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ABSTRACT 

Message passing interface (MPI) has been widely used for implementing parallel and distributed 

applications. The emergence of cloud computing offers a scalable, fault-tolerant, on-demand al-

ternative to traditional on-premise clusters. In this thesis, we investigate the possibility of adopt-

ing the cloud platform as an alternative to conventional MPI-based solutions. We show that  

cloud platform can exhibit competitive performance and benefit the users of this platform with 

its fault-tolerant architecture and on-demand access for a robust solution. Extensive research is 

done to identify the difficulties of designing and implementing an MPI-like framework for Azure 

cloud platform. We present the details of the key components required for implementing such a 

framework along with our experimental results for benchmarking multiple basic operations of 

MPI standard implemented in the cloud and its practical application in solving well-known large-

scale algorithmic problems. 
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1 INTRODUCTION 

1.1 Motivation 

For several decades, computer industry enjoyed increasing number of transistors on a 

chip with a proportional increase in the clock frequency with no drastic limitations on the electri-

cal and thermal power. Last decade marked a shift in computing industry and the clock frequen-

cy could no longer increase because of increasing temperature of the CPUs and limitations in the 

cooling systems. The clock frequency barrier along with the advent of mobile computing ushered 

us in the era of multi-core low-power architectures aided by accelerator units like general-

purpose GPUs and specialized hardware —including hardware-accelerated codecs, digital signal 

processors, etc. In this period, software developers should actively optimize their applications by 

taking advantage of the special capabilities of the underlying hardware (e.g., cache-aware algo-

rithms, SIMD operations, off-loading work to GPU, etc.) in order to improve speed and energy 

efficiency of their applications. Furthermore, with the increasing bandwidth and reliability of the 

Internet, scaling software systems as massive distributed services has become more and more 

ubiquitous. These massive systems (networked servers and data-centers distributed all over of 

the world also known as the cloud) work hand-in-hand with the consumer devices in order to de-

liver quality services. Quality of these services relies on the software that utilizes the capabilities 

of the cloud and consumer hardware efficiently. 

While the advent of cloud computing has provided researchers with a computing platform 

with unprecedented scale, its adoption for high-performance computing has been limited by the 

difficulty in employing cloud-based resources. Although the Infrastructure as a Service (IaaS) 

facilities commonly provided by commercial cloud computing companies promise portability of 

applications by installing customized software to mimic the capabilities of a virtualized compute 
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cluster node, IaaS cannot demonstrate essential requirements for high-performance computing 

such as low-latency networks and fault-tolerant computing.  

The steep learning curve involved in understanding the very peculiar and non-uniform ar-

chitectures and runtime environments of various cloud platforms discourage HPC community to 

adopt it as an alternative platform. In order for a large-scale penetration of cloud computing plat-

forms into the HPC community, cloud vendors will have to offer easier approaches to utilize 

these platforms for scientific research.  

One of the popular programming environments followed by the HPC community is the 

message passing interface (MPI) [1]. Various implementations of MPI standard are available in 

the market proving the effectiveness of MPI standard for parallel and distributed application de-

velopment. While MPI has been a popular choice for traditional parallel and distributed plat-

forms, its current implementations are not pragmatic for cloud computing platforms [2]. Creating 

an MPI-like framework for cloud platforms thus is a non-trivial problem. Cloud platforms most 

often come with their own set of APIs and hence porting legacy parallel and distributed applica-

tions require a great deal of engineering. 

In order to help these applications run on cloud platforms with as little effort as it would 

be to run on any other platform, it is essential to bring the same frameworks that these applica-

tions use to cloud platforms. Unlike traditional parallel and distributed platforms, cloud plat-

forms have better fault tolerance and recovery due to their relatively stable operation. The tradi-

tional frameworks could exploit this feature to simplify their fail-proofing mechanisms. Other 

key strengths of the cloud can be exploited for coarse-grained, long-running applications includ-

ing variable pricing, on-demand allocation/deallocation and scalability to tradeoff budget vs. per-

formance, budget vs. time constraints, etc. It is not a question of efficient implementation of ex-
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isting standards on a new platform, but rather, it requires careful adaptation in tune with the sig-

nificantly different computing infrastructure.  

1.2 Introduction to Windows Azure 

Windows Azure is a Microsoft web service that provides flexible cloud platform for 

building, deploying, and managing applications. It allows users to reliably host and scale out 

their applications, store and manage data in many different ways, and provides messaging capa-

bilities for distributed applications development.  

Unlike traditional clusters, cloud platform can easily scale by increasing/decreasing the 

capacity of individual nodes through hardware upgrading/downgrading (i.e., changing memory 

capacity or the number of CPU cores, etc.) or by adding/releasing nodes (also known as horizon-

tal scaling) [3]. In order to benefit from vertically scaling the cloud application, in addition to 

reasonable hardware, sufficiently capable software is also required that can take advantage of the 

available hardware.  

Horizontal scaling pattern can minimize cost by releasing some of the allocated re-

sources, when they exceed the demands of application and increase the resources as throughput 

falls below default expectations. Efficient utilization of the cloud resources is important since 

cloud platform follows pay-as-use model. Scaling activities can be automated programmatically 

by monitoring specific performance metrics such as memory usage, CPU utilization, and average 

queue length, and so on. For applications with variable or unknown workload, the cloud elastic 

feature can be used to adjust the resources according to the demand and consequently leading to 

cost savings by releasing unused resources.  

In the following section, we discuss key components of Windows Azure that are used in 

this thesis. 
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1.3 The Components of Windows Azure 

 Virtual Machines (VMs): Windows Azure virtual machines are configurable and main-

tainable servers in the cloud. These scalable computing resources can be set up with 

software and services on Windows Server or Linux-based operating systems. Because of 

the control on the configuration and recycling existing virtual machine images, Azure vir-

tual machines are suitable options for migrating legacy codes and applications to the 

cloud. 

 Cloud Service: Azure cloud service is designed for developing multi-tier applications on 

a platform consisting of one or more compute roles. Convenience of deploying multiple 

roles makes this service a good option for applications requiring distributed processing 

and flexible scaling. Azure cloud service supports two kinds of roles namely web role 

and worker role. Unlike worker role, web role runs IIS so they can be used for front-end 

web applications. At the cost of limited control in comparison to virtual machines, Azure 

cloud service assures maintaining infrastructure, patching operating system, and restoring 

from hardware and service failures.  

 Cloud Storage: Azure storage service is classified into three categories based on the 

characteristics of the stored data. Blob storage is ideal for storing large amount of un-

structured data. It can contain hundreds of gigabytes of data. Table storage stores struc-

tured non-relational data. A single table can hold a collection of entities with different set 

of properties. Queue storage is the perfect means to pass messages between Azure roles. 

It can contain an unlimited number of messages each with maximum size of 64KB.  

 Service Bus: Azure Service Bus provides three different communication mechanisms for 

messaging: queues, topics, and relays. Service Bus queue and topic are one-way durable 
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and asynchronous messaging components that store messages until they are consumed by 

the receiver. The main difference between queue and topic is in the number of receivers 

of a message. While a message in a queue can be received by only one possible subscrib-

er, a topic allows the message to be received by multiple subscribers that satisfy specific 

criteria. Service Bus relay service provides direct communication between sender and re-

ceiver over a TCP channel. Unlike queue and topic, relay service supports bi-directional 

messaging. 

Table 1.1 compares the features of the Windows storage queue and Service Bus queue. 

The data in this table are collected from the advertised information about these services by Mi-

crosoft [4]. 

Table  1.1 Comparison of Windows Azure queues and Service Bus queues 
Comparison Criteria Windows Azure Queues Service Bus Queues 

Ordering guaran-

tee 

No Yes - First-In-First-Out (FIFO) 

Receive behavior Non-blocking Blocking with/without timeout 

(offers‎long‎polling,‎or‎the‎“Comet‎

technique”) 

Non-blocking 

(through the use of .NET managed 

API only) 

Maximum mes-

sage size 

64 KB 256 KB 

Maximum queue 

size 

100 TB 1, 2, 3, 4 or 5 GB 

Maximum mes-

sage TTL 

7 days Unlimited 

Maximum number 

of queues 

Unlimited 10,000 

Maximum 

throughput 

Up to 2,000 messages per sec-

ond 

Up to 2,000 messages per second 

Average latency 10 ms 

(with TCP Nagle disabled) 

100 ms 

Queue transaction 

cost 

$0.01 

(per 10,000 transactions) 

 

$0.01 

(per 10,000 transactions) 

 

Billable operations All Send/Receive Only 
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(no charge for other operations) 

Idle transactions Billable 

(querying an empty queue is 

counted as a billable transac-

tion) 

 

Billable 

(a receive against an empty queue is 

considered a billable message) 

 

Storage cost $0.14 

(per GB/month) 

 

$0.00 

Outbound data 

transfer costs 

$0.12 - $0.19 

(depending on geography) 

 

$0.12 - $0.19 

(depending on geography) 

 

1.4 Challenges of Cloud HPC 

Several researchers have studied the practicality of running tightly coupled and MPI-style 

applications in the cloud environment. These studies evaluate the performance of MPI applica-

tions on different cloud platforms including Amazon EC2 [2, 5-9] and Microsoft Windows Az-

ure [10, 11]. Most studies use classical MPI benchmarks such as NAS, NPB, HPL, and CSFV to 

compare the performance of MPI on public cloud platforms. Others evaluate the feasibility of 

running large-scale applications on the cloud such as low-order coupled atmosphere-ocean simu-

lation [5] and biomedical applications [11], matrix multiplication, K-means Clustering [8] . All 

studies confirm there is a strong correlation between the application communication time and 

application overall performance on the cloud platform. These studies show that the lack of high-

bandwidth, low-latency interconnects as well as virtualization overhead has large effect on the 

performance of HPC applications on the cloud. Jackson et al. [6] report a significant variability 

in performance on Amazon cloud platform due to virtualization in the cloud environment and 

consequent resource sharing and contention. 

This project is an ongoing work in our research group. cloudMPI first introduced in dis-

sertation‎titled‎“Scientific‎High‎Performance‎computing‎(HPC)‎Applications‎on‎the‎Azure‎Cloud‎

Platform”‎by‎Dinesh‎Agarwal‎[12].  In this dissertation, the initial implementation of cloudMPI 
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is considered.  The previous version only considered the point to point routines for cloudMPI 

using Azure queue storage. The interface of cloudMPI was different from conventional MPI and 

it involved some effort to convert legacy MPI applications to cloudMPI.  

1.5 HPC Frameworks on Azure 

MapReduce is a widely used programming model that provides good performance in the 

cloud platform. Several studies have evaluated the performance of MapReduce in the cloud plat-

form. Microsoft Daytona [13] is an iterative MapReduce runtime optimized for data analytics 

and machine learning built on Microsoft Windows Azure.  In Daytona architecture a single mas-

ter instance is used to perform the scheduling of applications and tasks and handling of failures. 

The master assigns each map and reduce task to a slave instance. The instances communicate 

directly through a TCP connection. Twister4Azure [14] is another iterative MapReduce runtime 

for Windows Azure cloud. This runtime environment uses Azure queues for map and reduce 

tasks scheduling, Azure tables for metadata and monitoring data storage, Azure blob storage for 

data storage and the Window Azure compute worker roles to perform the computations. A multi-

level data caching mechanism is also used in the Twister4Azure runtime to mitigate the latency 

issues inherent in the cloud services.  

Pregel.NET [15] is a bulk synchronous parallel (BSP) framework for graph processing 

customized for the Microsoft Windows Azure cloud. Pregel.NET uses the Pregel architecture 

design [16] for BSP graph processing. In this model, each worker role holds the distributed graph 

partitions and performs vertex-centric tasks on their own partition of the graph. The storage 

queues are used for message transmission between vertices on different compute nodes as well as 

synchronization between instances. 
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AzureBlast [10] is a parallel implementation of BLAST library on Windows Azure. Blast 

is a sequence comparison tool widely used in bioinformatics applications. To run Blast on multi-

ple instances, the query-segmentation data-parallel pattern is adopted. Given an input file, which 

contains a number of query sequences, AzureBlast distributes partitioned input sequences be-

tween Azure compute instances to be executed. Once all workers process their assigned partition, 

the results are merged and become available on the blob storage.  

1.6 Organization of the Thesis 

In this thesis, we discuss the key components of implementing a message passing frame-

work on Azure cloud platform and provide design guidelines derived from our experiments. The 

goal of this thesis is to theoretically and experimentally investigate the cloud environment for 

high-performance computing and to identify the strengths of the Azure cloud platform to effi-

ciently map MPI to this platform. The rest of this thesis is organized as follows: 

The design of an MPI-like framework for application development on Azure cloud plat-

form is presented in Chapter 2. An efficient implementation of a proof-of-concept MPI-like 

framework, cloudMPI, on the Windows Azure cloud platform is provided in Chapter 3. This 

chapter details the implementation of MPI-like communicators and primary communication 

primitives for selective point-to-point and collective operations. Detail of experimental results, 

their evaluation, and the environment setup are discussed in Chapter 4. A study of the practicali-

ty and efficiency of the cloudMPI framework by porting widely-used applications to this plat-

form is presented, as well as benchmarking results that assess the current communication effi-

ciency and overhead for short and long messages for Azure API and cloudMPI framework. The 

conclusion is presented in Chapter 5 where the future direction for this research is also discussed. 
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1.7 Related Publication 

Part of this work was presented in the 14th IEEE/ACM International Symposium on 

Cluster, Cloud, and Grid Computing and accepted for publication in the conference proceedings 

[17]. 
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2 CONSIDERATIONS FOR PORTING THE MPI STANDARD TO CLOUD 

In this section, we discuss the requirements of the components of an MPI-like framework 

and the challenges that make it an interesting research problem. The framework design is ex-

pected to behave as close to traditional MPI framework as possible, yet it can benefit from the 

scale and dynamicity of cloud computing as well as its fault tolerance. 

2.1 Design of MPI Primitives 

The point-to-point communication is the most commonly used communication pattern in 

MPI. There are two categories for MPI point-to-point communications: 1) blocking and 2) non-

blocking. These categories provide a number of communication modes: synchronous (MPI 

Ssend, MPI Issend), buffered (MPI Bsend, MPI Ibsend), ready (MPI Rsend, MPI Irsend), and 

standard (MPI Send, MPI Isend). Each mode uses different mechanisms to send messages to tar-

get nodes offering trade-offs for synchronization overhead, system overhead, buffer space, and 

reliability. In the following, we focus on different options for communications on Azure cloud 

environment and consider MPI communication modes of transferring data for them [18]. 

2.1.1 Point-to-Point Communications 

 Blocking buffered asynchronous communication using Azure queue storage: In Az-

ure cloud infrastructure, all queue services are accessible from any compute node. This 

capability makes it possible to use the intra-node communication mechanism  to imple-

ment MPI methods for messaging among processes that are either on the same compute 

node or on remote nodes over the cloud. Nemesis communication subsystem [19] for 

MPICH uses shared memory queue for intra-node messaging. This communication sub-

system uses free queues to prevent starvation of senders or receivers and assures efficient 

utilization of shared memory. Since cloud environment does not have the space limitation 
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of shared memory, the free queue used in Nemesis implementation can be removed with-

out performance fall-off. Our design goal here is to use Windows Azure queue storage to 

communicate messages between Azure compute instances. Each compute instance has a 

receive queue that it needs to poll in order to receive messages from other instances. To 

send a message to a compute instance, the message is inserted into the queue of the re-

ceiving instance. The size of the message sent to the queue cannot exceed 64KB. There-

fore, large data are sent to blob and its unique id, which identifies the location of the data 

in the blob, is sent as a message to the receivers queue. The Azure queue storage does not 

guarantee a first-in-first-out (FIFO) ordered delivery. Therefore, a mechanism such as lo-

cal queue is needed to compensate for this deficiency. The receive process would follow 

these steps: 1) Check the local queue for desired message; 2) If message is found, use it 

as needed; otherwise, 3) Poll the Azure queue; 4) If message is found use it as needed; 

otherwise, 5) Put the unexpected message in the local queue and go to step 3.  

Communication over queue offers the advantages of asynchronous and buffered commu-

nication modes. In comparison to synchronous mode, it is safe because it is not dependent 

on the order of send and receive operations. Furthermore, senders and receivers do not 

have to be available at the same time; therefore, if the receiving instance fails, it receives 

messages reliably as soon as it is available. A visibility timeout can be assigned to a mes-

sage from the queue and the message will reappear in the queue if it has not been deleted 

by the end of the timeout period. This feature provides fault tolerance for the application 

by ensuring that no messages will be lost during instance failure. Additionally, queue 

service eliminates synchronization overhead by buffering the message in the queue. The 

flexibility of the communication can be extended using Azure blob storage when the 
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message is larger than the maximum message size that queue service can handle (typical-

ly 64 KB). This effectively eliminates the pitfall of using buffer mode for messages larger 

than available buffer space which in traditional MPI programs will generate an error and 

the program will by default exit. 

Another alternative to the local queue is using table storage. The sender of a message will 

store the message in a table instead of a queue. Messages can be automatically tagged 

with a time-stamp to enforce strict ordering at the time of retrieval. However, table stor-

age does not have the fault tolerance boasted by Azure queue storage service. If a node 

fails after taking a message out of the table storage, there is no automated recovery or re-

appearing of the message in the table storage.  

 Blocking buffered asynchronous or blocking synchronized messaging for short mes-

sages using Service Bus relay: The first design scheme, the message passing via Azure 

storage, is slow for short messages. Therefore, an alternative scheme optimized for short 

messages can be designed. In this communication scheme, the Service Bus relay service 

is used to communicate between two compute instances over the TCP channel. In this 

communication mechanism, each cloud node hosts Windows Communication Foundation 

(WCF) services for communication operations. Whenever an instance decides to send a 

message to another instance, it invokes the send service of the receiver instance and pass-

es the desired message as the argument for the service call. This method has two varia-

tions. The first variation provides buffered and asynchronous communication and the 

second variation supports unbuffered and synchronous communication. In the first varia-

tion, whenever an instance decides to send a message to another instance, it invokes the 

send service of the receiver instance and passes the desired message as the argument for 
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the service call. The send service puts the message inside a local queue in the receiver 

side. As a result, a receiver instance can receive a message by checking its local queue. In 

the second variation, the send service call waits until a receiver instance provides a 

matching receive. In this variation, the send service call (receive routine) first triggers an 

event and then waits for an event from the receiver (send service call).  

 Blocking buffered FIFO communication using Azure Service Bus queue: The third 

design scheme can use Azure Service Bus queue for communication. This design is simi-

lar to one that uses Azure queue except for following finer details. In comparison to Az-

ure storage queue, which only supports messages of type string and binary array, Service 

Bus queue can support messages of any type. Therefore, it obviates the need for an ex-

plicit type conversion. While the Service Bus queue supports the maximum message size 

of 256KB (in comparison to 64KB for Azure storage queue), the maximum queue size is 

only 5GB (which is 100 TB for Azure Storage queue). The disadvantage of this service is 

that its latency is ten times greater than that of Azure storage queue. Since Service Bus 

queue supports first-in-first-out ordered delivery, it alleviates the out-of-order delivery 

for messages sent from the same instance.  

 Non-blocking communication: Asynchronous operations or multiple threads can be 

used to implement non-blocking send and receive calls. In asynchronous send and re-

ceive, which is supported with Service Bus queue, the next statement executes before the 

previous send or receive request is completed. The asynchronous send and receive instan-

tiates a delegate that invokes a method when the operation is completed; so, this callback 

method can inform MPI Wait routine of the finished operation. Another design variation 
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uses multiple threads in order to send and receive messages. In this variation, a new 

thread is launched for every send and receive request. 

2.1.2 One-sided Communications  

The Service Bus relay service can be utilized to implement one-sided communication 

methods. In MPI one-sided communication (introduced in MPI-2 standard [20]), only one of the 

processes initiates the data transmission on sender and receiver processes. Since a Service Bus 

relay communication supports request-reply communication, where sender makes calls to service 

operations and waits for a response from the service without explicit participation of the receiver, 

it can be a suitable candidate for implementing MPI one-sided operations. The sender instance 

calls a service and waits for a response from the service. For MPI GET the service operation re-

sponse is the requested data; for MPI PUT the request is to put the input data in the requested 

location; and for MPI Accumulate the service call combines the service call input with the data 

already present in the receiver part.  

2.1.3 Collective Communications  

MPI collective communication consists of three groups: 

 Barrier synchronization: The goal of this group is to synchronize all the processes with-

in a communicator. All the instances in a communicator put a message inside the barrier 

queue when they reach the synchronization point and then wait for an event. One of the 

instances inside the communicator (master) polls the barrier queue until it receives k mes-

sages, where k is the number of instances in the communicator. After that, the master in-

stance calls a service in all of the other instances in the communicator in order to unlock 

them. 
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Another design option is to use Table storage for synchronization between nodes. Each 

worker role adds an entity with a message containing worker ID to the table storage, and 

then waits for the master node to change its message entity value to the number of pro-

cesses in the communicator. The master node waits until all processes add an entity to the 

table, and then sends a signal to processes by updating their entity values to the number 

of processes in the communicator. 

 Data movement collective operations: Broadcast, gather, and scatter operations are ex-

amples of this type of operations. The operations of this group can be implemented using 

the point-to-point send and receive operations. For example, the broadcast operation can 

be implemented by sending a message to the queues of all other compute instances in the 

communicator. The time of sending to all other instances can be overlapped using asyn-

chronous send operation or multithreading. The other option is to use Service Bus topics 

and subscriptions. Service Bus topics and subscriptions offer a one-to-many communica-

tion pattern. In this method, there is a topic for each communicator. All the compute in-

stances in the communicator are subscribed to the topic. When a compute instance sends 

a message to a topic, the message is available to each subscribed instance. Also, sub-

scribed instances can define a filter for received messages. For example, they can filter 

messages so that they receive only messages from the senders other than themselves (i.e., 

the sender ID differs from that of the subscribed instance). 

 Global computation: The reduction operation is one of the operations of this group. One 

method for reduction operation is to send the data of all compute instances to the receiver 

instance. Then, the receiver instance applies the reduction operation on the received data. 

The receiver instance distinguishes these data from the other data in the queue using a 
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type of messaging called session enabled messaging where all the data related to reduc-

tion operation are given identical session ID. Therefore, the receiver receives messages 

with the same session ID, consecutively. 

2.2 Interface and Hardware Configuration 

The steep learning curve faced by developers who want to write applications for the 

cloud has a lot to do with the interface provided by cloud vendors. We have worked with a num-

ber of cloud vendors and we invariably found the interface to be overwhelming. We firmly be-

lieve that the nomenclature and accessibility must be abstracted out to reduce the complexity and 

to allow developers to seamlessly work with the cloud platforms. A terminal-based interactive 

shell, which provides easy to use bindings, can provide developers with means to administer the 

basic configurations of their project. The terminal shell can connect to developers account on the 

cloud by asking their configuration settings at first launch and from there it can behave like the 

well-known terminal Putty to execute commands on the cloud setup. Windows Azure currently 

allows this but there is no easy way to accomplish this without going through a cumbersome ex-

ercise. 

A lightweight terminal could allow somewhat similar yet minimalistic, familiar, and sim-

ple interface. Based on the account information (credentials), the user could be automatically 

configured for that machine. This terminal should also provide developers with commands to 

install required packages and spin-off the Azure roles (VMs) as necessary. There should also be 

a user friendly way to configure the packages based on the MPI‎application’s‎requirements. De-

velopers only need to port their legacy MPI code and/or develop new cloud-based MPI code. The 

code deployment can therefore be friction-less as all the cloud related configurations are already 

set with necessary libraries and files required for their cloud-based MPI application. Using the 
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terminal, developers can specify the number of running instances and change them on the go and 

deploy their application to the cloud. 

2.3 Software Configuration 

The MPI APIs intended for use on the cloud environment should be similar to traditional 

MPI in order to reduce the cost of porting. However, C# and PHP, which are the default imple-

mentation languages for the Azure platform, along with the configuration of Azure roles brings 

up some implementation challenges. In traditional MPI, pointers to initial address of the 

send/receive buffer are passed to MPI functions. However, C# or PHP do not encourage using 

pointer arithmetic due to type safety and security concerns. This may cause a problem as pointer 

arithmetic is required to reference the first element of the send/receive buffer.  
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3 IMPLEMENTATION 

The cloudMPI framework is based on the object-oriented principles consisting of the fol-

lowing classes: 1) cMPI, 2) cMPIMessage, 3) Datatype, 4) Comm. These classes, collectively, 

implement basic MPI routines.  

The cMPI class is the core of the implementation. This class offers the methods to facili-

tate the communication among MPI nodes. All members of this class are declared static.  

The cMPI Message class packs the data to be transferred in a message as well as the other attrib-

utes of a message that can be used to distinguish messages at the receiver end. A message in-

cludes following fields: data, source, tag, msgId and isSmallMessageField. isSmallMessage field 

is used by the program to determine the location of the data (queue or blob). For large messages 

this field is set to false. msgId stored in this message is used for large messages and contains the 

location of the data in the blob. 

The class Datatype contains the type information of the data elements of the array that is 

to be sent/received in the MPI communication operations. In order to provide seamless operation 

with traditional MPI routines, we use the standard MPI data types, as shown in Fig. 2.1. Current 

implementation supports all primitive types provided by the C# language; however, it can easily 

be extended to support any user defined data type. 

Comm class: If multiple communicators are required, there will be one queue per node 

for each communicator. Default COMM WORLD communicator is defined as a static member in 

the cMPI class. 
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3.1 Implementing MPI Point-to-Point Operations on Azure Cloud Platform 

The basic point-to-point communication operations implemented in cMPI class are send 

and receive methods. These two methods are declared as follows: 

int Send(Object buffer, int offset, int count, Datatype type, int dest, int 

tag, cMPI Comm MPI COMM) 

 

int Recv(ref object buffer , int offset, int count, Datatype type, int 

source, int tag, cMPI Comm MPI COMM) 

 

The arguments of these methods closely correspond to conventional MPI send and re-

ceive routines except for an additional offset parameter. Unlike the traditional MPI which uses 

pointers to specify buffer index, the cloudMPI methods get additional offset argument to indicate 

the data position in the buffer. The buffer wraps the data that is to be sent in a generic object 

type. The buffer is actually an array of any serializable object. However, the type of the data 

wrapped by this object should be consistent with the type argument, which is one of the required 

arguments in Send/Recv methods. 

Figure 3.1 shows an MPI sample code in C and its equivalent code for cloudMPI. As 

shown in this figure, the cloudMPI API is very similar to the C bindings of the conventional 

MPI. cMPI.Init initializes a channel of communication and assigns a list of nodes to this channel. 

One queue, dedicated to this channel, is created per node after the initialization. The need to al-

locate nodes to a channel allows users to broadcast a message to all of the nodes in a communi-

cator. This routine gets Azure storage string as input, which contains the necessary parameters 

required to access developer storage account in the Windows Azure environment. The receive 

buffer should be defined as object data type as shown in Fig. 3.1. cMPI.Finalize is used to re-

lease the resources occupied by the application. 
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Figure  3.1 Comparison of traditional MPI code with cloudMPI 

 

Figure 3.2 shows the send and receive mechanism between sender and receiver instances. 

The send routine packs the data to be transferred as well as the other attributes in a message of 

type cMPI Message. These attributes can be used to distinguish messages at the receiver in-

stance. Then the message is serialized to binary format and converted to byte array (Azure 

queues can store messages of type string or byte array). Finally a CloudQueueMessage is created 

from the byte array and sent to the receiver instance queue. On the other side, the receiver rou-

tine monitors its queue for new message. The new message is deserialized to an object of type 

cMPI Message. Then the receiver instance can retrieve required information from the received 

message.  
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Figure  3.2 Send and receive mechanism in cloudMPI via Azure 

 

3.2  Implementing MPI Collective Operations on Azure Cloud Platform 

Broadcast: In the broadcast operation, a root node sends a message to all other nodes in 

the communicator. cloudMPI supports three implementations of data broadcasting methods: 1) 

using a combination of Azure queue storage and Azure blob storage; 2) using a combination of 

Service Bus topic and Azure blob storage; 3) a hypercube-based broadcasting algorithm using 

Azure storage services (queue and blob).  The first approach uses the point-to-point send and re-

ceive operations to implement the broadcast operation following the scheme shown in Fig. 3.3 

(left). The root node uses the send routine inside a loop to broadcast a message to all other nodes 

in the communicator. Then, other nodes in the communicator get the message using the receive 

routine. In the second approach, a Service bus topic is used to broadcast a message between the 

communicator instances. All instances get subscribed to this topic inside the init routine. When a 

message is sent to a topic by the root instance, it is then made available to each instance in the 
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communicator to be received. As the size of the message passes the maximum message size (i.e. 

64 KB for storage queue and 256KB for Service Bus topic), the blob storage is used in both 

methods to communicate the broadcast data and the queue and topic messages indicate the blob 

ID of the data stored in the blob storage. 

 

 

Figure  3.3 Implementation of  broadcast using storage queue (left) and Service Bus 

topic (right) 

 

The third implementation is a hypercube-based broadcast algorithm that uses the storage 

queue and blob service for data communication. In this communication scheme, the broadcast 

operation is performed in multiple steps. At each step, a number of nodes act as the message 

sender; and their neighbor nodes (in an imaginary hyper-cube arrangement) along a single direc-

tion of the hyper-cube act as the receiver nodes. In the beginning of the broadcast sequence, the 

root node sends the message to one of its neighbors and the chain process of broadcast gets initi-

ated. As a result, in the n
th
 time step, 2

n
 nodes receive the message. In other words, for a commu-

nicator of size d, the broadcast operation is performed in log(d) time steps. 
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Figure  3.4 Broadcast naive implementation versus hypercube-based implementation 

 

Scatter and Gather: In the scatter operation, a root node sends the segments of a mes-

sage of size m to different nodes, and in the gather operation, the root node receives the segments 

of a message of size m from different nodes and stores them based on the order of the sending 

nodes rank. In MPI gather/scatter operations, the length of the message received from or sent to 

other nodes is the same for all nodes. The scatter and gather routines are implemented using the 

point-to-point send and receive operations. To scatter a message between nodes of a communica-

tor, first, root node extracts N segments of the data from the send buffer and sends each segment 

to the receive queue of the corresponding nodes so that node 1 gets the first segment, node 2 gets 

the second segment, etc. Then, other nodes in the communicator will wait for the message from 

the root processor.  To gather a message from other nodes of a communicator, first, each node 

except for the root node sends its data to the root node queue. Then, root node receives the data 

from the queue and stores them in a local buffer based on the rank order. cloudMPI supports two 

versions of the scatter method. The only difference between these two versions is that one uses 

Service Bus queue; and the other, queue storage for communication. Similar to the broadcast 

routine, the blob storage is used for the transmission of large messages.  
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For the scatter routine, we also implemented a multi-threaded version of the scatter operation. In 

this‎implementation,‎threads‎run‎in‎parallel‎to‎send‎the‎messages‎to‎other‎instances’‎queues.‎ 

 

 

Figure  3.5 Multi-threaded scatter operation 

 

Barrier: This operation is used to synchronize operations in MPI nodes. This routine 

blocks nodes until all the nodes within the communicator reach the synchronization point.  We 

use table storage to implement the barrier method in cloudMPI. All the instances in a communi-

cator insert an entity with a property equal to their ID to the barrier table when they reach the 

synchronization point and then wait until the master node updates their property. A master node 

inside the communicator monitors the barrier queue until it receives k entity messages, where k is 

the number of instances in the communicator. After that, the master instance updates the property 

of all the entities to the number of instances in the communicator. Therefore, other processors 

become unlocked after seeing the change in their property value. 
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Figure  3.6 Barrier operation implementation 

 

Reduction (MPI_SUM): The reduction operations collect and reduce the values of the 

send buffer of the different nodes to a single value. For the purpose of this thesis, only 

MPI_SUM operation of the MPI reduction is implemented. This can be easily extended to other 

reduction operations.  The reduction routine is implemented using the point-to-point send and 

receive operations. This operation is similar to the gather routine, and the only difference is that 

the reduction operation computes the reduce operation over elements received from the gather 

routine. 
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4 COMMUNICATION BENCHMARKS AND EVALUATION 

4.1 Test Environment 

In this section, we evaluate the performance of cloudMPI over the Microsoft Azure cloud 

environment. In order to evaluate the communication performance of cloudMPI, we employ the 

traditional messaging benchmarks for MPI [21]. Not only we convert these benchmarks for cloud 

platform using cloudMPI framework, we also create a cluster of virtual machines running a fla-

vor of Linux operating system to run the original MPI benchmarks on barebone machines on the 

cloud. In‎both‎platforms,‎compute‎nodes‎are‎set‎to‎be‎Azure‎“small”‎virtual‎machine‎with‎

1.75GB of memory.  

In order to setup our two-processor MPI virtual machine over the barebone cloud infra-

structure, a series of configuration steps are needed beyond installing Linux. These steps are in-

structive for the Azure environment, and hence briefly described below. Master and slave virtual 

machines have to be created and configured properly. These configurations include installing 

MPI, configuring network for each machine, loading and compiling the program on each node, 

etc. We start with creating a master virtual machine with proper installation of the MPI. In our 

experiments, we use openMPI, which is a popular implementation of the MPI standard. In order 

to provide SSH connectivity with the slaves, a public/private key pair is generated and the SSH 

configuration files are modified accordingly. The next step is to create a slave node. MPI instal-

lation steps should be performed on this machine as well. To provide the ability to connect to this 

machine via SSH from the master node, the SSH server should be installed. The key pair gener-

ated in the master node is used here to setup the SSH connection. In this step, the program can be 

loaded on the master and slave nodes and compiled using the MPI package. 
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To create the desired number of slave nodes, we first save an image of the currently cre-

ated slave node and then create multiple instances of this image using a shell script and the API 

provided by the Azure platform. Since each slave instance that gets created this way has a ran-

dom port number for its SSH connectivity, we use additional shell API commands to query these 

instances to get their SSH port numbers. These port numbers are then added to the master node’s‎

SSH configuration file. Furthermore, the host names supplied in the shell script to create slave 

nodes are also used to create the MPI configuration file on the master node. MPI uses random 

TCP port numbers. Therefore, it is difficult to establish the TCP/IP connection between master 

and slave nodes as this type of communication between virtual machines is not supported by 

simple Azure network. In order to overcome this problem a virtual network needs to be created 

on the Azure platform and all the nodes needs to be added to this network. In order to load new 

code on slave nodes, simple shell scripts can be used to load/compile the code remotely on slave 

nodes.  

4.2 Latency 

A ping-pong latency test is often used to characterize the MPI communication perfor-

mance. The benchmarks measure the network latency between two compute nodes. Node 1 sends 

a message to node 2, waits for node 2 to receive the message, and then receives a return message 

from node 2.  

For the cloudMPI-based implementation, the benchmarks perform the same operations as 

for the network benchmarks, but the messages are not sent point to point. Instead, each message 

is stored in the storage by the sender and the receiver receives the message by reading it from the 

cloud storage. Thus, there is additional latency introduced in the system that could degrade the 

performance.  
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Figure  4.1 Benchmarking MPI performance on Azure cloud environment for small 

messages 

 

Figure 4.1 shows the benchmark results for short messages. The cloudMPI via Service 

Bus relay and traditional MPI displays comparable performance in terms of communication la-

tency. Since these two methods do not have the additional overhead of reading and writing from 

the cloud storage, their performance is superior to the other two methods. To improve the per-

formance for short messages (i.e., message size < 1,460 bytes) useNagleAlgorithm property was 

turned off. 

For communication by large messages, Service Bus relay cannot be used; therefore, as 

shown in Fig. 4.2, for large messages, we are comparing the benchmark results for the Azure 

cloud platform for two communication methods, namely MPI and cloudMPI. It is clear that tradi-

tional MPI benchmarks on the cluster of virtual machines outperform other implementations. In-

terestingly, while MPI performs up to 50× better than cloudMPI via storage for short messages, 

the difference keeps reducing as the message size increases, finally reducing to a difference of 

less than 3.5×. Comparing the results for short and large messages suggests that for a wide range 
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of message sizes cloudMPI can be reasonably competitive with traditional MPI while providing 

the convenience, reliability, and massive scalability of the cloud platform. 

 

 

Figure  4.2 Benchmarking MPI performance on Azure cloud environment for large 

messages 

 

4.3 Performance of Collective Algorithms 

We executed the performance tests using our benchmark code on the implementation of 

barrier, broadcast, and scatter collective operations using cloudMPI and MPI on the cloud clus-

ters. We then analyzed the performance results and the optimal implementation of various collec-

tive operations. 

 

4.3.1 Barrier Performance 

The benchmark measures the average time to complete a barrier routine repeated for 

100,000 times. We run this benchmark on a cluster with 16 single-core nodes (i.e., Azure small 

nodes). As shown in Fig. 4.3, the benchmark results demonstrate significant performance gap on 

the average latency between cloudMPI and MPI, especially when the number of compute nodes 
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increases. The average latency of barrier operation for MPI is almost 49 times as fast as the 

cloudMPI for a cluster with 16 nodes. When the number of compute nodes is small, the perfor-

mance gap is smaller but still significant.  

 

 

Figure  4.3 . Benchmarking performance of barrier operation on Azure cloud envi-

ronment 

 

4.3.2 Broadcast and Scatter Performance 

Broadcast and scatter benchmarks measure the completion time of the routine averaged 

over all the compute nodes in the communicator (including both the sender and receivers). We 

compare the performance of the cloudMPI with that of the traditional MPI. For both scatter and 

broadcast operations, the result of benchmarks indicates that the traditional MPI outperforms 

cloudMPI implementations for messages with small size. As the message size increases, the per-

formance gap between cloudMPI and MPI significantly shrinks. Experimental results for cloud-

MPI scatter operation indicate the implementation based on queue storage is faster than the im-

plementation based on Service Bus queue. For broadcast operation with node sizes of 2 and 4, 

using queue storage yields faster runtime than using Service Bus topic. As shown in Fig. 4.4,  
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broadcast operation on 8 nodes — with‎large‎enough‎messages‎(i.e.,‎message‎size‎≥‎524,288 

bytes) — performs faster for the implementation based on Service Bus topic compared to the one 

using queue storage. 

 

 

Figure  4.4 Benchmarking performance of broadcast operation on Azure cloud envi-

ronment 
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Figure  4.5 Benchmarking performance of scatter operation on Azure cloud envi-

ronment 

 

 

Figure 4.6 shows the results of our benchmark test for the scatter operation and compares 

the performance of MPI and cloudMPI for different number of compute nodes. 



33 

 

 

Figure  4.6 Comparing the performance of scatter operation for MPI and cloudMPI 

 

Figure 4.7 compares the performance of the naïve implementation of cloudMPI broadcast 

(i.e., one sender broadcast the message to every other node in the communicator) with its 

hypecube-based counterpart.

 

Figure  4.7 Performance of broadcast naïve operation and its hypercube-based coun-

terpart 

 

Finally, as shown in Fig. 4.8, we compare the effectiveness of the multi-thread imple-

mentation of the naïve scatter — where the sender routine uses the multi-thread facility of the 
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Azure platform for its compute nodes — with the simple serial implementation. In the multi-

thread version, root process uses multiple threads to send messages to the queues of other pro-

cesses, simultaneously. As seen in Fig. 4.8, the multi-thread implementation outperforms the se-

rial code by a factor of 1.3 for the message size of 1,048,576 bytes and as the size of the message 

grows, the disparity between the performances of these two implementations becomes more ap-

parent.  

 

Figure  4.8 Performance of scatter multi-threaded implementation 
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5 PERFORMANCE OF APPLICATIONS ON THE CLOUD 

We analyze the performance implications of cloudMPI for parallel and distributed appli-

cations traditionally implemented using MPI. Specifically, we are trying to understand 1) how 

applications with different communication-to-computation ratios perform using cloudMPI com-

pared to MPI and 2) the steps required to map a traditional MPI implementation to the cloudMPI 

implementation. To reach our goal, we run our test applications with two different setups: 1) us-

ing cloudMPI framework on the Azure worker roles, 2) using traditional MPI on the bare-bone 

Azure Linux virtual machines configured as a conventional cluster. In both cloud platforms, 

compute‎nodes‎are‎set‎to‎be‎Azure‎“small”‎virtual‎machines,‎with‎1.75GB‎of‎memory.‎ 

For our evaluations, we select two MPI applications with different communication and 

computation requirements, namely, 1) the N-Body particle simulation [22] and‎2)‎Cannon’s‎mul-

tiplication algorithm [23, 24]. 

5.1 N-Body Particle Simulation 

The N-Body problem determines the motion of particles over time based on the effect of 

the forces from other particles. This problem has applications in astrophysics, molecular dynam-

ics, etc. The simulation of this problem is computationally expensive for large N-body systems, 

which can be sped up by distributing the computationally intensive tasks to multiple compute 

nodes.  

For this experiment, we have used the sample code presented in Ref. [25]. The algorithm 

used in this experiment implements the following steps to calculate the particle position and ve-

locity at each time step: 1) update positions using velocities, 2) calculate forces, and 3) update 

velocities.  Table 5.1 shows the MPI code in C and its equivalent cloudMPI code. As shown in 

this figure, the cloudMPI API is very similar to the C bindings of the conventional MPI. Porting 
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the MPI application to cloudMPI is basically a matter of converting C/C++ code to C# and find-

ing the equivalent syntax for some keywords (such as reading from standard input and writing to 

standard output) in the Windows Azure environment. We also convert MPI calls to the equiva-

lent calls in cloudMPI. This can be easily achieved using an equivalence table for the func-

tion/method calls of MPI and cloudMPI. 

 

Table  5.1 Comparison of N-Body MPI code with cloudMPI 

Set up environment 
MPI: 
int n_proc, rank; 

MPI_Init( &argc, &argv ); 

MPI_Comm_size( MPI_COMM_WORLD, &n_proc ); 

MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

 
 

cloudMPI: 
int n_proc, rank; 

cMPI.Init(connectionString); 

cMPI.Comm_size(cMPI.COMM_WORLD, out n_proc); 

cMPI.Comm_rank(cMPI.COMM_WORLD, out rank); 

 

 

Set up the data partitioning across processors 
MPI: 
int particle_per_proc = (n + n_proc - 1) / n_proc; 

int *partition_offsets = (int*) malloc( (n_proc+1) * sizeof(int) ); 

for( int i = 0; i < n_proc+1; i++ ) 

    partition_offsets[i] = min( i * particle_per_proc, n ); 

 

int *partition_sizes = (int*) malloc( n_proc * sizeof(int) ); 

for( int i = 0; i < n_proc; i++ ) 

    partition_sizes[i] = partition_offsets[i+1] - partition_offsets[i]; 

 

 

cloudMPI: 
int particle_per_proc = (n + n_proc - 1) / n_proc; 

int[] partition_offsets = new int[(n_proc + 1)]; 

for (int i = 0; i < n_proc + 1; i++) 

    partition_offsets[i] = Math.Min(i * particle_per_proc, n); 

 

int[] partition_sizes = new int[n_proc]; 

for (int i = 0; i < n_proc; i++) 

    partition_sizes[i] = partition_offsets[i + 1] - partition_offsets[i]; 
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Allocate storage for local partition 
MPI: 
int nlocal = partition_sizes[rank]; 

particle_t *local = (particle_t*) malloc( nlocal * sizeof(particle_t) ); 

 

 

cloudMPI: 
int nlocal = partition_sizes[rank]; 

Particle[] local = new Particle[n]; 

 

Initialize and distribute the particles  
MPI: 
set_size( n ); 

if( rank == 0 ) 

    init_particles( n, particles ); 

MPI_Scatterv( particles, partition_sizes, partition_offsets, PARTICLE, local, 

nlocal, PARTICLE, 0, MPI_COMM_WORLD ); 

MPI_Allgatherv( local, nlocal, PARTICLE, particles, partition_sizes, parti-

tion_offsets, PARTICLE, MPI_COMM_WORLD ); 

 

 

cloudMPI: 
set_size(n); 

if (rank == 0) 

    init_particles(n, particles); 

 

cMPI.scatterv(particles, 0, partition_sizes, partition_offsets, ref local, 0, 

nlocal, 0, cMPI.COMM_WORLD); 

cMPI.AllGatherv(local, 0, nlocal, ref particles, 0, partition_sizes, parti-

tion_offsets, cMPI.COMM_WORLD); 
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Simulate a number of time steps 
MPI: 
for( int step = 0; step < NSTEPS; step++ ) 

{ 

    //  compute all forces 

    for( int i = 0; i < nlocal; i++ ) 

    { 

        local[i].ax = local[i].ay = 0; 

        for (int j = 0; j < n; j++ ) 

            apply_force( local[i], particles[j] ); 

    } 

     

    //  move particles 

    for( int i = 0; i < nlocal; i++ ) 

        move( local[i] ); 

 

    //  collect all global data locally (not good idea to do) 

    MPI_Allgatherv( local, nlocal, PARTICLE, particles, partition_sizes, par-

tition_offsets, PARTICLE, MPI_COMM_WORLD ); 

 

 

    //  save current step if necessary 

    if( fsave && (step%SAVEFREQ) == 0 ) 

        save( fsave, n, particles ); 

} 

 

 

cloudMPI: 
for (int step = 0; step < Constants.NSTEPS; step++) 

{ 

    //  compute all forces 

    for (int i = 0; i < nlocal; i++) 

    { 

        local[i].ax = local[i].ay = 0; 

        for (int j = 0; j < n; j++) 

            apply_force(local[i], particles[j]); 

    } 

 

    //  move particles 

    for (int i = 0; i < nlocal; i++) 

        move(local[i]); 

     

    //  collect all global data locally (not good idea to do) 

    cMPI.AllGatherv(local,0, nlocal, ref particles,0, partition_sizes, parti-

tion_offsets, cMPI.COMM_WORLD); 

 

    //  save current step if necessary 

    if ((step % SAVEFREQ) == 0) 

        save(sw, n, particles); 

} 
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The simulation results for both platforms (i.e., MPI and cloudMPI) with different number 

of particles and different number of nodes are shown in Figs. 5.1 and 5.2. In this application, the 

cloudMPI implementation uses the Service Bus queue and the Service Bus topic for small mes-

sages and falls back to the blob storage for large messages (> 256kB). It should be noted that for 

the node size of 1, we use a serial implementation of the problem for the both MPI and cloudMPI 

cases and no message-passing mechanism is used. Therefore, comparison of the performance of 

our code for the single-node case provides a measure of the performance of the hardware used in 

each node. It can be seen from Figs. 5.1 and 5.2 that the Windows Azure small node (used in the 

cloudMPI implementation) outperforms the Linux virtual machine small node provided by the 

Azure platform. This observation is in agreement with previous reports [26].  Therefore, in our 

comparisons for the multi-node cases, we should be aware of this performance disparity between 

the two types of the nodes (i.e., Windows worker roles and Linux VMs) and draw our conclu-

sions regarding the performance of the MPI and cloudMPI with this disparity in mind.   

 

 

Figure  5.1 Performance of N-Body simulation for 20,000 and 30,000 particles 
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Figure  5.2 Performance of N-Body simulation for 40,000 and 50,000 particles 

 

The algorithm for the N-Body simulation computes all the interactions of N particles on p 

compute nodes in a load-balanced fashion (i.e., each node performs the computations for N/p 

particles). Each compute node performs O(N
2
/p) force evaluations in each time step, whereas the 

communication scales linearly with N [O(N)] for each compute node. As shown in Fig. 5.1, 

cloudMPI outperforms MPI for small number of nodes (e.g., < 4 nodes) as the computation time 

overtakes the communication time. Figure 5.3 shows the performance of the two implementa-

tions with respect to the number of particles for a fixed number of nodes. As seen in this figure, 

as the computation to communication ratio increases for sufficiently large N, the cloudMPI im-

plementation outperforms the traditional MPI. 
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Figure  5.3 Performance of N-Body simulation on 8 nodes 

 

5.2 Cannon’s Multiplication Algorithm 

Cannon’s algorithm distributes square submatrices of size n/p of original two n×n matri-

ces A and B among the p compute nodes. These submatrices are aligned to compute nodes in a 

way that the corresponding square submatrices (from matrices A and B) at each compute node 

can be multiplied together locally. The compute nodes are organized in a mesh arrangement, and 

in each iteration, each compute node shifts its current submatrix of A to its left neighbor compute 

node and its current submatix of B to the upper neighbor compute node. This shifting operation 

is performed circularly for the leftmost and the topmost nodes in the mesh.  Following this step, 

each node multiplies the new submatrices and adds it to a result matrix. Therefore, each compute 

node spends O(n
3
/p) time on the computation step (i.e., multiplication of local submatrices) and 

O(n
2
/  ) on the communication step (i.e., shifting the submatrices to the neighbor nodes). 

We run the cloudMPI implementation of the algorithm for clusters of up to 16 worker role nodes. 

Figure 5.4 shows the cloudMPI performance on different mesh sizes for a 4800×4800 matrix.  
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Figure  5.4 cloudMPI performance for a 4800×4800 matrix 

 

Figure 5.5 compares the performance of algorithm for cloudMPI and MPI for different 

matrix sizes on a cluster with 9 nodes (Azure worker roles for the cloudMPI and Linux VMs for 

the MPI). In this experiment, cloudMPI implementation uses the Service Bus queue for its com-

munication step. As expected, higher computation to communication ratios results in better per-

formance for the cloudMPI implementation. 

As we discussed earlier, the Windows environment of Azure platform outperforms its 

Linux VMs. Taking this fact into consideration, two conclusions can be made based on the re-

sults‎of‎our‎experiments.‎First,‎we‎conclude‎that‎the‎applications’‎communication‎intensity‎is‎

correlated with the performance gap between the cloudMPI and MPI and the MPI implementa-

tion outperforms the cloudMPI implementation as the communication intensity of the algorithm 

increases. Second, we conclude that for the applications with higher computation intensity 

cloudMPI implementation performance is comparable to and in certain cases better than the per-

formance of the MPI implementation. Therefore, despite lower bandwidth of the cloud environ-

ment, cloudMPI can be used to implement CPU intensive applications and provide the scalabil-

ity, maintenance, and cost advantage of the cloud platform for the users of this platform.  
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Figure  5.5 Performance of Cannon’s algorithm for cloudMPI and MPI 
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6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

To introduce a framework for implementing new MPI-style applications, as well as to 

port MPI-based legacy applications to the Azure cloud platform was the main focus of this the-

sis. In this work, we conducted a comprehensive evaluation of the performance of communica-

tions on Window Azure. We implemented different MPI point-to-point and collective operations 

using Windows Azure storage and messaging components and assessed the feasibility of replac-

ing traditional MPI with similar interface tailored for cloud usage for running tightly coupled 

MPI programs. We tested the cloudMPI using available microbenchmarks for MPI to evaluate 

the performance of each MPI routine separately and also using two different applications to see 

the effect of the cloud low bandwidth on the overall computation. Experimental results indicate 

that the cloudMPI performance is comparable to the traditional MPI as computation overhead 

exceeds the communication overhead. Therefore, cloudMPI can provide an acceptable perfor-

mance for applications with high computation to communication ratio. Users can benefit from 

the advantages of the cloud environment's low cost, scalability, ease of management and job 

submission, capability of interactive job execution, and instant reconfiguration 

which are effective‎factors‎for‎HPC‎users’‎choice‎of‎platforms. 

6.2 Future Work 

One of the major challenges for migrating HPC applications to the cloud environment is 

fault tolerance. Some common reasons for failure in the Windows Azure cloud environment are 

application failure (e.g., poor exception handling in the code), routine maintenance activities, and 

hardware failure. HPC applications are more prone to failure due to two reasons: 1) As HPC ap-

plications usually require a large number of processors and virtual instances and relatively con-
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siderable communication links, the probability of failure increases for such applications; 2) Vir-

tual machines, which are used for arranging HPC clusters on the cloud, are more likely to crash 

as a result of resource sharing and contention. For some failures, local data written to the local 

virtual machine disks are lost, which consequently causes the application to fail. Therefore, han-

dling transient compute nodes failures is essential for building reliable cloud-native HPC appli-

cations. 

We also believe that implementing a translator to automatically convert an MPI applica-

tion to cloudMPI will significantly reduce the overhead of manually porting the legacy MPI code 

to cloudMPI and could be a valuable research project as a future work. 

Providing terminal environment for convenient managing (i.e., initial setup, rescaling, monitor-

ing, etc.) and deploying cloudMPI applications is also another area of focus. 

  

  



46 

REFERENCES  

1. MPI Documents. 21 September 2012; Available from: http://www.mpi-

forum.org/docs/docs.html. 

2. He, Q., S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. Case study for running HPC 

applications in public clouds. in Proceedings of the 19th ACM International Symposium 

on High Performance Distributed Computing. 2010. ACM. 

3. Wilder, B., Cloud Architecture Patterns: Using Microsoft Azure. 2012: O'Reilly Media, 

Inc. 

4. Mizonov, V. and S. Manheim. Windows Azure Queues and Windows Azure Service Bus 

Queues - Compared and Contrasted. January 21, 2014. 

5. Evangelinos, C. and C. Hill, Cloud computing for parallel scientific hpc applications: 

Feasibility of running coupled atmosphere-ocean climate models on amazon’s ec2. ratio, 

2008. 2(2.40): p. 2.34. 

6. Jackson, K.R., L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.J. 

Wasserman, and N.J. Wright. Performance analysis of high performance computing 

applications on the amazon web services cloud. in Cloud Computing Technology and 

Science (CloudCom), 2010 IEEE Second International Conference on. 2010. IEEE. 

7. Zhai, Y., M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud versus in-house cluster: evaluating 

Amazon cluster compute instances for running MPI applications. in State of the Practice 

Reports. 2011. ACM. 

8. Ekanayake, J. and G. Fox, High performance parallel computing with clouds and cloud 

technologies, in Cloud Computing. 2010, Springer. p. 20-38. 

9. Expósito, R.R., G.L. Taboada, S. Ramos, J. Touriño, and R. Doallo, Performance 

analysis of HPC applications in the cloud. Future Generation Computer Systems, 2013. 

29(1): p. 218-229. 

10. Lu, W., J. Jackson, and R. Barga. AzureBlast: a case study of developing science 

applications on the cloud. in Proceedings of the 19th ACM International Symposium on 

High Performance Distributed Computing. 2010. ACM. 

11. Gunarathne, T., T.L. Wu, J.Y. Choi, S.H. Bae, and J. Qiu, Cloud computing paradigms 

for pleasingly parallel biomedical applications. Concurrency and Computation: Practice 

and Experience, 2011. 23(17): p. 2338-2354. 

12. Agarwal, D. and S. Adviser-Prasad, Scientific high performance computing (hpc) 

applications on the azure cloud platform. 2013. 

13. Barga, R.S., J. Ekanayake, and W. Lu. Project Daytona: data analytics as a cloud 

service. in Data Engineering (ICDE), 2012 IEEE 28th International Conference on. 

2012. IEEE. 

14. Gunarathne, T., B. Zhang, T.-L. Wu, and J. Qiu, Scalable parallel computing on clouds 

using Twister4Azure iterative MapReduce. Future Generation Computer Systems, 2013. 

29(4): p. 1035-1048. 

15. Redekopp, M., Y. Simmhan, and V.K. Prasanna. Optimizations and Analysis of BSP 

Graph Processing Models on Public Clouds. in Parallel & Distributed Processing 

(IPDPS), 2013 IEEE 27th International Symposium on. 2013. IEEE. 

16. Malewicz, G., M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, and G. 

Czajkowski. Pregel: a system for large-scale graph processing. in Proceedings of the 

2010 ACM SIGMOD International Conference on Management of data. 2010. ACM. 

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html


47 

17. Agarwal, D., S. Karamati, S. Puri, and S. Prasad. Towards an MPI-like framework for the 

Azure cloud platform. in 14th IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (CCGrid). 2014. IEEE. 

18. MPI Point-to-Point. Available from: https://www.cac.cornell.edu/VW/MPIP2P/. 

19. Buntinas, D., G. Mercier, and W. Gropp. Design and evaluation of Nemesis, a scalable, 

low-latency, message-passing communication subsystem. in Cluster Computing and the 

Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on. 2006. IEEE. 

20. Huss-Lederman, S., B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir, and J. Squyres, 

Mpi-2: Extensions to the message-passing interface. University of Tennessee, available 

online at http://www. mpiforum. org/docs/docs. html, 1997. 

21. Liu, J., B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D.K. Panda, and P. 

Wyckoff, Microbenchmark performance comparison of high-speed cluster interconnects. 

Micro, IEEE, 2004. 24(1): p. 42-51. 

22. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with 

the message-passing interface. Vol. 1. 1999: MIT press. 

23. Cannon, L.E., A CELLULAR COMPUTER TO IMPLEMENT THE KALMAN FILTER 

ALGORITHM. 1969, DTIC Document. 

24. Grama, A., Introduction to parallel computing. 2003: Pearson Education. 

25. Parallelize Particle Simulation. Available from: 

http://www.cs.berkeley.edu/~bvs/cs267_hw2/. 

26. Ristov, S. and M. Gusev. Performance vs cost for windows and linux platforms in 

Windows Azure cloud. in Cloud Networking (CloudNet), 2013 IEEE 2nd International 

Conference on. 2013. IEEE. 

 

http://www.cac.cornell.edu/VW/MPIP2P/
http://www/
http://www.cs.berkeley.edu/~bvs/cs267_hw2/

	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 8-12-2014

	Towards an MPI-like Framework for Azure Cloud Platform
	Sara Karamati
	Recommended Citation


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Introduction to Windows Azure
	1.3 The Components of Windows Azure
	1.4 Challenges of Cloud HPC
	1.5 HPC Frameworks on Azure
	1.6 Organization of the Thesis
	1.7 Related Publication

	2 CONSIDERATIONS FOR PORTING THE MPI STANDARD TO CLOUD
	2.1 Design of MPI Primitives
	2.1.1 Point-to-Point Communications
	2.1.2 One-sided Communications
	2.1.3 Collective Communications

	2.2 Interface and Hardware Configuration
	2.3 Software Configuration

	3 IMPLEMENTATION
	3.1 Implementing MPI Point-to-Point Operations on Azure Cloud Platform
	3.2  Implementing MPI Collective Operations on Azure Cloud Platform

	4 COMMUNICATION BENCHMARKS AND EVALUATION
	4.1 Test Environment
	4.2 Latency
	4.3 Performance of Collective Algorithms
	4.3.1 Barrier Performance
	4.3.2 Broadcast and Scatter Performance


	5 PERFORMANCE OF APPLICATIONS ON THE CLOUD
	5.1 N-Body Particle Simulation
	5.2 Cannon’s Multiplication Algorithm

	6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future Work

	REFERENCES

