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ABSTRACT

When consumers exhibit present bias and are time-inconsistent, the standard solution to market failures
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A growing body of evidence suggests that consumers regularly and predictably depart 

from acting in accordance with rational choice theory.  In particular, they appear to act with 

time-inconsistent preferences, or with a present bias: they "underweight" future periods in the 

present period.  This affects decisions over purchases of durable goods with variable operating 

costs; present bias makes a consumer less likely to spend money upfront to reduce a durable's 

future operating costs.  Many durable goods are energy-intensive and create externalities with 

consumption, like cars consuming gasoline or appliances consuming electricity.  The standard 

incentive-based solution to the market failure caused by externalities is Pigouvian pricing, but 

the efficiency of this solution assumes time-consistent preferences. 

If consumers are time-inconsistent, does Pigouvian pricing of externalities still lead to a 

socially optimal outcome?  If not, what policy maximizes social welfare?  Must it include 

command-and-control policies instead of or in addition to incentive-based policies?  The purpose 

of this paper is to answer these questions by developing a model of demand for externality-

producing durable goods in the presence of time-inconsistent preferences.  I use a time-consistent 

social welfare function, one that aggregates all individuals' utility levels defined without present 

bias.  I refer to the policies that maximize this social welfare function as "optimal" or "first-best" 

policies.  Surprisingly, very little economic research has yet been undertaken to examine policy 

design in the presence of behavioral anomalies like time inconsistency, and no paper has 

answered the questions posed here.  Then, I apply the model to the automobile market through 

simulation and solve for the policy that maximizes social welfare.   

 The question addressed here is policy-relevant for two reasons.  First, empirical support 

for the existence of behavioral anomalies, especially time-inconsistent preferences, is growing.1  

Consumers seem to discount the far future more heavily than the near future, behavior that can 

be modeled by hyperbolic or quasi-hyperbolic discounting (Laibson 1997).  This has been 

observed in laboratory experiments (Thaler 1981), in individuals' decisions over exercising 

(Dellavigna and Malmendier 2006) and doing homework assignments (Ariely and Wertenbroch 

2002).2  It also may be relevant to decisions over energy-efficiency of durable goods.  Alcott and 

                                                            
1 For recent evidence, see Mastrobuoni and Weinberg (2009), Fang and Silverman (2009), Brown et. al. (2009), or 
Viscusi et. al. (2008). 
2 The field evidence for this and other types of behavioral anomalies is reviewed in DellaVigna (2009).  Andreoni 
and Sprenger (2010) cite laboratory evidence that fails to find any present bias in preferences, but they suggest that 
no such bias is expected in laboratory experiments involving money rather than consumption utility.  Hastings and 
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Wozny (2010) find that consumers underweight future fuel costs of automobiles at the time of 

purchase.  The well-established "energy paradox" or "energy efficiency gap" finds that 

households seem to apply very high discount rates in their decisions over energy-intensive 

durable goods like air-conditioners (Hausman 1979).  Gillingham et. al. (2009) summarize the 

literature and find implicit discount rates ranging from 25% to 100%.3  This paradox may be 

explained by present bias. 

A second reason the question addressed in this paper is relevant is that environmental and 

energy policy seems to be moving in a direction towards incentive-based policies, especially 

tradable permits, and away from command-and-control policies.4  This transition has been fueled 

by arguments from economists that incentive-based policies achieve substantial cost savings 

compared to command-and-control policies; some empirical evidence has verified this for some 

policies (Carlson, et al. 2000).  If Pigouvian pricing is inefficient under time inconsistency, and if 

consumers are time-inconsistent, then this push towards these policies may reduce efficiency.  

More so, if time inconsistency causes some command-and-control policies to increase social 

welfare compared to Pigouvian pricing, then the push away from command-and-control policies 

may also reduce efficiency (Shogren and Taylor 2008).   

 This paper's results are likely to be relevant beyond the domain of environmental policy.  

Evidence for time-inconsistent preferences appears in a number of consumer decisions, including 

retirement savings (Laibson, Repetto and Tobachman 1998) and eating (Ruhm 2010).  Policies 

addressing consumer behavior in these areas will not achieve a first-best outcome if they do not 

account for the consumers' time inconsistency.  This paper develops such a framework for policy 

design for the case of externalities in the presence of time inconsistency; this may serve as a 

springboard for the analysis of other market failures or policy instruments under time 

inconsistency.  For example, in the case of obesity policy, how does a calorie tax compare to a 

trans-fat ban? 

 The theoretical results provide some insight into policy design.  First, I show that a 

Pigouvian tax that only accounts for externalities does not bring about the first-best outcome 
                                                                                                                                                                                                
Mitchell (2011) combine experimental evidence with data on Chilean households' savings decisions and find that 
present bias does a better job predicting financial behavior than does financial literacy.  
3 See also Table 1 in Sanstad et. al. (2006).  By contrast, Greene's (2010) reading of the econometric literature 
estimating consumers' valuations of fuel economy finds mixed results, with some studies finding under-valuing and 
some finding over-valuing of improvements in fuel economy (see his Table 2).  Busse et. al. (2009) find that 
gasoline prices affect the new car market more so that the used car market. 
4 Command-and-control policies are sometimes referred to as "direct regulatory instruments." 



4 
 

under time inconsistency.  A Pigouvian tax leads to cars that are not fuel-efficient enough and 

are driven too few miles, compared to the first best.  In general, gasoline consumption under time 

inconsistency can either exceed or fall below the first-best level.  Second, the first-best outcome 

can be attained through a Pigouvian tax and a command-and-control mandate in the initial 

decision period.  This bolsters intuition provided in earlier papers that, for example, fuel 

economy standards for cars increased efficiency relative to gasoline taxes (Greene 1998).  Third, 

however, I show that the first best can be achieved with an incentive-based policy in the initial 

decision period rather than a command-and-control policy.  Time inconsistency means that 

future costs are not fully realized by the consumer, but they can be introduced through a price 

instrument, e.g. a tax on fuel (in)economy.  Thus, the common argument that behavioral 

anomalies give credence to command-and-control mandates over incentive-based mandates is 

not true in this case; either type of policy can achieve the first best.5  Fourth, in contrast to 

policies that address market failures caused by externalities, under consumer heterogeneity 

incentive-based policies do not necessarily result in a higher value of social welfare than 

command-and-control policies.  When consumers are time-consistent but heterogeneous in their 

preferences, a uniform Pigouvian tax on an externality induces the first-best outcome, and a 

uniform performance standard does not.  For time-inconsistent preferences, under heterogeneity, 

neither a uniform tax nor a uniform performance standard induces the first best.  This holds even 

when consumers are homogeneous with respect to their degree of present bias.   

 The simulation results suggest that, for the automobile market, the welfare gains from 

policies that address time inconsistency are substantial, and policies that ignore time 

inconsistency are substantially different from the optimal policies. The deadweight loss of a 

policy that addresses externalities from gasoline consumption but does not address time 

inconsistency ranges from $160 to $225 per new vehicle sale, which amounts to an economy-

wide deadweight loss of $1.44 billion to $2.01 billion annually.  The policy that minimizes 

deadweight loss includes a tax that reduces the price differential between the average hybrid car 

and the average non-hybrid car by $750 to $2200.  The tax rate on gasoline that minimizes 

deadweight loss is 18% to 30% higher than marginal external damages. 

 How do the findings of behavioral economics affect optimal energy policy?  It is often 

suggested that behavioral anomalies justify command-and-control policies.  Gillingham et. al. 

                                                            
5 See also the discussion of "behavioral feebates" for automobile fuel economy in Alcott and Wozny (2010). 
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(2009) offer as potential policy instruments for behavioral anomalies education, information, and 

product standards.  Allcott and Mullainathan (2010) examine how non-price behavioral 

interventions ("nudges") affect consumer choices on energy use, and they argue that there are 

potentially many low-cost instruments available to reduce consumption.  For example, simply 

giving households information in their monthly bills about their relative electricity consumption 

tends to reduce consumption.  Fischer et. al. (2007) argue that strengthening fuel economy 

standards will be welfare-increasing only if consumers are myopic with short horizons.  Yet, no 

study looks for optimal energy or environmental policy design in the presence of time-

inconsistent preferences. 

 One reason for the lack of much research in optimal policy design under behavioral 

anomalies is the difficulty of conducting welfare analysis with such anomalies.  Standard welfare 

analysis is based on revealed preference, in which consumers' choices among available bundles 

gives information about preferences.  Under behavioral anomalies, though, choices can be 

inconsistent (e.g. a consumer prefers A over B in some instance and B over A in another), and 

thus it is difficult to map them into utility or welfare functions.  Several criteria for welfare 

analysis in the presence of time-inconsistent preferences have been suggested.  This paper is 

agnostic about which welfare criterion to employ in the following sense: I use a particular 

welfare criterion (the "long-run" criterion, described below) to analyze policy design, then I 

investigate how robust these results are to two alternate welfare criteria, including those 

proposed by Bernheim and Rangel (2009). 

 Some other studies have examined optimal policy in the presence of time-inconsistent 

preferences.  O'Donoghue and Rabin (2006) and Gruber and Koszegi (2001) solve for optimal 

"sin" taxes on goods that cause future damages (e.g. to health) that are underweighted when 

consumed because of present bias.  The two papers most similar in scope to this paper consider 

Pigouvian taxation of externalities when individuals exhibit behavioral anomalies.  Johannson 

(1997) considers Pigouvian taxation when individuals exhibit altruism.  Intuitively, one might 

think that when individuals care about the welfare of others, the efficient tax rate on an 

externality is lower than when individuals are purely self-interested, since their altruism causes 

them to account for the external damages of others.  Johannson (1997) finds that this is not 

necessarily so.  The optimal tax may be higher with altruism than without it because the socially 

efficient level of the externality may be lower with altruism than without it. 
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 Lofgren (2003) considers Pigouvian taxation when individuals exhibit addiction.  She 

finds that the first-best is achieved with the standard Pigouvian tax: addiction does not affect 

optimal policy.  However, she considers some extensions, including time-inconsistency.  Though 

her focus is on addiction, some of her results are relevant to the question at hand in this paper.  

For instance, she finds that under myopic (time-inconsistent) preferences, the optimal tax differs 

from the Pigouvian tax, a result replicated here in a more complex model of time inconsistency 

without addiction.   

 Neither of these two papers, and no paper to my knowledge, directly answers the question 

of how to design policies to address the market failure caused by externalities in an economy 

where consumers are time-inconsistent.   

 The next section below presents the base case representative agent model.  Section 2 

extends the model to multiple heterogeneous agents.  Section 3 considers alternate welfare 

criteria.  Section 4 presents simulation results.   

I. Representative Agent Model 
 Consider a representative consumer making a decision over a durable good lasting  T  

periods.  The good is purchased in the initial period  (t = 0).  In each subsequent period  (t = 1 

through t = T),  the consumer chooses the operating intensity of the good.  For example, if the 

good is an automobile, the consumer chooses its fuel economy in the first period (miles per 

gallon) and chooses how many miles to drive in each subsequent period. 

 Rational choice theory predicts that a consumer trades off costs and benefits in a time-

consistent way.  The relative utility weighting of two consecutive time periods will not change 

over time.  Exponential discounting (with a constant discount factor) achieves time consistency.  

However, consumers exhibit time inconsistency if using quasi-hyperbolic discounting instead of 

a constant discount factor.  Under quasi-hyperbolic discounting, the discount factor applied in 

the present between any two consecutive future periods is  δ,  while the discount factor used 

between the current period and the following period is  βδ,  where  β < 1.  The parameter  β  

represents a "present-bias" in preferences, and  δ  is sometimes called the "long-run" discount 

factor.  

 Quasi-hyperbolic discounting leads to time inconsistency.  A consumer at time  t  will 

make different future decisions than she will at another time period, even without any changes in 

information or realizations of uncertainty.  Time inconsistency is a specific instance of a 
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behavioral anomaly, an act deviating from predictions of rational choice theory.6  Mullainathan 

and Thaler (2001) classify behavioral anomalies into three classes; time inconsistency falls under 

the class "bounded willpower." 

 To work with a concrete example, let the durable good be an automobile, where the 

intensity of use is the number of miles driven each period.  Consider first the consumer's choice 

of miles conditional on a particular vehicle with a given fuel efficiency.  Let  gpm  be the fuel 

economy in gallons of gasoline per mile.  Let  mt  be the number of miles driven in period  t,  so 

that the total fuel consumption for the consumer in period  t  is  gpm·mt.  The consumer gets 

utility (in dollar equivalents) from driving described by a utility function  U(mt),  where  U' > 0  

and  U'' < 0.  The cost (in dollars) to the consumer per gallon of fuel is  gast + τt,  where  gast  is 

an exogenous gasoline price and  τt  is a tax set by the government.   

 The consumer's surplus in period  t  is  U(mt) – (gast + τt)·gpm·mt.  The privately chosen 

number of miles driven in period  t  conditional on prices and fuel economy is  mt*,  given by the 

first-order condition  U'(mt
*) = (gast + τt)·gpm.7  This implies that  mt

*  is a function of the price 

of driving one mile: mt
* = m*(gpm· (gast + τt)). 

 Next consider the consumer's problem in period  0,  that is, her decision over the fuel 

economy of the car  (gpm)  to maximize total discounted utility.  Suppose that the car is not 

driven in period  0  so that period  0  utility is just the negative of the cost of the car,  c.  A car 

with fuel economy  gpm  costs  c(gpm).  Assume that  c' < 0,  so that less fuel efficient cars 

(those with higher  gpm)  are less expensive, and that  c'' > 0.  The consumer's full problem is 

thus 

max
௚௣௠,ሼ௠೟ሽ೟సభ

೅
െܿሺ݃݉݌ሻ ൅ ௧ሾܷሺ݉௧ሻߜ෍ߚ െ ሺ݃ܽݏ௧ ൅ ߬௧ሻ · ݉݌݃ · ݉௧ሿ

்

௧ୀଵ

 

The consumer employs quasi-hyperbolic discounting when  β < 1.8  With no uncertainty in gas 

prices, the consumer can choose  mt  for each period at time  t = 0.  Since each choice of  mt  is a 

static problem conditional on gas prices and  gpm,  the  solution to each of those  T  static 

                                                            
6 Behavioral anomalies are termed "behavioral failures" in Shogren and Taylor (2008).   
7 Ensure an interior solution by assuming that  U'(m) → ∞  as  m → 0. 
8 See Laibson (1997).  Quasi-hyperbolic discounting is also called  (β, δ)  discounting or quasi-geometric 
discounting.  I focus on the case of  β < 1  (present bias), although symmetric results arise from  β > 1.   
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problems for  mt  can be substituted into the consumer's problem, so that the consumer's problem 

can be expressed as a choice over just fuel economy: 9 

max
௚௣௠

െܿሺ݃݉݌ሻ

൅ ௧ሾܷߜ෍ߚ ቀ݉௧
௧ݏሺ݃ܽ݉݌൫݃כ ൅ ߬௧ሻ൯ቁ െ ሺ݃ܽݏ௧ ൅ ߬௧ሻ · ݉݌݃

்

௧ୀଵ

· ݉௧
௧ݏሺ݃ܽ݉݌ሺ݃כ ൅ ߬௧ሻሻሿ 

 Continuity and differentiability of  c  yield a first-order condition.  After simplifying 

through an envelope condition from the consumer's static problem, this becomes 

െܿ′ሺ݃݉݌ሻ ൅ ௧ݏ௧ሾെሺ݃ܽߜ෍ߚ ൅ ߬௧ሻ · ݉௧
௧ݏሺ݃ܽ݉݌ሺ݃כ ൅ ߬௧ሻሻሿ

்

௧ୀଵ

ൌ 0 

The first term including the negative sign is positive, and it represents the current-period benefit 

of a marginal increase in  gpm:  it is cheaper.  The summation is negative, and it represents the 

discounted cost of a marginal increase in  gpm:  each future period's utility is lower because the 

cost of driving is higher.  Call the solution to the consumer's problem  gpm*  and  mt
*. 

 Consider next the social planner's problem, which differs from the consumer's problem in 

two respects.  First, suppose that there is an externality associated with the use of fuel.10  The 

social planner considers the externality in its social welfare function.  The total number of 

gallons of gasoline used in period  t  is mt·gpm;  let the external damages from gasoline be  

d(mt·gpm),  where  d(0) = 0,  d' > 0,  and  d'' ≥ 0. 

 The consumer's preferences are time inconsistent since  β < 1.  The social planner thus 

encounters a dilemma over deciding what to maximize, since different "selves" of the consumer 

at different periods have different utility functions.  One approach is for the planner to maximize 

the utility function used by the period-zero self (Krusell, Kuruscu and Smith 2002); this 

approach might seem unappealing in that it underweights future selves' utilities.  An alternate 

welfare criterion is to maximize a function identical to the initial period consumer's utility 

function but omitting the present bias, i.e. setting  β = 1.  This approach, because it has the 

                                                            
9 Here where the purchase decision over the durable good occurs in just the first period, this is equivalent to a 
multiple-self Nash equilibrium, as in Laibson et. al. (1998). 
10 Though this is a representative agent framework, the externality can be accommodated by supposing that the 
consumer does not account for its cost in her decision.  (The generalization is that there is a continuum of 
consumers, all of whom just barely value the miniscule contribution their gasoline use makes to the aggregate 
externality.) 
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planner applying only the long-run discount factor and not the present bias term, is sometimes 

called the long-run criterion. One interpretation of this criterion is that it represents the 

preferences of the consumer if she were to decide what to do in the period before she had to 

purchase the car (Gruber and Koszegi 2001).  Another interpretation is that the consumer is, in a 

welfare-relevant way, making a mistake when she applies the present bias term  β.  That is, the 

consumer's "decision utility" includes a  β ് 1  while her "true utility" does not.  The social 

welfare function maximizes her true utility.  (True utility is sometimes also called "hedonic 

utility" or "experienced utility.")   

 Papers using the long-run criterion to conduct welfare analysis include Carroll et. al. 

(2009), O'Donoghue and Rabin (2006), and Gruber and Koszegi (2001).  A justification for the 

social planner using a discount rate that differs from the market discount rate is found in Caplin 

and Leahy (2004).  Robson and Samuelson (forthcoming) develop a model based on biological 

evolution to explain the existence of the discrepancy between decision and true utilities.  The 

long-run criterion, though, requires the paternalistic assumptions that individuals' decisions are 

not indicative of their true, welfare-maximizing preferences.  Gruber and Koszegi (2001), for 

instance, argue that time-inconsistent preferences demonstrate that people do not act in their best 

interests.  Alternative welfare criteria, including those presented by Bernheim and Rangel (2009) 

attempt to be less paternalistic.  In order to be agnostic about what welfare criterion to employ, I 

adopt the following strategy.  I solve for optimal policy under the long-run criterion, and then I 

investigate how robust those policy solutions are to alternate welfare criteria.  Later, in section 3, 

I show conditions under which a first-best solution defined according to the long-run criterion is 

also considered welfare-improving under the alternate criteria.     

 Under the long-run criterion and accounting for the externality from pollution  d,  the 

social planner's problem is 

max
௚௣௠,ሼ௠೟ሽ೟సభ

೅
െܿሺ݃݉݌ሻ ൅෍ߜ௧ሾܷሺ݉௧ሻ െ ௧ݏܽ݃ · ݉݌݃ · ݉௧ െ ݀ሺ݉௧ · ሻሿ݉݌݃

்

௧ୀଵ

 

As with the consumer's problem, each choice of  mt  is made in a static setting conditional on  

gpm.  It can be written as a function of  gast  and  gpm;  let this be  mt
opt = mt

opt(gast, gpm).  

Then, the social planner's problem can be similarly rewritten: 
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max
௚௣௠

െܿሺ݃݉݌ሻ

൅෍ߜ௧ሾܷ൫݉௧
௢௣௧ሺ݃ܽݏ௧, ሻ൯݉݌݃ െ ௧ݏܽ݃ · ݉݌݃ · ݉௧

௢௣௧ሺ݃ܽݏ௧, ሻ݉݌݃

்

௧ୀଵ

െ ݀ሺ݉௧
௢௣௧ሺ݃ܽݏ௧, ሻ݉݌݃ ·  ሻሿ݉݌݃

A first-order condition for the social planner's problem is 

െܿ′ሺ݃݉݌ሻ ൅෍ߜ௧ሾെ൫݃ܽݏ௧ ൅ ݀′ሺ݉௧
௢௣௧ሺ݃ܽݏ௧, ሻ݉݌݃ · ሻ൯݉݌݃ · ݉௧

௢௣௧ሺ݃ܽݏ௧, ሻሿ݉݌݃

்

௧ୀଵ

ൌ 0 

Call the solution to the planner's problem  gpmopt  and  mt
opt;  I will refer to these as the "optimal" 

or "first-best" solutions.  By comparing the first-order conditions of the consumer and the 

planner, it is apparent that when  β = 1  the first-best outcome will be chosen by the consumer 

when  τt = d'(mt
opt·gpmopt)  for all  t א [1,…, T].  This is the Pigouvian tax rate on gasoline; call it  

τt
pig.  Because there is no deviation between the consumer's decision utility and true utility when  

β = 1,  she fully accounts for the future variable costs of driving the car when she makes her 

decision in period zero over fuel economy.  If the externality from future driving is internalized 

through a Pigouvian tax, then her decision is optimal in every period.  That is,  mt
* = mt

opt  for all  

t א [1,…, T]  and  gpm* = gpmopt. 

 The main results concern the case where  β < 1:  the consumer discounts quasi-

hyperbolically, but the social planner does not.  The first proposition states that no set of gasoline 

taxes exist, not even the Pigouvian taxes, that lead to the first-best outcome  gpmopt  and  mt
opt,  

and it describes the direction of the error when using the Pigouvian taxes.  Proofs are presented 

in the Appendix. 

Proposition 1: If  β < 1,  then there does not exist any set of tax rates  {τt} for all  t א [1,…, T]  

that lead to the first-best outcome  gpmopt  and  mt
opt.  If  τt = τt

pig  for all  t א [1,…, T],  then 

gpm* > gpmopt  and  mt
* < mt

opt  for all  t א [1,…, T]. 

 Since no gasoline tax exists that will achieve the first best, clearly the Pigouvian tax will 

not achieve the first best.  If  τt
pig  is levied, what outcome does it lead to?  Intuitively, since the 

consumer is underweighting the future operating costs of the car, she will pay too little for fuel 

efficiency in period zero and buy a car with a  gpm  that is too high.  But once that inefficient car 

is bought, the consumer faces a higher per-mile price of driving compared to the optimal fuel 

efficiency.  So the number of miles driven is fewer than optimal in each period. 
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Thus, it is not clear how total gasoline consumption (the product of fuel economy and 

mileage) under the Pigouvian tax compares to the optimal level of gasoline consumption.  The 

present bias in preferences could cause total gasoline consumption and emissions to be greater 

than or less than the optimal level of gasoline consumption and emissions.  Suppose that utility 

over mileage is iso-elastic with a coefficient of relative risk aversion  ,  so that  u(m) = 
௠భషക

ଵିఝ
.  

The price elasticity of demand for miles driven is  –1/ (this is also equal to the price elasticity 

of demand for gasoline).  Under this functional form, present bias (β < 1) leads to an over-

consumption of gasoline if and only if   > 1, that is, the absolute value of the price elasticity is 

less than 1.  Your car has too low of a fuel economy because of present bias.  If your demand for 

mileage is price-inelastic, then the decrease in miles driven because of the low fuel economy is 

small and is not enough to offset the lower fuel economy, and total gasoline consumption 

increases.  Contrariwise, if you are price-elastic, then the decrease in miles driven is large and 

more than offsets the decreased fuel economy, and total gasoline consumption decreases.   

 Not just the Pigouvian gasoline tax rates, but no set of gasoline tax rates produces the 

first-best outcome when  β < 1.  Within any single period  t > 0  the consumer makes no 

behavioral anomalies, since her decision variable  mt  only affects her period-t utility.  Given the 

optimal fuel economy, the optimal miles driven in period  t  can be achieved only through  τt = 

τt
pig.  But this set of tax rates does not achieve the optimal fuel economy choice in period zero 

because of the consumer's present bias distorting her period zero decision.  If the planner can 

only tax gasoline consumption in periods  t > 0,  then the optimal decision in period  t = 0 can 

never be achieved. 

 Though no set of gasoline taxes can induce the first best, regulators may be constrained 

and only have gasoline taxes at their disposal.  Given that constraint, what gasoline tax 

maximizes social welfare according to the long-run criterion; that is, what is the "second-best" 

gasoline tax?  Intuitively, one might think that in each period, the second-best  τt  is higher than 

the Pigouvian tax rate  τt
pig  to attempt to overcome the present bias.  However, this intuition is 

not true in general.  As discussed above, present bias could cause gasoline consumption to either 

increase or decrease.  It follows that the second-best gasoline tax may exceed the Pigouvian tax 

or may fall below the Pigouvian tax.  Under present bias, the consumer is underweighting future 

costs of gasoline consumption, according to the long-run criterion.  The consumer is also 
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underweighting future benefits of gasoline consumption, that is, the utility from driving.  If the 

underweighting of the future benefits dominates the underweighting of the future costs, then the 

consumer will consume too little gasoline relative to the optimal level, and the second-best 

gasoline tax will be lower than the Pigouvian gasoline tax. 11  In this model, a present bias in 

preferences does not necessarily increase pollution, and therefore a second-best gasoline tax is 

not necessarily higher than the Pigouvian tax.12  

 Thus, the regulator needs another policy instrument to achieve the first best.  One such 

instrument is a fuel economy standard. 

Proposition 2: If  β < 1,  then the first best is achieved by setting  τt = τt
pig  in each period  t > 0  

and setting a fuel economy standard that mandates a maximum  gpm  of  gpmopt. 

Proposition 2 is relevant since the U.S. has gasoline taxes in conjunction with corporate 

average fuel economy (CAFE) standards for new passenger automobiles.  CAFE standards have 

been in place since the 1978 model year, when they were 18.0 miles per gallon for passenger 

cars.  The 2011 model year standard is 30.2 miles per gallon.  The federal gasoline tax is 18.4 

cents/gallon and the average state tax rate is 27.2 cents per gallon, as of 2009 Q1.  Later in the 

simulation section, I will compare these values to the values that induce the first best. 

With two policy instruments to use, the planner can achieve the first-best outcome.  The 

second instrument, however, need not be a command-and-control standard.  Instead, the 

regulator can set a tax to be paid in period zero based on the car's fuel economy.  Call this tax  

τgpm.   

Proposition 3: If  β <1,  then the first best is achieved by setting  τt = τt
pig  in each period  t > 0  

and setting  τgpm = (1–β)·∑ ௧ߜ · ሺ݃ܽݏ௧ ൅ ߬௧
௣௜௚ሻ · ݉௧

௢௣௧்
௧ୀଵ . 

 The summation in  τgpm,  ∑ ௧ߜ · ሺ݃ܽݏ௧ ൅ ߬௧
௣௜௚ሻ · ݉௧

௢௣௧்
௧ୀଵ ,  is the full discounted benefit of 

a marginal decrease in  gpm.  The consumer only accounts for a fraction  β  of the full benefit, 

and so the remaining  (1 – β)  is in the tax, bringing about the first-best.  The intuition behind the 

tax on fuel economy  τgpm  is analogous to the intuition behind the tax on the externality  τt
pig.  

With an externality, there is a cost that is not faced by the agent, and a tax that forces the agent to 

                                                            
11 Suppose that utility is iso-elastic, c(gpm) = gpm–γ  with  γ > 1,  and  d(x) = xκ  with  κ > 1, and  T = 1.  This allows 
the consumer's decisions  mt

*  and  gpm*  to be solved analytically as a function of  gast  and  τt  as well as the 
functional parameters.  Under this parameterization, the Pigouvian tax and the second-best tax can be found.  When  
 > 1,  then the second-best tax exceeds the Pigouvian tax; the opposite holds when   < 1. 
12 When mileage in each period  m is fixed rather than a choice variable (perfectly inelastic demand), then present 
bias always increases gasoline consumption and the second-best gasoline tax always exceeds the Pigouvian tax. 
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face that cost (a Pigouvian tax) yields the first best.  With present bias here characterized as an 

"internality," there is another cost that is not faced by the agent: part of the future cost of lower 

fuel economy.  This cost is not faced by the agent in period zero because of her present bias.  The 

optimal fuel economy tax  τgpm  forces her to face the full cost. 

Behavioral anomalies are often invoked as justification for command-and-control policies 

over incentive-based policies (Greene 1998).13  But just like with externalities, behavioral 

anomalies can be internalized through price-based incentives.  Empirical evidence suggests that 

consumers do in fact respond to price when making decisions on energy-efficiency investments 

(Hassett and Metcalf 1995).  In this representative agent model, there is no difference between 

the command-and-control standard and the gpm tax.  With heterogeneous agents, though, there is 

reason to suspect that incentive-based policies are cost-effective relative to command-and-

control policies.  This will be investigated in the following section.14 

Proposition 3 may provide some rationale for the "gas guzzler" tax, a tax paid by the 

manufacturer on each car that fails to meet a minimum fuel economy threshold.  The tax level is 

based on the car's fuel economy; it ranges from $1000 for a car with an mpg between 21.5 and 

22.5 to $7700 for a car with an mpg less than 12.5 mpg.  However, minivans, pickup trucks and 

SUVs are not subject to the tax, and thus it only affects low-fuel-economy cars, mainly sports 

cars.  This is a small fraction of total new car sales.  

 Two market failures require two instruments.  Proposition 1 showed that no set of 

gasoline taxes, without a policy on  gpm,  can achieve the first best.  Similarly, no policy on  

gpm,  without a policy on gasoline consumption, can achieve the first best. 

Proposition 4: If  β < 0,  when  τt = 0  for all t > 0  then no policy on  gpm,  whether a tax  τgpm  

or an efficiency standard  gpmmax,  can achieve the first best. 

To achieve the first best, one needs a policy period  t > 0  to correct the market failure from the 

gasoline externality and a policy in period zero to correct the market failure from the behavioral 

anomaly.   

                                                            
13 See also Gillingham et. al. (2009).  Their Table 1 (p. 604) lists as potential policy options for behavioral failures 
relevant to energy efficiency only education, information, and product standards.  Pricing is listed as a policy 
instrument only for market failure, like externalities. 
14 This result is similar to Proposition 3 from Lofgren (2003), where the optimal tax for an addictive, myopic 
consumer is equal to the Pigouvian tax in the second period but larger than the Pigouvian tax in the initial period.  
Alcott and Wozny (2010) also consider a tax on automobile fuel economy and label it a "behavioral feebate."  
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II. Model with Heterogeneous Agents 
  In the representative agent model, either a performance standard (e.g. a minimum miles-

per-gallon requirement) or an incentive-based policy (e.g. a tax on fuel economy) brings about 

the first-best outcome.  One may suspect that under consumer heterogeneity, the incentive-based 

policy dominates the command-and-control policy; this result is well-known in policies that 

address externalities.  An incentive-based policy for an externality with uniform external costs is 

cost-effective.  A uniform command-and-control mandate does not provide the flexibility for 

individuals with different preferences or different abatement costs.   

 However, this reasoning does not apply to policies that address time-inconsistent 

preferences.  With heterogeneous agents, neither a uniform tax on fuel economy nor a uniform 

performance standard necessarily brings about the first best outcome.  By "uniform" I mean one 

that does not vary by individual.  For heterogeneity in present bias, this result seems obvious.  

For example, if some consumers exhibit present bias and other do not, then a uniform policy to 

address time-inconsistent preferences seems like it cannot be optimal.  However, the results 

below do not assume heterogeneity in present bias; all consumers have the same  β.  Rather, 

consumers vary only by their instantaneous utility over mileage,  U.  It is not so obvious that a 

uniform tax does not induce the first best under this specification of heterogeneity. 15   

Consider a model with two consumers, indexed by  i = 1, 2.  The two consumers differ 

from each other only in their utility function over miles driven; the first consumer's is  U1,  and 

the second consumer's is  U2.  Both consumers have the same value for the present bias in 

preferences,  β.  The social planner maximizes the sum of both true utilities: 

ܹ ൌ෍ሾെܿሺ݃݉݌௜ሻ ൅෍ߜ௧ · ൣ ௜ܷ൫݉௧,௜൯ െ ௧ݏܽ݃ · ௜݉݌݃ · ݉௧,௜ െ ݀ሺܧ௧ሻ൧

்

௧ୀଵ

ሿ

ଶ

௜ୀଵ

 

Damages from emissions are again given by  d(Et),  where  Et = ∑ ݉௧,௜ · ௜݉݌݃
ଶ
௜ୀଵ   is the sum of 

both consumers' emissions.  The first best is given by the solution to the planner's first-order 

conditions for  gpmi  and  mt,i. 

௜ܷ
ᇱ൫݉௧,௜

௢௣௧൯ െ ሺ݃ܽݏ௧ ൅ 2 · ݀ᇱ൫ܧ௧
௢௣௧൯ሻ · ௜݉݌݃

௢௣௧ ൌ 0 

                                                            
15 Many other sources of heterogeneity are possible, including the time horizon of the automobile  T.   O'Donoghue 
and Rabin (2006) consider heterogeneity in  β. 
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െܿᇱ൫݃݉݌௜
௢௣௧൯ ൅෍ߜ௧ · ሾെሺ݃ܽݏ௧ ൅ 2 · ݀ᇱ൫ܧ௧

௢௣௧൯ሻ · ݉௧,௜
௢௣௧ሿ

்

௧ୀଵ

ൌ 0 

The optimal level of emissions each period  Et
opt  is given by the optimal fuel economy and miles 

drive of each consumer.  The damages from emissions in each first-order condition are 

multiplied by the number of consumers (2).   

 Each consumer maximizes the decision utility function that incorporates quasi-hyperbolic 

discounting: െܿሺ݃݉݌௜ሻ ൅ ∑ߚ ௧ߜ · ሾ ௜ܷ൫݉௧,௜൯ െ ௧ݏܽ݃ · ௜݉݌݃ · ݉௧,௜ሿ்
௧ୀଵ .  The consumer may also 

face a tax on emissions in each period  τt,  a tax on fuel economy  τgpm,  or a restriction on fuel 

economy  gpmmax.  It can be shown that in the standard case when  β = 1,  a uniform tax rate in 

each period  τt = 2 · ݀ᇱ൫ܧ௧
௢௣௧൯  induces the first best; this is the Pigouvian tax  τt

pig.   

Proposition 5: In the model with two heterogeneous consumers with  U1 ≠ U2, if β < 1,  no 

combination of a uniform  τgpm  and a uniform set of  τt  will necessarily induce the first-best 

outcome. 

 Why, with heterogeneous agents, do a uniform emissions tax and a uniform fuel economy 

tax not achieve the first-best outcome?  The externality in this model is a pure public bad; for a 

given level of emissions, an additional unit of emissions causes the same marginal external 

damage regardless of who produces it.  So, optimal policy has everyone facing the same 

marginal cost (tax).  On the other hand, the marginal cost of the market failure from time-

inconsistent preferences is not identical across consumers.  It is, in fact, equal to the expression 

for  τgpm  in the proof of Proposition 5.  The cost that consumer  i  fails to face in her decision 

utility function is a part of her future periods' utility.  But, this cost differs between the two 

consumers since the heterogeneity in utility functions leads to heterogeneity in optimal mileage  

mt,i.  The non-uniformity of the optimal tax is analogous to a non-uniform optimal Pigouvian 

externality tax in a case where damages from emissions are not independent across sources.  For 

instance, if emissions from power plants located close to densely populated areas cause more 

damage than emissions from power plants far away from populated areas, then the Pigouvian 

emissions tax rate on the closer power plants is higher than the tax rate on the other plants 

(Mauzerall, et al. 2005). 

 Thus, the argument for the dominance of incentive-based policies over command-and-

control policies does not apply to policies aimed at addressing the market failure caused by time-

inconsistent preferences.  Neither policy will attain the first best, although one may induce a 
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second-best outcome with a higher level of social welfare than the other.  The ranking of the two 

policies is unclear in general.  

 Just as no uniform tax on fuel economy can efficiently address the behavioral market 

failure, neither can a uniform command-and-control policy. 

Proposition 6: In the model with two heterogeneous consumers with  U1 ≠ U2, if β < 1,  no 

combination of a uniform efficiency standard  gpmmax  and a uniform set of  τt  will necessarily 

induce the first-best outcome. 

III. Alternative Welfare Criteria 
  These results are based on the long-run criterion.  This criterion is intuitive: present bias 

creates an "internality" that is analogous to an externality.  Optimal policy involves getting the 

prices right: forcing the present consumer to pay for the externality and for the internality.  The 

long-run criterion is used frequently in the literature (Carroll, et al. 2009).  However, it is 

controversial, since it abandons the tenet that welfare analysis be guided by revealed preference.  

The criterion asserts that an individual is not acting in his own best interests and his actions do 

not maximize his welfare.  There is thus a role for paternalistic government intervention. 

 Because of the strong assumptions behind the long-run criterion, in this section I explore 

how robust the above results are to two other welfare criteria.  The first alternate welfare 

criterion models the decision of the individual over time as an intrapersonal game, where each 

"self" at a period of time is a distinct player.  Welfare analysis considers Pareto optima or Pareto 

improvements among the various selves of the game (Bhattacharya and Lakdawalla 2004).  The 

second criterion is based on the recent work by Bernheim and Rangel (2009).  Under both 

alternative criteria, I present conditions under which the optimal allocation, as defined under the 

long-run criterion, is also welfare-improving under the alternate criteria compared to the 

standard, Pigouvian solution that ignores present bias. 

 

Multiself Pareto Optima 

 Consider an intrapersonal game between the different selves.  Employ a Nash 

equilibrium; every self takes the strategies of all other selves as given and chooses a best 

response.  In the representative agent model above, the solution that I find is identical to a Nash 

equilibrium of an intrapersonal game.  Each self  t > 0 responds only to the fuel economy of the 
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car that it inherits.  Self  t = 0  chooses  gpm  to maximize its utility, given that each future self 

will optimize over  mt  in each future period.   

 Welfare analysis for intrapersonal games can be done by evaluating multiself Pareto 

improvements.  If an outcome can be altered by a planner such that each self is at least as well 

off and at least one self is better off, then this is an unambiguous welfare improvement, 

according to this criterion. 

 Is the optimal policy outcome under the long-run criterion a multiself Pareto optimum?  

Yes, because the planner is maximizing a weighted sum of the individual selves' utilities.  

Likewise, the solution to the individual's maximization problem is also a multiself Pareto 

optimum, because the period zero self is also maximizing a weighted sum of the individual 

selves' utilities.  Given that the individual's solution is a Pareto optimum, it does not appear that a 

welfare enhancing social policy, i.e. a Pareto improvement, is possible. 

 However, the representative agent model does not explicitly model the return of revenue 

from the emissions tax collection.  Revenues are returned lump-sum.  With only one 

representative agent, the tax payments just equal the lump-sum return, so there is no change in 

utility from the tax payments per se.  But, the tax on gasoline consumption induces lower 

mileage, increasing the consumer's welfare because of the reduction in the externality.  The tax is 

therefore welfare-increasing.  Likewise, with a tax in period zero on  gpm,  the tax payments are 

returned to the period zero self. 

 More generally, though, the planner may be able to achieve a multiself Pareto 

improvement by reallocating tax revenues across time.  Because the gpm policy may lower the 

period zero self's utility to increase all of the other selves' utilities, some of the tax revenues from 

periods t = 1,… T  could be returned to the period zero self to make him at least as well off. 

 In particular, is it possible for a planner to reallocate from the Pigouvian policy to an 

alternate policy and create a Pareto improvement?  Define the "Pigouvian policy" to be the 

policy that sets the Pigouvian tax rate in each period  t > 0  and no tax on  gpm  in period zero, 

and that returns all tax revenue in each period lump sum.  That is, defining  st  to be the lump 

sum payment to the individual in period  t,  st = τt·gpm·mt  for all  t > 0.  Define the outcomes 

under the Pigouvian policy as  gpm0  and  mt
0  for  t > 0.  Define the "optimal policy" as the 

Pigouvian tax combined with an optimal tax on  gpm,  τgpm ,  as defined in Proposition 5.  The 

optimal policy also includes subsidies  st  that need not be returned in full in each period.  Rather, 
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the subsidies can be reallocated across time so long as an overall budget constraint is met: 

∑ ௧்ݏ
௧ୀ଴ ൑ ௢௣௧݉݌݃ · ߬௚௣௠ ൅ ∑ ௢௣௧݉݌݃ · ݉௧

௢௣௧ · ߬௧
௣௜௚்

௧ୀଵ .  The left-hand-side of this budget 

constraint is total lump sum payments over the  T + 1 periods, and the right-hand-side is the total 

tax revenues (the  gpm  tax in the zero period and the Pigouvian tax in each remaining period).  

Define the outcomes under the optimal policy as  gpmopt  and  mt
opt  for  t > 0.  Because they are 

lump sum payments, the  st  values do not affect these outcomes.     

 Given this structure, the following proposition presents a condition under which the 

optimal policy represents a multiself Pareto improvement over the Pigouvian policy. 

Proposition 7: The optimal policy is a multiself Pareto improvement over the Pigouvian policy 

as long as the following condition is met: ∑ ሾݑ൫݉௧
௢௣௧൯ െ ሺ݉௧ݑ

଴ሻ ൅ ቀ݀ሺ݃݉݌଴ · ݉௧
଴ሻ െ்

௧ୀଵ

݀൫݃݉݌௢௣௧ · ݉௧
௢௣௧൯ቁ ൅ ௧ݏܽ݃ · ൫݃݉݌଴ · ݉௧

଴ െ ௢௣௧݉݌݃ · ݉௧
௢௣௧൯ሿ ൐ െܿሺ݃݉݌଴ሻ ൅ ܿሺ݃݉݌௢௣௧ሻ. 

 If that condition holds, then the planner can increase social welfare relative to the 

Pigouvian solution by implementing the optimal  gpm  tax and a set of intertemporal transfers.  

The optimal  gpm  tax alone increases the planner's maximand (the "true utility") but may 

decrease the period zero self's maximand (the "decision utility").  However, the lump sum 

payments transfer resources from future selves to the period zero self and end up increasing the 

period zero self's maximand. 

 Does the condition in Proposition 7 hold?  It depends on functional forms and parameter 

values.  In the calibrated simulation results presented in the next section, the inequality holds.  

Thus, the first-best results found for that market under the long-run criterion can also attain a 

multiself Pareto optimum.   

 

Bernheim and Rangel Criteria 

 A second alternative welfare criterion is introduced in Bernheim and Rangel (2009) 

(hereafter BR).  They develop a choice-based welfare economics that accommodates 

nonstandard behavioral models.  In particular, consumers can exhibit choice behavior that 

violates the standard model of well-defined choices.  In some situation, an individual can choose  

x  over  y,  and in other situations the individual, facing the same budget constraint, chooses  y  

over  x.  The only difference between the two situations consists of features that we do not think 

ought to be relevant to a social planner; these features are called ancillary conditions.  Examples 
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of ancillary conditions include the order in which options are presented, or the assignation of a 

default option.  In the case of time-inconsistent preferences, the ancillary condition of interest is 

the point of time in which the decision is made.  

 Under such a framework, BR define weak and strict revealed preference relations 

analogously to those relations defined in the standard model (without ancillary conditions).  So, 

if a bundle  x  is strictly unambiguously chosen over  y,  that means that  y  is never chosen in any 

budget-ancillary condition combination (termed a generalized choice set) where  x  is available.  

If some bundle  x  in a generalized choice set has no bundles that are strictly unambiguously 

chosen over it, then it is said to be an individual welfare optimum.  This criterion thus respects 

the choices that individuals make, regardless of the presence of ancillary conditions rendering 

such choices seemingly inconsistent under the standard model.  A welfare improvement is 

moving from one bundle to another where the second bundle is strictly unambiguously chosen 

over the first, that is, under no ancillary conditions will it not be chosen. 

 The BR framework allows for analysis of behavioral anomalies broader than just time-

inconsistent preferences.  However, they directly apply their framework to the case of  β-δ  

preferences and present a theorem to describe when one bundle will be strictly unambiguously 

chosen over another bundle given such preferences.  Let a bundle  x  be defined by a vector of 

consumption scalars  xt  from  t = 1 to T,  and likewise for bundle  y.  Their Theorem 4 states that  

x  is strictly unambiguously chosen over y  if and only if  ∑ ሺߜߚሻ௧ିଵݑሺݔ௧ሻ்
௧ୀଵ ൐ ଵሻݕሺݑ ൅

ߚ ∑ ௧ሻ்ݕሺݑ௧ିଵߜ
௧ୀଶ .  The right-hand-side of this inequality is the first period's decision utility from 

bundle  y.  The left-hand-side is the utility that would be received from bundle  x  under a time-

consistent discount factor  βδ.   

 Asking the analogous question from the above subsection on multiself Pareto optima: Is 

the optimal policy strictly unambiguously chosen over the Pigouvian policy?  As when 

considering a multiself Pareto optimum, the answer is no: the optimal policy by definition must 

make the first period decision utility lower, since the Pigouvian policy maximizes the first period 

decision utility.16  But, as before, we can consider a system of intertemporal intrapersonal 

transfers that could make the inequality hold.  Define the transfer to the individual in period  t  as  

                                                            
16 That is, the first-period decision utility under  x  is greater than the first-period decision utility under  y  is a 
necessary but not sufficient condition for the inequality in the text to hold (see BR, p. 70).  This result, and in fact all 
of their Theorem 4, depends on the assumption that utility in each period is non-negative.  The model here can be 
accommodated to that assumption with a suitable constant additive term in each period's utility. 
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st;  the government's budget constraint is identical to that in the previous subsection.  Suppose 

also that the Pigouvian policy includes no intertemporal transfers; each period's tax revenue is 

immediately returned to the consumer.  Then, the BR inequality describing when the optimal 

policy is strictly unambiguously chosen over the Pigouvian policy is: 

െܿሺ݃݉݌௢௣௧ሻ ൅ ଴ݏ െ ௢௣௧݉݌݃ · ߬௚௣௠
௢௣௧

൅෍ሺߜߚሻ௧ · ሾݑ൫݉௧
௢௣௧൯ െ ൫݃ܽݏ௧ ൅ ߬௧

௣௜௚൯ · ௢௣௧݉݌݃ · ݉௧
௢௣௧ െ ݀ሺ

்

௧ୀଵ

௢௣௧݉݌݃ · ݉௧
௢௣௧ሻ

൅ ௧ሿݏ ൐ െܿሺ݃כ݉݌ሻ ൅ ߚ ·෍ߜ௧ · ሾݑሺ݉௧
ሻכ െ ௧ݏܽ݃ · כ݉݌݃ · ݉௧

כ െ ݃ሺ݃כ݉݌ · ݉௧
ሻሿכ

்

௧ୀଵ

 

If a sequence of transfers  st  that satisfies the intertemporal budget constraint can be devised that 

satisfies this inequality, then such a sequence of transfers, combined with the optimal policy, 

would be strictly unambiguously chosen over the Pigouvian policy.   

As with the inequality in Proposition 7, whether or not this inequality holds depends on 

functional forms and parameters of the model.  Thus whether or not the optimal policy under the 

long-run criterion is robust to these alternate welfare criteria is indeterminate in general.  In the 

simulations that I describe in the following section, both of these inequalities are satisfied.  

Therefore, the optimal policy results for this particular application are robust to these alternate 

criteria. 

IV. Numerical Simulation 
 I now turn to a model to be solved computationally, in an attempt to find the magnitude 

of the effects described in the analytical models above.  The model is calibrated to consider 

consumer decisions over automobile purchases and gasoline consumption.  The numerical model 

adds a number of elements that are absent from the analytic model.  In particular, it allows more 

broadly for heterogeneity among agents (there need not be just one or two types of agents).  It 

also allows a scrapping decision and thus makes endogenous the lifetime of a car,  T.   

 

Calibration 

 The consumer's utility over miles driven in a single period is  u(m) = ܥ ௠భషക

ଵିఝ
,  where  1/  

is the price elasticity of demand for miles driven (also equal to the price elasticity of demand for 
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gasoline) and  C  is a constant.  This is the short-run price elasticity, since it is the response in 

miles traveled to a change in price holding constant the fuel economy of the car.  This price 

elasticity has been estimated; values vary but it is generally found to be significantly less than 

one (Hughes, Knittel and Sperling 2008), (Espey 1998), (Espey 1996).  I use the preferred value 

of –0.34, from a meta-analysis (Brons, et al. 2008) of short-run gasoline demand elasticities.  

This implies   = 2.941.  Later in the simulation results, I explore what this value of the short-run 

elasticity implies about the long-run elasticity. 

To calibrate the scale parameter in utility  C,  I use data on mileage of passenger cars 

among US households from the 2001 National Household Travel Survey (NHTS).17  The form of 

the utility function predicts that a household's optimal mileage,  m*,  is a function of the total 

price of a mile driven in the following way:  ݉כ ൌ ቀ௣௥௜௖௘
஼
ቁ
ିଵ/ఝ

.  The total price of a mile driven 

is the price of a gallon of gasoline time the car's fuel economy in gallons per mile. 

Heterogeneity is incorporated into the model by allowing for different types of consumers 

through different values for  C  in the utility function.  In particular, I calibrate  C  separately for 

drivers of four different vehicle types identifiable in the NHTS: cars (including station wagons), 

vans (mini/cargo/passenger), SUVs, and pickup trucks.  For each vehicle type I calculate the 

total price of a mile driven based on the national average tax-inclusive gasoline price ($2.72)18 

and the average fuel economy for vehicle type.  Total annual miles traveled is reported in the 

NHTS; for cars the mean value is 11681.  Given a price elasticity of –0.34, this pins down the 

value of  C.  Under this specification of heterogeneity, all consumers within one of the four 

consumer groups are identical, and consumers are unable to choose between groups.  Instead, 

within a vehicle type consumers are able to choose a fuel economy level at a cost,  c(gpm),  

specific to that vehicle type.  To the extent that policy can move individuals into different types 

of vehicle rather than just different fuel economy levels within a vehicle type, these simulation 

results may misspecify optimal policy.19   

                                                            
17 Available here: http://nhts.ornl.gov/download.shtml. 
18 Available weekly at http://www.eia.doe.gov/petroleum/data_publications/wrgp/mogas_home_page.html.  The 
value used here is taken from July 19, 2010. 
19 The direction of bias or misspecification is unclear.  For example, suppose that optimal policy actually involves 
moving some consumers from SUVs to cars.  A higher gasoline tax than the one found in this model may be 
necessary to achieve that vehicle type switch.  Or, with the option available to switch, the tax may need not be as 
high as in this case where there is no option to switch.  
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The cost of a vehicle as a function of fuel economy,  c(gpm),  is calibrated separately for 

each vehicle type from manufacturer's suggested retail prices (MSRPs) of models with varying 

fuel economy.  MSRP data are from Automotive News, and fuel economy data are from the 

Environmental Protection Agency.20  In theory, one would regress price on fuel economy for 

each vehicle class to find  c(gpm).  However, even after controlling for observables like size and 

horsepower, the regression invariably finds a negative correlation between price and fuel 

economy;  c(gpm)  is increasing.  This is because more fuel-efficient cars tend to be smaller and 

come with fewer features; luxury cars are less fuel-efficient.  The data are not rich enough to 

control for these features that affect price and are correlated with fuel economy. 

Instead of a regression, I calibrate the cost function based on two data points: the average 

cost and fuel economy for a non-hybrid car and for a hybrid car.  Hybrid versions of cars are 

nearly equivalent save for the increased fuel economy (e.g. several models come in a hybrid and 

non-hybrid version).  The price differential should thus represent the additional cost of higher 

fuel economy only.  For cars, for example, the mean price of non-hybrid models is $28,932 and 

the mean fuel economy in miles per gallon is 23.1; the mean price for hybrid models is $34,515 

and the mean fuel economy in miles per gallon is 35.2.  Between these two points on  c(gpm),  an 

infinite number of functions could be fit.  I thus consider only quadratic functions that must be 

decreasing in  gpm  and convex, to satisfy the second-order condition in the analytical model's 

maximization problem.  These restrictions do not pin down a particular function, so in sensitivity 

analysis I examine the impacts of varying  c(gpm). 

External damages from gasoline consumption are assumed to be linear, so that marginal 

external damages are constant (d(m·gpm) = d·m·gpm).  This constant is taken from a recent 

assessment of the optimal gasoline tax in the US (Parry 2011), which finds that the optimal tax 

rate (i.e., marginal external damages) is $1.23 per gallon.  Of these damages, the majority comes 

from congestion externalities (52 cents) and accident externalities (41 cents).  Climate change 

externalities account for nine cents, and other pollutants account for 12 cents.  The remaining 10 

cents is from oil dependence externalities.  Importantly, the two dominant categories comprising 

the optimal tax (congestion and accidents) are externalities tied not to gasoline consumption but 

                                                            
20 Available at http://www.autonews.com/section/prices and http://www.fueleconomy.gov/feg/download.shtml, 
respectively. 
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rather to mileage.  I include these in the base case simulations but examine alternate 

specifications in sensitivity analysis. 

The discount factors are taken from Laibson et. al. (2007), who estimate the parameters 

of a quasi-hyperbolic discounting model using a structural model and data on savings and 

consumption choices of US households.  Their benchmark estimates imply  β = 0.7  and  δ = 0.96 

for annual periodicity.  Brown et. al. (2009) find in laboratory experiments a value of  β  ranging 

from 0.6 to 0.7.  These values are comparable to estimates in Allcott and Wozny (2010), who 

examine the US automobile market and find that consumers value $1 worth of expected 

discounted gasoline expenditures only 61 cents (though Allcott and Wozny (2010) are agnostic 

about whether the underweighting is due to present bias).  By contrast, Fang and Silverman 

(2009) find a much lower  ߚ  of 0.35 from data on welfare program participation. 

The consumer's utility function must account for the fact that older cars are less 

preferable to newer cars, otherwise a consumer would never replace her car.  I add a negative 

term to the utility function linearly increasing in vehicle age (= –D·v,  where  v  is the vehicle's 

age).  The coefficient  D  is calibrated via simulation so that the predicted average vehicle age 

matches the average vehicle age in the NHTS.  For cars, the average age is 8.98 years.  The 

resulting calibrated value of the coefficient of the age disutility term is 322; the dollar equivalent 

utility of a car is reduced by $322 for each year of its age. 

In the analytic model, a consumer choosing to buy a car in period  t  pays for it in period  

t.  However, most new car purchases (70%) in the US are financed.  As of 2007, the average 

down payment on a new car loan is 10% of the total price, the average loan length is six years, 

and the average interest rate is 7%, according to Edmunds.com.  The financing option is very 

relevant to consumers' decisions under present bias.  If the entire cost must be paid up front, then 

present-biased consumers will probably be less likely to buy durables.  If only a small fraction of 

the cost is paid up front, then present-biased consumer will probably be more likely to buy 

durables.  Thus, present bias is often cited as a reason why consumers buy "too much" of items 

that are financed (e.g. new cars) and "too little" of items that are not financed (e.g. new 

appliances).  In the simulation, I assume that all new car purchases are financed at the average 

rate terms (10% down, six years, 7% interest rate).  Depending on the values of the consumer's 

present bias  (β)  and long-run discount factor  (δ),  this could increase or decrease the apparent 

cost of durables to the consumer. 
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Table 1 summarizes the parameters and functional forms of the model. 

 

Simulation 

 The model is solved for a finitely lived agent through backwards induction, as in other 

papers that model quasi-hyperbolic discounting (Laibson, Repetto and Tobacman 2007), 

(Laibson, Repetto and Tobachman 1998).  The representative consumer lives 90 years but does 

not begin owning a car until age 21.  In each period, the agent decides how many miles to drive 

his current car and decides whether or not to scrap the car and replace it with a new one.   

 The decision over miles traveled, contingent on type of car, can be solved in the same 

manner as in the analytic model.  Then, given miles traveled, the consumer's decision over 

scrapping and replacement is solved computationally.  Because of the fixed time horizon, this 

can be solved through backwards induction.  That is, in the last period the agent chooses the 

miles traveled for each possible vehicle and then makes the scrapping decision.  (Of course, the 

agent will never choose to buy a new car in the final period since he will not be around to use it 

in the following period.)  Then, given the agent's behavior in the final period, the agent in the 

second-to-last period chooses a course of action.  This continues until the first period.  The agent 

at each period is discounting quasi-hyperbolically and knows that his future selves optimize with 

a time-inconsistent discount function.21  The solution is identical to an intrapersonal game, in 

which the agent is a distinct player at each time period, and solutions are restricted to Markov 

equilibria (Strotz 1955-1956).  Software implementing the solution method is available on the 

author's website. 

 Given a representative agent's solution, policy options can be analyzed by evaluating the 

agent's true utility at his solution.  The true utility includes the external damages from gasoline 

consumption and does not include the present bias factor  β.  Then, optimal or second-best policy 

can be found by maximizing the value of true utility over the policy variable, for example the 

gasoline tax.  The first-best solution can also be found for comparison, by evaluating the agent's 

problem without present bias (β = 1) and where the gasoline tax is set to equal marginal external 

damages.  I run simulations based on 100 representative consumers, whose initial vehicle 

                                                            
21 Thus it is said that agents are sophisticated about their time-inconsistency.  In contrast, a naïve agent would act 
now as if his future selves would be consistent, although in the future they would not (O'Donoghue and Rabin 
1999). 
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allocation (ages and fuel economy) is chosen to represent the household-owned vehicle fleet 

described in the NHTS.   

 

Results 

 I present simulation results from three different specifications of the model.  In the first 

specification, I omit both heterogeneity and endogenous vehicle lifetimes.  Without these two 

features, the model is identical to the theoretical model.  Thus the results of that model can be 

quantified and verified computationally.  I omit heterogeneity by including only cars and not the 

three other vehicle types; I omit the endogenous lifetime of vehicles by fixing the lifetime at 18 

years (about twice the mean car age in the data).  As in the theoretical model, consumers choose 

in the initial period what vehicle to purchase and then have no option to scrap or replace it.22 

 Table 2 presents summary statistics from this first specification under various policy 

alternatives.   The first column presents statistics from the first-best outcome, which occurs when 

the agent is time-consistent and the gasoline tax equals marginal external damages.   The row for 

"policy instrument" is not relevant to the first-best outcome.  The first statistic is the deadweight 

loss of the policy, equal to the discounted value of true utility evaluated at the solution minus the 

value for the first-best outcome.  The units of deadweight loss are dollars, and the values are per 

vehicle.  The remaining statistics are the mean annual mileage, the mean annual gas 

consumption, and the mean fuel economy in gallons per mile. 

The first alternate policy simulation is presented in column 2 of Table 2.  In that 

simulation (as in all simulations subsequent to column 1) the agent exhibits present bias.  The 

gasoline tax is set at the Pigouvian level of marginal external damages ($1.23/gallon).  

Comparing deadweight loss in column 2 to column 1, present bias reduces the level of true 

utility, making the agent worse off.  The value of deadweight loss is $226 per vehicle, which is 

the discounted sum of deadweight loss over the vehicle's entire lifetime (18 years).  The total 

number of new passenger vehicle sales in the US in 2009 was 8.9 million,23 so the total annual 

deadweight loss from the new vehicles purchased in that year is about $2.01 billion.  The average 

mileage is lower, and the average gpm is higher, under the Pigouvian tax than in the first best.  

                                                            
22 Under this specification, because of the assumption of a fixed vehicle lifetime, the model can be solved 
analytically rather than through backwards induction. 
23 Available from the Bureau of Transportation Statistics: 
http://www.bts.gov/publications/national_transportation_statistics/html/table_01_17.html.  
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This and the fact that the outcome under the Pigouvian tax does not achieve the first best confirm 

Proposition 1.   

The Pigouvian tax does not bring about the first-best outcome, and Proposition 1 claims 

that no gasoline tax, without any other policy instrument, can bring about the first-best outcome.  

But what is the lowest deadweight loss that can be obtained with only a gasoline tax; that is, 

what is the second-best gasoline tax?  I solve for the second-best gasoline tax computationally.  

For each value of a gasoline tax, I calculate the value of true utility, and then I choose the tax rate 

that maximizes true utility.  The resulting value of the second-best gasoline tax is $1.60, 30% 

higher than marginal external damages.  This suggests that ignoring present bias can lead to 

policy prescriptions that are significantly different than optimal levels.  Compare column 3 to 

column 2.  Under the higher, second-best tax of column 3, mileage is lower, gas consumption is 

lower, and the average fuel economy is higher (gpm is lower).  Deadweight loss is lower with the 

second-best tax, but still not zero (the first best is not achieved).  This verifies Proposition 1.  

Columns 4 and 5 model policies that achieve the first best using two instruments.  

Proposition 2 shows that the first best is achieved with the Pigouvian gasoline tax and a fuel 

economy standard requiring a maximum gpm equal to its optimal level.  Column 4 enacts these 

policies, and the outcomes are identical to those in column 1.  Proposition 3 shows that the first 

best is achieved with the Pigouvian gasoline tax and a tax on gpm.  The optimal gpm tax equals 

148440.  This tax rate is multiplied by a vehicle's gpm.  For the average non-hybrid car, with a 

mpg of 23.11, this tax payment is $6423.  For the average hybrid car, with a mpg of 35.18, this 

tax payment is $4219.  Thus the optimal fuel economy tax increases the price of a non-hybrid 

relative to a hybrid by $2200.  Before the fuel economy tax, the relative price difference between 

the two cars is $5500. 

Lastly, column 6 considers a different second-best policy that, like in column 3, has only 

one instrument.  In column 6, the sole instrument is a fuel economy standard; the gasoline tax 

rate is set to zero.  As Proposition 4 predicts, the first best is not achieved.  In fact, without any 

gas tax, this policy leads to the largest deadweight loss.  Although the fuel economy is actually 

higher (lower gpm) than the first best, mileage and gas consumption are both much higher, since 

gasoline is so much cheaper.   

All of the results in Table 2 perfectly corroborate the propositions of the basic theoretical 

model with one representative agent.  This is unsurprising, since the specification in Table 2 is 
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no different from that in the theoretical model.  Next, I expand on the theoretical model by 

considering heterogeneity in consumers and vehicle types.  Table 3 presents results from a 

specification including the four consumer and vehicle types described earlier.  The assumption of 

a fixed vehicle lifetime (of 18 years) is maintained.  Each summary statistic presented in the 

table is an average of the statistic for the four consumer types, weighted by the market share of 

the vehicle types from the NHTS.    

Comparing columns 1 and 2 again verifies the predictions of Proposition 1.  The 

Pigouvian tax fails to achieve the first-best outcome and instead leads to vehicles being too fuel-

inefficient and mileage too low compared to the first best.  The second-best gasoline tax is 

solved for in this specification, and results are presented in column 3.  The second-best gasoline 

tax rate is again higher than marginal external damages, here by 18%.   

As in Table 2, in Table 3, columns 4 and 5 compare two sets of policies that each have 

two policy instruments.  Column 4 considers a gasoline tax combined with a fuel economy 

standard, and column 5 considers a gasoline tax combined with a fuel economy tax.  All policies 

are uniform across all consumer types.  In the homogeneous specification in Table 2, each such 

set of policies attained the first best, as verified by Propositions 2 and 3.  However, with 

heterogeneity, Propositions 5 and 6 show that no such set of policies attains the first best, so long 

as the fuel economy tax rate and the fuel economy standard are uniform across consumers.  The 

policies in columns 4 and 5 are thus both second-best policies.  The value of both policy 

instruments in each column is found numerically by maximizing true utility.  Note that the level 

of the gasoline tax is not equal to marginal external damages in either column.  In column 4, the 

gasoline tax is about equal to the second-best gasoline tax in column 3.  In column 5, the 

gasoline tax is just slightly greater than the Pigouvian tax.  Although both policies in columns 4 

and 5 are second-best policies, note that the outcomes under the gasoline tax and fuel economy 

tax are remarkably closer to the first-best outcomes than are the outcomes under the gasoline tax 

and the fuel economy standard.  In fact, from Table 3 it appears that the policy in column 5 

achieves the first best.  However, this is due to rounding; the deadweight loss is about 25 cents.   

The theoretical model was only able to show that neither policy achieved the first best.  

The numerical simulation shows that the policy that includes a fuel economy tax results in a 

higher value of social welfare than the policy that includes a fuel economy standard.  Although 

the policy that includes a fuel economy tax does not achieve the first best, it comes remarkably 
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close.  Why does the tax come so much closer to the first best than the fuel economy standard?  

Note that a uniform gasoline tax (equal to marginal external damages) plus a fuel economy 

standard unique to each consumer type would achieve the first best, as would the same uniform 

gasoline tax plus a fuel economy tax unique to each consumer type.  The non-uniform policy 

values can be found from the theoretical model.  The optimal fuel economy standard varies 

across consumer types from a minimum of .0335 gpm to a maximum of .0558 gpm, a range that 

equals 67% of the minimum value.  By contrast, the optimal fuel economy tax varies across 

consumer types from a minimum of 148440 dollars per gpm to a maximum of 171870 dollars per 

gpm, a range that equals just 16% of the minimum value.  By this measure, the heterogeneity in 

the optimal standard exceeds the heterogeneity in the optimal tax.  Therefore, a uniform standard 

gets it "more wrong" than does a uniform tax.  This ranking is dependent on the calibration and 

should not be expected to hold for any parameter values, in contrast to the well-known result that 

Pigouvian taxes dominate uniform command-and-control standards under heterogeneity without 

time inconsistency. 

The last column in Table 3 presents the policy simulation that finds the second-best fuel 

economy standard when the gasoline tax is fixed at zero.  As in Table 2, this policy achieves the 

highest deadweight loss of all presented.  Notice that the second-best fuel economy standard 

(gpmmax = .0558) has the same value as the second-best standard when the gasoline tax is 

allowed to be non-zero (column 4).  In fact, this value is also almost equal to the first-best fuel 

economy for the most fuel-inefficient vehicle type, the pickup truck.  Because the cost of higher 

fuel economy for pickups is so high, any standard that forces those consumers to increase fuel 

economy creates costs that outweigh any benefits.  Another reason why the fuel economy tax 

yields higher social welfare than the fuel economy standard is that with the standard there is not 

much "room to move." 

The last set of results using the preferred parameter values, presented in Table 4, adds in 

the endogenous choice of scrapping, and thus uses the backward induction solution method 

described earlier.  It can be shown numerically as a verification that without present bias  (β = 1),  

true utility is maximized with a gasoline tax equal to marginal external damages.  Table 4 

presents the same summary statistics as the earlier tables and adds a row displaying the mean age 

of vehicles.  In the earlier specifications, this statistic was invariant to policy because of the 
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absence of a scrapping choice.  In Table 4, the deadweight loss values are the discounted values 

over an individual's lifetime (age 21 years to age 90 years), rather than a vehicle's lifetime.     

 In column 2, the average car age is about one quarter of a year older, the average annual 

mileage is 125 miles lower, and the average annual gasoline consumption is about 10 gallons 

higher, compared to column 1.  All of these changes decrease utility, with a per-person 

discounted deadweight loss of $4200 over the person's lifetime (this is the weighted average 

deadweight loss over the four consumer types).  The mean fuel economy is higher in gpm, 

meaning that the average car is less fuel efficient.  These results conform to the theoretical 

predictions of Proposition 1: the chosen level of gpm is higher than the optimal level and the 

chosen level of m is lower than the optimal level.  The level of gasoline consumption is higher 

under column 2; this holds because gasoline demand is price inelastic.   

 The second-best gasoline tax, shown in column 3, is $1.44.  This is about 17% higher 

than marginal external damages.  Deadweight loss decreases from column 2 to column 3.   The 

average car age decreases, but not quite to the optimal level of 8.59 years.  Annual mileage 

actually decreases, pushing it farther away from the optimal level than it was under the 

Pigouvian tax.  Gasoline consumption is less than optimal.  Finally, cars are more fuel efficient 

than under the Pigouvian policy, but not at the optimal level of fuel efficiency.   

 The last two columns of Table 4 examine policies that combine a gasoline tax with a 

policy on fuel economy in period zero. Column 4 presents the results for the welfare-maximizing 

combination of a gasoline tax and a uniform fuel economy standard, while in column 5 the 

policy combines a gas tax with a fuel economy tax.  In neither column is the first best achieved.  

The optimal level of the fuel economy tax in column 5 is $50663 times the car's gpm.  For the 

average non-hybrid car, with a fuel economy of 23.1 miles per gallon, this equals $2193.  For the 

average hybrid car, with a fuel economy of 35.2 miles per gallon, this equals $1440.  The 

optimal fuel economy tax thus makes the average non-hybrid car about $750 costlier relative to 

the average hybrid car.    

 Comparing deadweight loss across policies, it can be seen that none of these policies 

achieves the first best.  The policy option with the lowest deadweight loss is the one from 

column 5, with a tax on gasoline and a tax on fuel economy.  Both policy options that contain 

two separate policies (columns 4 and 5) achieve lower deadweight loss than either policy option 

that contains just one policy (columns 2 and 3).  As with the results in Table 3, combining a 
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gasoline tax with a fuel economy tax is closer to the first best than combining a gasoline tax with 

a fuel economy standard.  However, in Table 4 the policy combining a gasoline tax and a fuel 

economy tax results in a substantially different outcome than the first best. 

 Finally, in Table 5 I examine how sensitive these results are to the calibrated parameter 

values.  I investigate five alternative parameter values.  For each alternative parameter value, I 

present the summary statistics from the first best and from the Pigouvian tax policy.  All 

simulations assume the fixed vehicle lifetime, heterogeneous agents specification as in Table 3.  

Each pair of columns in Table 5 is analogous to columns 1 and 2 of Table 3.  Deadweight loss in 

Table 5 is the total discounted value over a vehicle's lifetime. 

 The first two columns of Table 5 consider less present bias in preferences, i.e. a  β  closer 

to 1.  (Clearly, when  β = 1,  all of the standard results hold and the Pigouvian solution equals the 

first best.)  Unsurprisingly, with a  β  closer to 1, the Pigouvian outcome is closer to the first-best 

outcome than when  β = 0.7  as in the base case.  When  β = 0.95,  the deadweight loss from 

employing only a Pigouvian tax is just $5 per vehicle ($45 million annual economy-wide 

deadweight loss, based on the number of new vehicles sold in the US). 

 I next investigate  ,  the negative inverse of the short-run price elasticity of gasoline 

demand.  This is a short-run elasticity since it does not account for the agent changing his 

automobile choice in response to changes in gas prices.  The long-run elasticity, which allows for 

choice of fuel economy, can be calculated from this model.24  In the base case where the short-

run price elasticity is –0.34, the long-run price elasticity is –0.40.  This is lower than the 

preferred estimate of –0.84 from Brons et. al. (2008), but about equal to the median value found 

in the meta-analysis in Espey (1998) of –0.43.    

In columns 3-6 of Table 5, I alter    and simulate the outcomes.  I also change the value 

of  C,  the constant in the utility function, to match the mean mileage in the data for each of the 

four vehicle types.  When   = 1,  gasoline demand is  unitarily elastic.  As suggested in earlier 

discussion, in this instance present bias does not change gasoline consumption: the effects from a 

lower fuel economy and from lower mileage just offset.  Furthermore, when   = 0.9,  gasoline 

                                                            
24 The implicit function theorem can be performed on the agent's first-order condition for the choice of fuel economy 
to find  dgpm/dgas,  which can be plugged into the formula for price elasticity of demand.  While the utility function 
is defined such that the short-run elasticity is constant at  –1/߮,  the long-run elasticity is a function the optimal 
mileage, fuel economy, the cost function  c,  as well as the short-run elasticity. 
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demand is elastic, so present bias reduces gasoline consumption.  Although not shown in Table 

5, the second-best gasoline tax in this instance is lower than the Pigouvian tax. 

 Columns 7 and 8 are from simulations where the marginal external damages from 

emissions are lower than in the base case.  In particular, I use the same source for estimates of 

damages (Parry 2011), but include only those externalities based directly on gasoline 

consumption (climate change, other pollutants, oil dependence) and not those based instead on 

mileage (accidents and congestion).  The marginal damages are 31 cents per gallons.  This 

reduces the deadweight loss to just over $100 per vehicle.  Optimal mileage and gasoline 

consumption is of course higher, since marginal damages are lower.   

 Lastly, columns 9 and 10 consider an alternate specification of the cost functions of fuel 

economy  c.  In the base case results, these functions (there is a unique function for each vehicle 

type) are based on comparing average costs of hybrid and non-hybrid vehicles, fit to a quadratic.  

But this does not pin down a function.  Thus, the simulations in columns 9 and 10 use the same 

two points and fit a decreasing function through them that is less convex than is the function 

specified in the base case.  As a result, the deadweight loss from using the Pigouvian tax is more 

than twice the deadweight loss with the base case cost function, suggesting that on that 

dimension the base case results are conservative. 

V. Conclusion 
 Growing support is arising from the field of behavioral economics for the claim that 

consumers regularly exhibit time-inconsistent preferences and make decisions under a present 

bias.  Little is known about how this phenomenon impacts optimal policy design or interacts with 

market failures.  This paper examines how policies addressing externalities perform under time-

inconsistent preferences.  The paper's theoretical model suggests that if consumers are time-

inconsistent, policies that do not recognize this fact will not achieve socially optimal outcomes.  

The numerical simulation suggests that ignoring time inconsistency can yield policy 

prescriptions that substantially differ from those that would bring about the first-best outcome.   

 The intuitive results from the model come from a particular and perhaps controversial 

specification of welfare-maximization: the long-run criterion.  In order to be agnostic about what 

welfare criterion ought to be used, I compare the results from the long-run criterion to those 

under alternative welfare criteria, and I find conditions under which the main results are robust to 

the alternatives.  The numerical simulations satisfy these robustness conditions. 
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 The simulation results are based on several assumptions, any of which could be relaxed 

to provide even more sensitivity analyses.  For instance, producer behavior is not modeled; 

manufacturers also respond to price policies, and this response could affect market prices and 

quantities.  More heterogeneity could be added in many places: more types of consumers, 

regional or temporal variance in gasoline prices or in external gasoline or mileage damages, 

more types and features of vehicles.  Any of these extensions would no doubt capture more 

features of the market.  But, the purpose of this simulation is not to pin down optimal policy 

point estimates, but rather to provide an idea of the magnitude of the effects of time-

inconsistency on policy prescriptions.   

 The theory provided a specific example of a market failure: a durable good that creates 

externalities.  The simulation was even more specific: automobiles.  The theoretical model is 

applicable to other externality-producing durable goods, like home appliances home energy 

efficiency investments. Furthermore, the framework here may be applicable elsewhere. For 

example, time inconsistency is often attributed as relevant to the rise in obesity (Ruhm 2010).  

The framework developed here could be used to analyze policy options like taxes on unhealthy 

foods, limitations on the availability of certain foods, or subsidies to gym memberships.  These 

results could similarly be extended with applications to retirement savings or addictive behavior. 
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Table 1: Calibration of Numerical Model 
Function or 
Parameter 

Description Value Source 

 Inverse of short-run price 
elasticity of gasoline demand 

2.941 (Brons, et al. 2008) 

C Utility function scale 
parameter 

Varies by 
vehicle type 

Calibrated from mileage 
data in NHTS 

c(gpm) Cost of car as function of fuel 
economy 

Varies by 
vehicle type 

Calibrated from EPA fuel 
economy data and MSRP 

data. 
d External damages from 

gasoline consumption 
$1.23/gallon (Parry 2011) 

β Present bias discount factor 
(annual) 

0.7 (Laibson, Repetto and 
Tobacman, Estimating 

Discount Functions with 
Consumption Choices 

over the Lifecycle 2007) 

δ Long-run discount factor 
(annual) 

0.96 

D Consumer disutility from 
vehicle age 

Varies by 
vehicle type 

Calibrated to match 
average vehicle age in 

NHTS 
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Table 2: Summary Statistics from Simulation with Homogeneous Consumers, fixed Vehicle 
Lifetime 

 (1) (2) (3) (4) (5) (6) 
 First-best Pigouvian 

gasoline 
tax 

Second-
best 

gasoline 
tax 

Optimal 
gasoline 

tax and fuel 
economy 
standard 

Optimal 
gasoline 
tax and 

fuel 
economy 

tax 

Second-
best fuel 
economy 
standard 

Policy 
instrument(s) 

N/A τ = 1.23 
τgpm = 0 

τ = 1.60 
τgpm = 0 

τ  = 1.23 
gpmmax = 

.0335 

τ = 1.23 
τgpm = 

148440 

τ = 0 
gpmmax = 

.0333 
Deadweight 

Loss ($) 
0 226 192 0 0 525 

Mean 
mileage 

11417 11070 10743 11417 11417 13309 

Mean gas 
consumption 

(gallons) 

382.49 405.61 388.46 382.49 382.49 442.82 

Mean fuel 
economy 

(gpm) 

.0335 .0366 .0362 .0335 .0335 .0333 

Notes: Deadweight loss is the total discounted value, per new car, over the lifetime of the car (T = 18 years).  
Gasoline taxes  τ  are in dollars per gallon. 

  



37 
 

Table 3: Summary Statistics from Simulation with Heterogeneous Consumers, fixed 
Vehicle Lifetime 

 (1) (2) (3) (4) (5) (6) 
 First-best Pigouvian 

gasoline 
tax 

Second-
best 

gasoline 
tax 

Second-
best 

gasoline 
tax and fuel 

economy 
standard 

Second-
best 

gasoline 
tax and 

fuel 
economy 

tax 

Second-
best fuel 
economy 
standard 

Policy 
instrument(s) 

N/A τ = 1.23 
τgpm = 0 

τ = 1.4454 
τgpm = 0 

τ  = 1.4315 
gpmmax = 

.0558 

τ = 1.2304 
τgpm = 

150421 

τ = 0 
gpmmax = 

.0558 
Deadweight 

Loss ($) 
0 162 147 138 0 1071 

Mean 
mileage 

11800 11565 11348 11371 11800 13329 

Mean gas 
consumption 

(gallons) 

489.30 505.88 494.01 493.70 489.30 596.70 

Mean fuel 
economy 

(gpm) 

.0412 .0434 .0432 .0431 .0412 .0444 

Notes: Deadweight loss is the total discounted value, per new car, over the lifetime of the car (T = 18 years), 
averaged over the four vehicle types, weighted by their market shares.  Gasoline taxes  τ  are in dollars per gallon. 
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Table 4: Summary Statistics from Numerical Simulations 
 (1) (2) (3) (4) (5) 
 First-best Pigouvian 

gasoline tax 
Second-best 
gasoline tax 

Second-best 
gasoline tax 

and fuel 
economy 
standard 

Second-best 
gasoline tax 

and fuel 
economy tax 

Policy 
instrument(s) 

N/A τ = 1.23 τ = 1.44 τ  = 1.26, 
gpmmax = 

.0569  

τ = 1.29, 
τgpm = 50663 

Deadweight 
loss ($) 

0 4202.7 3850.4 3798.5 3653.8 

Mean 
vehicle age 

(years) 

8.5941 8.8155 8.7870 8.8154 9.1228 

Mean 
mileage 

11654 11529 11322 11528 11576 

Mean gas 
consumption 

(gallons) 

499.89 509.33 497.28 505.38 497.82 

Mean fuel 
economy 

(gpm) 

0.0426 0.0439 0.0436 0.0436 0.0428 

Notes: Deadweight loss is the total discounted value, per consumer, over his or her entire lifetime, averaged over the 
four consumer types, weighted by their market shares.  Gasoline taxes  τ  are in dollars per gallon. 
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Table 5: Sensitivity Analysis 
 β = 0.95  = 1  = 0.9 d = 0.31 c less convex 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 First-best Pigouvian 

gasoline 
tax 

First-best Pigouvian 
gasoline 

tax 

First-best Pigouvian 
gasoline 

tax 

First-best Pigouvian 
gasoline 

tax 

First-best Pigouvian 
gasoline 

tax 
Deadweight 

Loss ($) 
0 5 0 150 0 150 0 104 0 348 

Mean mileage 11800 11758 10782 10150 10598 9909 12958 12762 11894 11362 

Mean gas 
consumption 

(gallons) 

489.30 492.16 448.80 448.80 441.65 439.07 555.56 569.98 488.80 525.31 

Mean fuel 
economy 

(gpm) 

.0412 .0416 .0417 .0440 .0418 .0441 .0426 .0443 .0411 .0459 

Notes: Deadweight loss is the total discounted value, per new car, over the lifetime of the car (T = 18 years), averaged over the four vehicle types, weighted by 
their market shares.   
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Appendix 
Proofs of Propositions 

Proposition 1:  To prove the first statement, suppose the contradiction: there exists a set of tax 

rates  {τt
optβ}  that lead to  mt

* = mt
opt  for all  t > 0  and  gpm* = gpmopt.  The consumer's first-

order condition for choice of mt  in period  t  is  U'(mt
*) = (gast + τt

optβ)·gpm*,  or  U'(mt
opt) = (gast 

+ τt
optβ)·gpmopt.  Since  U''  is strictly negative, the last equation can only be satisfied when  τt

optβ 

= τt
pig.  When  β = 1,  then  τt

pig  necessarily induces the optimal solution.  When  β < 1,  the 

optimal solution does not change, since the planner does not consider the quasi-hyperbolic 

discount factor  β.  But, the consumer's decision and first-order condition differ from the  β = 1  

case.  Thus, it does not equal the planner's solution. 

To prove the second statement, note that the consumer's choice of  gpm*  is given by her first-

order condition; call this equation  F.  The implicit function theorem can be used to show how  

gpm*  varies with  β 

כ݉݌݃݀

ߚ݀
ൌ

െ݀ߚ݀/ܨ
݉݌݃݀/ܨ݀

ൌ
∑ ௧ݏ௧ሾሺ݃ܽߜ ൅ ߬௧

௣௜௚ሻ · ݉௧
ሿ்כ

௧ୀଵ

െܿᇱᇱሺ݃݉݌ሻ ൅ ∑ߚ ௧ݏ௧ሾെሺ݃ܽߜ ൅ ߬௧
௣௜௚ሻ · ݉௧

Ԣሿ்כ
௧ୀଵ

 

The numerator is positive.  The denominator is negative from the second-order condition of the 

consumer's optimization problem.  Thus,  dgpm*/dβ < 0.  Since  gpm* = gpmopt  when  β = 1,  it 

follows that  gpm* > gpmopt  when  β < 1.   

The consumer's choice of  mt
*  in each period is a function of the total price of a mile of driving,  

(gast + τt
pig)·gpm,  from the first-order condition  U'(mt

*) = (gast + τt
pig)·gpm.  Since  U'' < 0,  

dmt
*/dgpm < 0.  When  gpm = gpmopt,  mt

* = mt
opt.  But when  β < 1,  gpm* > gpmopt,  so  mt

* < 

mt
opt  at each period  t > 0.   

Proposition 2:  Consider the consumer's problem with the added constraint that  gpm ≤ gpmopt.   

max
௚௣௠,ሼ௠೟ሽ೟సభ

೅
െܿሺ݃݉݌ሻ ൅ ௧ሾܷሺ݉௧ሻߜ෍ߚ െ ൫݃ܽݏ௧ ൅ ߬௧

௣௜௚൯ · ݉݌݃ · ݉௧ሿ

்

௧ୀଵ

 

Subject to 

ܷᇱሺ݉௧ሻ െ ൫݃ܽݏ௧ ൅ ߬௧
௣௜௚൯ · ݉݌݃ ൌ ݐ׊0 ൐ 0 

݉݌݃ ൑  ௢௣௧݉݌݃
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Consider this problem's Lagrangian, where the constraint from the period  t  choice of  mt  has a 

multiplier  λt  and the inequality constraint on  gpm  has a multiplier  μ.  The first-order condition 

with respect to  mt  is 

௧ൣܷᇱሺ݉௧ߜߚ
ሻכ െ ൫݃ܽݏ௧ ൅ ߬௧

௣௜௚൯ · ൧כ݉݌݃ ൅ ௧ߣ · ܷᇱᇱሺ݉௧
ሻכ ൌ 0 

The term in brackets is zero from the first-order condition from the static choice of  mt.  Since  

U''  is strictly negative,  λt = 0  for all  t > 0.  Then, the first-order condition for  gpm  is 

െܿᇱሺ݃כ݉݌ሻ ൅ ௧ݏ௧ൣെ൫݃ܽߜ෍ߚ ൅ ߬௧
௣௜௚൯ · ݉௧

൧כ

்

௧ୀଵ

െ ߤ ൌ 0 

If  μ = 0,  then this condition mimics the consumer's first-order condition in the problem without 

the fuel economy constraint.  Proposition 1 shows that in that case  gpm* > gpmopt.  This violates 

the constraint in this problem.  Hence,  μ > 0  and  gpm* = gpmopt.  Then, from the first-order 

condition for each decision over  mt,  each period's choice over  mt  results in  mt
opt.   

Proposition 3: With a tax on  gpm,  the consumer's problem is  

max
௚௣௠,ሼ௠೟ሽ೟సభ

೅
െܿሺ݃݉݌ሻ െ ݉݌݃ · ߬௚௣௠ ൅ ௧ሾܷሺ݉௧ሻߜ෍ߚ െ ൫݃ܽݏ௧ ൅ ߬௧

௣௜௚൯ · ݉݌݃ · ݉௧ሿ

்

௧ୀଵ

 

Subject to 

ܷᇱሺ݉௧ሻ െ ൫݃ܽݏ௧ ൅ ߬௧
௣௜௚൯ · ݉݌݃ ൌ ݐ׊0 ൐ 0 

From the same argument as in the proof to Proposition 2, the Lagrangian multiplier  λt  on the 

period  t  constraint equals zero, so the first-order condition over  gpm  is 

െܿᇱሺ݃כ݉݌ሻ െ ߬௚௣௠ ൅ ௧ݏ௧ൣെ൫݃ܽߜ෍ߚ ൅ ߬௧
௣௜௚൯ · ݉௧

൧כ

்

௧ୀଵ

ൌ 0 

With the value of  τgpm  as given, this first-order condition can be written as 

െܿᇱሺ݃כ݉݌ሻ ൅෍ߜ௧ൣെ൫݃ܽݏ௧ ൅ ߬௧
௣௜௚൯ · ሺߚ · ݉௧

כ ൅ ሺ1 െ ሻߚ · ݉௧
௢௣௧ሻ൧

்

௧ୀଵ

ൌ 0 

When  gpm* = gpmopt,  then  mt
* = mt

opt  for all  t > 0  since  τt = τt
pig.  Then, plugging  mt

* = mt
opt  

in the first-order condition above makes it equal to the planner's first-order condition, and thus  

gpmopt  is a solution by definition.  So  gpmopt  and  mt
opt  solve the consumer's problem, and by 

the second-order condition this is a unique solution.   
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Proposition 4:  Suppose that some policy exists that induces the first-best outcomes  gpmopt  and  

mt
opt.  The consumer's first-order condition for the choice of  mt  must be satisfied:  U'(mt) = (gast 

+ τt)·gpm.  At the first best this is only satisfied with  τt = τt
pig ≠ 0.   

Proposition 5:  Suppose that such a set of policies exist that induce the first best.  Consumer  i's  

first order conditions are 

௜ܷ
ᇱ൫݉௧,௜

כ ൯ െ ሺ݃ܽݏ௧ ൅ ߬௧ሻ · ௜݉݌݃
כ ൌ 0 

െܿᇱሺ݃݉݌௜
ሻכ ൅ ௧ߜ෍ߚ · ሾെሺ݃ܽݏ௧ ൅ ߬௧ሻ · ݉௧,௜

כ ሿ

்

௧ୀଵ

ൌ 0 

Under the supposition,  mt,i
* = mt,i

opt  and  gpmi
* = gpmi

opt.  Comparing the consumer's condition 

for  mt,i  with the planner's, it must be true that  τt = τt
pig  in each period  t.  Then, subtracting 

consumer  i's  condition for  gpmi  from the planner's condition for  gpmi  gives 

߬௚௣௠ ൌ ሺ1 െ ௧ߜሻ෍ߚ · ൫݃ܽݏ௧ ൅ ߬௧
௣௜௚൯ · ݉௧,௜

௢௣௧
்

௧ୀଵ

 

This right hand side is not independent of  i,  except in the special case where  mt,1
opt = mt,2

opt  for 

each  t.  Thus,  τgpm  is not uniform, a contradiction.   

Proposition 6:  Suppose that such a set of policies exists that induces the first best.  Consumer  i's  

problem is to maximize utility subject to the emissions tax  τt  and the restriction on  gpm.  The 

first-order conditions, where the inequality constraint's multiplier is  μ,  is 

െܿᇱሺ݃݉݌௜
ሻכ ൅ ௧ߜ෍ߚ · ሾെሺ݃ܽݏ௧ ൅ ߬௧ሻ · ݉௧,௜

כ ሿ

்

௧ୀଵ

െ ߤ ൌ 0 

௜ܷ
ᇱ൫݉௧,௜

כ ൯ െ ሺ݃ܽݏ௧ ൅ ߬௧ሻ · ௜݉݌݃
כ ൌ 0 

Comparing the second equation, the consumer's first-order condition for her choice of  mt,i,  with 

the planner's equivalent equation, it follows that  τt = τt
pig,  as in the last proof.  Then, subtracting 

the consumer's first-order condition for choice of  gpmi  with the planner's condition yields 

ߤ ൌ ሺ1 െ ௧ߜሻ෍ߚ · ൫݃ܽݏ௧ ൅ ߬௧
௣௜௚൯ · ݉௧,௜

௢௣௧
்

௧ୀଵ

 

That is, the shadow value of the constraint equals the price that would induce the first best (τgpm  

from the last proof).  This is strictly positive, so the constraint binds, and  gpmi
* = gpmmax.  

However, this value is not independent of  i,  and thus the optimal policy value for  gpmmax 

cannot be uniform.   



43 
 

Proposition 7: I will show that the optimal policy Pareto improves the Pigouvian policy by 

setting the lump sum payments  st  such that each self in period  t > 0 is just as well off in the 

optimal policy as in the Pigouvian policy, and (if the condition holds) the period zero self is 

strictly better off.  In the Pigouvian policy, the single-period utility for any period  t > 0  is  

u(mt
0) – gast ·gpm0·mt

0 – d(gpm0·mt
0).  The tax payment and lump sum payment just cancel each 

other out.  In the optimal policy, the single-period utility for any period  t > 0  is  u(mt
opt) – (gast 

+ τt
pig) ·gpmopt·mt

opt + st – d(gpmopt·mt
opt).  Choose lump sum payments  st  in these periods such 

that each single-period utility value is equal under both policies.  This implies  st = u(mt
0) – 

u(mt
opt) – (d(gpm0·mt

0) – d(gpmopt·mt
opt)) – gast·(gpm0·mt

0 – gpmopt·mt
opt) + τt

pig·gpmopt·mt
opt.  

Then, the government's budget constraint defines the zero period lump sum payment  s0:  s0 = 

gpmopt·τgpm + ∑ ௢௣௧݉݌݃ · ߬௧
௣௜௚ · ݉௧

௢௣௧்
௧ୀଵ െ ∑ ௧்ݏ

௧ୀଵ .  The single-period utility in the zero period 

under the Pigouvian policy is –c(gpm0),  and under the optimal policy it is  –c(gpmopt) + s0 – 

gpmopt·τgpm.  For the single-period utility in period zero to be strictly higher under the optimal 

policy than under the Pigouvian policy, it must be that  s0 > –c(gpm0) + c(gpmopt) + gpmopt·τgpm.  

Substituting in the expressions for  s0  and  st  from the expressions above yields the condition in 

the proposition. 
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