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Abstract 

 

 

 

 Environmental regulations that grandfather existing plants by not holding them to the 

same strict standards as new plants may have the unintended consequence of retarding new 

investment.  If new plants are cleaner, then this effect may increase pollution in the short run.  I 

develop a dynamic model of a facility's decisions over scrapping and abatement, which depend 

on capital depreciation, profitability shocks, and environmental policy.  Using data from fossil 

fuel fired boilers at electric power plants, I estimate the structural parameters of the model and 

assess the impact of grandfathering in the Clean Air Act on sulfur dioxide emissions.  

Counterfactual policy simulations show that an increase in the stringency of performance 

standards would have led to a decrease in investment in new boilers.  However, this does not 

lead to increased emissions, since there is less investment in dirtier coal boilers as compared to 

relatively cleaner oil or natural gas boilers. 

 

JEL Codes: Q58, L94 

Keywords: Clean Air Act, Sulfur Dioxide, Method of Simulated Moments, Vintage-

Differentiated Regulation, Electric Power Plants 
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 Regulations often contain grandfathering provisions, where facilities already built or 

workers already employed at the time of passage are not subject to the new standard.  While the 

reasoning for such provisions may relate to fairness, such as a wish not to "change the rules in 

the middle of the game," they often come with unintended consequences.  By giving different 

incentives to grandfathered agents and non-grandfathered agents, the regulations can lead to 

unexpected outcomes.  The federal Clean Air Act (CAA) and its New Source Performance 

Standards (NSPS) for major sources of air pollution are examples.  By mandating that any new 

pollution sources (including power plants) meet strict pollution control standards, the rule may 

keep older facilities from scrapping and being replaced by newer ones.  If older facilities are 

dirtier than newer ones, then this may create a "perverse" effect that increases pollution.   

 The purpose of this paper is to determine how grandfathering provisions in environmental 

policy affect both investment in and pollution from fossil fuel fired electric power plants.  I 

develop a dynamic model of each facility's decisions about investment in new capital and choice 

of abatement techniques.  These decisions are affected by the relative profitability of new capital, 

the costs of upgrading, and environmental regulations.  Newer capital pollutes less, and hence 

stricter environmental policy without grandfathering provides an extra incentive to upgrade.  Yet 

stricter environmental policy with grandfathering may provide a disincentive to upgrade.  Using 

data from 1985-1995 on U.S. electric power plants, I estimate the parameters of the model.  

Finally, I simulate the estimated model to determine how grandfathering in the CAA impacts 

emissions and investment. 

 An early examination of a grandfathered environmental policy is [1], who looks not at 

stationary air pollution sources but at automobiles.  He finds that stricter vehicle emissions 

standards, which apply only to new cars and hence effectively grandfather old cars, lead to a 
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perverse short term increase in emissions.  [2] find that environmental regulations increase the 

age of capital but not the level of emissions for electric utilities, while [3] finds no significant 

difference in capital vintage between states with and without grandfather provisions for 

manufacturing plants in commercial printing and paint manufacturing.  [4] and [5] also find 

perverse effects of grandfathering in the electric power industry and in manufacturing plants in 

New York state, respectively.  Finally, [6] find that grandfathering in the CAA decreases the 

capital expenditures of coal-fired power plants but has no effect on their operating costs, fuel 

efficiency, or emissions.   

 In this paper's model, firms face a discrete choice of whether or not to scrap and upgrade 

their capital.  This model contains two important extensions to discrete choice scrapping models 

to accommodate this industry and this policy.  First, since the regulations are grandfathered, the 

model contains an additional state variable representing a facility's grandfathered status.  

Investment affects this status (if you scrap your plant, you lose its grandfathered status), so the 

policy impacts dynamic investment decisions.  Second, instead of just considering a single 

binary decision (scrap or don't scrap), the model includes decisions over pollution abatement and 

plant type.  These are important avenues for plants to respond to environmental policy, and 

without including them as options, plants are constrained in how they can react to policy 

changes.   

 This paper also extends the literature that studies the effects of grandfathering provisions 

in the CAA, including NSPS and New Source Review (NSR), by developing the first model that 

is structural and dynamic.  A structural model allows for simulation of countless counterfactual 

policy scenarios.  A dynamic model makes explicit the dynamic programming problem that 

utilities are solving, and it captures the effect that the cross-sectional distribution of plant 
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vintages and grandfathering statuses has on the impact of the policy.  Although this paper uses 

the model to retrospectively analyze the CAA's effect on the electricity industry through the mid-

1990s, the model can be adapted to study and make forecasts about other industries and other 

policy environments in which grandfathering plays a role.   

Grandfathering, or vintage-differentiated regulation, appears frequently outside of the 

CAA, both in environmental and non-environmental laws.  Corporate average fuel economy 

(CAFE) standards and emissions rate standards apply only to new cars, so old cars are effectively 

grandfathered.  The Clean Water Act and the Safe Drinking Water Act both set differential 

standards for water treatment plants based on when they went into operation.  Furthermore, 

grandfathering is by no means absent from current policy debate.1  Fire sprinklers are required in 

new buildings, but existing buildings are often not required to have them unless they are 

renovated.  Zoning ordinances generally do not apply to businesses or homes built before the 

ordinance went into effect.  Given the prevalence of grandfathering, it is important to study its 

effects, including any potentially perverse or counterproductive effects. 

 I find a significant effect of grandfathering in environmental regulations on both 

emissions and investment.  Using the model to simulate the CAA and counterfactuals, I find that 

if grandfathering provisions were eliminated in 1985, emissions from power plants would be 

60% less than the baseline level in 1995.  This is because a large majority of plants in the cross 

section are grandfathered, and eliminating grandfathering amounts to a large policy shift.  If the 

stringency of the grandfathered CAA standards was weakened in 1985, investment in new 

boilers would rise and yet emissions would also rise.  The rise in new investment occurs for the 

same reason that strengthening a grandfathered standard can reduce new investment.  When the 

grandfathered regulations are weakened, grandfathered plants lose some value in their 
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grandfathered status, and hence their disincentive to invest falls.  However, emissions do not fall, 

because the increased new investment occurs in relatively dirty coal boilers as opposed to 

relatively clean oil or natural gas boilers.  Thus, the structural model that includes choice of 

boiler type helps explain results from previous studies, including [2] and [6], finding that 

grandfathered regulations inhibit new plant investment but have no perverse effect on emissions. 

 The next section below presents the model.  In section two I describe the data.  Section 

three presents the estimation strategy and results, section four the results from the counterfactual 

simulations, and section five concludes. 

 

I. Model 

I develop a model to estimate the impact of grandfathering in the Clean Air Act of 1970 

on the electric power generating industry.2  The CAA is an appropriate policy to consider 

because of its explicit grandfathering of existing sources.  Section 111 of the law gave EPA the 

power to set binding emissions standards on all new sources of emissions - the New Source 

Performance Standards.  Regulation of existing plants was left up to the states and is likely to be 

less strict.  The plants were grandfathered for reasons of efficiency (it is costlier to retrofit 

existing plants than new ones), equity (it is unfair to "change the rules of the game mid-stream" 

by regulating existing plants), and politics (potential facilities have less clout than existing 

ones).3  

I consider the behavior of a profit-maximizing one-plant firm.  This model could be 

generalized to multi-plant firms, but the assumption that each individual plant's maximization 

decision is independent leads to identical results.  The basis of this model is the discrete choice 

scrapping model, e.g. [7], extended in two important ways.  First, in addition to the choice of 
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scrapping, plants can choose abatement investment to reduce emissions and can choose among 

different types of capital.  Second, plants can be grandfathered from environmental policy.   

Five nonrandom and two random state variables describe the plant at each period.  First, 

the plant's age is  v.  Second, a plant can be of two types: coal (b = 1) or non-coal (b = 0).4  Third, 

a coal plant can have a flue gas desulfurization unit, or "scrubber," to reduce its emissions of 

sulfur dioxide (SO2).  If so, then  s = 1,  otherwise  s = 0.  Fourth, a plant can be grandfathered 

from environmental policy.  Let  u = 0 if the plant is grandfathered and exempt from the policy, 

and u = 1 if not.  Fifth, a plant faces a price differential,  p,  between the prices it faces for using 

low-sulfur coal and high-sulfur coal.5  Finally, two random state variables,  A  and  B,  represent 

a productivity shock and a shock to emissions, respectively.  The state variables are summarized 

in the first column of Table 1. 

Each plant in each period faces decisions over four variables.  First, it makes a discrete 

decision whether or not to update its production technology, that is, whether or not to scrap and 

replace with a new plant of age 1.6  If updating, it can be replaced with a coal or a non-coal plant.  

Let the decision variable  z = 0  if no replacement,  = 1 if replaced with a coal plant, and = 2 if 

replaced with a non-coal plant.  The second decision faced by plants is whether to add a 

scrubber.  This decision is possible only for coal plants.  Let  x = 1  if the plant chooses to add a 

scrubber and  x = 0  otherwise.  Third, also available for coal plants only, is the opportunity to 

use low-sulfur "clean" coal as a means of reducing SO2 emissions.  Let  c = 1 if the plant chooses 

to use clean coal and 0 otherwise.  Fourth, the plant faces a continuous decision over the 

intensity of use.  This is measured by the amount of fuel input, m, used by the plant in a period.  

The second column of Table 1 summarizes the four choice variables. 

A plant's single-period profit function is given by 
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Af(v,m,b) – Fc ·1(z=1) – Fnc·1(z=2) – xG – pcm – τue/m. 

The first term,  Af(v,m,b),  represents the reduced-form revenue of a plant of age  v,  operating at 

intensity  m,  and of type  b.  Here  A  is a multiplicative productivity shock.  By reduced-form 

revenue I mean that the utilities are implicitly optimizing given supply and demand curves and 

whatever regulations they face, including rate of return regulations on electricity prices.  Given 

the conditions under which these utilities operate, some function exists that they are trying to 

optimize, and it varies by capital age, type, and intensity of use.  The next two terms capture 

fixed adjustment costs,  Fc  and  Fnc,  that are faced only if a plant is replaced with a coal plant  (z 

= 1)  or a non-coal plant  (z = 2), respectively.  G  is the fixed cost of adding a scrubber,  paid 

only when a scrubber is added (x = 1).  The per-unit cost differential between clean and dirty 

coal is  p,  so that when clean coal is used  (c = 1),  p  is paid per unit of coal  m.7  This price 

differential  p  is allowed to vary by plant and over time.   

The last term in the expression for profit,  –τue/m,  represents the implicit costs of 

environmental policy.  A plant's emissions is given by  e.  Environmental policy is modeled by a 

virtual tax rate  τ  levied on emissions intensity  e/m.  The tax payment  τe/m  is paid only if the 

plant is not grandfathered, that is,  u = 1.  If the plant is grandfathered, then  u = 0  and no 

environmental tax is paid. 

The NSPS are performance standards, not an emissions tax, though here they are 

modeled as a tax.  These standards create an implicit price on emissions, and utilities respond to 

the NSPS the same as they would respond to a tax.8  Importantly, the tax is levied not on the 

quantity of emissions  e  but on the emissions intensity,  e/m.  The NSPS have always been 

targeted towards emissions intensity rather than absolute emissions.  For example, the NSPS for 

new coal plants set in the 1970 CAA was 1.2 lbs of SO2 per MMbtu of heat input.  By modeling 
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the NSPS as a tax on emissions intensity, plants cannot limit the impact of this tax by reducing 

operating intensity only while maintaining the same ratio of emissions to fuel input.  Thus, it 

more closely matches the regulatory environment these firms faced; no evidence exists 

suggesting that plants met their NSPS through reduced operating intensity. 

Different specifications of the policy have different implications for firm behavior.  Many 

observers have claimed that regulations rewritten in 1978 effectively required the installation of 

scrubbers on all new coal plants (although the data show that not all plants built immediately 

after 1978 did so).  In a sensitivity analysis, I consider policy modeled as a tax on the level of 

emissions rather than emissions intensity. 

 Emissions, like revenue, are a function of plant age, type, and intensity of use, but also of 

abatement activity:  e = Bg(v,c,s,m,b),  where  B  is a random shock to emissions.  Like a total 

factor productivity shock, this shock could arise from an innovation in abatement technology.  It 

is expected that older plants emit more, plants using scrubbers or clean coal emit less, and a 

higher operating intensity leads to higher emissions; all of these properties are found in the data.   

The final column of Table 1 describes the transition process between states.  If a plant of 

age  v  updates, its age next period  (v') becomes  1.  If it does not update its next-period age is  v 

+ 1.  The plant type next period  b'  is determined by the replacement decision.  The indicator for 

the presence of a scrubber next period,  s',  equals one if either a scrubber was present this period 

and the plant was not replaced or a scrubber was built this period.  If a plant updates, then it loses 

its grandfathering status so  u' = 1.  The last three state variables,  p, A,  and  B,  are determined 

exogenously by an as-yet unspecified Markov process, so that the expectation of next periods' 

values of these variables is taken as a function of this process.   
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Plants maximize discounted expected lifetime profits over an infinite horizon 
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where the state variables are determined according to the transition processes described in Table 

1.  Even when parameterizing the revenue function, the emissions function, and the process 

governing the evolution of the shocks and  p,  this model cannot be solved analytically.  The 

discreteness of three of the four choice variables makes it impossible to create a series of first-

order conditions.  Thus, the model is solved numerically through value function iteration (VFI).  

The Appendix details this method.   

While this model does not explicitly incorporate technological growth, it can be derived 

from a model with an exogenous growth rate that is factored out to make the problem stationary.9  

Suppose that the productivity of a new plant increases at the rate  κ  each year.  Older capital is 

less productive both absolutely, because of real depreciation at rate, say, δr, and relatively, 

because of the improved technology of newer capital.  Thus "capital depreciation" in this model 

encompasses both physical depreciation (δr) and obsolescence (κ).  This model cannot separately 

identify  δr  from  κ,  but it includes both.  Since I am concerned with analyzing policy by 

simulating counterfactuals, this does not present a problem so long as these two forms of 

depreciation remain constant under the various counterfactuals.  Thus, the model does not 

accommodate endogenous technological growth, which may be induced by changes in 

environmental policy.  A counterfactual strengthened environmental policy may induce 
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additional growth in abatement technology, and thus the counterfactual simulation here will 

overstate emissions from that counterfactual.  So, long-run predictions of the model should be 

viewed with more caution than short- or medium-run predictions, where technological change 

cannot yet respond to policy.  In the simulations I analyze the first ten years after the policy 

change. 

 While federal emissions regulations have been grandfathered since the 1970 CAA, Title 

IV of the 1990 Clean Air Act Amendments (CAAA) established an emissions trading program 

for SO2 emissions among electric utilities beginning in 1995.10  Because of this regulatory 

change, I do not estimate the model on data after 1995.  This policy was not grandfathered; 

plants were required to participate regardless of their vintage.  Therefore, the analysis here 

should be viewed as a retrospective analysis of NSPS for SO2, since those standards exist 

alongside the permit trading market. The extent to which plants respond in anticipation of a 

forthcoming policy (for example, by installing a scrubber in 1992 so that their emissions can be 

reduced when the policy takes effect in 1995) can be captured in this model by incorporating 

dynamic policy.11  Another potential concern is the restructuring of electricity markets, though I 

suspect that this will be unimportant during my sample period (1985-1995), since restructuring 

did not begin until the late 1990s.12 

 A different grandfathered policy created in the 1977 CAAA, New Source Review (NSR), 

applies to both new plants and existing plants making major modifications.  Thus, a unit could be 

built before 1970 and hence be grandfathered from NSPS, but have made major modifications 

that triggered NSR and hence be subject to federal environmental regulations.  As identified by 

[6], this additional aspect of NSR creates a second distortion from grandfathering: in addition to 

keeping older plants from scrapping, it keeps them from making modifications that might trigger 
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NSR, although these modifications may increase productivity and reduce emissions.  The second 

distortion is unlikely to actually apply to any units in my sample period (1985-1995), since it has 

been widely documented that there had been no vigorous enforcement of this aspect of NSR 

prior to the late 1990s.13 

 

II. Data  

 The econometric analysis is done at the boiler level as opposed to the plant level.  Each 

fossil fuel fired power plant can have multiple boilers that could be of different vintages, have 

different grandfathered statuses, and use different abatement strategies. The data come from 

three sources.  The Energy Information Administration's Form EIA-767 contains information on 

each boiler, including age, intensity of use, and abatement choices, and is used to calculate the 

emissions function for coal boilers and the moments for the structural estimation.  Form EIA-423 

contains plant-level fuel prices for both clean and dirty coal as well as oil and natural gas.  The 

EPA's Emissions and Generation Resource Integrated Database (eGRID) provides emissions 

data used in estimating the emissions function for non-coal boilers. 

 Emissions data are not available for the years studied (1985-1995).  To estimate the 

emissions function, I use two different strategies, one for coal boilers and one for non-coal 

boilers.  For coal boilers, information from the Form EIA-767 is used to calculate each boiler's 

annual emissions from its amount of coal used, average sulfur content of coal, and abatement 

technology.  An engineering equation is used to calculate emissions from these data on a mass-

balance basis, as in [8].14  Given these emissions estimates (in tons of SO2), the emissions 

function  g(v,m,s,c,b)  for coal boilers is estimated using OLS.  These emissions calculations are 

only available for coal boilers.  For non-coal boilers, I use measured emissions data from 
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eGRID.15  While measured emissions data ought to be preferable to those calculated from an 

engineering equation, the measured eGRID data are only available from 1996-2000, after the 

sample period.16     

 Data on boiler age, total fuel input, use of clean coal and scrubbers, and grandfathering 

status come from the EIA-767 data files.17  These data cover steam-electric plants (including 

fossil fuel fired plants) with a generator nameplate rating of 10 or more megawatts.  I use data 

from 1985-1995, which contain approximately 1800 boilers per year. 

 Boiler age is calculated from the inservice date reported, or the year in which the boiler 

went into operation.  The grandfathered status of a boiler, that is, whether it is subject to NSPS, 

is reported in the data set.18  In 1985, 87% of boilers are grandfathered from NSPS.  Figure 1 

presents a histogram of the vintage distribution of all operating boilers in the 1985 EIA-767 data 

file, categorized according to grandfathered status.  While virtually all boilers built before 1970 

are grandfathered, and all built after 1978 are not, during the intermediate period variation exists 

in grandfathering status even for boilers of the same age.   

 The EIA-767 data also provide information on abatement activity: scrubbers and clean 

coal.  In 1985, 15% of coal boilers used a scrubber.  The data include the average sulfur content 

of the coal used, which can be converted to pounds of sulfur per MMbtu of heat input.  This 

value is continuous, as shown in Figure 2, a histogram of the distribution of average sulfur 

content of coal for 1985 coal boilers.  For simplicity, I model the choice of coal type as a binary 

variable; it is either clean (low-sulfur) or dirty (high-sulfur).  Following [9], I choose the cut-off 

point between the two coal types to be 1.2 lb/MMbtu, the value of the performance standard for 

new boilers set in the 1970 CAA.  Based on this definition, 34% of coal boilers use clean coal in 

1985.   
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 This differential is clearly due to heterogeneous price differentials between clean and 

dirty coal.  The EIA-423 data contain plant-level information on total quantity and average price 

of annual coal consumption. 19  The data are given for the price actually paid for the coal actually 

received by the plants.  A single plant can use coal from multiple sources, some of which may be 

high-sulfur and some of which may be low-sulfur.  For plants that use both types of coal, I am 

able to construct an average price paid for each of the two types.  Many plants, though, only use 

one type of coal.  For these plants, I use the state average of coal prices for the other type of coal.  

For some states, no plants use a particular type of coal, and I use the average price for the census 

region of a particular type of coal for plants in these states.  For those plants with multiple 

boilers, I assign each boiler the same plant-level value of coal prices. 

 Coal price data are available for coal plants only.  Since the model allows for non-coal 

boilers to scrap and be replaced by coal boilers, I also want coal prices available to these boilers.  

Thus for non-coal boilers I assign coal prices based on the state or regional average coal prices. 

 The last item obtained from the EIA-767 data set is the annual amount of fuel input used 

by a boiler.  For each fuel, I convert the fuel amounts into the amount of heat energy (in 

MMbtus).  While 58% of all boilers are coal in 1985, they represent over 90% of the total 

amount of fuel input.  Most of the remaining 10% is from gas boilers.   

 In addition to the differential fuel use by type of boiler, the age of the boiler also makes a 

large difference in the operating intensity.  Boilers built after 1970 are used much more 

intensively.  The grandfathered boilers represent a large fraction of the industry by number 

(85%) but only a small fraction by fuel use (7%).  Boiler efficiency is declining in age, averaging 

86.4% for the youngest decile of boilers and 84.0% for the oldest decile.      
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 The moments used to identify the parameters in the structural portion of the estimation 

are presented in Table 2.  I choose two sets of moments.  First, I use a set of moments from each 

year in the sample period.  Table 2 includes moments from the first year, 1985, although they 

will not be used in the estimation, since the 1985 data are used to set the initial distribution of 

boilers.  Also, I omit 1995, the last year for which I have data, since one of the moments requires 

data from the following year to construct it.  For each year in 1985-1994, I calculate the fraction 

of boilers grandfathered, the fraction that uses coal, and of the coal boilers, the fraction that has a 

scrubber and the fraction that uses clean coal.  These annual data moments are meant to identify 

changes in the industry over the different years and match how boiler characteristics change with 

time.  Second, I aggregate the boilers from all ten years of data and divide them into five 

categories based on their age and grandfathered status: less than or equal to 15 years old, 

between 16 and 25 years old and grandfathered, between 16 and 25 years old and not 

grandfathered, between 26 and 35 years old, and greater than 35 years old.  The age group 

between 16 and 25 years old is divided into grandfathered and non-grandfathered boilers since it 

is those ages of boilers for which there is variation in the grandfathered status.  For each 

category, I evaluate the fraction of boilers scrapping, the fraction of boilers that uses coal, of the 

coal boilers, the fraction with scrubbers and the fraction using clean coal, and the fraction of 

boilers in each category.  These categorical data moments are used to identify the impact of both 

age and policy on boiler operating decisions. 

 The top half of Table 2 displays the annual moments.  The fraction of boilers 

grandfathered declines slightly over the period from 87% to 84%.  Of coal boilers, the fraction 

using scrubbers increases from 14% to 18%.  The percentage using clean coal goes from 34% in 
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1985 to 41% in 1994, but not monotonically; this fraction peaks at 46% in 1988.  The fraction of 

all boilers that are coal boilers increases slightly from 58% to 62%. 

 The second panel of Table 2 displays the categorical moments.  While the annual 

moments do not differ significantly from year to year, the categorical moments do strikingly 

differ by category.  The first row shows that the fraction of generators scrapping is very low.  

The percentages in the first four categories are all less than three percent, and they show that a 

very small number of boilers are scrapping.  For example, the value of 0.5265% for boilers 

younger than 15 years old comes from 18 boilers scrapping out of 3,419 in that age category over 

the ten years.  The patterns in the data are conformable to intuition.  One would expect that 

grandfathered boilers are less likely to scrap than non-grandfathered boilers, and that is just what 

is seen comparing the second and third categories.  As boilers get older, they are more likely to 

scrap; 7% of boilers older than 35 years old scrap. 

 The moments related to abatement activity are consistent with boilers responding to 

grandfathered policy.  Grandfathered units are less likely to have a scrubber or to use clean coal.  

The rate at which boilers adopt either of these abatement measures decreases with boiler age.  

The youngest boilers are more likely to be coal fired, but there is no difference in the fraction of 

coal boilers between the other age categories.  About 35% of the boilers are more than 35 years 

old, while about 16% are younger than 16 years old.   

 

III.  Estimation Strategy and Results    

 The model is estimated in three steps.  First, the emissions function  g(v,m,s,c,b)  is 

estimated with OLS, after imposing a functional form.  This equation is an emissions production 

function; given the plant's age, abatement equipment, type, and choice of operating intensity, a 
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level of emissions will be produced.  Second, I estimate the revenue function  f(v,m,b)  using 

panel data estimation allowing for boiler-specific effects and autocorrelated error terms.   

Finally, since it is impossible to estimate all of the parameters in this way, I estimate the rest of 

the parameters using the method of simulated moments (MSM).20  While all of the parameters 

could be estimated using MSM, estimating a subset of parameters using other methods when 

possible is preferable because it saves computational time and the identification of those 

parameters is more straightforward.    

Because the emissions function,  g,  is a function of plant type,  b,  I estimate a separate 

emissions function for coal and non-coal plants.  The estimating equation for coal boilers is 

ln(emis) = β0 + β1 ln(age) + β2 ln(m) + β3 lsc + β4 scrubber + β5lsc*scrubber +  ε. 

The age of the boiler, the amount of fuel input  (m),  whether the boiler uses low sulfur coal  (lsc)  

and whether the boiler has a scrubber are all included, as is the interaction term between the last 

two abatement methods.  The estimating equation for non-coal boilers is identical, save that the  

lsc  and  scrubber  terms (and their interaction) are not included.  I do not estimate the emissions 

shock  B  because I do not have actual emissions data and thus do not have to accommodate 

variation in the data. 

Results are presented in Table 3.  The first four columns are the results for coal boilers 

from the calculated emissions data from 1985-1995.  Unreported state and year dummies are 

included in all columns of Table 3 to account for unobserved heterogeneity in the regulatory 

environment at the state level, as well as trends in emissions picked up by the year effects.  Older 

plants emit more, once controlling for total heat input and abatement activity.  The elasticity of 

emissions with respect to age is about 0.13.  Note that this is measuring both physical 

depreciation and technological obsolescence; older boilers are both absolutely and relatively 
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dirtier.  The use of scrubbers and the use of low-sulfur coal significantly decrease emissions, as 

expected, and the interaction term is positive (since a scrubber has less to "scrub" when low-

sulfur coal is already being used).  The elasticity of emissions with respect to heat input is almost 

exactly one.  This suggests that emissions are linear in heat input, which is used in identifying 

the revenue function off the first order condition.21 

 The next column of Table 3 uses the log of the emissions rate, in tons of SO2 per MMbtu 

heat input, as the dependent variable.  This estimating equation is 

ln(emis/m) = β0 + β1 ln(age) + β2scrubber + β3 lsc + β4 lsc*scrubber +  ε. 

The emissions rate is also higher for older boilers, with an elasticity of about 0.14.  Scrubbers 

and low-sulfur coal have the expected effects. 

 Columns 3-5 consider alternate specifications for coal boilers.  In each of these columns 

the dependent variable is the log of the emissions rate.  Column 3 includes an indicator variable 

equal to one if the boiler's county is not in attainment of the Clean Air Act's air quality standards 

for SO2.  It also includes a measure of relative prices of three fossil fuel inputs, averaged at the 

state-year level from EIA-423 data.  Column 3 also removes all observations from states that had 

begun electricity restructuring by 2000, to eliminate any potential bias from utilities' anticipatory 

behavior of restructuring.  Boilers in nonattainment counties have a significantly lower emissions 

rate, and fuel prices do not enter significantly. The coefficient on the log of boiler age is 0.17, 

only slightly higher than in column 2. 

 Column 4 includes three additional variables related to boiler technology or intensity.  

These are the capacity of the boiler's plant (in megawatts), the heat rate of the boiler's plant (in 

BTU/kilowatt-hours), and the number of hours the boiler is in operation over the year.  Plant 

capacity and hours of operation enter negatively, while heat rate is insignificant. The coefficient 
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on the log of boiler age is still significantly positive, but falls to 0.05.  Lastly for coal boilers, 

column 5 performs the same regression as column 2 but uses the actual emissions data from 

eGrid (available only from 1996-2000) rather than the estimated emissions data from EIA-767 

(from 1985-1995).   The coefficient on the log of boiler age is still significant but is larger than in 

column 2. 

 The regression results for non-coal boilers are presented in columns 6-9 of Table 3.  

Column 6 regresses the log of total emissions on the log of age and the log of total heat input, as 

well as unreported state and year fixed effects, and column 7's dependent variable is the log of 

the emissions rate.  Column 8 includes county-level attainment status, relative fuel prices, and 

omits states that began restructuring by 2000; column 9 includes capacity, heat rate, and hours.  

The non-coal regressions do not tell a consistent story.  Only in column 8 is there a positive and 

significant coefficient on age, as expected; column 7 even finds a negative (though insignificant) 

coefficient. 

 This unusual result is not worrisome for two reasons.  First, the contribution of non-coal 

boilers to SO2 emissions is small; coal plants are responsible for 97% of total SO2 emissions 

from this sector.  If the non-coal regression results in this stage are off, it will not substantially 

affect the simulations.  Second, the absence of a positive elasticity between age and emissions 

for non-coal plants is possible.  Technological innovation in abatement of SO2 emissions from 

power plants has focused mainly on coal plants because of their dominance in this pollutant.  

Since the age elasticities in Table 3 include the effect of obsolescence from technological 

growth, the lack of a positive age effect may signal this lack of technological growth in this area.  

I use the point estimates from columns 2 and 7 in the MSM estimation and simulations. 
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 In the second stage of the estimation, I exploit the fact that two of the choice variables are 

chosen in a static, not dynamic, problem.  Both  m,  the operating intensity, and  c,  the sulfur 

content of coal input, affect the single-period profit function but no future state variables and 

thus not the next period value function.22  The optimal decision over these two variables can be 

made by just looking at the single-period profit function.  In the case of  m,  a continuous choice 

variable, a first-order condition arises:  

0]/),,,,([),,(  pcmbmscvBgu
dm

d
bmvAf m  . 

The first term in the equation represents the marginal benefit to a plant of an additional unit of 

fuel input from increased revenue.  The middle term represents the costs from the environmental 

policy as measured by a marginal increase in the virtual emissions tax paid, paid only by non-

grandfathered plants  (u = 1).  The last term is the marginal cost of using clean rather than dirty 

coal. 

The middle term of the first-order condition disappears when the emissions function  g  is 

linear in fuel input  m.  In the emissions estimates above, this is just what is found.  Thus, this 

moment condition is simplified since it is now independent of the emissions function.  It depends 

on the parameterization of f, defined as follows: 

f(v,m,b = coal) = d0cm + d1cvm – ½ m2 

 f(v,m,b = non-coal) = d0ncm + d1ncvm – ½ m2. 

This parameterization captures an important dimension of the behavior of these boilers: older 

plants are used less intensively.  Under this parameterization, this behavior of plants can be 

captured when  d1c  and  d1nc  are negative.  The profit function must somewhere be normalized 

for identification; thus I fix and do not estimate the coefficient on  m2. 
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 Given this parameterization, the first order condition for fuel use for non-coal boilers is  

010  mvdd ncnc .  The first order condition for coal boilers is different, since they must also 

optimize over the binary choice of choosing clean or dirty coal, given the price differential  p.  

That condition is  010  pcmvdd cc .  The emissions function for coal plants has the 

additional variable  c  for low sulfur coal use.  Also, the per-unit price differential appears in the 

condition.  A coal boiler optimizes over whether to use clean or dirty coal  (c = 1 or 0),  but after 

doing so the boiler chooses a level of fuel input which satisfies the first order condition above, 

for either value of c.   

 The functional form chosen thus allows each revenue function to be estimated via a least-

squares regression, where the independent variables are boiler age and a constant term, and the 

dependent variable is fuel input  m.  For coal boilers, the regression also includes the clean-dirty 

coal price differential times an indicator for the use of clean coal (pc).  Because of the 

normalization, the revenue function and indeed the entire profit function are only identified up to 

scale.  Thus, I estimate a scale coefficient on the  pc  term. 

 The reduced-form revenue function abstracts from supply and demand curves and from 

the strategic behavior of firms operating under regulators.  Because markets as well as 

regulations differ by time and location, I include in the revenue function estimation state- and 

year-fixed effects. 

These results are presented in Table 4.  Columns 1–4 present the results for non-coal 

boilers, and columns 5–8 present the results for coal boilers.  Columns 1 and 5 are simply OLS 

regressions with standard errors clustered at the boiler level; the significant negative coefficient 

on age indicates that older boilers are used less intensively.  For coal boilers, the coefficient on  

pc  is negative, as expected, though only significantly so in columns 6 and 7.  
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 Columns 2 and 6 use a random-effects specification, to pick up an unobserved boiler-

specific effect.  These specifications result in a coefficient on age that is still significantly 

negative but has a smaller magnitude, by about a factor of one-half for non-coal boilers and a 

factor of two-thirds for coal boilers.  Columns 3 and 7 keep the random-effects specification and 

also add state-year relative fuel prices as regressors.  Given that many boilers and plants belong 

to a utility's fleet and are dispatched on a least-cost basis, relative fuel prices may matter.  The 

coefficient on age does not change after inclusion of the price variables.  Finally, in columns 4 

and 8 the error is allowed to be autocorrelated according to an AR(1) process; again the 

coefficient of interest is largely unchanged.  The preferred specification for the parameter values 

comes from columns 4 and 8, and those estimated parameters are used in the simulations. 

Finally, in the third stage I use MSM to estimate the remaining parameters of the model.  

This method is described in more detail in the Appendix.  These parameters include the fixed 

costs for building a coal and non-coal boiler,  Fc  and  Fnc,  and the fixed cost of building a 

scrubber  G.  The implicit tax on emissions intensity  τ  is also estimated in this stage.  Ideally, 

this could be calibrated based on the policy.  Because the complex CAA is modeled simply as an 

emissions tax, where the value of the tax is the shadow price on pollution intensity that the policy 

creates, this value is unknown.  Hence, it falls into the parameter set to be estimated.  The 

productivity shock  A  is idiosyncratic.23  It is assumed to be multiplicative and distributed log-

normally with median one.  That fixes its first parameter,  μ,  to zero, while  σA
2  is estimated.  

The shock is persistent and evolves according to a Markov process.  For simplicity, I allow the 

transition matrix to be defined by one parameter,  P.  A boiler has probability  P  of having the 

same productivity shock in the next period.  With probability  1 – P,  the next-period 

productivity shock is randomly chosen from the log-normal distribution.   
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The annual discount rate  β  is set at 0.95.24  This leaves six parameters to be estimated 

with MSM:  [Fc, Fnc, G, τ, σA
2, P].  The data moments that are used in MSM are described in the 

following section and listed in Table 2. 

 The MSM estimation differs from estimation techniques used in previous literature 

related to grandfathering and the CAA in that the technique here is the first that is both structural 

and dynamic.  Previous papers have identified a perverse effect of grandfathering in a reduced-

form setting.  Here, I develop and estimate a structural model and use it to quantify the effects of 

policy changes in the presence of grandfathering.  Furthermore, the model is explicitly dynamic, 

while many of the reduced form models are static, using cross-sectional data.  The effects of 

grandfathered regulations are inherently dynamic; firms or individuals delay turnover to take 

advantage of the grandfathered exemptions in the future.  Though this dynamic model is implicit 

in those reduced form models, it is made explicit here.25  As a result, the mechanisms by which 

policy affects firm behavior can be better understood.   

 As with any estimation but in particular with structural estimation, one must pay careful 

attention to identification of the model's parameters.  In the MSM estimation stage, I identify the 

implicit tax on emissions using variation in the behavior of grandfathered versus non-

grandfathered facilities.  Grandfathering is based on age, so it is difficult to separate an age effect 

from a grandfathering effect.  I do so by exploiting the fact that of the facilities aged 15-25 years, 

some are grandfathered and some are not.  It is unfortunately impossible to determine the source 

of this variation from the data.  The age is based on the date the plant went online, but the 

grandfathering status for some plants may have been partly based on the date of construction.  

For some facilities, the grandfathering status could be determined by the utilities bargaining with 

regulators to adjust the official online date.   
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 Clearly, grandfathering status was determined by someone and not randomly assigned.  

The question is how or if this determination creates a bias.  Suppose that of the plants within that 

age group, those with the highest expected abatement costs were more likely to be grandfathered, 

say as a result of lobbying.  The higher use of abatement among non-grandfathered plants is thus 

partly due to the unobservable difference in abatement costs, though the estimation strategy 

attributes it to the policy.  Thus the estimated implicit tax created by the policy may be biased 

upwards.  Alternatively, if the selection into grandfathering based on abatement costs went the 

other way, then there is a downward bias on the estimate.  It is not possible to measure the 

direction or magnitude of this potential bias.   

 The results from the MSM estimation are presented in Table 5.  Each point estimate is 

presented with its estimated standard error, and all parameters have small standard errors save  

σA
2.  The fixed cost parameters  F  have no units, so an estimated value of 1800 does not 

represent 1800 dollars or 1800 million dollars.  Rather, the magnitude is normalized to the 

boiler's profit function  y = Af(v,m,b) – Fc ·1(z=1) – Fnc·1(z=2) – τue/m – xG – pcm.  The relative 

magnitudes of the three parameters give information about construction costs.  The cost of a new 

coal boiler is 20 times as large as that of a new non-coal boiler; coal boilers and plants tend to be 

of much larger capacity, and this is represented both in the profit function of the boiler and in the 

fixed cost of building one.  The cost of adding a scrubber to a coal boiler is about one-thirtieth 

the cost of the boiler itself.  These relative costs corroborate engineering estimates of production 

costs. 

Like the fixed costs, the policy parameter  τ  can be interpreted in relation to the profit 

function.  The emissions function  g  gives the emissions intensity in tons of SO2 per MMbtu fuel 

input as a function of age and abatement technology.  The implicit tax  τ  is levied on emissions 
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intensity.  The amount that is paid by a boiler in the virtual tax (if it is non-grandfathered) is the 

product of the estimated value of  τ  and its emissions intensity.  For example, a coal boiler aged 

20, with no scrubber and not using low-sulfur coal, has an estimated emissions intensity of 

0.0016 tons SO2 per MMbtu fuel input.  At the estimated tax value of about 3000, this equates to 

a tax payment of 4.8.  Though this has no units, it can again be compared to the other parameters.  

Consider the cost of a scrubber, 61.41.  This is about 13 times the annual payment in implicit 

emissions tax for that particular boiler.  If that same boiler had a scrubber, its emissions intensity 

would be 0.000442, and its tax payment would be reduced to 1.3.  Thus, utilities are balancing 

long-run projections of emissions tax payments with scrubber costs to decide when to add a 

scrubber. 

The fact that  τ  is significantly different from zero amounts to a rejection of the null 

hypothesis that grandfathering has no effect on the behavior of plants.  Since the implicit tax is 

paid only by non-grandfathered boilers, the significantly positive tax means that these boilers 

respond to an incentive to reduce their emissions that the grandfathered boilers do not. 

The parameter  σA
2  gives information about the variance of the random productivity 

shock.  The estimated value of the parameter, about 0.1104, corresponds to a variance of 

0.4588.26  Finally,  P  represents the persistence in the idiosyncratic component of the 

productivity shock.  If  P = 0,  then no persistence exists, and if  P = 1 then the idiosyncratic 

component is constant.  Here,  P  is 0.87.  A generator has an 87% chance of staying in its 

current productivity state and a 13% chance of taking a random draw from the distribution of 

shocks; the idiosyncratic element of revenue is quite persistent.  

The Appendix compares the simulated moments to those from the data; in general they 

match quite closely. 
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IV. Counterfactual Simulations 

 Finally, I use the estimated parameters to simulate the effects of policy changes.  

Specifically, I consider the impact of grandfathering in the CAA by comparing a baseline 

simulation using the estimated parameters to three counterfactual simulations.  In all 

counterfactuals I present the simulation results for ten periods after the policy change, though the 

simulations come from an infinite horizon maximization model.  In the first counterfactual, I 

keep all parameters the same, except that I eliminate any grandfathering provisions starting in the 

first year.  Next, I set the implicit tax rate on pollution equal to 90% of its estimated value to 

simulate what would have happened had the stringency of the grandfathered CAA regulations 

been reduced by 10% in 1985.  Finally, the third counterfactual increases the implicit tax rate on 

pollution by 10%, to represent the CAA regulations increasing in strength in 1985.  The 

counterfactual that eliminates grandfathering is chosen to quantify the effects of grandfathering 

itself in the policy, rather than the effects of the stringency of the policy.  The two other 

counterfactuals, which keep grandfathering but alter the stringency of the policy for non-

grandfathered units, are chosen to investigate how policy changes that maintain grandfathering    

will affect outcomes.  This is an exercise similar to that in [1], which looks at the effect of 

changes in automobile emissions standards that are grandfathered.27   

 For the eleven periods presented of the three counterfactual simulations, Figure 3 

presents the level of emissions and Figure 4 shows the number of boilers that adjust in each 

period.  The line "No Grand." represents the simulation that eliminates grandfathering.  The line 

"Tax Cut" represents the simulation with the tax rate reduced.  The line "Tax Hike" represents 

the simulation with an implicit tax rate increased by 10%.28  In Figure 3, the emissions levels are 
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presented as proportional deviations from the baseline simulation.  For example, in 1995 

emissions under the "Tax Hike" counterfactual are 90% of emissions under the baseline scenario.  

In Figure 4, the number of boilers adjusting is presented as the absolute deviation from the 

numbers in the baseline simulation.  For example, in 1985, 50 more boilers scrapped under the 

"Tax Cut" counterfactual than under the baseline scenario. 

Consider first the "No Grand." simulation, which shows the largest difference from the 

baseline for both emissions and scrapping.  In Figure 3, emissions drop sharply.  Since older 

boilers are no longer grandfathered under this counterfactual policy simulation, those boilers 

now face an implicit emissions tax.  Many of these older boilers now choose to adjust their 

capital to a new vintage to reduce their emissions, especially since they have delayed 

productivity-enhancing upgrades to avoid that tax.  In the next year, many more boilers are 

newer and cleaner.  This can also be seen in the "No Grand." curve in Figure 4: once the law is 

changed, the rate of investment is much higher due to the shock in the policy.  Though the 

number scrapping quickly gets closer to the baseline levels, the initial increase in brand new 

boilers reduces emissions throughout the simulation period.  The magnitude of the change in 

both emissions and investment is large; in the first year after the policy change 350 additional 

boilers scrap, and by 1995 emissions are less than 40% of baseline levels.  These large outcomes 

are from a very large policy change: since 87% of boilers are initially grandfathered, eliminating 

grandfathering amounts to a massive policy shift.  The result I find is slightly smaller in 

magnitude than that of [10], who find that if all plants were subject to NSR standards (that is, if 

grandfathering were eliminated), then emissions of SO2 and NOX would fall by 75%.  Here, only 

SO2 emissions policy is modeled. 
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The results from the "Tax Cut" and "Tax Hike" counterfactuals follow intuition.  When 

the implicit tax on emissions intensity is increased by 10%, emissions fall, and ten years after the 

policy change emissions are 10% lower than the baseline.  A 10% decrease in the value of the 

implicit tax sees a rise in emissions, though of a smaller magnitude.  Emissions in 1995 are only 

4% higher than in the baseline.     

The effects of the counterfactual simulations on emissions can be compared with the 

scrapping simulation results in Figure 4.  Under the "Tax Cut" scenario, a larger number of 

boilers initially scrap and replace, while under the "Tax Hike" scenario, a smaller number do.  

Thus in the "Tax Hike" scenario, boilers are older on average than in the baseline scenario.  

Since older boilers are on average dirtier, one would expect that in the presence of an increase in 

the virtual emissions tax, boilers would scrap at a higher rate to avoid paying this increased tax, 

and likewise after a decrease in the implicit tax rate fewer boilers would scrap.  However, here 

the effects of grandfathering come into play: grandfathered boilers have a valuable status that is 

lost when they scrap and replace.  Increasing the tax rate on emissions increases the value of this 

status, and makes grandfathered boilers less likely to scrap than in the baseline simulation.   

This effect of grandfathering on scrapping rates can be seen in Figure 5.  This presents 

the simulation results for scrapping for the "Tax Cut" and "Tax Hike" counterfactuals, but 

separately for boilers that are initially grandfathered and for those that are initially non-

grandfathered.  The top panel of Figure 5, which shows the results for boilers that are initially 

grandfathered, clearly shows the results of changes in the virtual tax rate on scrapping outcomes.  

When the tax is increased, fewer of these grandfathered boilers scrap, since they have even more 

incentive to hold on to their valuable grandfathered status.  On the other hand, the bottom panel 

of Figure 5, which shows the results for boilers that are initially non-grandfathered, shows no 
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such behavior.  After a tax increase, more boilers choose to scrap to newer, cleaner plants, to 

avoid paying the higher tax on emissions intensity.  On the other hand, after a tax decrease, the 

scrapping rate is slightly lower.  On the whole, as shown in Figure 4, the effect from 

grandfathered boilers dominates the effect from non-grandfathered boilers, in large part because 

such a high fraction of boilers (87%) are grandfathered.  Figure 5 also demonstrates how 

grandfathering creates a schism in the reaction of boilers to policy changes, with grandfathered 

and non-grandfathered boilers responding in opposite directions.  The reduction in new 

investment comes only from grandfathered boilers, and hence the magnitude and even the 

existence of a reduction in investment overall depends on the fraction of the fleet in the cross-

sectional distribution that is grandfathered at the onset of the policy change. 

 Comparing the results for emissions in Figure 3 with those for scrapping in Figures 4 and 

8 presents a puzzle.  No evidence of a perverse result for emissions is found, yet a perverse result 

for scrapping is found.  These results do not conform to some previous theoretical and empirical 

findings of a perverse effect of grandfathered policies, including the results in [1] for automobile 

emissions standards.29  Though inconsistent with [1]'s results for automobiles, the results here 

that do not find a perverse effect are consistent with results from [2], who also study electric 

power plants.  They find that in the absence of regulations, emissions would have increased by 

34.6%.   

If an increase in the tax rate leads to less scrapping and hence older boilers than in the 

baseline, why isn't the resulting level of emissions from these older, dirtier boilers higher than in 

the baseline?  Two reasons could account for this.  First, the abatement choices of coal boilers 

could differ under the different scenarios.  Changes in the implicit tax rate could affect how 

many coal boilers add a scrubber and how many choose to use clean coal.  Second, the choice 
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between coal and non-coal boilers could be affected by the tax rate.  Since non-coal boilers emit 

much less SO2, replacing scrapped boilers with non-coal boilers instead of coal boilers reduces 

emissions, even with no difference in the overall scrapping rate. 

 The second reason, not the first, explains the results here.  The changes in abatement 

activity do not explain why emissions fall after a tax increase despite scrapping rates also falling.  

Between the three counterfactuals and the baseline, the utilization rate of scrubbers does not 

change.  In fact, in all simulations, including the baseline, no boilers add scrubbers over the 

course of the simulation period.30  The use of clean coal is different from the baseline usage in all 

three counterfactuals, but the differences cannot account for the observed differences in 

emissions.  Instead, the simulated counterfactual policy scenarios affect the choice of scrapped 

boilers between replacing with coal and non-coal units.  The top panel of Figure 6 presents the 

number of boilers scrapping and replacing with coal boilers, and the bottom panel presents the 

number scrapping and replacing with non-coal boilers.  Each panel presents the absolute 

difference of the number scrapping from the baseline for each counterfactual.  The first panel 

shows that the difference between the scrapping rates in the "Tax Cut" and "Tax Hike" 

counterfactuals is wholly accounted for by the different number of boilers replacing with coal 

boilers.  In the "Tax Cut" counterfactual, 50 more boilers are scrapped and replaced with new 

coal boilers compared to the baseline, whereas in the "Tax Hike" scenario 40 fewer boilers are 

scrapped and replaced with new coal boilers.  The difference between these two counterfactuals 

and the baseline in the number of boilers scrapping and replacing with non-coal boilers is almost 

zero.  The apparent contradiction between the outcome for scrapping rates and the outcome for 

emissions is thus resolved: although a tax decrease results in a higher scrapping rate and hence 

younger boilers compared to the baseline scenario, the additional boilers that do scrap are 
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replaced by coal rather than non-coal boilers.  These boilers have a higher SO2 emissions rate, 

and hence emissions decreases after the tax decrease relative to the baseline.  The opposite holds 

for a tax increase.  This explanation also likely accounts for the results from prior literature, here 

explained through the dynamic model.   

 The results for the "No Grand." counterfactual simulation show quite a different pattern.  

The top panel of Figure 6 shows that the number of boilers scrapping and being replaced with 

coal boilers is no different between the baseline and "No Grand."  By contrast, the bottom panel 

shows that a much larger number of boilers scrap and are replaced with non-coal boilers in this 

counterfactual.  Thus, the change in the overall scrapping rate, shown in Figure 4, is almost 

entirely driven by this different rate of replacement with non-coal boilers.  Because these boilers 

emit much less SO2 than coal boilers, emissions under this counterfactual are much lower than 

the baseline, as shown in Figure 3.  Finally, Figure 7 summarizes the differences in types of 

boilers across the three counterfactual simulations by presenting the total number of coal boilers 

in each simulated year, as compared to the number in the baseline scenario.  Because of the 

different scrapping and replacement rates described above, the number of coal boilers in the 

economy is highest under the "Tax Cut" simulation and lowest under the "No Grand." 

simulation.  Comparing this figure to Figure 3 demonstrates that the simulated changes in 

emissions are largely driven by boiler type. 

 How realistic is the assumption that utilities are able the change the boiler type from coal 

to non-coal or vice versa, and by how much does this assumption affect the results?  Plants are 

often located near a primary fuel source or access point: virtually all coal plants are located near 

railway lines or at the mouth of a mine, and natural gas plants have laterals that connect to major 

pipelines.  It should be noted, though, that replacement in this model does not require that the 
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boiler be located in the exact same location.  A utility could scrap its coal plant located on a 

railway line and build a gas plant located near a pipeline.  However, it may be that utilities have 

less freedom to change plant type than the model here provides them, for geographic or other 

constraints (perhaps a utility operates in an area with no access to any natural gas pipelines).  

Thus, I estimate and perform the same counterfactual simulations on a model where utilities do 

not have the option of changing the boiler type: coal boilers can be replaced only with coal 

boilers and likewise for non-coal boilers.  The counterfactual results for emissions are almost 

identical to those of the original model: eliminating grandfathering reduces emissions by about 

55% compared to the baseline.  However, the mechanism by which this emissions reduction 

occurs is different.  In the original model, emissions dropped because many coal boilers were 

replaced with non-coal boilers.  That is not possible here; instead, many more coal boilers add 

scrubbers, bringing down total emissions.  By the tenth year of the simulation, the number of 

scrubbers increases by a factor of four in the no grandfathering counterfactual compared to the 

baseline. 

 Finally, I examine how sensitive the results are to the choice of modeling the policy as an 

implicit tax on emissions intensity.  I estimate an alternative model where the tax is levied on 

emissions level rather than emissions intensity.  In the "Tax Cut" and "Tax Hike" counterfactual 

simulations of this model, the results are nearly identical to the base model.  A tax cut results in 

more replacement of older plants and higher emissions; a tax hike has the opposite effect.  In 

contrast, while the "No Grand." results are qualitatively similar, the magnitude of the difference 

between the counterfactual and the baseline simulation is much less pronounced.  Removal of 

grandfathering results in a drop in emissions compared to the baseline, but only by about 5%, 

compared to the 60% drop in this counterfactual in the original model.  This difference stems 
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from the fact that utilities now have the option of meeting the pollution policy through reduced 

operating intensity, an option that was not possible when the policy was based on emissions 

intensity.  In the "No Grand." counterfactual, boilers that were grandfathered and are newly 

subject to the implicit tax can choose to reduce operating intensity rather than have to scrap and 

replace.  They do so, and therefore there the reduction in emissions in much less pronounced.  As 

argued earlier, this modeling choice is a poorer representation of actual policy than the implicit 

tax on emissions intensity, since NSPS have always been based on intensity. 

  

V. Conclusion 

 This paper investigates how environmental regulations impact plant investment decisions 

and plant emissions.  Regulations that are grandfathered can have short-term perverse effects.  

When grandfathered regulations are strengthened, grandfathered units may avoid being subject to 

the regulation by withholding investment in newer capital.  If newer capital is less polluting, the 

reduction in new investment may increase emissions.  Also, when grandfathered regulations are 

weakened, emissions can decrease in the short run, as grandfathered plants lose their valuable 

status that keeps them from investing.  For electric power plants subject to the Clean Air Act, I 

find that removing grandfathering from the regulations in 1985 leads to a 60% decrease in 

emissions by 1995.  A marginal change in the stringency of grandfathered regulations leads to a 

perverse effect on investment but not on emissions.  This is because utilities can choose boilers 

of different emissions intensities. 

Future research could extend the model to answer other questions.  Here, investment only 

occurs on the extensive margin: plants make a discrete choice decision about whether or not to 

scrap.  One could allow for a continuous level of investment.  The policy here is constant and 
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without uncertainty.  Adding uncertainty allows for a policy that changes over time.  Alternative 

policies can also be considered within this model.  For example, to counteract the investment 

disincentive created by grandfathering, regulators could provide direct subsidies to investment.  

Finally, the fixed cost parameters  Fc,  Fnc,  and  G  are constant over time and firms in the 

model.  Capital investment costs are likely to change and react to macroeconomics conditions ( 

[11]), so these adjustment cost variables may be modeled as endogenous. 

When modeling the impacts of policy that contain grandfathering provisions, whether in 

environmental regulations or elsewhere, it is important to consider how these provisions affect 

the behavior of regulated firms or individuals and the potential for unintended consequences.  A 

dynamic structural model as presented here can capture the regulatory impacts and the incentives 

created by grandfathering.  The cross-sectional distribution of plant ages and grandfathering 

statuses, the relative profitability and emissions intensity of capital of different vintage, and the 

ability of plants to invest in abatement measures or choose among different types of capital all 

can affect how regulated entities respond to these policies. 
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Figure 1 

 
Notes:  Data source is EIA-767, 1985.  The x- axis is the age of the boiler; the y-axis is the number of boilers of that 

age.  Grandfathered boilers are those not subject to any New Source Performance Standard. 

 

 
Figure 2 

 
Notes:  Data source is EIA-767, 1985.  The curve is a nonparametric density estimation based on an Epanechnikov 

kernel and optimal bandwidth.   
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Figure 3 

 
Notes:  Results are from counterfactual simulations as described in the text.  Values presented are proportional 

deviations from baseline simulation.   

 

 

Figure 4 

 
Notes:  Results are from counterfactual simulations as described in the text.  Values presented are absolute 

deviations from baseline simulation.   
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Figure 5 

 

 
Notes:  Results are from counterfactual simulations as described in the text.  Values presented are absolute 

deviations from baseline simulation.  The top panel presents simulations results for boilers that are initially 

grandfathered.  The bottom panel presents the results for boilers that are initially non-grandfathered. 
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Figure 6 

 

 
Notes:  Results are from counterfactual simulations as described in the text.  Values presented are absolute 

deviations from baseline simulation.  Top panel presents the number of boilers scrapping and replacing with coal 

boilers; the bottom panel presents the number scrapping and replacing with non-coal boilers. 
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Figure 7 

 
Notes:  Results are from counterfactual simulations as described in the text.  Values presented are absolute 

deviations from baseline simulation.   
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Table 1 

Summary of Variables in Dynamic Model 

State Variables Choice variables Transition process 

v – Boiler age, integer z – Replacement decision, 

discrete (z = 0 if no 

replacement, z = 1 if 

replaced with a coal boiler, 

z = 2 if replaced with non-

coal boiler) 

v' = v + 1 if z = 0 

v' = 1 if z > 0 

b – Boiler type, binary (b = 

1 for coal, b = 0 for non-

coal) 

x – Build scrubber decision, 

binary 

b' = b if z = 0 

b' = 1 if z = 1 

b' = 0 if z = 2 

s – Scrubber present, binary c – Use clean coal decision, 

binary 

s' = 1 if (s = 1 and z = 0) or 

(x = 1) 

s' = 0 otherwise 

u – Grandfathered status, 

binary (u = 0 if 

grandfathered, u = 1 if not 

grandfathered) 

m – Intensity of use 

decision, continuous 

u' = u if z = 0 

u' = 1 if z > 0 

p – Price differential 

between high- and low-

sulfur coal, continuous 

 p' determined exogenously 

A – productivity shock, 

continuous 

 A' determined exogenously 

B – emissions shock, 

continuous 

 B' determined exogenously 
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Table 2 

Data Moments Used in MSM Estimation 

Annual Moments 

  1985 1986 1987 1988 1989 

Fraction 

grandfathered 

.8736018 .8659091 .8609502   .859366 .8571429 

Fraction coal 

boilers 

.5755079 .5869809 .6020702   .604611 .6030006 

Fraction of 

coal with 

scrubber 

.1354962 .1453155 .1451767 .1458532 .1492823 

Fraction of  

coal using 

clean coal 

.3435115 .3518164 .3906399 .4566254 .3617225 

 1990 1991 1992 1993 1994 

Fraction 

grandfathered 

.8564946 .8510029 .8485023 .8463768 .8435092 

Fraction coal 

boilers 

.5996563 .6087963 .6101104 .6153396 .6230586 

Fraction of 

coal with 

scrubber 

.1509074 .1625475 .1685714 .1712655 .1783317 

Fraction of  

coal using 

clean coal 

.3352436 .3612167 .3314286 .3644148 .4074784 

Categorical Moments 

 Age <= 

15 

15 < Age <= 25 

and 

grandfathered 

15 < Age <= 25 

and not 

grandfathered 

25 < Age 

<= 35 

Age > 35 

Fraction 

scrapping 

.0052647     .0091001     .0233645     .0233645     .0705286     

Fraction of 

coal with 

scrubber 

.4264165     .1077819     .5617978      .0556046     .0382166     

Fraction of  

coal using 

clean coal 

.5283297     .3499792     .511236     .3415711     .2845011     

Fraction coal 

boilers 

.7680136       .5695662     .5615142     .5695375     .5675839     

Fraction in 

category 

.1630        .1927        .0144        .2726 .3573       

Notes:  Data source is EIA-767, 1985-1995.   
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Table 3 

Emissions Function Estimation Results 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Coal Non-coal 

 lnemis lnemisrate lnemisrate lnemisrate lnemisrate lnemis lnemisrate lnemisrate lnemisrate 

lnage 0.128*** 0.138*** 0.165*** 0.0504*** 0.297*** 0.166 -0.189 0.438** 0.0258 

 (0.0102) (0.00850) (0.0102) (0.0166) (0.0239) (0.148) (0.136) (0.190) (0.141) 

scrubber -1.308*** -1.306*** -1.239*** -1.213*** -1.458***     

 (0.0328) (0.0330) (0.0373) (0.0622) (0.0384)     

lsc -1.059*** -1.058*** -0.997*** -0.907*** -0.924***     

 (0.00961) (0.00958) (0.0120) (0.0129) (0.0169)     

lsc_scrubber 0.285*** 0.283*** 0.130*** 0.385*** 0.680***     

 (0.0435) (0.0435) (0.0494) (0.0826) (0.0537)     

lnmmbtus 0.994***     1.207***    

 (0.00404)     (0.0308)    

nonattainment   -.0964***     -0.697  

   (0.0190)     (0.495)  

Coal-gas ratio   -0.129     -0.236  

   (0.0972)     (1.176)  

Coal-oil ratio   -0.0700     -0.125  

   (0.0597)     (1.824)  

Capacity     -1.7e-7***     .000226*** 

    (3.03e-08)     (4.87e-05) 

Heat Rate    5.19e-07     -3.39e-7*** 

    (5.25e-07)     (9.74e-08) 

Hours    -1.0e-5***     6.5e-5*** 

    (2.44e-06)     (1.64e-05) 

Constant -6.697*** -6.832*** -6.791*** -6.592*** -7.720*** -17.03*** -13.57*** -14.98*** -14.45*** 

 (0.0892) (0.0333) (0.0578) (0.0665) (0.0930) (0.837) (0.602) (1.023) (0.624) 

Observations 10837 10837 6530 6209 5154 2940 2940 1446 2940 

R-squared 0.937 0.806 0.819 0.722 0.734 0.719 0.646 0.579 0.650 

Notes: Coal emissions data in columns 1-4 are calculated based on EIA-767, 1985-1995.  Coal emissions data in column 5 and non-coal emissions data in columns 6-9 are from eGrid, 1996-2000.  

Columns 3 and 8 include only boilers in states that had not begun electricity market restructuring by 2000.  The dependent variable is the log of tons of SO2 emissions or the log of tons of SO2 emissions 

per MMbtus heat input.  All columns include unreported state and year fixed effects.  Robust standard errors are in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4 

Revenue Function Estimation Results 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Non-coal Coal 

Age -1.8e+06*** -891911*** -920688*** -777489*** -9.31e+6*** -6.74e+6*** -6.72e+6*** -3.59e+6*** 

 (256324) (223868) (233285) (130785) (496721) (1.599e+06) (1.603e+06) (226540) 
Coal-gas ratio   7.018e+06    1.502e+07  
   (7.495e+06)    (1.204e+07)  
Coal-oil ratio   -9.773e+06    -2.10e+7***  

   (1.044e+07)    (6.154e+06)  

p∙c     -124463 -95069*** -92138** -43314 

     (115035) (36650) (36725) (35468) 

Constant 9.31e+7*** 7.07e+7*** 7.61e+7*** 2.657e+07 4.91e+8*** 3.80e+8*** 3.87e+8*** 3.30e+8*** 

 (8.937e+06) (7.240e+06) (7.926e+06) (5.880e+07) (1.442e+07) (2.724e+07) (2.756e+07) (1.040e+08) 

Observations 3096 3096 2907 3096 3760 3760 3760 3760 

R-squared 0.347 0.334 0.322 0.331 0.527 0.510 0.510 0.419 
Number of 
boilers 

-- 720 704 720 -- 975 975 975 

Estimation OLS RE RE RE OLS RE RE RE 
Error 
structure 

Clustered at 
Boiler 

Clustered at 
Boiler 

Clustered at 
Boiler AR(1) 

Clustered at 
Boiler 

Clustered at 
Boiler 

Clustered at 
Boiler AR(1) 

Notes:  Data source is EIA 767, 1985-1995.  Relative fuel price ratio data are from EIA-423, 1985-1995.  Robust standard errors in parentheses, *** p<0.01, ** 

p<0.05, * p<0.1.  
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Table 5 

Structural Parameter Estimation Results 

Fc 1803.34 

(1.61) 

Fnc 84.95 

(0.60) 

G 61.41 

(0.45) 

τ 2989.77 

(258.62) 

σA
2 0.1104 

(0.4851) 

P 0.8727 

(0.1207) 
Notes:  Standard errors are in parentheses.  Estimates come from simulated method of moments, matching moments 

from Table 2.   
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Appendix: Not for Publication 

Solving the model with Value Function Iteration 

 The discrete choice model presented in Section 1 does not have an analytic solution in its 

most general form.  It is thus solved numerically using value function iteration (VFI).  I briefly 

described how this technique is applied.  Code implementing this and further documentation are 

available on the author's website. 

 For a given functional form and set of parameter values, VFI can find the value function 

and policy functions of the model.  Suppose that the functional forms and parameters are known.  

The first step in implementing the solution method is to choose a discrete state space for all state 

and choice variables.  The boiler's age,  v,  is in years and hence already discrete.  I choose 90 

years old as the maximum age possible, implying that when a boiler passes age 90 it must be 

scrapped (the oldest operating boiler in the data set is 89 years old).  A boiler's scrubbed status  s,  

grandfathered status  u,  and type (coal or non-coal)  b  are all binary variables.  The clean-dirty 

coal price differential  p  is continuous and hence must be discretized.  I divide the entire 

distribution of values of  p  into ten deciles, and assign each boiler to one of these deciles.  A 

boiler's value of  p  does not change over time. 

 The final two state variables are the productivity shock and the emissions shock  A  and  

B.  The first shock,  A,  is discretized into ten separate values.  The distribution of  A  is 

lognormal with a median of one and a variance of  σA
2.  This distribution is divided into ten 

deciles, and the discretized value within each decile is the median within that decile.  The 

emissions shock  B  is not estimated here, since the emissions function comes from an 

engineering equation rather than estimated emissions data.  Thus, this shock is omitted from the 

analysis (or it takes only one value, unity).  The Markov process that governs the evolution of the 

shock must also be parameterized. 

 Three of the choice variables are discrete.  The scrapping choice  z  can be 0 (no 

scrapping), 1 (replacing with a coal plant) or 2 (replacing with a non-coal plant).  Coal plants 

face a binary decision to add a scrubber or not  (x)  and a binary decision to use clean or dirty 

coal  (c).  The decision over operating intensity  m  is continuous.  However, this decision is 

estimated in an earlier stage of the process and thus does not need to be solved through VFI.  For 

each state, there is an optimal level of operating intensity  m  that is taken as a given.  All other 

decisions are made under the assumption that the boiler is optimizing over this dimension. 
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 The value function  V(v,s,u,b,p,A,B)  must thus be solved for each of its 72,000 unique 

values (90*2*2*2*10*10*1).  I begin with an initial guess of the value function  (V0), say, that it 

equals one everywhere.  For each state, the optimal policy can be found as the policy that 

maximizes the sum of the single period profit function and the discounted value of the 

appropriate value function given  V0.  The optimal choice gives a new value function  V1.  The 

procedure is repeated, now with  V1  taking the place of  V0  and giving a newer resulting value 

function.  This is iterated  N  times until the difference between  VN  and  VN+1  is not too great.  

The actual value of the difference between these two values that triggers an end to the iterations 

is somewhat arbitrary.  When this difference is defined as simply the mean value of the pairwise 

differences in all dimensions of  V,  I find that a value of 0.001, compared to an average value 

function of around 65, to be a reasonable value.  Reducing that cutoff value increases the 

computational time, but does not bring about substantive changes in the model's outcomes. 

 Running the VFI routine on a Windows PC with a 2.6 GHz processor and 512MB of 

memory takes about ten minutes to complete. 

 

Method of Simulated Moments estimation routine 

 The intuition behind this application of MSM is as follows.  From the data, I create a 

vector of moments  ω.  I choose a set of parameters  Θ  and solve the model using value function 

iteration.  With the model solved, I simulate data and create a simulated set of those moments  

ωs(Θ).  I repeat the simulation  S  times.  The final estimate of  Θ  is the set of parameters that 

minimizes  ]')(
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Here,  ωi  is shorthand for the data moment calculated from observation  i,  ωis  is the moment 

from the simulation  s  of that moment, and  ωil  is the moment from an additional set of  L  

simulations.32  The simulated moments are taken from a first stage estimate of  Θ,  where the 

identity matrix is used as a weight matrix.  This is a consistent estimate of the optimal weight 

matrix as  L → ∞.    

Note that as the number of simulations,  S,  increases, the variance of the estimator 

decreases.  I use  S = 20  simulations.  Furthermore, the derivative matrix  dω/dθ  is 

approximated by looking at small but discrete changes in parameter values about the estimated 

values, and observing the resulting changes in the simulated moments.   

 Implementing MSM thus involves four steps.  First, I find the parameter values that 

minimize the objective function when using the identity matrix for the weight matrix.  Second, 

using those first-stage estimates I estimate the optimal weight matrix.  Third, I re-run the 

optimization routine using the optimal weight matrix (though the resulting estimates are more 

efficient, the point estimates of the parameter values are barely affected).  Fourth, I calculate the 

variance of the estimates by approximating the derivative of the moments with respect to the 

parameters. 

 To find parameters values that minimize the objective function, I use the Nelder-Mead 

simplex, or "amoeba", method.33  This routine is well-suited for searching over discontinuous 

functions, as is the case here with the discrete choice problem, since it does not depend on 

calculating gradients.  However, it is still possible for this optimization routine to become stuck 

at a local minimum or on a flat portion of the objective function.  Thus, I begin with a simple, 

manual grid search over a subset of parameters (keeping the rest constant) to find appropriate 

starting values for the simplex search.  It is especially important in this application to ensure that 

the optimization routine is not stuck at a local minimum.  Because the frequency of scrapping is 

so low (see the moments in Table 2), parameter values that make it never optimal for boilers to 

scrap result in simulated moments that are rather close to the actual moments.  Small changes 

about these parameter values lead to no change in simulated outcomes, rendering the algorithm 

incapable of escaping these values.  An "eyeball test" of the resulting parameters and moments is 

thus important. 

 Depending on the starting values used, implementing this MSM routine takes 

approximately 300 function evaluations, that is, 300 runnings of the VFI routine described 
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above.  On a Windows PC with a 2.6 GHz processor and 512MB of memory, this can take up to 

ten hours of computational time.34 

 

Comparison of Simulated and Data Moments. 

 In the Appendix Table A1, I repeat from Table 2 the moments from the data and compare 

them to the moments that are created by simulating the economy using the estimated parameters, 

to see how well the model does at matching the moments.  Table A1 is organized just as Table 2, 

with the top panel presenting the four annual moments for each year and the bottom panel the 

five categorical moments for each category of boilers.  Within each cell, the top row is the 

moment evaluated from the data, replicating that in Table 2.  The second row is the simulated 

moment evaluated from the model run using the point estimates of the parameters.  In the bottom 

row are the 95% confidence intervals for those simulated moments.  These confidence intervals 

are evaluated by taking 100 draws of parameter values from the estimated distribution, solving 

the model and simulating the moments for each draw, and inferring the resulting distribution of 

each moment.35  The annual moments for the initial year, 1985, are not simulated, since those are 

used as starting values and are identical for all simulations and all parameter values. 

The simulated annual moments are matched quite closely with the data moments.  The 

simulated fraction of boilers grandfathered and fraction of boilers that are coal are both within 

one percentage point of the data moment in each year.  The slight increase in the fraction of coal 

boilers using scrubbers is not picked up in the simulation, but by the final year the simulated 

moment is only 5 percentage points lower than the actual.  The fraction of coal boilers using 

clean coal is well matched in the simulations, with the exception of 1988, in which there is an 

increase in clean coal use that is not captured in the simulation. 

The simulated values of the categorical moments capture the overall patterns in the data 

moments but do not match them as closely as the matches in the annual moments.  In the 

simulations no boilers younger than 15 years old scrap.  This is actually not too far off from the 

data value of one-half of one percent, which represents only a small absolute number of boilers 

in that category scrapping.  The simulated scrapping rate increases in the next age category, and 

the scrapping rate is higher for non-grandfathered boilers than it is for grandfathered boilers, as it 

is in the data.  For boilers older than 25 years old, the data shows higher scrapping rates, while 

the scrapping rates in the simulations taper off.  The simulated fraction of coal boilers using a 
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scrubber matches the overall patterns in the data, though too few of the youngest boilers utilize 

scrubbers.  The simulated fraction of coal boilers using clean coal is too low in the last three 

categories.  Finally, the last two categorical moments, the fraction of coal boilers in each 

category and the fraction of all boilers in each category, are matched quite closely. 

The 95% confidence intervals for the simulated moments tend to be smaller for the 

annual moments than for the categorical moments.  An exception is the annual moment of 

fraction of coal boilers using clean coal, where the confidence interval hovers around [.23,.45].  

The confidence interval for this same statistic in the categorical moments is even larger, with one 

interval of almost 35 percentage points.  A large confidence interval, though, indicates that the 

moments are doing a good job identifying the parameters, since small changes in parameters lead 

to large changes in simulated moments.  Overall, comparing the simulated with the data 

moments suggests that the model does a good job capturing the patterns in the data of utility 

decisions over abatement and scrapping.  It appears that in the simulations slightly too few coal 

boilers use scrubbers, and too few older boilers are scrapping. 

 

  



 52 

Appendix Table A1 

Comparison of Data and Simulated Moments 

Annual Moments 

  1985 1986 1987 1988 1989 

Fraction 

grand-

fathered 

.8736 

 

.8659 

.8508 

[.8190, 

.8857] 

.8610   

.8501 

[.8175, 

.8855] 

.8594 

.8479 

[.8151, 

.8844] 

.8571 

.8450 

[.8127, 

.8831] 

Fraction 

coal boilers 

.5755 .5870 

.6040 

[.5689, 

.6352] 

.6021   

.6047 

[.5689, 

.6365] 

.6046 

.6070 

[.5700, 

.6388] 

.6030 

.6098 

[.5712, 

.6411] 

Fraction of 

coal with 

scrubber 

.1355 .1453 

.1355 

[.1250, 

.1770] 

.1452 

.1353 

[.1254, 

.1849] 

.1459 

.1348 

[.1242, 

.1932] 

.1493 

.1342 

[.1249, 

.1984] 

Fraction of  

coal using 

clean coal 

.3435 .3518 

.3376 

[.2254, 

.4320] 

.3906 

.3384 

[.2260, 

.4338] 

.4566 

.3408 

[.2272, 

.4366] 

.3617 

.3439 

[.2285, 

.4395] 

 1990 1991 1992 1993 1994 

Fraction 

grand-

fathered 

.8565 

.8422 

[.8104, 

.8820] 

.8510 

.8398 

[.8081, 

.8808] 

.8485 

.8375 

[.8057, 

.8800] 

.8464 

.8346 

[.8033, 

.8787] 

.8435 

.8326 

[.8013, 

.8778] 

Fraction 

coal boilers 

.5997 

.6127 

[0.5721, 

0.6435] 

.6088 

.6151 

[0.5734, 

0.6456] 

.6101 

.6174 

[0.5741, 

0.6479] 

.6153 

.6200 

[0.5751, 

0.6502] 

.6231 

.6215 

[0.5755, 

0.652] 

Fraction of 

coal with 

scrubber 

.1509 

.1336 

[.1234, 

.2057] 

.1625 

.1330 

[.1237, 

.2092] 

.1686 

.1325 

[.1232, 

.2109] 

.1713 

.1320 

[0.1232, 

0.2116] 

.1783 

.1317 

[0.1234, 

0.2108] 

Fraction of  

coal using 

clean coal 

.3352 

.3469 

[0.2297, 

0.4422] 

.3612 

.3495 

[0.231, 

0.4449] 

.3314 

.3519 

[.2320, 

.4474] 

.3644 

.3551 

[.2333, 

.4503] 

.4075 

.3575 

[.2343, 

.4528] 
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Categorical Moments 

 Age <= 15 15 < Age <= 

25 and 

grand-

fathered 

15 < Age <= 

25 and not 

grand-

fathered 

25 < Age <= 

35 

Age > 35 

Fraction 

scrapping 

.005265 

.0000 

[.0000, 

.004300]     

.009100 

.005600     

[.0000, 

.01100] 

.02336     

.02650 

[.0000, 

.03540] 

.02336 

.007000  

[.0000, 

.01280]    

.07053 

.003700  

[.0001000, 

.005900]   

Fraction of 

coal with 

scrubber 

.4264 

.3211  

[.2832, 

.5636]    

.1079 

.07430     

[.07430, 

.07430] 

.5618    

.5775   

[.5528, 

.9703] 

.05560 

.04910   

[.04910, 

.04910]   

.03822 

.05210   

[.05210, 

.05210]   

Fraction of  

coal using 

clean coal 

.5283 

.5695   

[.3622, 

.7327]   

.3500  

.3511   

[.2420, 

.4449]  

.5112   

.4033   

[.2762, 

.5399] 

.3416 

.2470    

[.1703, 

.3130]  

.2845 

.2000   

[.1379, 

.2534]  

Fraction 

coal boilers 

.7680 

.7738  

[.7268, 

.8035]      

.5696    

.5712  

[.5581, 

.5863] 

.5615     

.4985 

[.4647, 

.5221] 

.5695 

.5754 

[.5421, 

.5996]     

.5676 

.5563   

[.5282, 

.5793]   

Fraction in 

category 

.1630  

.2061 

[.1706, 

.2349]       

.1927   

.2206     

[.2149, 

.2256]  

.01440        

.01240 

[.0114, 

.0129] 

.2726 

.3038 

[.2911, 

.3216] 

.3573   

.2572   

[.2466, 

.2704]   
Notes:  In each cell, the top row is the moment from the data (replicated from Table 2).  The middle row is the 

corresponding simulated moment using the point estimates of the structural parameters.  The bottom row is the 95% 

confidence interval of the simulated moments, generated from 100 draws from the estimated distribution of the 

parameters. 

 

 

Endnotes 

                                                 
1 The US energy bill passed in 2007 contains an ethanol mandate with a requirement that the 

ethanol produced over its lifetime achieves at least a 20 percent reduction in greenhouse gases 

compared to gasoline.  However, any biorefinery built or under construction before the bill's 

signing is exempt from that requirement; this could include up to 13.7 billion gallons of 

production capacity out of the 15 billion gallons of corn ethanol envisioned by the bill [19]. 
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2 Technically, the CAA was passed in 1963 and amended in 1970, but the 1970 amendments are 

often referred to as the "Clean Air Act of 1970" because they contained the bulk of the 

regulations. 

3 [28] discusses when it might be socially optimal to grandfather, and [29] discusses the effects 

of grandfathering of environmental policy in many contexts.   

4 The data set includes fossil fuel fired steam electric power plants powered by coal, oil, and 

natural gas.  I lump together oil and natural gas because their emissions of sulfur dioxide are 

negligible compared to coal plants; coal accounts for 97% of SO2 emissions from this group. 

5 [31] finds evidence of a discrete jump in coal prices right at the CAA-imposed standard of 1.2 

lbs/MMBtu. 

6 This choice is assumed to be binary rather than continuous.  [17] and [26] find that investment 

is mostly "lumpy."  Entry and exit are not modeled.  The vast majority of the electric utilities are 

present in every year, indicating that the utility-level industry makeup is roughly constant and 

entry and exit are not prevalent in this industry.  Capacity growth, on the other hand, is prevalent, 

and it can be accommodated in the model in the same way as can technological growth.  See the 

discussion later in this section. 

7 The cost differential of switching to low-sulfur coal is modeled as a variable cost.  It is possible 

to also include a fixed cost that is incurred when first switching coal types.  Different types of 

coal can have different ash contents, different difficulties of pulverization, and other different 

characteristics that may require capital or fixed costs to accommodate the boiler.  However, those 

capital costs are dwarfed by the differential in fuel cost ( [27], p. 158).   

8 Among the many papers that model environmental policy as a tax are [18], [25], and [15].  

9  See [16] for a formalization of this intuition. 
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10 This program has been studied in [9]. 

11 A dynamic policy incorporating uncertainty can be modeled by through a state variable that 

captures the policy and evolves according to a Markov process.  See [12].  If firms are 

responding in advance to the policy change, then the baseline estimates of the implicit emissions 

tax may be biased downwards. 

12 Only 12 states had begun implementing electricity market restructuring before the end of 

2000, and as of September 2001 only 2.6% of total customers (residential and non-residential) 

were served by competitive electricity suppliers 

(http://www.eia.doe.gov/cneaf/electricity/chg_str/restructure.pdf). 

13 In fact, two recent papers that study the impact of NSR on existing plants, [6] and [8], both use 

a period of heightened enforcement that began with a series of lawsuits against utilities in 

November 1999 to identify this effect [8]: "Although the law [NSR] had been in place for 

decades, it was never vigorously enforced." (p. 1).  

14 For boilers without scrubbers, total emissions is the product of the total tons of coal, the 

average sulfur content of coal, and  a boiler-specific emissions factor.  For scrubbed boilers, the 

equation also considers scrubber-specific emissions reduction factors. 

15 Available online at www.epa.gov/cleanenergy/egrid.  

16 Data on emissions of nitrogen oxides (NOX) and other pollutants are also included; I focus 

here solely on SO2. 

17 Available at http://www.eia.doe.gov/cneaf/electricity/page/eia767.html for 1996-2005, but the 

data used here for earlier years were obtained by request from the EIA. 

http://www.eia.doe.gov/cneaf/electricity/chg_str/restructure.pdf
http://www.epa.gov/cleanenergy/egrid
http://www.eia.doe.gov/cneaf/electricity/page/eia767.html
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18 At least three different types of NSPS can apply to the boilers, and each boiler is asked which 

type of NSPS it faces.  While the standards differ somewhat, for simplicity I consider only a 

binary grandfathered policy.   

19 Available at: http://www.eia.doe.gov/cneaf/electricity/cq/cq_sum_backissues.html.  

20 For examples of this method, see [13], [21], [23], or [24].  The Appendix describes the method 

in detail. 

21 One can also regress emissions on a polynomial of heat input.  The non-linear terms are 

significant but orders of magnitude smaller than the linear term. 

22 This neglects effects from long-term contracts for coal, where utilities cannot choose an 

optimal coal type each period since they are locked in to a contract (see, e.g., [22]).  This should 

not present a significant distortion, since utilities are optimizing over contract terms and, on 

average, the outcome of that behavior should follow the outcome of choosing coal types each 

year. 

23 I have experimented with adding a common component to the productivity shock to capture 

business cycle effects, using an additional set of data moments based on business cycles.  

However, the common component of the shock was not found to be significant. 

24 Though  β  could be estimated, it may be difficult to identify due to collinearity with the fixed 

costs of replacement  Fc  and  Fnc.  (see [7], p. 1023). 

25 [30] estimates a structural model of the cement industry's response to the 1990 CAA 

amendments, but not grandfathering. 

26 The variance of a lognormal distribution is exp(σ2 – 1)×exp(2μ + σ2), and here μ is zero. 

27 These are not the only counterfactual policy experiments that could be simulated.  For 

example, one policy to counteract the effects of grandfathering is to provide subsidies to 

http://www.eia.doe.gov/cneaf/electricity/cq/cq_sum_backissues.html
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investment.  This policy might be more politically feasible then a removal of grandfathering.  

Alternatively, the policy could gradually phase out the grandfathering status for older plants or 

end it after a certain age.  Note also that the no grandfathering counterfactual is similar to what 

occurred with the implementation of the SO2 permit trading scheme, which did not grandfather 

plants.   

28 For clarity, confidence intervals are not presented but can be calculated by taking 100 draws 

from the asymptotic distribution of the parameters values, simulating the counterfactual for each 

draw, and calculating the resulting standard errors.  This is the same method used to calculate the 

confidence intervals of the simulated moments in Table 5. 

29 Further evidence of the perverse effect of increasing emissions standards can be found in [29]. 

30 This result is not too far removed from what is seen in the data, where from 1985-1994 only 36 

boilers add scrubbers, a rate of 0.18%.  Boilers adding scrubbers are younger than average, with 

a mean age of 24.3 years compared to 26.8 years for those that do not add scrubbers.  Comparing 

the simulated moments with the data moments in Appendix Table A1, the fraction of coal boilers 

with scrubbers increases slightly in the data, though the simulated data do not match this pattern.  

Thus the simulations are slightly under-predicting the use of scrubbers, although if the level of 

under-prediction is the same across all simulations, then it does not affect the comparisons 

between the baseline and counterfactuals.   

31 Simulated maximum likelihood (SML) is another simulation method commonly used for 

discrete choice models.  [20] finds no difference in parameter values for a model estimated with 

both MSM and SML.   

32 See [13], p. 89, or [21], p. 32. 

33 This is used in the "fminsearch" function in Matlab. 
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34 This is not quite the time for one VFI routine (~ 10 minutes) times 300, since running the VFI 

routine after only a small change in parameter values takes less time than an initial running. 

35 This method is used in [14] and [20].  [14] note that it is generally superior to the delta 

method. 
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