
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

Summer 8-12-2014

Towards an MPI-like Framework for Azure Cloud
Platform
Sara Karamati

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Karamati, Sara, "Towards an MPI-like Framework for Azure Cloud Platform." Thesis, Georgia State University, 2014.
https://scholarworks.gsu.edu/cs_theses/77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71425316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

TOWARDS AN MPI-LIKE FRAMEWORK FOR AZURE CLOUD PLATFORM

by

SARA KARAMATI

Under the Direction of Dr. Sushil K. Prasad

ABSTRACT

Message passing interface (MPI) has been widely used for implementing parallel and distributed

applications. The emergence of cloud computing offers a scalable, fault-tolerant, on-demand al-

ternative to traditional on-premise clusters. In this thesis, we investigate the possibility of adopt-

ing the cloud platform as an alternative to conventional MPI-based solutions. We show that

cloud platform can exhibit competitive performance and benefit the users of this platform with

its fault-tolerant architecture and on-demand access for a robust solution. Extensive research is

done to identify the difficulties of designing and implementing an MPI-like framework for Azure

cloud platform. We present the details of the key components required for implementing such a

framework along with our experimental results for benchmarking multiple basic operations of

MPI standard implemented in the cloud and its practical application in solving well-known large-

scale algorithmic problems.

INDEX WORDS: High-performance computing, Windows Azure, MPI, Cloud computing

TOWARDS AN MPI-LIKE FRAMEWORK FOR AZURE CLOUD PLATFORM

by

SARA KARAMATI

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2014

Copyright by

Sara Karamati

2014

TOWARDS AN MPI-LIKE FRAMEWORK FOR AZURE CLOUD PLATFORM

by

Sara Karamati

Committee Chair: Sushil K. Prasad

Committee: Rafal Angryk

 Yi Pan

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2014

iv

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my advisor, Dr. Sushil Prasad,

for his support and guidance throughout this research. I would like to thank Dinesh Agarwal for

his contribution in the publication of "Towards an MPI-like framework for the Azure cloud plat-

form" in the CCGrid 2014 conference. I would like to thank my colleagues at DiMoS group for

sharing their knowledge and experience with me and their help in my research.

My deepest appreciation goes to my husband, Reza, who supported me in many ways and

made me feel strong. This work could not be done without his support, understanding, and love.

Most of all, I thank my parents, my sister, and my brother for their endless love, support, and en-

couragement.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1 INTRODUCTION ...1

1.1 Motivation ...1

1.2 Introduction to Windows Azure ..3

1.3 The Components of Windows Azure ...4

1.4 Challenges of Cloud HPC...6

1.5 HPC Frameworks on Azure ...7

1.6 Organization of the Thesis ...8

2 CONSIDERATIONS FOR PORTING THE MPI STANDARD TO CLOUD 10

2.1 Design of MPI Primitives ... 10

2.1.1 Point-to-Point Communications ... 10

2.1.2 One-sided Communications ... 14

2.1.3 Collective Communications .. 14

2.2 Interface and Hardware Configuration... 16

2.3 Software Configuration .. 17

3 IMPLEMENTATION ... 18

3.1 Implementing MPI Point-to-Point Operations on Azure Cloud Platform ... 19

vi

3.2 Implementing MPI Collective Operations on Azure Cloud Platform 21

4 COMMUNICATION BENCHMARKS AND EVALUATION 26

4.1 Test Environment ... 26

4.2 Latency.. 27

4.3 Performance of Collective Algorithms... 29

4.3.1 Barrier Performance .. 29

4.3.2 Broadcast and Scatter Performance ... 30

5 PERFORMANCE OF APPLICATIONS ON THE CLOUD............................... 35

5.1 N-Body Particle Simulation ... 35

5.2 Cannon’s Multiplication Algorithm .. 41

6 CONCLUSION AND FUTURE WORK .. 44

6.1 Conclusion .. 44

6.2 Future Work ... 44

REFERENCES .. 46

vii

LIST OF TABLES

Table ‎1.1 Comparison of Windows Azure queues and Service Bus queues5

Table ‎5.1 Comparison of N-Body MPI code with cloudMPI 36

viii

LIST OF FIGURES

Figure ‎3.1 Comparison of traditional MPI code with cloudMPI 20

Figure ‎3.2 Send and receive mechanism in cloudMPI via Azure............................... 21

Figure ‎3.3 Implementation of broadcast using storage queue (left) and Service Bus

topic (right) .. 22

Figure ‎3.4 Broadcast naive implementation versus hypercube-based

implementation .. 23

Figure ‎3.5 Multi-threaded scatter operation .. 24

Figure ‎3.6 Barrier operation implementation .. 25

Figure ‎4.1 Benchmarking MPI performance on Azure cloud environment for small

messages ... 28

Figure ‎4.2 Benchmarking MPI performance on Azure cloud environment for large

messages ... 29

Figure ‎4.3 . Benchmarking performance of barrier operation on Azure cloud

environment ... 30

Figure ‎4.4 Benchmarking performance of broadcast operation on Azure cloud

environment ... 31

Figure ‎4.5 Benchmarking performance of scatter operation on Azure cloud

environment ... 32

Figure ‎4.6 Comparing the performance of scatter operation for MPI and

cloudMPI ... 33

Figure ‎4.7 Performance of broadcast naïve operation and its hypercube-based

counterpart .. 33

ix

Figure ‎4.8 Performance of scatter multi-threaded implementation 34

Figure ‎5.1 Performance of N-Body simulation for 20,000 and 30,000 particles 39

Figure ‎5.2 Performance of N-Body simulation for 40,000 and 50,000 particles 40

Figure ‎5.3 Performance of N-Body simulation on 8 nodes ... 41

Figure ‎5.4 cloudMPI performance for a 4800×4800 matrix 42

Figure ‎5.5 Performance of Cannon’s algorithm for cloudMPI and MPI 43

1

1 INTRODUCTION

1.1 Motivation

For several decades, computer industry enjoyed increasing number of transistors on a

chip with a proportional increase in the clock frequency with no drastic limitations on the electri-

cal and thermal power. Last decade marked a shift in computing industry and the clock frequen-

cy could no longer increase because of increasing temperature of the CPUs and limitations in the

cooling systems. The clock frequency barrier along with the advent of mobile computing ushered

us in the era of multi-core low-power architectures aided by accelerator units like general-

purpose GPUs and specialized hardware —including hardware-accelerated codecs, digital signal

processors, etc. In this period, software developers should actively optimize their applications by

taking advantage of the special capabilities of the underlying hardware (e.g., cache-aware algo-

rithms, SIMD operations, off-loading work to GPU, etc.) in order to improve speed and energy

efficiency of their applications. Furthermore, with the increasing bandwidth and reliability of the

Internet, scaling software systems as massive distributed services has become more and more

ubiquitous. These massive systems (networked servers and data-centers distributed all over of

the world also known as the cloud) work hand-in-hand with the consumer devices in order to de-

liver quality services. Quality of these services relies on the software that utilizes the capabilities

of the cloud and consumer hardware efficiently.

While the advent of cloud computing has provided researchers with a computing platform

with unprecedented scale, its adoption for high-performance computing has been limited by the

difficulty in employing cloud-based resources. Although the Infrastructure as a Service (IaaS)

facilities commonly provided by commercial cloud computing companies promise portability of

applications by installing customized software to mimic the capabilities of a virtualized compute

2

cluster node, IaaS cannot demonstrate essential requirements for high-performance computing

such as low-latency networks and fault-tolerant computing.

The steep learning curve involved in understanding the very peculiar and non-uniform ar-

chitectures and runtime environments of various cloud platforms discourage HPC community to

adopt it as an alternative platform. In order for a large-scale penetration of cloud computing plat-

forms into the HPC community, cloud vendors will have to offer easier approaches to utilize

these platforms for scientific research.

One of the popular programming environments followed by the HPC community is the

message passing interface (MPI) [1]. Various implementations of MPI standard are available in

the market proving the effectiveness of MPI standard for parallel and distributed application de-

velopment. While MPI has been a popular choice for traditional parallel and distributed plat-

forms, its current implementations are not pragmatic for cloud computing platforms [2]. Creating

an MPI-like framework for cloud platforms thus is a non-trivial problem. Cloud platforms most

often come with their own set of APIs and hence porting legacy parallel and distributed applica-

tions require a great deal of engineering.

In order to help these applications run on cloud platforms with as little effort as it would

be to run on any other platform, it is essential to bring the same frameworks that these applica-

tions use to cloud platforms. Unlike traditional parallel and distributed platforms, cloud plat-

forms have better fault tolerance and recovery due to their relatively stable operation. The tradi-

tional frameworks could exploit this feature to simplify their fail-proofing mechanisms. Other

key strengths of the cloud can be exploited for coarse-grained, long-running applications includ-

ing variable pricing, on-demand allocation/deallocation and scalability to tradeoff budget vs. per-

formance, budget vs. time constraints, etc. It is not a question of efficient implementation of ex-

3

isting standards on a new platform, but rather, it requires careful adaptation in tune with the sig-

nificantly different computing infrastructure.

1.2 Introduction to Windows Azure

Windows Azure is a Microsoft web service that provides flexible cloud platform for

building, deploying, and managing applications. It allows users to reliably host and scale out

their applications, store and manage data in many different ways, and provides messaging capa-

bilities for distributed applications development.

Unlike traditional clusters, cloud platform can easily scale by increasing/decreasing the

capacity of individual nodes through hardware upgrading/downgrading (i.e., changing memory

capacity or the number of CPU cores, etc.) or by adding/releasing nodes (also known as horizon-

tal scaling) [3]. In order to benefit from vertically scaling the cloud application, in addition to

reasonable hardware, sufficiently capable software is also required that can take advantage of the

available hardware.

Horizontal scaling pattern can minimize cost by releasing some of the allocated re-

sources, when they exceed the demands of application and increase the resources as throughput

falls below default expectations. Efficient utilization of the cloud resources is important since

cloud platform follows pay-as-use model. Scaling activities can be automated programmatically

by monitoring specific performance metrics such as memory usage, CPU utilization, and average

queue length, and so on. For applications with variable or unknown workload, the cloud elastic

feature can be used to adjust the resources according to the demand and consequently leading to

cost savings by releasing unused resources.

In the following section, we discuss key components of Windows Azure that are used in

this thesis.

4

1.3 The Components of Windows Azure

 Virtual Machines (VMs): Windows Azure virtual machines are configurable and main-

tainable servers in the cloud. These scalable computing resources can be set up with

software and services on Windows Server or Linux-based operating systems. Because of

the control on the configuration and recycling existing virtual machine images, Azure vir-

tual machines are suitable options for migrating legacy codes and applications to the

cloud.

 Cloud Service: Azure cloud service is designed for developing multi-tier applications on

a platform consisting of one or more compute roles. Convenience of deploying multiple

roles makes this service a good option for applications requiring distributed processing

and flexible scaling. Azure cloud service supports two kinds of roles namely web role

and worker role. Unlike worker role, web role runs IIS so they can be used for front-end

web applications. At the cost of limited control in comparison to virtual machines, Azure

cloud service assures maintaining infrastructure, patching operating system, and restoring

from hardware and service failures.

 Cloud Storage: Azure storage service is classified into three categories based on the

characteristics of the stored data. Blob storage is ideal for storing large amount of un-

structured data. It can contain hundreds of gigabytes of data. Table storage stores struc-

tured non-relational data. A single table can hold a collection of entities with different set

of properties. Queue storage is the perfect means to pass messages between Azure roles.

It can contain an unlimited number of messages each with maximum size of 64KB.

 Service Bus: Azure Service Bus provides three different communication mechanisms for

messaging: queues, topics, and relays. Service Bus queue and topic are one-way durable

5

and asynchronous messaging components that store messages until they are consumed by

the receiver. The main difference between queue and topic is in the number of receivers

of a message. While a message in a queue can be received by only one possible subscrib-

er, a topic allows the message to be received by multiple subscribers that satisfy specific

criteria. Service Bus relay service provides direct communication between sender and re-

ceiver over a TCP channel. Unlike queue and topic, relay service supports bi-directional

messaging.

Table 1.1 compares the features of the Windows storage queue and Service Bus queue.

The data in this table are collected from the advertised information about these services by Mi-

crosoft [4].

Table 1.1 Comparison of Windows Azure queues and Service Bus queues
Comparison Criteria Windows Azure Queues Service Bus Queues

Ordering guaran-

tee

No Yes - First-In-First-Out (FIFO)

Receive behavior Non-blocking Blocking with/without timeout

(offers‎long‎polling,‎or‎the‎“Comet‎

technique”)

Non-blocking

(through the use of .NET managed

API only)

Maximum mes-

sage size

64 KB 256 KB

Maximum queue

size

100 TB 1, 2, 3, 4 or 5 GB

Maximum mes-

sage TTL

7 days Unlimited

Maximum number

of queues

Unlimited 10,000

Maximum

throughput

Up to 2,000 messages per sec-

ond

Up to 2,000 messages per second

Average latency 10 ms

(with TCP Nagle disabled)

100 ms

Queue transaction

cost

$0.01

(per 10,000 transactions)

$0.01

(per 10,000 transactions)

Billable operations All Send/Receive Only

6

(no charge for other operations)

Idle transactions Billable

(querying an empty queue is

counted as a billable transac-

tion)

Billable

(a receive against an empty queue is

considered a billable message)

Storage cost $0.14

(per GB/month)

$0.00

Outbound data

transfer costs

$0.12 - $0.19

(depending on geography)

$0.12 - $0.19

(depending on geography)

1.4 Challenges of Cloud HPC

Several researchers have studied the practicality of running tightly coupled and MPI-style

applications in the cloud environment. These studies evaluate the performance of MPI applica-

tions on different cloud platforms including Amazon EC2 [2, 5-9] and Microsoft Windows Az-

ure [10, 11]. Most studies use classical MPI benchmarks such as NAS, NPB, HPL, and CSFV to

compare the performance of MPI on public cloud platforms. Others evaluate the feasibility of

running large-scale applications on the cloud such as low-order coupled atmosphere-ocean simu-

lation [5] and biomedical applications [11], matrix multiplication, K-means Clustering [8] . All

studies confirm there is a strong correlation between the application communication time and

application overall performance on the cloud platform. These studies show that the lack of high-

bandwidth, low-latency interconnects as well as virtualization overhead has large effect on the

performance of HPC applications on the cloud. Jackson et al. [6] report a significant variability

in performance on Amazon cloud platform due to virtualization in the cloud environment and

consequent resource sharing and contention.

This project is an ongoing work in our research group. cloudMPI first introduced in dis-

sertation‎titled‎“Scientific‎High‎Performance‎computing‎(HPC)‎Applications‎on‎the‎Azure‎Cloud‎

Platform”‎by‎Dinesh‎Agarwal‎[12]. In this dissertation, the initial implementation of cloudMPI

7

is considered. The previous version only considered the point to point routines for cloudMPI

using Azure queue storage. The interface of cloudMPI was different from conventional MPI and

it involved some effort to convert legacy MPI applications to cloudMPI.

1.5 HPC Frameworks on Azure

MapReduce is a widely used programming model that provides good performance in the

cloud platform. Several studies have evaluated the performance of MapReduce in the cloud plat-

form. Microsoft Daytona [13] is an iterative MapReduce runtime optimized for data analytics

and machine learning built on Microsoft Windows Azure. In Daytona architecture a single mas-

ter instance is used to perform the scheduling of applications and tasks and handling of failures.

The master assigns each map and reduce task to a slave instance. The instances communicate

directly through a TCP connection. Twister4Azure [14] is another iterative MapReduce runtime

for Windows Azure cloud. This runtime environment uses Azure queues for map and reduce

tasks scheduling, Azure tables for metadata and monitoring data storage, Azure blob storage for

data storage and the Window Azure compute worker roles to perform the computations. A multi-

level data caching mechanism is also used in the Twister4Azure runtime to mitigate the latency

issues inherent in the cloud services.

Pregel.NET [15] is a bulk synchronous parallel (BSP) framework for graph processing

customized for the Microsoft Windows Azure cloud. Pregel.NET uses the Pregel architecture

design [16] for BSP graph processing. In this model, each worker role holds the distributed graph

partitions and performs vertex-centric tasks on their own partition of the graph. The storage

queues are used for message transmission between vertices on different compute nodes as well as

synchronization between instances.

8

AzureBlast [10] is a parallel implementation of BLAST library on Windows Azure. Blast

is a sequence comparison tool widely used in bioinformatics applications. To run Blast on multi-

ple instances, the query-segmentation data-parallel pattern is adopted. Given an input file, which

contains a number of query sequences, AzureBlast distributes partitioned input sequences be-

tween Azure compute instances to be executed. Once all workers process their assigned partition,

the results are merged and become available on the blob storage.

1.6 Organization of the Thesis

In this thesis, we discuss the key components of implementing a message passing frame-

work on Azure cloud platform and provide design guidelines derived from our experiments. The

goal of this thesis is to theoretically and experimentally investigate the cloud environment for

high-performance computing and to identify the strengths of the Azure cloud platform to effi-

ciently map MPI to this platform. The rest of this thesis is organized as follows:

The design of an MPI-like framework for application development on Azure cloud plat-

form is presented in Chapter 2. An efficient implementation of a proof-of-concept MPI-like

framework, cloudMPI, on the Windows Azure cloud platform is provided in Chapter 3. This

chapter details the implementation of MPI-like communicators and primary communication

primitives for selective point-to-point and collective operations. Detail of experimental results,

their evaluation, and the environment setup are discussed in Chapter 4. A study of the practicali-

ty and efficiency of the cloudMPI framework by porting widely-used applications to this plat-

form is presented, as well as benchmarking results that assess the current communication effi-

ciency and overhead for short and long messages for Azure API and cloudMPI framework. The

conclusion is presented in Chapter 5 where the future direction for this research is also discussed.

9

1.7 Related Publication

Part of this work was presented in the 14th IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing and accepted for publication in the conference proceedings

[17].

10

2 CONSIDERATIONS FOR PORTING THE MPI STANDARD TO CLOUD

In this section, we discuss the requirements of the components of an MPI-like framework

and the challenges that make it an interesting research problem. The framework design is ex-

pected to behave as close to traditional MPI framework as possible, yet it can benefit from the

scale and dynamicity of cloud computing as well as its fault tolerance.

2.1 Design of MPI Primitives

The point-to-point communication is the most commonly used communication pattern in

MPI. There are two categories for MPI point-to-point communications: 1) blocking and 2) non-

blocking. These categories provide a number of communication modes: synchronous (MPI

Ssend, MPI Issend), buffered (MPI Bsend, MPI Ibsend), ready (MPI Rsend, MPI Irsend), and

standard (MPI Send, MPI Isend). Each mode uses different mechanisms to send messages to tar-

get nodes offering trade-offs for synchronization overhead, system overhead, buffer space, and

reliability. In the following, we focus on different options for communications on Azure cloud

environment and consider MPI communication modes of transferring data for them [18].

2.1.1 Point-to-Point Communications

 Blocking buffered asynchronous communication using Azure queue storage: In Az-

ure cloud infrastructure, all queue services are accessible from any compute node. This

capability makes it possible to use the intra-node communication mechanism to imple-

ment MPI methods for messaging among processes that are either on the same compute

node or on remote nodes over the cloud. Nemesis communication subsystem [19] for

MPICH uses shared memory queue for intra-node messaging. This communication sub-

system uses free queues to prevent starvation of senders or receivers and assures efficient

utilization of shared memory. Since cloud environment does not have the space limitation

11

of shared memory, the free queue used in Nemesis implementation can be removed with-

out performance fall-off. Our design goal here is to use Windows Azure queue storage to

communicate messages between Azure compute instances. Each compute instance has a

receive queue that it needs to poll in order to receive messages from other instances. To

send a message to a compute instance, the message is inserted into the queue of the re-

ceiving instance. The size of the message sent to the queue cannot exceed 64KB. There-

fore, large data are sent to blob and its unique id, which identifies the location of the data

in the blob, is sent as a message to the receivers queue. The Azure queue storage does not

guarantee a first-in-first-out (FIFO) ordered delivery. Therefore, a mechanism such as lo-

cal queue is needed to compensate for this deficiency. The receive process would follow

these steps: 1) Check the local queue for desired message; 2) If message is found, use it

as needed; otherwise, 3) Poll the Azure queue; 4) If message is found use it as needed;

otherwise, 5) Put the unexpected message in the local queue and go to step 3.

Communication over queue offers the advantages of asynchronous and buffered commu-

nication modes. In comparison to synchronous mode, it is safe because it is not dependent

on the order of send and receive operations. Furthermore, senders and receivers do not

have to be available at the same time; therefore, if the receiving instance fails, it receives

messages reliably as soon as it is available. A visibility timeout can be assigned to a mes-

sage from the queue and the message will reappear in the queue if it has not been deleted

by the end of the timeout period. This feature provides fault tolerance for the application

by ensuring that no messages will be lost during instance failure. Additionally, queue

service eliminates synchronization overhead by buffering the message in the queue. The

flexibility of the communication can be extended using Azure blob storage when the

12

message is larger than the maximum message size that queue service can handle (typical-

ly 64 KB). This effectively eliminates the pitfall of using buffer mode for messages larger

than available buffer space which in traditional MPI programs will generate an error and

the program will by default exit.

Another alternative to the local queue is using table storage. The sender of a message will

store the message in a table instead of a queue. Messages can be automatically tagged

with a time-stamp to enforce strict ordering at the time of retrieval. However, table stor-

age does not have the fault tolerance boasted by Azure queue storage service. If a node

fails after taking a message out of the table storage, there is no automated recovery or re-

appearing of the message in the table storage.

 Blocking buffered asynchronous or blocking synchronized messaging for short mes-

sages using Service Bus relay: The first design scheme, the message passing via Azure

storage, is slow for short messages. Therefore, an alternative scheme optimized for short

messages can be designed. In this communication scheme, the Service Bus relay service

is used to communicate between two compute instances over the TCP channel. In this

communication mechanism, each cloud node hosts Windows Communication Foundation

(WCF) services for communication operations. Whenever an instance decides to send a

message to another instance, it invokes the send service of the receiver instance and pass-

es the desired message as the argument for the service call. This method has two varia-

tions. The first variation provides buffered and asynchronous communication and the

second variation supports unbuffered and synchronous communication. In the first varia-

tion, whenever an instance decides to send a message to another instance, it invokes the

send service of the receiver instance and passes the desired message as the argument for

13

the service call. The send service puts the message inside a local queue in the receiver

side. As a result, a receiver instance can receive a message by checking its local queue. In

the second variation, the send service call waits until a receiver instance provides a

matching receive. In this variation, the send service call (receive routine) first triggers an

event and then waits for an event from the receiver (send service call).

 Blocking buffered FIFO communication using Azure Service Bus queue: The third

design scheme can use Azure Service Bus queue for communication. This design is simi-

lar to one that uses Azure queue except for following finer details. In comparison to Az-

ure storage queue, which only supports messages of type string and binary array, Service

Bus queue can support messages of any type. Therefore, it obviates the need for an ex-

plicit type conversion. While the Service Bus queue supports the maximum message size

of 256KB (in comparison to 64KB for Azure storage queue), the maximum queue size is

only 5GB (which is 100 TB for Azure Storage queue). The disadvantage of this service is

that its latency is ten times greater than that of Azure storage queue. Since Service Bus

queue supports first-in-first-out ordered delivery, it alleviates the out-of-order delivery

for messages sent from the same instance.

 Non-blocking communication: Asynchronous operations or multiple threads can be

used to implement non-blocking send and receive calls. In asynchronous send and re-

ceive, which is supported with Service Bus queue, the next statement executes before the

previous send or receive request is completed. The asynchronous send and receive instan-

tiates a delegate that invokes a method when the operation is completed; so, this callback

method can inform MPI Wait routine of the finished operation. Another design variation

14

uses multiple threads in order to send and receive messages. In this variation, a new

thread is launched for every send and receive request.

2.1.2 One-sided Communications

The Service Bus relay service can be utilized to implement one-sided communication

methods. In MPI one-sided communication (introduced in MPI-2 standard [20]), only one of the

processes initiates the data transmission on sender and receiver processes. Since a Service Bus

relay communication supports request-reply communication, where sender makes calls to service

operations and waits for a response from the service without explicit participation of the receiver,

it can be a suitable candidate for implementing MPI one-sided operations. The sender instance

calls a service and waits for a response from the service. For MPI GET the service operation re-

sponse is the requested data; for MPI PUT the request is to put the input data in the requested

location; and for MPI Accumulate the service call combines the service call input with the data

already present in the receiver part.

2.1.3 Collective Communications

MPI collective communication consists of three groups:

 Barrier synchronization: The goal of this group is to synchronize all the processes with-

in a communicator. All the instances in a communicator put a message inside the barrier

queue when they reach the synchronization point and then wait for an event. One of the

instances inside the communicator (master) polls the barrier queue until it receives k mes-

sages, where k is the number of instances in the communicator. After that, the master in-

stance calls a service in all of the other instances in the communicator in order to unlock

them.

15

Another design option is to use Table storage for synchronization between nodes. Each

worker role adds an entity with a message containing worker ID to the table storage, and

then waits for the master node to change its message entity value to the number of pro-

cesses in the communicator. The master node waits until all processes add an entity to the

table, and then sends a signal to processes by updating their entity values to the number

of processes in the communicator.

 Data movement collective operations: Broadcast, gather, and scatter operations are ex-

amples of this type of operations. The operations of this group can be implemented using

the point-to-point send and receive operations. For example, the broadcast operation can

be implemented by sending a message to the queues of all other compute instances in the

communicator. The time of sending to all other instances can be overlapped using asyn-

chronous send operation or multithreading. The other option is to use Service Bus topics

and subscriptions. Service Bus topics and subscriptions offer a one-to-many communica-

tion pattern. In this method, there is a topic for each communicator. All the compute in-

stances in the communicator are subscribed to the topic. When a compute instance sends

a message to a topic, the message is available to each subscribed instance. Also, sub-

scribed instances can define a filter for received messages. For example, they can filter

messages so that they receive only messages from the senders other than themselves (i.e.,

the sender ID differs from that of the subscribed instance).

 Global computation: The reduction operation is one of the operations of this group. One

method for reduction operation is to send the data of all compute instances to the receiver

instance. Then, the receiver instance applies the reduction operation on the received data.

The receiver instance distinguishes these data from the other data in the queue using a

16

type of messaging called session enabled messaging where all the data related to reduc-

tion operation are given identical session ID. Therefore, the receiver receives messages

with the same session ID, consecutively.

2.2 Interface and Hardware Configuration

The steep learning curve faced by developers who want to write applications for the

cloud has a lot to do with the interface provided by cloud vendors. We have worked with a num-

ber of cloud vendors and we invariably found the interface to be overwhelming. We firmly be-

lieve that the nomenclature and accessibility must be abstracted out to reduce the complexity and

to allow developers to seamlessly work with the cloud platforms. A terminal-based interactive

shell, which provides easy to use bindings, can provide developers with means to administer the

basic configurations of their project. The terminal shell can connect to developers account on the

cloud by asking their configuration settings at first launch and from there it can behave like the

well-known terminal Putty to execute commands on the cloud setup. Windows Azure currently

allows this but there is no easy way to accomplish this without going through a cumbersome ex-

ercise.

A lightweight terminal could allow somewhat similar yet minimalistic, familiar, and sim-

ple interface. Based on the account information (credentials), the user could be automatically

configured for that machine. This terminal should also provide developers with commands to

install required packages and spin-off the Azure roles (VMs) as necessary. There should also be

a user friendly way to configure the packages based on the MPI‎application’s‎requirements. De-

velopers only need to port their legacy MPI code and/or develop new cloud-based MPI code. The

code deployment can therefore be friction-less as all the cloud related configurations are already

set with necessary libraries and files required for their cloud-based MPI application. Using the

17

terminal, developers can specify the number of running instances and change them on the go and

deploy their application to the cloud.

2.3 Software Configuration

The MPI APIs intended for use on the cloud environment should be similar to traditional

MPI in order to reduce the cost of porting. However, C# and PHP, which are the default imple-

mentation languages for the Azure platform, along with the configuration of Azure roles brings

up some implementation challenges. In traditional MPI, pointers to initial address of the

send/receive buffer are passed to MPI functions. However, C# or PHP do not encourage using

pointer arithmetic due to type safety and security concerns. This may cause a problem as pointer

arithmetic is required to reference the first element of the send/receive buffer.

18

3 IMPLEMENTATION

The cloudMPI framework is based on the object-oriented principles consisting of the fol-

lowing classes: 1) cMPI, 2) cMPIMessage, 3) Datatype, 4) Comm. These classes, collectively,

implement basic MPI routines.

The cMPI class is the core of the implementation. This class offers the methods to facili-

tate the communication among MPI nodes. All members of this class are declared static.

The cMPI Message class packs the data to be transferred in a message as well as the other attrib-

utes of a message that can be used to distinguish messages at the receiver end. A message in-

cludes following fields: data, source, tag, msgId and isSmallMessageField. isSmallMessage field

is used by the program to determine the location of the data (queue or blob). For large messages

this field is set to false. msgId stored in this message is used for large messages and contains the

location of the data in the blob.

The class Datatype contains the type information of the data elements of the array that is

to be sent/received in the MPI communication operations. In order to provide seamless operation

with traditional MPI routines, we use the standard MPI data types, as shown in Fig. 2.1. Current

implementation supports all primitive types provided by the C# language; however, it can easily

be extended to support any user defined data type.

Comm class: If multiple communicators are required, there will be one queue per node

for each communicator. Default COMM WORLD communicator is defined as a static member in

the cMPI class.

19

3.1 Implementing MPI Point-to-Point Operations on Azure Cloud Platform

The basic point-to-point communication operations implemented in cMPI class are send

and receive methods. These two methods are declared as follows:

int Send(Object buffer, int offset, int count, Datatype type, int dest, int

tag, cMPI Comm MPI COMM)

int Recv(ref object buffer , int offset, int count, Datatype type, int

source, int tag, cMPI Comm MPI COMM)

The arguments of these methods closely correspond to conventional MPI send and re-

ceive routines except for an additional offset parameter. Unlike the traditional MPI which uses

pointers to specify buffer index, the cloudMPI methods get additional offset argument to indicate

the data position in the buffer. The buffer wraps the data that is to be sent in a generic object

type. The buffer is actually an array of any serializable object. However, the type of the data

wrapped by this object should be consistent with the type argument, which is one of the required

arguments in Send/Recv methods.

Figure 3.1 shows an MPI sample code in C and its equivalent code for cloudMPI. As

shown in this figure, the cloudMPI API is very similar to the C bindings of the conventional

MPI. cMPI.Init initializes a channel of communication and assigns a list of nodes to this channel.

One queue, dedicated to this channel, is created per node after the initialization. The need to al-

locate nodes to a channel allows users to broadcast a message to all of the nodes in a communi-

cator. This routine gets Azure storage string as input, which contains the necessary parameters

required to access developer storage account in the Windows Azure environment. The receive

buffer should be defined as object data type as shown in Fig. 3.1. cMPI.Finalize is used to re-

lease the resources occupied by the application.

20

Figure 3.1 Comparison of traditional MPI code with cloudMPI

Figure 3.2 shows the send and receive mechanism between sender and receiver instances.

The send routine packs the data to be transferred as well as the other attributes in a message of

type cMPI Message. These attributes can be used to distinguish messages at the receiver in-

stance. Then the message is serialized to binary format and converted to byte array (Azure

queues can store messages of type string or byte array). Finally a CloudQueueMessage is created

from the byte array and sent to the receiver instance queue. On the other side, the receiver rou-

tine monitors its queue for new message. The new message is deserialized to an object of type

cMPI Message. Then the receiver instance can retrieve required information from the received

message.

21

Figure 3.2 Send and receive mechanism in cloudMPI via Azure

3.2 Implementing MPI Collective Operations on Azure Cloud Platform

Broadcast: In the broadcast operation, a root node sends a message to all other nodes in

the communicator. cloudMPI supports three implementations of data broadcasting methods: 1)

using a combination of Azure queue storage and Azure blob storage; 2) using a combination of

Service Bus topic and Azure blob storage; 3) a hypercube-based broadcasting algorithm using

Azure storage services (queue and blob). The first approach uses the point-to-point send and re-

ceive operations to implement the broadcast operation following the scheme shown in Fig. 3.3

(left). The root node uses the send routine inside a loop to broadcast a message to all other nodes

in the communicator. Then, other nodes in the communicator get the message using the receive

routine. In the second approach, a Service bus topic is used to broadcast a message between the

communicator instances. All instances get subscribed to this topic inside the init routine. When a

message is sent to a topic by the root instance, it is then made available to each instance in the

22

communicator to be received. As the size of the message passes the maximum message size (i.e.

64 KB for storage queue and 256KB for Service Bus topic), the blob storage is used in both

methods to communicate the broadcast data and the queue and topic messages indicate the blob

ID of the data stored in the blob storage.

Figure 3.3 Implementation of broadcast using storage queue (left) and Service Bus

topic (right)

The third implementation is a hypercube-based broadcast algorithm that uses the storage

queue and blob service for data communication. In this communication scheme, the broadcast

operation is performed in multiple steps. At each step, a number of nodes act as the message

sender; and their neighbor nodes (in an imaginary hyper-cube arrangement) along a single direc-

tion of the hyper-cube act as the receiver nodes. In the beginning of the broadcast sequence, the

root node sends the message to one of its neighbors and the chain process of broadcast gets initi-

ated. As a result, in the n
th
 time step, 2

n
 nodes receive the message. In other words, for a commu-

nicator of size d, the broadcast operation is performed in log(d) time steps.

23

Figure 3.4 Broadcast naive implementation versus hypercube-based implementation

Scatter and Gather: In the scatter operation, a root node sends the segments of a mes-

sage of size m to different nodes, and in the gather operation, the root node receives the segments

of a message of size m from different nodes and stores them based on the order of the sending

nodes rank. In MPI gather/scatter operations, the length of the message received from or sent to

other nodes is the same for all nodes. The scatter and gather routines are implemented using the

point-to-point send and receive operations. To scatter a message between nodes of a communica-

tor, first, root node extracts N segments of the data from the send buffer and sends each segment

to the receive queue of the corresponding nodes so that node 1 gets the first segment, node 2 gets

the second segment, etc. Then, other nodes in the communicator will wait for the message from

the root processor. To gather a message from other nodes of a communicator, first, each node

except for the root node sends its data to the root node queue. Then, root node receives the data

from the queue and stores them in a local buffer based on the rank order. cloudMPI supports two

versions of the scatter method. The only difference between these two versions is that one uses

Service Bus queue; and the other, queue storage for communication. Similar to the broadcast

routine, the blob storage is used for the transmission of large messages.

24

For the scatter routine, we also implemented a multi-threaded version of the scatter operation. In

this‎implementation,‎threads‎run‎in‎parallel‎to‎send‎the‎messages‎to‎other‎instances’‎queues.‎

Figure 3.5 Multi-threaded scatter operation

Barrier: This operation is used to synchronize operations in MPI nodes. This routine

blocks nodes until all the nodes within the communicator reach the synchronization point. We

use table storage to implement the barrier method in cloudMPI. All the instances in a communi-

cator insert an entity with a property equal to their ID to the barrier table when they reach the

synchronization point and then wait until the master node updates their property. A master node

inside the communicator monitors the barrier queue until it receives k entity messages, where k is

the number of instances in the communicator. After that, the master instance updates the property

of all the entities to the number of instances in the communicator. Therefore, other processors

become unlocked after seeing the change in their property value.

25

Figure 3.6 Barrier operation implementation

Reduction (MPI_SUM): The reduction operations collect and reduce the values of the

send buffer of the different nodes to a single value. For the purpose of this thesis, only

MPI_SUM operation of the MPI reduction is implemented. This can be easily extended to other

reduction operations. The reduction routine is implemented using the point-to-point send and

receive operations. This operation is similar to the gather routine, and the only difference is that

the reduction operation computes the reduce operation over elements received from the gather

routine.

26

4 COMMUNICATION BENCHMARKS AND EVALUATION

4.1 Test Environment

In this section, we evaluate the performance of cloudMPI over the Microsoft Azure cloud

environment. In order to evaluate the communication performance of cloudMPI, we employ the

traditional messaging benchmarks for MPI [21]. Not only we convert these benchmarks for cloud

platform using cloudMPI framework, we also create a cluster of virtual machines running a fla-

vor of Linux operating system to run the original MPI benchmarks on barebone machines on the

cloud. In‎both‎platforms,‎compute‎nodes‎are‎set‎to‎be‎Azure‎“small”‎virtual‎machine‎with‎

1.75GB of memory.

In order to setup our two-processor MPI virtual machine over the barebone cloud infra-

structure, a series of configuration steps are needed beyond installing Linux. These steps are in-

structive for the Azure environment, and hence briefly described below. Master and slave virtual

machines have to be created and configured properly. These configurations include installing

MPI, configuring network for each machine, loading and compiling the program on each node,

etc. We start with creating a master virtual machine with proper installation of the MPI. In our

experiments, we use openMPI, which is a popular implementation of the MPI standard. In order

to provide SSH connectivity with the slaves, a public/private key pair is generated and the SSH

configuration files are modified accordingly. The next step is to create a slave node. MPI instal-

lation steps should be performed on this machine as well. To provide the ability to connect to this

machine via SSH from the master node, the SSH server should be installed. The key pair gener-

ated in the master node is used here to setup the SSH connection. In this step, the program can be

loaded on the master and slave nodes and compiled using the MPI package.

27

To create the desired number of slave nodes, we first save an image of the currently cre-

ated slave node and then create multiple instances of this image using a shell script and the API

provided by the Azure platform. Since each slave instance that gets created this way has a ran-

dom port number for its SSH connectivity, we use additional shell API commands to query these

instances to get their SSH port numbers. These port numbers are then added to the master node’s‎

SSH configuration file. Furthermore, the host names supplied in the shell script to create slave

nodes are also used to create the MPI configuration file on the master node. MPI uses random

TCP port numbers. Therefore, it is difficult to establish the TCP/IP connection between master

and slave nodes as this type of communication between virtual machines is not supported by

simple Azure network. In order to overcome this problem a virtual network needs to be created

on the Azure platform and all the nodes needs to be added to this network. In order to load new

code on slave nodes, simple shell scripts can be used to load/compile the code remotely on slave

nodes.

4.2 Latency

A ping-pong latency test is often used to characterize the MPI communication perfor-

mance. The benchmarks measure the network latency between two compute nodes. Node 1 sends

a message to node 2, waits for node 2 to receive the message, and then receives a return message

from node 2.

For the cloudMPI-based implementation, the benchmarks perform the same operations as

for the network benchmarks, but the messages are not sent point to point. Instead, each message

is stored in the storage by the sender and the receiver receives the message by reading it from the

cloud storage. Thus, there is additional latency introduced in the system that could degrade the

performance.

28

Figure 4.1 Benchmarking MPI performance on Azure cloud environment for small

messages

Figure 4.1 shows the benchmark results for short messages. The cloudMPI via Service

Bus relay and traditional MPI displays comparable performance in terms of communication la-

tency. Since these two methods do not have the additional overhead of reading and writing from

the cloud storage, their performance is superior to the other two methods. To improve the per-

formance for short messages (i.e., message size < 1,460 bytes) useNagleAlgorithm property was

turned off.

For communication by large messages, Service Bus relay cannot be used; therefore, as

shown in Fig. 4.2, for large messages, we are comparing the benchmark results for the Azure

cloud platform for two communication methods, namely MPI and cloudMPI. It is clear that tradi-

tional MPI benchmarks on the cluster of virtual machines outperform other implementations. In-

terestingly, while MPI performs up to 50× better than cloudMPI via storage for short messages,

the difference keeps reducing as the message size increases, finally reducing to a difference of

less than 3.5×. Comparing the results for short and large messages suggests that for a wide range

29

of message sizes cloudMPI can be reasonably competitive with traditional MPI while providing

the convenience, reliability, and massive scalability of the cloud platform.

Figure 4.2 Benchmarking MPI performance on Azure cloud environment for large

messages

4.3 Performance of Collective Algorithms

We executed the performance tests using our benchmark code on the implementation of

barrier, broadcast, and scatter collective operations using cloudMPI and MPI on the cloud clus-

ters. We then analyzed the performance results and the optimal implementation of various collec-

tive operations.

4.3.1 Barrier Performance

The benchmark measures the average time to complete a barrier routine repeated for

100,000 times. We run this benchmark on a cluster with 16 single-core nodes (i.e., Azure small

nodes). As shown in Fig. 4.3, the benchmark results demonstrate significant performance gap on

the average latency between cloudMPI and MPI, especially when the number of compute nodes

30

increases. The average latency of barrier operation for MPI is almost 49 times as fast as the

cloudMPI for a cluster with 16 nodes. When the number of compute nodes is small, the perfor-

mance gap is smaller but still significant.

Figure 4.3 . Benchmarking performance of barrier operation on Azure cloud envi-

ronment

4.3.2 Broadcast and Scatter Performance

Broadcast and scatter benchmarks measure the completion time of the routine averaged

over all the compute nodes in the communicator (including both the sender and receivers). We

compare the performance of the cloudMPI with that of the traditional MPI. For both scatter and

broadcast operations, the result of benchmarks indicates that the traditional MPI outperforms

cloudMPI implementations for messages with small size. As the message size increases, the per-

formance gap between cloudMPI and MPI significantly shrinks. Experimental results for cloud-

MPI scatter operation indicate the implementation based on queue storage is faster than the im-

plementation based on Service Bus queue. For broadcast operation with node sizes of 2 and 4,

using queue storage yields faster runtime than using Service Bus topic. As shown in Fig. 4.4,

31

broadcast operation on 8 nodes — with‎large‎enough‎messages‎(i.e.,‎message‎size‎≥‎524,288

bytes) — performs faster for the implementation based on Service Bus topic compared to the one

using queue storage.

Figure 4.4 Benchmarking performance of broadcast operation on Azure cloud envi-

ronment

32

Figure 4.5 Benchmarking performance of scatter operation on Azure cloud envi-

ronment

Figure 4.6 shows the results of our benchmark test for the scatter operation and compares

the performance of MPI and cloudMPI for different number of compute nodes.

33

Figure 4.6 Comparing the performance of scatter operation for MPI and cloudMPI

Figure 4.7 compares the performance of the naïve implementation of cloudMPI broadcast

(i.e., one sender broadcast the message to every other node in the communicator) with its

hypecube-based counterpart.

Figure 4.7 Performance of broadcast naïve operation and its hypercube-based coun-

terpart

Finally, as shown in Fig. 4.8, we compare the effectiveness of the multi-thread imple-

mentation of the naïve scatter — where the sender routine uses the multi-thread facility of the

34

Azure platform for its compute nodes — with the simple serial implementation. In the multi-

thread version, root process uses multiple threads to send messages to the queues of other pro-

cesses, simultaneously. As seen in Fig. 4.8, the multi-thread implementation outperforms the se-

rial code by a factor of 1.3 for the message size of 1,048,576 bytes and as the size of the message

grows, the disparity between the performances of these two implementations becomes more ap-

parent.

Figure 4.8 Performance of scatter multi-threaded implementation

35

5 PERFORMANCE OF APPLICATIONS ON THE CLOUD

We analyze the performance implications of cloudMPI for parallel and distributed appli-

cations traditionally implemented using MPI. Specifically, we are trying to understand 1) how

applications with different communication-to-computation ratios perform using cloudMPI com-

pared to MPI and 2) the steps required to map a traditional MPI implementation to the cloudMPI

implementation. To reach our goal, we run our test applications with two different setups: 1) us-

ing cloudMPI framework on the Azure worker roles, 2) using traditional MPI on the bare-bone

Azure Linux virtual machines configured as a conventional cluster. In both cloud platforms,

compute‎nodes‎are‎set‎to‎be‎Azure‎“small”‎virtual‎machines,‎with‎1.75GB‎of‎memory.‎

For our evaluations, we select two MPI applications with different communication and

computation requirements, namely, 1) the N-Body particle simulation [22] and‎2)‎Cannon’s‎mul-

tiplication algorithm [23, 24].

5.1 N-Body Particle Simulation

The N-Body problem determines the motion of particles over time based on the effect of

the forces from other particles. This problem has applications in astrophysics, molecular dynam-

ics, etc. The simulation of this problem is computationally expensive for large N-body systems,

which can be sped up by distributing the computationally intensive tasks to multiple compute

nodes.

For this experiment, we have used the sample code presented in Ref. [25]. The algorithm

used in this experiment implements the following steps to calculate the particle position and ve-

locity at each time step: 1) update positions using velocities, 2) calculate forces, and 3) update

velocities. Table 5.1 shows the MPI code in C and its equivalent cloudMPI code. As shown in

this figure, the cloudMPI API is very similar to the C bindings of the conventional MPI. Porting

36

the MPI application to cloudMPI is basically a matter of converting C/C++ code to C# and find-

ing the equivalent syntax for some keywords (such as reading from standard input and writing to

standard output) in the Windows Azure environment. We also convert MPI calls to the equiva-

lent calls in cloudMPI. This can be easily achieved using an equivalence table for the func-

tion/method calls of MPI and cloudMPI.

Table 5.1 Comparison of N-Body MPI code with cloudMPI

Set up environment
MPI:
int n_proc, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &n_proc);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

cloudMPI:
int n_proc, rank;

cMPI.Init(connectionString);

cMPI.Comm_size(cMPI.COMM_WORLD, out n_proc);

cMPI.Comm_rank(cMPI.COMM_WORLD, out rank);

Set up the data partitioning across processors
MPI:
int particle_per_proc = (n + n_proc - 1) / n_proc;

int *partition_offsets = (int*) malloc((n_proc+1) * sizeof(int));

for(int i = 0; i < n_proc+1; i++)

 partition_offsets[i] = min(i * particle_per_proc, n);

int *partition_sizes = (int*) malloc(n_proc * sizeof(int));

for(int i = 0; i < n_proc; i++)

 partition_sizes[i] = partition_offsets[i+1] - partition_offsets[i];

cloudMPI:
int particle_per_proc = (n + n_proc - 1) / n_proc;

int[] partition_offsets = new int[(n_proc + 1)];

for (int i = 0; i < n_proc + 1; i++)

 partition_offsets[i] = Math.Min(i * particle_per_proc, n);

int[] partition_sizes = new int[n_proc];

for (int i = 0; i < n_proc; i++)

 partition_sizes[i] = partition_offsets[i + 1] - partition_offsets[i];

37

Allocate storage for local partition
MPI:
int nlocal = partition_sizes[rank];

particle_t *local = (particle_t*) malloc(nlocal * sizeof(particle_t));

cloudMPI:
int nlocal = partition_sizes[rank];

Particle[] local = new Particle[n];

Initialize and distribute the particles
MPI:
set_size(n);

if(rank == 0)

 init_particles(n, particles);

MPI_Scatterv(particles, partition_sizes, partition_offsets, PARTICLE, local,

nlocal, PARTICLE, 0, MPI_COMM_WORLD);

MPI_Allgatherv(local, nlocal, PARTICLE, particles, partition_sizes, parti-

tion_offsets, PARTICLE, MPI_COMM_WORLD);

cloudMPI:
set_size(n);

if (rank == 0)

 init_particles(n, particles);

cMPI.scatterv(particles, 0, partition_sizes, partition_offsets, ref local, 0,

nlocal, 0, cMPI.COMM_WORLD);

cMPI.AllGatherv(local, 0, nlocal, ref particles, 0, partition_sizes, parti-

tion_offsets, cMPI.COMM_WORLD);

38

Simulate a number of time steps
MPI:
for(int step = 0; step < NSTEPS; step++)

{

 // compute all forces

 for(int i = 0; i < nlocal; i++)

 {

 local[i].ax = local[i].ay = 0;

 for (int j = 0; j < n; j++)

 apply_force(local[i], particles[j]);

 }

 // move particles

 for(int i = 0; i < nlocal; i++)

 move(local[i]);

 // collect all global data locally (not good idea to do)

 MPI_Allgatherv(local, nlocal, PARTICLE, particles, partition_sizes, par-

tition_offsets, PARTICLE, MPI_COMM_WORLD);

 // save current step if necessary

 if(fsave && (step%SAVEFREQ) == 0)

 save(fsave, n, particles);

}

cloudMPI:
for (int step = 0; step < Constants.NSTEPS; step++)

{

 // compute all forces

 for (int i = 0; i < nlocal; i++)

 {

 local[i].ax = local[i].ay = 0;

 for (int j = 0; j < n; j++)

 apply_force(local[i], particles[j]);

 }

 // move particles

 for (int i = 0; i < nlocal; i++)

 move(local[i]);

 // collect all global data locally (not good idea to do)

 cMPI.AllGatherv(local,0, nlocal, ref particles,0, partition_sizes, parti-

tion_offsets, cMPI.COMM_WORLD);

 // save current step if necessary

 if ((step % SAVEFREQ) == 0)

 save(sw, n, particles);

}

39

The simulation results for both platforms (i.e., MPI and cloudMPI) with different number

of particles and different number of nodes are shown in Figs. 5.1 and 5.2. In this application, the

cloudMPI implementation uses the Service Bus queue and the Service Bus topic for small mes-

sages and falls back to the blob storage for large messages (> 256kB). It should be noted that for

the node size of 1, we use a serial implementation of the problem for the both MPI and cloudMPI

cases and no message-passing mechanism is used. Therefore, comparison of the performance of

our code for the single-node case provides a measure of the performance of the hardware used in

each node. It can be seen from Figs. 5.1 and 5.2 that the Windows Azure small node (used in the

cloudMPI implementation) outperforms the Linux virtual machine small node provided by the

Azure platform. This observation is in agreement with previous reports [26]. Therefore, in our

comparisons for the multi-node cases, we should be aware of this performance disparity between

the two types of the nodes (i.e., Windows worker roles and Linux VMs) and draw our conclu-

sions regarding the performance of the MPI and cloudMPI with this disparity in mind.

Figure 5.1 Performance of N-Body simulation for 20,000 and 30,000 particles

40

Figure 5.2 Performance of N-Body simulation for 40,000 and 50,000 particles

The algorithm for the N-Body simulation computes all the interactions of N particles on p

compute nodes in a load-balanced fashion (i.e., each node performs the computations for N/p

particles). Each compute node performs O(N
2
/p) force evaluations in each time step, whereas the

communication scales linearly with N [O(N)] for each compute node. As shown in Fig. 5.1,

cloudMPI outperforms MPI for small number of nodes (e.g., < 4 nodes) as the computation time

overtakes the communication time. Figure 5.3 shows the performance of the two implementa-

tions with respect to the number of particles for a fixed number of nodes. As seen in this figure,

as the computation to communication ratio increases for sufficiently large N, the cloudMPI im-

plementation outperforms the traditional MPI.

41

Figure 5.3 Performance of N-Body simulation on 8 nodes

5.2 Cannon’s Multiplication Algorithm

Cannon’s algorithm distributes square submatrices of size n/p of original two n×n matri-

ces A and B among the p compute nodes. These submatrices are aligned to compute nodes in a

way that the corresponding square submatrices (from matrices A and B) at each compute node

can be multiplied together locally. The compute nodes are organized in a mesh arrangement, and

in each iteration, each compute node shifts its current submatrix of A to its left neighbor compute

node and its current submatix of B to the upper neighbor compute node. This shifting operation

is performed circularly for the leftmost and the topmost nodes in the mesh. Following this step,

each node multiplies the new submatrices and adds it to a result matrix. Therefore, each compute

node spends O(n
3
/p) time on the computation step (i.e., multiplication of local submatrices) and

O(n
2
/) on the communication step (i.e., shifting the submatrices to the neighbor nodes).

We run the cloudMPI implementation of the algorithm for clusters of up to 16 worker role nodes.

Figure 5.4 shows the cloudMPI performance on different mesh sizes for a 4800×4800 matrix.

42

Figure 5.4 cloudMPI performance for a 4800×4800 matrix

Figure 5.5 compares the performance of algorithm for cloudMPI and MPI for different

matrix sizes on a cluster with 9 nodes (Azure worker roles for the cloudMPI and Linux VMs for

the MPI). In this experiment, cloudMPI implementation uses the Service Bus queue for its com-

munication step. As expected, higher computation to communication ratios results in better per-

formance for the cloudMPI implementation.

As we discussed earlier, the Windows environment of Azure platform outperforms its

Linux VMs. Taking this fact into consideration, two conclusions can be made based on the re-

sults‎of‎our‎experiments.‎First,‎we‎conclude‎that‎the‎applications’‎communication‎intensity‎is‎

correlated with the performance gap between the cloudMPI and MPI and the MPI implementa-

tion outperforms the cloudMPI implementation as the communication intensity of the algorithm

increases. Second, we conclude that for the applications with higher computation intensity

cloudMPI implementation performance is comparable to and in certain cases better than the per-

formance of the MPI implementation. Therefore, despite lower bandwidth of the cloud environ-

ment, cloudMPI can be used to implement CPU intensive applications and provide the scalabil-

ity, maintenance, and cost advantage of the cloud platform for the users of this platform.

43

Figure 5.5 Performance of Cannon’s algorithm for cloudMPI and MPI

44

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

To introduce a framework for implementing new MPI-style applications, as well as to

port MPI-based legacy applications to the Azure cloud platform was the main focus of this the-

sis. In this work, we conducted a comprehensive evaluation of the performance of communica-

tions on Window Azure. We implemented different MPI point-to-point and collective operations

using Windows Azure storage and messaging components and assessed the feasibility of replac-

ing traditional MPI with similar interface tailored for cloud usage for running tightly coupled

MPI programs. We tested the cloudMPI using available microbenchmarks for MPI to evaluate

the performance of each MPI routine separately and also using two different applications to see

the effect of the cloud low bandwidth on the overall computation. Experimental results indicate

that the cloudMPI performance is comparable to the traditional MPI as computation overhead

exceeds the communication overhead. Therefore, cloudMPI can provide an acceptable perfor-

mance for applications with high computation to communication ratio. Users can benefit from

the advantages of the cloud environment's low cost, scalability, ease of management and job

submission, capability of interactive job execution, and instant reconfiguration

which are effective‎factors‎for‎HPC‎users’‎choice‎of‎platforms.

6.2 Future Work

One of the major challenges for migrating HPC applications to the cloud environment is

fault tolerance. Some common reasons for failure in the Windows Azure cloud environment are

application failure (e.g., poor exception handling in the code), routine maintenance activities, and

hardware failure. HPC applications are more prone to failure due to two reasons: 1) As HPC ap-

plications usually require a large number of processors and virtual instances and relatively con-

45

siderable communication links, the probability of failure increases for such applications; 2) Vir-

tual machines, which are used for arranging HPC clusters on the cloud, are more likely to crash

as a result of resource sharing and contention. For some failures, local data written to the local

virtual machine disks are lost, which consequently causes the application to fail. Therefore, han-

dling transient compute nodes failures is essential for building reliable cloud-native HPC appli-

cations.

We also believe that implementing a translator to automatically convert an MPI applica-

tion to cloudMPI will significantly reduce the overhead of manually porting the legacy MPI code

to cloudMPI and could be a valuable research project as a future work.

Providing terminal environment for convenient managing (i.e., initial setup, rescaling, monitor-

ing, etc.) and deploying cloudMPI applications is also another area of focus.

46

REFERENCES

1. MPI Documents. 21 September 2012; Available from: http://www.mpi-

forum.org/docs/docs.html.

2. He, Q., S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. Case study for running HPC

applications in public clouds. in Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing. 2010. ACM.

3. Wilder, B., Cloud Architecture Patterns: Using Microsoft Azure. 2012: O'Reilly Media,

Inc.

4. Mizonov, V. and S. Manheim. Windows Azure Queues and Windows Azure Service Bus

Queues - Compared and Contrasted. January 21, 2014.

5. Evangelinos, C. and C. Hill, Cloud computing for parallel scientific hpc applications:

Feasibility of running coupled atmosphere-ocean climate models on amazon’s ec2. ratio,

2008. 2(2.40): p. 2.34.

6. Jackson, K.R., L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.J.

Wasserman, and N.J. Wright. Performance analysis of high performance computing

applications on the amazon web services cloud. in Cloud Computing Technology and

Science (CloudCom), 2010 IEEE Second International Conference on. 2010. IEEE.

7. Zhai, Y., M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud versus in-house cluster: evaluating

Amazon cluster compute instances for running MPI applications. in State of the Practice

Reports. 2011. ACM.

8. Ekanayake, J. and G. Fox, High performance parallel computing with clouds and cloud

technologies, in Cloud Computing. 2010, Springer. p. 20-38.

9. Expósito, R.R., G.L. Taboada, S. Ramos, J. Touriño, and R. Doallo, Performance

analysis of HPC applications in the cloud. Future Generation Computer Systems, 2013.

29(1): p. 218-229.

10. Lu, W., J. Jackson, and R. Barga. AzureBlast: a case study of developing science

applications on the cloud. in Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing. 2010. ACM.

11. Gunarathne, T., T.L. Wu, J.Y. Choi, S.H. Bae, and J. Qiu, Cloud computing paradigms

for pleasingly parallel biomedical applications. Concurrency and Computation: Practice

and Experience, 2011. 23(17): p. 2338-2354.

12. Agarwal, D. and S. Adviser-Prasad, Scientific high performance computing (hpc)

applications on the azure cloud platform. 2013.

13. Barga, R.S., J. Ekanayake, and W. Lu. Project Daytona: data analytics as a cloud

service. in Data Engineering (ICDE), 2012 IEEE 28th International Conference on.

2012. IEEE.

14. Gunarathne, T., B. Zhang, T.-L. Wu, and J. Qiu, Scalable parallel computing on clouds

using Twister4Azure iterative MapReduce. Future Generation Computer Systems, 2013.

29(4): p. 1035-1048.

15. Redekopp, M., Y. Simmhan, and V.K. Prasanna. Optimizations and Analysis of BSP

Graph Processing Models on Public Clouds. in Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on. 2013. IEEE.

16. Malewicz, G., M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, and G.

Czajkowski. Pregel: a system for large-scale graph processing. in Proceedings of the

2010 ACM SIGMOD International Conference on Management of data. 2010. ACM.

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html

47

17. Agarwal, D., S. Karamati, S. Puri, and S. Prasad. Towards an MPI-like framework for the

Azure cloud platform. in 14th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid). 2014. IEEE.

18. MPI Point-to-Point. Available from: https://www.cac.cornell.edu/VW/MPIP2P/.

19. Buntinas, D., G. Mercier, and W. Gropp. Design and evaluation of Nemesis, a scalable,

low-latency, message-passing communication subsystem. in Cluster Computing and the

Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on. 2006. IEEE.

20. Huss-Lederman, S., B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir, and J. Squyres,

Mpi-2: Extensions to the message-passing interface. University of Tennessee, available

online at http://www. mpiforum. org/docs/docs. html, 1997.

21. Liu, J., B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D.K. Panda, and P.

Wyckoff, Microbenchmark performance comparison of high-speed cluster interconnects.

Micro, IEEE, 2004. 24(1): p. 42-51.

22. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with

the message-passing interface. Vol. 1. 1999: MIT press.

23. Cannon, L.E., A CELLULAR COMPUTER TO IMPLEMENT THE KALMAN FILTER

ALGORITHM. 1969, DTIC Document.

24. Grama, A., Introduction to parallel computing. 2003: Pearson Education.

25. Parallelize Particle Simulation. Available from:

http://www.cs.berkeley.edu/~bvs/cs267_hw2/.

26. Ristov, S. and M. Gusev. Performance vs cost for windows and linux platforms in

Windows Azure cloud. in Cloud Networking (CloudNet), 2013 IEEE 2nd International

Conference on. 2013. IEEE.

http://www.cac.cornell.edu/VW/MPIP2P/
http://www/
http://www.cs.berkeley.edu/~bvs/cs267_hw2/

	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 8-12-2014

	Towards an MPI-like Framework for Azure Cloud Platform
	Sara Karamati
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Introduction to Windows Azure
	1.3 The Components of Windows Azure
	1.4 Challenges of Cloud HPC
	1.5 HPC Frameworks on Azure
	1.6 Organization of the Thesis
	1.7 Related Publication

	2 CONSIDERATIONS FOR PORTING THE MPI STANDARD TO CLOUD
	2.1 Design of MPI Primitives
	2.1.1 Point-to-Point Communications
	2.1.2 One-sided Communications
	2.1.3 Collective Communications

	2.2 Interface and Hardware Configuration
	2.3 Software Configuration

	3 IMPLEMENTATION
	3.1 Implementing MPI Point-to-Point Operations on Azure Cloud Platform
	3.2 Implementing MPI Collective Operations on Azure Cloud Platform

	4 COMMUNICATION BENCHMARKS AND EVALUATION
	4.1 Test Environment
	4.2 Latency
	4.3 Performance of Collective Algorithms
	4.3.1 Barrier Performance
	4.3.2 Broadcast and Scatter Performance

	5 PERFORMANCE OF APPLICATIONS ON THE CLOUD
	5.1 N-Body Particle Simulation
	5.2 Cannon’s Multiplication Algorithm

	6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future Work

	REFERENCES

