
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

Fall 12-17-2013

Clustering, Classification, and Factor Analysis in
High Dimensional Data Analysis
Yanhong Wang

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State
University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Wang, Yanhong, "Clustering, Classification, and Factor Analysis in High Dimensional Data Analysis." Dissertation, Georgia State
University, 2013.
https://scholarworks.gsu.edu/math_diss/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71425664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

CLUSTERING, CLASSIFICATION, AND FACTOR ANALYSIS IN HIGH DIMENSIONAL DATA

ANALYSIS

by

YANHONG WANG

Under the Direction of Xin Qi

ABSTRACT

Clustering, classification, and factor analysis are three popular data mining techniques. In this

dissertation, we investigate these methods in high dimensional data analysis. Since there are much more

features than the sample sizes and most of the features are non-informative in high dimensional data, di-

mension reduction is necessary before clustering or classification can be made. In the first part of this

dissertation, we reinvestigate an existing clustering procedure, optimal discriminant clustering (ODC;

Zhang and Dai, 2009), and propose to use cross-validation to select the tuning parameter. Then we devel-

op a variation of ODC, sparse optimal discriminant clustering (SODC) for high dimensional data, by add-

ing a group-lasso type of penalty to ODC. We also demonstrate that both ODC and SDOC can be used as

a dimension reduction tool for data visualization in cluster analysis. In the second part, three existing

sparse principal component analysis (SPCA) methods, Lasso-PCA (L-PCA), Alternative Lasso PCA (AL-

PCA), and sparse principal component analysis by choice of norm (SPCABP) are applied to a real data set

the International HapMap Project for AIM selection to genome-wide SNP data, the classification accura-

cy is compared for them and it is demonstrated that SPCABP outperforms the other two SPCA methods.

Third, we propose a novel method called sparse factor analysis by projection (SFABP) based on SPCABP,

and propose to use cross-validation method for the selection of the tuning parameter and the number of

factors. Our simulation studies show that SFABP has better performance than the unpenalyzed factor

analysis when they are applied to classification problems.

INDEX WORDS: Cluster analysis, Classification, Cross-validation, High-dimensional data, Optimal
score, Principal components analysis, Tuning parameter, Variable selection, Factor Anal-
ysis

CLUSTERING, CLASSIFICATION, AND FACTOR ANALYSIS IN HIGH DIMENSIONAL DATA

ANALYSIS

by

YANHONG WANG

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2013

Copyright by
Yanhong Wang

2013

CLUSTERING, CLASSIFICATION, AND FACTOR ANALYSIS IN HIGH DIMENSIONAL DATA

ANALYSIS

by

YANHONG WANG

Committee Chair: Xin Qi

Committee: Yixin Fang

Ruiyan Luo

Yi Jiang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2013

iv

DEDICATION

To my parents, advisers, and husband.

v

ACKNOWLEDGEMENTS

I would like to thank all people who have assisted and inspired me to successfully complete my

doctoral study and contributed to completion of this dissertation.

I am very fortunate that I could finish my dissertation with the guidance of my two advisors, Dr.

Xin Qi and Dr. Yixin Fang.

I am deeply thankful to Dr. Xin Qi, my current Ph.D. advisor, for his exceptional knowledge and

clear directions. He always showed me how to approach the problems and helped me to solve them. I am

especially grateful to Dr. Qi Xin for his continuous support for my research work, so that I could finish

this dissertation smoothly through his patient and enlightening guidance.

I am deeply indebted to Dr. Yixin Fang, my previous advisor, for his guidance in my research

during my first one and half years of Ph.D. study. Due to his creative ideas for the dissertation related top-

ic and broad knowledge related to the research, I could establish ground work for my research and finish

an important part of my thesis due to his help and advice. He also helped me to write in scientific lan-

guage.

I also would like to express my gratitude to my dissertation committee members, Dr. Ruiyan Luo,

Dr. Yi Jiang. They spent much precious time on correcting mistakes, and provided many insightful sug-

gestions to improve the dissertation.

Additionally, I wish to show my great appreciation to all the professors who have taught and

leaded me to the statistics field, Dr. Gengsheng Qin, Dr. Jiawei Liu, Dr. Jun Han, Dr. Xu Zhang, Dr. Yi-

chuan Zhao, Dr. Yuanhui Xiao, and Dr. Satish Nargundkar. I would like to give my special thanks to Dr.

Gengsheng Qin, as the graduate advisor, he always willing to provide advice on how to succeed in study.

Finally, I would like to thank my parents, my parents in law, my sisters, and my family. They

have always supported and encouraged me whenever I needed. And a special thanks to my husband, who

always support me forever no matter what happens.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... x

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiii

1 INTRODUCTION ... 1

1.1 Overview of Statistical Data Mining .. 1

1.1.1 Introduction .. 1

1.1.2 Methodology of Data Mining .. 2

1.1.2.1 Clustering .. 2

1.1.2.2 Classification ... 8

1.1.2.3 Principal Component Analysis (PCA) .. 10

1.1.2.4 Factor Analysis (FA) ... 11

1.2 Overview of Dimension Reduction ... 12

1.2.1 Introduction .. 12

1.2.2 Variable Selection Methods in OLS .. 13

1.2.3 Regularization ... 15

1.2.3.1 Ridge Penalty .. 16

1.2.3.2 Lasso Penalty .. 17

1.2.3.3 Elastic Net ... 18

1.3 Motivation of Dissertation .. 18

1.4 Organization of the Dissertation .. 19

2 SPARSE OPTIMAL DISCRIMIANT CLUSTERING .. 20

vii

2.1 Introduction .. 20

2.2 Optimal Discriminant Clustering ... 21

2.2.1 A Review of ODC .. 21

2.2.2 Tuning Parameter Selection ... 23

2.2.3 Selection of the Number of Clusters .. 24

2.3 Sparse Optimal Discriminant Clustering ... 25

2.3.1 SODC .. 25

2.3.2 Implementation ... 26

2.3.3 Tuning Parameter Selection ... 27

2.4 Numerical Results ... 29

2.4.1 Simulation Studies .. 29

2.4.2 Real Dataset Application ... 34

2.5 Discussion .. 36

3 SPARSE PRINCIAL COMPONENT CLASSIFICATION ... 38

3.1 Introduction .. 38

3.2 PCA, L-PCA, and AL-PCA ... 38

3.2.1 Reformulation of Standard PCA ... 39

3.2.2 Sparse PCA with LASSO (L-PCA) .. 39

3.2.3 Sparse PCA with Alternative LASSO (AL-PCA) ... 40

3.3 Sparse Principal Component by Choice of Norm (SPCABP) 41

3.4 Numerical Results ... 42

viii

3.4.1 HapMap II study ... 42

3.5 Discussion .. 44

4 SPARSE FACTOR ANALYSIS BY PROJECTION ... 45

4.1 Introduction .. 45

4.1.1 Rotation Technique in FA .. 46

4.1.2 Formation of Classic FA ... 47

4.1.3 Motivation of Sparse factor analysis (SFA) .. 48

4.2 Sparse Factor Analysis by Choice of Norm ... 48

4.2.1 SFABP .. 48

4.2.2 Implementation ... 49

4.2.3 Tuning Parameter Selection ... 50

4.2.4 The Number of Factors Selection ... 51

4.3 Numerical Results ... 52

4.3.1 Simulation Studies .. 52

4.4 Discussion .. 59

5 DISCUSSION AND FUTURE WORK ... 60

REFERENCES .. 61

APPENDIX .. 68

Appendix A: Proof of Theorem for SODC ... 68

Appendix B: Core Code for SODC ... 70

Appendix C: Core Code for SPCABP .. 80

ix

Appendix D: Core Code for SFABP ... 86

x

LIST OF TABLES

Table 2.1 Selection of number of clusters k via the gap statistic. Each simulation setting is

replicated 50 times and the frequency distribution of the selected number of clusters �� is

reported. .. 30

Table 2.2 Comparing six clustering procedures: (1) using only informative features; (2) using all

features; (3) using some PCA components; (4) using the first two ODC components; (5)

using the first two SODC components; and (6) using only the features selected by SODC.

 ... 32

Table 2.3 Feature selection by SODC, compared with Raftery and Dean's model-based clustering

with headlong algorithm (MCLH) and Witten and Tibshirani's sparse k-means clustering

(SKM). True: the percentage of selecting exactly the true subset of informative features;

FP: the average number of incorrectly selected noise variables; FN: the average number of

incorrectly excluded informative features; Size: the average size of the selected subset. ... 34

Table 2.4 Some information of the five UCI datasets, where k is the number of classes (treated as

clusters here), p is the number of features, and n is sample size. .. 34

Table 2.5 The results of applying different algorithms to those five UCI datasets. K-means

clustering and ODC use all the available features. �� is the number of features selected by

SODC. SODC* performs k-means using only the features selected by SODC. 36

Table 3.1 Number of non zero loadings for Principal components 1 (PC1) and Principal

components 2 (PC2) .. 43

Table 4.1 Mean squared error of the factor loadings and uniquenesses, and their standard

deviation(in parenthesis). ... 53

Table 4.2 The estimated factor loadings from SFABP when � = ���, � =
, and � = �. 54

Table 4.3 Comparing five classification procedures: (1)using all features (ALL); (2) using factors

from maximum likelihood expectation (MLE) factor analysis with no rotation (MLENO);

xi

(3) using the factors from MLE factor analysis with varimax rotation (MLEVAR); (4)

using the factors from SFABP setting � = � (FABP); and (5) using the factors from

SFABP setting � ≠ � (SFABP). .. 56

Table 4.4 Comparing five classification procedures. ... 57

Table 4.5 Selecting � and � coincidently. .. 58

xii

LIST OF FIGURES

Figure 1.1 Illustration of the disadvantage of �-means on non-convex shapes dataset. 4

Figure 1.2 Hierarchical clustering illustration. .. 6

Figure 1.3 Advantages of spectral clustering in non-convex shapes data.Error! Bookmark not defined.

Figure 1.4 KNN example. ... 10

Figure 2.1 The simulated data consist of three clusters, each of 50 observations. There are 10

features, with two informative and eight non-informative. Top left: plot on those two

informative features; Top right: plot on the first two principal components; Bottom left:

plot on the first two ODC components; Bottom right: plot on the first two SODC

components ... 21

Figure 2.2 The dataset used is the same as the one used in Figure 2.1. K-means clustering and

hierarchical clustering are applied in Step 3 of ODC, respectively. Both the gap statistic

and the stability selection correctly select � = �. .. 25

Figure 2.3 The processes of selecting �
 using cross-validation method and � using kappa method

based on one realization. The selected tuning parameters are �
 = �.� and � = ��.�.

 .. 33

Figure 2.4 Wine data. The selection processes of selecting k via the gap statistics and the stability

are shown in the top panel; both k-means and hierarchical clusterings are applied.

Scatterplots based on first two ODC components and first two SODC components a re in

bottom panel. .. 35

Figure 3.1 Scatterplots of the individual scores from traditional PCA, L-PCA, AL-PCA, and

SPCABP.. 44

Figure 4.1 KNN classification and LDA classification are applied in Step 4 of SFABP, respectively.

The cross-validation selection correctly select the number of factors as 4. 58

xiii

 LIST OF ABBREVIATIONS

� AIC - Akaike Information Criterion

� ARI - Adjusted rand index

� BIC - Bayes Information Criterion

� CE - Clustering error

� CFA - Confirmatory factor analysis

� EFA - Exploratory factor analysis

� FA - Factor analysis

� FDA - Flexible Discriminant Analysis

� GWAS - Genome-wide association studies

� KDD - Knowledge discovery in database

� KNN - K nearest neighbor

� LDA - Linear discriminant analysis

� MLE - Maximum likelihood expectation

� ODC - Optimal discriminant clustering

� OLS - Ordinary least squares

� PCs - Principal components

� PCA - Principal component analysis

� SFA - Sparse factor analysis

� SODC - Sparse optimal discriminant clustering

� SPCA - Sparse principal component analysis

� SPCABP - Sparse principal component analysis by projection

� SVM - Support vector machine

1

1 INTRODUCTION

1.1 Overview of Statistical Data Mining

1.1.1 Introduction

Nowadays, the advent of computers and the information age makes it necessary to deal with large

volumes of data characterized by volume, variety and velocity. As Rutherford D. Roger pointed out: “We

are drowning in information and starving for knowledge.” T.S. Eliot also indicated that “Where is the

wisdom we have lost in knowledge? Where is the knowledge we have lost in information?” Thus many

new technologies including data mining emerge to deal with “big data”.

Data mining, a term came into widespread use in the 1990s, is one of many newly-popular terms

in the science and mathematical fields along with many other fields like marketing where marketers try to

get useful consumer information from various sources. William J Frawley, Gregory Piatetsky-Shapiro and

Christopher J Matheus defined data mining as "The non trivial extraction of implicit, previously unknown,

and potentially useful information from data." As the analysis step of the "Knowledge Discovery in Data-

bases" process, or KDD (Fayyad et al., 1996), data mining is the process of extracting useful information

from large data sets and transforms it into an understandable structure for further use. Data mining is an

interdisciplinary subfield of computer science and statistics (Clifton, 2010; Hastie et al., 2010). It involves

database and data management aspects, data prerocessing, model and inference considerations, interes-

tingness metrics, complexity considerations, post-processing of discovered structures, visualization,

and online updating (Data Mining Curriculum,2006).

Statisticians have applied these data mining techniques to many fields like biology and medicine

to extract important patterns and trends from large datasets, and understand “what the data says.” We call

this area statistical data mining (Hastie et al., 2009).

There are two distinct types of learning methods: unsupervised and supervised learning.

In unsupervised learning methods, the number of classes or clusters and the class labels of obser-

vations are unknown, it aims to determine the number of classes and assign observations to the classes.

2

On the other hand, in supervised learning methods, the number of classes and the class labels for the train-

ing data are unknown. We want to find proper classification rules based on which we can assign new ob-

servations with unknown class labels to one of the classes.

1.1.2 Methodology of Data Mining

There are many different data mining techniques. In this subsection, we briefly review four popu-

lar statistical data mining methods.

1.1.2.1 Clustering

Given a collection of data points, where each data point is a �-dimensional vector, the goal is to

find clustering patterns among the observations by maximizing the similarity within clusters and minim-

ize the similarity between clusters (Hastie et al., 2009).

The similarity or dissimilarity between two objects is often measured by some similarity metrics

such as the distance matrix, where the most commonly used one is the Euclidean distance. The definition

of Euclidean distance is:

If � = {��, ��,…,��} and � = {��, ��,…,��} are two points in Euclidean �-space, then the distance

from � to �, or from � to � is given by:

���, �� = ���, �� = ���� − ���� + ��� − ���� + ⋯ + ��� − ���� = #$��% − �%���
%&�

Various clustering procedures have been proposed in the literature, such as '-means clustering

(MacQueen, 1967), hierarchical clustering (Johnson, 1967), '-medoids clustering (Kaufman and Rous-

seeuw, 1987), and spectral clustering (Shi and Malik, 2000; Ng et al., 2002). Each clustering method has

its strengths and weaknesses. They will be discussed separately.

1.1.2.1.1 (-means clustering

The '-means method is one of the simplest clustering method.

3

Assume the number � of the clusters has been predetermined. Then the �-means algorithm

has the following steps:

1) Randomly selects ' centroids.

2) Assigns each data point to its closest centroid.

3) Recalculates the centroids as the average of all data points in a cluster.

4) Reassigns data points to their closest centroids.

5) Continues steps 3 and 4 until the centroids no longer changed or the maximum number of

iterations is reached.

This algorithm is actually aims to solve the following optimization problem:

)*� $ $ +��%�,� − -,�+�.
,&�

�
%&� ,

where ' is the number of clusters, �%�,�
 is the */0 observation in cluster 1, and -, is the cluster

center for cluster j. +��%�,� − -,�+�
is the squared distance between �%�,�

and -,, so the above problem is to

minimize the sum of the squared within-cluster distances of the � data points from their respective cluster

centers.

�-means has the advantages and disadvantage as follows:

Advantage:

It can process large data sets relatively efficiently.

Disadvantage:

� It requires specifying the number of clusters to extract in advance.

� The algorithm is significantly sensitive to the initial randomly selected cluster centers.

� All variables must be continuous because of the use of means.

� The approach can be severely affected by noise or outliers.

� They perform poorly in the presence of non-convex (e.g., U-shaped) clusters.

4

Figure 1.1 is an illustration example of the last limitation on the two moons dataset: The dataset

consist of 2 clusters and 600 observations. The original dataset is plotted in the left panel, and the results

of the '-means clustering are plotted in the right panel. In this example, the '-means method fails to dis-

tinguish the two clusters correctly.

Figure 1.1 Illustration of the disadvantage of �-means on non-convex shapes dataset.

1.1.2.1.2 (-medoids clustering

(-medoid is another classical clustering. Both the '-means and '-medoids algorithms are parti-

tional (breaking the dataset up into groups) and both attempt to minimize the sum of within cluster varia-

tions. In contrast to the '-means algorithm, '-medoids pick actual observations as centers to represent

clusters instead of mean values and can work with an arbitrary matrix of distances in addition to the Euc-

lidean distance.

(-medoid is more robust to noise and outliers than '-means because it minimizes the sum of pair-

wise dissimilarities instead of the sum of squared Euclidean distances.

The most commonly used �-medoid algorithm has the following steps:

1) Randomly select ' of the � data points as the medoids.

2) Associate each data point to the closest medoid. ("Closest" here is defined using any valid

distance metric, such as Euclidean distance, Manhattan distance or Minkowski distance).

5

3) For each medoid m:

• For each non-medoid data point o:

• Swap m and o and compute the total cost of the configuration. Here cost is calculated us-

ing the same distance metric used in step 2). Use Manhattan distance to illustrate,

-345��, -� = ∑ |x9 − c9|;9&� , where x is any data object, c is the medoid, and d is the di-

mension of the object. Total cost is the summation of the cost of data object from its me-

doid in its cluster.

4) Select the configuration with the lowest cost.

5) Repeat steps 2 to 4 until there is no change in the medoid.

�- Medoids has the advantages and disadvantage as follows:

Advantage:

� (-Medoids method is more robust than '-Means in the presence of noise and outliers.

Disadvantage:

� It does not scale well for large data sets.

� (-Medoids is more costly than the '-Means method.

� Like '-means, '-medoids requires the number of clusters ' to be pre-specified.

1.1.2.1.3 Hierarchical clustering

Hierarchical clustering is a clustering method which seeks to build a hierarchy of clusters to show

relations between the individual members and clusters of data based on similarity. The results of hierar-

chical clustering are usually presented in a dendrogram.

Strategies for hierarchical clustering generally fall into two types:

Agglomerative ("bottom up"): treat each data point as a singleton cluster from the outset and then

successively merge (or agglomerate) pairs of clusters until all clusters have been merged into a single

cluster that contains all data points.

6

Divisive ("top down"): all observations start in one cluster, and splits are performed recursively

until individual data points are reached.

Hierarchical clustering has the advantages and disadvantage as follows:

Advantage:

� It only requires a measure of similarity between groups of data points.

� No need to pre-specify the number of clusters in advance.

� Generates smaller clusters which may be helpful for discovery.

Disadvantage:

� Lower efficiency.

� Interpretation of results is subjective.

� Objects may be “incorrectly” grouped at early stage. The result should be examined closely

to ensure it makes sense.

� Use of different distance metrics between clusters may generate different results.

Figure 1.2 is an illustrative example of hierarchical clustering given by Mehak Aziz. Refer here.

Figure 1.2 Hierarchical clustering illustration.

1.1.2.1.4 Spectral clustering

Spectral clustering (Ng et al., 2002) has become one of the most popular modern clustering algo-

rithms in recent years. It cluster points using eigenvectors of matrices derived from the data and obtain

data representation in the low-dimensional space that can be easily clustered. Spectral clustering often

7

outperforms traditional clustering algorithms such as the '-means algorithm. There are several versions of

this method where different ways are used to extract eigenvectors. I only introduce one of them.

The algorithm of spectral clustering by Ng, Jordan, and Weiss is as follows:

1) Given a set of points < = {4�, … , 4�} ∈ >?.

2) Form the affinity matrix @ ∈ >�×� defined by @%, = B�� �−C4% − 4,C�/2F�� if * ≠ 1, and

@%, = 0 otherwise. The matrix @ consists of a quantitative assessment of the relative simi-

larity of each pair of points in the dataset.

3) Define H to be the diagonal matrix whose �*, *�- element is the sum of @’s *-th row, and

I = HJ�/�@HJ�/�.
4) Find ��, ��, … , �., the ' largest eigenvectors of I (chosen to be orthogonal to each other in

the case of repeated eigenvalues), and form the matrix K = [��, ��, … , �.] ∈ >�×. by stack-

ing the eigenvectors in columns.

5) Form the matrix N from K by renormalizing each of K ’s rows to have unit length, i.e.

�%, = OPQ�∑ OPQRQ �R

6) Treating each row of N as a point in >., cluster them into ' clusters via (-means or any oth-

er algorithm(that attempts to minimize distortion).

7) Finally, assign the original point 4% to cluster 1 if and only if row * of the matrix N was as-

signed to cluster 1.

Spectral clustering has the advantages and disadvantage as follows:

Advantage:

� Easy to implement.

� Make no assumption on the form of the data clusters by transforming the data clustering to

graph partitioning problem.

� Can be solved efficiently by standard linear algebra.

� Good clustering results, specially, it is invariant to cluster shapes and densities.

8

� Reasonably faster for sparse data sets of several thousand elements.

Disadvantage:

� Sensitive to choice of parameters.

� Computationally expensive for large datasets.

Figure 1.3 illustrates the advantages of spectral clustering on non-convex shapes data points com-

pared to k-means clustering. It uses the spirals dataset in the “kernlab” R package. The spirals dataset

consist of 300 observations and 2 dimensions. From the figure, we can see that Spectral clustering can

correctly distinguish the two clusters indicated by red color and black color respectively, while the '-

means can’t.

Figure 1.3 Advantages of spectral clustering in non-convex shapes data

1.1.2.2 Classification

Classification is a widely used supervised learning method. Given a training dataset containing

observations whose category memberships are known, the goal is to construct a proper classification rule

such when a new observation is obtained with unknown class label, we can assign it to one of the classes

and make the classification error as small as possible. We often call the categories to be predicted as out-

comes (dependent variables, classes), and the explanatory variables are termed predictors (independent

variables) or features if they are grouped into a feature vector.

9

The most widely used classification algorithms includes linear discriminant analysis (LDA), qua-

dratic discriminant analysis (QDA), the neural network, support vector machines(SVM) (Cortes and

Vapnik, 1995), '-nearest neighbours(KNN) (Altman, 1992), Gaussian mixture model, Gaussian, naive

Bayes, decision tree and RBF classifiers. (Broomhead and Lowe, 1988(a); Broomhead and Lowe, 1988(b);

Schwenker et al. 2001). I will only list KNN here which will be used later.

1.1.2.2.1 (-nearest neighbors (KNN)

The KNN algorithm is a widely used classification method. The algorithm is given as follows:

1) Given a point in the training data set, (say �T), find ' nearest (based on Euclidean distance or

any other distance) points of �T in the training set, say {��, ��,…,�.}. Typically ' is odd when

the number of classes is 2 to avoid ties in the class assignment.

2) Return the majority vote of ' observations as the class of �T. Say ' = 5 and there are 3 ob-

servations of C1 and 2 observations of C2. In this case, KNN says that new point has to la-

beled as C1 as it forms the majority. Ties which arise from finding the closest instances to

�T or from voting for the class of �T are broken arbitrarily. If there are ties for the 'th near-

est vector, all candidates are included in the vote.

KNN has the advantages and disadvantage as follows:

Advantage:

� Simple to implement.

� Make no any parametric assumptions.

� Nonlinear decision surfaces.

� Quality of prediction automatically improves as the number of training data increases, espe-

cially when each class is characterized by multiple combinations of predictor values.

Disadvantage:

� Expensive: must store and search through the entire training set to classify a single test point.

� Must define a similarity measure to indicate “closeness” between objects.

10

� Sensitive to noisy data.

� Need to pre-specify ', different ' might have different predicted class label.

� Prediction accuracy can quickly degrade when number of attributes grows.

Figure 1.4 is a visualization example of KNN. We assume that there are only two attributes, A1

and A2, the data points come from two classes with solid fill and circles with hashed fill respectively.

Query q is being classified by its nearest neighbors, the solid fill class label. The distance can be meas-

ured by Euclidean distance, Hamming distance, Manhattan distance, etc.

Figure 1.4 KNN example.

1.1.2.3 Principal Component Analysis (PCA)

As we have stated that the prediction accuracy of KNN will quickly degrade when number of fea-

tures grows, such as in the high-dimensional situation. In this case, dimension reduction is necessary.

PCA is one of the most widely used dimension reduction tools. Its history can be traced back to

Pearson (1901) or even Cauchy (p. 416, 1829), or Jordan (1874), or Stewart (1993), or Boyer and Merz-

bach(1989), but its modern instantiation was formalized by Hotelling (1933) who also coined the term

principal component.

Consider a �-by-� data matrix, where � is the number of observations and � is the number of fea-

tures. In the case of a large �, people want to find a set of new variables called principal components (PCs)

which are linear combinations of the original � variables such that the new variables contains as much

11

variation patterns and information in the original data set as possible. The first PC is extracted such that it

has the largest variation among all possible linear combinations the coefficient vectors of which have L_2

norm 1. The second PC has largest variation among all possible linear combinations which have L_2

norm 1 coefficients and uncorrelated to the first PC. Similarly, we can calculate the third, fourth,…, PCs.

Typically, we are only interested in the first few components.

1.1.2.4 Factor Analysis (FA)

FA has a long history in psychology, dating back to the work of Spearman(1904) and Pearson

(1901) in the early 1900’s, now it is widely used in behavioral sciences, social sciences, marketing, prod-

uct management, operations research, and other applied sciences that deal with large quantities of data.

FA is a statistical method used to describe variability among observed, correlated variables in

terms of a potentially lower number of unobserved variables called factors. In other words, the variations

in many observed variables mainly can be explained by the variations in a fewer unobserved variables.

FA tries to model the observed variables as linear combinations of the potential factors, plus "error" terms.

The interdependencies information among observed variables can be used later for dimension reduction.

FA is related to PCA, but the two are not identical. Latent variable models, including FA, use re-

gression modeling techniques to test hypotheses producing error terms, while PCA is a descriptive statis-

tical technique (Bartholomew et al., 2008). There has been significant controversy in the field over the

equivalence or otherwise of the two techniques (Suhr, 2009).

There are two types of FA: exploratory factor analysis (EFA) and confirmatory factor analysis

(CFA).

EFA is a statistical method used to uncover the underlying structure of a relatively large set of va-

riables. The researcher makes no "a priori" assumptions about relationships among factors or patterns of

measured variables (Fabrigar et al., 1999). EFA procedures are more accurate when each factor is

represented by multiple measured variables in the analysis (Fabrigar et al., 1999). There should be at least

3 to 5 measured variables per factor (Maccallum, 1990).

12

CFA is a more complex approach that tests a priori hypothesis that observed variables are asso-

ciated with specific factors, i.e., it test whether the data fit a hypothesized factor model. This hypothesis

model is often based on theory and/or previous analytic research (Preedy and Watson, 2009). CFA was

first developed by Jöreskog (Jöreskog, 1969). CFA is characterized by allowing restrictions on factor

loadings, variances, covariances, and residual variances.

1.2 Overview of Dimension Reduction

1.2.1 Introduction

Many statistical learning methods, when they applied to high dimensional datasets with tens or

hundreds of thousands of variables, are often subject to “Curse of Dimensionality”. For example, in clas-

sification problem, suppose each instance is described by 10 attributes out of which only 2 are relevant in

determining the classification of the objective function. In this case, instances that have identical values

for the 2 relevant attributes are far from one another in the 10-dimensional instance space. The remedy of

the “Curse of Dimensionality” often involves some form of dimensionality reduction, either explicitly or

implicitly. Dimension reduction is the process of reducing the number of random variables under consid-

eration and can be divided into feature selection and feature extraction (variable selection).

Feature selection aims to find linear or nonlinear combinations of the original set of variables,

while feature extraction aims to select a subset of variables from the original set. Developing methods for

dimensionality reduction requires being clear on the goal and the setting, as methods developed for one

combination of goal and setting are not generally appropriate for another. Variable selection is particular-

ly important when the true underlying model has a sparse representation. Identifying significant predictors

will enhance the prediction performance of the fitted model. The objective of dimension reduction is:

providing a simplified explanation of a phenomenon for a human (possibly as part of a visualization algo-

rithm), suppressing noise so as to make a better prediction or decision, or reducing the computational bur-

den. These various motivations are often complementary.

13

The PCA and FA are both dimension reduction techniques. Regularization is a popular way used

in dimension reduction. Since many statistical problems can be reformulated to a linear regression prob-

lem, we will first discuss variable selection method in ordinary least square (OLS) linear regression, and

then we will discuss the regularization method in linear regression context.

1.2.2 Variable Selection Methods in OLS

There are two main approaches towards variable selection in OLS: the automatic methods (for-

ward, backward, stepwise) and all possible regressions approach (all subsets). Automatic methods are

useful when the number of predictors is large and it is not feasible to fit all possible models. The all poss-

ible regressions approach considers all possible subsets of the pool of explanatory variables and finds the

model that best fits the data according to some criteria such as Adjusted >�, Akaike Information Criterion

(AIC) and Bayes Information Criterion (BIC). These criteria assign scores to each model and allow us to

choose the model with the best score. They are outlined below.

Forward selection method start with a model with no predictors, then for all predictors not in the

model, check their p-value and add the variable with largest F-statistics providing its corresponding p-

value is less than some cut-off level. Refit with this variable. Re-compute all F statistics for adding one of

the remaining variables and add variable with largest F statistics, continue until no new variable can be

added.

Backward selection method is the simplest of all variable selection procedure and can be easily

implemented. It start with model with all predictors, then remove variable with smallest F-statistics pro-

viding its corresponding p-value is greater than some cut-off level. Refit with this variable deleted, then

re-compute all F statistics for deleting one of the remaining variables and delete variable with smallest F

statistics. Continue until every remaining variable is significant at cut-off level.

Stepwise selection method is a combination of backward elimination and forward selection, it is

applicable in the case where start with model with no predictors. Add variable with largest F-statistics

providing its corresponding p-value is less than some cut-off level, refit with this variable. Re-compute all

14

F statistics for adding one of the remaining variables and add variable with largest F statistics, at each step

after adding a variable, try to eliminate any variable not significant at some level (that is, do backward

elimination until that stops), after doing the backwards steps take another forward step. Continue until

every remaining variable is significant at cut-off level and every excluded variable is insignificant or until

variable to be added is same as last deleted variable. Variables are added or removed early in the process

and we want to change our mind about them later. At each stage a variable may be added or removed and

there are several variations on exactly how this is done. Stepwise are relatively cheap computationally and

easy to explain but they do have some disadvantages: 1) It is possible to miss the “optimal model” when

dropping and add variables one at a time; 2) The p-value is not so “trustful”, it may overstate the signific-

ance of results, so there are multiple testing issues; 3) results of forward and backward selection may dif-

fer; 4) Stepwise variable selection tends to pick models that are smaller than desirable for prediction pur-

pose.

All subset method: for each subset of the set of predictors, fit the model and compute some sum-

mary statistic of the quality of the fit. Pick model which makes this summary as large (or sometimes as

small) as possible. With ' predictors fit 2. models, impractical for ' too large. Special best subsets algo-

rithms work without looking at all 2. models.

Possible summary statistics:

� >�: adding a variable increases >� so this is most useful for comparing models of the same

size.

� Adjusted >�: this method adjusts >� to try to compensate for the fact that more variables

produces larger >� even when the extra variables are irrelvant.

� V?: like adjusted >�but based on the trade off of bias and variance.

� PRESS: the sum of squares of the PRESS residuals.

� AIC: the smaller the AIC, the better the model. Its formula is @WV = −2X3YI + 2�, where I

is the likelihood and � is the number of free parameter in the model.

15

� BIC: the smaller the BIC, the better the model. Its formula is ZWV = −2X3YI + 2�X3Y�,

where I is the likelihood, � is the number of free parameters in the model, and � is the

number of observations. BIC penalizes larger models more heavily and so will tend to prefer

smaller models in comparison to AIC.

1.2.3 Regularization

Suppose we are given a response vector � ∈ >� and a predictor matrix � ∈ >�×? with � observa-

tions and � predictor variables. Without loss of generality, we assume that the response and predictor va-

riables have sample means equal to zeros. In OLS, we want to predict � using a linear combination of �

by solving the least squares problem,)*�[∈\] ∑ ��% − �%̂ _���%&� . The prediction error can be decom-

posed into squared bias and variance, for the case of large p, the OLS estimate has low bias (zero bias) but

suffers from high variance, which reduced the prediction accuracy. One way to improve the prediction

ability is sacrificing some bias to achieve a lower variance by reducing the number of predictors included

in the model. In addition, linear regression cannot identify the subset of important variables among a large

number of predictors. So we need some variable selection methods to choose the “important” variables.

Traditionally, statisticians use best-subset or stepwise selection methods to select significant variables,

but both procedures have fundamental limitations: best-subset is computationally infeasible to do all sub-

set selection when the number of predictors is large, and it is also extremely variable because of its inhe-

rent discreteness (Breiman, 1995; Fan and Li, 2001). Stepwise selection suffers from the high variability

and in addition is often trapped into a local optimal solution rather than the global optimal solution. Fur-

thermore, both procedures ignore the stochastic errors or uncertainty in the variable selection stage (Fan

and Li, 2001; Shen and Ye, 2002). Since OLS often does poorly in both prediction and interpretation,

penalization techniques have been proposed to improve OLS.

We need to find new technology for variable selection. In mathematics and statistics and particu-

larly in the fields of machine learning, regularization refers to the process of introducing additional in-

formation in order to solve an ill-posed problem or to prevent overfitting. This information is usually of

16

the form of a penalty for complexity, such as restrictions for smoothness or bounds on the vector space

norm.

Regularization is very important when dealing with high-dimensional data. We introduce several

important regularization methods in statistical machine learning including ridge regression, lasso, and

elastic net regularization.

1.2.3.1 Ridge Penalty

When building regression models for high-dimensional data which include many variables, colli-

nearity is often a problem. One of the symptoms is that the estimate of regression coefficients may be

very large, and the associated standard errors are very large as well. This means that the coefficients are

not well defined. Ridge regression (Hoerl and Kennard, 1988) is designed to overcome the multicollinear-

ity problem. It shrinks the estimated coefficients towards zero. Specifically, the ridge regression estimates

are defined by

_̀a%bcd = efY)*�[∈\] $ ��% − �%̂ _���
%&� + g $ _,�

?
,&� = efY)*�[∈\] $‖�% − �%̂ _‖��

�
%&� + g $‖_‖��

?
,&�

The penalty term is quadratic and g > 0 is a tuning parameter which controls the strength of the

penalty term. Note that we get OLS estimates when g = 0, and _̀a%bcd = 0 when g = ∞. The bias of the

estimate increases as g increases, while the variance decreases as g increases. The tuning parameter is

chosen to make the balance of the two trends and reduce the estimation errors.

Ridge regression performs well when some of the coefficients small, but is less dramatic when

the entire coefficients are moderately large and the corresponding range for good values of g is small.

Since ridge regression doesn’t set coefficients exactly to zero unless g = ∞, As a continuous

shrinkage method, ridge regression achieves its better prediction performance through a bias–variance

trade-off. However, ridge regression always keeps all the predictors in the model. Hence, it cannot per-

form variable selection thus does poorly in terms of offering a clear interpretation, even though it per-

forms well in terms of prediction accuracy. However, as discussed before, in high dimensional dataset,

17

some variables are “noisy” and should not be included in the model to perform prediction that means we

need to set their coefficients to be exactly zero. This is very important for model interpretation and predic-

tion accuracy. The lasso penalty in next section can performs well in this situation.

1.2.3.2 Lasso Penalty

The least absolute shrinkage and selection operator (lasso), proposed by Tibshirani (1996), does

both continuous shrinkage and automatic variable selection simultaneously. The lasso coefficient estima-

tion is defined by

_̀klmmn = efY)*�[∈\] $‖�% − �%̂ _‖��
�

%&� + g $‖_‖�
?

,&�

Please note that lasso uses X� norm while the ridge uses X� norm. The X� penalty term is the sum

of absolute values of coefficients and g > 0 is a tuning parameter which controls the strength of the pe-

nalty term. Note that we get linear regression when g = 0, and _̀opqqr = 0 when g = ∞. As in ridge pe-

nalty, the bias increases as g increases while the variance decreases as λ increases in lasso penalty.

Choosing an appropriate g is a difficult problem.

Contrast to ridge regression which never sets coefficients to zero, lasso penalty can make some

coefficient to be shrunken to zero exactly. As g increases, more coefficients are shrunken to zero and

more shrinkage is applied to those nonzero coefficients. The variable selection ability makes lasso differ-

ent from ridge penalty. Compared to the classical variable selection methods such as subset selection, the

LASSO has two advantages. First, the selection process in LASSO is continuous and hence more stable

than the subset selection and stepwise procedure which are discrete and non-continuous. Second, the

LASSO is computationally feasible for high-dimensional data. In contrast, computation in subset selec-

tion is combinatorial and not feasible when � is large. However, the lasso also has some limitations: As

discussed by Tibshirani (1996), ridge regression dominates the lasso with regard to the prediction accura-

cy in the usual � > � case if there are high correlations among the variables. Another drawback of the

lasso solution is the fact that in � > � situations, it selects at most � variables. Moreover, the lasso does

18

not group predictors as pointed out by Zou and Hastie (Zou and Hastie, 2005). If there is a group of high-

ly correlated predictors, the lasso tends to select only some arbitrary variables from this group. Because of

the above drawbacks, Lasso is inappropriate variable selection method in some situations.

 The lasso penalty above forces the coefficients to be equally penalized in the penalty, sometimes

it is not appropriate for some problems where different variables need to be penalized differently. (Zou,

2006) proposed an adaptive lasso penalty in which we can certainly assign different weights to different

coefficients. It is defined by

_̀klmmn = efY)*�[∈\] $ ��% − �%̂ _���
%&� + $ gtu_tu?

,&�

1.2.3.3 Elastic Net

Elastic net is a generalization of both ridge regression and the LASSO which includes both a li-

near and a quadratic term in the penalty. It is defined by

_̀klmmn = efY)*�[∈\] $ ��% − �%̂ _���
%&� + g� $ _,�

?
,&� + g� $u_tu?

,&�
= efY)*�[∈\] $‖�% − �%̂ _‖��

�
%&� + g� $‖_‖��

?
,&� + g� $‖_‖�

?
,&�

Similar to the lasso, the elastic net simultaneously does automatic variable selection and conti-

nuous shrinkage, and it can select groups of correlated variables. The elastic net often outperforms the

lasso in terms of prediction accuracy. The elastic net is particularly useful when the number of predictors

(�) is much bigger than the number of observations (�).

1.3 Motivation of Dissertation

Nowadays, with the explosion of information in our world, analyzing big data makes it necessary

to develop statistical technique which can uncover hidden patterns, unknown correlations and other useful

information from large amounts of data.

19

Classification and clustering analysis are two common data mining methodology for high high-

dimensional data analysis in which many variables are “noisy” or non-informative. These “noisy” va-

riables contain redundant information due to the strong correlation or strong dependency among variables

that may produce, for instance, multicollinearity. Finding structure in a high-dimensional variable space

with a reduced subset of the original variables or new formed small dataset is important in both classifica-

tion and cluster analysis.

Determining which variables are “important” can be a difficult task. The goal is to find a (small)

subset of variables that can “explain” as much as possible of the information in the original dataset. These

variables help us to better understand the multivariate structure, and, as a by-product, we find a dimension

reduction procedure that can be used in a new dataset for the same problem.

The classical dimension reduction techniques (e.g., PCA or FA) often produce results that are difficult to

interpret unless most of the coefficients (loadings) of the linear combination are not significant. Many

new techniques are developed in literature.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, ODC and SODC cluster-

ing methodology will be presented. Chapter 3 shows the comparison between two SPCA methods.

SFABP is shown in Chapter 4. A brief discussion is provided in Chapter 5.

20

2 SPARSE OPTIMAL DISCRIMIANT CLUSTERING

2.1 Introduction

Optimal discriminant clustering (ODC) proposed by Zhang and Dai (2009) is based on optimal

scoring, which was initially used in flexible discriminant analysis (FDA; Hastie et al., 1994). ODC was

proposed as a clustering procedure and the tuning parameter selection problem hasn't been addressed. In

this section, we advocate ODC as a dimension reduction tool for cluster analysis and propose a cross-

validation method for tuning parameter selection. Furthermore, because in high-dimensional data many of

the features may be non-informative for clustering, to obtain sparse solutions, we propose sparse optimal

discriminant clustering (SODC) by adding a group-lasso type of penalty to ODC.

When conducting cluster analysis, we usually first draw some scatterplots for visualization pur-

pose. However, drawing scatterplots is not an easy task for datasets having more than three features, es-

pecially when conducting cluster analysis, in which high dimensional clusters are not always visible in

low dimensional plots. Very often scatterplots are drawn based on first few principal components derived

from PCA. As demonstrated in Chang (1998), although PCA is a popular dimension reduction tool in

many fields, it is not appropriate for cluster analysis because it does not take into account clustering struc-

ture.

An illustrative example is shown in Figure 2.1, where the simulated data consist of three clusters,

each of 50 observations. The data have 10 independent and normalized features, of which the first two are

informative and generated from bivariate normal distributions with centers being (2, 2), (2, -2) and (-2, 2)

respectively, and the other eight are non-informative noise variables. The top left plot in Figure 1 is based

on those two informative features; in practice, we don't know which features are informative and there-

fore we call this plot an oracle. The top right plot is based on the first two principal components from

PCA, which doesn't display clearly the underlying three clusters. This failure of PCA for cluster analysis

is the motivation for our reinvestigation of ODC, along with SODC in this manuscript. Both plots based

on ODC and SODC in Figure 1 display three clusters clearly.

21

Figure 2.1 The simulated data consist of three clusters, each of 50 observations. There are

10 features, with two informative and eight non-informative. Top left: plot on those two informative

features; Top right: plot on the first two principal components; Bottom left: plot on the first two

ODC components; Bottom right: plot on the first two SODC components

In Section 2.2 we review ODC and propose a cross-validation method for tuning parameter selec-

tion. In Section 2.3, we propose SODC, along with a method for tuning parameter selection. In section 2.4,

we examine the proposed methods through simulation studies and real data applications. In Section 2.5

there is some discussion and all the technical details are relegated to Appendix.

2.2 Optimal Discriminant Clustering

2.2.1 A Review of ODC

In this section, we review ODC proposed by Zhang and Dai (2009) and develop a method for se-

lecting the tuning parameter in ODC. Assume that we are concerned with partitioning � �-dimensional

observations {��, … , ��} into ' clusters. Let K = {��, … , ��}^ be the � × � design matrix and {��, … , ��}

and v� = W� − �� 1�1�^ be the � × � centering matrix, where W� is the � × � identity matrix and 1� is the

�-dimensional vector of ones.

22

To convert linear discriminant analysis (LDA) to the linear regression formulation, Hastie et al.

(1994) defined a scoring matrix. Similarly, to convert cluster analysis to the linear regression formulation,

Zhang and Dai (2009) defined the following scoring matrix.

Definition 1 An � × �' − 1� matrix Y is called the sample scoring matrix if it satisfies

N^N = W.J� and 1�̂N = 0.

The main part of ODC is a minimization process,

 x� , Ny = efY)*�z,{‖N − v�Kx‖|� + g�‖x‖|� , 4. 5. N^N = W.J� e�� 1�̂N = 0 �2.1�

Where x is a � × �' − 1� matrix and ‖@‖| = �5f�@^@� is the Frobenius norm of any matrix @.

That is, ODC tries to assign low-dimensional (say, of dimension } ≤ ' − 1) scoring vectors such that they

can be best expressed as linear combinations of design matrix K. Close connection of ODC with two pop-

ular clustering algorithm, discriminative clustering algorithm (De la Torre and Kanade, 2006) and spectral

clustering algorithm (Ng et al., 2002), was explored in the Subsection 3.3 of Zhang and Dai (2009).

After W� is obtained, scatterplots can be drawn and furthermore cluster analysis can be conducted

based on � = v�Kx� , which is � × �' − 1� . Rewrite � as ����, … , ��.J�� and call ���� the first ODC

component, ���� the second ODC component, and so on. Therefore, by optimal scoring, the dimension is

reduced from � to ' − 1, or from � to } if only the first } ODC components are used. The ODC algorithm

is summarized as follows.

Optimal Discriminant Clustering (ODC) algorithm:

Step 1. Obtain x� from (2.1) for a given g�.

Step 2. Calculate � = ���, … , ���^ = v�Kx� .

Step 3. Perform k-means on �%, * = 1, … , �..
Step 4. Return the partition of �% as the partition of �%.
We conclude this brief review by remarking on some points which were not discussed in Zhang

and Dai (2009). First, the problems of selecting tuning parameter g� and number of clusters ' were not

23

addressed in Zhang and Dai (2009). These two problems are discussed in Subsections 2.2 and 2.3, respec-

tively.

Second, ODC components are linear combinations of the original features. Consideration of li-

near combinations provides better interpretation and is mathematically more convenient than other projec-

tion methods such as invariant coordinate selection (Tyler et al., 2009) and projection pursuit (Friedman

and Tukey, 1974; Jones and Sibson, 1987). However, ODC may be less powerful than these well-known

methods.

Third, ODC is affine equivariant, and this property is shared with invariant coordinate selection

(Tyler et al., 2009). In addition, ODC belongs to the class of projection pursuit (Jones and Sibson, 1987),

if we treat the object function in (1) as a projection index.

Fourth, '-means in Step 3 can be replaced by any other clustering procedure such as hierarchical

clustering, '-medoids clustering, and spectral clustering. Choice of a clustering procedure may be sug-

gested by scatterplots based on the first few ODC components.

2.2.2 Tuning Parameter Selection

The problem of selecting tuning parameter g� was not discussed in Zhang and Dai (2009), al-

though it was pointed out there that “the parameter g� has a significant impact on the performance of

ODC". Here we propose a cross-validation method for selecting g� in ODC. First we randomly split the

data into V roughly equal-sized parts (say V = 5), K�, … , K� whose sizes are ��, … , ��. For a given g�

and a given - ∈ �1, … V�, let x��J���R be the estimated x from (2.1) using the data leaving out K�, and let

Ny����R = efY)*� +N − v��K���x��J���R +|� , s. t. N^N = W.J� e�� 1��^ N = 0
Now we can describe the cross-validation method as follows.

Cross-validation for selecting g�:

Step 1. Select a list of g�.

Step 2. Randomly split the data into K�, … , K�.

24

Step 3. Calculate �g�� = �� ∑ +Ny����R − v��K���x��J���R +|���&� .

Step 4. Obtain g̀� = efY)*�V��g��.

An illustrative example is shown in the left panel of Figure 3, “where one-standard-error” rule

(e.g., Hastie et al., 2009, p. 244) is applied to detect the elbow point.

2.2.3 Selection of the Number of Clusters

Selection of number of clusters ' is an important problem in cluster analysis. Many selection me-

thods have been proposed and most of them are based on between-cluster and/or within-cluster sum of

squared distances; to name just a few, Calinski and Harabasz (1974), Hartigan (1975), and Krzanowski

and Lai (1988). Recently proposed methods include the silhouette statistic by Kaufman and Rousseeuw

(1990), the gap statistic by Tibshirani et al. (2001), the jump statistic by Sugar and James (2003), and the

stability selection by Wang (2010). Any of these methods can be applied to ODC.

We briefly describe the routine of selecting number of cluster k in ODC. For any given ' ∈
�1, … '�pO�, where '�pO is the largest number of clusters to be considered and some method may start

with ' = 2, execute ODC with g� selected via the proposed crossvalidation, compute the value of the in-

dex under consideration (say, the gap statistic), and select 'y as the maximizer (or minimizer, depending

on the index under consideration) of these computed indexing values. An illustrative example is shown in

Figure 2.2, where the simulated dataset is the same as the one used for Figure 2.1. Both the gap statistic

(Tibshirani et al., 2001; R function “clusGap”) and the stability selection (Fang and Wang, 2012; R func-

tion “nselectboot” written by Prof Christian Hennig) correctly select 'y = 3. This example also demon-

strates that either '-means or any other clustering (say, hierarchical clustering) can be used in Step 3 in

the ODC algorithm.

25

2.3 Sparse Optimal Discriminant Clustering

2.3.1 SODC

In this section, we are concerned with high-dimensional data where p is large. As suggested by

ODC, scatterplots and further clustering are based on � = v�Kx� after x� is obtained from (1). For sim-

plicity, denote K� = v�K as the centered design matrix. Let x = ��%,�?×�.J�� = �����, … , ��.J��� =
���, … , �?�^, and use similar notation for other matrices such as x� , K� and �. Then �% = ∑ ��,?,&� ��%,; that

is, the dimension-reduced observation �% 's are linear combinations of ��%�, … ��%?. However, it is hard to

interpret �% when it involves all the � features. Moreover, in situations where many features are not in-

formative for clustering, including such features may cause poor performance of ODC. Therefore, we

propose to add some penalty in (1) to obtain sparse solution of x� .

Figure 2.2 The dataset used is the same as the one used in Figure 2.1. K-means clustering

and hierarchical clustering are applied in Step 3 of ODC, respectively. Both the gap statistic and

the stability selection correctly select �� = �.

Note that if we want to exclude the influence of the 1th feature, we should exclude it in all the

' − 1 ODC components, making all the components of ��, zero. This is an all-in-all-out fashion, and

therefore we propose to add a group-lasso type of penalty (Yuan and Lin, 2006) to ODC. Therefore, the

minimization process in ODC becomes

26

x� , Ny = efY)*�z,{ ‖N − v�Kx‖|� + g�‖x‖|� + g� $CwtC�
?

,&� , s. t. N^N = W.J� e�� 1�̂N = 0 �2.2�

Where C�,C� is the Euclidean norm of �, . After sparse x� is obtained from (2.2), scatterplots

can be drawn and furthermore cluster analysis can be conducted based on � = v�Kx� , which is � × �' −
1�. Rewrite � as �����, … , ��.J��� and call ���� the first SODC component, ���� the second SODC com-

ponent, and so on.

We should point out that recently many methods for integrated clustering and variable selection,

either model-based or non-model-based, have been proposed. The long list includes methods proposed by

Friedman and Meulman (2004), Raftery and Dean (2006), Steinley and Brusco (2008), Maugis et al.

(2009), Witten and Tibshirani (2010), Bouveyron and Brunet (2012), and Sun et al. (2012a). When the

main purpose is variable selection in cluster analysis, we suggest consider one of these existing methods.

Nonetheless, because the implicit linear formation in ODC offers good interpretation and is ma-

thematically convenient, it is worthwhile to develop SODC to improve the performance of ODC. By the

same reason, sparse principal component analysis was proposed by Zou et al. (2006) based on the linear

formation of PCA, sparse canonical correlation analysis was proposed by Sun et al. (2008) based on the

linear formation of CCA, and sparse discriminant analysis was proposed by Clemmensen et al. (2011)

based on the linear formation of LDA.

2.3.2 Implementation

We propose an iterative minimization algorithm for (2.2). First, given x, the minimization with

respect to Y is given in the following theorem. The proof is given in Appendix A.1.

Theorem 1 Given x, the minimizer of (2.2) with respect to N is Ny = ��^ where � and � are

from the singular value decomposition v�Kx = �H�^ .
We propose to use a block-wise coordinate descent procedure (Yuan and Lin, 2006) to obtain the

minimizer of (2.2) with respect to x for a given Y. For this aim, stack the columns of N into an ��' − 1�-

vector, Y, and let ��, be the ��' − 1� × �' − 1� matrix diag(���,�, … , ���,��, where ���,� is the 1th column

27

of K�, 1 = 1, … , �. Then, given N (equivalently, given Y), the minimization of (2.2) with respect to x be-

comes

x� = efY)*�z �� − $ ��t�1
�

1=1 ��
2 + g2C�1C22 + g1 $C�,C2

�
1=1 , s. t. N^N = W.J� e�� 1�̂N = 0 �2.3�

This minimization can be achieved by the block-wise coordinate descent procedure described in

the following theorem. The proof is in Appendix A.2.

Theorem 2 Given Y, let the minimizer of (2.3) be x� = ����, … , ��?�^. Then

��, = �C�,C� − g�/2���1 + g��C�,C� �,

where �e�� = e if e > 0 and = 0 otherwise, and �, = ��,�� − ∑ ��oo�, ��o�.

From Theorem 2, ��, = 0 if g� ≥ 2C�,C� , so we can achieve sparse x� when g� is large enough.

Based on these two theorems, starting with some initializations Ny� and x��, we can iteratively update x�

and Ny until they converge. Because the objective function in (2.3) is convex, the solution to (2.3) is

unique and in our numerical studies the algorithm converged quickly after a few iterations.

In practice, we can compute a solution path along a list of g� , say �10J��orc���� ¡¢�×o/£¤ ,

X = {0, … , I}, which ranges from a very small value g�� = 10J� to g��pO, Here g��pO, whose formula is in

Appendix A.2, is the smallest value of g� such that all features are excluded (i.e., ��, = 0, for 1 = 1, … , �.

When compute the solution for g� = g��, we use the solution Ny� and x�� obtained from ODC as initializa-

tions; when compute the solution for next g� in the list, we use the solution obtained most recently as in-

itializations; and so on.

2.3.3 Tuning Parameter Selection

Instead of selecting g� and g� at the same time, we fix g� as the one selected by the cross-

validation method in Subsection 2.2.2 and focus on selecting g�. Assume that in high dimensional data,

only some features are informative for clustering and ideally those noninformative features should be ex-

28

cluded. It is a feature selection problem and the group lasso penalty in SODC plays an important role. For

supervised learning, many feature selection criteria, such as AIC and BIC, have been proposed. However,

for unsupervised learning, because there is not a clearly defined loss function, it is very hard to conduct

feature selection.

Recently, the idea of clustering stability has been successfully applied to select the number of

clusters. See, e.g., Fowlkes and Mallows (1983), Gnanadesikan (1997), Ben-Hur et al. (2002), Lange et al.

(2004), Ben-David et al. (2006), Wang (2010), and Fang and Wang (2012). However, it has not been stu-

died for feature selection in cluster analysis. In this section, we develop a stability selection method for

selecting g� in SODC.

The method is motivated by the kappa selection proposed by Sun et al. (2012b), where they were

concerned with feature selection in linear regression. Because of the sparsity property of the group-lasso

penalty (Theorem 2), for a given g, an active subset of features will be selected (i.e., those features with

non-zero �,) when we apply SODC to a training dataset. Due to the randomness of data generation, dif-

ferent training datasets may produce different active subsets of features. The rationale behind the kappa

selection is that an appropriate g should produce stable active subsets of feature when we apply SODC to

repeatedly generated training datasets.

Hypothetically, assume that there are two independent training datasets, producing two active

subsets of features via SODC given g�, @̀��� and @̀��� , respectively. The agreement of these two active

subsets can be measured by Cohen's kappa coefficient (Cohen, 1960),

'¥@̀��� , @̀���¦ = §f�e� − §f�B�1 − §f�B� ,
Where §f�e� = �u@̀��� ∩ @̀���u + u@̀���� ∩ @̀���� u�/� and §f�B� = �u@̀���uu@̀���u + u@̀���� uu@̀���� u�/��

But in practice we have only one training dataset. In order to calculate the stability associated

with g�, we repeatedly randomly split the data into two halves. In addition, assuming that there is at least

one informative feature and one non-informative feature (excluding the two degenerate cases),

29

'¥@̀��� , @̀���¦ will be set as -1 if both @̀��� and @̀��� are empty or both are full. We describe the kappa

selection method for g� in the following.

Kappa selection method for selecting g�:

Step 1. Select a list of λ�.

Step 2. Repeatedly randomly split the data into two halves K�©∗ and K�©∗ , « = 1, … , Z.

Step 3. For any g�, apply SODC to K�©∗and K�©∗ and obtained @̀���©∗ and @̀���©∗ .

Step 4. Calculate '�g�� = �¬ ∑ '�@̀���©∗ , @̀���©∗ �¬©&� .

Step 5. Select g̀� = efY)e�'�g��.

We conclude this section with some remarks. First, the list of g� in Step 1 can be decided accord-

ing to the rule discussed at the end of the preceding subsection. Second, because estimating the average

stability in Step 4 is accurate for a moderately large Z, in our numerical studies, we use Z = 20 and it

works well.

Third, here we suggest select g� first and then select g�, because SODC is proposed to improve

the performance of ODC. In the first layer, we attempt to select an appropriate g�leading to “good” linear

combinations of the original features, while in the second layer, we attempt to select an appropriate g�

leading to “sparse” linear combinations. Fourth, we can select number of clusters ' and two tuning para-

meters g� and g� simultaneously by some criterion (say the gap statistic). However, searching tuning pa-

rameters over a two-dimensional or three-dimensional space is computationally intensive.

2.4 Numerical Results

2.4.1 Simulation Studies

We have created R package “SODC"” to implement the proposed methods, using it for the fol-

lowing numerical studies. Assume each simulated dataset consists of 100 �-dimensional observations

�% , * = 1, … ,100, which are generated as follows. First, V% 's are uniformly sampled from {1,2,3}, indicat-

30

ing the cluster memberships of the observations. Then for each *, the first informative features are gen-

erated from ®�)�V%�, WT�, where q is even and

)�V%� = ° ±−1T�̂ , 1T�̂² W�V% = 1� + °1TW�V% = 2� + ° ±1T�̂ , −1T�̂² W�V% = 3�,
and the remaining � − non-informative features are generated from ®�0?JT , W?JT�. Clearly, the

three clusters are separated when ° is large, and overlapped when ° is small. When the number of noise

variables � − increases, it becomes harder to distinguish the three clusters.

Table 2.1 Selection of number of clusters k via the gap statistic. Each simulation setting is

replicated 50 times and the frequency distribution of the selected number of clusters k ̂is reported. p μ
Distribution of ky

1 2 3 4 5 6+

10
2.0
2.2
2.4

0 0 49 0 1 0

0 0 45 1 0 4

0 0 48 1 1 0

50
2.0
2.2
2.4

0 0 50 0 0 0

0 0 50 0 0 0

0 0 50 0 0 0

100
2.0
2.2
2.4

0 12 38 0 0 0

0 0 50 0 0 0

0 0 50 0 0 0

200
2.0
2.2
2.4

27 23 0 0 0 0

7 34 9 0 0 0

0 7 43 0 0 0

First, we examine the performance of the gap statistic for selecting number of clusters ' in ODC.

Set = 2, � = 10, 50, 100, 3f 200, and ° = 2.0, 2.2, 3f 2.4. Tuning parameter g� is selected over a

grid of values �10Jµ�µ×o/�¶¤, where X = 1, … ,19, using 5-fold cross-validation. Each simulation setting is

replicated 50 times and the frequency distribution of the selected number of clusters 'y is reported in Table

2.1. It seems the gap statistic works very well when � = 10, 50, e�� 100. But it doesn't work well when

� = 200 and ° = 2.0 e�� 2.2, which also indicates the necessity of conducting variable selection in

cluster analysis.

Hereafter, we assume that the true number of clusters is known as 3 and we use the above settings

excluding the settings with � = 100, along with letting Z = 20 for selecting g� in SODC over a grid of

31

values f�10Jµ��� ¡¢×o/�¶¤, where X = 1, … ,19 and g��pO is provided in Appendix A.2. All clustering algo-

rithms are randomly started 100 times to overcome their dependence on the initialization. Each simulation

setting is replicated 20 times.

Now we compare the performance of six clustering procedures: (1) '-means using only those q

informative features (referred as ORACLE); (2) '-means using all features (ALL); (3) '-means using

only the principal components from PCA whose corresponding eigenvalues are greater than the average

(PCA; this rule was suggested by Cattell, 1966); (4) ODC with g� selected via the proposed cross-

validation method (ODC); (5) SODC with g� selected via the proposed bootstrap method (SODC); and (6)

'-means using the subset of features selected by SODC (SODC*). The results are summarized in Table

2.2. The clustering performance is evaluated by two typical measurements: adjusted rand index (ARI;

Rand, 1971) and clustering error (CE; Zhang and Dai, 2009), which measure the agreement and disa-

greement between the resultant cluster memberships and the true cluster memberships, respectively. The

larger NMI or smaller CE, the better the performance.

From Table 2.2, we see that, as a dimensional-reduction tool, both ODC and SODC perform

much better than PCA, which is not working well when � is large. We also see that SODC improves ODC

a lot when � is large. Moreover, we find that SODC* performs similarly with ORACLE, meaning that

SODC performs well in terms of feature selection. Note that sometimes ODC performs worse than the

regular k-means including all the features. This fact is actually the motivation of proposing SODC. In ad-

dition, it seems that SODC* always outperforms SODC, because when SODC shrinkages those non-

informative effects to zero, it also introduces estimation bias to those informative effects.

32

Table 2.2 Comparing six clustering procedures: (1) using only informative features; (2)

using all features; (3) using some PCA components; (4) using the first two ODC components; (5)

using the first two SODC components; and (6) using only the features selected by SODC. p Method
μ = 2 μ = 2.2 μ = 2.4

ARI (SD) CE (SD) ARI (SD) CE (SD) ARI (SD) CE (SD)

10

ORACLE
ALL
PCA
ODC

SODC
SODC*

0.90(0.05) 0.02(0.01)
0.90(0.05) 0.02(0.01)
0.70(0.09) 0.07(0.02)
0.85(0.05) 0.03(0.01)
0.88(0.06) 0.03(0.01)
0.90(0.05) 0.02(0.01)

0.93(0.04) 0.01(0.01)
0.93(0.04) 0.02(0.01)
0.73(0.09) 0.06(0.02)
0.91(0.04) 0.02(0.01)
0.93(0.05) 0.02(0.01)
0.93(0.04) 0.01(0.01)

0.96(0.03) 0.01(0.01)
0.96(0.03) 0.01(0.01)
0.82(0.06) 0.04(0.01)
0.94(0.03) 0.01(0.01)
0.95(0.03) 0.01(0.01)
0.96(0.03) 0.01(0.01)

50

ORACLE
ALL
PCA
ODC

SODC
SODC*

0.91(0.03) 0.02(0.01)
0.88(0.03) 0.03(0.01)
0.64(0.10) 0.08(0.02)
0.82(0.05) 0.04(0.01)
0.86(0.08) 0.03(0.02)
0.91(0.03) 0.02(0.01)

0.95(0.03) 0.01(0.01)
0.92(0.03) 0.02(0.01)
0.72(0.08) 0.06(0.02)
0.87(0.05) 0.03(0.01)
0.93(0.04) 0.02(0.01)
0.95(0.03) 0.01(0.01)

0.96(0.03) 0.01(0.01)
0.96(0.03) 0.01(0.01)
0.79(0.06) 0.05(0.01)
0.94(0.03) 0.01(0.01)
0.96(0.03) 0.01(0.01)
0.96(0.03) 0.01(0.01)

200

ORACLE
ALL
PCA
ODC

SODC
SODC*

0.92(0.05) 0.02(0.01)
0.78(0.07) 0.05(0.02)
0.59(0.11) 0.09(0.02)
0.65(0.11) 0.08(0.02)
0.84(0.07) 0.04(0.02)
0.92(0.05) 0.02(0.01)

0.94(0.02) 0.01(0.00)
0.86(0.04) 0.03(0.01)
0.67(0.07) 0.07(0.02)
0.78(0.06) 0.05(0.01)
0.92(0.03) 0.02(0.01)
0.94(0.02) 0.01(0.00)

0.96(0.03) 0.01(0.01)
0.90(0.04) 0.02(0.01)
0.75(0.08) 0.05(0.02)
0.82(0.08) 0.04(0.02)
0.93(0.04) 0.02(0.01)
0.96(0.03) 0.01(0.01)

Finally, we evaluate the feature selection performance of SODC. For this aim, set = 2 ,

� = 10, 50, 3f 200, and ° = 1.2, 1.4, 3f 1.6. As discussed in Subsection 3.1, there are many existing

methods for variable selection in cluster analysis. Here we only compare SODC with two representative

and recent methods: (1) a model-based method proposed in Raftery and Dean (2006) and a non-model-

based method proposed in Witten and Tibshirani (2010). For Raftery and Dean's method, we use R pack-

age “clustervarsel", where two optional algorithms are available, ‘greedy’ and ‘headlong’. Because select-

ing ‘greedy’ makes R running very slow, we select ‘headlong’. For Witten and Tibshirani's method, we

use R package “sparcl”, where both sparse k-means clustering and sparse hierarchical clustering are

available. Here we consider k-means for both Witten and Tibshirani's method and SODC, although we

can also consider any other clustering procedure for SODC. The performance of sparse k-means depends

on the selection of argument ‘wbound’. Because it doesn't perform well if the default option of argument

‘wbound’ is used, we set ‘wbound’ as seq(1.001, 1.1, 20).

33

The results of feature selection are summarized in Table 2.3, showing the percentage of selecting

exactly the true subset of informative features among 20 replications, the average number of incorrectly

selected noise variables, the average number of incorrectly excluded informative features, and the average

size of the selected subset of features. Note that μ in these settings takes on smaller values than those in

Table 2.2, because otherwise all methods will select the true best subset of features trivially.

From Table 2.3, we see that these three methods are comparable and very efficient in selecting

the true subset including only the informative features when p is moderately large such as � = 10, or 50.

It is still efficient for SODC and Witten and Tibshirani's method when ° = 1.4 or ° = 1.6 and � is large

such as 200. We also see that the false negative rate is very small in all of the cases and the false positive

rate is also small in most of the cases.

To illustrate the selection processes of g� and g�, we randomly select one replication from the

setting where ��, °, , �� = �100, 2.4, 2, 10� and display the estimated V��g�� via the cross-validation

method and the estimated '�g�� via the kappa method, respectively. In the left panel of Figure 2.3, the

horizontal line is based on “one-standard-error” rule (e.g., Hastie et al., 2009, p. 244) and the vertical line

indicates the location of the largest g�(g̀� = 10�.¹) whose V��g�� value is below the horizontal line. In

right panel of Figure 2.3, we see that the kappa function '�g�� is small when g� is large or small, and

achieves its maximum at g̀� = 10�.�¹.

Figure 2.3 The processes of selecting �
 using cross-validation method and � using kappa

method based on one realization. The selected tuning parameters are �y
 = �.� and �y = ��.�.

34

Table 2.3 Feature selection by SODC, compared with Raftery and Dean's model-based

clustering with headlong algorithm (MCLH) and Witten and Tibshirani's sparse k-means

clustering (SKM). True: the percentage of selecting exactly the true subset of informative features;

FP: the average number of incorrectly selected noise variables; FN: the average number of

incorrectly excluded informative features; Size: the average size of the selected subset.

 μ = 1.2 μ = 1.4 μ = 1.6 p Method True FP/FN Size True FP/FN Size True FP/FN Size 10 SODC
SKM

MCLH

85% 0.15/0.00 2.15 95% 0.05/0.00 2.05 100% 0.00/0.00 2.00

65% 2.05/0.00 4.05 100% 0.00/0.00 2.00 100% 0.00/0.00 2.00

70% 0.10/0.20 1.90 100% 0.00/0.00 2.00 100% 0.00/0.00 2.00 50 SODC
SKM

MCLH

75% 0.30/0.00 2.30 95% 0.05/0.00 2.05 100% 0.00/0.00 2.00

35% 3.40/0.00 5.40 100% 0.00/0.00 2.00 95% 0.05/0.00 2.05

65% 0.70/0.25 2.45 90% 0.15/0.00 2.15 90% 0.15/0.00 2.15 200 SODC
SKM

MCLH 0% 3.15/0.10 5.05 70% 0.30/0.05 2.25 100% 0.00/0.00 2.00

25% 6.70/0.00 8.70 70% 2.00/0.00 4.00 90% 0.40/0.00 2.40

25% 4.75/0.70 6.05 30% 1.55/0.00 3.55 35% 1.25/0.00 3.25

2.4.2 Real Dataset Application

We examine the proposed methods using five real datasets downloaded from UCI website

http://archive.ics.uci.edu/ml/datasets.html: (1) Wine; (2) Wisconsin Breast Cancer (WBC); (3) Libras

Movement (LM); (4) Dermatology (DERM); and (5) Semeion Handwritten Digit (SHD). Some descrip-

tions of these datasets are in Table 2.4 and see the UCI website for further descriptions. We apply the

ODC algorithm with g� selected by the cross-validation method and the SODC algorithm with g� selected

by the kappa method, along with the '-means algorithm. We assume that the available class assignments

are actually the cluster assignments and assume the number of clusters are known. The results are summa-

rized in Table 2.5.

Table 2.4 Some information of the five UCI datasets, where k is the number of classes

(treated as clusters here), p is the number of features, and n is sample size.

Dataset k p n
Wine 3 13 178

WBC 2 30 569

LM 15 90 360

DERM 6 33 366

SHD 10 256 1593

To illustrate the real application, we examine Wine data in more detail. The selection processes of

selecting number of clusters ' via the gap statistics and the stability are shown in the top panel of Figure

2.4. When hierarchical clustering is applied, both selection methods correctly select 'y as 3. When k-

35

means clustering is applied, the stability selection correctly selects 'y as 3, and the elbow point of the gap

curve is also 3. Scatterplots based on the first two ODC components and the first two SODC components

are shown in the bottom panel of Figure 2.4. Both scatterplots display three clusters clearly, and in the

SODC scatterplot three clusters are completely separated.

Figure 2.4 Wine data. The selection processes of selecting k via the gap statistics and the

stability are shown in the top panel; both k-means and hierarchical clusterings are applied.

Scatterplots based on first two ODC components and first two SODC components a re in bottom

panel.

The application of the proposed methods to the five UCI datasets are summarized in Table 2.5. It

seems ODC performs similarly as '-means for the first four datasets. For SHD data, where both k and p

are large, ODC performs worse than '-means, but SODC improves ODC significantly. For all the five

datasets, SODC* performs similarly as '-means, but SODC* uses much fewer features. This achievement

is worthwhile, especially in medical studies, because it is safer, cheaper, and faster to make a diagnostics

36

using fewer features (or diagnostic markers). For example, for WBC data, SODC and SODC*, which use

only 16 features to classify breast cancer types, perform similarly as '-means using 30 features.

Table 2.5 The results of applying different algorithms to those five UCI datasets. K-means

clustering and ODC use all the available features. q ̂is the number of features selected by SODC.

SODC* performs k-means using only the features selected by SODC.

Dataset Method ARI CE q»

Wine

k-means
ODC
SODC
SODC*

0.90 0.02 13

0.91 0.02 13

0.83 0.04 7

0.85 0.03 7

WBC

k-means
ODC
SODC
SODC*

0.68 0.08 30

0.66 0.08 30

0.65 0.09 16

0.66 0.08 16

LM

k-means
ODC
SODC
SODC*

0.32 0.05 90

0.35 0.05 90

0.25 0.05 36

0.30 0.05 36

DERM

k-means
ODC
SODC
SODC*

0.71 0.05 33

0.71 0.05 33

0.72 0.04 23

0.73 0.04 23

SHD

k-means
ODC
SODC
SODC*

0.35 0.06 256

0.28 0.07 256

0.31 0.07 146

0.33 0.07 146

2.5 Discussion

Here we reinvestigate an existing method, ODC, and advocate it as a dimension reduction tool for

cluster analysis. We propose a cross-validation method for selecting the tuning parameter in ODC. We

also examine the performance of using existing methods such as the gap statistic and the stability selec-

tion to select the number of clusters in ODC. As a dimension reduction tool for cluster analysis, ODC per-

forms much better than PCA, which does not take into account the clustering structure.

Furthermore, we propose SODC by adding a group-lasso type of penalty on ODC to conduct

cluster analysis and feature selection simultaneously. The proposal of SODC is parallel to that of spare

principal component analysis by Zou et al. (2006), sparse canonical correlation analysis by Sun et al.

(2008), and sparse discriminant analysis (SDA) by Clemmensen et al. (2011). Take the last one as an ex-

37

ample. On the one hand, FDA in Hastie et al. (1994) is a method for classification analysis using optimal

scoring, and then SDA is a “sparse” version of FDA by adding a lasso type of penalty. On the other hand,

ODC is a method for cluster analysis using optimal scoring, and then SODC is a “sparse” version of ODC

by adding a group-lasso type of penalty.

However, the selection of tuning parameters in SDA is different from that in SODC. For classifi-

cation, the selection of tuning parameters in SDA can be guided by misclassification error. For cluster

analysis, the problem of selecting the tuning parameter in SODC is much harder. Here we propose a me-

thod called kappa selection. The kappa selection is proved to be asymptotically consistent for linear re-

gression, but the consistency hasn't be addressed under the current setting of cluster analysis.

Finally, both ODC and SODC, along with many other existing tools such as projection pursuit,

can be used as a dimension reduction tool for drawing scatterplots before conducting analysis. Drawing

such scatteplots are very important in that by examining such plots we can have rough ideas about some

important issues such as: if there is no true clustering (i.e, ' = 1), if the clusters are normally distributed,

if the clusters are convex, and if some clusters are much bigger than the others. In the literature of cluster

analysis, such issues have been addressed to some extent and many special methods dealing with these

issues have been proposed. In practice, we should apply several different clustering procedures to a same

dataset to see if the results are stable and the findings are consistent.

38

3 SPARSE PRINCIAL COMPONENT CLASSIFICATION

3.1 Introduction

As we discussed in chapter 1, PCA is a popular feature extraction and dimension reduction tool,

seeks the linear combinations of the original variables called PCs such that the derived PCs capture max-

imal variance and guarantee minimal information loss. However, the classic PCA has major practical and

theoretical drawbacks when it is applied to high-dimensional data. The classic PCA produces inconsistent

estimates in high-dimensional situations. The loadings of PCs are typically nonzero. This often makes it

difficult to interpret the PCs and identify important variables. The formula for standard PCA is:

Given a data matrix with n observations and p variables, the data are first centered on the means

of each variable.

The first principal component is calculated to account for the largest possible variance in the da-

taset and can be written by:

§V1 = efY)e�∑ p�QR]Q¼� &� e�̂KK^e�

The second PC is calculated in the same way, with the condition that it is uncorrelated with PC1

and account for the next highest variance.

Many SPCA methods were raised to solve the curse of dimensionality problem, such as (Zou et

al., 2006; Lee et al., 2012). In this chapter, three existing SPCA methods are reviewed and a comparison

of their application to a real world dataset, ancestry-informative markers in genome-wide association stu-

dies (GWAS), is given. This dataset is also used by Lee et al., (2012).

3.2 PCA, L-PCA, and AL-PCA

For a dataset with � rows of observations by � columns of variables, Lee et al., (2012) formulates

the classical PCA as alternating-regression algorithm by trying to get the PCs sequentially. Then modify

the alternating regression algorithm for standard PCA by adding either a lasso or alternative lasso penalty

on the PCs to perform sparse PCA.

39

3.2.1 Reformulation of Standard PCA

The steps to get first principal components PC1:

Let PC1 denoted by ½ = �½�, … , ½?�^ where ½, denotes the 1-th variable contributing to the PC1

and denoted PCscore1 by e = �e�, … , e��^. Then we use an iterative process to minimize the following

sum of squares to estimate ½ and e.

∑ ∑ ¥�%, − e%½,¦�?,&��%&� (3.1)

The idea is:

1) Given an initial value for e.

2) Estimate ½, for each 1 as the slope of a linear regression model with no intercept using

�%, ′4�* = 1, … , �� as the response and e% ′4 as the independent variable. Thus we get ½, =
∑ �%,e%�%&� / ∑ e%��%&� for �1 = 1, … , ��.

3) Fixing ½ and normalizing the ½ vector to have unit length, we estimate each e% as the slope

from a linear regression model with no intercept using �%,′4 as the response and ½, ′4 as the

independent variable. Thus we get e% = ∑ �%,½,?,&� for �* = 1, … , ��.

4) Repeat (2) (3) until convergence.

The steps to get other principal components PCs:

After we get PC1 and PCscore1, we replace �%, by �%, − e%½, and use formula (3.1) to identify

the second PC and its scores as PC2 and PCscore2. We can continue this process until we estimate the

desired number of PCs.

3.2.2 Sparse PCA with LASSO (L-PCA)

L-PCA method tries to estimate PCs and their corresponding PC scores by minimizing the fol-

lowing modified criterion from (3.1):

∑ ∑ ¥�%, − e%½,¦�?,&��%&� + 2g ∑ u½,ub,&� (3.2)

40

Where g is a positive penalty parameter that controls sparsity of the derived PC. The larger g,

the sparser PC. The solution of L-PCA is the same as the traditional PCA when g = 0.

L-PCA uses the same regression model described in section 3.2.1 to estimate e% given ½, and es-

timate ½, using soft-threshold solution:

½, = �∑ pPR¾P¼� ∙ 4Y�¥∑ �%,e%�%&� ¦�u∑ �%,e%�%&� u − g¤� �3.3�
Where sgn(·) denote the sign function and {·}+ denote a truncation function that returns its

argument if it is nonnegative or 0 if it is negative.

(3.3) shows that the estimate of ½, is shrunk to 0 if the magnitude of ∑ �%,e%�%&� is smaller than the

penalty parameter g . Consequently, that particular variable will not contribute to the loading of the PC.

We iteratively solve for a and ½ using ordinary and lasso regression, respectively, until convergence.

3.2.3 Sparse PCA with Alternative LASSO (AL-PCA)

AL-PCA method tries to estimate PCs and their corresponding PC scores by minimizing the fol-

lowing modified criterion from (3.1):

∑ ∑ ¥�%, − e%½,¦�?,&��%&� + 2g ∑ uÁQuuÁ»Qu?,&� (3.4)

(3.4) show that the penalty function for AL-PCA depends on u½»,u. u½»,u is now shrunk by an varia-

ble-specific threshold value
�uÁ»Qu , so the variable with larger loading on the PC will be associated a smaller

penalty than those with a variable with smaller loading and thus the AL-PCA will have more penalty on

those insignificant variables. AL-PCA often identifies a smaller set of variables than L-PCA with larger

loadings.

AL-PCA uses the same regression model described in section 3.2.1 to estimate e% given ½, and

estimates ½, using the following soft-threshold solution:

½, = �∑ pPR¾P¼� ∙ 4Y�¥∑ �%,e%�%&� ¦ Âu∑ �%,e%�%&� u − �uÁ»QuÃ� �3.5�

41

Lee et al., (2012) proposes a likelihood-based procedure by calculating BIC to select the tuning

parameter g for L-PCA and AL-PCA .

The algorithm for L-PCA and AL-PCA is:

1) Scaling and centering the original � × � matrix X.

2) Set the initial value of e. We propose to set the initial value of a using K½, where ½ is the

first right-singular vector of K (equivalently the first PC score from PCA of K^K).

3) Find PC ½ using soft thresholding (3.3) or (3.5) and then normalize it.

4) Compute PC score e = K½.

5) Repeat 3–4 until convergence. This step may be conducted multiple times on grids of g for

penalty parameter selection.

6) K = K − e»½»^ for the next PC. Here a» and v» are derived from standard PCA without penalty.

7) Repeat (2)–(6) ' times for obtaining ' PCs.

3.3 Sparse Principal Component by Choice of Norm (SPCABP)

Qi et al., (2012) propose a new criterion-based sequential sparse PCA method (SPCABP) by re-

placing the l�-norm in traditional eigenvalue problems with a new norm, which is a convex combination

of X� and X� norms. The optimization problems in his methods are natural extensions of those in classic

PCA and have relatively simple forms. An efficient iterative algorithm was proposed to solve these opti-

mization problems. He also proves the convergence of this iterative algorithm and provides the detailed

characterization of the limits. With this method, we can efficiently obtain uncorrelated PCs or orthogonal

loadings, and achieve the goal of explaining high percentage of variations with sparse loadings.

Qi et al., (2012) defines the following “mixed norm”:

‖½‖� = [�1 − g�‖½‖�� + g‖½‖��]�R , ∀ ½ ∈ >? . (3.6)

This norm becomes to the X�-norm when g = 0, and X�-norm when g = 1.

And the first PC is given as follows:

42

)e�Á∈\],‖Á‖R&� ½^È½‖½‖��� �3.7�

(3.7) is equivalent to the following problem:

)e�Ê∈\] Ë^ÈË , 4Ë«1B-5 53 ‖Ë‖�� ≤ 1 �3.8�

The higher order sparse PCs are defined either by (3.9) or by (3.10) as follows:

)e� ‖Á‖R&�, ÁÍÁQ,,&�,…,.J�
½^È½‖½‖�Î� �3.9�

Where g. is the tuning parameter for ½..

)e� ‖Á‖R&�, ÁÍÏÁQ ,,&�,…,.J�
½^È½‖½‖�Î� �3.10�

When (3.9) is used, the obtained PCs are orthogonal to each other, and when (3.10) is used, the

obtained PC scores are uncorrelated with each other.

3.4 Numerical Results

3.4.1 HapMap II study

We compare L-PCA, AL-PCA, and SPCABP by applying them to a real high dimensional data

set, the International HapMap Project (The International HapMap Consortium, 2005) for AIM selection to

genome-wide SNP data.

The dataset consists of 90 subjects of European ancestry (Utah residents with ancestry from

northern and western Europe; CEU) from 30 parent-offspring trios, 90 subjects of African ancestry (Yo-

ruba in Ibadan, Nigeria; YRI) from 30 parent- offspring trios, and 90 unrelated subjects of Asian ancestry

(45 Han Chinese in Beijing, China; CHB, and 45 Japanese in Tokyo, Japan; JPT). We use unrelated sub-

jects only and so exclude the CEU and YRI off- spring from analysis. Consequently, the final data set

used for the comparison of sparse PCA methods consists of 210 subjects (60 CEU, 60 YRI, 45 CHB, 45

JPT).

43

I use the preprocessed dataset provided by Lee et al., (2012). The dataset was reduced from the

initial 3,976,554 number of SNPs to 24,395 independent SNPs for AIM selection by applying quality-

control procedures to exclude problematic SNPs from the analysis.

Lee et al., (2012) indicate that the top two PCs were sufficient for explaining the genetic variabili-

ty within the sample due to ancestry. So I apply standard PCA, L-PCA, AL-PCA, and SPCABP to obtain

the top two PCs to identify AIMs. Table 3.1 lists the number of nonzero loadings in principal components

1(PC1) and principal components 2 (PC2) obtained from different methods. Figure 3.1 suggests SPCA

methods provide similar cluster patterns of the population structure as the traditional PCA, but the SPCA

methods use much less SNPs than the latter method for constructing PCs. Specially, L-PCA and AL-PCA

only use 1/3 of the total snps, and SPCABP only use 1/40 of the total snps, while PCA use all the total

24395 snps. We also present the scatterplots of individual scores from traditional PCA, L-PCA, AL-PCA,

and SPCABP in Figure 3.1. The results show that the scores from traditional PCA and the three sparse

PCA methods are almost identical and can clearly separate the three distinct ethnic groups.

Table 3.1 Number of non zero loadings for Principal components 1 (PC1) and Principal

components 2 (PC2)

Method PC1 PC2

PCA 24395 24395

L-PCA 8926 7829

AL-PCA 8810 7201

SPCABP 595 582

44

Figure 3.1 Scatterplots of the individual scores from traditional PCA, L-PCA, AL-PCA, and

SPCABP.

3.5 Discussion

This chapter focuses on using three sparse PCA to identify AIMs and show that the method can

identify a small set of markers that capture genetic ancestry as efficiently as genome-wide SNP data can.

We can also apply sparse PCA directly to genome-wide marker data for the purpose of population-

stratification adjustment in GWAS studies and whole-genome/whole genome sequencing studies. The

results show that SPCABP can get similar classification results with even less number of markers than L-

PCA and AL-PCA. All the three sparse PCA method outperforms the traditional PCA.

45

4 SPARSE FACTOR ANALYSIS BY PROJECTION

4.1 Introduction

The presence of collinearity is both a blessing and curse for data analysis, it means that only a

small number of variables are needed to capture most of the variations in the data set, but we have to se-

lect the variables very carefully.

Factor analysis is useful tool when there is a high degree of cross-correlation between variables. It

is a general purpose technique for dimensionality reduction with applications in diverse areas including

psychometric, economics and computational biology. Factor analysis (Gorsuch, 1983) models the ob-

served multivariate random variables as linear combinations of some unobserved (hidden or latent) fac-

tors plus error terms. Factor analysis was first introduced by (Spearman, 1904) to support his psychologi-

cal theory of intelligence.

As discussed in chapter 1, there are two major kinds of FA: EFA in which researcher does not

know the factor structure prior to running the analysis and CFA in which researcher "knows" the factor

structure prior to the analysis. EFA can be done in two ways:

R-mode factor analysis: A variable based factor analysis aiming to simplify a matrix of va-

riables by forming a smaller number of latent factors, ', that are linear combinations of the original � va-

riables in the data set. The methods seeks to preserve the variance of the original variables in the new

linear combinations (R-mode factors), and thus explain the maximum amount of variance in the data set.

The first important step in this method is to transform the � sample by � variable data matrix K, into the

associated variable covariance or correlation matrix, >, which is done by pre-multiplying the data matrix

K by its transpose: > = K′K. Here > is a square (� � �) matrix whose dimensions are determined by the

number of variables (�) in the data set.

Q-Mode factor analysis: A sample based factor analysis aiming to simplify a large matrix of va-

riables measured on many samples. The methods seeks to preserve the "information" within the samples

of the original data set in the new linear weighting of contributions from the various factors(Q-mode fac-

46

tors) that are determined from the data. The first important step in this method is to transform the n sam-

ple by � variable data matrix K, into the sample similarity matrix, Ñ, which is formed by post-multiplying

the data matrix K by its transpose: Ñ = KK′, Here Ñ is a square (� � �) matrix whose dimensions are

determined by the number of samples (�) in the data set.

In this dissertation, we only discuss the EFA and R-mode factor analysis.

4.1.1 Rotation Technique in FA

In FA, in order to get better interpretation of the factors, we often rotate the estimated factor load-

ing matrix. As Yaremko et al., (1986) said: “In factor or principal-components analysis, rotation of the

factor axes (dimensions) identified in the initial extraction of factors, in order to obtain simple and inter-

pretable factors.”

Two main types of rotation are used: orthogonal rotation and oblique rotation. Orthogonal rota-

tion assumes that the factors in the analysis are orthogonal (uncorrelated). Gorsuch (1983) lists four dif-

ferent orthogonal methods: varimax, quartimax, equimax, and orthomax. In contrast, oblique rotation me-

thods assume that the factors are correlated. They are defined as:

Varimax Rotation: maximizes the squared factor loadings in each factor, i.e., simplifies the col-

umns of the factor loading matrix. In each factor the large loadings are increased and the small ones are

decreased so that each factor only has a few variables with large loadings (but possibly the same variables

can be relevant to explain two or more factors).

Quartimax Rotation: maximizes the variance of the squared factor loadings in each variable, i.e.,

simplifies the rows of the factor loading matrix. In each variable the large loadings are increased and the

small ones are decreased so that each variable will only load on a few factors (but one factor may need to

be interpreted by a large number of variables).

Equimax Rotation: Combines the objectives of both varimax and quartimax rotations. equamax

maximizes a weighted sum of the varimax and quartimax criteria, reflecting a concern for simple structure

47

within variables as well as within factors. The number of variables that load highly on a factor and the

number of factors needed to explain a variable are minimized.

Orthomax Rotation: Like Equimax, orthomax Rotation is a compromise between Varimax and

Quartimax, but the researcher need to decide the relative weight of the Varimax component versus the

Quartimax one. Parsimax is a specific case of Orthomax rotation where the relative weights of the Vari-

max and Quartimax rotations depends on the number of variables and factors.

Oblique Rotation: will produce factors that are not independent. There are major implications in

using oblique rotation methods. Although they can lead to further simplification of the factor matrix, it

becomes less straightforward to evaluate the contribution of each factor in explaining the original varia-

bility.

4.1.2 Formation of Classic FA

Assume that we are concerned with forming � �-dimensional variables {��, … , �?} into ' factors

where �%̂ s, * = 1, … , �, are independent and identically distributed (i.i.d.). Let K = {��, … , �?}^ be the

� × � matrix where each row is a variable and each column is an observation. Without loss of generality,

assume the mean of �% is zero and the covariance of K is È. The factor model is represented by

K?×� = Ò?×.�.×� + Ó?×� (4.1)

Where Ò is a � × ' matrix of factor loadings, � = {Ô�, … , Ô.}^ ∈ >� and Ó = {Ó�, … , Ó?}^ ∈ >�

are called common factors and unique factors, respectively, and � and Ó are multivariate-normally distri-

buted and should satisfy the assumption Õ��� = 0, Õ�Ó� = 0, Õ���^� = W., Õ�ÓÓ^� = Ö, and Õ��Ó^� =
×, i.e., � and Ó are independent. Then we have È = ÒÒ^ + Ö. The proportion of variance of a given va-

riable that is explained by the common factors is communality, and uniqueness is the variability of a vari-

able minus its communality.

The factor model (4.1) is invariant under an orthogonal rotation, thus we can use the orthogonal

rotation technique presented in section 4.1.1 such as varimax to yield either large or small loadings. Often,

small loadings are further truncated at some threshold (e.g. 0.01), for zero loadings greatly enhance the

48

interpretability. The communalities are unchanged from the unrotated to the rotated solution. The goal of

rotation is to obtain a simpler factor loading pattern that is easier to interpret than the original factor pat-

tern.

4.1.3 Motivation of Sparse factor analysis (SFA)

Sparse factor analysis is a natural extension that can be motivated by the observation that sparse

features tend to generalize better, or justified based on a priori beliefs about the underlying generative

model of the observed data.

In this chapter we propose a novel sparse factor analysis model which expands on our previous

work on sparse principal components analysis by projection models. We study its performance both on

simulated data, and on a data set regarding snp that has been previously analyzed in the literature. The

numerical results prove that SFABP performs much better when applied to high dimensional dataset.

4.2 Sparse Factor Analysis by Choice of Norm

4.2.1 SFABP

We propose a novel sparse factor analysis model called SFABP for multinomial data which was

based on SPCABP in section 3.3. SFABP model provides a parsiminious lower-dimensional representa-

tion of multivariate continuous data by imposing structure upon the covariance matrix of a latent normal

parameter. This confers a number of advantages over traditional models. First, the factor can be used as a

powerful exploratory tool for investigating underlying structure in continuous data. Second, it can be used

to create well-behaved shrinkage estimators that make the multivariate model viable even when the num-

ber of variables is large relative to the number of observations. The use of sparsity contributes additional

regularization, and also provides a natural framework for investigating the number of factors driving the

observed covariation. Finally, the factor model offers significant computational gains, as it circumvents

the need to do further analysis like classification or clustering directly from high-dimensional dataset.

49

4.2.2 Implementation

In (75), Section 4.3 derives the relationship between PCA and FA. i.e. we can take the eigenvec-

tors (of unit length) and weight them with the square root of the corresponding eigenvalue.

We illustrate this idea as follows:

For a given data matrix K with � observation and � variables, denote the SVD of K as K = �H�^,
where � is an � × f orthnormal (i.e. ��^ = W) column-wise matrix, contain the f eigenvectors of

Ñ = KK′, � is an � × f orthnormal column-wise matrix, contain the f eigenvectors of > = K′K, and H is

a real, positive, diagonal f × f matrix with diagonal as the singular values of K sorted in descending order.

> = K^K = H� = W�^ Ò = W√�^
The factor loadings for each variable on each component can be obtained by multiply the eigen-

vectors times their singular values(i.e. the square roots of the eigenvalues) .

The principal component score is K�, and the factor scores is K�H. It is clear that they are essen-

tially the same thing except that the factor scores have been scaled by the magnitude of the singular val-

ues (i.e. the square root of the length of the eigenvectors).

Based on the relationship between PCA and FA, we proposed SFABP based on SPCABP.

SPCABP only gives its PCs when do analysis, we propose the following methods to derive eigenvalues

given PCs. Suppose the first ' PCs is sufficient to account for the variance of K, For *th eigenvector

B% , 1 = 1, … , ' . V3½�K� = ∑ �,B,.,&� B,^ + Ù . B%^V3½�K�B% = B%^�∑ �,B,.,&� B,^�B% + B%^ÙB% , since

B%^B, = 1 if * = 1, 0 otherwise, and we consider B%^ÙB% ≈ 0 in a good FA model. Thus �% = B% ^V3½�K�B%,
and Ù = V3½��� − ∑ �,B,.,&� B,^.

So the algorithm for SFABP is as follows:

1) Use SPCABP to get first k orthogonal PCs which can be indicated as §y.

2) Use �% = B% ^V3½�K�B% , * = 1, … , ', to get the corresponding first ' eigenvalues.

3) Get factor scores using �y � = ¥ Ò̀^ Ò̀¦J� Ò̀^K^, where Ò̀ = §yH, H is the a real, positive, di-

agonal ' × ' matrix which are the first ' singular values of K.

50

4) Use KNN or LDA to do classification on the factor scores.

The alternative methods for calculating factor scores are regression, Bartlett, and Anderson-Rubin.

4.2.3 Tuning Parameter Selection

Xin (2009) proposed a method of selecting tuning parameter g,, however, that method is not so

efficient. Since I would like to do classification on the factor scores, so here we propose a cross-validation

method by evaluating the classification error (CE) to choose g, and the number of factors ' in SFABP,

and we consider g, the same for all PCs (say g) for purpose of simplicity. First we randomly split the data

into V roughly equal-sized parts (say V = 5), K�, … , K���, whose sizes are ��, … , ����. For a given g, = g

and a given - ∈ {1, … , V}, let §y�J��� , Ò̀�J��� and�y�J��� be the estimated PCs from algorithm SFABP, the es-

timated factor loading and factor score respectively using the data leaving out K��� , and Ò̀�J��� =
§y�J��� H��J��� , �y���� be the estimated factor score using �y���� = Û Ò̀�J��� ^ Ò̀�J��� ÜJ� Ò̀�J��� ^K�^ , Let VÕÝ���� be

the estimated classification error by applying any classification method on �y���� .

Now we can describe the cross-validation method as follows.

Cross-validation for selecting �:

1) Select a list of g.

2) Randomly split the data into K�, … , K���.
3) Calculate �y���� using �y���� = Û Ò̀�J��� ^ Ò̀�J��� ÜJ� Ò̀�J��� ^K�^.
4) Applying KNN or linear discriminate analysis (LDA) to do classification on �y���� , and get the

VÕÝ���� .

5) Calculate V� �g� = �� ∑ VÕÝ������&� .

6) Obtain g̀ = efY)*� V��g�.

51

4.2.4 The Number of Factors Selection

One of the hardest things when conducting FA is to determine how many factors to settle on.

There are several more commonly used criteria to help with the selection. They are as follows:

Kaiser's stopping rule: only considers the number of factors with eigenvalues over 1.00 should

in the analysis.

Cattell’s Scree test (Cattell, 1966): The researcher examines the scree plot which is a graphic vi-

sualization of the relationship between eigenvalues and number of factors and decides where the line

stops descending precipitously and levels out (Bryant and Yarnold, 1995, pp. 103-104).

Number of non-trivial factors: Trivial factors are usually defined as those that do not have two

or three variables loading above the cut-point (often .30) on them. It is worth considering that triviality is

a matter of degrees and may be in the eye of the beholder.

A priori criterion: If a researcher has created a set of test or questionnaire items to contain a spe-

cific number of subtests or scales, it would make sense to set that same number of factors in the factor

analysis of those items. These are known as a priori criteria for determining the number of factors.

Percent of cumulative variance: An approach that is closely related to Kaiser’s stopping rule

and the scree plot, however, percents of cumulative variance are harder to interpret than the other two. As

a result interpreting the percentages of cumulative variance is more a matter of keeping an eye on the

amount of cumulative variance being accounted for by various other stopping rules.

To choose the number of factors in SFABP, we also use the CV method based on CE. For any

given ' ∈ {1, … , (�pO} , where (�pO is the largest number of factors to be considered, execute SFABP

with g selected via the proposed CV method, compute the CE, and select 'y as the minimize of these av-

erage computed CE values.

One thing should be pointed out here is that we can choose the tuning parameter g and the num-

ber of factor ' coincidently, or choose it separately if the other one is known.

52

4.3 Numerical Results

The proposed SFA modeling strategy is investigated through the simulations and real data analy-

sis.

4.3.1 Simulation Studies

In the simulation study, the following model is used.

Model A:

Ò = Þ0.9 ∗ 1T 0T 0T0T 0.8 ∗ 1T 0T0T 0T 0.7 ∗ 1Tß,

�*eY�à� = �0.19 ∗ 1′ , 0.36 ∗ 1′ , 0.51 ∗ 1′ �^ ,
Where 1T is a -dimensional vector with each element being 1, and 0T is a -dimensional zero

vector. For each model, the data sets were generated with K = ®�0, ÒÒá + Ö�.

Suppose for each model, 50 data sets were generated and the number of samples was � =
 100, 200, 300, 400, e�� 500. Table 4.1 show the mean squared error of Ò and Ö defined by

 â<Õã = �ä� ∑ CÒ − Ò̀�%�C�ä�%&� and â<Õå = �ä� ∑ CÖ − Ö� �%�C�ä�%&�

Where Ò̀�%� and Ö� �%� are the estimates for Ò and Ö respectively using *th dataset.

We compare the performance of four factor analysis procedures: (1) principal factor analysis

(PFA); (2) maximum likelihood expectation (MLE) factor analysis; (3) SFABP setting g = 0 (FABP);

and (4) SFABP setting g ≠ 0 (SFABP). We set = 10, 20, and � = 100, 200, 300, 400, e�� 500. Ta-

ble 4.1 shows the results.

53

Table 4.1 Mean squared error of the factor loadings and uniquenesses, and their standard

deviation(in parenthesis).

� Method
 = 10 = 20

Lambda(SD) Phi(SD) Lambda(SD) Phi(SD)

100

PFA

MLE

FABP

SFABP

7.95(3.80) 0.14(0.05)

7.50(3.78) 0.12(0.02)

7.95(3.81) 0.14(0.05)

1.51(0.42) 0.24(0.07)

23.16(6.28) 0.20(0.03)

23.60(7.74) 0.20(0.04)

23.16(6.28) 0.20(0.03)

5.64(1.36) 0.49(0.14)

200

PFA

MLE

FABP

SFABP

3.74(1.09) 0.08(0.03)

3.09(0.87) 0.06(0.02)

3.74(1.09) 0.08(0.03)

0.79(0.27) 0.13(0.05)

10.27(1.16) 0.11(0.03)

9.80(1.21) 0.10(0.02)

10.27(1.16) 0.11(0.03)

1.88(0.53) 0.14(0.04)

300

PFA

MLE

FABP

SFABP

2.49(0.74) 0.07(0.02)

2.00(0.70) 0.03(0.01)

2.49(0.74) 0.07(0.02)

0.62(0.13) 0.09(0.02)

8.79(2.93) 0.07(0.02)

8.40(2.82) 0.07(0.02)

8.79(2.93) 0.07(0.02)

1.15(0.40) 0.09(0.02)

400

PFA

MLE

FABP

SFABP

2.22(0.76) 0.07(0.02)

1.76(0.66) 0.03(0.01)

2.22(0.76) 0.07(0.02)

0.66(0.19) 0.09(0.02)

6.78(1.68) 0.06(0.01)

6.41(1.73) 0.05(0.02)

6.78(1.68) 0.06(0.01)

0.98(0.26) 0.08(0.01)

500

PFA

MLE

FABP

SFABP

1.41(0.22) 0.06(0.01)

1.05(0.36) 0.02(0.01)

1.41(0.22) 0.06(0.01)

0.60(0.14) 0.08(0.02)

4.98 (1.22) 0.06(0.02)

4.59(1.17) 0.04(0.01)

4.98(1.22) 0.06(0.02)

0.95(0.35) 0.07(0.02)

54

From table 4.1, we can see that

1) The value of MSE becomes smaller when the sample size � increases, becomes larger when

 increases.

2) SFABP performs best compared to the other three methods according to the MSE of Ò, but

performs worst according to the MSE of Ö. The reason might be the large bias introduced by

the methodology for estimating g%.
3) The FABP and PFA performs exactly same, that also indicate that FABP becomes principal

factor analysis when g = 0.

4) The MLE performs between FABP and SFABP.

We choose one setting ��, � = �300, 2� as an illustrative example to show the factor loadings

we get using SFABP, and set = 0.1 , the factor loadings results is shown in Table 4.2, we can see that

SFABP can correctly get the sparse solution of factor loadings. The larger g, the sparser the factor load-

ings we will get.

Table 4.2 The estimated factor loadings from SFABP when � = ���, � =
, and � = �. .

Factor1 Factor2 Factor3

0.9562781 0.0000000 0.0000000

0.9562717 0.0000000 0.0000000

0.0000000 -0.9000128 0.0000000

0.0000000 -0.8999815 0.0000000

0.0000000 0.0000000 -0.8643205

0.0000000 0.0000000 -0.8643882

Assume each simulated dataset consists � p-dimensional observations �% , * = 1, … , �, which are

generated as follows. First, we generate 3 variables using the model A, and generated with K =
®�0, ÒÒá + Ö�. For the remaining �½ef variables where �½ef = � − 3, similar to SODC simulation

study, suppose V% 's are uniformly sampled from {1,2,3}, indicating the cluster memberships of the obser-

55

vations. Then for each *, the �½ef features which accounting for the classification identification are gen-

erated from ®�)�V%�, W�Ápa�, where nvar is even and

)�V%� = ° ±−1�Ápa�^ , 1�Ápa�^ ² W�V% = 1� + °1�ÁpaW�V% = 2� + ° ±1�Ápa�^ , −1�Ápa�^ ² W�V% = 3�,
Clearly, the three groups are separated when ° is large, and overlapped when ° is small. For clas-

sification purpose, the number of noise variables 3 increases, it becomes harder to distinguish the three

groups.

We set the testing dataset sample size as 1500, and compare the performance of five classification

procedures: (1) '-means using all features (ALL); (2) '-means using the factors from MLE factor analy-

sis with no rotation (MLENO); (3) '-means using the factors from MLE factor analysis with varimax ro-

tation (MLEVAR); (4) '-means using the factors from SFABP setting g = 0 (FABP); and (5) '-means

using the factors from SFABP setting g ≠ 0 (SFABP).

First, set = 100, �½ef = 4, � = 120, 150, 180, 360, 480, 3f 900, and ° = 1.5, 1.6, 3f 1.7.

Tuning parameter g is selected over a range of values {0.00001, 0.0001,0.001, 0.01, 0.05, 0.1, 0.2, 0.3 }.

5-fold cross-validation is applied to select the number of factors. Each simulation setting is replicated 20

times and the classification error rate is reported in Table 4.3. It shows that SFABP works very well in all

settings, FABP, MLENO, MLEVAR, and FABP perform similarly when � = 360, 480, e�� 900 where

� > �, however, MLENO and MLEVAR does not work at all when � = 120, 150, e�� 180 where � < �.

ALL performs worst in all settings, which also indicates the necessity of conducting dimension reduction

in classification analysis. As to the two methods KNN or LDA, LDA outperforms over KNN in all set-

tings. Table 4.3 also show that the classification error decrease when u increase or n increase.

56

Table 4.3 Comparing five classification procedures: (1)using all features (ALL); (2) using

factors from MLE factor analysis with no rotation (MLENO); (3) using the factors from MLE

factor analysis with varimax rotation (MLEVAR); (4) using the factors from SFABP setting � = �

(FABP); and (5) using the factors from SFABP setting � ≠ � (SFABP).

n
Method

μ = 1.5 μ = 1.6 μ = 1.7
KNN(SD) LDA(SD) KNN(SD) LDA(SD) KNN(SD) LDA(SD)

120

ALL
MLENO
MLEVAR
FABP
SFABP

0.39(0.01) 0.14(0.01)
n/a n/a
n/a n/a
0.25(0.02) 0.15(0.01)
0.23(0.02) 0.11(0.01)

0.37(0.01) 0.12(0.01)
n/a n/a
n/a n/a
0.23(0.01) 0.13(0.01)
0.21(0.02) 0.08(0.01)

0.34(0.02) 0.10(0.01)
n/a n/a
n/a n/a
0.20(0.01) 0.11(0.01)
0.20(0.02) 0.07(0.01)

150

ALL
MLENO
MLEVAR
FABP
SFABP

0.39(0.02) 0.14(0.01)
n/a n/a
n/a n/a
0.23(0.01) 0.13(0.01)
0.21(0.02) 0.10(0.01)

0.36(0.01) 0.12(0.01)
n/a n/a
n/a n/a
0.21(0.01) 0.12(0.01)
0.20(0.01) 0.08(0.01)

0.34(0.02) 0.10(0.01)
n/a n/a
n/a n/a
0.19(0.01) 0.10(0.01)
0.17(0.02) 0.07(0.00)

180

ALL
MLENO
MLEVAR
FABP
SFABP

0.39(0.01) 0.14(0.01)
n/a n/a
n/a n/a
0.22(0.02) 0.13(0.01)
0.20(0.01) 0.10(0.01)

0.36(0.01) 0.12(0.01)
n/a n/a
n/a n/a
0.20(0.02) 0.11(0.01)
0.18(0.02) 0.08(0.01)

0.34(0.01) 0.10(0.01)
n/a n/a
n/a n/a
0.16(0.01) 0.09(0.01)
0.16(0.02) 0.07(0.01)

360

ALL
MLENO
MLEVAR
FABP
SFABP

0.39(0.01) 0.14(0.01)
0.18(0.01) 0.11(0.01)
0.18(0.01) 0.11(0.01)
0.19(0.02) 0.11(0.01)
0.16(0.02) 0.09(0.01)

0.36(0.01) 0.12(0.01)
0.16(0.01) 0.09(0.01)
0.16(0.01) 0.09(0.01)
0.17(0.01) 0.09(0.01)
0.14(0.01) 0.08(0.01)

0.33(0.01) 0.10(0.00)
0.14(0.01) 0.08(0.00)
0.14(0.01) 0.08(0.00)
0.15(0.01) 0.08(0.00)
0.12(0.01) 0.06(0.00)

480

ALL
MLENO
MLEVAR
FABP
SFABP

0.38(0.02) 0.14(0.01)
0.18(0.01) 0.10(0.01)
0.18(0.01) 0.10(0.01)
0.18(0.01) 0.10(0.01)
0.15(0.01) 0.09(0.01)

0.37(0.01) 0.12(0.01)
0.15(0.01) 0.09(0.01)
0.15(0.01) 0.09(0.01)
0.16(0.01) 0.09(0.01)
0.13(0.01) 0.08(0.01)

0.34(0.01) 0.10(0.01)
0.14(0.01) 0.07(0.01)
0.14(0.01) 0.07(0.01)
0.14(0.01) 0.07(0.01)
0.11(0.01) 0.06(0.01)

900

ALL
MLENO
MLEVAR
FABP
SFABP

0.39(0.01) 0.14(0.01)
0.17(0.01) 0.10(0.01)
0.17(0.01) 0.10(0.01)
0.17(0.01) 0.10(0.00)
0.14(0.01) 0.09(0.01)

0.36(0.01) 0.12(0.01)
0.15(0.01) 0.08(0.01)
0.15(0.01) 0.08(0.01)
0.15(0.01) 0.08(0.01)
0.12(0.01) 0.07(0.01)

0.33(0.01) 0.10(0.01)
0.12(0.02) 0.07(0.01)
0.12(0.02) 0.07(0.01)
0.13(0.02) 0.07(0.01)
0.10(0.01) 0.06(0.00)

57

First, set = 10, 100, 200, 3f 300, �½ef = 4, 6, 8, 3f 10, � = 150, and ° = 1.5 , the other

settings are the same as in previous paragraph for getting Table 4.3. Table 4.4 is a summarization of the

classification error rate, it also show that the classification error increases when increases and decreases

when �½ef increases. It also shows that SFABP performs better in high dimensional data setting.

Table 4.4 Comparing five classification procedures.

var Method

 = 10 = 100 = 200 = 300

KNN(SD) LDA(SD) KNN(SD) LDA(SD) KNN(SD) LDA(SD) LDA(SD) LDA(SD)

4

ALL

MLENO

MLEVAR

FABP

SFABP

0.21(0.01) 0.09(0.01)

0.16(0.01) 0.09(0.01)

0.16(0.01) 0.09(0.01)

0.16(0.01) 0.09(0.01)

0.19(0.01) 0.10(0.01)

0.39(0.02) 0.14(0.01)

n/a n/a

n/a n/a

0.23(0.01) 0.13(0.01)

0.21(0.02) 0.10(0.01)

0.45(0.02) 0.20(0.01)

n/a n/a

n/a n/a

0.29(0.01) 0.18(0.01)

0.22(0.01) 0.11(0.01)

0.48(0.01) 0.28(0.01)

n/a n/a

n/a n/a

0.35(0.02) 0.22(0.01)

0.26(0.02) 0.12(0.01)

6

ALL

MLENO

MLEVAR

FABP

SFABP

0.12(0.01) 0.05(0.01)

0.09(0.01) 0.05(0.01)

0.09(0.01) 0.05(0.01)

0.09(0.01) 0.05(0.01)

0.13(0.01) 0.05(0.01)

0.30(0.02) 0.08(0.01)

n/a n/a

n/a n/a

0.14(0.01) 0.07(0.01)

0.15(0.01) 0.05(0.01)

0.38(0.01) 0.13(0.01)

n/a n/a

n/a n/a

0.17(0.02) 0.09(0.01)

0.15(0.02) 0.05(0.01)

0.43(0.02) 0.21(0.02)

n/a n/a

n/a n/a

0.22(0.01) 0.11(0.01)

0.17(0.02) 0.06(0.01)

8

ALL

MLENO

MLEVAR

FABP

SFABP

0.08(0.01) 0.02(0.01)

0.06(0.01) 0.02(0.00)

0.06(0.01) 0.02(0.00)

0.05(0.01) 0.02(0.00)

0.07(0.02) 0.02(0.01)

0.24(0.01) 0.04(0.00)

n/a n/a

n/a n/a

0.08(0.01) 0.03(0.00)

0.10(0.01) 0.02(0.00)

0.32(0.01) 0.08(0.01)

n/a n/a

n/a n/a

0.11(0.00) 0.05(0.00)

0.11(0.01) 0.03(0.00)

0.37(0.02) 0.15(0.01)

n/a n/a

n/a n/a

0.13(0.02) 0.06(0.00)

0.12(0.03) 0.03(0.01)

10

ALL

MLENO

MLEVAR

FABP

SFABP

0.05(0.01) 0.01(0.00)

0.04(0.01) 0.01(0.00)

0.04(0.01) 0.01(0.00)

0.04(0.00) 0.01(0.00)

0.04(0.01) 0.02(0.00)

0.19(0.01) 0.03(0.00)

n/a n/a

n/a n/a

0.05(0.01) 0.02(0.00)

0.08(0.01) 0.01(0.00)

0.27(0.01) 0.05(0.01)

n/a n/a

n/a n/a

0.06(0.01) 0.02(0.00)

0.08(0.02) 0.01(0.00)

0.33(0.01) 0.11(0.01)

n/a n/a

n/a n/a

0.09(0.01) 0.03(0.01)

0.08(0.01) 0.01(0.00)

58

To illustrate the selection processes of the number of factors, we randomly select one replication

from the setting where ��, , Ë, �½ef� = �1200, 10,3,4�, and set g = 0.1 , 10-fold cross-validation and

display the estimated factors in figure 4.1.

Figure 4.1 KNN classification and LDA classification are applied in Step 4 of SFABP,

respectively. The cross-validation selection correctly select the number of factors as 4.

We can see that both the KNN and LDA can be used in step 4 and both can correctly select the

number of factors as 4.

Now we still use setting ��, , Ë, �½ef� = �1200, 10, 3, 4�, but now g is chosen from the range

g ∈ {�0.00001, 0.0001,0.001, 0.01, 0.05, 0.1, 0.2, 0.3 } . Table 4.5 shows the results when selecting g and

' coincidently. The minimal CE can be found when ' = 4 and g = 0.1.

Table 4.5 Selecting � and � coincidently. ' g = 0.00001 g = 0.0001 g = 0.001 g = 0.01 g = 0.05 g = 0.1 g = 0.2 g = 0.3
1 0.68490 0.68020 0.67790 0.66550 0.66890 0.67370 0.66940 0.66190

2 0.66870 0.66680 0.66880 0.68950 0.68610 0.69160 0.55115 0.28100

3 0.67360 0.67970 0.68420 0.68120 0.68040 0.68000 0.28200 0.01125

4 0.01775 0.01775 0.01725 0.01700 0.01700 0.01675 0.01750 0.01725

5 0.03500 0.03575 0.03250 0.03830 0.03225 0.02925 0.03250 0.03350

6 0.04950 0.04925 0.05000 0.06705 0.06050 0.05975 0.05875 0.06050

7 0.07905 0.08180 0.08030 0.08180 0.08760 0.08100 0.08480 0.08590

8 0.10530 0.10265 0.10365 0.13450 0.11860 0.11625 0.11840 0.11445

59

4.4 Discussion

We compared the PFA, MLE, FABP, SFABP methods using simulated studies, and get the con-

clusion that as the number of samples � increases, the value of the MSE becomes smaller, and the true

model tends to be selected in all models, and SFABP has the smallest MSE for Ò. We also compare the

classification performance of five methods (ALL, MLENO, MLEVAR, FABP, and SFABP), the simula-

tion results showed that SFABP outperforms the other methods in high dimensional data, specially,

MLENO, MLEVAR does not work at all when the number of observations less than the number of va-

riables (� < �).

60

5 DISCUSSION AND FUTURE WORK

In this dissertation, we investigate clustering, classification, and factor analysis methods which

can be used in high dimensional dataset analysis.

For clustering, we reinvestigate an existing method, ODC, and advocate it as a dimension reduc-

tion tool for cluster analysis. We propose a cross-validation method for selecting the tuning parameter in

ODC. We also examine the performance of using existing methods such as the gap statistic and the stabil-

ity selection to select the number of clusters in ODC. As a dimension reduction tool for cluster analysis,

ODC performs much better than PCA, which does not take into account the clustering structure. Further-

more, we propose SODC by adding a group-lasso type of penalty on ODC to conduct cluster analysis and

feature selection simultaneously. We propose a kappa method for selecting turning parameter in SODC.

For classification, we studied two existing SPCA methods, and apply them to snp dataset. We do

comparison between the results and made a conclusion that SPCABP performs better than L-PCA and

AL-PCA methods in dimension reduction ability.

For factor analysis, we propose a novel FA method called SFABP based on the idea of SPCABP.

We propose to use cross-validation method to choose tuning parameters. After applying SFABP to simu-

lated dataset and real dataset, we proved that SFABP can perform well for high dimensional dataset com-

pared to the some other FA methods.

For future work, we will focus on developing other methodology to derive eigenvalue thus to re-

duce the MSE of Ö in SFABP. We will also validate our method on the real dataset. We might also con-

sider to apply SODC, SPCABP, SFA on a same dataset to compare their performance.

61

REFERENCES

[1] Altman, N. S. (1992), "An Introduction to Kernel and Nearest-neighbor Nonparametric

Regression," The American Statistician, 46 (3), 175–185.

[2] Bartholomew, D.J.; Steele, F.; Galbraith, J.; Moustaki, I. (2008), “Analysis of Multivariate

Social Science Data,” Statistics in the Social and Behavioral Sciences Series (2nd ed.). Taylor

& Francis.

[3] Ben-David, S., Von Luxburg, U., and Pal, D. (2006), “A Sober Look at Clustering

Stability,"19th Annual Conference on Learning Theory (COLT 2006), 4005, 5-19.

[4] Ben-Hur, A., Elissee_, A., and Guyon, I. (2002), “A Stability Based Method for Discovering

Structure in Clustered Data," Pacific Symposium on Biocomputing, 7, 6-17.

[5] Bouveyron, C., and Brunet, C. (2012), “Simultaneous Model-based Clustering and

Visualization in the Fisher Discriminative Subspace, "Statistics and Computing, 22(1), 301-324.

[6] Boyer, C., Merzbach U. (1989), “A History of Mathematics,” 2nd ed. New York, John Wiley &

Sons.

[7] Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garotte,” Technometrics,

37, 373–384.

[8] Broomhead, D. S., Lowe, D. (1988a). "Multivariable Functional Interpolation and Adaptive

Networks," Complex Systems, 2, 321–355.

[9] Broomhead, D. S., and Lowe, D. (1988b), “Radial Basis Functions, Multi-variable Functional

Interpolation and Adaptive Networks,” Technical report, RSRE, 4148.

[10] Bryant, F. B., and Yarnold, P. R. (1995), “Principal-Components Analysis and Confirmatory

Factor Analysis,” In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding

multivariate statistics. Washington, DC: American Psychological Association.

62

[11] Calinski, R. B., and Harabasz, J. (1974), “A Dendrite Method for Cluster Analysis,"

Communications in Statistics - Simulation and Computation, 3(1), 1-27.

[12] Cattell, R. B. (1966), “The Scree Test for The Number of Factors," Multivariate Behavioral

Research, 1(2), 245-276.

[13] Cauchy A.L. (1829),

“l′equation a l′aide de laquelle on determine les inegalites seculaires des mouve-
ments des planètes Oeuvres Complètes(IIème Série),” Paris, Blanchard.

[14] Chang, W. (1998), “On Using Principal Components before Separating a Mixture of Two

Multivariate Normal Distributions," Applied Statistics, 32(3), 267-275.

[15] Clemmensen, L., Hastie, T., Witten, D. M., and Ersboll, B. (2011), “Sparse Discriminant

Analysis," Technometrics, 53(4), 406-413.

[16] Clifton, C. (2010), "Encyclopædia Britannica: Definition of Data Mining," Retrieved 2010-12-

09.

[17] Cohen, J. (1960), “A Coefficient of Agreement for Nominal Scales, "Educational and

Psychological Measurement, 20(1), 37-46.

[18] Cortes, C., and Vapnik, V. (1995), "Support-Vector Networks,", Machine Learning, 20, 273-

297.

[19] "Data Mining Curriculum". ACM SIGKDD. 2006-04-30. Retrieved 2011-10-28.

[20] De la Torre, F., and Kanade, T. (2006), “Discriminative cluster analysis, "In The 23rd

International Conference on Machine Learning, 241-248.

[21] Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., and Strahan, E. J. (1999), "Evaluating the

Use of Exploratory Factor Analysis in Psychological Research," Psychological Methods, 4(3),

272-299.

63

[22] Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood and Its

Oracle Properties,” Journal of the American Statistical Association, 96, 1348–1360.

[23] Fang, Y., and Wang, J. (2012), “Selection of the Number of Clusters via the Bootstrap Method,

"Computational Statistics and Data Analysis, 56(3), 468-477.

[24] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996), "From Data Mining to Knowledge

Discovery in Databases," American Association for Artificial Intelligence, 0738-4602, 37-54.

[25] Fowlkes, E. B., and Mallows, C. L. (1983), “A Method for Comparing Two Hierarchical

Clusterings, "Journal of the American Statistical Association, 78(383), 553-584.

[26] Friedman, J. H., and Meulman, J. J. (2004), “Clustering Objects on Subsets of Attributes (with

Discussion),"Journal of the Royal Statistical Society, Series B, 66(4), 815-849.

[27] Friedman, J. H., and Tukey, J. W. (1974), “A Projection Pursuit Algorithm for Exploratory

Data Analysis, "IEEE Trans. Comput., C-23(9), 881-890.

[28] Gnanadesikan, R. (1997), “Methods for Statistical Data Analysis of Multivariate

Observations," 2nd Edition, John Wiley & Sons, Inc., New York.

[29] Gorsuch, R. (1983), “Factor Analysis,” Hillsdale, NJ: Lawrence Erl-baum.

[30] Hartigan, J. A. (1975), “Clustering Algorithms," Wiley, New York.

[31] Hastie, T., Tibshirani, R., and Buja, A. (1994), “Flexible Discriminant Analysis by Optimal

Scoring," Journal of the American Statistical Association, 89, 1255-1270.

[32] Hastie, T., Tibshirani, R., Friedman, J. (2009), “The Elements of Statistical Learning: Data

Mining, Inference, and Prediction," Second Edition Springer Series in Statistics.

[33] Hoerl, A., and Kennard, R. (1988), “Ridge Regression,” In Encyclopedia of Statistical Sciences,

New York: Wiley, 8, 129–136.

64

[34] Hotelling, H. (1933), “Analysis of a complex of statistical variables into principal components,”

Journal of Educational Psychology, 24, 417-441.

[35] Johnson, S. C. (1967), “Hierarchical Clustering Schemes, " Psychometrika, 2, 241-254.

[36] Jones, M. C., and Sibson, R. (1987), “What is Projection Pursuit?," Journal of the Royal

Statistical Society, Series A, 150(1), 1-37.

[37] Jordan C.(1874), “óôõö÷øố ùúø les forms ûüýüþố�üøôù ,”J Math Pure Appl, 19, 35-54.

[38] Jöreskog, K. G. (1969), “A General Approach to Confirmatory Maximum Likelihood Factor

Analysis,” Psychometrika, 34(2), 183-202.

[39] Kaufman, L., and Rousseeuw, P. (1990), “Finding Groups in Data: An Introduction to Cluster

Analysis," Wiley, New York.

[40] Krzanowski, W. J., and Lai, Y. T. (1988), “A Criterion for Determining the Number of Groups

in a Data Set Using Sum-of-Squares Clustering," Biometrics, 44(1), 23-34.

[41] Lange, T., Roth, V., Braun, M., and Buhmann, J. (2004), “Stability-based Validation of

Clustering Solutions," Neural Computation, 16(6), 1299-1323.

[42] Lee S., Epstein M.P., Duncan R., Lin X. (2012), “Sparse principal component analysis for

identifying ancestry-informative markers in genome-wide association studies,” Genet

Epidemiol, 36(4):293-302.

[43] Maccallum, R. C. (1990), "The Need for Alternative Measures of Fit in Covariance Structure

Modeling," Multivariate Behavioral Research, 25(2), 157-162.

[44] MacQueen, J. B. (1967), “Some Methods for Classification and Analysis of Multivariate

Observations," Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and

Probability, 1, 281-297.

65

[45] Maugis, C., Celeux, G., and Martin-Magniette, M. L. (2009), “Variable Selection in Model-

based Clustering: A General Variable Role Modeling," Computational Statistics and Data

Analysis, 53(11), 3872C3882.

[46] Ng, A., Jordan, M., and Weiss, Y. (2001), “On Spectral Clustering: Analysis and an

Algorithm," Advances in Neural Information Processing Systems, 14, 849-856.

[47] Pearson, K. (1901), “On lines and planes of closest fit to systems of points in space,”

Philosophical Magazine A, 2(6), 559-572.

[48] Preedy, V. R., and Watson, R. R. (2009), “Handbook of Disease Burdens and Quality of Life

Measures,” New York: Springer.

[49] Qi, X., Luo, R. and Zhao, H. (2013), “Sparse principal component analysis by choice of norm,”

Journal of Multivariate Analysis, 114, 127-160.

[50] Raftery, A. E., and Dean, N. (2006), “Variable Selection for Model-Based Clustering," Journal

of the American Statistical Association, 101(473), 168-178.

[51] Rand, W. M. (1971), “Objective Criteria for the Evaluation of Clustering Methods," Journal of

the American Statistical Association (American Statistical Association), 66(336), 846-850.

[52] Schwenker, F., Kestler, H.A., and Palm, G. (2001), "Three Learning Phases for Radial-basis-

function Networks," Neural Networks, 14, 439–458.

[53] Shen, X., and Ye, J. (2002), “Adaptive Model Selection,” Journal of the American Statistical

Association, 97, 210–221.

[54] Shi, J., and Malik, J. (2000), “Normalized Cuts and Image Segmentation," IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(8), 888-905.

[55] Spearman, C. (1904), “General Intelligence, Objectively Determined and Measured,” The

American Journal of Psychology, 15, 201–293.

66

[56] Steinley, D., and Brusco, M. J. (2008), “A New Variable Weighting and Selection Procedure

for K-means Cluster Analysis," Multivariate Behavioral Research, 43(1), 77-108.

[57] Stewart, G.W. (1993), “on the early history of the singular value decomposition,” SIAM

Review, 35(4), 551-566.

[58] Sugar, C., and James, G. (2003), “Finding the Number of Clusters in a Data Set: an

Information Theoretic Approach," Journal of American Statistical Association, 98(463), 750-

763.

[59] Suhr, D.D. (2009), "Principal Component Analysis vs. Exploratory Factor Analysis," Statistics

and Data Analysis. SUGI 30, Proceedings, 203-30.

[60] Sun, L., Ji, S., and Ye, J. (2008), “A Least Squares Formulation for Canonical Correlation

Analysis," In The 25th Intl Conf. Machine Learning, 1024-1031.

[61] Sun, W., Wang, J., and Fang, Y. (2012a), “Regularized k-means Clustering of High

dimensional Data and its Asymptotic Consistency, " Electron. J. Statist, 6, 148-167.

[62] Sun, W., Wang, J., and Fang, Y. (2012b), “Consistent Selection of Tuning Parameters via

Variable Selection Stability," arXiv:1208.3380v1.

[63] International HapMap Consortium. Comment in Nature. 2005 Oct 27;437(7063):1241-2

[64] Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the

Royal Statistical Society B, 58, 267–288.

[65] Tibshirani, R., Walther, G., and Hastie, T. (2001), “Estimating the Number of Clusters in a

Data Set via the Gap Statistic, " Journal of Royal Statistical Society, Series B, 63(2), 411-423.

[66] �Tyler, D.E., Critchley, F., D umbgen, L., and Oja, H. (2009), “Invariant Co-ordinate Selection

(with discussion)," Journal of the Royal Statistical Society, Series B, 71(3), 549-592.

67

[67] Wang, J. (2010), “Consistent Selection of the Number of Clusters via Crossvalidation,"

Biometrika, 97(4), 893-904.

[68] Witten, D. M., and Tibshirani, R. (2010), “A Framework for Feature Selection in Clustering,"

Journal of the American Statistical Association, 105(490), 713-726.

[69] Yaremko, R. M., Harari, H., Harrison, R. C., and Lynn, E. (1986), “Handbook of research and

quantitative methods in psychology,” for students and professionals. Hillsdale, NJ: Lawrence

Erlbaum Associate.

[70] Yuan, M., and Lin, Y. (2006), “Model Selection and Estimation in Regression with Grouped

Variables," Journal of the Royal Statistical Society, Series B, 68(1), 49-67.

[71] Zhang, Z., and Dai, G. (2009), “Optimal Scoring for Unsupervised Learning," Advances in

Neural Information Processing Systems 23, 12, 2241-2249.

[72] Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the American

Statistical Association, 101(476), 1418-1429.

[73] Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection Via the Elastic Net,”

Journal of the Royal Statistical Society B, 67, 301–320.

[74] Zou, H., Hastie, T., and Tibshirani, R. (2006), “Sparse Principal Component Analysis," Journal

of Computational and Graphical Statistics, 15(2), 265C286.27.

[75] Unknow author, “Principle Component and Factor Analysis,” ref here.

68

APPENDIX

Appendix A: Proof of Theorem for SODC

A.1 Proof of Theorem 1

We use the method of Lagrange multipliers to find the minimize of (2) with respect to N given x.

Let K∗ = v�Kx and '∗ = ' − 1. Consider the objective function,

I�N, K∗, Ò, «� = 12 5f�N^N� − 5f�N^K∗� + 12 5f¥K∗^K∗¦ − 12 5f¥Ò�N^N − W.∗ �¦ − 5f�«^N^1��,
Where Ò is a '∗ × '∗ symmetric matrix of Lagrange multipliers and b is a '∗ × 1 vector of La-

grange multipliers. Letting the differentiation of I be zero, we have

�I
�N = N − K∗ − NÒ − 1�«^ = 0

Pre-multiplying both sides of the above equation by 1�̂, we have « = 0 and then N − K∗ − NÒ =
0. Likewise, pre-multiplying by N^, we have W.∗ − N^K∗ = Ò.

If � ≥ '∗, denote the SVD of K∗ as K∗ = �H�^, where � ⊂ >�×.∗
, H ⊂ >.∗×.∗

 , �^ ⊂ >.∗×.∗
.

Because 1�̂K∗ = 0, we have 1�̂K∗�HJ� = 1�̂� = 0. Let Ny = ��^ , which satisfies 1�̂Ny = 1�̂��^ = 0

and Ny ^Ny = ��^��^ = W.∗ . Moreover, we have W.∗ − Ny ^K∗ = W.∗ − ��^�H�^ = W.∗ − �H�^ = Ò. This

implies that Ny is a minimizer of problem (2.2).

If � < '∗, denote the SVD of K∗ as K∗ = �H�^, where � ⊂ >�×� , H ⊂ >�×�, �^ ⊂ >�×.∗
 . Us-

ing this SVD, we can show the theorem similarly.

 A.2 Proof of Theorem 2

Given Y, the sub-gradient equations for (3) of x is

−2�� t̂ Þ� − $ ��,
?

,&� �,ß + 2g��, + g� �,C�,C� = 0, 1 = 1, … , �

Let the minimize of (2.3) be x� = ����, … , ��?�^. If
��� t̂�� − $ ��oo�, ��o�� < �g�2 �

69

Then ��, = 0. (Therefore, ��, = 0 for any 1 if g > g�pO =)e�,C��,̂�C.) Otherwise,

��,&��� t̂��t + g� + ���C�QCR�J��,.

Where
�, = ��t�� − $ ��oo�t ��o�

Note that �� t̂��t is actually a diagonal matrix where diagonal terms are sample variances of fea-

tures. If we conduct standardization on the design matrix at the beginning, we have �� t̂��t = W.J� then the

above equation becomes

��, = 2C��,C�g� + 2�1 + g��C��,C� �,

The Euclidean norm is C��,C� = �C�QCRJ�������R� . Plugging this norm to the above formula of ��,, we get

the formula of ��, stated in the theorem.

70

Appendix B: Core Code for SODC

library(magic) # for adiag function
library(ppls) # for normalize.vector
library(psych) # for tr() trace function
library(MASS) # for mvrnorm function

Function: cluster analysis using spectral cluster
hclust.wrap=function(x,centers) {
 hc <- hclust(dist(x))

 res=cutree(hc, k = centers) #k = 1 is trivial
 return(res)
}

######################### ODC algorithm #################################

Function: Get Y, W, Z as in ODC paper for given dataset, #of clusters k and sigma^2
odc.cv=function(data,k,lambda2){

 x=data.matrix(data)
 n=nrow(x)
 p=ncol(x)

 #### get centered matrix hn
 n1=as.vector(rep(1,n))
 hn=diag(n)-1/n*n1%*%t(n1)

 #### get matrix Hnx

 hnx=hn %*% x

 #### get Y, W, Z

 if(lambda2==0){

 lambda2=10^(-10)

 }

 tmpmat = ginv((t(x)%*% hnx+lambda2*diag(p)), tol=exp(-25))%*%t(x)%*%hn ####use

ginv, not use solve() in order to prevent the singular error messsage.
 if(all(is.finite(tmpmat)))
 s=hnx %*% tmpmat
 else
 stop("infinite or missing values in return frin ginv fuction")

71

 eig=eigen(s, symmetric = TRUE)######use symmetric = TRUE to prevent some error mes-
sage that eigen vector include some complex value

 yhat=eig$vectors[,1:(k-1)]

 what=tmpmat%*%yhat
 Z= hnx %*% what

 return(list(yhat=yhat, what=what,Z=Z,s=s, hnx=hnx))

}

Function: get optimal sigma^2 (lambda_2 in SODC) and use this optimal sigma^2 get Z, do

kmeans clustering on Z.

odc.clust = function(x,centers,cv.num=5,l2=-1,clus=kmeans,l2.idx=seq(-3, 3, by=6/20)) {

 if(l2 == -1){
 rlt = odc.optimallambda2(x, centers,cv.num,l2.idx)

 rlt.odc = odc.cv(x,centers,rlt$opt.lambda2)
 opt.lambda2 = rlt$opt.lambda2
 }
 else{
 rlt.odc = odc.cv(x,centers,l2)

 }
 res = clus(rlt.odc$Z,centers)
 if(l2==-1)
 return(list(res=res, opt.lambda2=opt.lambda2))
 else
 return(res)

}

Function: Cross validation on average (objective function) to get optimal sigma^2 (lambda_2

in SODC) in the case of known centers
odc.optimallambda2=function(data, centers, cv.num=5,lambda2.idx=seq(-3, 3, by=6/20)) {

 x=data.matrix(data)
 n=nrow(x)

 sigma=10^lambda2.idx
 nsigma = length(sigma)

72

 n1=as.integer(n/cv.num)

 cv.r=matrix(NA,3, nsigma)
 cv.s=matrix(NA,cv.num, nsigma)
 df.s=matrix(NA,cv.num, nsigma)

 for (cv.i in 1:cv.num) {

 x.tr1=x[-((cv.i-1)*n1+(1:n1)),]
 x.val=x[(cv.i-1)*n1+(1:n1),]
 ####
 for (nsigma in 1:nsigma) {

 tr1.cv=odc.cv(x.tr1,centers,sigma[nsigma])

 #### get # of rows and columns of validation samples
 nval=nrow(x.val)
 pval=ncol(x.val)

 #### get centered matrix hn.val for validation samples
 n1val=as.vector(rep(1,nval))
 hn.val=diag(nval)-1/nval*n1val%*%t(n1val)

 #### get matrix Hnx.val for validation samples

 hnx.val=hn.val %*% x.val

 #### get prediction of Y of validation samples from estimated W of training samples
 s <- svd(hnx.val %*% tr1.cv$what)
 yhat.val=s$u %*% t(s$v)

 #### objective function Euclidean norm ||Y-HnXW||
 obj=yhat.val-hnx.val %*% tr1.cv$what
 cv.s[cv.i, nsigma]=tr(t(obj) %*% obj)
 #cv.s[cv.i, nsigma]=tr(t(yhat.val-hnx.val %*% tr1.cv$what) %*% (yhat.val-hnx.val %*%

tr1.cv$what))

 #### get df of s=hnX(x^T+sigma^2Ip)^(-1) please refer to ridge regression of elemen-

tary statistics of data mining
 tmpmat = ginv((t(x.val)%*% hnx.val+sigma[nsigma]*diag(pval)), tol=exp(-

25))%*%t(x.val)%*%hn.val
 s=hnx.val %*% tmpmat
 df=tr(s)
 df.s[cv.i, nsigma]=df
 }

73

 }

 sigma.mean = apply(cv.s, 2, mean,na.rm=TRUE)
 sigma.sd = apply(cv.s, 2, sd,na.rm=TRUE)

 df.mean = apply(df.s, 2, mean,na.rm=TRUE)

 cv.r[1,] = sigma.mean
 cv.r[2,] = sigma.sd
 cv.r[3,] = df.mean

 y.hl=min(cv.r[1,],na.rm =TRUE)+cv.r[2,which(cv.r[1,] == min(cv.r[1,],na.rm =TRUE), arr.ind

= TRUE)]

 meanord=order(cv.r[1,])

 tmp=which(cv.r[1,] < y.hl)

 opt.lambda2=sigma[tmp[length(tmp)]]

 return(list(cv.r=cv.r, sigma=sigma,opt.lambda2=opt.lambda2))
}

################################# SODC algorithm ########################

Function: get matrix Hnx, B, and initial value of W
get.hnx.B.initialW=function(data,k,lambda2){ ###### initially use this to do simulation, but it

cost time, so change to the following version

 x=data.matrix(data)
 p=ncol(x)

 odcrlt = odc.cv(data,k,lambda2)

 #### extend orthonormalized matrix HnX to a nx(c-1) by px(c-1) block diagonal matrix
 #### normalize a vector normalize.vector {ppls}

 hnx.new=NULL
 for(j in 1:p)
 hnx.new=cbind(hnx.new,normalize.vector(odcrlt$hnx[,j]))

 tmp = hnx.new

 if(k>2){

74

 for(i in 1:(k-2)){

 tmp=adiag(tmp,hnx.new)

 }
 B=tmp
 } else B=hnx.new

 y.oldvec = as.vector(odcrlt$yhat)
 w.oldvec = as.vector(t(odcrlt$what))

 return(list(y.initial=y.oldvec, w.initial=w.oldvec, what=odcrlt$what,yhat=odcrlt$yhat,B=B,

hnx=odcrlt$hnx))

}

####Function: get correspoinding predictors of Wj group
get.bj=function(c, B, p,j){

 Bj=NULL
 for(k in 1:c-1){
 if(c>2 & j<=p*(c-1)){

 Bj=cbind(Bj,B[,j])
 j=j+p

 }
 if(c==2){
 Bj=B[,j]
 }

 }

 return(Bj)
}

####Function: get correspoinding predictors matrix in the order of wj group #### newly

changed version of get.B.inorder function
get.B.inorder=function(c, B, p){

 B.inorder=NULL
 s=NULL
 for(j in 1: p){

75

 s = c(s, seq(j,,p,c-1))
 }

 B.inorder=B[,s]

 return(B.inorder)
}

####Function: get correspoinding parameters matrix after removing the jth group
get.w.remove.j=function(w,j){
trans.w=t(w)
trans.w[,j]=0
return(as.vector(trans.w))

}

Function:SODC algorithm
my.lasso.classify=function(data,c,lambda1,lambda2, tol=10^(-10),iter.max = 50){

 p = ncol(data.matrix(data))
 w.init=get.hnx.B.initialW(data, c,lambda2)
 B.inorder=get.B.inorder(c, w.init$B, p)

 w.old = matrix(10000, nrow(w.init$what),ncol(w.init$what))
 count <- 0

 while(min(t(w.init$what-w.old)%*%(w.init$what-w.old), t(w.init$what+w.old) %*%

(w.init$what+w.old)) > tol){

 count <- count + 1
 if(count > iter.max) break;
 for(j in 1: p){

 Bj=get.bj(c, w.init$B, p,j)
 w.remove.j=get.w.remove.j(w.init$what,j)
 res=w.init$y.initial-B.inorder%*%(w.remove.j)

 vlnorm=sqrt(sum((t(Bj)%*%(res))^2))
 wjnorm=sqrt(sum((w.init$what[j,])^2))

 if(wjnorm!=0){

 if (vlnorm <= lambda1/2){

 wjhat= 0
 }else

76

 {
 wjhat = ((1-lambda1/2*vlnorm)/(1+lambda2)) * (t(Bj) %*% res)

 }

 w.old = w.init$what
 w.init$what[j,]=wjhat

 s <- svd(w.init$hnx %*% w.init$what)
 yhat.new=s$u %*% t(s$v)
 w.init$y.initial = as.vector(yhat.new)
 w.init$w.initial = as.vector(w.init$what)

 }

 }

 }
 nvarselected=0
 nvarselectedset=NULL
 for(i in 1: p){
 wjnormtemp=sqrt(sum((w.init$what[i,])^2))

 if(wjnormtemp!=0){
 nvarselected=nvarselected+1

 nvarselectedset=c(nvarselectedset,i)
 #if(nvarselected<=1)
 #stop("Please use a smaller lambda1"))
 }
 }
 Z= w.init$hnx %*% w.init$what

 return(list(Z=Z, varset=nvarselectedset, what=w.init$what, nvarselected=nvarselected))

}

Function: cluster analysis using odc.lasso.coordinate clustering. If l2=-1, select the optimal

lambda2 and corresponding winit
sodc.clust = function(x,centers,l1=-1,l2=-1,cv.num=5,clus=kmeans,boot.num=20,l2.idx=seq(-3, 3,

by=6/20),l1.idx=seq(-3, 3, by=6/20)) {
 if(l2==-1){

77

 rlt=odc.optimallambda2(x, centers,cv.num,l2.idx)

 l2=rlt$opt.lambda2

 }
 if(l1==-1){

 rlt = sodc.optimallambda1.boot.all(x, centers, boot.num,l1.idx)
 l1=rlt$opt.lambda1
 }

 rlt.sodc = my.lasso.classify(x,centers,l1,l2)

 cl=NULL
 clvar=NULL
 if(length(unique(rlt.sodc$Z))>=centers){

 cl=clus(rlt.sodc$Z,centers)

 clvar=clus(x[,rlt.sodc$varset],centers)

 }

 return(list(cl=cl, clvar=clvar, opt.lambda1=l1, opt.lambda2=l2))
}

SODC algorithm tuning parameter selection####

Function: SODC selecting optimal lambda1 using clust.kappa method (SODC) use depen-

dent generated bootstrap pairs, all lambda1 values
sodc.optimallambda1.boot.all=function(data,centers,boot.num=20,l1.idx=seq(-3,3,by=6/20)){
 lambda1=10^l1.idx
 n.lambda1 = length(lambda1)
 x=data.matrix(data)
 n=nrow(x)
 ncol=ncol(x)

 n1=as.integer(n*(1/2))
 boot.r=matrix(NA, 1, n.lambda1)
 boot.s=matrix(NA,boot.num, n.lambda1)
 for (boot.i in 1:boot.num) {

 x.perm=x[sample(1:n,n,replace=F),]
 x.boot1=x.perm[1:n1,]
 x.boot2=x.perm[(n1+1):n,]

78

 rlt1=odc.optimallambda2(x.boot1, centers,cv.num=5)
 rlt2=odc.optimallambda2(x.boot2, centers,cv.num=5)

 for (nlambda1 in 1:n.lambda1) {

 boot1.clus=my.lasso.classify(x.boot1,centers,lambda1[nlambda1],rlt1$opt.lambda2)
 boot2.clus=my.lasso.classify(x.boot2,centers,lambda1[nlambda1],rlt2$opt.lambda2)

 boot.s[boot.i, nlambda1]=clust.kappa(boot1.clus$varset,boot2.clus$varset,ncol)

 }
 print (boot.i)

 }

 lambda1.mean = apply(boot.s, 2, mean,na.rm=TRUE)

 boot.r[1,] = lambda1.mean
 if(all(boot.r[1,]==-1))
 print("for this dataset, SODC always choose the exactly the true model.")
 opt.lambda1=lambda1[which(boot.r[1,] ==max(boot.r[1,]))][1]
 return(list(boot.r=boot.r, boot.s=boot.s, lambda1=lambda1,opt.lambda1=opt.lambda1))
}

Function: output the kappa score between two clustering assignments: clus1 and clus2
p is the total number of variables of a dataset on which do clustering
clust.kappa=function(clus1,clus2,p) {

 com=seq(1,p,by=1)
 n11=length(intersect(clus1,clus2))
 s1com=setdiff(com,clus1)
 s2com=setdiff(com,clus2)
 n12=length(intersect(clus1,s2com))
 n21=length(intersect(s1com,clus2))
 n22=length(intersect(s1com,s2com))

 pr_a=(n11+n22)/p

 pr_e=(n11+n12)*(n11+n21)/p^2+(n12+n22)*(n21+n22)/p^2

 if(length(clus1)==0||length(clus2)==0||length(clus1)+length(clus2)==2*p) ka=-1 else
 ka=(pr_a-pr_e)/(1-pr_e)

79

 return(ka)
}

Function: generate multimal norm data set with 3 clusters
u: contral the overlap degree among clusters. The cluster centers are (-u,u),(u,u),(u,-u) re-

spectively,
nvar: number of informative variable,should be even number; nobs: number of observations;
p: total number of variables. p-nvar: number of noise variable
my.normdata.gen=function(u,p,nobs,nvar){

 vec25=as.vector(rep(1,nvar/2))
 vec50=as.vector(rep(1,nvar))
 idenmat50=diag(nvar)

 mean.y1=c(-u*vec25,u*vec25)
 mean.y2=c(u*vec50)
 mean.y3=c(u*vec25,-u*vec25)
 #mean.y4=c(-u*vec50)

 x=matrix(0, nrow=nobs, ncol=p)

 y = sample(c(1,2,3), nobs, replace = TRUE)

 for(i in 1:nobs){

 if(y[i]== 1)
 x[i,1:nvar]= mvrnorm(n=1, mean.y1, idenmat50)
 else if(y[i]== 2)
 x[i,1:nvar]= mvrnorm(n=1, mean.y2, idenmat50)
 else if(y[i]== 3)
 x[i,1:nvar]= mvrnorm(n=1, mean.y3, idenmat50)

 if(p>nvar)
 x[i,(nvar+1):p] = rnorm(n=(p-nvar), mean = 0, sd = 1)

 }
 return (list(x=x,y=y))

}

80

Appendix C: Core Code for SPCABP

constMin1 <- function(a, mu)
max a'x such that ||x||_mu \e 1.
{
nvar <- length(a)
x <- rep(1,nvar)
aa <- abs(a)
aa.sort <- sort(aa, decreasing=T, index.return=T,method="quick")
aas <- aa.sort$x
aas.sum <- sum(aas)
aas.cum <- cumsum(aas)

flag <- ((aas[-1] <= mu*aas.cum[-nvar]/(1+(1:(nvar-1)-1)*mu)) & (mu*aas.cum[-

nvar]/(1+(1:(nvar-1)-1)*mu) < aas[-nvar]))
if(sum(flag)>0){
mc <- which(flag>0)[1]
}else{
mc <- nvar
}
tmp <- mu * aas.cum[mc] / (1+(mc-1)*mu)
x <- c(aas[1:mc] - tmp, rep(0, nvar-mc))

b <- sort(aa.sort$ix, index.return=T,method="quick")

x <- x[b$ix]

norm= sqrt(mu*(sum(abs(x)))^2+(1-mu)*sum(x^2))
I=aa.sort$ix[1:mc]
x[I] <- (sign(a[I]) * x[I]) / norm

return(list(x=x, norm.lambda=norm, m=mc))
}

constOpt2 <- function(a, Psi, mu, tol,tol.1)
{nvar=length(a)
 if(is.null(Psi))
 {ret <- constMin1(a,mu)
 v<- ret$x
 return(v)
 }else
 {Psi=as.matrix(Psi)
 dim.old <- dim(Psi)[2]
 t=rep(0,dim.old)
 ret <- constMin1(a,mu)
 x<- ret$x # correspond to x(t) in proof of theorem 2.6
 nu <- ret$norm / 2
 m <- ret$m

81

 h <- as.vector((2*nu/(1-mu))*t(x)%*%Psi)
 H <- sum(h^2)
 alpha <- mu / (1+(m-1)*mu)
 count1 <- 0

 while(H>tol){
 #print(c("count1=",count1,H))
 count1 <- count1+1
 if(count1 > 400){
 # print("big count1");
 #print(c(count1, H));
 break;
 }
 I=which(x!=0)
 signx <- sign(x[I])
 if(length(I)<(nvar/2))
 { NNPsi <- Psi[I,]
 K <- NNPsi - alpha * (signx %*% (t(signx) %*% NNPsi))
 A=(t(K)%*%NNPsi/(1-mu))
 }else{
 NNPsi <- Psi[-I,]
 if((nvar-length(I))==1){NNPsi=(t(as.matrix(NNPsi)))}
 temp=t(Psi[I,])%*%signx
 A=((diag(dim.old)-t(NNPsi)%*%NNPsi-alpha*temp%*%t(temp))/(1-mu))
 }

 if(H>1e-5)
 {deriv.1 <- 2*A%*%h
 deriv.2 <- 2*A%*%t(A)
 eig.hess <- (eigen(deriv.2))$values
 positive.thresh <- max(c(0, abs(eig.hess[eig.hess<1e-6]))) # value 0 is used to avoid NULL

in the latter part
 positive.thresh=positive.thresh +1e-7
 #positive.thresh= positive.thresh+min(positive.thresh, 1e-3)
 if(H<1e-7){positive.thresh=H}
 # print(c("H",H))
 Hess <- deriv.2 + positive.thresh * diag(dim.old)
 t.inc <- - solve(Hess, deriv.1)
 }else{
 fit=svd(A)
 I=which(fit$d>tol.1)
 if(length(I)==1){t.inc=-fit$v[,I]*(1/(fit$d[I]))*(fit$u[,I])*h}else
 {t.inc=-fit$v[,I]%*%diag(1/(fit$d[I]))%*%t(fit$u[,I])%*%h}
 }

 t.new <- as.vector(t + t.inc)
 # print(c("H",H))
 temp=as.vector(a+Psi %*% t.new)
 ret <- constMin1(temp,mu)

82

 x.new<- ret$x # correspond to x(t) in proof of theorem 2.6
 nu.new <- ret$norm / 2
 m.new <- ret$m
 alpha.new <- mu / (1+(m.new-1)*mu)
 h.new <- as.vector((2*nu.new/(1-mu))*t(x.new)%*%Psi)
 H.new <- sum(h.new^2)
 count2=0
 while((H.new>tol)&(H.new>H+2*(1e-4)*t(t.inc)%*%(A%*%h))){
 count2 <- count2+1
 #print(c(count2, H,t.inc))
 if(count2 > 4){
 #print("big count2.")
 #print(count2)
 temp=rnorm(length(t),0,1)
 t.new=t+0.1*temp/sqrt(sum(temp^2))
 break;
 }

 t.inc <- 0.3 * t.inc
 t.new <- as.vector(t + t.inc)
 temp=as.vector(a+Psi %*% t.new)
 ret <- constMin1(temp,mu)
 x.new<- ret$x # correspond to x(t) in proof of theorem 2.6
 nu.new <- ret$norm / 2
 m.new <- ret$m
 alpha.new <- mu / (1+(m.new-1)*mu)
 h.new <- as.vector((2*nu.new/(1-mu))*t(x.new)%*%Psi)
 H.new <- sum(h.new^2)
 }
 t <- t.new
 h=h.new
 nu=nu.new
 H <- H.new
 x <- x.new
 m=m.new
 alpha <- alpha.new
 } # end of while(H>tol)
 #print(c("count1=",count1,H))
 return(x)
 }
}
#%%

%%%
%%%%%%%%%%%%

spca.BP=function(y, ncomponent,lambda,nrepeat=3,covariance=F,
corr=F,orthogonal=F,tol=10^{-12},tol.1=10^{-8})

#%%
%%%
%%%%%%%%%%%%

y is either a data matrix with rows being samples and columns being variables or a covariance
matrix;

83

ncomponent is the number of PCs you want to extract;
lambda is the sparse tuning parameter;
nrepeat is the number of repeats for each components in order to get the global maximum of the

objective function.
covariance indicates whether y is a covariance matrix;
corr indicates whether the correlation matrix is used instead of the covariance matrix;
orthogonal indicates whether the components are orthogonal or uncorrelated;
#%%

%%%
%%%%%%%%%%%%

{mu=lambda
 PCs=NULL
 Psi=NULL
 if(sum(is.na(y))!=0)
 {print("There are missing values!")
 return(NULL)}else
 {
 if(covariance)
 {nvar=dim(y)[1]
 if(corr)
 {mtx=cov2cor(y)
 }else
 {mtx=y}
 for(ncomp in 1:ncomponent)
 {
 qq=cc=rep(0,nrepeat)
 mqq=0
 for(j in 1:nrepeat)
 {
 v <- rnorm(nvar,0,30)
 v.old <- rnorm(nvar,0,5)
 count <- 0
 value=t(v)%*%(mtx%*%v)
 value.old=0
 while((value>value.old)&(min(t(v-v.old)%*%(v-v.old), t(v+v.old) %*% (v+v.old)) >

sum(v^2)*tol.1))
 {
 count <- count + 1
 if(count > 60)
 {#print(c("count",count))
 break}
 v.old <- v
 a <- mtx%*%v
 if(!is.null(Psi)){a <- a - Psi %*% (t(Psi) %*% a)} # get orthogonal of a
 if (sum(abs(a))==0) stop
 v <- constOpt2(a/sqrt(sum(a^2)), Psi, mu, tol,tol.1)
 value=t(v)%*%(mtx%*%v)
 #print(c("value=",value))
 #if(!is.null(Psi)){print(t(Psi)%*%v)}
 }

84

 qq[j]=t(v)%*%(mtx%*%v)
 #print(c("qq=",qq[j],1))

 if((mqq<qq[j]))
 {vc=v
 mqq=qq[j]
 }
 }
 print(c("The component",ncomp))
 PCs=cbind(PCs,vc/sqrt(sum(vc^2)))
 if(orthogonal)
 {Psi <-cbind(Psi, vc)}else
 {
 u <-mtx%*%vc
 if(!is.null(Psi)){u=u-Psi%*%(t(Psi)%*%u)}
 Psi=cbind(Psi, u/sqrt(sum(u^2)))
 }

 }
 }else
 {x=y
 nsample=dim(x)[1]
 nvar =dim(x)[2]
 mux<- drop(rep(1,dim(x)[1]) %*% x)/dim(x)[1]
 temp=scale(x,mux,scale =F)
 if(corr)
 {
 normx <- sqrt(drop(rep(1,dim(x)[1]) %*% (temp^2)))
 z.x=scale(x,mux,normx)
 }else
 {z.x=scale(x,mux,rep(max(abs(x)),dim(x)[2]))}
 for(ncomp in 1:ncomponent)
 {
 qq=cc=rep(0,nrepeat)
 mqq=0
 for(j in 1:nrepeat)
 {
 v <- rnorm(nvar,0,30)
 v.old <- rnorm(nvar,0,5)
 count <- 0
 value=sum((z.x%*%v)^2)
 value.old=0
 while((value>value.old)&(min(t(v-v.old)%*%(v-v.old), t(v+v.old) %*% (v+v.old)) >

sum(v^2)*tol.1))
 {
 count <- count + 1
 if(count > 60)
 {#print(c("count",count))
 break}
 v.old <- v
 temp=(z.x%*%v)/nsample

85

 a <- t(z.x)%*%temp
 if(!is.null(Psi)){a <- a - Psi %*% (t(Psi) %*% a)} # get orthogonal of a
 if (sum(abs(a))==0) stop
 v <- constOpt2(a/sqrt(sum(a^2)), Psi, mu, tol,tol.1)
 value=sum((z.x%*%v)^2)
 #print(c("value=",value))
 #if(!is.null(Psi)){print(t(Psi)%*%v)}
 }
 qq[j]=sum((z.x%*%v)^2)
 #print(c("qq=",qq[j],2))
 if((mqq<qq[j]))
 {vc=v
 mqq=qq[j]
 }
 }
 print(c("The component",ncomp))

 PCs=cbind(PCs,vc/sqrt(sum(vc^2)))
 if(orthogonal)
 {Psi <-cbind(Psi, vc)}else
 {temp=(z.x%*%vc)/nsample;
 u <-t(z.x)%*%temp;
 if(!is.null(Psi)){u=u-Psi%*%(t(Psi)%*%u)}
 Psi=cbind(Psi, u/sqrt(sum(u^2)))
 }
 }
 if(corr)
 {PCs=t(scale(t(PCs),center=F,normx))
 PCs=scale(PCs,center=F)/sqrt(dim(PCs)[1]-1)
 }
 }

 return(PCs)
 }
}

86

Appendix D: Core Code for SFABP

FUNCTION: use spcaBP to do factor analysis, return factor loadings and factor scores.

spcaBP.fa = function(x, k, lambda){ ###x is a data matrix, centers is the number of groups.,

group is the group factor indicating what class is the observation in

 loadings=NULL

 sdx=scale(x, center = TRUE, scale=TRUE)

 PCs=spca.BP(sdx, k,lambda, orthogonal=T) #x the n*p data matrix with n samples and p

variables

 for(j in 1:k){ # k is the numbers of factors

 loadings = cbind(loadings,sqrt(t(PCs[,j]) %*% (cor(x)) %*% PCs[,j]) * PCs[,j])

 }

 scores= t(solve(t(loadings) %*% loadings) %*% t(loadings) %*% t(sdx)) ####get factor

scores n*k

 colnames(loadings) <- paste("Factor", 1:k, sep = "")
 rownames(loadings) <- colnames(x)
 colnames(scores) <- paste("SC", 1:k, sep = "")

 fit = matrix(0,3,k)
 fit[1,]=colSums(loadings^2)
 fit[2,]= fit[1,]/ncol(x)

 for(i in 1: k){
 fit[3,i]= sum(fit[2, 1:i])
 }

 colnames(fit) =colnames(loadings)
 names(fit[2,]) = paste("Proportion Var")
 return(list(loadings=loadings, scores=scores, fit=fit))
}

FUNCTION: return classification error rate
misclassification.rate=function(predict,grouping){
tab = table(predict,grouping)
num1=sum(diag(tab))
denom1=sum(tab)
signif(1-num1/denom1,3)

#ce= sum(tab[row(tab) != col(tab)]) / sum(tab)
}

87

FUNCTION: do classification, KNN-cv or LDA-cv, return classification error rate and the

classification group factors.
spcaBP.classify = function(x, grouping, method="KNN"){ ###x is a data matrix or a factor score

matrix, centers is the true number of groups., grouping is the group factor indicating what class is## ##the
##observation in

 ####use knn.cv to do classification and see the classification error rate

 cr=factor(grouping)
 if(method=="KNN"){
 cluster = knn.cv(x, cr)

 }
 else if (method=="LDA"){

 cl = lda(x, cr,CV = TRUE)
 cluster = cl$class

 }

 ce = misclassification.rate(cluster,cr)

 return(list(ce=ce, cluster=cluster))
}

FUNCTION: SFABP: CV to choose optimal factors and lambda
SPCA.BP.optimal.k.lambda.cv=function(data, cl, cv.num=10, KK=4,ratio=1/3, method="KNN")

{

 x=data.matrix(data)
 n=nrow(data)
 ncol=ncol(data)

 n1=as.integer(n*ratio)

 #boot.s=matrix(NA,boot.num, KK)

 lambda=c(0.00001, 0.0001,0.001, 0.01, 0.05, 0.1, 0.2, 0.3) ### for colon data
 #lambda=c(0.001, 0.01, 0.05, 0.1, 0.2, 0.3)
 cv.s = array(0 ,dim=c(KK,length(lambda),cv.num))
 cv.r = matrix(NA, KK, length(lambda))
 for (cv.i in 1:cv.num) {
 sn = sample(1:n,n,replace=F)
 x.perm=x[sn,]
 x.tr=x.perm[1:(2*n1),]

88

 x.val=x.perm[-(1:(2*n1)),]
 cl.perm=cl[sn]
 cl.tr=cl.perm[1:(2*n1)]
 cl.val=cl.perm[-(1:(2*n1))]

 sdx.tr=scale(x.tr, center = TRUE, scale=TRUE)
 #sdx.val=scale(x.val, center = TRUE, scale=TRUE)

 for (factors in 1:KK) {
 for(nl in 1: length(lambda)){

 #### Qi's SPCA
 PCs=spcaBP.fa(sdx.tr, factors, lambda=lambda[nl])

 scores.tr = PCs$scores

 scores.val = spcaBP.predict.score(PCs, x.val)
 if(method=="KNN"){
 precl = spcaBP.predict.cl(scores.tr, scores.val, cl.tr, cl.val, method="KNN")
 }
 else if (method=="LDA"){
 precl = spcaBP.predict.cl(scores.tr, scores.val, cl.tr, cl.val, method="LDA")
 }

 #### release memory,which is important for large dataset
 rm(PCs)
 gc()

 cv.s[factors, nl, cv.i] = precl$ce

 }

 }
 print (cv.i)

 }

 cv.r = apply(cv.s, c(1,2), mean,na.rm=TRUE)
 pos=which(cv.r==min(cv.r), arr.ind = TRUE)

 opt.k = pos[1,1]
 opt.lambda=lambda[pos[1,2]]
 return(list(cv.r=cv.r, cv.s=cv.s, lambdas=lambda,k=opt.k, lambda=opt.lambda))

}

	Georgia State University
	ScholarWorks @ Georgia State University
	Fall 12-17-2013

	Clustering, Classification, and Factor Analysis in High Dimensional Data Analysis
	Yanhong Wang
	Recommended Citation

	Microsoft Word - Wang_Yanhong_201312_phd_2_1_

