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ABSTRACT 

Russell’s claim that only structural knowledge of the world is possible was influentially 

criticized by Newman as rendering scientific discoveries trivial. I show that a version of this crit-

icism also applies to the “structural realism” more recently advocated by Worrall, which requires 

continuity of formal structure between predecessor and successor scientific theories. The prob-

lem is that structure, in its common set-theoretical construal, is radically underdetermined by the 

entities and relations over which it is defined, rendering intertheoretic continuity intolerably 

cheap. I show that this problem may be overcome by supplementing the purely formal relation of 

intertheoretic isomorphism with the semiformal “Ontological Reductive Links” developed by 

Moulines and others of the German “structuralist” approach to the philosophy of science. 
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INTRODUCTION 

Structural realism is a deflationary strain of scientific realism that eschews ontological or 

epistemological commitment to all but the relational structure of our best scientific theories. It 

was advanced in its modern iteration by John Worrall (1989) as an answer to Laudan’s (1981) 

anti-realist “Pessimistic Meta-Induction” (PMI) and the general problem of apparently radical 

ontological discontinuity between predecessor and successor theories of a common phenomenal 

domain. Structural realists have argued that despite pre- and post-succession incommunsurability 

at the level of object-ontology, there is nevertheless frequently a large degree of intertheoretic 

continuity at the level of mathematical or other formal structure. 

However, Worrall’s structural realism, couched within the syntactic or sentential view of 

theories, is vulnerable to a version of an argument Max Newman (1928) raised against an early 

structuralist thesis briefly advocated by Russell (1927). The problem Newman identified is that 

any purely structural constraint, whether imposed by a phenomenal domain or by another theory, 

can be satisfied by an indefinite number of theories of the right cardinality. The problem has re-

cently been generalized by French and Saatsi (2005) and shown to also applicable, in a residual 

but still significant form, to newer species of structural realism developed within the semantic or 

model-theoretic view of theories. 

The crucial question for the committed structural realist is: To what, if anything, beyond 

representational structure can one legitimately appeal in order to establish a trans-successional 

continuity both strong enough and nontrivial enough to satisfactorily avert the PMI? 
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The answer, I think, can be provided by examining a solution developed in response to an 

analogous problem in the context of a different intertheoretic relation: reduction. In the early nas-

cence of the model-theoretic framework, Patrick Suppes (1957; 1962) devised a novel account of 

intertheoretic reduction based on structural isomorphism. Briefly put: 

For any two theories Θ1 and Θ2, and any two models μ1(Θ1) and μ2(Θ2) (set-theoretically 

construed), Θ1 reduces Θ2 just in case there is a model μ1
*, constructible within μ1(Θ1) 

that is isomorphic to μ2(Θ2). 

This account was influentially criticized by Ken Schaffner (1967) as being too permissive 

and, as such, unable to rule out spurious mappings between models (e.g., of classical collision 

mechanics and exchange microeconomics) that may be set-theoretically isomorphic but which 

clearly stand in no direct reductive relation. To address this particular version of what we may 

call the “Generalized Newman Problem” (GNP), Moulines (1984, 2006) introduced the concept 

of an “Ontological Reductive Link” (ORL) as a semiformal adjunct to structural morphism that 

connects the “kinds” (Moulines, 2006) that figure in one model/theory to those that figure in its 

putative reductive parter. I will argue that, under an appropriately non-essentialist reading of 

“kinds,” the structural realist may adapt this solution to her own version of the GNP, viz., the 

problem of establishing non-spurious continuity between diachronic theories of a common phe-

nomenal domain. 

In Chapter I, I will briefly introduce structural realism (SR) and the PMI it was invoked 

to overcome. I will then describe Newman’s criticism as it applies to both syntactic and semantic 

versions of SR, developing a concise, general statement of the problem, the GNP. Structural real-
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ists grappling with this problem have tended to appeal to context in order to fix the right struc-

tures in the desired continuity relation (Brading & Landry, 2007; French & Saatsi, 2005; see 

also, van Fraassen, 1997). It has been difficult, however, to make these appeals both sufficiently 

metaphysically innocuous that they do not undermine the crucial entity-agnosticism of SR and 

sufficiently principled that they do not appear merely ad hoc. 

In Chapter II, I will briefly describe Suppes’ early account of intertheoretic reduction and 

the challenge to it raised by Schaffner, viz., that it is unable to rule out obviously spurious reduc-

tions. I will show that the difficulty arises because the isomorphism on which Suppesian reduc-

tion depends is, in set theory at least, a purely structural relation, and that Schaffner’s problem is, 

therefore, another instance of the GNP. 

In Chapter III, I will introduce the set-theoretic characterization of models developed by 

Sneed (1971), Stegmüller (1976), Mayr (1976), Moulines (1984, 2006), and others in the Ger-

man “structuralist” tradition. Each model μ of a theory Θ on such an account has the following 

set-theoretic structure: 

‹D1,…Dm, [A1,…An], R1,…Rp›, 

where the Di pick out the model’s base sets (i.e., its empirical ontology), the Aj its auxiliary base 

sets (i.e., its purely mathematical or formal “ontology”), if applicable, and the Rk the family of 

relations obtaining among and between the Di and Aj. I will next describe how structuralists con-

ceive of theories, will introduce two additional formal constraints on Suppes’ account of reduc-

tion based on the work of Balzer, Moulines and Sneed (1987) and Bickle (1998). I will then in-

troduce Moulines’ (1984) notion of an ORL as a set of connections between the base sets figur-

ing in the appropriate models of reduced theory ΘR to some combination of base sets, auxiliary 
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base sets, and relations figuring in the models constituting the reduction base of ΘR within the 

reducing theory ΘF, precisifying the account formally using the set-theoretic construct known as 

an echelon (after Moulines, 2006). ORLs are legitimated (and to some extent determined) by 

what the structuralists call the “intended empirical applications” of the theories in the putative 

reductive relation (Balzer, Moulines, & Sneed, 1987; Bickle, 1998). I will demonstrate, using ex-

amples, how ORLs allow reductionists working within a model-theoretic framework to avoid in 

a systematic way spurious reductions of the sort that worried Schaffner. 

I will argue that ORLs may also be applied, mutatis mutandis, to the SR version of the 

GNP. This may at first blush seem counterintuitive, since it is tempting to think of a model’s 

“base sets” as the objects whose behavior the model tracks. Moulines (2006), however, sees the 

base sets as designating kinds (encompassing, potentially, both the natural and non-natural sort). 

Following non-essentialist views of kinds, such as those of Boyd (1991) or Millikan (1999), a 

structural realist needn’t see the use of ORLs as committing her to anything more than clusters of 

relational properties to which theorists have found it useful to assign names. What ORLs effec-

tively are in the hands of the structural realist are tools for making precise and principled the 

hitherto only vague appeals to context by which structural realists have (unsuccessfully, in my 

judgment) tried to banish the specter of the GNP.  
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CHAPTER I 

1.1   Scientific realism and its discontents 

Scientific realism, broadly construed, is the thesis that science aims at providing accurate 

descriptions of the objective kinds into which nature divides itself and accurate representations 

of their interrelations, and succeeds in doing both in a generally (if not uniformly) progressive 

manner. Scientific anti-realism is the denial of either of the central conjuncts of scientific real-

ism. Over the past several decades, the shape of the debate between these rival views has been 

largely dictated by two intuitively compelling but opposing arguments. Realists, beginning with 

the early Hilary Putnam (1975), have claimed that the accretionary explanatory, predictive, and 

manipulatory successes of the scientific enterprise would have to be reckoned miraculous if its 

theories were not reliably latching onto the objective facts and ontic categories of the world. That 

is to say, the realist avers, the best explanation for the success of science is that its theories and 

models are (approximately) true. This has come to be called the No Miracles Argument (NMA; 

Worrall, 1989). Anti-realists, on the other hand, have observed that the history of science is a in-

tellectual graveyard packed with the remains of theories once thought true—even obviously so—

but now regarded radically false by the lights of successor theories and the new, incompatible 

ontologies they invoke. This state of affairs as famously moved Larry Laudan to claim (1981) 

that it is almost certain that most if not all of our current scientific theories will one day be 

deemed radically false as well. If this is correct, then we then have no rational justification for 

believing in their approximate truth. This argument is commonly known as the Pessimistic Meta-

Induction (PMI). 
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The force of the PMI depends heavily upon a view of scientific theory change most influ-

entially articulated by Thomas Kuhn (1962). Most realists, committed as they are to only the ap-

proximate truth of our best scientific theories, would see little trouble for their view in admitting 

the strict falsity of any theory at time t. The received picture of scientific progress is that such 

theories are continuously being patched up, refined, refitted, and in various other ways corrected 

as increases in observational data and advances in experimental apparatus and mathematical for-

malism warrant, such that realist credence in these theories grows increasingly justified over 

time. Kuhn, however, observed that as this “normal science” proceeds, intractable problems tend 

to accumulate alongside pragmatic successes, clogging the gears of research until at some point 

the theory and its associated investigative framework must simply be replaced whole cloth by a 

new paradigm in which the anomalies of the previous no longer arise.  

Crucially for Laudan’s argument, the theory that organizes this new paradigm rests upon 

an ontology that cannot be mapped in any tidy and straightforward way onto the ontology of the 

predecessor theory. The kinetic theory of heat was not a mere refinement or emendation of the 

caloric theory; the central ontological posit of the latter—a fluid-like heat substance—simply 

finds no home nor obvious analogue in the former. The luminiferous ether of Fresnel’s mechani-

cal theory of light was similarly excised in Maxwell’s succeeding electromagnetic framework. 

Even where successor theories borrow terms from their predecessors, it is often the case that the 

intended referent varies between them. Relativistic mass, for example, exhibits properties—e.g., 

inertial frame-dependence—that do not feature in classical Newtonian mass. If these ontologies 

are as incommensurable as the radical Kuhnian alleges, then there is little sense in which prede-

cessor and successor theories can be said to be the same or even continuous, though their empiri-

cal successes may largely overlap. If this pattern of stagnancy and replacement truly constitutes 
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the norm of scientific progress, then, Laudan invites us to induce, we should expect even our best 

contemporary theories to one day be jettisoned as well. We’ve little reason, therefore, to think 

that any theory at any time is capturing something real. 

1.2   From traditional realism to structural realism 

In his foundational 1989 article, John Worrall sought to steer a precarious course between 

the Scylla of the NMA and the Charybdis of the PMI, developing a form of realism sufficiently 

robust to respect the former while avoiding the direst implications of the latter. His structural re-

alism (SR), the intellectual origins of which he credited to Poincaré (1905), restricts realist com-

mitment to only the relational structure of our best scientific theories. It is not the family of re-

lata themselves, Worrall alleges, but the system of relations into which they enter that should be 

the target of the realist’s assent. Worrall observes that even in cases where the shift to a new the-

ory is accompanied by a radical revision of basic ontological categories there is nevertheless sig-

nificant retention of structure as captured in the respective theories’ mathematical equations. For 

example, he shows that even though nothing like Fresnel’s elastic ether figures in Maxwell’s 

electromagnetic theory, Fresnel’s equations can be readily recovered from Maxwell’s by little 

more than term substitution (1989, p. 119). Significantly, it is a theory’s relational structure, 

Worrall alleges, that is primarily responsible for the pragmatic successes that have so impressed 

scientific realists. If, therefore, structural retention is a sufficiently common feature of theory 

change, then realism—a deflationary realism to be sure, but one still adequate to the NMA—can 

be rescued from pessimism. 

Worrall couched his structural realism within the so-called “syntactic” view of theories. 

On this account a theory’s content is exhausted by a set of sentences or their equivalents in a for-

mal (almost always first-order) language. The purely structural component of a theory, Worrall 
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thought, was given by its Ramsey sentence (Worrall & Zahar, 2001). The Ramsey sentence of a 

given theory Θ may be constructed as follows. First, Θ is formalized in a first-order language: 

Θ(o1,…,om; t1,…,tn), where the oi are the observational terms and the tj the purely theoretical 

terms (i.e., terms that refer to unobservables, such as electrons, fields, and spacetime points). All 

theoretical terms are then replaced by existentially quantified variables. The Ramsey sentence of 

Θ, then, would be:  

ЯΘ = (Ǝx1),…,(Ǝxn)Θ(o1,…,om; x1,…,xn) 

While the formalized theory connects observational consequences with particular theoretical en-

tities, the Ramseyfied theory states only that there are some entities responsible for particular ob-

servations within the phenomenal domain to which the theory applies. 

Consider (a relevant part of) a physical theory describing the behavior of alpha particles. 

It would contain sentences such as the following: “An alpha particle consists of a pair of protons 

and a pair of neutrons”; “An alpha particle can usually be stopped by a sheet of paper”; “An al-

pha particle produces a wide, irregular track in a cloud chamber,” etc. The Ramseyfied theory 

would then state: “There is some x, some y, and some z such that: x consists of a pair of ys and a 

pair of zs; x can usually be stopped by a sheet of paper; x produces a wide, irregular track in a 

cloud chamber;” and so forth (“sheet of paper,” “cloud chamber,” and “track” are not replaced 

here because they are observational terms with respect to the theory in question). What the Ram-

sey sentence of a theory does, in effect, is capture the theory’s relational structure while remain-

ing neutral as to the non-relational or intrinsic natures of the entities that collectively instantiate 

that structure. It appears, then, to be a promising locus of commitment for the structural realist 

(for more information on Ramsey sentences, see Carnap, 1958, and Ramsey, 1929). 
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The Ramsey sentence formalism has been adopted and endorsed by Grover Maxwell 

(e.g., 1970) and by Worrall and Zahar (2001) as the preferred way of explicating their own struc-

turalist epistemic commitments. However, Ladyman (1998) has influentially challenged this ap-

proach by invoking a criticism first leveled by Max Newman (1928) and later recapitulated by 

Demopoulos and Friedman (1989) against an early precursor to structural realism briefly enter-

tained by Russell (1927).  

1.3   Russell’s epistemic structuralism and Newman’s objection 

The structuralist view Russell developed in The Analysis of Matter proceeded not from a 

felt need for a more realistic scientific realism, but from more fundamental considerations stem-

ming from the presumed impossibility of epistemic access to the first-order or intrinsic properties 

of individuals. Stathis Psillos (2001) has dubbed this philosophical trajectory the “upward path” 

to structural realism, in contrast with the “downward path” taken by Worrall of weakening stand-

ard scientific realism. Chief among the considerations motivating Russell were what Psillos 

(Ibid.) calls the Helmholtz-Weyl Principle: 

HW: Percepts supervene on stimuli. That is to say, if there are differences between per-

cepts, then there are differences between the stimuli causative of those percepts; (Russell, 

1927, pp. 226-227) 

and what Ioannis Votsis (2004) calls the Mirroring Relations Principle: 

MR: The relations between percepts mirror the relations between their causative stimuli. 

(Russell, 1927, p. 252) 

The upshot of the conjunction of HW and MR with basic empiricist principles, Russell con-

tended, was that only structural knowledge of the world could be “validly infer[red]” from [the 



10 

structure of] perception (Ibid., p. 254). It is the business of the empirical sciences to tease this 

structure out in a systematic way. 

Newman (1928), however, argued that Russell’s conclusion is incompatible with the intu-

itive and widely held notion that science reveals surprising facts about the world. The problem is 

that (1) relations overdetermine structure, and (2) HW and MR alone do not suffice to pick out 

the relations in the world that give rise to the structure of interest, viz., the structure mirrored in 

some focal subset of our percepts. 

To see that (1) is the case, let A denote a system of objects with structure W given by 

some relation R. Newman then asks us to consider the following: 

A might be a random collection of people, and R the two-termed relation of being ac-

quainted. A map of A can be made by making a dot on a piece of paper to represent each 

person, and joining with a line those pairs of dots which represent acquainted persons. 

Such a map is itself a system, B, having the same structure [W] as A, the generating rela-

tion, S, in this case being “joined by a line”. …[I]t is not at all necessary for the objects 

composing A and B, nor the relations R and S, to be qualitatively similar. In fact to dis-

cuss the structure of the system A it is only necessary to know the incidence of R; its in-

trinsic qualities are quite irrelevant. (Ibid., p. 139, emphases in original) 

Note as well that MR itself demands the overdetermination of structure by relation. Given 

only HW and MR, then, the most it seems we can say with regard to the putative cause of some 

particular ordering of percepts is that there exists some relation in the world that generates a 

structure that our percepts come to mirror. To say anything further would require more than just 
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structural knowledge of the world. The problem is not merely one of fixing the correct exten-

sional domain; even assuming this could be specified without breaching structuralist epistemic 

constraints, we would still be unable to specify the generating relation, for it follows from a the-

orem of set theory or second-order logic that the domain contains every relation of every arity 

compatible with the domain’s cardinality (Demopoulos & Friedman, 1989). 

It thus becomes a very nearly trivial matter whether for any perceptual aggregate P, a 

mirroring structure-in-extension exists, for any domain can be carved out of the world and orga-

nized under some relation or other to yield the required structure, provided only the domain has 

the same cardinality as P. As long as this condition is met, any inference from the structure of 

our percepts to the structure of the world will be valid. Hence, the only interesting questions 

open to science are those concerning the cardinality of the domains it investigates; everything 

else is given a priori. 

1.4   Newman’s objection generalized 

Demopoulos and Friedman (1989) contend that the problem raised by Newman spells 

doom for the Ramsey sentence approach to structural realism, for it follows from the above that 

the Ramsey sentence ЯΘ of a theory Θ is guaranteed to be true so long as (1) Θ is consistent; and 

(2) Θ is empirically adequate, i.e., entails no false observation statements (see also Ketland, 

2004). If the Ramsey sentence is taken to be the correct expression of the structural content of a 

theory, then it seems the structural realist’s commitments do not go beyond those of the strict 

empiricist after all. 
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1.4.1 The semantic view of theories 

According to Ladyman (1998), parrying Newman’s objection requires a shift from a syn-

tactic to a semantic or model-theoretic account of scientific theories. Ladyman particularly has in 

mind the approach of Giere (1988), according to which a theory is not a set of statements or for-

mulae but a power set of possible models of shared structure, each model itself being a set con-

taining at minimum a subset of entities (real or abstract), and a subset of relations defined 

thereon. Within such a framework, high-level theories are connected to the world via a hierarchy 

of model families terminating in models of experimental data (Suppes, 1962). Each model in a 

hierarchy is directly presented by its embedding theory, but the data models have the additional 

putative role—on a realist reading at least—of representing (via a suitably appropriate 

morphism) the phenomena the theory is ultimately supposed to be tracking. 

One clear advantage the semantic approach has over the Ramsey sentence approach is 

that, qua family of possible models, a theory has a modal structure which goes beyond what the 

theory’s Ramsey sentence alone can capture (Giere, 1985). This allows the structural realist to 

distinguish herself in her commitments from the strict empiricist and thus to carve out a unique 

position within the landscape of the scientific realism debate (Ladyman, 1998). 

Additionally, though he never states it explicitly, Ladyman seems to hold that the direct 

presentation of a model by its theory suffices to fix the relations generating the structure of inter-

est (French & Saatsi, 2005). Whether this is correct or not, it is difficult to see how this putative 

fact affords the structural realist any additional traction against Newman’s objection. If the struc-

ture at issue is still set-theoretic structure, then, since structure of this sort, as we’ve seen, is al-

ways overdetermined by its generating relations, it makes little difference that the relations can 
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be specified in the model; they will still be underspecified in any structurally isomorphic phe-

nomenal domain obeying the cardinality and empirical adequacy constraints. Thus it remains a 

very nearly trivial truth that any model of any theory structurally represents (some slice or other 

of) the world. 

A tempting gambit for the structural realist at this juncture might be to concede that very 

little indeed can be known about the world solely via deduction from perception but maintain 

that inferences to further properties—e.g., particular relational properties—can be justified by 

other means, say, the abductive force of the NMA. However satisfactory this reply may be vis-à-

vis theory-world relations, the problem, unfortunately, merely resurfaces for structural realism in 

a slightly different guise.  

1.4.2 Intertheoretic continuity and the problem of unintended models 

The structural realist, qua realist, still owes the anti-realist a response to the PMI. The 

difficulty is that if theories are families of merely possible models, then structural equivalence 

between theories is at least as cheap as structural representation by a theory of some phenomenal 

domain. For any model family M1 at t0, there is at least one (and perhaps infinitely many) possi-

ble model family M2 at t1 and at least one (and perhaps infinitely many) possible model family 

M3 at t-1 that are structurally equivalent. The diachronic structural continuity that the Worrallian 

structural realist requires in order to resist the PMI is guaranteed within the model-theoretic 

framework, but it no longer does the realist work demanded of it.  

The Worrallian structural realist needs a way of ruling out “unintended models” (French 

& Saatsi, 2005), of fixing only the intended Mi in the desired successional relation. Here it may 
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be thought that Ladyman’s point about the direct presentation of models can purchase some trac-

tion, but it seems that even if we grant that relations can be specified in a model, the same cannot 

be said of the model’s intended phenomenal domain—not, at least, if we are to refrain from go-

ing beyond purely structuralist commitments, since specifying the domain seems to require spec-

ifying the entities that enter into the modeled relations. French and Saatsi (2005) at this juncture 

gesture at “contextual information,” but they are unsuitably vague as to how this information can 

be both strong enough to fix the domains of the models or theories in question and yet weak 

enough to permit the structuralist to avoid committing herself to any sort of de facto entity real-

ism. 

I think we can be more precise, and I think we can do so in a way that does not contra-

vene structural realism’s core “epistemic humility” (Saatsi, 2010). In order to see how, we must 

first take a look at a startlingly similar problem faced by proponents of a different intertheo-

retic/intermodel relation and the solution they developed in response. 
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CHAPTER II 

2.1   Intertheoretic reduction: Nagel’s account 

Reduction has been interpreted as an epistemic relation, a metaphysical relation, a lin-

guistic/semantic relation, or some combination of these. From the latter half of the 20th century 

onward, philosophers of science have tended to give it a principally epistemic reading. On this 

view, reduction is a relation between scientific theories or other similarly organized representa-

tions which enables the phenomena falling within the domain of one theory to be (at least in 

principle) predicted and explained using only the terms, equations, laws, and other resources of 

the more fundamental theory. 

These intertheoretic reductions may be thought desirable for a number of reasons. Where 

successful, they simplify our ontology, constrain theorizing in useful ways, and bring the explan-

atory and predictive resources of each theory in the reductive relation to bear on the other. Where 

they are not fully successful but only approximative, they may help scientists hone in on problem 

areas in either theory which might otherwise have served as seed crystals for the accretion of ul-

timately catastrophic Kuhnian anomaly. They may even, as Dizadji-Bahmani, Frigg, and Hart-

mann (2011) have recently argued, enable novel confirmation to accrue to each theory in the re-

ductive relation from the other theory’s (formerly) independent evidential basis. In this manner, 

and modulo their strength and smoothness, reductions function, empirically, like a bonanza of 

confirmed predictions or concordant discoveries. 

One of the earliest and most influential accounts of intertheoretic reduction was that pre-

sented by Ernst Nagel in The Structure of Science (1961). Let ΘR denote the phenomenal theory 

(i.e., the theory putatively to be reduced) and ΘF the fundamental or reducing theory. On Nagel’s 
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account, ΘF reduces ΘR just in case the laws of ΘR can be derived from the conjunction of (1) the 

laws of ΘF, (2) boundary conditions on ΘF or other auxiliary assumptions, and (3) “bridge princi-

ples” connecting the theoretical terms of ΘR to those of ΘF. Reduction, on this account, is there-

fore a sort of deduction or translation, with the bridge principles specifying the term substitutions 

in ΘF required to yield the laws or other empirical generalizations of ΘR. 

Problems with Nagel’s account were quickly and widely recognized. For one, it did not 

seem to adequately capture much actual scientific practice. The derivability constraint was ex-

ceptionally strict, and most of what scientists generally recognized as straightforward cases of 

intertheoretic reduction fail to satisfy it. Even the vaunted reduction of classical thermodynamics 

to statistical mechanics falls somewhat short, for the laws of the former are deterministic, incapa-

ble of being derived, except as a limiting case, from the probabilistic laws of the latter. For two, 

it seemed tightly wedded to the syntactic view of theories, which was, even at the time of 

Nagel’s writing, beginning to lose favor to the alternative, semantic view. It was unclear whether 

and how models, which are not sets of sentences as Nagel conceived theories to be and which ap-

pear to be the principal representational vehicles in many of the biological and social sciences, 

could enter into reductive relations in the Nagelian sense. 

2.2   Intertheoretic reduction: Suppes’ account 

Patrick Suppes, one of the chief architects of the semantic view of theories, was also 

among the first to propose an account of reduction that could be situated within this new frame-

work (1957; 1962). In his Introduction to Logic (1957), Suppes writes: 

To show in a sharp sense that thermodynamics may be reduced to statistical mechanics, 

we would need to axiomatize both disciplines by defining appropriate set theoretical 
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predicates, and then show that given any model T of thermodynamics we may find a 

model of statistical mechanics on the basis of which we may construct a model isomor-

phic to T. (p. 271) 

Suppes does not provide a detailed formulation of isomorphism in his account. However, 

because he defines models set-theoretically—as do many proponents of the semantic view—we 

may say that two models μ1 and μ2 are isomorphic just in case there is a bijection of μ1 onto μ2, 

which is to say there is a function f: μ1 → μ2 that maps every element x ∈ μ1 onto a unique ele-

ment y ∈ μ2 (i.e., an injection), and a corresponding function f: μ2 → μ1 that maps every element 

y ∈ μ2 onto a unique element x ∈ μ1. 

We may then say that, on Suppes’ account, a theory ΘF reduces another theory ΘR just in 

case for any model μR ∈ ΘR, there is a model μF within ΘF such that f: μR → μF is a bijection. For-

mally: 

ρS(ΘF, ΘR) ⇔ [(∀x)(∃y)(∃f)([μx ^ (x ∈ ΘR)] ⇒ {[μy ^ (y ∈ ΘF)] ^ [f: x 
𝑏𝑖𝑗
→  y]})], 

where the expression ρS(ΘF, ΘR) is to be read: “ΘF Suppes-reduces ΘR.” 

2.3   Schaffner’s objection 

Kenneth Schaffner (1967) famously argued that Suppes’ account of reduction was 

weaker than Nagel’s, and in fact too weak to capture or justify, without augmentation, the reduc-

tions scientists claim to have successfully effected. Suppes-reductions were, Schaffner con-

tended, necessary but not sufficient for proper scientific reductions. The problem is that isomor-

phism is a purely structural relation, and, as noted in the previous chapter, set-theoretic structure 

underspecifies both the relations and the relata that instantiate it. Indeed, a bijection obtains for 
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any two sets of the same cardinality. Because of this, an isomorphic model for any model of the 

reduced theory is guaranteed to be found within the reducing theory provided only that the latter 

has a cardinality at least equal to that of the former. Suppes-reductions, then, are secured far too 

cheaply. 

As a consequence, Schaffner noted, Suppes’ account allows for spurious “reductions” be-

tween theories with formally similar presentations that are nevertheless not reductively related in 

any direct way. Schaffner’s examples of choice to illustrate this point are hydrodynamics and 

“the theory of heat” (Ibid., p. 145). Concerning this particular theory pair, one might wish to con-

tend that the formal similarity is due to both theories having a common reduction base in a third 

theory, such as fluid dynamics or statistical mechanics. However, Suppes’ account, on its own, 

leaves us unable to designate which among these three theories are reducing and which are re-

duced. 

More extreme examples abound in the large, heterogeneous field that has come to be 

called “econophysics,” wherein models of energy exchange between various kinds of physical 

systems are used to predict and retrodict the flow and distribution of capital and other economic 

resources. For example, dyadic monetary exchanges and particle collisions are widely claimed to 

follow a conservation equation of the following general form: 

ai(t1) + aj(t1) = ai(t2) + aj(t2) 

where ai and aj denote the quantities of the exchanged medium possessed by the two exchanging 

agents (i.e., particles or economic actors), t1 denotes the time immediately prior to the exchange, 

and t2 the time immediately following the exchange. More complex systems have also been char-

acterized by models isomorphic to those in the physical sciences. For example, Chatterjee and 
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Chakrabarti (2007) adapted models from the kinetic theory of gases to describe the behavior of 

the tails of income and wealth distribution curves, and Chen (2001) showed that the Cox-Ross-

Rubinstein binomial options pricing formula: 

𝐶0
𝑁 = (1 + r)-N ∑

𝑁!

𝑛!(𝑁−𝑛)!
𝑁
𝑛=0 qn(1 – q)N-n[S0(1 + b)n(1 + a)N-n – K]+ 

was formally equivalent to a multi-step equation used in quantum mechanics to model probabil-

ity distributions within disks of a Euclidian unit sphere: 

𝐶0
𝑁 = tr[(⊗𝑗=1

𝑁 𝜌j)(SN – K)+] 

2.4   Schaffner’s objection as a version of Newman’s objection 

 Reductions are typically thought of as synchronic relations between independently estab-

lished theories in distinct research programs. Wimsatt (1974) famously drew philosophers’ atten-

tion to the notion, seemingly already held at least implicitly by many scientists, that reductions 

could also be diachronic relations between theories ranging over phenomenal domains related by 

set inclusion or identity. These “successional” or “intra-level” reductions (Ibid., p. 675) are char-

acterized by large-scale retention of theoretic structure (and, less commonly, content), and thus 

run contrary to the Kuhnian picture of violent overthrow by incommensurable successor theories. 

Widely recognized reductions of this sort include the reduction of Kepler’s laws of planetary mo-

tion to Newtonian mechanics and (with some revision and, therefore, some controversy) of New-

tonian mechanics in turn to relativistic mechanics. 

Given the above, we may then recast the Worrallian structural realist’s aim as the estab-

lishment of non-trivial successional reductions or, more broadly, as showing that a pattern of 
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successional intertheoretic reduction predominates over a pattern of radical successional replace-

ment throughout the history of science. The problem Schaffner identified with Suppes-reduc-

tions, then, can be considered of a piece with the problem Newman identified in Russell’s early 

epistemological structuralist excursion. It is another instance of what we may call the General-

ized Newman Problem (GNP), and what French and Saatsi (2005) call the “problem of unin-

tended models.” Indeed, the only constraint on both Suppes-reductions and Worrall-continuities 

appears to be the cardinality of the representational systems entering into the relation in question. 

Because the core problem in each case follows from the specifically set-theoretic notion 

of structure, one option for avoiding it might be to opt for a characterization of models that does 

not rely on set theory. Elaine Landry (2007), for instance, has explored category-theoretic char-

acterizations of models and morphisms for the specific purpose of heading off modern variants 

of the theory-world version Newman’s challenge to structural realism. Another option might be 

to retain the set-theoretic foundation, but to supplement or augment the isomorphism relation 

with additional constraints sufficient to rule out spurious instances of the desired relation. A very 

detailed proposal of this sort, aimed squarely at the problem of adequately characterizing reduc-

tion within the semantic view of theories, was developed over many years by a group of philoso-

phers working within the so-called “structuralist school.” We now turn to their solution and to 

the question of whether a version of it can be safely adapted to the particular species of the GNP 

confronting the structural realist.   
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CHAPTER III 

3.1   German structuralism: models and theories  

 Throughout the 1970s and 1980s, a small number of primarily German philosophers call-

ing themselves “structuralists” (to be confused neither with Worrallian structural realists nor with 

Russellian structuralistic epistemologists) were tirelessly at work expanding and elaborating the 

Suppesian version of the semantic view of theories. Central to their project was a semantic refor-

mulation of intertheoretic reduction that would avoid the sorts of spurious mappings that ren-

dered Suppes’ account intolerably weak. In general, the structuralists have retained Suppes’ set-

theoretic characterization of models, so their strategy has largely been to supplement model-

model isomorphism with additional constraints such that reductions only obtain, if they do at all, 

between the desired theories.  

 The development of the structuralists’ accounts of scientific models, theories, and their 

interrelations is lengthy and complex, and it will take us too far afield to recapitulate it in any 

great detail here (for competent overviews, see Pearce, 1982; Balzer, Moulines, & Sneed, 1987; 

Mormann, 1988; and Bickle, 1998, Ch. 3). In what follows, I will be drawing principally upon 

the distillation of the approach articulated in a recent paper by Moulines (2006) and on the exten-

sive treatment Bickle develops in his 1998. 

 The structuralist characterization of a model is fair bit more detailed than that of Suppes. 

On the structuralists’ understanding, a model μ of theory Θ is a set comprised of three distinct, 

disjoint proper subsets: 

μ = ‹D1,…Dm, [A1,…An], R1,…Rp› 
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Here, the Di denote the model’s base sets, or the kinds of things in its phenomenal domain. Col-

lectively, they constitute the model’s ontological commitments. The Aj denote the model’s auxil-

iary base sets, or the purely mathematical or abstract entities deployed in its formal apparatus (if 

applicable). The Rk are relations and magnitudes defined over elements in Di ∪ Aj (Moulines, 

2006). 

 A model μ of, say, classical collision mechanics (CCM) would be characterized as fol-

lows: 

μCCM = ‹P, T, ℝ, m, v›, such that 

∑ 𝑚(𝜑) ∙𝜑 ∈ 𝑃  𝑣(𝜑, 𝑡1) = ∑ 𝑚(𝜑) ∙𝜑 ∈ 𝑃  𝑣(𝜑, 𝑡2); 

i.e., the law of the conservation of momentum is satisfied (Bickle, 1998, pp. 62-63). 

Here, P is a finite, nonempty set (viz., of interacting particles), and T is an ordered-pair set ‹t1, t2› 

of time instances. P and T constitute the model’s base sets. ℝ, the set of real numbers, is the 

model’s auxiliary base set. m is the magnitude mass, which assigns to each 𝜑 ∈ P a positive real 

number, and v is the relation velocity, which maps onto certain elements in the Cartesian product 

P × T (i.e., particles at particular time instances) an ordered triple of real numbers. 

 However, a theory or model family is not, on the structuralist construal, exhaustively 

comprised of its actual models but of the typically much larger set of its potential models. Let us 

denote this set MP and its (seemingly always proper) subset of actual models MA. A potential 

model of a theory is a model with the same formal composition as the theory’s actual models but 

about which it cannot yet be said that it satisfies the theory’s fundamental law(s). A theory also 

contains a proper subset of intended empirical applications; let us denote this set I. The totality 
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of a theory’s empirical assertions, Bickle notes, amounts to the claim that its empirical applica-

tions are a subset of its actual models (Ibid., p. 63). In reality, this is rarely, if ever, the case. Typ-

ically, a theory will only contain a nonempty intersection I ∩ MA consisting of its confirmed em-

pirical applications (i.e., its confirmed actual models). Let us denote this IC. On a structuralist 

construal, then, for any theory that is not radically false, the following generalizations hold 

(Ibid., pp. 63-64): 

(A) MA ⊆ MP (and usually MA ⊊ MP) 

(B) I ⊊ MP 

(C) I ⊈ MA 

(D) I ∩ MA ≠ ∅ (= IC) 

These may be represented graphically by the following Euler diagram (Fig. 3-1): 

 

Figure 3-1 Theoretic structure as conceived by the German structuralists 
A theory is described as a set of potential models (MP) containing as proper subsets both the the-

ory’s actual models (MA) and its intended empirical applications (I). The intersection MA ∩ I con-

tains the theory’s confirmed empirical applications (IC). Adapted from Bickle, 1998. 
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3.2   Intertheoretic reduction: The structuralist account 

Suppes’ account of reduction does not advert to this finer-grained general theory struc-

ture, so it is not immediately clear which parts of a theory thus conceived must be bijectively 

mapped in order for a reduction to obtain. According to Suppes, recall, a theory, ΘF reduces an-

other theory ΘR just in case for “any model [μR of ΘR] we may find a model of [ΘF] on the basis 

of which we may construct a model isomorphic to [μR]” (1957, p. 271).  

 In most if not all historical cases of reduction, be they synchronic or diachronic, the re-

ducing theory has a broader phenomenal scope than the reduced. Indeed, it would perhaps be im-

possible to effect a reduction—a smooth, largely retentive one, at any rate—without the reducing 

theory ranging over at least all the phenomena subsumed under the reduced theory. Let us then 

characterize the reduction base, B of ΘR as a subset within MP(ΘF) having possible intersections 

with MA(ΘF), I(ΘF), and IC(ΘF)1. In Suppesian terms, we may think of B as the set of all con-

structible models of ΘF that are isomorphic to models in some appropriate subset of MP(ΘR). 

This subset, put another way, is the range of the reduction, while B is its domain. Suppes’ ac-

count, unfortunately, does not sufficiently specify the range of his proposed reduction relation. 

Should “any model [μR of ΘR]” be interpreted as any potential model of ΘR, such that Rng(ρS) = 

MP(ΘR), as any actual model of ΘR, such that Rng(ρS) = MA(ΘR), or as any empirical application 

of ΘR, either merely intended or confirmed, such that Rng(ρS) = I(ΘR) or IC(ΘR), respectively? 

Fig. 3-2 visually represents each of these four possibilities. 

                                                 
1 What I am here designating B bears some resemblance to the “analog structure” TR* in Bickle’s (1998) reconstruc-

tion of the structuralist account of reduction. With TR*, Bickle was seeking to incorporate into the structuralist 

framework Clifford Hooker’s (1981) notion that what in fact often gets reduced in a successful reduction is not ΘR 

but a theoretic analog having the same scope as ΘR but constructed wholly from the theoretical vocabulary of ΘF. B, 

as I am here using it, serves the more modest role of the domain of the reduction in ΘF following the application of 

Nagel-style boundary conditions. 
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Figure 3-2 Possible structuralist interpretations of Suppesian reduction 
Red: Dom(ρS) = B(ΘF); Rng(ρS) = MA(ΘR). Blue: Dom(ρS) = B(ΘF); Rng(ρS) = I(ΘR).                     

Purple: Dom(ρS) = B(ΘF); Rng(ρS) = IC(ΘR). Black: Dom(ρS) = B(ΘF); Rng(ρS) = MP(ΘR).             

  

3.2.1   Additional formal constraints on Suppesian reduction 

Bickle (1998), following Balzer, Moulines, and Sneed (1987, Ch. 6), suggests that the ap-

propriate range may in fact be as heterogeneous as the domain, pursuant to two conditions. 

Adapting and formalizing Bickle’s treatment, these may be stated as follows: 

(1) (∀z)(∀w)({[(μz ^ {z ∈ [B(ΘF) ∩ MA(ΘF)]}) ^ {μw ^ [w ∈ MP(ΘR)]}] ^  

(‹z, w› ∈ ρS)]} ⇒ [w ∈ MA(ΘR)]) 

(2) (∀w)(∃z){[{μw ^ [w ∈ IC(ΘR)]} ^ (‹z, w› ∈ ρS)] ⇒ (μz ^ {z ∈ [B(ΘF) ∩ IC(ΘF)]})} 
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The first condition, simply put, states that a successful reduction must relate any actual 

models of ΘF falling within its domain only to actual models of ΘR. This seems reasonable once 

one recalls that the merely potential models of a theory do not necessarily satisfy its fundamental 

laws. In fact, Bickle (Ibid., pp. 68-69) interprets this condition as an attempt by the structuralists 

to capture the essence of Nagel’s (1961) requirement that the laws of the reduced theory be de-

rivable from those of the reducing theory. The second condition demands that a successful reduc-

tion relate every confirmed intended application of the reduced theory to some confirmed in-

tended application of the reducing theory. This also makes sense, for it would be odd to regard as 

successful or complete any putative reduction that left any confirmed actual models of the re-

duced theory without isomorphs in the reducing theory. Fig. 3-3 represents these two conditions 

by illustrating all permissible isomorphism pairings on the above account.   

 

Figure 3-3 Permissible isomorph pairs in a structuralist reduction 
The red arrow follows Condition (1) above, while the blue arrow follows Condition (2). White 

arrows indicate other permissible pairings. Adapted from Bickle, 1998. 
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 These two conditions serve to constrain Suppes’ account of reduction considerably, but 

they do not on their own defuse the Newman-style objection leveled against that account by 

Schaffner. The problem Schaffner identified concerns not the possible domains and ranges of re-

duction, but the purely formal character of the individual inter-model relations (viz., isomor-

phisms) of which reductions are composed.  

3.2.2   Ontological Reductive Links 

To address this issue, Moulines (1984) introduced the concept of an Ontological Reduc-

tive Link (ORL) as an additional, semiformal constraint on any putative reduction. Recall the 

structuralist definition of a model given in §3.1. Let us consider a superset OR containing the em-

pirical base sets of all models in the range of a reduction; this OR comprises the reduced theory’s 

ontology. Let us then group all intra-model subsets (i.e., empirical base sets, auxiliary base sets, 

and relations) in the domain of the reduction under the superset EF. An ORL between ΘR and ΘF 

obtains when every member of OR can be identified with either an atomic element or a nonempty 

subset of EF. ORLs, in effect, show that (and in a limited sense how) the ontology of the reduced 

theory is realized by elements in the phenomenal domain of the reducing theory. 

ORLs may be homogeneous, heterogeneous, or mixed. In a homogeneous ORL, each em-

pirical base set in OR is either identified with exactly one of the empirical base sets in EF or is a 

proper subset of an empirical base set in EF, such that OR ⊆ OF ⊊ EF (i.e., the reducing theory’s 

ontology is itself a superset of OR). This kind of ORL, Bickle (1998, p. 78) notes, characterizes 

the reduction of classical collision mechanics to Newtonian particle mechanics; the particles that 

figure in the former simply are Newtonian particles. In a heterogeneous ORL, on the other hand, 

each empirical base set in OR is connected to a subset in EF of > 1 members which may include 

empirical base sets, auxiliary base sets, or relations. Lastly, a mixed ORL is both homogeneous 
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and heterogeneous, with some empirical base sets in OR connected to individual empirical base 

sets in EF, and some connected to combinations of empirical base sets, auxiliary base sets, and 

relations in EF. Heterogeneous or mixed ORLs will be characteristic of any mereological or inter-

level reductions, wherein the ontology of the reduced theory is composed of combinations of ele-

ments of the reducing theory.  

In his 2006, Moulines subsumes all three types of ORLs under a general characterization 

using the concept of an echelon. As he puts it: “A set A is an echelon-set over sets B1, …, Bn iff A 

comes out of B1, …, Bn by successively applying the set-theoretical operations of power-set for-

mation and Cartesian product to B1, …, Bn” (p.  319). Put more simply, to say that an ORL ob-

tains between OR and EF is to say that OR is an echelon on EF, which is to say that OR is con-

structible out of EF.  

This notion of constructibility may be stated more precisely and formally. Individual 

models, recall, are composed of two to three disjoint proper subsets: the superset of its empirical 

base sets, the superset of its auxiliary base sets (if any), and the superset of relations defined on 

subsets of the union of its empirical and auxiliary base sets. We may regard EF as itself a single 

large model and divide it likewise. We have already carved off from it a proper subset of empiri-

cal base sets appearing in any model within the domain of the reduction, OF. Let us additionally 

denote with AF the proper subset of all auxiliary base sets appearing in any model ∈ Dom(ρS) and 

with RF the proper subset of all relations appearing in any model ∈ Dom(ρS). To say that OR is an 

echelon on EF (=‹OF, AF, RF›), then, is to say that: 

OR ∈ ℘…℘([℘]OF × [℘]AF × [℘]RF), 
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where [℘] denotes the merely possible application of the power-set operation, and ℘…℘ indi-

cates arbitrarily many such applications (after Moulines, 2006, p. 320). Reworked a bit, this 

yields our third constraint on Suppesian reduction: 

(3) (∀v)[(v ∈ OR) ⇒ {v ∈ ℘…℘([℘]OF × [℘]AF × [℘]RF)}] 

3.3   Schaffner’s objection defanged 

The identifications or other local connections that secure an ORL are the deliverances of 

extra-formal judgments determined principally by the intended empirical applications of the the-

ories standing in the putative reduction relation. Indeed, ORLs are only possible if there is sub-

stantial overlap between I(ΘF) and I(ΘR). Thus, Bickle notes (1998, p. 81), one cannot effect spu-

rious identifications between elements of OR and EF without thereby altering the intended empiri-

cal applications of at least one of the theories in question. The intended empirical applications 

also enable us to determine (albeit fallibly) which of a pair of theories satisfying the formal con-

ditions on a structuralist reduction is the reducing theory and which is the reduced. With very 

few exceptions, it seems, {I(ΘF) \ [I(ΘF) ∩ I(ΘR)]} > {I(ΘR) \ [I(ΘF) ∩ I(ΘR)]}. 

ORLs, thus, enable us to distinguish legitimate reductions from the kinds of pseudo-re-

ductions that troubled Schaffner. We have noted already that classical collision mechanics bears 

a homogeneous ORL to Newtonian particle mechanics. This is because the former, simply put, is 

a part of the latter; its models are all models of Newtonian particles mechanics as well. Let us 

now examine a more complex case: the reduction of rigid body dynamics (RBD) to Newtonian 

particle mechanics (NPM). The ontology of rigid body dynamics (ORBD) contains an empirical 

base set C, the set of rigid bodies. While C is neither identical to nor a proper subset of P, the set 
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of Newtonian particles in ENPM, every element in C can be identified with some construct of em-

pirical base sets, auxiliary base sets, and relations in ENPM. (after Bickle, 1998, p. 80). That is to 

say, every element in C is a system of Newtonian particles having certain masses, positions, ve-

locity vectors, force vectors, and so on. These identifications are permitted by the large overlap 

between the intended empirical applications of RBD and NPM, and they enable the derivation of 

RBD’s equations of motion (i.e., Euler’s laws) from Newton’s laws of motion. 

 Compare this to the spurious “reduction” between exchange microeconomics (EME) and 

classical collision mechanics (CCM) discussed in §2.3. It might seem at first blush as though a 

heterogeneous (or mixed) ORL obtains here as well, since economic actors (i.e., elements of the 

empirical base set Æ ∈ OEME), like rigid bodies, are composed of particles. It beggars belief, 

though, to suppose that anything like a full identification of any element of Æ could be effected 

using only elements of the models of CCM (viz., ‹P, T, ℝ, m, v›). Both the ontology of CCM 

(particles and time instances) and its fundamental relations (mass and velocity) are insufficient 

for the task, even given arbitrarily many power-set and Cartesian product applications. We could, 

of course, expand the family of models in the putative reduction base to include as well those of 

Newtonian particle mechanics (since CCM is connected to NPM via a homogeneous ORL) or, 

more controversially, quantum mechanics, adding to our basal ontology such further elements as 

states, wavefunctions, and fields and to the superset of basal relations spin, charge, and many 

others. The problem with this strategy is that the resulting reduction base would now satisfy 

many more laws, the vast majority of which will not have structural analogues in EME. The 

global ismorphism between the two theories, then, would be lost. 
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 Further, even if an identification or some other suitably strong ontic connection could be 

established between economic actors and systems of particles specifiable using only the re-

sources of CCM, this would not provide evidence of any overlap in the intended empirical appli-

cations of the two theories. It is not (merely or directly) in virtue of being composed of particles 

that economic actors follow a law analogous to that of the conservation of momentum. That is to 

say that the putative mereological connection between the two ontologies would not permit ex-

planations of the behavior of economic actors couched solely in terms CCM in the way that the 

identification of rigid bodies with systems of Newtonian particles permits explanations of the be-

havior of rigid bodies couched solely in terms of NPM. The ontological link, if such there be, 

would not be an Ontological Reductive Link. The intended empirical applications are simply far 

too disjoint. 

3.4   ORLs and structural realism 

 If ORLs can be used to overcome Schaffner’s version of the Newman Problem, can they 

likewise be deployed against the version faced by the structural realist? One might initially sus-

pect that the structural realist is barred from availing herself of ORLs, given that her epistemic 

commitments cannot by definition go beyond the structure of a theory and that structure’s gener-

ating relations. Recall, however, that the elements of OR are not individual objects but kinds2. I 

believe a structural realist may advert to these elements if they are conceptualized under a non-

essentialist reading of kinds, subject to an important constraint. 

                                                 
2 Moulines resists referring to the kinds connected in an ORL as natural kinds, claiming he has “never found a con-

vincing, clear-cut criterion to distinguish natural from non-natural kinds…” (2006, p. 315). I will follow suit here, 

since I suspect a good number of the objects of present scientific study (particularly in the social or other special sci-

ences) do not qualify as natural kinds under most definitions presently on offer. I will therefore omit any mention in 

what follows of Boyd’s (1991) homeostatic causal mechanisms or similar such requirements property-cluster kinds 

are commonly regarded as needing to satisfy in order to qualify as natural kinds. 



32 

 

3.4.1   ORL anchors as (relational) property-cluster kinds 

 On property-cluster accounts, such as those developed by Boyd (1991) and Millikan 

(1999), membership in a kind is determined not by the satisfaction of certain necessary or suffi-

cient conditions, but by the possession of a number of properties shared among other members of 

the kind. Approaches may here diverge, with some treating kind membership as bivalently con-

ditional upon the possession of a minimal number of the shared properties and others treating 

kinds like fuzzy sets admitting of graded membership according to the number of shared proper-

ties possessed. Either view seems acceptable as far as the structural realist’s aims go. What is 

crucial for her is that she appeal exclusively to relational properties in her determinations of kind 

membership; any putatively intrinsic properties are verboten. 

 Are relational properties alone sufficient to delimit (however fuzzily) a scientifically in-

teresting kind? In the vast majority of cases, I suspect so. All so-called “functional kinds”—com-

mon in the ontologies of the biological and social sciences—are already specified relationally. 

Even many fundamental physical properties admit of relational characterization. The mass of a 

body, for example, may be given by the degree to which it deforms its surrounding spacetime. 

The charge of a particle may be known by the amounts of attractive and repulsive forces it exerts 

on other particles. In fact, any measurable property admits of a minimal relational characteriza-

tion of the form: “…induces state x in instrument y.”3  

 Kinds, then, on a structural realist reconstruction, are clusters of relational properties—

hubs, we might say, of structure-generating relations. To show that a kind K in OR is connected 

                                                 
3 A theory-wide application of the relational reconstruction of kinds may be reckoned as a sort of model-theoretic 

analogue to the Ramseyfication procedure discussed in §1.2. 
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to some construct of EF in an ORL, then, one would need to show that the construct is capable of 

instantiating all (or at least some requisite percentage) of the relations by which K is picked out. 

This determination will be a largely empirical matter, facilitated to the extent that the intended 

applications of the two theories in which K and the construct figure overlap. 

3.4.2   The problem of unintended models solved 

 For any predecessor/successor theory pair for which the structural realist wishes to claim 

continuity, then, she must demonstrate two things: (1) that a Suppes-style reduction obtains be-

tween the two theories, subject to the additional formal constraints discussed in §3.2.1; and (2) 

that an ORL obtains between the two theories. Traditional Worrallian structural realism goes 

only as far as (1), leaving it vulnerable, as we’ve seen, to the Newman-esque “problem of unin-

tended models” (French & Saatsi, 2005). The existence of an ORL shows that the structural con-

tinuity between the theories is more than a trivial artifact of their cardinality and set-theoretic 

conceptualization. It shows that the theories are continuous because they pick out common rela-

tions (ensured by the local substitutions of which the ORL is comprised) in a common phenome-

nal domain (ensured by the theories’ overlapping intended empirical applications). 

 It might be tempting to suppose that the incommensurability thesis on which the PMI 

rests amounts to just the denial that ORLs tend to obtain interparadigmatically, and that, there-

fore, the structural realist adopting the above strategy is doing little more than begging the ques-

tion against the Laudanian anti-realist. Consider Worrall’s preferred interparadigm theory pair: 

Fresnel’s optics and Maxwell’s electromagnetism. Does not the abolition of an elastic mechani-

cal ether in the latter suggest that no ORL obtains between them? Not, I think, on the relational 

property-cluster account of kinds given above. Worrall writes:  
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[F]rom [the vantage point of Maxwell’s theory], Fresnel’s theory has exactly the right 

structure—it’s “just” that what vibrates according to Maxwell’s theory, are the electric 

and magnetic field strengths. And in fact if we interpret I, R, X etc. [i.e., the intensities of 

the various components of unpolarized light] as the amplitudes of the “vibration” of the 

relevant electric vectors, then Fresnel’s equations are directly and fully entailed by Max-

well’s theory. (1989, p. 119) 

This is to say, in the terms of the German structuralists, that what was really doing the 

work in Fresnel’s theory—what was anchoring all the essential structure-generating relations—

was some construct composed of electromagnetic fields, real numbers, and various relations as-

signing real numbers to those fields and to changes in the real numbers assigned to those fields. 

Does this mean that the ether has been, in some substantive sense, preserved under a new defini-

tion (given by Maxwell’s theory)? No; at least, not on a scale beyond the intended applications 

of Fresnel’s optics. As a metaphysical background assumption and as an element in the ontology 

of many other theories cotemporaneous with Fresnel’s, the ether had a great deal of content be-

yond what Fresnel’s theory alone assigned to it. In what we may call its supratheoretical totality, 

this ether is rightly now regarded as a fiction. But the subset of its relational properties on which 

Fresnel’s equations depended for their empirical adequacy may be regarded as preserved in the 

form of the above-described construct in Maxwell’s theory. For this reason, the structural realist 

may regard Fresnel’s more minimal “ether” as ontologically linked to Maxwell’s theory while 

maintaining an appropriately eliminitivistic stance toward ether in the broader, supratheoretical 

sense. 

The above concern aside, it will likely prove desirable to have an account of partial or ap-

proximate ORLs for cases in which not every kind in the ontology of the predecessor theory is 
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preserved in the strict sense of having every putative relational property instantiated by some 

construct of the successor theory. This will be the case whenever the successor theory corrects 

the predecessor theory to some extent. Perfectly smooth Nagelian reductions are, in fact, the rare 

exception in science; most recognized reductions, whether synchronic or diachronic, are at least 

somewhat revisionary.  

This fact may complicate the structural realist’s response to the Laudanian anti-realist, for 

she will need to modulate her credence in any extant theories in proportion to the completeness 

of the ORLs in which they enter4. Two broad strategies suggest themselves: (1) The structural 

realist may attempt to defend a global scientific realism in the spirit of the definition given in 

§1.1 by showing that scientific progression is better characterized by a pattern of significant 

ORL-mediated intertheoretic continuity than by a pattern of radical elimination and replacement; 

(2) Alternatively, she may assess the relative prevalence of the two patterns more locally—at the 

level of individual scientific fields, or even individual theory “lineages”—and tailor her realist 

commitments accordingly. This may ultimately require her to adopt anti-realist stances toward 

particular theories and even whole sciences, but as long as a pattern of continuity prevails in 

some empirical domains, she can resist the global anti-realism toward which the PMI, in its 

strongest form, is supposed to compel her. 

  

  

  

                                                 
4 For this and for other reasons, I suspect a reconstruction of the structuralist account of reduction within fuzzy set 

theory would be immensely helpful, though that is a project for another day.  
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CONCLUSIONS 

We have seen that the problem Newman identified in Russell’s structural realism, its in-

tertheoretic parallel in Worrall’s structural realism, and the problem Schaffner identified in 

Suppes’ model-theoretic account of reduction are all species of a common genus: what I have 

been calling the Generalized Newman Problem. Underlying each is the core difficulty that, 

where models and the theories they compose are characterized purely set-theoretically, their 

structure will be underspecified by their elements. While some philosophers cognizant of this 

problem have urged a shift to a different formal framework within which to characterize sci-

ence’s representational vehicles (Landry, 2007; see also van Fraassen, 1972), I have attempted to 

show that the problem may be obviated from within a set-theoretic framework by supplementing 

the purely formal relation of inter-model isomorphism with the semiformal Ontological Reduc-

tive Links developed by the German structuralists. 

ORLs do not constitute a silver bullet against all anti-realist worries. They do, however, 

furnish a framework within which the structural realist can provide a variety of nuanced re-

sponses to the PMI while avoiding Newmanesque charges of triviality.5 In §1.4.2, we noted that 

French and Saatsi (2005) attempt to circumvent these charges by appealing to “contextual infor-

mation.” They argue that no science has ever given a purely structural presentation of any theory 

but always a presentation couched within a particular language having determinate referents for 

competent speakers of that language. I found this appeal unsatisfactorily vague, but I believe the 

                                                 
5 It should not escape notice that the benefits of ORLs are available to the traditional scientific realist as well. The 

Worrallian structural realist may therefore be reluctant to endorse their use, for such an act would seem to undercut 

the “downward path” to structural realism (Psillos, 2001) and weaken its case against traditional realism even while 

fortifying it against their common Laudanian nemesis. I do not find this an especially worrisome bullet to bite, for I 

think structural realism’s principal advantage over traditional realism has always been, as Russell rightly glimpsed, 

its greater epistemic humility. 
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application of ORLs to the SR version of the GNP may permit us to say in a more precise way 

what this contextual information consists in. What are crucial for fixing the correct models in the 

relevant structural morphisms are the intended empirical applications of the theories in which the 

models figure. These applications specify the relations and relational properties by which the em-

pirical base sets in each model are picked out. They thus ensure that two isomorphic models in a 

predecessor/successor theory pair are not just structurally continuous, but “ontologically” (qua 

relationally) continuous as well. 
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