asp30'OD2 

2.6/3.4 2.5 3.0/3.1 2.7 2.7 3.0 2.6 

APVN1-Asp30N/ 
APVN1-Asp30'N 

3.2/2.9 3.3 3.2/3.1 3.2 3.3 3.3 3.3 

APVN1-Asp30O/ 
APVN1-Asp30'O 

3.1/(3.6) 3.1 3.4/3.5 3.3 3.3 3.3 3.2 

APVO26-Asp30'N/ 
APVO26-Asp30N 

3.1/(3.7) 3.2 3.2/(3.7) 3.2 3.3 3.3 3.1 

APVO26-Asp29'N/ 
APVO26-Asp29N 

3.4/(3.6) 3.4 3.5/(3.7) 3.4 3.4 3.4 3.4 

APVN20-Gly27'O/ 
APVN20-Gly27O 

3.1/3.3 3.2 3.2/3.3 3.1 3.1 3.2 3.2 

H2OB-Gly27O/ 
H2OB-Gly27'O 

3.1/3.0 3.2 3.2/3.1 3.0 2.9 3.1 3.2 

H2OB-Asp29N/ 
H2OB-Asp29'N 

2.8/3.0 2.9 2.9/3.0 3.0 3.0 3.3 2.8 

APVO18-Asp25'OD2/ 
APVO18-Asp25OD2 

3.1/2.8 3.2 3.1/3.0 3.2 3.1 3.3 3.2 

APVO18-Asp25'OD1/ 
APVO18-Asp25OD1 

2.7/2.8 2.7 2.7/2.9 2.6 2.7 2.7 2.6 

APVO18-Asp25OD2/ 
APVO18-Asp25'OD2 

2.6/3.1 2.5 2.5/2.5 2.5 2.3 2.6 2.5 

APVO18-Asp25OD1/ 
APVO18-Asp25'OD2 

3.0/2.3 2.9 2.9/2.5 2.9 2.7 2.9 2.9 

H2OA-Ile50N/ 
H2OA-Ile50’N 

2.9/2.7 3.0 2.9/2.9 3.0 3.0 2.9 3.0 

H2OA-Ile50'N/ 
H2OA-Ile50N 

3.0/3.5 3.0 3.0/3.0 2.9 3.0 3.1 3.0 

H2OA-APVO10 2.8/2.5 2.9 2.9/2.3 2.9 2.9 2.8 2.8 

H2OA-APVO22 2.9/3.0 2.8 2.6/3.3 2.8 2.7 2.8 2.9 

APVO26-Asp30'OD1/ 
APVO26-Asp30OD1 

(3.8)/3.3 (3.7) (3.6)/2.6 (3.9) (3.8) (3.9) (3.9) 
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nitrogen of APV and the carbonyl oxygen of Asp30 was lost in the minor APV conformation (distance 

increased to 3.6 Å). The water-mediated interaction between the APV aniline nitrogen and the 

carboxylate group of Asp30 was replaced by a weak direct hydrogen bond (distance of 3.4 Å). The 

hydrogen bond of the THF oxygen with the amide of Asp30′ was lost in the minor APV conformation 

(distance increased to 3.7 Å). Instead, the THF oxygen of APV formed a new interaction with the 

carboxylate group in the minor conformation of Asp30. The water interaction with the amide of Ile50′ was 

weakened (distance of 3.5 Å). The C-H···O interaction between the carbonyl oxygen of APV and the Cα of 

Gly49 was lost in the minor conformation of APV. Some of these differences probably reflect the lower 

occupancy and greater positional error in the minor conformation. Variability in the interactions of 

Asp30/30′ due to flexibility of the side chains has been observed in other PR complexes [147]. Overall, the 

minor conformation of APV showed one less hydrogen bond, one less C-H···O interaction and weaker 

interactions than the major conformation had with PR. 

2.4.4 Effects of Mutations on PR Structure and Interactions with APV 

The structures of the mutants and PRWT complexes with APV were compared in order to identify any 

significant changes. Overall, the polar interactions between APV and PR were well maintained in the 

mutant complexes. In these seven complexes the distances between nonhydrogen atoms were observed 

to be in the range of 2.3–3.3 Å for hydrogen bonds and 3.2–3.8 Å for C-H···O interactions (Table 2-3 and 

Table 2-4). The estimated error in atomic position is ∼ 0.05 Å in structures at 1.0–1.2 Å resolution 

compared with the higher estimated errors of 0.10–0.15 Å in structures at 1.5–1.8 Å resolution [52], such 

as the complexes of PRI54V–APV and PRI84V–APV. Structural changes are detailed below for the mutant 

complexes with respect to the major conformation in PRWT–APV. Generally, the changes in the mutants 

involved hydrophobic C-H···H-C contacts or C-H···O polar interactions, although shifts of main chain atoms 

were observed in some cases. The ideal distances between nonhydrogen atoms are considered to be 3.0– 
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Table 2-4 C-H∙∙∙O interactions between HIV-1 protease and APV. 
 

 PR 
a(.7/.3) 

PRV32I 
PRI50V  

a (.6/.4) 
PRI54M PRI54V PRI84V PRL90M 

APVC6-Gly48O/ 
APVC6-Gly48'O 

3.8/3.1 3.7 3.5/3.0 3.5 3.6 3.5 3.6 

APVO9-Ile50'C  
APVO9-Ile50C  

3.4/4.0 3.5 3.4/3.9 3.6 3.5 3.7 3.4 

APVO10-Gly49CA/ 
APVO10-Gly49'CA 

3.5/2.8 3.5 3.2/2.8 3.3 3.2 3.2 3.4 

APVC12-Gly27O/ 
APVC12-Gly27'O 

3.5/3.1 3.5 3.4/3.5 3.5 3.4 3.6 3.5 

APVO22-Gly49'Ca/ 
APVO22-Gly49Ca 

3.6/(4.6) 3.8 3.5/(4.1) 3.7 3.7 3.7 3.7 

APVO23-Ala28'Ca/ 
APVO23-Ala28 Ca 

3.5/3.7 3.6 3.6/3.6 3.6 3.6 3.7 3.6 

APVC24-Gly48'O/ 
APVC24-Gly48O 

3.3/4.0 3.5 3.6/4.0 3.5 3.5 3.7 3.4 

APVC27-Asp30'O/ 
APVC27-Asp30O 

3.2/3.5 3.2 3.2/3.4 3.3 3.3 3.2 3.3 

Distances between hydrogen donor and acceptor atoms are shown in Å. Atoms separated 
by more than 4.0 Å (in parentheses) are not considered to form C-H···O interactions.  
a PR and PRI50V complexes had two alternate conformations of APV.  
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3.7 Å for C-H···O interactions and 3.8–4.2 Å for van der Waals interactions, as described in [69]. The 

structural differences are described separately for each mutant. 

Val32 is an important part of the S2 pocket in the active site cavity and forms van der Waals interactions 

with inhibitors. In the PRWT–APV structure, Val32 forms hydrophobic contacts with Ile47, Ile56, Thr80 and 

Ile84, whereas Val32′ interacts with Thr80′ and Ile84′. Mutation of Val to Ile, which adds one methyl group, 

can reduce the volume of the active site cavity and alter the hydrophobic interactions in the cluster. The 

mutant with Ile32 did not show significant alterations in the main chain conformation or the interactions 

with APV. However, the Cδ1 methyl of the Ile side chain provided new van der Waals contacts with other 

hydrophobic side chains. Ile32 formed new hydrophobic contacts with the side chains of Val56, Leu76 and 

the main chain atoms of residues 77–78, and Ile32′ showed new interactions with the side chains of Ile47′, 

Ile50 and Val56′ in the flaps (Figure 2-4 A). The flaps can exist in an open conformation in the absence of 

inhibitor and a closed conformation when inhibitor is bound. The interactions of residue 32 differ in the 

closed and open conformations; Val32 has no hydrophobic contacts with flap residues in the PR–APV 

structure, whereas Val32 forms hydrophobic contacts with Ile47 in the open conformation structure [169]. 

The flexibility of the flaps is probably altered in PRV32I by the new hydrophobic contacts of Ile32/32′, which 

is expected to contribute to the three-fold reduced catalytic activity and the 10-fold decreased APV 

inhibition of the PRV32I mutant relative to wild-type enzyme (Table 2-1).  

Ile50 is located at the tip of the flap on each PR monomer, where its side chain forms hydrophobic 

interactions with inhibitors. In the wild-type enzyme, Ile50/Ile50′ interacts with Pro81′/Pro81 and 

Thr80′/Thr80 in the 80′s loop, as well as Ile47′/47 and Ile54′/54 in the flaps. The Cδ1 methyl of the Ile50 

side chain forms C-H···O interactions with the hydroxyl oxygen of Thr80′ and carbonyl oxygen of Pro79′, 

and the Cδ1 of Ile50′ interacts with the hydroxyl of Thr80. Mutation from Ile50 to Val shortens the side 

chain by a methyl group, which eliminates the C-H···O interaction with the hydroxyl oxygen of Thr80′ and 

van der Waals contact with Ile54′ (Figure 2-4B). In the other subunit, mutation to Val50′ eliminates the C- 
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Figure 2-4 The interactions of mutated residues in  
(A) PRV32I–APV, (B) PRI50V–APV, (C) PRI54M–APV, (D) PRI54V–APV, (E) PRI84V–APV and (F) PRL90M–APV. The gray 
color corresponds to PRWT–APV and the cyan color indicates the mutant complex. Dashed lines indicate 
van der Waals interactions and dotted lines show C-H···O interactions. Interatomic distances are shown 
in Å with black lines indicating PRWT and red lines indicating the mutant. Interatomic distances of > 4.3 Å 
are shown in dash-dot lines to indicate the absence of favorable interaction. 
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H···O interaction with the hydroxyl of Thr80 and a hydrophobic contact with Pro81. The APV in 

PRI50V complex had two alternative conformations with 0.6/0.4 relative occupancy. The APV showed a 

more elongated hydrogen bond than seen in the PRWT complex between the aniline group and the 

carbonyl oxygen of Asp30, with an interatomic distance of 3.4 Å for the major conformation and 3.5 Å for 

the minor APV conformation. Val50′ also lost hydrophobic interactions with the THF group of APV. The 

minor conformation of APV showed similar changes in interactions with Asp30/30′ as described for the 

minor APV conformation in the PRWT complex. Overall, the observed structural changes in PRI50V–APV were 

the loss of two C-H···O interactions and van der Waals contacts, the elongated hydrogen bond and 

reduced hydrophobic contacts with APV. PRI50V showed a large decrease in sensitivity to APV shown by 

the 30-fold drop in the relative inhibition coupled with 10-fold decreased catalytic efficiency, which 

suggests the importance of Ile50. Loss of the C-H···O interaction of Val50 with Thr80′ has not been 

previously described. Thr80 is a conserved residue in the PR sequences and its hydroxyl forms a hydrogen 

bond with the carbonyl oxygen of Val82, which contributes hydrophobic interactions with the inhibitors. 

Moreover, the hydroxyl group of Thr80 was shown to be important for PR activity using site-directed 

mutagenesis where only mutation to Ser retaining the hydroxyl group, and not to Val or Asn, maintained 

enzymatic activity [62]. These lines of evidence, taken together, strengthen the suggestion that loss of the 

C-H···O interaction of residue 50 with the hydroxyl of Thr80, as well as loss of hydrophobic contacts with 

inhibitor, are important for the decreased catalytic activity and APV inhibition of PRI50V. 

Ile54 is another flap residue that forms hydrophobic interactions with Ile50′ and residues 79–80, 

although it has no direct contact with inhibitor. Mutation I54M introduces a longer side chain, and the 

nearby main chain atoms have shifted relative to their positions in PRWT (Figure 2-4 C). Compared with 

PRWT, the Cα of Met54 moved by 0.7 Å, and the longer Met side chain pushed residues 79, 80 and 81 away 

by 0.7–1.4 Å. In the other subunit, the Cα of Met54′ moved by 0.5 Å towards Pro79′, and there was a 

correlated motion of Pro79′ of 0.9 Å relative to its position in PR–APV. The longer Met54/54′ side chains 
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formed more hydrophobic contacts with Pro79/79′ and Thr80/80′ in PRI54M relative to those of PRWT. 

Overall, the Ile54 to Met mutation improved contacts within the hydrophobic cluster, although the 

interatomic distances to residues 79–80/79′–80′ were increased. Similar structural changes were 

observed in the PRI54M complexes with DRV and SQV  [70]. Despite these correlated changes between the 

main chain atoms of the flaps and 80′ loops, this mutant was similar to PRWT in catalytic efficiency and had 

only three-fold reduced inhibition by APV. 

In contrast to PRI54M, mutation I54V substitutes the shorter Val in PRI54V. In PRWT, the Cδ1 of Ile54 

interacted with Ile50′, Val56, Pro79 and Thr80, whereas the Cδ1of Ile54′ showed van der Waals interactions 

with Ile47′, Ile50′, Val56′ and Pro79 and one C-H···O interaction with the carbonyl oxygen of Pro79′. The 

shorter Val side chain in the mutant resulted in loss of several van der Waals contacts with the adjacent 

residues, thus decreasing the stability of the hydrophobic cluster formed by flap residues 47, 54 and 50′ 

(Figure 2-4 D). No C-H···O interaction was possible with Pro79′, which was associated with a shift of ∼ 0.5 Å 

in Pro79′ increasing the separation of the flap and 80′s loop. The mutation I54V decreased the 

hydrophobic interactions within the flaps and with Pro79. However, PRI54V showed similar Ki value and 

only a three-fold reduced activity relative to the wild-type enzyme. 

Ile84 forms part of the S1/S1′ subsites of PR, and mutation to Val84 removes a methylene moiety, 

which can reduce interactions with substrates and inhibitors. In PRWT, van der Waals contacts were found 

between Cδ1 of Ile84 and the benzyl and aniline moieties of APV and from Cδ1 of Ile84′ to the isopropyl 

group of APV. These interactions were lost in the PRI84V mutant structure as the interatomic distances 

increased to > 4.3 Å (Figure 2-4 E). The loss of hydrophobic contacts with APV is consistent with the 

modest change of six-fold in Ki value for PRI84V. 

Leu90 is located in the short alpha helix outside of the active site cavity, although it extends close 

to the main chain of the catalytic Asp25. Mutation of Leu90 to Met substituted a longer side chain and 

introduced new van der Waals contacts with residues Asp25-Thr26. Moreover, the long Met90/90′ side 
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chains formed close C-H···O interactions with the carbonyl oxygen of the catalytic Asp25 and Asp25′ 

(Figure 2-4 F). The alternative conformations of the Met90 side chain were arranged as described 

previously [60]. The new interactions of Met90/90′ with the catalytic aspartates and adjacent residues are 

presumed to play an important role in the observed 11-fold increase in catalytic activity, as described 

previously [60, 147]. The increased catalytic efficiency of the PRL90M mutant is mainly due to an almost 

five-fold higher kcat. On the other hand, the Km of the mutant is only about half that of the wild-type 

enzyme. Therefore, the new interactions of Met90 with the catalytic residues that are absent in the wild-

type structure may minimally affect the binding of substrate, but at the same time dramatically lower the 

activation barrier for substrate hydrolysis, leading to substantial improvement of the PRL90M catalytic 

activity. No change, however, was detected in the APV inhibition of PRL90M. 

2.4.5 Comparison of the mutant complexes with APV and SQV. 

The structures of PR complexes with APV or SQV were analyzed in order to understand their distinct drug 

resistance profiles. PRWT–APV was compared with PRWT–SQV (2NMW) solved at 1.16 Å resolution in a 

different unit cell and space group P212121 [95].  The mutant APV complexes reported here were 

compared with the published SQV complexes of PRI50V–SQV (3CYX), PRI54M–SQV (3D1X), PRI54V–SQV (3D1Y) 

and PRI84V–SQV (2NNK) refined at resolutions of 1.05–1.25 Å in the isomorphous unit cell and identical 

space group P21212 as for all the APV complexes  [70, 95].  No SQV complexes have been reported for 

mutants PRV32I and PRL90M. A lower resolution (2.6 Å) crystal structure has been reported for the SQV 

complex with the double mutant PRG48V/L90M [170], in which Met90 showed interactions similar to those 

seen in the structure of PRL90M–APV. To analyze how the PR conformation alters to fit the different 

inhibitors, all structures were superimposed on the PRWT–APV structure. The superposition was tested for 

both possible arrangements of the two subunits in the asymmetric dimer of PR, i.e. superimposing 

residues 1–99 and 1′–99′ with 1–99 and 1′–99′, as well as with the opposite subunit arrangement of 1′–

99′ and 1–99. The arrangement with the lowest RMS deviation was used in further comparison. 
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Interestingly, the major conformation of SQV has the opposite orientation to that of APV for the 

superimposed dimers with the lowest RMS values. PRWT–SQV had the highest RMS deviation value of 

0.87 Å on Cα atoms due to the different space groups, whereas the RMS deviations for the mutant 

complexes with SQV were lower, ranging from 0.29 to 0.36 Å, as usual for two structures in the same 

space group (Table 2-2). 

The corresponding pairs of wild-type and mutant complexes with the two inhibitors were compared 

(Figure 2-5 A). The structures of PRWT–SQV and PRWT–APV showed larger RMS deviations of > 1.0 Å for 

residues in surface loops, probably arising from altered lattice contacts due to the different space groups, 

as reported previously [60]. Moreover, the two subunits in the dimer showed asymmetric deviations due 

to nonidentical lattice contacts as well as the presence of different asymmetric inhibitors. Changes in 

residues 52′–56′, 79′–81′ in the active site cavity are assumed to reflect variation in the interactions with 

the two inhibitors, whereas the lower deviations of catalytic triplet residues 25–27/25′–27′ reflect their 

important function. The pairs of mutant complexes were determined in isomorphous unit cells with less 

overall variation so that changes are more likely to arise from different interactions with APV and SQV. 

PRI50V had the fewest RMS differences between the two inhibitor complexes with a peak of 1.3 Å for 

Phe53′. PRI54V and PRI84V showed the largest change for Pro81′ of 1.9 and 1.6 Å, respectively, whereas 

PRI54M showed the maximum RMS deviation of 1.2 Å at residue 54′. Three regions were analyzed in more 

detail due to their flexibility and proximity to inhibitors and mutations: the flaps, the 80′s loops and the 

hydrophobic clusters formed by residues Ile47, Ile54, Thr80, Ile84 and Ile50′ from the opposite subunit. 

The conformation of the flaps segregated into two categories corresponding to the APV complexes and 

the SQV complexes (Figure 2-5 B). The coordinated changes in the flaps were most obvious for residues 

50–51 and 50′–51′ at the tips of the flaps. The flap residues 50 and 51 showed differences in Cα position 

of 0.5–0.9 Å between the complexes with APV or SQV. Differences of 0.6–0.8 Å at Gly51′ and 0.1–0.4 Å at 
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Figure 2-5 Structural differences between APV and SQV complexes. 
(A) The RMS difference (Å) per residue is plotted for Cα atoms of SQV complexes compared with the 
corresponding APV complexes: PRWT (blue line), PRI50V(red line) and PRI54V (green line). (B) Comparison of 
the flap regions in the structures. The complexes with APV are in cyan, and the complexes with SQV are 
in gray. The arrow indicates the shifts between Cα atoms at the residues 50 and 51 in the PR complexes 
with the two inhibitors. (C) The width across the S1–S1′ subsites increases in PRWT–SQV relative to PRWT–
APV. Similar changes were seen for the mutant complexes, except for PRI50V. 
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Ile/Val50′ were seen in the flap from the other subunit. The different flap conformations are probably 

related to the larger chemical groups at P2 and P1′ in SQV compared with those in APV (Figure 2-1). 

Changes in the 80′s loops, which have been described as intrinsically flexible [60, 95, 171] and function in 

substrate recognition [172, 173], were assessed using the distance between the Cα atoms of Pro81 and 

Pro81′ to reflect alterations in the S1/S1′ subsites. Pro81 and Pro81′ were separated by 17.6–19.4 Å in the 

APV complexes, whereas these residues were 0.7–2.5 Å further apart in the SQV complexes (separations 

of 18.5–20.5 Å). The comparison of wild-type complexes is shown in Figure 2-5 C. PRI50V complexes had 

the smallest distance between Pro81 and Pro81′, whereas the greatest separation was observed for 

PRI54M complexes, probably due to close contacts of the longer Met54/54′ side chains with the 80′s loops 

in both inhibitor complexes. The distance between Pro81 and Pro81′ in the other structures was ∼ 2.5 Å 

longer in the SQV complexes compared with the APV complexes, which corresponds to the increment of 

the width across the S1/S1′ pockets caused by binding of the big decahydroisoquinoline P1′ group of SQV 

instead of the smaller P1′ group in APV (Figure 2-5 C)[95].  

The more rigid region of Asp30/30′ showed smaller shifts of ∼ 0.5 Å for the Cα atoms. The different P2 and 

P2′ groups, THF in APV or Asn in SQV at P2 and aniline in APV or t-butyl group in SQV at P2′, are 

accommodated by these shifts, as shown in Figure 2-5 C. 

The side chain interactions within the inner hydrophobic cluster were analyzed in PRWT, PRI50V, PRI54M and 

PRI54V complexes with SQV and APV. Overall, the main chains of the flaps were shifted relative to the 80′ 

loops in APV complexes compared with SQV complexes. The hydrophobic cluster around the active site 

was formed by Ile47, Ile54, Thr80 and Ile84 from one subunit and Ile50′ from the opposite subunit, as well 

as Val32 in a more rigid region in PRWT. Differences in the side chain interactions are described. In PRWT–

APV the Cγ1 of Ile50 made good van der Waals contacts with Ile54′, but the side chains were further apart 

in PRWT–SQV (Figure 2-6 A). One C-H···O interaction between Cδ1 of Ile50/Ile50′ and the hydroxyl of 

Thr80′/Thr80 was conserved in PRWT–APV, PRWT–SQV and PRI50V–SQV. The structure of PRI50V–APV, 
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Figure 2-6 Interactions of Ile50, Ile54’ and Thr80’. 
(A) PRWT–APV compared with PRWT–SQV. (B) PRI50V–APV compared with PRI50V–SQV. (C) PRI54M–APV 
compared with PRI54M–SQV. (D) PRI54V–APV compared with PRI54V–SQV. (E) PRI84V–APV compared with 
PRI84V–SQV. Dashed lines indicate van der Waals contacts with interatomic distances in Å. Dotted lines 
indicate C-H···O interactions. Black lines indicate interactions in SQV complexes. Red lines indicate 
interactions in APV complexes. 
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however, lost this C-H···O interaction of residue 50 with the hydroxyl of Thr80′, which reduced the 

interactions between the flap and the 80′s loop (Figure 2-6 B). Mutation of Thr80 to Val80, which 

eliminates the C-H···O interaction with Ile50 Cδ1, significantly reduces the catalytic activity and binding 

affinity of SQV [62].  Apart from the different interactions between PR and inhibitors, the loss of the C-

H···O contact between residue 50 and Thr80 in PRI50V–APV and not in PRI50V–SQV appears to correlate with 

the observed drug resistance. Mutation I50V is associated strongly with resistance to APV, but not to SQV. 

In the PRI54M and PRI54V complexes with both inhibitors, however, similar interactions were 

observed among the side chains of residues 50, 54′ and 80′ (Figure 2-6 C,D). Val84 in PRI84V–SQV had fewer 

hydrophobic contacts than in PRI84V–APV, but it had one C-H···O interaction between Cγ2 of Val84 and the 

carbonyl oxygen of Val82 (Figure 2-6 E). In contrast to the significant conformational shifts in main chain 

atoms, the side chains in this hydrophobic cluster generally have rearranged to maintain internal 

hydrophobic contacts in the complexes with both inhibitors. 

2.5 Discussion 

We have described an atomic resolution crystal structure of PRWT with APV, and analyzed structural 

changes in the APV complexes with mutants PRV32I, PRI50V, PRI54M, PR154V, PRI84V and PRL90M. The mutated 

residues contribute to an inner hydrophobic cluster around the substrate binding cavity, with the 

exception of Leu90, which is located near the backbone of the catalytic Asp25 in the outer hydrophobic 

cluster (Figure 2-1 B). Studies of the patterns of resistance mutations and molecular dynamics simulations 

have suggested the importance of these hydrophobic mutations in drug resistance [144, 174]. Our analysis 

showed that interactions within the inner hydrophobic cluster containing residues 32, 47, 54 and 50 were 

frequently altered relative to those in the wild-type enzyme. Mutations to larger side chains in PRV32I, 

PRI54M and PRL90M resulted in the formation of new hydrophobic contacts with flap residues, residues 79 

and 80, and Asp25, respectively. Mutation to smaller side chains caused loss of internal hydrophobic 

interactions in the PRI50V and PRI54V structures. PRI84V, PRV32I and PRI50V showed reduced APV inhibition by 
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6-, 10- and 30-fold, respectively, relative to PRWT, which is consistent with the observed structural changes. 

The PRI84V–APV complex had lost hydrophobic contacts with APV, the PRV32I–APV complex showed 

increased hydrophobic contacts with the flaps that probably restricted the flexibility needed for catalysis, 

and the PRI50V complex had weaker interactions with APV. Ile54 had no direct contact with APV, which is 

consistent with the relatively small changes in inhibition, catalytic properties, protease stability and 

structure shown by the I54 mutants. No compensating changes were identified elsewhere in the 

hydrophobic core. In PRL90M, the longer side chain of Met90/90′ lies close to the main chain of the catalytic 

aspartates forming new van der Waals contacts and a C-H···O interaction. These new contacts with 

Asp25/25’ near the dimer interface correlate with the reduced stability and altered catalytic parameters 

of this mutant, as described in studies with indinavir and DRV  [60, 147]. No evidence was found, however, 

that PRL90M–APV had substantially altered the volume of the S1/S1′ substrate binding pockets, unlike the 

PRG48V/L90M–SQV structure, which showed reduced volume for the S1/S1′ subsites relative to the wild-type 

complex [170]. Also, the structure of PRG48V–DRV showed reduced volume of the active site cavity relative 

to the wild-type complex, consistent with a major effect of the G48V rather than the L90M mutation in 

reducing the S1/S1′ volume in PRG48V/L90M–SQV [70]. Reduced interactions with inhibitors and 

conformational adjustments of the flaps and 80′s loops were observed in our previous studies of these 

mutants with other inhibitors [60, 68-70, 146, 147].  These structural changes are expected to contribute 

to drug resistance. However, crystal structures show only a static picture of the effect of mutations, 

whereas changes in protein dynamic and thermodynamic properties also probably contribute to 

resistance. Future studies using molecular dynamics simulations and calorimetric analysis will help to 

address the changes in these other properties. 

Individual mutations have distinct effects on the protease structure and activity. However, drug-

resistant clinical isolates generally accumulate multiple mutations. Previous studies of double and single 

mutants suggested that the structural changes due to a single mutation were retained in the double 
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mutant, although other properties did not combine in predictable ways [100]. A variety of structural and 

biochemical mechanisms have been reported for different combinations of mutations, including: 

compensating structural changes, altered interactions with inhibitor and substantial opening of the active 

site cavity [105, 175, 176]. Clearly, further studies are needed to assess the effects of the multiple protease 

mutations that are observed clinically. 

Comparison of the APV complexes with the corresponding SQV complexes for PRWT, PRI50V, 

PRI54V and PRI84V showed changes in the conformation of the flexible flaps and 80′s loops. Despite the 

conformational changes in main chain atoms, the internal side chains generally rearranged to preserve 

the internal hydrophobic contacts in the complexes with both inhibitors. The structural changes can be 

correlated with the type of inhibitor. In particular, the separation of Pro81 and Pro81′ was significantly 

smaller in the complexes with APV compared with the equivalent SQV complexes, which reflects the 

smaller size of the P1′ group in APV relative to that of SQV. Also, the flexible side chains of Asp30 and 

Asp30′ accommodate diverse functional groups at P2 and P2′ of SQV and APV at the surface of the PR 

active site cavity. The functional group can be critical for a tight binding inhibitor. For example, DRV was 

derived from APV by changing THF to bis-THF, which introduces more hydrogen bonds with PR main chain 

atoms and dramatically increases the potency on drug-resistant HIV [177]. 

APV was designed to include several hydrophilic interactions with PR, and SQV optimizes 

hydrophobic interactions with PR[95].  Both of the inhibitors have been classified as peptidomimetic 

inhibitors, which mimic PR–substrate interactions and block enzyme activity, although APV has only a 

single CO-NH peptide bond compared with three in SQV [178]. Resistant mutations within the 

hydrophobic clusters frequently involve small changes such as the addition or deletion of a methylene 

group [143]. Mutations within the hydrophobic cluster have the potential to alter the flap dynamics or 

stability of PR as well as the binding of inhibitors, as shown in our structural analysis. The current drugs 

target the active site cavity and demonstrate strong binding to the catalytic Asps [179]. The hydrophobic 
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pockets around the substrate binding site have been proposed as an alternative drug target [180, 181]. 

However, our structural analysis showed that side chains in the hydrophobic cluster can rearrange readily 

to maintain the PR structure and activity, suggesting that this region is a poor target for drugs. 

The accuracy of high and atomic resolution crystal structures is critical for deciphering how 

mutations and inhibitors alter the PR structure. Here, we describe how PR recognizes the inhibitors APV 

and SQV by structural rearrangements of the two beta-hairpin flaps and two 80′s loops, and how the same 

mutation results in different structural changes with the two drugs. Comparison of the structures provides 

insight into why I50V is a major drug-resistant mutation observed on exposure to APV, but appears less 

critical in resistance to SQV therapy. Apart from the different interactions between PR and inhibitors, the 

absence of the C-H···O contact between flap residue 50 and Thr80 in PRI50V–APV, and its presence in PRI50V–

SQV and PRWT complexes, contributes to the drug resistance of this mutation. The conclusion is that small 

rearrangements of the PR loops enclosing the inhibitor combined with changes in weak internal 

interactions produce the distinct patterns of resistant mutations for the two drugs. 
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 CAPTURING THE REACTION PATHWAY IN NEAR-ATOMIC-RESOLUTION CRYSTAL STRUCTURES OF 

HIV-1 PROTEASE 

(Published: Shen CH, Tie Y, Yu X, Wang YF, Kovalevsky AY, Harrison RW, Weber IT. Capturing the 

reaction pathway in near-atomic-resolution crystal structures of HIV-1 protease. Biochemistry. 2012 

51(39): 7726-32.) 

3.1 ABSTRACT 

Snapshots of three consecutive steps in the proteolytic reaction of HIV-1 protease (PR) were 

obtained in crystal structures at resolutions of 1.2−1.4 Å. Structures of wild-type protease and two 

mutants (PRV32I and PRI47V) with V32I and I47V substitutions, which are common in drug resistance, 

reveal the gem-diol tetrahedral intermediate, the separating N- and C-terminal products, and the C-

terminal product of an autoproteolytic peptide. These structures represent three stages in the reaction 

pathway and shed light on the reaction mechanism. The near-atomic-resolution geometric details include 

a short hydrogen bond between the intermediate and the outer carboxylate oxygen of one catalytic Asp25 

that is conserved in all three structures. The two products in the complex with mutant PRI47V have a 2.2 Å 

separation of the amide and carboxyl carbon of the adjacent ends, suggesting partial cleavage prior to 

product release. The complex of mutant PRV32I with a single C-terminal product shows density for water 

molecules in the other half of the binding site, including a partial occupancy water molecule interacting 

with the product carboxylate end and the carbonyl oxygen of one conformation of Gly27, which suggests 

a potential role of Gly27 in recycling from the product complex to the ligand-free enzyme. These structural 

details at near-atomic resolution enhance our understanding of the reaction pathway and will assist in the 

design of mechanism-based inhibitors as antiviral agents. 

3.2 Introduction 

The human immunodeficiency virus type 1 protease (HIV-1 PR) acts as a dimer of two identical 

99-amino acid subunits to process the viral Gag and Gag-Pol polyproteins into functional proteins (Figure 
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3-1 A) [52]. The indispensable function of PR in replication of infectious virus makes it an important target 

for antiretroviral therapy. However, the efficacy of PR inhibitors decreases over time because of the 

evolution of drug resistance, primarily by mutations in the PR[20]. Even treatment with highly active 

antiretroviral therapy (HAART) does not completely eliminate resistant virus. Therefore, there is a 

continuing need for new PR inhibitors to combat drug resistance. Improved knowledge of the PR reaction 

intermediates will help in the design of novel mechanism-based inhibitors. 

The aspartyl protease family is widely distributed in a variety of organisms, and its members 

participate in diverse biological functions; however, the detailed proteolytic mechanism is not fully 

understood[45]. Several experimental or theoretical studies have addressed the reaction mechanism of 

peptide cleavage by aspartyl proteases. 18O exchange mass spectrometry experiments with HIV-1 PR 

suggest that the peptide hydrolysis reaction proceeds via the formation of a reversible and metastable 

gem-diol reaction intermediate[39]. Recent analysis by neutron crystallography has provided critical 

information about the location of hydrogen atoms in the active site of HIV-1 PR complexed with an 

inhibitor, which does not contain the gem-diol reaction intermediate [42]. X-ray crystallographic analysis 

of reaction intermediates trapped in the enzyme structure has proven to be a powerful tool for probing 

catalytic mechanisms [133]. Veerapandian et al. used the aspartic protease endothiapepsin complexed 

with a renin inhibitor mimicking both hydroxyls in the putative intermediate to study the proteolytic 

mechanism [182, 183]. X-ray structures were reported for N-terminal and C-terminal peptide products 

bound to PRs from HIV-1 and the closely related simian immunodeficiency virus[184]. Other studies 

soaked tethered HIV-1 PR crystals with a substrate peptide to trap different components of the reaction, 

including the tetrahedral intermediate [135, 185]. Our group has reported the highest resolution of 1.5 Å 

for the structures of a tetrahedral reaction intermediate in the wild-type and mutant HIV-1 PR [134]. In 

these examples, however, the structural information is limited by the resolution and the disorder 

observed frequently for peptide intermediates. 
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Figure 3-1 Structure of the HIV-1 PR dimer in a green backbone representation.  
(A) The sites of mutations Val32 and Ile47 are shown as red sticks for the side chain atoms in both subunits, 
with the prime indicating the “second” subunit. The tetrahedral intermediate (TI) peptide is shown as 
sticks colored by atom type. (B) Schematic illustration of the substrate binding site of HIV-1 PR. The 
peptide DQIIxIEI (P4–P3′) is shown in the S4–S3′ subsites of the PR dimer. The scissile peptide bond is 
indicated by the red star. PR residues contributing to the binding site are indicated. 
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More recently, our studies have focused on understanding the influence on the reaction 

intermediates of selected mutations found in drug resistance. Moreover, we identified a 1.2 Å resolution 

structure of the wild-type PR with a tetrahedral intermediate. PR recognizes peptide substrates of at least 

six residues binding in subsites S3–S3′ within the active site cavity (Figure 3-1 B)[52]. Mutations of PR 

residues Val32 and Ile47 were selected because they contribute hydrophobic interactions with substrates 

or inhibitors (Figure 3-1 A), and mutations at these sites are common in drug resistance[94]. Multidrug 

resistant mutation V32I appears in 20% of patients treated with amprenavir[144] and is associated with 

high levels of drug resistance to lopinavir and ritonavir[94]. Drug resistant mutation I47V is located in the 

flexible flap and interacts with the inhibitor. Mutation I47V is associated with resistance to darunavir, 

lopinavir, tipranavir, and ritonavir in therapy [94, 145].  

We describe crystal structures of PR and its mutants with different reaction intermediates and 

the implications for the proteolytic mechanism. The crystal structures of wild-type HIV-1 PR (PRWT) and its 

mutants containing the single substitutions I47V (PRI47V) and V32I (PRV32I) were refined at near-atomic 

resolutions of 1.2–1.4 Å and, by serendipity, illustrate three different steps in the hydrolytic reaction. 

Peptide products and the reaction intermediate corresponding to an autoproteolytic cleavage site were 

observed in the structures, as described previously [134]. These near-atomic-resolution crystal structures 

provide more accurate information for the catalytic mechanism and the design of next-generation 

antiviral inhibitors. 

3.3 Experimental Procedures 

3.3.1 Protein Preparation and Crystallization of HIV-1 PRWT, PRV32I, and PRI47V 

The mutants were constructed and expressed in bacteria, and the protein was purified as 

described previously [134]. The crystallization trials employed the hanging drop method using equal 

volumes of enzyme/inhibitor and reservoir solution. PR and mutant proteins at 2.2 mg/mL were mixed 



78 

with the inhibitor or peptide (dissolved in DMSO) at a molar ratio of 1:5 and incubated on ice for 30 min 

prior to centrifugation to remove any insoluble material. PRWT was crystallized from 0.1 M sodium acetate 

buffer (pH 4.8), 0.41 M potassium chloride, and an investigational inhibitor. PRV32I was crystallized from 

0.06 M sodium acetate buffer (pH 5.6), 0.67 M sodium chloride, and a synthetic peptide. PRI47V crystals 

were grown from 0.05 M sodium acetate buffer (pH 5.0), 1.2 M sodium formate, and 2.5% PEG8000. 

3.3.2 X-ray Data Collection and Refinement 

Single crystals were mounted on fiber loops with 25% (v/v) glycerol as a cryoprotectant in the 

reservoir solution. X-ray diffraction data were collected at the SER-CAT beamline of the Advanced Photon 

Source, Argonne National Laboratories (Argonne, IL). Diffraction data were integrated, scaled, and merged 

using the HKL2000 package[156]. Structures of PRWT, PRV32I, and PRI47V were determined by the molecular 

replacement program Molrep [157] using structures 3B7V, 1FG6 and 2F8G as the respective starting 

models[97, 134, 147]. Refinement was conducted using SHELX-97[160]. No electron density was seen for 

the inhibitor used in the crystallization solution for PRWT; however, the gem-diol intermediate of 

autoproteolysis of PR residues 59–67 (YDQIIxIEIA) fit the observed density. The synthetic peptide 

sequence did not fit the electron density in PRV32I and was replaced by the single C-terminal product of 

residues 59–63 (YDQII). Tyr59 at P5 was refined as Ala because of the poor electron density for its side 

chain atoms in PRWT and PRV32I. PRI47V was refined with both N-terminal and C-terminal products extending 

in opposing directions (residues 60–63 with residues 64 and 65 in one orientation and residues 61–63 

with residues 64–66 in the other). The structures were refined with anisotropic atomic displacement 

parameters (B factors). Hydrogen atoms were added at the final stages of the refinement. The molecular 

graphics program COOT was used for map display and model building[162]. Structural figures were made 

using PyMol [163]. The structures were compared by superimposing their Cα atoms and using 

HIVAGENT[164] to calculate the distance between two atoms. The cutoff distances for different types of 

interactions were as described in ref [69]. 
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3.4 Results 

3.4.1 Crystallographic Analysis 

The crystal structures of PRWT, PRV32I, and PRI47V were determined in the same space groupP21212, 

and the crystallographic statistics are summarized in Table 3-1. The asymmetric units include one PR 

homodimer, and the residues in the two subunits are labeled 1–99 and 1′–99′. The diffraction data extend 

to a resolution of 1.2 Å for PRWT, 1.3 Å for PRI47V, and 1.4 Å for PRV32I, and the structures were refined 

to R factors of 14.4–17.5%. The majority of protein residues and solvent molecules showed clear electron 

density in all the structures. The tetrahedral intermediate and cleavage products of PR residues 59–67 

(YDQII*IEIA, where the asterisk indicates the cleavage site between P1 and P1′ residues) matched the 

electron density in the active site cavities of the PRWT, PRI47V, and PRV32I structures. These peptides are 

thought to derive from very slow autoproteolysis, because the L63I substitution almost eliminates a site 

of autoproteolytic cleavage [186]. The PRWT dimer included two partial occupancy gem-diol 

intermediates: residues 59–65 (designated P5–P2′) were fit in one conformation and 61–67 (P3–P4′) for 

the conformation in the opposite orientation with relative occupancies of 0.4 and 0.5, respectively. The 

two mutants trapped the product peptides. A single C-terminal product containing residues 59–63 (P5–

P1) was seen in PRV32I. Ala was refined instead of Tyr59 at P5 because of weak electron density for the side 

chain in PRWT and PRV32I. PRI47V was refined with both N- and C-terminal products in two alternate 

conformations comprising residues 60–63 (P4–P1) with residues 64 and 65 (P1′–P2′) at 0.5 occupancy and 

residues 61–63 (P3–P1) with residues 64–66 (P1′–P3′) at 0.4 occupancy. The side chains of P4 Asp and P3 

Glu were not visible in the electron density. The solvent, consisting of water molecules, sodium ions, 

chloride ions, and glycerol, was modeled with 204, 181, and 140 molecules in PRWT, PRI47V, and PRV32I, 

respectively. Alternate conformations were refined for 26 residues in PRWT, 13 residues in PRI47V, and 7 

residues in PRV32I. Generally, alternate conformations were seen for the longer side chains on surface 

residues. A few internal residues showed alternate conformations for the side chain or main chain: Ile84, 
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Table 3-1 Crystallographic Data Collection and Refinement Statistics 

 PRWT PRI47V  PRV32I 

Space group P21212 P21212 P21212 

Unit cell dimensions: (Å)    

  A 58.41 58.08 58.06 

  B 86.20 86.30 86.14 

  C 46.36 46.35 46.30 

Resolution range (Å) 10-1.2 10-1.31 50-1.4 

Unique reflections 66188 55879 45833 

Rmerge (%) overall (final shell) 
9.7 
(39) 

6.3 
(51) 

7.2 
(43) 

I/σ(I) overall (final shell) 15.03 
(2.2) 

27.8 
(2.1) 

18.3 
(2.1) 

Completeness (%) overall 
(final shell) 

94.3 
(56.8) 

98.8  
(90.6) 

93.0  
(98.7) 

Data range for refinement (Å) 10-1.2 10-1.31 10-1.4 

  R (%) 0.14 0.15 0.17 

  Rfree (%) 0.18 0.18 0.23 

No. of solvent atoms  
(total occupancies) 

206 
(191) 

181 
(169.5) 

140 
(134) 

RMS deviation from ideality    

  Bonds (Å) 0.015 0.012 0.010 

  Angle distance (Å) 0.034 0.031 0.029 

Average B-factors (Å2)    

  Main-chain atoms 19.2 17.1 16.8 

  Side-chain atoms 24.9 20.4 23.3 

  Peptide Intermediate 54.1 53.5 32.2 

  Solvent 36.4 33.3 30.5 

Intermediate Peptide (Y)aDQIIxIE (D)(Q)II+IE (Y)DQII 

Peptide Occupancy 0.5/0.4 0.5/0.4 1.0 
a Parentheses indicate peptide residues refined as alanine because of poor electron density for the 
longer side chain. 
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 Leu97, Ile33′, and Ile84′ of PRWT, Gly27, Ile84, and Ile33′ of PRV32I, and Val47, Ile64, Ile84, Ile33′, and Ile84′ 

of PRI47V. The backbone structures were almost identical for the three dimers with low pairwise rmsd's of 

0.15–0.17 Å for all Cα atoms. 

3.4.2 Structural Changes around the Mutated Residues 

The two drug resistant mutations are conservative substitutions of hydrophobic residues in the 

substrate binding cavity. The side chain of Val32 in the PRWT structure forms van der Waals contacts with 

the internal hydrophobic cluster comprising residues Ile50′, Ile47, Ile56, Leu76, Thr80, and Ile84, and 

similar interactions were seen in the other subunit. The longer Ile32 side chain in the PRV32I mutant has 

the potential to form new van der Waals contacts within the cluster, as described for the PRV32I complex 

with amprenavir[187]. In one subunit, the Cδ1 methyl of the Ile32 side chain is directed toward the 

hydrophobic cluster, providing new van der Waals contacts with several hydrophobic side chains. In the 

other subunit, however, the Cδ1 methyl of Ile32′ rotates to form new hydrophobic contacts only with 

Ile47′ and Ile50 (Figure 3-2 A). The 3.3 Å distance between the Cδ1 methyl groups of Ile32′ and Ile47′ is 

unusually short for a C–H···H–C interaction, which may indicate a destabilizing interaction[188]. Ile32 

forms a van der Waals contact with Ile at the P2 position in the product peptide similar to the contact 

seen for Val32 in PRWT, while no product is seen in the other subunit. 

The hydrophobic side chain of Ile47 forms internal hydrophobic contacts and interacts with P2 

and P2′ residues of the reaction intermediate in both subunits of the PRWT complex. These hydrophobic 

interactions are retained in the PRI47V mutant. In PRWT, Cδ1 of Ile47 interacts with Ile50′, Val32, Val56, and 

Leu76, while Cδ1 of Ile47′ shows van der Waals interactions with the corresponding residues in the other 

subunit and with Ile54′. Mutation I47V substitutes the shorter Val side chain and eliminates van der Waals 

contacts with adjacent residues, thus probably decreasing the stability of the hydrophobic cluster in 

PRI47V (Figure 3-2 B). 
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Figure 3-2 Mutations alter internal hydrophobic contacts. 
Residues are shown from superimposed structures of PRWT with (A) PRV32I and (B) PRI47V. The two subunits 
are shown in the left and right panels, respectively. The PRWT residues are colored gray for carbon atoms, 
while the mutants are colored cyan. The van der Waals interactions are indicated by dashed lines in black 
for PRWT and red for the mutants with interatomic distances in angstroms. The mutation of I47 to a smaller 
side chain in PRI47V eliminates hydrophobic contacts seen for Ile47 in PRWT. The opposite effect occurs 
with substitution of the large side chain in PRV32I. 
  



83 

3.4.3 PRWT–TI Interaction 

The tetrahedral intermediate (TI) of residues Y59DQII*IEIA67 (where the asterisk indicates the gem-

diol group) was observed in the omit Fo – Fc electron density map in PRWT in two alternate conformations 

extending in opposite directions (Figure 3-3 A), as found frequently in PR complexes with peptide 

analogues [21, 97]. Residues P3–P4′ were fit in one conformation and residues P5–P2′ in the opposite 

orientation, with occupancies refined to 0.5 and 0.4, respectively. The omit electron density (Fo – Fc) map 

for the gem-diol structure clearly indicates four hydroxyl oxygens (Figure 3-3 B). The two alternate 

conformations of the TI peptide formed essentially identical interactions with PRWT. Interactions with the 

catalytic Asp25 and -25′ are described later. The main chain atoms of the TI peptide formed hydrogen 

bond interactions with residues Gly27, Asp29, Gly48, Gly27′, Asp29′, Asp30′, and Gly48′ (Figure 3-4 A). The 

side chain of Glu at P2′ showed hydrogen bond interactions with Asp29 and Asp30. A shorter interaction 

of 2.4 Å seen between the carboxylate side chains of P2 Glu and Asp30 is consistent with protonation of 

P2 Glu, as described in other crystal structures of PR with peptide analogues [21, 97]. Additional stabilizing 

interactions include water-mediated hydrogen bonds and hydrophobic contacts between PRWT and the 

peptide. 

3.4.4 Interactions of PRI47V with Two Products 

The PRI47V structure revealed two alternate conformations of both the N- and C-terminal products 

extending in opposite directions (Figure 3-3 C). The occupancy of residues P4–P1 and P1′–P2′ in one 

conformation was 0.5, and residues P3–P1 and P1′–P2′ were refined with an occupancy of 0.4 for the 

opposite orientation. The alternate conformations maintained similar interactions with the two subunits 

of PRI47V. Interactions with the catalytic Asp25 and -25′ are described below. Four hydrogen bond 

interactions connected the main chain atoms of product P4–P1 with residues Gly27, Asp29, and Gly48, 

and two hydrogen bond interactions linked main chain atoms of product P1′–P2′ with residues Gly27′ and  
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Figure 3-3 Electron density maps for the peptide intermediates. 
(A) Omit map (Fo – Fc) for the major conformation of TI in the PRWT structure. The contour level is 2.0σ. 
(B) Fo – Fc omit map for the hydroxyl oxygen atoms of P1 Ile in the major and minor conformations 
contoured at 3.5σ. (C) Omit electron density map (Fo – Fc) for the major conformation of product peptides 
in the PRI47V structure. The contour level is 2.0σ. (D) Fo – Fc omit map for the peptide C-terminal product 
of PRV32I contoured at 2.5σ. The corresponding stereofigures are given in Figure S1A–D of the Supporting 
Information. 
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Figure 3-4 Hydrogen bond interactions: 
(A) the tetrahedral intermediate with PRWT, (B) the two products with the PRI47V mutant, and (C) the single 
product with the PRV32I mutant. Only the major conformation is shown for the peptide intermediate or 
products in panels A and B. Hydrogen bond interactions are indicated by dashed lines with distances in 
angstroms. Interactions of Asp25 and -25′ have been omitted for the sake of clarity. PR is shown with gray 
carbons, and TI and product peptides are shown with green carbons. The water and carbonyl oxygen of 
Gly27′ in panel C were refined with a partial occupancy of 0.45. 
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Asp29′ (Figure 3-4 B). The side chain carboxylate oxygen atoms of P2′ Glu interact with Asp29′ and Asp30′, 

as described for P2′ in the TI peptide. 

3.4.5 Interactions of PRV32I with the P5–P1 Product 

The PRV32I structure showed clear electron density for the single peptide product of residues P5–

P1, except for the side chain of P5 (Figure 3-3 D). Individual water molecules were fit in the other subunit 

because no peptide product was visible in the electron density. The polar interactions of the single product 

with PRV32I are shown in Figure 3-4 C. Two waters near the P2′ position formed hydrogen bond interactions 

to the main chain of Asp29′ and main chain and side chain of Asp30′, resembling the interactions of the 

P2′ Glu in the other peptides. Another water molecule at an occupancy of 0.5 interacts with both alternate 

conformations of the carbonyl of Gly27′ and with the product carboxyl terminus. Hydrogen bond 

interactions connect the main chain of the product to PRV32I residues Gly27, Asp29, and Gly48, as observed 

in the other complexes. A new salt bridge was seen between the side chains of P4 Asp and Lys45, and the 

P4 main chain amide had a water-mediated interaction with the carbonyl oxygen of Met46. Hydrophobic 

interactions were also observed between the side chains of the product and side chains of PRV32I. 

3.4.6 Interactions with Catalytic Residues 

The interactions with the catalytic residues are essentially identical in the major and minor 

conformations of the TI and two product peptides as shown by the superposition in Figure 3-5. In the TI 

complex with PRWT, the gem-diol structure lies between P1 Ile and P1′ Ile (Figure 3-6 A). The O1 hydroxyl 

of P1 Ile forms a very short 2.3 Å hydrogen bond to the outer carboxylate Oδ2 atom of Asp25′, while the 

O2 hydroxyl interacted with all four carboxylate oxygens of Asp25 and -25′. The nitrogen of the gem-diol-

amine moiety had a hydrogen bond interaction with Oδ2 of Asp25. 

The PRWT–TI interactions are comparable to those described in the 1.0 Å resolution crystal 

structure of endothiapepsin, a fungal aspartic proteinase, complexed with a gem-diol analogue[183]. In 
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Figure 3-5 Minor conformations of TI or products superposed on major conformations showing that 
main chain atoms retain similar positions.  
Gray color represents PR. Green color represents TI or product refined with 0.5 occupancy. Yellow color 
indicates TI or products with 0.4 occupancy. A) PRWT-TI. B) PRI47V with two products. The main chain 
atoms of P1 and P1’ have small RMSD values of 0.2 Å and 0.4 Å, respectively, in both A) and B). 

 

 

 

 

Figure 3-6 Hydrogen bond interactions with the catalytic residues Asp25 and -25’: 
(A) PRWT–TI complex, (B) PRI47V with both products, and (C) PRV32I with a single product. Hydrogen 
bond interactions are indicated by dashed lines with distances in angstroms. The PR is colored gray, and 
TI and products are colored green. The short separation of 2.2 with distances in angstroms between the 
N- and C-terminal products is indicated by the red line in panel B. Only one conformation (occupancy of 
0.5) of Gly27′ and interacting water is shown in panel C. 
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endothiapepsin, one short hydrogen bond interaction was seen between the O1 hydroxyl and Oδ2 of 

Asp35 with a distance of 2.5 Å; the O2 hydroxyl formed two hydrogen bond interactions with Oδ1 and 

Oδ2 of Asp219 with distances of 2.6 and 3.0 Å, respectively; and one hydrogen bond interaction with Oδ2 

of Asp35. Unlike PRWT, the hydrogen bond interaction between the amide nitrogen of the gem-diol 

analogue and the catalytic aspartate was absent in the endothiapepsin complex. 

The inhibitor KNI-272 has been used as a transition state mimic in neutron diffraction studies to 

locate important hydrogen atoms at the catalytic site of HIV PR [42]. Although the hydroxymethylcarbonyl 

isostere of KNI-272 is not identical to the gem-diol of TI, the hydrogen bond interactions of O2 of KNI-272 

are similar to those of O2 of P1 Ile with both catalytic aspartates. Also, O4 of KNI-272 resembles O1 of TI 

in forming a single hydrogen bond interaction to Oδ2 of Asp25, although the hydrogen bond is not 

particularly short. 

The two product peptides bound in PRI47V are partially separated with a 2.2 Å distance between 

the P1′ amide nitrogen and the P1 carbonyl carbon (Figure 3-6 B), whereas the standard C–N separation 

of 1.3–1.4 Å occurs in the TI complex. The 2.2 Å distance may indicate that there is still some bonding 

interaction present between the N atom of the amino product and the C atom of the carboxylate product. 

The N-terminus of P1′ Ile has one hydrogen bond interaction with Oδ2 of Asp25. One carboxylate oxygen 

of P1 Ile forms a short 2.4 Å hydrogen bond interaction with the outer Oδ2 atom of Asp25′, as seen for 

the tetrahedral intermediate. The other carboxylate oxygen of P1 has hydrogen bond interactions with 

the four aspartate carboxylate oxygens. This analysis suggests that the structure of PRI47V with two 

products represents the stage immediately after hydrolysis of the peptide bond. 

In PRV32I, a partial (0.5) occupancy water (Figure 3-6 C) in the catalytic site forms hydrogen bond 

interactions linking the carboxylate oxygen of P1 and the alternate conformations of the carbonyl oxygen 

of Gly27′. One carboxylate oxygen of P1 forms a short hydrogen bond with Oδ2 of Asp25 with a distance 

of 2.4 Å, and the other carboxylate oxygen of the product forms two hydrogen bond interactions (2.3 and 
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2.8 Å) with Oδ1 and Oδ2 of Asp25′. These hydrogen bond interactions of the P1 carboxylate group are 

similar to those reported in other structures with synthetic peptide products [189]. This complex appears 

to represent the reaction step after release of the N-terminal product from the catalytic site. The alternate 

positions of the carbonyl oxygen of Gly27′ may reflect conformational changes occurring upon release of 

the N-terminal product, because this oxygen usually interacts with an amide of the bound substrate 

peptide, as shown in the PRWT–TI complex and the PRI47V complex with two products. 

3.5 Discussion 

3.5.1 Implications for the Reaction Pathway 

Reaction intermediates have been described in a variety of enzyme crystal structures, as reviewed 

in ref [190]. Several metastable intermediates can sometimes exist along a reaction path indicating the 

catalytic process proceeds through a series of energy barriers. In the case of HIV PR, a number of 

intermediates can be trapped by simply crystallizing the protein in the presence of a peptide substrate, 

which suggests that the energy barriers of the hydrolysis reaction may be of similar height. Thus, it is 

entirely possible that the reaction pathway of the peptide hydrolysis by PR does not include a single rate-

limiting step. The three new crystal structures represent three consecutive steps in the proteolytic 

reaction of HIV PR and provide improved geometric details because of the near-atomic-resolution X-ray 

data. The majority of the interactions with the bound peptides are conserved in the wild-type enzyme and 

the mutants, in agreement with the report that mutants share similar transition states with wild-type PR 

[191]. The interactions observed in the new structures have been mapped on the scheme for the reaction 

(Figure 3-7Error! Reference source not found.). The hydrogen atoms around the catalytic sites cannot be 

identified in X-ray structures at this resolution; however, their locations were deduced from the short 

interactions. One Asp25 is protonated and the other deprotonated in most states, in agreement with 
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neutron diffraction studies of an inhibitor complex [42]. In the absence of substrate, the active site cavity 

of PR generally contains water, or possibly 

 

Figure 3-7 Scheme of the reaction pathway. 
The interactions of the peptide intermediates with the catalytic residues are illustrated on the basis of the 
new crystal structures. The minimal number of hydrogen atoms and hydrogen bonds is indicated based 
on the interaction distances in the crystal structures. Crystal structures have been described for four 
stages. Only the active enzyme with bound substrate has not been seen, as indicated by the large brackets. 
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a metal cation, interacting with the two catalytic aspartates [192]. This water reacts with the bound 

peptide to form the gem-diol intermediate, represented by the structure of the PRWT–TI complex (Figure 

3-6 A). The tetrahedral intermediate dissociates into two products in the step shown in the PRI47V complex 

(Figure 3-6 B). Then, the N-terminal product is released, in association with rotation of the carbonyl group 

of Gly27′, as shown in the PRV32I structure (Figure 3-6 C). This state with a single product is shown with 

protonation of both Asp25 and -25′ to reflect the short interactions observed in the crystal structure, 

which suggests diprotonation in the simplest interpretation, as found in theoretical studies of PR with 

some inhibitors[193]. Finally, the C-terminal product is released, and the enzyme recycles to the first step. 

All three intermediate stages retain the short 2.3–2.4 Å hydrogen bond, which may be a low-barrier 

hydrogen bond, of the hydroxyl group of the peptide intermediate with one of the catalytic aspartates, as 

reported in lower-resolution crystal structures [135, 185, 189]. Moreover, the amide of the cleaved bond 

in the gem-diol intermediate and the freed amino terminus of the product also form hydrogen bond 

interactions with the carboxylate of Asp25. 

The conserved catalytic Asp25-Thr26-Gly27 triplets are important for the activity and dimerization 

of PR. Previous X-ray and neutron diffraction studies have shown hydrogen bond interactions with the 

catalytic Asp25 and -25′ similar to those described in our new structures [42, 134]. The position of 

hydrogen atoms, however, cannot be determined unambiguously in these X-ray structures, and further 

studies by neutron crystallography will be important in determining the protonation state of the catalytic 

residues in the reaction steps. Our structures suggest a new role for rotation of Gly27 to facilitate release 

of product as well as its known role in binding the main chain amides of peptides [21]. Analysis of these 

structures emphasizes the essential roles of residues 25–30 and flap residues 48–50 in binding peptide 

substrates and products and provides details of the geometry around the catalytic site at near-atomic 

resolution. The critical interactions can be targeted in the design of new antiviral inhibitors for resistant 

HIV. 
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 DYNAMIC VARIATION IN THE FLAPS OF AN EXTREME DRUG RESISTANT HIV PROTEASE VARIANT 

(In-preparation: Chen-Hsiang Shen, Yu-Chung Chang, Johnson Agniswamy, Robert W. Harrison and 

Irene T. Weber) 

4.1 Introduction 

Drug resistance is a critical barrier to successful treatment of HIV/AIDS. The human 

immunodeficiency virus type 1 (HIV-1) protease (PR) is a retroviral protease composed of two identical 

subunits of 99 amino acids. PR proteolytic activity is essential for maturation of the virion through 

processing viral precursor polyproteins, Gag and Gag-Pol, into functional and structural proteins [20]. HIV-

1 PR is an important and effective target for antiviral drug therapy. PR inhibitors are more effective than 

reverse transcriptase inhibitors in preventing cell-free and cell to cell transmission of the virus [194]. Drug 

resistance arises quickly in HIV because of the lacking of proof reading function of the viral reverse 

transcriptase, in addition to the fast replication of the virus[195]. The introduction of highly active 

antiretroviral therapy (HAART) greatly improved the survival of HIV infected people. However, the viral 

replication is merely temporally repressed by HAART, and life time administration of drugs is essential. 

Thus, compliance to HAART is critical to alleviate the emergence of resistance [196, 197]. 

Multidrug resistant viral strains are common in infected patients, to date, 36 missense mutations 

with resistance to one or more of the nine FDA approved PR inhibitors have been identified[198]. We have 

studied a highly drug resistant variant of PR from a clinical isolate, which bears 20 mutations (PR20) that 

alter different structural regions of the catalytically active dimer [103]. Compared to wild-type enzyme, 

PR20 shows higher dimer dissociation constant (kd) and ~13 fold higher Km value for substrate.[199] 

Importantly, PR20 shows drastically decreased affinity of greater than three orders of magnitude 

compared to the wild type PR for current drugs [199]. The stability of the core monomer structure was 

enhanced for PR20 relative to the wild type enzyme.[200]. Altered intersubunit interactions and unusually 
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widely separated flaps were observed in an X-ray crystallographic study of PR20 in the presence and 

absence of inhibitors.[201]  

The flaps comprising amino acid residues 45-55 are an important part of the PR dimer structure. 

The two interacting flaps exist in a closed conformation when inhibitor or substrate is bound, while in the 

apo-enzyme, the flaps can adjust into an open conformation, distant from the catalytic site. Three main 

categories, defined as closed, semi-open, and open conformations, have been described for different 

structures of the apo-enzyme.[25] The observation of widely separated flaps in drug resistance mutants 

such as PR20 and MDR769[105] suggests that altered flap flexibility may contribute to resistance. 

Therefore, we have explored the conformational variation of the flap regions using crystallographic 

studies of the PR20 mutant with the inactivating D25N mutation (PR20D25N) in combination with molecular 

dynamics (MD) simulations of the apo enzymes. Introduction of the D25N mutation alone increased the 

equilibrium dimer dissociation constant by more than 100-fold and decreased the binding affinity of 

darunavir (DRV) by about 106 fold relative to the wild type PR, nevertheless, no significant alteration was 

observed in the inhibitor-bound dimer structure or the interactions with DRV.[179]  

Our new crystal structures of ligand-free PR20D25N showed various flap conformations. In 

particular, an unusual “tucked” conformation with one flap penetrating into the active site cavity was 

observed in one crystal structure, and also occurred in the MD simulations of the dimers. Extreme flap 

conformations were found for PR20D25N relative to wild type enzyme in both the crystal structures and the 

MD simulations consistent with the idea that increased flap mobility contributes to drug resistance in this 

highly resistant variant. 
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4.2 Materials and Methods 

4.2.1 Preparation of PR20 with D25N mutation 

Plasmid DNA encoding PR (subtype B of group M) with 20 mutations Q7K, L10F, I13V, I15V, D30N, 

V32I, L33F, E35D, M36I, S37N, I47V, I54L, Q58E, I62V, L63P, A71V, I84V, N88D, L89T and L90M (termed 

PR20)[201] cloned between the Nde1 and BamH1 sites of pET11a vector (Novagen, San Diego, CA) was 

used to introduce the D25N mutation by the Quick-Change mutagenesis kit (Stratagene). This construct 

(PR20D25N) was transformed into E. coli BL-21 (DE3; Stratagene) for protein expression, purification, and 

folding as described [201]. 

4.2.2 Protein crystallization, X-ray data collection and structure determination 

Protein crystals were grown by the hanging drop vapor diffusion method. Crystals of PR20D25N 

were obtained by mixing 1 μL of protein (2.1 mg/mL) and 1 μL of reservoir solution under two different 

conditions: 0.2M magnesium chloride and 20% PEG 3350 at pH 5.9; and 0.9M sodium chloride and 0.2 M 

sodium acetate at pH 4.8. The crystals were cooled in a mixture of the mother liquor and 30% glycerol for 

X-ray data collection. 

Diffraction data were collected at 100 K on beamline 22-ID of the Southeast Regional 

Collaborative Access Team (SER-CAT) at the Advanced Photon Source, Argonne National Laboratory. The 

data were integrated and scaled with HKL2000 [156]. The structure designated PR20D25N open was solved 

by molecular replacement with the wild-type HIV-1 PR in complex with p1/p6 (2AOI) as the starting model 

by PHASER[202]. The PR20D25Nopen structure was refined using Refmac5.5 with TLS [161, 203], and the 

model building was carried out in COOT [162]. The second crystal structure of PR20D25N was solved by 

PHASER using 3UCB as the starting model [201, 202], and CNS and Refmac5.5 were used for refinement 

including anisotropic B factors [161, 204]. This crystal structure contains two PR20D25N dimers in the 

asymmetric unit. The flaps in both dimers were deleted initially and rebuilt during refinement. The solvent 

molecules were identified from the shape of the electron density, and interatomic distances and angles 
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consistent with hydrogen bond interactions with other molecules. Secondary-structure matching (SSM) 

was used for superposition of protein structures [205]. Molecular figures were prepared with PyMOL 

[163]. 

4.2.3 Molecular dynamics simulations of wild-type PR and PR20  

The starting models for MD simulations were the DRV complexes of PR20 (3UCB)[201] and wild 

type PR (2IEN)[68] with resolutions of 1.4Å and 1.3Å, respectively. DRV was removed from the starting 

models for MD runs termed PRMD and PR20MD. A second set of simulations termed PRD25NMD and 

PR20D25NMD was prepared by substituting Asparagine for the catalytic Aspartic acids. Water molecules in 

the crystal structures were included in the MD simulation. Furthermore, the PR dimer was solvated with 

50 sodium ions, 50 chloride ions and about nine thousand water molecules randomly generated to fill the 

free space within a 10Å shell of the protein. The temperature was set to 300 K and constrained by Nose 

constraints, as described in [118]. Initially, the system was equilibrated for the randomly generated 

solvent molecules prior to MD simulation. The program, AMMP, was used for the MD simulations with 

the TUNA potential set [206].  

It is expected that the correct protonation state will produce the highest affinity of PR for inhibitor 

[207]. Calculations on PRWT (PDB 3NU3) complexed with amprenavir [187], showed the lowest calculated 

binding energy (∆Gbind = ∆GPI+WAT) when the O2 of Asp25 and O1 of Asp25’ were protonated. This 

protonation state agrees with 20ns the MD simulations performed by AMBER and analyzed by the 

Poisson-Boltzmann surface area (MM-PBSA) method [208]. This protonation state was used for the MD 

simulations. Simulations were performed with a NVT ensemble (atom number (N), volume (V) and 

temperature (T) are fixed) and an amortized fast multipole algorithm for the calculation of non-bonded 

terms. Initially, the system was equilibrated for randomly generated solvent molecules prior to MD 

simulation, and the substrate binding site was visually checked for full occupation by water molecules. A 

total of 1000 frames, one for every 10 ps, were saved from the 10 ns simulation. Each frame was 
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superimposed on the starting model to remove rotational and translational motion from the 

conformations before calculating the RMSD values and averaged structure.  

Trajectories of the MD simulations are represented by a large number of snapshots, and analyzing 

these snapshots by hand is a daunting task. Therefore two statistical analyses were applied to the 

simulation. The major conformations of the protein were extracted using k-means clustering, and the 

individual variation was analyzed with a cross-correlation coefficient. The optimal number of clusters was 

decided by evaluating within the group sum of squares [209], and trajectories were partitioned by 

applying k-means algorithm that recursively assigns data points to its nearest centroid until the cluster 

converges [210]. The cross-correlation coefficient obtained by calculation of displacement vector of any 

two atoms i and j by 𝐶𝑖𝑗 = (∆𝑟𝑖 ∙ ∆𝑟𝑗)/√∑∆𝑟𝑖
2 ∙ ∆𝑟𝑗

2  , where ∆𝑟  is the displacement from the mean 

position of the atom[211]. Cross correlation map was plotted by gnuplot 4.6. 

4.3 Results 

4.3.1 Crystal structures of Ligand-free PR20D25N  

Two crystal structures were solved for ligand-free PR20D25N comprising three distinct dimers with 

varied flap conformations. The two crystal structures were refined to resolutions of 1.6 and 1.45Å and R-

factors of 19.3% and 13.8%, as summarized in the crystallographic statistics shown in Table 4-1. One 

structure termed PR20D25Nopen was refined with one dimer (residues 1-99 and 1’-99’) in the asymmetric 

unit. The second crystal structure contained two dimers per asymmetric unit exhibiting different flap 

conformations: one dimer (PR20D25Ntwist) showed twisted flap conformations relative to those of 

PR20open, and the other dimer (PR20D25Ntuck) had one flap tucked or inserted into the active site cavity 

and the opposite flap raised out of the cavity (Figure 4-1 A). Overall RMS values calculated for Cα atoms 

are: 1.5 Å (0.9 Å) for comparison of the PR20D25Nopen and PR20D25Ntwist dimers, 1.1 Å (0.8 Å) for 

PR20D25Nopen and PR20D25Ntuck, and 1.4 Å (0.3 Å) for PR20D25Ntwist and PR20D25Ntuck. [Values inside the 
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Table 4-1 Crystallographic Data Collection and Refinement Statistics 

 PR20D25N Open 
PR20D25N 

(2 dimers) 

Space group P41 P 1211 

Unit cell dimensions: (Å)   

a 
b 
c 

45.52 
45.52 

104.14 

54.15 
48.57 
69.68 

 α = β = γ =90 
α = γ = 90 
β = 99.15 

Resolution range (Å) 41.71-1.75 50-1.45 

Unique reflections 21,444 59,088 

Rmerge (%) overall (final shell) 6.5(41.4) 4.9(31.6) 

I/σ(I) overall (final shell) 17.9(4.5) 27.3(4.2) 

Completeness (%) overall  
(final shell) 

97.3 
(98.6) 

93.0 
(65.2) 

Data range for refinement (Å) 41.71-1.75 45.9-1.45 

R (%) 19.3 14.0 

Rfree (%) 23.4 19.2 

No. of solvent atoms 
(total occupancies) 

110 
(110) 

417 
(415.5) 

RMS deviation from ideality   

Bonds (Å) 0.027 0.026 

Angle distance (Degree) 2.125 2.039 

Average B-factors (Å2)   

Main-chain atoms 11.7 14.6 

Side-chain atoms 15.7 18.6 

Solvent 17.2 30.9 
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Figure 4-1  
(A) Superposition of ligand-free dimers of PR20D25Nopen (blue), PR20D25Ntwist (red) and 

PR20D25Ntuck (green) showing various flap conformation. (B) 2 Fo-Fc electron density map contoured at 1 
σ.level for the flap region in the crystal structure of PR20D25Ntuck. 
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parentheses were calculated without the flap residues.] 

The positional disorder in the backbone of each dimer was assessed by plotting the B-factor 

averaged over the main chain atoms per residue (Figure 4-2). The highest variation among the structures 

was seen for the flap residues. The largest B-factors of about 40 Å2 occurred in one flap (residues 45’-55’) 

in the PR20D25Ntwist dimer and in both flaps of the PR20D25Ntuck structure, while the flap residues in the 

PR20D25Nopen dimer had the maximum B-factor of about 20 Å2. The B factors showed similar peaks in both 

subunits of the three structures at the four termini in the dimer and the variable surface loops of residues 

33–38, 65–70, and 76–83.  

4.3.2 Flaps exhibit diverse conformations  

Three categories of flap conformations, open, semi-open and closed, have been described for 

different crystal structures of the apo-forms of PR [25]. PR-inhibitor complexes usually show the closed 

conformation of the flaps. In the closed conformation, the tips of the two flap interlock over the active 

site cavity, so that the main chain Cα atoms of Ile50 and Gly51 lie parallel to each other and perpendicular 

to the catalytic aspartates (Figure 4-3 A). In the semi-open conformation, the tips of the flaps lie parallel 

to each other but show reversed contacts compared to the closed conformation. In the open 

conformation, the tips of the flaps are detached from each other and located further from the catalytic 

aspartates than in the closed conformation. An open conformation of the flap is required for the substrate 

or inhibitor to enter the active site cavity.  

In the PR20D25Nopen structure, the tips of the flaps are separated widely and raised vertically 

compared to the flaps in the closed conformation (Figure 4-1A). No van der Waals contacts occur between 

the atoms of the two flaps. The minimum separation of 7.5 Å occurs between the carbonyl oxygen of Ile50 

and the Cγ2 atom of Ile50’ in the two flaps of PR20D25Nopen. Besides losing contacts between the two 

flaps, Ile50 also lacks van der Waals interactions with Pro81’, which are generally retained in both open 

and closed conformation dimers[105]. The shortest distances between the side chain atoms of Ile50/Ile50’ 
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Figure 4-2  
B values averaged over the main chain atoms of each residue for PR20D25Nopen (blue), 

PR20D25Ntwist (red) and PR20D25Ntuck (green). Upper panel: residues from subunit A. Lower panel: residues 
from subunit B. 
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Figure 4-3 Interactions of Ile50 with PR20 residues.   
(A) The closed conformation observed in PR20/GRL02031 (4J55). (B) The tucked conformation of 

PR20D25Ntuck. 
 

  



103 

and Pro81/Pro81’ are 4.7 Å and 4.0 Å, respectively. 

The PR20D25Ntwist dimer has the most widely open flaps reported in any crystal structure to date. 

In PR20D25Ntwist, the flap tips lie nearly in the same plane but are further from the catalytic Asp25/25’, 

and almost perpendicular to their arrangement in the closed conformation. The shortest distance 

observed between the two flaps is 9.6 Å between the carbonyl oxygen atoms of Ile50 and Ile50’, and the 

intersubunit separations between Ile50 and Pro81’ and Ile50’ and Pro81 are 8.5 Å and 5.1 Å, respectively. 

The wide open flaps of PR20D25Nopen and PR20D25Ntwist show few direct interactions with the residues 

near Asp25/25’ at the base of the active site cavity.  

Several water molecules occupy the active site cavity of the ligand-free dimers instead of an 

inhibitor or substrate. In the closed conformation dimer, the water mediated hydrogen bond interactions 

connecting the carboxyl oxygen of Pro79’/Pro79 to the carboxyl oxygen of Ile50 and the amide nitrogen 

of Gly51’ have been proposed to stabilize the flaps (Figure 4-3 A) [171]. In the structures of PR20D25Nopen 

and PR20D25Ntwist, the carbonyl oxygen of Pro79’/Pro79 retains a hydrogen bond with water, however, 

the structures lack the interactions with Ile50 / Gly51’ because of the greater separation of the tips of the 

flaps.   

The unliganded PR20D25Nopen and PR20D25Ntwist structures can be compared to the open 

conformation of wild-type PR (2PC0) complex with a magnesium ion on top of the catalytic aspartates 

(Figure 4-4 A) [192]. The dimers of PR20D25Nopen and 2PC0 superimposed with an rmsd value of 0.9 Å for 

the Cα atoms. The main differences of PR20D25Nopen structure are observed at hinge loop, flap, residues 

16 - 17 and 66 - 71 in both subunits. The tips of the flaps of PR20D25Nopen are 1.8 - 2.0 Å higher than the 

tips of the flaps of 2PC0. Comparison of the PR20D25Ntwist and 2PC0 structures gives an overall rmsd value 

of 1.3 Å for the Cα atoms. Larger variations are observed at hinge loop, flap, 80` loop, residues 15 - 19 and 

66 - 71 for both monomers. The tips of the flaps of PR20D25Ntwist are almost perpendicular to the tips of 

the flaps of 2PC0. 
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Figure 4-4 Dimer conformations of PR20D25N, PRWTopen (2PC0) and PR20open(3UF3).  
(A) Comparison of PR20D25Nopen (blue), PR20D25Ntwist(red) and PRWTopen(pink) shown in cartoon. 

(B) superposition of PR20D25Ntwist(red) and PR20open (cyan) 
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The structures of PR20D25Nopen and PR20D25Ntwist are compared to the wide open structure of 

PR20 (3UF3) with yttrium bound near the catalytic aspartates (Figure 4-4 B) [201]. Although PR20D25Nopen 

and PR20open dimer structures were solved in two different space groups, no significant difference was 

apparent in the main chain conformation as indicated by the low rmsd value of 0.3 Å for Cα atoms. The 

PR20D25Ntwist dimer is more different from the PR20open dimer, as shown by the 1.2 Å RMS value. The 

major differences occur for residues in the surface loops: hinge loop, 80’s loop and flap regions. 

4.3.3 Unusual tucked flap conformation 

The flap conformation of the PR20D25Ntuck structure does not belong to the categories defined as 

closed, semi-open, and open [25]. Instead, flap A of PR20D25Ntuck exhibits an unusual curled or tucked 

conformation (Figure 4-1). The tip of the flap tucks or inserts into the active site cavity so that Ile50 lies 

next to the two catalytic Asp25/25`, while the other flap is directed away from the catalytic residues. In 

the typical closed conformation, the side chain atoms of Ile50 interact with the side chain atoms of Val32’, 

Val54’, Thr80’ and Pro81’ (Figure 4-3 A). In PR20D25Ntuck, Ile50 at the tip of the tucked flap A forms 

completely different interactions with the carbonyl oxygen of Gly27, the side chain atoms of Leu23’, 

Asn25’, Pro81’, and Val82’, while water mediated hydrogen bond interactions connect the amide nitrogen 

of Ile50 and the carbonyl oxygen of Gly27 (Figure 4-3 B). The typical water-mediated interactions linking 

the 80’s loop residues and the tips of the flaps are missing in the PR20D25Ntuck structure, consistent with 

lower stability of the flaps. The lack of stabilizing interactions is consistent with the open conformation 

exhibited by the flap B, however, the two flap tips show van der Waals contact of 4.2 Å between Cγ1 of 

Ile50’ and the carbonyl oxygen of Gly51. 

4.3.4 MD simulations  

MD simulations were performed to assess the conformational dynamics of PR20 and wild type PR 

dimers in the absence of bound inhibitor. Simulations were run on the active enzyme forms with Asp25 

and 25’ (PR20MD and PRWTMD), and a second set incorporated the active site mutation D25N (PR20D25NMD 
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and PRWTD25NMD) for comparison with the new crystal structures reported here.  The simulations started 

from the closed conformation, and ended after 10 ns. The trajectories of the RMS deviations from the 

initial model are shown in Figure 4-5. Simulations equilibrate quickly within the first 500 ps. PRWTMD and 

PRWTD25NMD equilibrate to similar RMS values of 1.7 ± 0.2 Å and 1.8 ± 0.3 Å, respectively. The PR20MD 

simulation equilibrated to the highest RMS deviation of 2.4 ± 0.3 Å, while PR20D25NMD gave the lowest RMS 

value of 1.5 ± 0.1 Å. The scale of the fluctuations is similar to the range described in previous simulations 

of HIV-1 protease by other groups [212, 213]. 

4.3.5 Cluster Analysis of simulations  

Clustering is a data-mining technique that partitions geometrically closer conformations into 

disjoint sets. Thus, conformational information from relatively long trajectories is simplified into a small 

conformational space and the comparison between clusters provides insight on protein flexibility. The 

1000 frames from the 10 ns simulations of PRWTMD, PR20MD and PR20D25NMD were partitioned into three 

clusters, and PRWTD25NMD had four clusters. Similar conclusions for the number of clusters can be obtained 

from a visual inspection of the dendrogram drawn from hierarchical cluster analysis.  

The averaged structures of each cluster were overlaid and displayed in Figure 4-6. Generally, the 

main chain structures are similar to their corresponding starting models, with the exception of the flaps 

and other surface loops, which display a larger range of conformations. The features of the tertiary 

structure of the dimer were preserved over the simulations with good agreement for the elements of 

regular secondary structure, such as β-strands between the surface loops of residues 9-15, 33-42, and 65-

72 and the alpha helix at residues 86-94. The tips of the flaps move toward the catalytic dyad in all the 

simulations.  

The conserved antiparallel β-sheet structure of the flaps and the ordered hinge loop (residues 

34−43) are well preserved in all clusters of the simulations for PRWTMD, PRWTD25NMD and PR20D25NMD. In 

the PR20MD simulation, the β-sheet at the tip of one flap is lost during the simulation, as shown in clusters 
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Figure 4-5 Trajectories of the MD simulations.  
The time course is plotted for the RMSD calculated by superposing Cα atoms of the dimer at each 

time point with the corresponding atoms in the starting crystal structure. The simulations are shown for 
PRWTMD (green), PR20MD (red), inactive PRWTD25NMD (black) and PR20D25NMD (purple). 

 

 

 

Figure 4-6 Superposition of averaged structures of each cluster calculated for simulations:  
(A) PRWTMD, (B) PR20MD, (C) PRWTD25NMD and (D) PR20D25NMD. 
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 2 and 3 (Figure 4-6). The hinge loop and residues 14’-17’ of PR20MD also display conformational variation. 

Differences between the clusters occur for the residues at the N- and C- termini of PRWTMD, PRWTD25NMD 

and PR20D25NMD.  

In summary, the wild type PR and PR20 simulations cluster into similar conformational spaces. 

The tips of the flaps move from the closed conformation toward the catalytic aspartates during our 10 ns 

simulations. In addition, one flap tip in the dimer of PR20MD shows an extreme conformation, which 

presumably arises from the 20 mutations relative to the wild type PR. 

4.3.6 Correlated motions extracted from MD simulations  

Dynamic fluctuations in the protein conformation are important in regulating protein function, 

and mutations can alter the dynamics [214, 215]. The correlation coefficients of the atomic fluctuations 

were analyzed for each residue over time in order to identify the correlated motions and the change 

between wild-type PRMD and PR20MD simulations. Dynamical cross-correlation maps (DCCM) were 

drawn for each simulation (Figure 4-7). Correlation coefficients of higher than 0.25 or lower than -0.25 

are shown in the maps [211], and peaks identified for correlated motions are labeled in the maps. The 

peaks of correlated motions identified in the MD simulations of wild type PR and PR20 (Figure 4-7 a and 

Figure 4-7 b) are notably larger than for the corresponding simulations of the inactive D25N mutants 

(Figure 4-7 c and Figure 4-7 d). Our MD simulations agree with the NMR study showing that the single 

mutation of D25N altered the dynamic properties of the PR [179]. However, introducing the D25N 

mutation had no significant effect on the atomic positions or hydrogen bond interactions when comparing 

the PRWT and PRWTD25N dimers [179]. 

Correlated motions identified in quadrants I and III of DCCM represent intra-subunit relationships 

and are consistent with previous MD simulations [216, 217]. The secondary structure patterns and the 

interface contacts have mainly positive correlations within each monomer, while anti-correlations exist 

between these regions. The peaks of correlated motions observed in the two monomers are similar but  
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Figure 4-7 Dynamic Cross Correlation Maps show correlated motions of: 
 (A) PRWTMD, (B) PR20MD, (C) PRWTD25NMD and (D) PR20D25NMD. Cross-correlation coefficients Cij 

larger than 0.25 and smaller than -0.25 are shown in maps with the intensity represented as follows: red 
squares 0.25 <Cij< 1, blue squares -1 <Cij< -0.25. The four quadrants are labeled. Quadrants I and II show 
intra-subunit correlated motions. Quadrant II and the symmetry related quadrant IV show inter-subunit 
correlated motions. Peaks of positive correlated correlation are labeled with numbers for each monomer 
(quadrant I and III), and groups of peaks are labeled with letters in quadrant II. 
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have different intensities, suggesting that each monomer has a similar pattern of dynamic motions. 

Correlated inter-subunit motions were identified in quadrants II and IV of DCCM. Anti-correlations are 

mostly seen in the inter-subunit quadrants, showing that motions between two monomers have opposing 

directions. Correlated motions of the flaps with the active site cavity and peripheral residues have been 

reported in different MD simulations of wild-type PR [217, 218]. When the DCCMs are compared for the 

four MD simulations, the correlation coefficients in the inter-subunit quadrant are generally weaker in 

PR20MD and PR20D25NMD than in PRWTMD and PRWTD25NMD. The anti-correlated motions of the flaps 

(residues 45-48 and 53-58) in the inter-subunit quadrant are weaker or disappear in PR20MD and 

PR20D25NMD, respectively. These motions suggest that the two flaps tend to fluctuate more independently 

in the PR20 mutant than in the wild-type enzyme. In summary, correlated motions are well preserved in 

each monomer, however, the cross communications between the two monomers are impaired in PR20 

relative to wild type PR dimers. 

4.4 Discussion 

The variant PR20 from a clinical isolate is highly resistant to the tested clinical inhibitors, which 

show several orders of magnitude worse affinity for PR20 compared to the wild type enzyme. Moreover, 

in contrast to the wild type precursor, saquinavir and darunavir do not inhibit autoprocessing of the 

precursor comprising TFR-PR20. Previous crystallographic studies of the PR20 dimer showed a large 

variation in the conformation of the flaps in the ligand-free structures. Here, we report two new 

conformations, designated twisted and tucked flap, observed in the dimer of PR20D25N. Formerly, three 

highly drug resistant variants PRP51, MDR769 and PR20 were observed to have widely separated flaps in 

their dimer structures, suggesting a common mechanism for resistance to inhibitors [105, 107, 201], and 

new inhibitors have been designed to target the wide open flaps[219]. Among the new structures 

reported here, PR20D25Ntwist has the highest separation of the flap tips in the dimer. The rotation of the 

tips of the flaps in PR20D25Ntwist might further contribute to reduce the affinity for DRV and SQV. 
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PR20D25Ntuck exhibits a unique flap conformation, which has not been described previously for crystal 

structures of HIV protease. The tucked flap enters the active site cavity, and this conformation prevents 

the binding of substrates or inhibitors. Again, this tucked flap provides a novel mechanism to lower the 

affinity for inhibitors.  

The conformational dynamics of proteins contributes to their biological function, and correlated 

motions of domains regulate biological function [220, 221]. In the PR dimer, the substrate binding cavity 

is constructed by two identical monomers, and the cooperative opening and reclosing of the two flaps is 

critical during proteolysis of the natural substrate and binding of an inhibitor. The flaps exhibit diverse 

conformations in the crystal structures of ligand-free PR20 [201]. The new crystal structures reported here 

for ligand-free dimers of PR20D25N show additional conformational variation, including an unusual tucked 

form, where one flap is tucked inside the active site cavity. Cluster analysis of our MD simulations for PR20 

and wild type PR shows that the mutations influence the conformational dynamics of the flaps.  Isothermal 

titration calorimetry shows that mutations in PR20 increase the stability of the monomer compared to wild 

type PR [200]. In the MD simulations, the individual monomers in the PR20 and wild type enzyme dimers 

exhibit similar conformational dynamics. However, the correlated motions between the two subunits of 

the dimer differ in the PR20 mutant and wild type enzyme. PR20 lacks correlated motions between the flap 

and the other subunit in the dimer, which will tend to destabilize the flaps, consistent with the diverse 

conformations observed in crystal structures of this mutant. 

In summary, subtle rearrangements in the conformational ensemble of the flaps induced by the 

mutations impair the dynamics, and consequently the proteolytic activity and inhibitor affinity of the 

mutant enzyme. These changes in dynamics will contribute to the high level resistance of PR20. 

Importantly, the discovery of new flap conformations in crystal structures and MD simulations may hint 

at designs for novel antiviral inhibitors that capture the variant flap conformations of the resistant 

mutants. 
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 A HYBRID IMPLEMENTATION OF PARALLEL AMORTIZED FAST MULTIPOLE ALGORITHM FOR THE 

MOLECULAR MODELING PROGRAM: AMMP 

(In-preparation: Chen-Hsiang Shen and Robert W. Harrison) 

5.1 Abstract 

Molecular dynamics simulation is a tool used to study the molecular basis of chemical and 

biological problems. The efficient calculation on electrostatic and long range forces, which is the (N2) 

summation by naive algorithm, is the central problem on using molecular dynamics simulation. An 

OpenMP-CUDA implementation of parallel molecular dynamic program, AMMP, is presented for protein 

simulation. The hybrid implementation provides high efficiency of molecular dynamic simulation. The new 

parallel implementation of AMMP is capable of simulating molecular systems with more than half million 

atoms with excellent acceleration and parallel efficiency. The combination of OpenMP-CUDA can 

accelerate the simulation about 20 fold faster than the 8-threaded CPU based AMMP. 

5.2 Introduction  

Molecular dynamics simulation is a powerful computational tool for modeling the behavior of 

proteins and protein-ligand complexes. In the classical limit, molecular dynamics finds a numerical 

solution for the motion of the molecules in a molecular mechanics potential or force-field. A molecular 

mechanics potential can be divided in terms of its computational complexity into two sorts of terms: 

covalent geometry terms that define covalent chemical bonds, angles, torsional effects and chirality and 

non-bonded terms like van der Waals and electrostatic terms. The number of covalent geometry terms 

scales asymptotically as O(N) where N is the number of atoms, while the number of non-bonded terms 

scales as the number of unique pairs of atoms or O(N2). 

The naïve way to calculate non-bonded terms is to loop over each pair of atoms. Therefore significant 

effort has been spent on accelerating the calculations for the non-bonded terms. One of the first 
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approximations was to use a cutoff radius, which converts the non-bonded calculations to O(N). However, 

this approximation violates the conservation of energy and momentum with predictably dire 

consequences [110, 111, 118]. Recent work has focused developing algorithms that can calculate the non-

bonded terms without using an explicit loop over all the pairs of atoms. Two general classes of algorithms 

are used for this, the Ewald method which uses a Fourier transform[112] and the Fast Multipole Method 

(FMM) which uses power series expansion and tree based data structure[113, 222]. This paper describes 

accelerating the implementation of the FMM used in the program AMMP on multi-core and GPU 

architectures [118, 223]. 

Even though both the Ewald and FMM methods are effective at speeding up the calculation of the 

long-range terms, the calculation is still expensive. Further economies are possible by using an 

Amortization algorithm [118, 223], where a small amount of additional effort translates into significant 

savings. Amortization is an example of a Multi-Time step algorithm [224]. The force fields used in 

molecular dynamics are split as fast evolving short-range terms and slow moving long-range terms. Energy 

terms that evolve quickly in time, namely the covalent geometry terms and non-bonded interactions 

between nearby atoms are explicitly treated on a fast time scale. Energy terms that evolve more slowly 

are treated with a slow time scale. The key difference between a classical multi-time step algorithm and 

an amortized algorithm is that the amortized algorithm maintains a local expansion of the forces and 

energies which it updates when the atoms have moved sufficiently and the multi-time step expansion 

simply updates the long-range terms less frequently than the covalent and local non-bonded terms. The 

advantage of using an update that depends on the distance the atoms have moved is that it automatically 

adapts the update frequency to the speed of the atoms. 

5.3 Specification of Algorithms 

The pseudo code for the amortized multi-time step algorithm used in AMMP is shown below. 
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5.3.1 Algorithm for update: 

Inputs: atom’s velocities, charges, positions, a list of atoms that are bonded to each other, a radius 

that differentiates between the local expansion and the non-local expansion, and a parameter that states 

when the atoms have moved enough to update the non-local expansion. 

Initialization: allocate memory for the current position, the partial potential, first and second 

derivatives of the potential and a list of atoms that will be within the local radius. 

For i = 0 to n-1 in atom’s vector do 

 For j = 1 to n in atom vector do 

Save the current position. 

Calculate the distance r between atomij. 

If r > local radius  

  The power series expansion:  

Partial potential +=  
 , where q,a,b are the charge, Van der 

Waals attractive and repulsive terms of the energy. 

In addition calculate the derivatives of the potential energy around the current 

atomic positions in a multipole expansion. 

                                   
+= 

                                
  

                     similar terms for y,z
 

                                   
+= 

              
  

similar terms for y2, z2, and multiplied by  

 2 for xy,xz,yz 
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else  

add the atom to the local list.  

  End if 

end for  

end for 

5.3.2 Algorithm for non-update: 

Inputs: The current atomic positions and a user-specified maximum distance before update. 

Initialization: the update algorithm has been invoked to build the power series, and the local 

interaction list. 

For i = 0 to n in atom vector do 

calculate the distance r from the saved position.  

If r > specified distance 

   call the update algorithm for the entire model. 

End if 

For i = 0 to n in atom vector do 

Calculate the difference from the saved position and use that to estimate the long range 

potential or its derivatives for use as a force term.  

For J = 0 to m in the list of close atom do 

calculate local interactions and add in either the potential or force terms. 

 End for 

End for. 



117 

5.3.3 Amortized Scalar FMM Algorithm: 

The amortized FMM uses the FMM and an adaptive multi-step algorithm to compute the change in 

the potential at each atom. The FMM divides 3D space into small boxes and uses a polynomial series to 

approximate long range terms. The terms from the atoms that are inside each box are grouped and 

treated them as a single source with a multipole expansion. The multipole expansion from the boxes is 

propagated to both current potential and force terms and the update expansion used for amortization. 

Thus the system can evolve in time without requiring an additional FMM calculation. This amortizes the 

computational cost of the FMM over several molecular dynamics steps.  Using the amortized FMM 

algorithm to integrate the non-bonded terms provides compatible results with the standard non-update 

calculation [223]. The amortized algorithm starts from checking the location of atoms. If an atom has 

moved more than a pre-defined distance, it will apply update algorithm to calculate a new list of local 

interactions and the power series. If no atom moves more than a specific distance, the direct sum over a 

list of local interactions and the power series will be used to calculate the long range interactions. AMMP 

uses an amortized FMM algorithm integrates non-bonded terms with the asymptotic Ө(N)[223]. Below is 

the pseudo code for Amortized FMM algorithm: 

Inputs: atom’s vector, charges, positions, box size, list of atoms contributes in bond terms, a 

radius that differentiates close atoms. 

Required: The maximum and minimum coordinate. 

A three-dimensional array of boxes as MMNODEs. Each MMNODE represents a set of 

atoms that are expanded with a multipole expansion. 

An array of MMATOM for a reverse indexed list that will store the relation of each atom 

with a unique MMNODE.  

For i = 0 to n in atom vector do 

decide which MMNODE atomi belongs to.  
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Store that in the MMATOM. 

For i = 0 to m in list of MMNODE do 

       For j = 0 to n in atom vector do 

 Select the atoms in MMNODE using MMATOM 

Integrate the terms of the rectangular expansion of the atomj to the MMNODEi. 

Except the sign of odd derivatives is different, the expansion used here is the same as 

the one used in local expansion. 

      End for 

End for 

For i = 0 to n in atom vector do 

atomi looks up the MMNODE it belongs to and calculates the MMNODEs belong to atomi’s 

neighbor.  

For j = 0 to m in list of MMNODE do 

If the MMNODEs are not belong to the atom or its neighbors 

propagate and sum the distal terms from the series for all these 

MMNODEs  

       else  

all of the atoms in these MMNODEs are invoked with the update 

algorithm for the standard amortized algorithm. Thus, the list of close 

atoms is generated for non-update algorithm. 

         End if 

       End for 

End for 
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5.4 Parallelization of AMMP 

The non-bonded terms integrated though amortized FMM empirically uses as much as 80% of the 

runtime cost in sequential version of AMMP, thus the amortized FMM is the main target for 

parallelization. Preparation of MMNODE data-structures and calculation of pair wise forces are the most 

expensive parts of amortized FMM algorithm. Previous work on parallelization of amortized FMM is 

implemented by Parallel Virtual Machine and gain speedup [223]; however, the parallel efficiency was 

poor because of the high cost of communication. Porting the amortized FMM to shared memory and GPU 

accelerated environments is different approach to improve performance efficient and scalable 

parallelization.  

5.4.1 The OpenMP AMMP 

The OpenMP library was used for the first implementation of parallelizing bond and non-bonded 

terms. This version will be used to compare the performance gain by GPU accelerated computing. Using 

OpenMP to parallelize short range terms is done quickly though adding directives to guide compiler and 

it is easy to split loop into different threads to avoid race condition without rewriting sequential code. 

Threads are created and executed on each core on OpenMP based parallelization. The bond, angle, torsion 

terms have fixed relation to atoms, thus each thread is assigned a unique start and end point to loop 

though all the bond, angle and torsion vectors.  

Each MMNODE data structure is built independently, thus partitioning the construction of the 

MMNODE data structures onto individual threads gives reasonable speedup without race conditions or 

other issues. However, the calculation of pairwise forces between atoms or between atoms and MMNODE 

requires random access of an array of atom data structures. Therefore it is difficult to avoid race 

conditions when calculating the pairwise forces with a naive approach. Protecting of the critical region 

with mutex locks or atomic operations hampers the performance and makes the parallel algorithm more 

complex and dependent upon individual properties of specific CPU’s. Because the AMMP molecular 
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dynamics program is not memory intensive software, race conditions are avoided by creating duplicated 

arrays of atom data structures for each thread and these duplicated vectors are summed at the end of 

amortized FMM function. 

5.4.2 The OpenMP-CUDA AMMP 

The implementation of Amortized FMM on CUDA is different from the CPU based parallelization. 

Implementation of GPU accelerated Amortized FMM function starts from OpenMP version because of 

some light weight loops already parallelized, moving these loops to GPU might be trivial due to frequently 

moving memory between device and host memory. Only complicated loops such as the preparation of 

MMNODEs and calculation of pair wise forces, in Amortized FMM function are moved to the GPU. The 

programming model on GPU has to create many threads to compensate for the high memory latency cost. 

Thus as many threads are created as there are atoms and these threads are executed by many of CUDA 

cores concurrently. Because the hardware design of CUDA cores is different to CPU, the atomic function 

is faster on CUDA cores and is used to protect critical regions.  

5.5 Results 

5.5.1 Sample preparation for simulations 

To perform tests for the overall speed of our implementation as well as the effectiveness of parallelized 

AMMP, three MD systems were built from PDBs. An ATPase system ( PDB ID: 1E79)[225] obtained from 

X-ray diffraction was prepared for performance test by removing non-protein molecules and filling with 

100,000 random water molecules; thus there are 351274 atoms and 51274 atoms belong to protein. 

Another system with 665197 atoms was prepared from HIV-1 protease structure (PDB ID: 3UHL)[201]. 

Non-protein atoms were removed from PDB file, 34 dimeric proteases, total 105468 atoms, were 

prepared based on symmetric molecules, and 186243 water molecules were added randomly. Two 
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hundred steps were executed, and elapsed times are record for total execution time and run time of 

amortized FMM function. 

To investigate the stability of parallelized AMMP on the structure and dynamics of the protein, drug 

resistant mutant PR20 (PDB ID: 3UCB) was prepared by removing co-complexed inhibitor DRV[201]. The 

crystallographic water molecules were kept in simulation. Fifty sodium ion, fifty chloride ions and about 

nine thousands water molecules were randomly added. Prior to the MD simulation, the random water 

molecules were equilibrium for 1 ns. Sequential AMMP and OpenMP-CUDA AMMP were used to run the 

simulation. The RMSD value was calculated from the 5 ns simulation. 

5.5.2 Run-time Analyses 

Tests were performed on 1. DELL PRECISION T5500 with two Intel® Xeon E5607 CPU, 8 cores available, 

and an EVGA Geforce GTX 780 graphic card running Ubuntu 10.04. 2. IBM System x3850 X5 with four 

Intel® Xeon E7-4850 CPU, 40 cores available, running Red Hat Enterprise Linux version. ATPase and HIV 

PRs were benchmarked with solvated water in two different machines. Parallel efficiency of each core is 

calculated by the equation: (run time of 1 core / number of cores) / actual run time with multi cores. For 

example execution times are 20s obtained by 1 core and 5.5s obtained by 4 cores, and the parallel 

efficiency is 90%.  

The run time analyses of molecular dynamics done by OpenMP-AMMP are presented in Figure 5-1 and 

Figure 5-2. Basically, the elapsed times on simulations of ATPase and HIV PR decrease while the number 

of cores included in calculation. The implementation of OpenMP-AMMP produces good speedups on DELL 

PRECISION T5500; up to 8 cores, there is no significant performance drop observed in both simulations. 

The parallel efficiency maintains higher than 95% in DELL system. Similar results observed in IBM System 

x3850 X5 when using 8 cores for parallel computation; however, as the figure showed, the parallel 

efficiencies drop to below 80% in the parallel computation with 40 cores. This might be caused by the 
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Figure 5-1 The elapsed time of HIV protease and ATPase simulated on DELL workstation and IBM 
x3850. 

 
 
 
 
 

 
Figure 5-2 The parallel efficiencies are calculated from the simulations with various numbers of cores 
included in computation. 
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limitation on memory bandwidth. Clearly, the implementation of OpenMP-AMMP obtains reasonable 

improvement on performance 

The OpenMP-CUDA-AMMP is tested on DELL T5500, the elapsed times from OpenMP-CUDA-

AMMP and OpenMP-AMMP are compared in Table 5-1. The elapsed time form hybrid implementation of 

AMMP reduced 20 folds than OpenMP-AMMP.  Taken together, passing computation of Amortized FMM 

to CUDA cores significantly improves performance. 

5.5.3 Stability of simulation by parallelized AMMP 

The most direct way to estimate the stability of the simulation is calculating the root mean square 

deviation (RMSD) that generated by superposition the dynamic trajectory to the starting crystallographic 

structure. The RMSD on the main chain atoms from the initial model are shown in Figure 5-3. The average 

RMSD for sequential AMMP and OpenMP-CUDA-AMMP are 2.4 ± 0.3 Å and 2.3 ± 0.3 Å, respectively. The 

scale of the fluctuations is similar to the range described in other simulations of HIV-1 protease [212, 213]. 

It is clear that the newly hybrid implementation of AMMP displays comparable stability to the sequential 

AMMP. 

5.6 Discussion 

Currently, the hybrid implementation of AMMP by OpenMP and CUDA provides compatible 

results without cut-off and more than 10 fold faster than sequential version of AMMP. Two possible 

improvement of AMMP are: including more functions in GPU and designing new parallel algorithm to split 

calculation to several nodes. Based on current architectures, the GPU significantly can do more floating 

point operations (FLOPs) per unit time than CPU. More speedups can be expected and reached while there 

are more routine functions implemented on GPU. Now, only amortized FMM function ports to GPU, more 

force field functions implemented on GPU might further improve performance. Currently, AMMP 

executes in single node. The memory bandwidth is saturated when included more cores in computation, 
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Table 5-1 Run time analysis of ATPase and HIV protease of two different implementations. 
 

Box(Å)  
OpenMP-AMMPa 

(Sec) 
CUDA-AMMPb 

(Sec) 
Speed-up 

(Fold Change) 

10 
ATPase 1052.4 53.2 19.8 

HIV PR 3951.5 195.1 20.3 

9 
ATPase 1264.2 63.9 19.8 

HIV PR 5021.9 229.8 21.8 

8 
ATPase 1636.9 79.7 20.5 

HIV PR 6362.4 289.2 22.0 

7 
ATPase 2324.8 118.6 19.6 

HIV PR 9793.4 473.9 20.7 

6 
ATPase 3881.4 189.0 20.5 

HIV PR 13718.0 701.3 19.6 
       a Simulation using 8 cores of CPU 
          b Simulation running on 8 cores of CPU and one GPU 
 
 
 
 
 

 
 

Figure 5-3 Time course plot of the RMSD draws by the superposition main chain atoms of the 
whole protein to the initial crystallographic structure. 
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which lower parallel efficiency. The parallel algorithm using distributed memory system, such as spatial 

decomposition algorithm that partition atoms to different nodes, might improve performance. 
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 OVERALL SUMMARY AND DISCUSSION 

HIV-1 PR is an indispensable enzyme in the viral life cycle, which makes it an effective target in 

anti-retroviral therapy. Since 1995, mortality of AIDS patients has been greatly reduced due to using PIs 

in anti-retroviral therapy. However, the challenge to the long-term efficacy of PIs is the rapid emergence 

of drug-resistant PR variants. The extensive studies of HIV-1 PR and resistant variants for their structures 

and catalytic activities will help better understand the molecular basis of drug resistance; thus, various 

techniques, X-ray crystallography, enzyme kinetic assay or molecular dynamic simulation, were used in 

one or more of the following structural studies: I. PRWT and drug resistant mutants, PRV32I, PRI50V, PRI54V, 

PRI54M, PRI84V, and PRL90M complexed with APV. II. PRWT and drug resistant mutants, PRV32I and PRI47V. III. 

highly resistant PR20D25N.  

The flap dynamics, stability of PR and the binding of inhibitors are potentially altered by mutations 

within the hydrophobic cluster. In first study, wild type PR and PR variants (PRV32I, PRI50V, PRI54V, PRI54M, 

PRI84V, and PRL90M) bearing single mutations were investigated by crystallographic and kinetic analyses. 

The mutants PRV32I, PRI54M and PRL90M showed substitution of a larger side chain that introduced new 

hydrophobic interactions with flap residues, Pro79 and Thr80 on 80’s loop and the catalytic Asp25, 

respectively. PRI50V and PRI54V have the substitution of a smaller side chain that decreased internal 

hydrophobic contacts. The worse inhibition by APV of 10-, and 30- folds is consistent with the observed 

structural alternations of PRV32I and PRI50V, respectively. Structural comparisons between PR mutants 

complexed with APV or SQV indicate that the dimeric structure and activity of PR can be maintained by 

rearrangement of side chains in the hydrophobic cluster. Furthermore, rearrangements of the PR residues 

are observed on flaps and 80’s loop to accommodate two different shapes of PIs. Thus, the different drug 

resistant patterns of resistant mutations for the two PIs are produced by the modification in the loops and 

in the hydrophobic cores of PR. 
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Three distinct reaction intermediates were captured in crystals of wild-type PR and PR mutants 

with substitutions of I47V and V32I. Two tetrahedral intermediates aligned in opposite orientations were 

captured in the PRWT structure. The metastable reaction intermediate, gem-diol, was observed in 

substrate YDQIIxIEIA where x indicates as the cleavage site between P1 Ile and P1’ Ile residues in PR 

sequence. The N- and C-terminal products of autoproteolytic substrate co-exist in the substrate binding 

cavity of PRI47V structure. The scissile bond between amide and carboxyl carbon has lengthened to 2.2Å 

indicating the incomplete cleavage of peptide bond before the release of products, which represents the 

stage immediately after hydrolysis of the peptide bond. The C-terminal product occupies S1-S5 subsites 

of PRV32I structure. Two water molecules were observed in S2’ subsite and had hydrogen bond interactions 

with D29’ and D30’. In addition, one water molecule was refined with partial occupancy in catalytic site. 

It forms hydrogen bond interactions between the carboxylate group of C- terminal product and carboxyl 

oxygen of Gly27’, which illustrates the possible role of Gly27 in recycling the enzyme. A short hydrogen 

bond interaction, with distance between 2.3 and 2.4 Å, was observed in three crystal structures 

connecting the outer oxygen of aspartate group of Asp25’ and reaction intermediates. Overall, the 

reaction intermediates observed in the crystal structures represent consecutive steps in the catalytic 

reaction. 

Generally, multiple drug resistant mutations accumulate in clinically isolated PR variants. It is 

more difficult directly to apply the drug resistant mechanisms observed from PR with a single mutation to 

multiple mutations. Clinically isolated highly resistant mutant, PR20, harboring 20 mutations significantly 

reduces binding affinity to clinical inhibitors. Two ligand-free crystal structures of the PR20 mutant with 

the inactivating D25N mutation, PR20D25N, revealed various flap conformations. Different to the majority 

of PR structures, which show a closed flap in the presence of ligand, various conformations of flaps were 

observed in structures of PR20D25N and categorized as open, tucked and twisted conformations. The open 

conformation, PR20D25Nopen, has been reported in previous studies on wild type PR and MDR769 [102, 
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105, 192]. The unusual tucked conformation, PR20D25Ntuck, shows that the Ile50 at the tip of the flap 

inserted into substrate binding cavity and stabilized by  hydrophobic interactions with side chain of Val32’, 

Val54’, Thr80’ and Pro81’. For the twisted conformation, PR20D25Ntwist, the tips of the flaps were raised 

from the closed conformation and the tips of the flaps were rotated to lie nearly in the same plane. Thus, 

the tips of the flaps were almost perpendicular to the arrangement in the closed conformation. The MD 

simulations show that mutations in PR20 alter in the dimer conformations of flap and affect correlated 

interactions between two monomers in the dimer. In conclusion, combining the results of structural 

analysis and MD simulations, unusual flap conformations lacking correlated inter-subunit motions may 

contribute to the high resistance of PR20. 

HIV-1 PR is one of the pharmacologically important targets in AIDS therapy. One challenge in long 

term AIDS therapy is drug resistance. The high mutation rate of the virus means that new patterns of 

mutation lead to susceptibility to the PIs. Mutations selected by PI treatment are observed in PR sequence 

as well as in the protease cleavage sites. The relation of specific mutations in the PR sequence and 

protease cleavage sites might confer decreased susceptibility to the PIs and maintain biological function. 

Thus, continuous efforts on understanding the molecular mechanisms that responsible for clinically 

isolated multi drug resistance and the coevolution of protease and its substrate are necessary for 

developing new generation PIs. 

The flaps are one of the critical elements forming the substrate binding cavity, where inhibitors 

and substrates compete for the same site. Structural analyses of multi drug resistant mutants indicate 

that various conformations of the flaps, causing loss of interactions with PIs, are associated with the low 

binding affinity of inhibitors. However, the structures of substrates are more flexible than the rigid 

inhibitors to adapt to the various conformations of flaps caused by the mutations. Targeting the flexible 

flap region may be not enough to combat drug resistance. An allosteric site in the hinge loop has been 

proposed as another drug target site for regulating protease activity [226]. The hinge loop is the region 
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preceding the flap. Molecular dynamics simulations show that the distance between the hinge loop and 

residues 15-17 is correlated with the opening of the flaps [212]. Introducing a new disulfide bond between 

residues G16 and L38 in wild-type PR and using monoclonal antibody to bind residues 36-46 significantly 

lowered proteolytic activities, which suggests that the activities of flexible flap can be regulated by the 

hinge loop [227, 228]. APV, DRV and small molecules have been observed in the binding site formed by 

the hinge residues Trp42, Pro44, Met46 Lys55, Val56 and Arg57 [69, 229-231]. In sum, the two solvent-

accessible hinge loops might be a promising drug target for designing a non-competitive inhibitor, and 

studies of the structural alternations of hinge loop will improve the understanding of the molecular basis 

of flap opening /closing. 

Overall, our crystallographic studies increase the fundamental knowledge of PR catalytic 

mechanism and the effects of drug resistant mutations on PR structure and inhibition. These will direct us 

to a better understanding of drug-resistant variants and benefit the design of new inhibitors to combat 

drug resistance to AIDS. 

In addition to crystallographic study, a computational study was done on improving the efficiency 

of molecular dynamics program, AMMP. Two different parallelization models were implemented in 

AMMP, which are OpenMP-AMMP and hybrid OpenMP-CUDA-AMMP. Currently, the force fields that are 

used in MD simulation are parallelized in OpenMP-AMMP. The performance of OpenMP-AMMP was 

assessed in machine with 40 cores and improved as expected. Also, the OpenMP-AMMP provides the 

foundation for using Intel® Many Integrated Core (Intel® MIC) Architecture, which uses OpenMP library 

to improve efficiency. In OpenMP-CUDA-AMMP, the Amortized Fast Multipole Algorithm that integrates 

long range terms is parallelized by using CPU and CUDA libraries, which gives about 20X speed-up 

compared to OpenMP-AMMP in our test simulations. Overall, the development of OpenMP-CUDA-AMMP 

would be very useful for researches and applications using all atom MD simulations. 
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 APPENDICES  

Appendix A 

Protein ligand PDB accession code Resolution (Å) 

PRI50V 
PRI54M 
PRI84V 
PRI54V 
PRL90M 
PR20 
PR20 
PRWT

* 
PRI47V

* 
PRV32I 
PRI50V 
PRI54M 

PR20D25Nopen* 
PR20D25Ntwist/tuck* 

APV 
APV 
APV 
APV 
APV 
SQV 
APV 

gem-diol 
products 
product 

GRL-0519 
GRL-0519 

- 
- 

3NU5 
3NU6 
3NU9 
3NUJ 
3NUO 
3UFN 
4J5J 
4FL8 
4FLG 
4FM6 
4HDP 
4HE9 

1.29 
1.16 
1.85 
1.50 
1.35 
1.45 
1.80 
1.20 
1.31 
1.40 
1.22 
1.06 
1.75 
1.45 
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