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ABSTRACT 
META-DIDACTICAL SLIPPAGES: A QUALITATIVE CASE STUDY OF 

DIDACTICAL SITUATIONS IN A NINTH GRADE 
MATHEMATICS CLASSROOM 

by 
Nathan J. Wisdom 

Research on the mathematical behavior of children over the past forty decades has 

considerably renewed and augmented the body of evaluative tests of the results of 

learning (Lester, 2007). Research however, has provided very little knowledge about the 

means of improving students’ performance on these tests. Nevertheless teachers, 

students, and others are being pressured to improve students’ performance, but in order to 

concentrate on basic skills, the learning itself is made more difficult and slower. The 

combination of requirements has led to a variety of uncontrolled phenomena such as 

meta-didactical slippage (Brousseau, 2008). 

The purpose of this study was to: (a) understand the nature of meta-didactical 

slippage that occurred in a ninth grade predominantly African American mathematics 

classroom; and (b) describe how these meta-didactical slippages affect students 

conceptual understanding on a unit of study of ninth grade mathematics. The study was a 

descriptive, qualitative, case study that employed ethnographic techniques of data 

collection and analysis. The theory of didactical situations in mathematics (Brousseau, 

1997) served as the theoretical lens that grounded the interpretation of the data, because it 

enabled the researcher to isolate moments of instruction, action, formulation, validation, 

and institutionalization in the mathematics teaching and learning process. The study was 

conducted over a period of 15 weeks in one, ninth grade class of 23 predominantly 

African American students at a high school in a southeastern state. Data was crystalized 

using multiple data collection techniques: (a) collection of document artifacts, which 



	  

	  

included student work samples and teacher lesson plans; (b) interviews conducted with 

the teacher; (c) researcher introspection; and (d) direct observation. Data was analyzed 

using ethnographic and discourse analysis techniques, including domain analysis, coding, 

situated meaning, and the big “D” discourse tool. The study found four themes, which 

illustrated the nature meta-didactical slippages: (a) over-teaching, (b) situational bypass, 

(c) language and symbolic representation, and (d) the design of didactical situations. 
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CHAPTER 1 

INTRODUCTION 

This dissertation is a report of a qualitative case study of meta-didactical slippages 

that occurred in one, ninth grade mathematics classroom. The study was based primarily 

on the direct observation of the interaction between the teacher and students as they 

engaged in the teaching and learning process. This first chapter of the dissertation 

presents the background of the study, specifies the problem of the study, presents the 

research questions that guided the study, and describes its significance. The chapter 

concludes by presenting an overview of the theoretical framework, and defining special 

terms used. 

Background of The Study 

 Mathematics teaching is a complex practice, because teachers have to balance 

multiple goals and constraints as they decide “how to respond to students’ questions, how 

to represent a given mathematical idea, how long to pursue discussion of a problem, or 

how to make use of available technologies to develop the richness of an investigation” 

(Martin & Herrera, 2007, p. 18). Mathematics teachers are also responsible for 

developing students’ mathematical reasoning skills. Mathematical reasoning or learning 

occurs within a context that is determined by a set of implicit and explicit rules, 

circumstances, and interactions among several systems such as the teacher system, the 

student system, and the milieu (Brousseau, 1997). Despite these complexities, a 

significant responsibility is placed on the teacher to ensure that students are able to do 

mathematics. Thus mathematics teachers have to create meaningful didactical situations, 

in order to facilitate the process of doing mathematics. Nevertheless, it is in the didactical 
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situations that complexities and inherent difficulties of the teaching and learning process 

occur.	  

According to National Council of Teachers of Mathematics (NCTM) 

(Mathematics, 2000), “a significant challenge to realizing the vision portrayed in 

Principles and Standards is disengagement” (p. 371). Moreover, disengagement is often 

reinforced in both overt and subtle ways by the attitudes and actions of adults who have 

influence over students. For instance, in a study on the influence of classroom practice on 

the development of subject-matter understanding, Schoenfeld (1988) argued that “despite 

the fact that the class was well taught, and the students did well on relevant performance 

measures, the students learned some inappropriate and counterproductive conceptions 

about the nature of mathematics, as a direct result of the instruction” (p. 146). Research 

carried out on the teaching of rational numbers during the period 1970-1980, uncovered 

several phenomena connected with the teaching and learning of mathematics (Brousseau, 

1997). These phenomena which occur from the interplay of relationships and constraints 

between the teacher, students, and mathematical content may produce certain unwanted 

effects (e.g. the Topaze effect, the Jourdain effect, the Metacognitive shift, the aging of 

teaching situations, the improper use of analogy, and the meta-didactical slippage. A 

definition of these terms is provided in an upcoming section) (Brousseau, 1997, 2008; 

Brousseau, Brousseau, & Warfield, 2009). Although these effects are inappropriate for 

the learning, they are often inevitable, and sometimes unknown (Brousseau, 2008; 

Schoenfeld, 1988). 

Over the past 15 years, I observed mathematics classes taught in three different 

countries by both veteran and novice teachers. I also reflected on my own teaching and 

found several instances of these unwanted effects in my mathematics classroom. 
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Moreover, a number of studies reported that students in mathematics classrooms are not 

engaged in doing mathematics (Attard, 2012; Brown, 2009; Hiebert, 2003; Mathematics, 

2000). They are instead disengaged, which often leads to disruption, and failure. Hence, I 

agree with the vast call for reform, that there is a need for change in how, and what 

mathematics is taught. Closest to my heart is the issue of achieving a balance between 

conceptual understanding, and procedural fluency, because according to Hiebert (2003) 

“Well-designed and implemented instructional programs can facilitate both conceptual 

understanding and procedural skills” (p. 16). In this study, I argue that in order to 

improve students’ performance in problem solving situations, we need a better 

understanding of the didactical situations in the mathematics classroom. 

Problem Statement 

In a longitudinal, experimental study of the teaching of rational and decimal 

numbers, Brousseau et al. (2009) identified several phenomena that manifest during the 

teaching and learning sequences. One of these phenomena is the effect of meta-didactical 

slippage. According to Brousseau et al. (2009) a meta-didactical slippage is the 

replacement of a situation, by one of its meta-situation. In other words, the teacher 

teaches some alternate objective rather than the objective that was initially presented to 

the students. This phenomenon occurs primarily because teachers have the tendency to 

take all mathematics activity as an object of study and of teaching. This often leads them 

to intervene, and “replace an initial mathematical situation that would have permitted an 

authentic activity on the part of the student, by a study of the mathematical 

circumstances, and a lesson about that” (Brousseau et al., 2009, p. 113). The nature of 

these slippages is unknown, and its manifestation in the mathematics classroom is often 

undetected. For instance, in pointing out the difficulties associated with implementing 
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high-level tasks, Henningsen and Stein (1997) explained that these situations evoke in 

students a “desire for a reduction in task complexity that, in turn, can lead them to 

pressure teachers to further specify the procedures for completing the task” (p. 526). 

Additionally, Brousseau (2008) point out that it is possible to observe meta- didactical 

slippages that concern a whole society and extend uncorrected through many years. 

These slippages not only rob students of the opportunity to learn conceptual 

understanding of the content, but also limit students’ engagement in the mathematics 

classroom. 

Student engagement has been problematized in school meetings, professional 

development meetings, and research reports. For example, Sowder and Schappelle (2002) 

provided summary reports of several researches, conducted on a variety of educational 

problems. These reports consisted of research related to teaching, learning, curriculum, 

assessment, and technology. In each category of research, there were important lessons to 

be learned that can inform the teaching of the classroom teacher, but they all report a lack 

of student engagement in the mathematics classroom. In Sowder, and Schappelle’s 

(2000) research synthesis, the persistent, and common theme of student engagement, 

essentially stated that students in mathematics classrooms are not engaged, was too 

strong to ignore. Student engagement however was not explicitly studied, and most of the 

claims about student engagement were made in the discussion, or implication sections of 

the reports. Additionally, the claims about student engagement in mathematics were 

made on the basis of classroom observations. Classroom observations, according to 

(Brousseau, 2008) reveled disastrous consequences, one of which is meta-didactical 

slippage. Moreover, the process through which stakeholders enact these consequences is 

recursive: failures provoke the proliferation of standardize testing; and the reinforcement 
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of inadequate teaching methods (Brousseau, 2008). Thus, in the absence of sufficient 

knowledge about the process of teaching, meta-didactical slippages occur even though 

they produce effects contrary to the didactical objective. Research on meta-didactical 

slippages is very sparse. This paucity of research should be addressed if we are to 

understand the impact of meta-didactical slippages in the mathematics classroom. Thus, 

the purpose of this case study is to: (a) understand the nature of meta-didactical slippages 

that occurred in a ninth grade predominantly African American mathematics classrooms; 

and (b) describe the affects of theses meta-didactical slippage on a unit of study of ninth 

grade mathematics. 

Research Questions 

The following questions guided the study: 

1. What is the nature of meta-didactical slippages that emerge in the practice of 

teaching mathematics? 

2. In what ways do these slippages affect students’ conceptual understanding of 

a unit of ninth grade mathematics? 

Significance 

This study has theoretical and practical significance. First, this study used a 

theoretical framework (see next section) that is rarely used in the mathematics education 

research literature. English (2002) attributed this paucity to the fact that researchers using 

the theoretical framework are predominantly from France or Spain. Consequently, the 

bulk of the literature is not in English. This study explicates the theory of didactical 

situation in mathematics and provides an example of how it may be applied to increase 

understanding of didactical situations. Research showed that understanding didactical 

situations in the mathematics classroom is valuable to both mathematics teachers and 
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mathematics education researchers (Brousseau et al., 2009; Bussi, 2005; Schoenfeld, 

1988; Sowder & Schappelle, 2002). Schoenfeld (2012) described didactical situations as 

situations that support student engagement with rich mathematics. Additionally, when 

students engage in these rich mathematical and pedagogical situations, they develop deep 

understanding of the mathematics (Schoenfeld, 2012). Therefore, this study adds to the 

body of theoretical literature on the didactics of mathematics. Furthermore, findings from 

this study increased our understanding of the phenomenon of meta-didactical slippages 

that occurred in the mathematics classroom. 

Secondly, this study was conducted in a “real-life” mathematics classroom. The 

majority of classroom research analyzed test scores, as the major source of data. This 

study used focus ethnographic observations, which incorporated videotaping. This 

allowed a more fine-grained analysis of a very complex and nuanced setting using 

classroom situations as the unit of analysis. Thus, this study adds to the methodological 

literature on didactical situations in mathematics classroom. 

The findings from this study are also significant to practitioners, because it helps 

to heighten mathematics teachers’ awareness of the phenomenon of meta-didactical 

slippages in the mathematics classroom. This increased awareness of the phenomenon 

can positively influence teachers’ didactic decisions as they plan and implement 

mathematical lessons. 

Finally, this study focused on the nature of meta-didactical slippages. Therefore, 

special focus was on the genesis, the affordances, and the characteristics of the 

phenomenon. This type of analysis helped to illuminate the phenomenon so that 

practitioners can be better prepared to deal with the effects of meta-didactical slippages in 

the mathematics classroom. It has been argued that the phenomenon occurs primarily 
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because teachers have the tendency to take all mathematics activities as an object of 

teaching, which often leads them to intervene and “replace an initial mathematical 

situation that would have permitted an authentic activity on the part of the student, by a 

study of the mathematical circumstances” (Brousseau et al., 2009, p. 113). Ultimately, 

this study will help to improve the teaching and learning of school mathematics. 

Theoretical Framework 

This study draws upon Guy Brousseau’s theory of didactical situations in 

mathematics (TDSM). The TDSM framework includes specific grammar with specific 

meanings, for terms such as didactical situation, adidactical situation, didactical 

contract, milieu, and didactical transposition (Brousseau, 1997).  

Brousseau (1997) argued that TDSM assumes that the way in which an individual 

progresses from using natural thought to using logical thought, which is associated with 

mathematical reasoning, is accompanied by construction, rejection, and the use of 

different methods of proof. Methods of proof could be rhetorical, pragmatic, semantic, 

and syntactic. Furthermore, providing the child a chance to discover errors is necessary 

for the construction of knowledge. Drawing from Piaget’s ideas of knowledge 

construction, Brousseau (1997) adds that knowledge is constructed through involvement 

with the milieu, particularly after the start of schooling. Constructing mathematics is 

primarily a social activity and not an individual one. In this regard, Sriraman and English 

(2010) argue that TDSM espouse a social constructionist epistemology. 

Components of TDSM  

TDSM is comprised of five major “situations”: situation of instruction, situation 

of action, situation of formulation, situation of validation, and situation of 

institutionalization. Each situation determines different types of knowledge, such as 
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implicit models, languages, theorems, and proofs. Before discussing each of these 

components, it is important to understand how these components operate together to 

achieve learning, in a fundamental situation. 

 To describe a fundamental teaching situation, Brousseau (1997) used the concept 

of a game which is specific to the target knowledge among different subsystems, such as 

the student system, the educational system and the milieu. The particular game used is so 

that the knowledge to be learned must appear as the solution to the problem or as the 

winning strategy. Moreover, the game must be designed to allow for multiple 

representations, and must provide a means for students to learn some form of the target 

knowledge. According to Brousseau (1997) didactics must allow for the construction of 

meanings to these multiple representations (or strategies) and for the explanation and 

prediction of the effects of these meanings on the type of learning that they allow the 

student to acquire. 

The notion of a game is commonly used, for example in economics, to model 

situations in which intelligent individuals interact with one another in an effort to achieve 

their own goals (Rabin, 1993). Often times an individual’s goal for playing is pleasure 

seeking. Thus playing the game provides pleasure for the player. According to Brousseau 

(1997) five definitions are required in order to model the notion of a situation with that of 

a game (see Table 1). 
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Table 1 

Definitions of the Notion of a Game 
Definition 
Number Definition Statement 

1 

The entirely free physical or mental activity generally based on 
conventions or fiction, which in the mind of the one who perform this 
activity has no other purpose than “itself”, no other goal than the pleasure 
it provides. 
 

2 The game is the organization of this activity within a system of rules 
defining a success and a failure, a gain and a loss 
 

3 
The instrument of the game, or whatever is used for playing the game, 
and occasionally one of the states of the game, determined by a particular 
setting of the instrument 
 

4 The way that one plays, “the play”. Tactics or strategies for cases where 
procedure is involved. 
 

5 The set of positions from which the player can choose, in a given state of 
the game (following definition 2) 

Note. Adopted from “Theory of Didactical Situations in Mathematics” by G. Brousseau, 
1997, pp. 48-49. 
 

The first definition essentially presents a person that is capable of taking pleasure 

in doing a real world activity. The decision to participate in a mathematical activity is 

motivated by pleasure, which is very problematic in the context of ninth grade 

mathematics, because mathematics is a compulsory subject. Nevertheless, knowing 

mathematics can be personally satisfying and empowering because everyday life is 

increasingly mathematical and technological (Mathematics, 2000). Furthermore, 

according to Mathematics (2000) mathematics is a part of cultural heritage, and that there 

is a great need to understand and be able to use mathematics in everyday life and in the 

workplace. 
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Figure 1. The relationships among the different definitions. Adopted from (Brousseau, 
1997, p. 49) 
 

It is worth noting that the different components of TDSM are best understood by 

examining the relationships among the different definitions (see Figure 1). The first 

component is a situation of instruction (Brousseau, 1997). Using the game metaphor, the 

initial entry to the game is done by the teacher giving instruction on the rules of the game. 

In Figure 1, this instruction phase would be at Definition 2. For example in the game of 

chess, the teacher instructs the class on the different pieces of the game, the rules for 

moving the pieces, and the object of the game. That is to say, how do you know when the 

game is won or is lost. This stage should not contain any new words, nor any new 
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knowledge (Brousseau, 1997). It is assumed that the students understand the terms used 

in this phase. 

According to TDSM, teachers must transpose the authentic practice of 

mathematicians into classroom contexts (Definitions 2-5). This is process is called 

didactical transposition (Brousseau, 1997). In the classroom setting, it is assumed that 

the students will acquire mathematical knowledge and skills, which they will in turn use 

to participate in doing mathematics. Acquired mathematical knowledge can appear in 

many different forms (D. Tirosh, 1999). Knowing mathematics is not simply learning 

definitions and theorems in order to recognize when to use them and apply them. An 

authentic reproduction of a mathematical object by the student would require the student 

to produce, formulate and prove new mathematical ideas. An authentic reproduction also 

requires the student to construct models, languages, concepts, and theories. In order to 

facilitate this activity, the teacher must plan and present to the students situations within 

which they can live, and within which the knowledge will appear as the optimal and 

discoverable solution to the problem posed. These simulated situations are called 

didactical situations (Brousseau, 1997). 

Didactical situations in TDSM are representations of a real world situation, which 

have no teaching context or intension. The didactical situation is contrived by the teacher 

in order for the students to gain the knowledge and skills necessary to solve a similar 

problem in its real life context. It is the real world or adidactical situation that 

characterizes the knowledge at stake, thus the teacher must always help the student to 

“strip the situations of all the didactical artifices, as quickly as possible so as to leave her 

with personal and objective knowledge” (p. 31). 
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The next component of TDSM is a situation of action. In this phase the student 

begins to play. When the opponent plays, the student must analyze the situation and draw 

information from it, which then leads to decision-making and action. After each move, 

the situation is modified, and the student must continue to learn from the situation. The 

space in which this learning occurs is called the milieu. In TDSM, the milieu is 

everything that acts on the student, or everything that the student acts on within a 

situation of action. It is important to note that the teacher is a part of the milieu. 

 In the milieu, there are implicit rules that determine what each partner, the 

teacher and or the student will be responsible for managing. There are also implicit rules 

that determine what responsibility each partner has to the other person. This system of 

reciprocal obligation is called a didactical contract. This contract is not a real contract; it 

has never been contracted in any form between the teacher and the student. However, 

according to TDSM the breaking of this contract has serious consequences. The issue of 

the didactical contract will be addressed in an upcoming section. 

The third component of TDSM is a situation of formulation. In order to win a 

game such as chess, it is not sufficient to just know the rules of the game. The student 

must begin to anticipate oppositions or problems. They must be conscious of the set of 

strategies that he or she can and would use. Consequently, the student must formulate 

these strategies and apply then within the game. These strategies, if validated, will 

become part of the student’s repertoire of strategies. According to Brousseau (1997) the 

student is subject to two types of feedback: an immediate feedback at the time of 

formulation from the teacher or other students in the class (who show that they do or do 

not understand the suggestion) and a feedback from the milieu at the time of the next 

round of play to determine whether the formulated strategy was a winning strategy or not. 
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A fourth component is a situation of validation. After formulating a set of 

strategies, the reasons that the students give to convince another student, or the teacher 

“must be drawn out progressively, constructed, tested, formulated, discussed and agreed 

upon” (Brousseau, 1997, p. 15). Furthermore, doing mathematics involves more than 

simply receiving, learning, and sending correct mathematical messages. It is not just 

getting a right answer to a problem. Therefore the child should not only know 

mathematics, but must also be able to use mathematics as a reason for accepting or 

rejecting a proposition, a theorem, a strategy, or a model. This activity requires an 

attitude of proof. According to TDSM, this attitude is not innate, and therefore it must be 

developed and sustained by particular didactical situations. Table 2 summarized the 

major observed behaviors in the different situations. Table 2 also provides researchers 

and mathematics teachers an instrument to classify observed behaviors in the classroom, 

according to the type of knowing that is manifested and the specific situation in which the 

behavior occurs. 

The final component is a situation of institutionalization. In TDSM 

institutionalization is the process by which a social knowledge become persistent, and 

exist as cultural facts. In institutionalization, the teacher selects an assign status to those 

parts of the learning that has been validated, and or valued. The teacher then ensures that 

the students practice these skills so that the knowledge becomes a permanent part of the 

students’ culture. 
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Table 2 

Observed Behaviors Classified by type of Situation and Knowings 

Types of 
knowings 

Types of Situations 
Situation of 
Action 

Situation of 
formulation  

Situation of 
validation 

Situation of 
institutionalization 

Procedure Know-how. 
Implement the 
procedure; 
choose it in 
preference of 
another 

Detailed 
descriptions 
Designation 

Justification of 
the relevant 
procedure which 
is adequate 
correct and 
optimal 

Canonization of the 
procedure and 
algorithm) drill and 
practice) 

Implicit model 
Property 
Relation 
Representation 

Make choices 
make decisions 
motivated by 
the related 
knowing 
without being 
able to 
formulate it 

 Contingent 
proof; 
Experimental 
proof; 
Proofs by 
exhaustion 

 

Knowings 
Statement 
Theory 

Apply a 
knowing; the 
knowing could 
be formulated 

Statement of the 
property or of the 
relationship. 
More correct 
formulation 

Proofs; 
Mathematical 
proofs; 
More convincing 
translation; 
Organization; 
Axiomatization 

Canonization of a 
theory, of a 
knowing; 
Didactical 
transposition 

Language Use language 
for explaining. 
Behavior shows 
a division into 
objects 
corresponding 
to signs and 
words 

Use of a 
language of a 
formal system, of 
a formation for 
communicating, 
speaking know- 
how 

Justification of a 
word of a 
language, of a 
formal model 
(relevance, 
adequacy, 
optimization) 
definitions; 
Metalinguistic 
activities 

Choice of 
definitions, 
linguistic and 
grammatical 
conventions 

Note. Adopted from “Theory of Didactical Situations in Mathematics” by G. Brousseau, 
1997, p. 216. 
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Definition of Terms 

The following definitions were adopted from (Brousseau, 1997) and are 

applicable to this study: 

Institutionalization. This term refers to the teacher defined set of allowable 

relationships, between the students’ mathematical construction, the scientific knowledge, 

and the didactical project. In other words the teacher gives status to the students’ 

mathematical productions, and ensures that the students practice these skills.  

Adidactical situations. Adidactical situations are situations that allow the student 

to use mathematical knowledge outside of a teaching context. These are social, or cultural 

problems that exist in a real live context, devoid of any teaching and learning intentions. 

Didactical situations. Didactical situations are mathematical tasks that the 

teacher contrives in order to model real life situations. The target knowledge is 

represented as a solution to this task. The teacher usually instructs the students using a 

variety of techniques, and usually controls the situation. 

Knowings. These include individual intellectual cognitive, often unconscious, 

constructs. 

Connaissance. This term refers to socially shared and recognized cognitive 

constructs, which must be made explicit (knowledge). 

Savoir. A collection of knowings required to interpret and recognized 

connaissances. These knowings could be described as ‘knowing how’, in the sense that 

when you know how to solve a problem, you can know the solution to the problem. 

Meta-didactical slippage. Whenever the teacher takes a means of teaching as a 

new object to be taught; either the whole situation, part of the situation, or the resolution 

of the situation (Brousseau, 2008). 
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Perceived failure. When the students explicitly expressed disagreement with, or 

lack of understanding of the target objective of the lesson (can also be manifested by 

incorrect solution, or justification to problems in student work)  

Milieu. The middle space, or entire learning environment including the didactical 

situations, that sustains the teaching and learning process.  
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CHAPTER 2 

LITERATURE REVIEW 

This review provides an overview and synthesis of the research relating to 

didactical situations in the mathematics classroom. The review further explicates the 

didactical contract in the teaching and learning endeavor, as well as delineates the 

historical development of TDSM. The literature review also seeks to answer these 

specific questions: 

1) What methodologies are used in studies on didactical situations in 

mathematics? 

2) What are the findings related to the ways teachers and students construct 

knowledge in the classroom context? 

3) What gaps emerge in the existing literature as it relates to both the 

methodologies, and TDSM?  

Background 

Schools in general, mathematics classrooms in particular, are the primary 

institutions for individuals to become acculturated into the complex web of human 

competence and social network of the mathematical community. Researchers studying 

the mathematics classroom identified complexities and pointed out the need for deep 

understanding of the teaching and learning process in the mathematics classroom 

(Balacheff, 1990; Brousseau, 1997; Brousseau et al., 2009; Brousseau & Gibel, 2005; 

Brousseau & Warfield, 1999; Cobb, Wood, Yackel, & McNeal, 1992; Cobb, Yackel, & 

Wood, 1992; Devichi & Munier, 2013; G. Harel & Koichu, 2010; Herbst, 2003; 

Margolinas, Coulange, & Bessot, 2005; McNeal & Simon, 2000; Nunokawa, 2005; 

Schoenfeld, 2012; Steinbring, 2005). Guy Brousseau (1997) developed the theory of 
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didactical situations in mathematics while conducting research and classroom 

observations over a number of years. In reviewing the literature, I focused on the 

interplay between the teacher, the student, and the mathematical content, in what 

Brousseau (1997) calls the “didactical situation”. 

The review is organized as follows: (a) The literature search strategy employed to 

locate relevant literature; (b) a description of didactical situations, (c) the complexities 

that occurs in didactical situations, (d) types of knowledge, (e) mathematical objects, (f) 

the dominant methodologies that was used in studying didactical situations in 

mathematics, (g) strengths and weaknesses of the methodologies used in the literature, 

and (h) gaps in the literature. Finally, there is a summary of salient issues in the review. 

Literature Search Strategy 

Following procedures outlined by Garson (2012) , a systematic review was 

conducted in January 2013, with the purpose of identifying articles and books bearing 

directly on the nature of meta-didactical slippages in mathematics teaching and the 

consequences that they have on students’ conceptual understanding of mathematics. A 

two-stage strategy was pursued involving an expert chain-of-citations approach followed 

by a keyword-based computerized search of the literature. In both stages, all years were 

searched with no publication date limit. 

In the expert chain-of-citations stage, faculty and researchers known to me were 

consulted for recommendations of articles or books dealing with the research topic. This 

resulted in a list of three books and one article. Each of these four sources was examined 

to identify further citations related to the topic and to identify keywords useful for 

subsequent computer searches. When a citation was identified, it was used in the same 

manner to identify further citations. To limit the chain-of-citations search, the process 
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was allowed to branch three levels deep. At the end of this stage, a total of 6 books and 

25 articles were identified dealing directly with didactical situations in mathematics. 

The computerized search stage employed keywords derived from the chain-of- 

citations stage and from my research questions. Keyword searches involved a word from 

each of three word groups: (1) Didactic of mathematics, (2) mathematical knowledge, 

and (3) Common misconceptions. Keyword searches were then undertaken using six 

databases: (1) Academic Search Complete, (2) ERIC, (3) JSTOR, (4) PsycINFO, (5) Web 

of Science and (6) the GSU Library. 

Didactical Situations 

Schoenfeld (2012) described didactical situations as situations that support 

student engagement with rich mathematics. Furthermore, the author explained that when 

students engage in these rich mathematical and pedagogical situations, they develop a 

deep understanding of the mathematics (Schoenfeld, 2012).  For Brousseau (1997), 

didactical situations are representations of real-world situations which have no teaching 

context or intention. Brousseau referred to the real-world situations as adidactical 

situations. The didactical situation then is contrived by the teacher in order for the 

students to gain the knowledge and skills necessary to solve a similar problem in its real 

life context. It is the real-world or adidactical situation that characterizes the knowledge 

at stake, thus the teacher must always help the student to “strip the situations of all the 

didactical artifices, as quickly as possible so as to leave her with personal and objective 

knowledge” (Brousseau, 1997, p. 31). Stripping a situation of all didactical artifices is 

better understood in light of Freudenthal’s thirteen major problems of mathematics 

education (Freudenthal, 1981), which was presented an the Fourth International Congress 

on Mathematics Education at Berkeley in 1980. Table 3 is a catalogue the problems. 
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Table	  3	  

Summary	  of	  Freudenthal’s 13 problems of mathematics education	  
Problem	  number	   Major	  Problem	  of	  Mathematics	  Education	  

1	   Why	  can	  Jennifer	  not	  do	  arithmetic?	  
2	   How	  do	  people	  learn?	  
3	   How	  to	  use	  progressive	  schematization	  and	  formalization	  in	  

teaching	  any	  mathematical	  subject	  whatever?	  
4	   How	  to	  keep	  open	  the	  sources	  of	  insight	  during	  the	  training	  

process,	  how	  to	  stimulate	  the	  retention	  of	  insight,	  in	  particular	  
in	  the	  process	  of	  schematizing?	  

5	   How	  to	  stimulate	  reflecting	  on	  one’s	  own	  physical,	  mental	  and	  
mathematical	  activities?	  

6	   How	  to	  develop	  mathematical	  attitude?	  
7	   How	  is	  mathematical	  learning	  structured	  according	  to	  levels,	  

and	  can	  this	  structure	  be	  used	  in	  attempts	  at	  differentiation?	  
8	   How	  to	  create	  suitable	  contexts	  in	  order	  to	  teach	  

mathematizing?	  
9	   Can	  you	  teach	  geometry	  by	  having	  the	  learner	  reflect	  on	  his	  

spatial	  intuitions?	  
10	   How	  can	  calculators	  and	  computers	  be	  used	  to	  arouse	  and	  

increase	  mathematical	  understanding?	  
11	   How	  to	  design	  educational	  development	  as	  a	  strategy	  for	  

change?	  
12	   Where	  can	  we	  find	  the	  nerve	  fiber	  to	  influence	  education?	  
13	   Educational	  research	  itself	  is	  a	  major	  problem	  of	  mathematics	  

education	  
Note. Adopted from “Major Problems of Mathematics Education” by Hans Freudenthal, 
1981, Educational Studies in Mathematics, 12(2).	  

 

Freudenthal’s list of thirteen problems are still unsolved, and according to Adda 

(1998), are still of interest to mathematics educators and researchers. Of particular 

interest to my study is “how to create suitable contexts in order to teach mathematizing?” 

(Adda, 1998, p. 50). I believe that mathematizing is a social activity. There is no simple 

solution to this problem, however, research on didactical situations tend to illuminate the 

problem in different ways. It is interesting to note that the problems are not independent. 

For instance, my interest in the eighth problem is interconnected with the second 
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problem. Further, the literature on didactical situations has exposed a number of 

complexities associated with mathematics teaching and learning. 

Complexities in Didactical Situations 

It is in the didactical situations that complexities and inherent difficulties occur. 

As stated earlier, mathematics teaching is a complex practice because teachers have to 

balance multiple goals and constraints as they decide “how to respond to students 

question, how to represent a given mathematical idea, how long to pursue discussion of a 

problem, or how to make use of available technologies to develop the richness of an 

investigation” (Martin & Herrera, 2007, p. 18). Several studies using the theory of 

didactical situations in mathematics as analytical tools point out the complexities of the 

teachers’ work in the classroom (Brousseau & Gibel, 2005; Brousseau & Warfield, 1999; 

Hersant & Perrin-Glorian, 2005; Kontorovich, Koichu, Leikin, & Berman, 2012). 

However, Brousseau (1997) explained several observed cases of the complexity of the 

teachers’ work. What follows is a description of some of the most salient cases from 

Brousseau’s work. 

The Topaze effect. The Topaze effect, named after a French play entitled 

Topaze, by Marcel Pagnol requires the teacher to obtain a predetermined answer from the 

student (Brousseau, 1997). When the student fails to produce the required answer, the 

teacher responds by asking probing questions. Determined to get the students to produce 

the right answer, the teacher chooses easier and easier questions to guide the students to 

the answer. As this process continues, the target knowledge sometimes disappears. 

Whenever and “if the target knowledge disappears completely, we have the Topaze 

effect”(Brousseau, 1997, p. 25). 
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An example of the Topaze effect can be seen in a study conducted by Robert and 

Rogalski (2005). In this study the authors conducted independent analyses of the same 

observed lesson using two different approaches; a didactical one based on the theory of 

didactical situations in mathematics, and a psychological one based on a socio- 

constructivist theoretical framework. Both analyses showed that tasks were fragmented 

into a number of sub-tasks, in order to lead students through a predetermined cognitive 

route. For instance the authors state: 

We have to stress first that all the tasks Ti were almost immediately followed by 
interventions from the teacher proposing a series of sub-tasks. This simplified the 
tasks for the students, and it forced them to use the formulas given in the lessons 
on absolute value (initial property, or the series of equivalences), in some cases 
while it was still in the process of being learnt (Robert & Rogalski, 2005, p. 277). 
 
The task of solving absolute value problems was reduced to finding a match with 

one of the equivalence relationships that was defined by the teacher, thus the knowledge 

at stake in the conceptual field of absolute value disappears at least partially if not 

completely. 

The Jourdain effect. The Jourdain effect is named after the main character in the 

French play entitled The Bourgeois gentleman, by Moliere (Brousseau, 1997). In the 

Jourdain effect, according to Brousseau, rather than acknowledging failure of a teaching 

attempt, the teacher accepts an incorrect answer as legitimate and validates the process 

through which the student obtained the answer. For instance, the teacher tries to teach the 

student a particular concept, but the student does not show any evidence of 

understanding. The teacher avoids debating the knowledge with the student and rewards 

the student for giving the trivial response. The teacher also legitimizes the student’s 

trivial answer as authentic mathematical activity.  
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The metacognitive shift. The metacognitive shift is a case where the teaching 

activity failed, but unlike the Jourdain effect, the teacher acknowledged the failure and 

respond by “shifting” the object of study from genuine mathematical knowledge 

(Brousseau, 1997). In some cases, the teacher may take his or her teaching method as the 

object of study. 

Improper use of analogy. Improper use of analogy is the effect whereby the 

teacher responds to a failed attempt by pointing the student to a similar problem 

(Brousseau, 1997). The student is able to solve the problem not by engaging with the 

problem per say, but by applying a familiar algorithm. For instance, the teacher replaces 

the numbers in a word problem that was presented as an example. The students easily 

recognize the problem as similar to the example, and replaced the new numbers in the 

example problem. The teacher accepts this solution as a legitimate indication that the 

student has learned the target knowledge. Thus the student is able to produce the correct 

solution because the problem conforms to a given model. 

The aging of teaching situations. The aging of teaching situations (Brousseau, 

1997) is another important effect of the teaching and learning process. This occurs 

because an exact reproduction of a lesson does not have the same effect, even if the 

students are different. The teacher, having experienced the interaction of the lesson with 

students, modified the lesson by either removing superfluous information from the 

problem or supplying missing information to the problem in order to limit the level of 

students’ uncertainty. 

 In a study to investigate the kinds of phenomena that can be reproduced when the 

same class situation is implemented in two different classes Arsac, Balacheff, and Mante 

(1992) wrote that their precautions which consisted of carefully presenting the situation 
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and the theoretical ideas behind it were  not sufficient to avoid difficulties in reproducing 

the lesson as intended. The difficulties were attributed to three main categories: (a) 

constraints, such as time or epistemological responsibility; (b) personal ideas of the 

teacher, such as ideas about proofs in geometry, or about management of the class; and 

(c) problems of control of the actual effects of micro-decisions of the teacher (Arsac et 

al., 1992). Due to the difficulty of the teacher to reproduce the lesson in its original form, 

it is not always known what really is being produced during the course of a lesson. For 

Brousseau, the object of didactique, is “knowing what is being produced in a teaching 

situation” (Brousseau, 1997, p. 29). What follows is a discussion of the different types of 

knowledge. 

Types of Knowledge 

The literature in mathematics education describe many different types of 

knowledge (English, 2002). For example, constructs such as relational, instrumental, 

conceptual, procedural, implicit, explicit, elementary, advanced, algorithmic, formal, 

intuitive, visual, situated, knowing that, knowing how, knowing why, and knowing to are 

discussed in the literature (Brousseau, 1997; English, 2002; Henningsen & Stein, 1997; 

Hiebert, Stigler, & Jacobs, 2005; Kilpatrick, 1992; Knuth, Stephens, McNeil, & Alibali, 

2006; Martin & Herrera, 2007; Mathematics, 2000; Sfard, 2003; Sinclair, 2010).The 

notion of knowledge, understanding, and knowing is very complex, but given its’ 

saliency in the literature, it is significant to both mathematics teachers and mathematics 

education researchers. 

The literature however, discussed these forms of knowledge as either a dichotomy 

or a continuum (Even & Tirosh, 2002). Each of these themes has for me a fundamental 

limitation in that they portray an “either-or”, or “both” philosophy. In either case, one 
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form is privileged over the other. The conflict between the perspectives of the different 

forms of knowledge only adds to the complexity of the teaching and learning process. 

A notable example of the conflict between different types of knowledge is 

Boaler’s three-year case study of two schools using different mathematics teaching 

approaches (Boaler, 1998). According to Boaler (1998), the Phoenix Park method is to 

encourage students to take responsibility for their own actions and to be independent 

thinkers. This teaching method was based on the philosophy that students should 

encounter a need to use mathematics in situations that were realistic and meaningful to 

them. This philosophy is echoed within the National Council of Teachers of Mathematics 

(NCTM) standards and the Common Core State Standard for Mathematics (CCSSM). 

Whereas it is probably not practical for most teachers to teach the Phoenix Park way all 

of the time, there are lessons to be learned from the Phoenix Park story. 

The first lesson is that the Phoenix Park students performed as well or even better 

on high stakes national tests as their peers. This is an extraordinary result because they 

did not place emphasis on test taking strategies and procedural fluency as their peers, yet 

they were still able to outperform their peers who spent a significant amount of time on 

procedural fluency and test preparation. Therefore, a lesson here is that, if mathematics 

teachers teach students to think and if students understand the mathematics, they are 

learning, and then they will do well on tests. Thus mathematics teachers do not need to 

spend so much time focusing on the test preparation. 

Another lesson from the Phoenix Park’s story is that students develop the desire 

and ability to think about mathematics, and represent mathematical ideas in multiple 

ways. According to Mathematics (2000) students should be encouraged to use multiple 

representations. The Phoenix Park story is an example of students using multiple 
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representations to solve problems. The students had a vested interest in their problems 

and a genuine desire for a solution. This in turn can result in student motivation and 

improved engagement. 

One important lesson that stood out to me in the Phoenix Park story was that any 

teacher can teach the Phoenix Park way. According to Boaler (1998), the teachers were 

not regarded as exceptional. The teachers were ordinary teachers with typical problems 

shared by teachers in any school. The teachers who participated in the study included 

“newly qualified” teachers, teachers with “classroom management issues,” and teachers 

that had difficulty fitting in with the process based approach. This means therefore, that 

to teach the Phoenix Park way is attainable in any school as long as there are a few hard 

working and committed teachers.  

Although Boaler’s work was notable for the findings, depth of analysis, and 

insights, I find the conflict between procedural knowledge and conceptual understanding 

very problematic and limited. The French tradition of mathematics education research 

provides a more broad meaning to the relationship between and among the types of 

knowledge. 

In the French tradition, two words emerged as significant in dealing with the 

different forms of knowing, connaissance and savoir. Connaissance and savoir both 

translate to “knowledge” from the Collins French-English dictionary, but they describe 

very distinct aspects of knowledge. These words form a kind of interdependent pair, 

which is essential in understanding the teaching and learning process. The English 

language does not have such word pairs to differentiate the different forms of knowledge. 

Understandably, this is probably the reason that only descriptions of these constructs are 

provided in the literature. 
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Connaissance and Savoirs 

 Connaissances are exposed when classroom situations or events provoke students 

to react. When students react by making declarations, reflecting, and learning, their 

intellectual activity is manifested (Brousseau, 1997; Brousseau et al., 2009). For 

Brousseau, what students do, their intensions, their decisions, their perceptions, their 

beliefs, their language, and their reasoning, reveals their connaissances. The reality 

however, is that “only one part of these connaissances is recognized as expressible, and 

expressed whether by the student, by other students, by the teacher, or by society” 

(Brousseau et al., 2009, p. 110). These connaissances are recognized with the help of 

reference connaissances, such as customs, language, established definitions and 

theorems, logic, beliefs, culture, etc. According to Brousseau (1997), these reference 

connaissances are the savoirs. 

Savoirs are the essential means of expressing connaissances. In other words, 

saviors are the skills, techniques, or devices used in a particular field or occupation. A 

student’s repertoire of savoirs may be different from that of other students. In order for 

the class to have effective communication, there must be a common repertory of savoirs 

(Brousseau et al., 2009). Furthermore, an environment of connaissance that makes it 

possible to use them connects savoirs. Any connaissances that are not connected by any 

savoirs will disappear (Brousseau et al., 2009). 

Connaissance and savoir do not implicate the binary or continuum relationship 

that is often discussed in the literature. For instance, “conceptual understanding” and 

“procedural knowledge” are framed as opposites, where conceptual understanding is 

privileged over procedural knowledge. Similarly, elementary and advanced knowledge 

form another opposite in which advanced knowledge is more desirable. In the same vein, 
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knowing why is superior to knowing how. It is also important to note that several 

synonyms for knowledge appear in the literature. For instance, algorithmic knowledge is 

the same as procedural knowledge, which is sometimes referred to as know how (English, 

2002).  

The importance of connaissance and savoir lies in the state of the knowledge. In 

the mathematical situation, knowledge is formulated by the student or by the teacher. 

This knowledge could then evolve into deeper understanding. In the teaching and 

learning process, the student learns to pose questions, to distinguish givens, to analyze 

texts, and to discard useless information (Brousseau et al., 2009). These are examples of 

connaissance. It is imperative that the teacher does not teach these connaissances as 

savoirs. To do so could undermine the learning goal of the mathematics lesson. 

Learning, according to Brousseau et al. (2009), is manifested in the appearance of 

new connaissances and new savoirs. Furthermore, connaissances may be “exact or false, 

approximate, or dubious, conscious or unconscious” (p. 110). Only the connaissances that 

are recognizable with the help of savoirs can be communicated. Learning also occurs 

when the status of a connaissance changes to a savoir, or when savoirs are employed in 

situations to form new connaissances. These learning in the mathematics classroom are 

represented as mathematical objects. A discussion of the most salient issues related to 

mathematical objects follows. 

Mathematical Objects 

The nature of mathematical objects is essential in understanding the didactics of 

mathematics. A review of the literature in mathematics education research revealed that 

the most common aim of the field of mathematics education research is to study the 

factors that affect the teaching and learning of mathematics and to develop programs to 
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improve the teaching of mathematics (Sierpinska, & Kilpatrick, 1998). Broadly speaking, 

this aim has been tackled by defining and clarifying the nature of mathematical objects. 

Sierpinska and Kilpatrick (1998) identified some key assumptions about the nature of 

mathematical objects: (a) Mathematics can be seen as a human activity involving the 

solution of socially shared problem situations; (b) Mathematical activity creates a 

symbolic language in which problem situations and their solutions are expressed; and (c) 

Mathematical activity aims at the construction of logically organized conceptual systems. 

According to Brousseau (1997) mathematical objects are classified in three main 

groups. These groups describe the work of mathematicians, the work of students, and the 

teacher’s work. For mathematicians the formulation of knowledge has a complex history 

that includes a succession of difficulties and questions which promote a fundamental 

concept, the rejection of false claims, the inclusion of techniques from other areas, and so 

on (Brousseau, 1997). Thus, there is a network of activities that provide for the 

mathematician origin, meaning, motivation, and use. 

The student must reproduce this mathematical activity of the mathematician. A 

proper reproduction of genuine mathematics by the student would require the student to 

produce, formulate, prove, and construct models, languages, concepts and theories 

(Brousseau, 1997). The student must also share these objects with others, recognize those 

which conform to the culture, and incorporate those from other contexts which are useful. 

The teacher must transpose the scientific work of the mathematician into the 

classroom context so that the students can engage and reproduce the work of 

mathematicians. The complexities of these activities however, can only be understood by 

understanding the nature of the didactical contract. 
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The Didactical Contract 

The concept of didactical contract is a major component of TDSM and is central 

to the analysis of the workings of the didactical systems. The didactical contract is akin to 

the social contract, but differs in important ways. A generally accepted notion is that 

teaching is an intentional activity. One can assume that the teacher simply wants the 

student to learn. According to Uljens (1998), this learning process requires the 

participation of the student and the teacher. Moreover, there are socially accepted roles 

that the two parties have. Uljens (1998) contended that the social contract in a school 

necessarily requires that every student is an intentional learner, and the teacher has a right 

to expect an interested attitude from the student. The didactical contract is more complex, 

in that it is not explicit, and in most cases it is not known. For example, if the teacher 

finds that a student is breaking the social contract, the teacher can appeal to the parents of 

that student, because the parents also enter into the social contract. But in the didactical 

contract, the teacher cannot appeal to the student, the administrator, or the parent for 

breaking the contract. The teacher revolt in many different ways, and the student is 

confused. Similarly, the student has no one to appeal to if the teacher breaks the contract, 

the student revolts, and the teacher is confused. 

In TDSM, part of the didactical contract is specific to the target mathematical 

knowledge. This implies that the didactical contract is different for each mathematical 

concept. Moreover, the didactical contract is different for different students. Therefore, it 

is difficult to fully describe the didactical contract. However, according to Brousseau 

(1997) it is not essential to describe the didactical contract because it is the breaking of 

the contract that is important. In order to examine some of the immediate consequences 

of breaking the didactical contract Brousseau (1997) assumed that: 
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• The teacher is supposed to create sufficient conditions for the appropriation of 
knowledge and must “recognize” this appropriation when it occurs. 

• The student is supposed to be able to satisfy these conditions. 
• The didactical relationship must “continue” at all costs. 
• The teacher therefore assumes that earlier learning and the new conditions provide 

the student with the possibility of new learning. 

In the didactical situation, if the teacher perceives a failure in the learning, the 

student is put on trial for not fulfilling the expected learning objective (Brousseau, 1997). 

Implicitly, the teacher is also put on trial for not fulfilling what that student expected. In 

TDSM, the didactical contract is manifested when a failure occurs. The student is 

surprised because he or she does not know how to solve the problem, and thus rebels 

against what the teacher could not provide (Brousseau, 1997). Similarly, the teacher is 

surprised because of what the student fails to do. The teacher revolts, negotiates, and 

searches for a new contract (Brousseau, 1997). There are a number of paths that the 

teacher can take to continue the didactical relationship. No path is known a priori. A 

summary of the phenomena related to the negotiation of the didactical contract is shown 

in Figure 2. 
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Figure	   2.	   The teaching endeavor. Adopted from “Theory of Didactical Situations in 
Mathematics” by G. Brousseau, 1997, p.247. 	  
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Historical Development of TDSM 

According to Brousseau, Brousseau, and Warfield (2004) several factors of the 

late sixties motivated the work on which TDSM is based. For example, public opinion in 

the sixties was exerting pressures on the mathematics taught in school to resemble the 

mathematics practiced by mathematicians. Additionally, the widely held belief that 

understanding a mathematical concept implies that at the end of the learning process, the 

student has at his or her disposal a collection of widely varied, and logically interlinked 

pieces of knowledge. Brousseau (1997) rejected these notions on the basis that 

mathematical concepts are constructed in the course of a situation whereby a rich 

collection of reasons come to bear. Moreover, Brousseau believed that there is no 

mathematical activity that a teacher can present that is independent of a teaching 

objective (Brousseau et al., 2004). 

The development of TDSM draws on a wide range of theoretical ideas. According 

to Brousseau (1997) TDSM was influenced by Piaget’s theorization of cognitive 

development as a process of constructive adaptation. The theory was later refined by 

incorporating the theoretical ideas of the French epistemologist Gaston Bachelard 

(Ruthven, Laborde, Leach, & Tiberghien, 2009), who posits that knowledge advances 

through epistemological obstacles.  

The concept of epistemological obstacle enabled original approaches to be 

developed concerning conceptual difficulties and analysis of students’ errors (Brousseau, 

1997). This concept has been particularly productive in the analysis of the difficulties that 

students experienced when moving from whole numbers to decimals (Brousseau et al., 

2004; Brousseau, Brousseau, & Warfield, 2007, 2008; Brousseau et al., 2009). In TDSM 

obstacles are manifested by errors, but according to Brousseau (1997) these errors are not 
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due to chance, and they are not necessarily explainable. Accordingly, much research is 

needed to distinguish, recognize, list, and to examine the relationships and causes of 

epistemological obstacles in mathematics (Brousseau, 1997).  

Another refinement to TDSM is the addition of the concept of didactical 

transposition. Didactical transposition is a concept that was originally developed by Yves 

Chevallard in the early 80s to explain the transformations that mathematical subjects 

undergo when they enter a didactical system (Brousseau, 1997). In TDSM, this concept is 

defined and activated by the notion of the fundamental situation for a piece of 

knowledge, which constitutes special study tool of phenomena involving transposition by 

defining the conditions for preserving the meaning of knowledge at the moment of 

transposition. According to Sriraman and English (2010), Yves Chevallard also extended 

TDSM from within the institutional setting to the much wider “Institutional” setting. 

Therefore, whereas Brousseau’s theory focuses on the classroom teaching and learning of 

mathematics, Chevallard’s approach focuses on the mathematics in a much broader 

context, which involves, scholars/mathematicians, curriculum/policy makers, teachers 

and students (English, 2002). Chevallard’s approach is known as the anthropological 

theory of didactical situations. 

Using a constructivist approach to learning, Brousseau designed teaching 

experiments with an initial aim to develop an existence theorem, and to clarify and 

complete TDSM (Brousseau et al., 2004). The lessons were to be studied and criticized 

using robust theoretical, pragmatic and methodological instruments. These instruments 

came from TDSM, however they were modified during the course of the experiments 

(Brousseau et al., 2004). 
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Armed with the positive results of the first three modules of the lesson sequence 

Brousseau continued to work on TDSM (Brousseau et al., 2004). Brousseau assumed that 

students expand their knowledge through interaction with problems that offers both 

resistance and feedback. The resistance and feedback then affects the mathematical 

knowledge at stake. Additionally, Brousseau proposed that children, in suitably carefully 

arranged circumstances could build their own knowledge of mathematics. Among his 

many objective was to prove that under these conditions all children could “create, 

understand, learn, use, and love some mathematics that has a reputation for being 

difficult” (Brousseau et al., 2007, p. 281). After 20 years of teaching the same sequence 

of lessons between the period 1974-1997, new research questions came to the fore which 

resulted in increased clarifications to TDSM (Brousseau et al., 2009).  

There are two institutions that were very significant to the historical development 

of TDSM (Brousseau, 1997). These institutions are Institutets de Recherche sur 

l’Enseignement des Mathematiques (Institute for Research on the Teaching of 

Mathematics - IREM), and Centre d’Observation et de Recherches sur l’Enseignement 

des Mathématiques (Center for Observation and Research on the Teaching of 

Mathematics - COREM). A brief description of these institutions follows. 

IREM 

IREMs are French institutions, within universities that are created to develop 

research in mathematics education and to participate in in-service training of mathematics 

teachers (Brousseau, 1997). Each IREM has three components: (a) a colloquium open to 

all teachers of mathematics, (b) teaching information and documentation of professors of 

mathematics, and (c) research on the teaching of mathematics (Brousseau, 1997). 

According to Sierpinska and Kilpatrick (1998) the meeting of theoreticians and teachers 
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in these institutes has been one of the levers of research in mathematics education in the 

history of French didactique. 

COREM 

The COREM is an original institution created by Guy Brousseau in 1972 

(Sierpinska & Kilpatrick, 1998). According to Brousseau (2008) the COREM was 

created to permit mathematicians to carry out different sorts of systematic and sustained 

observations. It was made up of three contractual entities: a research laboratory, a 

technical team and a whole school (14 classes) with an adapted status. The COREM was 

located in a school for 3-10 year-old children from ordinary backgrounds, where there is 

no pre-selection. The school has a special building, which is a big classroom where video 

and audio recorders are available. Mathematics lessons conducted in this room would be 

recorded and observed. The school, according to Brousseau (1997) was not to be an 

experimental school, but essentially a center for observation. Specifically, the school was 

designed with an aim to permit observers to pick out behaviors while influencing them as 

little as possible. More importantly, “it aimed to make it necessary on their part to 

produce didactical knowledge subject to a pragmatic restriction for a short term on the 

part of the system observed” (Brousseau, 2008, p. 1). Research on the teaching of the 

natural numbers was carried out at the COREM from 1770-1974 (Brousseau, 1997) and 

on rational numbers and decimals from 1973-1980.  

Thus far, we see that the key notion of TDSM is that of situations. Moreover, the 

possibility of isolating, in the specially constructed situations, moments of action, 

formulation, validation and the tools involved at each of these moments constituted a 

major part of the work carried out for more than thirty years on various mathematical 
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topics (Brousseau, 1997). The bulk of this work is still in the French language. 

Notwithstanding, several scholars have added, or clarified different aspects TDSM. 

Application of TDSM in Mathematics Education Research  

A recent application and extension of TDSM was reported in a study by Hersant 

and Perrin-Glorian (2005). In this study, the didactical contract was divided into three 

levels: the macro-, the meso-, and the micro-contract. According to Hersant and Perrin-

Glorian (2005) the macro-contract is mainly concerned with the teaching objective, the 

meso-contract with the realization of an activity, and the micro-contract deals with the  

for example, a concrete question in an exercise. 

Using TDSM as theoretical frame, Hersant and Perrin-Glorian (2005) 

characterized an ordinary mathematics teaching practice, called interactive synthesis 

discussion (ISD), using the three levels of the didactical contract. They presented two 

case studies with experienced teachers, one in grade 8, and the other in grade 10. In the 

study they presented a modified framework of the didactical contract which was used to 

analyze the lessons (Hersant & Perrin-Glorian, 2005). This modified framework provided 

an analytic lens, which researchers could use to understand didactical situations in the 

teaching and learning process of already existing practices. 

One of the most significant applications of TDSM to mathematics education 

research is that it provides and analytic tool to understand didactical phenomena. TDSM 

also provides specific assumptions an analytic tool to guide researchers and mathematics 

educators in studying the teaching and learning of mathematics in an institution. The 

mathematics teacher has the role of transforming a real world situation, (adidactical 

situation), into the classroom in order to provide students with the experience of solving 

problems in the real world. The transformation causes a decontextualization, which 
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usually strip the situation of the historical context (Brousseau, 1997). For the 

mathematics teachers, only problem solving can demonstrate the student has learned the 

desired mathematical knowledge. Consequently, Brousseau (1997) differentiates between 

different sub systems of adidactical situations: 

• a classification of the interactions of the subject with the adidactical milieu; 
• a classifications of types of organization of this milieu;  
• a classification of types of function of a piece of knowledge; and 
• a classification of modes of spontaneous evolution of knowledge (p. 60). 

According to Brousseau (1997) each classification must sufficiently justify itself 

within its own domain by (a) the considerable and obvious difference between the objects 

classified; (b) the simplification that it can provide in their description, their analysis, and 

their understanding; (c) the relevance of this classification (and its importance to other 

possible classifications) for each domain concerned; and (d) its completely exhaustive 

character. For example, a certain type of interaction is specific to one type of social and 

material organization, because it favors a certain form of knowing, and can cause the 

form of knowing to evolve. 

Interactions, according to TDSM, are the relationship between a student and the 

milieu. Brousseau (1997) identified three main categories: exchange of judgment, 

validation; exchange of information coded into language, formulation; and exchange of 

information that is not coded, or is without a language: these could be actions or 

decisions that act directly on the other performer, action. 

The form of knowledge, which controls the student’s interactions is judged using 

two categories: (a) it must be composed of a description, or model expressed in a certain 

“language” or theory; and (b) it must be composed of a statement about the adequacy of 

the description, whether it is a contingent or a necessity and whether it is consistent with 
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the student’s knowledge or the milieu (Brousseau, 1997). See Table 2 for a summary of 

this analytic tool. 

The final analytic tool is the evolution of forms of knowledge. In TDSM, this is 

the notion of learning. Knowledge evolves according to complex processes, which cannot 

be explained only by the interactions with the milieu. However, evolution of the forms of 

knowledge can be observed by considering the type of milieu and the type of situation 

(action, formulation, or validation) (Brousseau, 1997). The milieu can be either an 

objective milieu in that it provides built in feedback, or a milieu where feedback is 

handled by didactical means (Brousseau & Gibel, 2005), whereby the teacher is the 

primary if not only, source of feedback. In the next section I discuss advantages and 

disadvantages of TDSM in examining the complexities of the mathematics classrooms. 

Strengths and Weaknesses of TDSM 

Strengths. TDSM can assist researchers and mathematics teachers to study and 

construct theoretical models of situations that produce effective learning because “it is an 

instrument for the construction of minimal explanation of newly observed facts that 

would be compatible with newly established knowledge” (Brousseau & Gibel, 2005, p. 

17). TDSM also provides instruments to study the complexity of situations that involves 

the interaction of teacher, student, and content in the mathematics classroom. 

Another strength of TDSM is that it allows for the careful analysis of a teaching 

sequence to provide understanding of the forms and states of knowledge that manifest 

during the teaching and learning process. According to Brousseau (1997) TDSM provides 

knowledge about teaching which concerns different aspects of the teaching and learning 

process. For instance: (a) knowledge concerning students, their behaviors and their 

mathematical understanding in different teaching conditions; (b) knowledge related to 
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conditions to be created in teaching and learning situations; and (c) knowledge 

concerning conditions to be maintained in the management, or implementation of the 

teaching (Brousseau, 1997). 

Finally, an important advantage of TDSM is that it can help the teacher to change 

his or her status, training and relationship with society (Brousseau, 1997), by acting 

directly on the knowledge that the teacher uses, and by acting on the knowledge of 

professional partners, parents, and the general public. 

Weaknesses. Although TDSM provides knowledge of problem effects in the 

classroom, “it cannot produce a solution to such problems by mere engineering 

adjustments” (Brousseau, 1997, p. 260). For instance, in the negotiation of the didactical 

contract, TDSM does not provide an optimal path for the teacher to take if a specific 

failure occurred (see Figure 2). 

Another weakness of TDSM is with the dissemination of didactique (Brousseau, 

1997). This disadvantage could possibly be due to (at least in the English-Speaking 

circles) the difficulty with the French language, and with the difficulty with the concept 

in general. For example, Bussi (2005) pointed out that the theoretical sophistication of 

TDSM is huge and not easy to communicate. 

Methodological Considerations 

Several environmental forces shaped the development of research in mathematics 

education (Kilpatrick, 1992). For instance, the requirement for university faculty 

members to conduct research, Klein’s reform movement in mathematics curriculum in 

the 1900s, psychological research into mathematical thinking, child studies, the testing 

movement; and several other forces helped to shape research in mathematics education. 
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According to Crotty (1998) the research method or technique used to gather and 

analyze data must be linked to some research question; therefore, the aims of research 

drive the methodology selection. Furthermore, the methodology is the plan of action 

lying behind the choice of particular method. For example, in a discussion of the 

historical roots, philosophical roots, and the emergence of a profession in the field of 

mathematics education, Kilpatrick (1992) pointed out that research in mathematics 

education has dealt primarily with problems of learning and teaching as defined by the 

researchers. These researches delved into the question of what mathematics is taught and 

learned and how the content is taught and learned. Table 4 is a summary of the main 

research perspectives and aims in mathematics education research. 

Table 4 

Research perspectives and their aims 

Main Aims Research Perspective 

To predict, explain, or control Empirical-analytical 

(Experimental, intervention, innovation) 

To understand the meanings of the 

learning and teaching of mathematics 

for participants in these activities. 

Ethnographic, anthropology approaches 

(Observational, mostly) 

 

To improve practice and involve the 

participants in the improvement 

Action research 

(Participant observation) 

Note. Adopted from “A history of research in mathematics education “, by J Kilpatrick, 
1992, pp. 3-4. 
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Methodologically speaking, the two major themes that emerge in the literature on 

didactical situations in the mathematics classrooms are didactic engineering and lesson 

study (Adda, 1998; Brousseau, 1997; Kilpatrick, 1992). Didactical engineering has to do 

with designing lessons intended to produce a desired outcome, whereas lesson study 

involves observing a teaching sequence to understand what happened. Both of these 

classes of research designs examine the classroom with an aim of ultimately improving 

classroom practices, but with different foci. 

Didactical engineering. Didactical engineering is aimed at innovations by 

controlling the ‘how’ of teaching to produce an effect on the ‘what’ is learned. Didactical 

engineering studies used a more empirical design following the traditional paradigm of 

scientific research. Indeed, Guy Brousseau’s work, which the theory of didactical 

situations in mathematics is based, was of the experimental perspective (Brousseau, 

1997; Brousseau et al., 2004, 2007, 2008; Brousseau et al., 2009). Classroom lessons 

were carefully designed, implemented, and observed under laboratory conditions. These 

lessons were referred to as teaching experiments (Brousseau, 1997). 

Teaching experiments or lessons designed to produce a given outcome, served as 

treatment in these empirical designs. What is now known as situations, was initially 

considered as didactical variables to be manipulated and controlled as in the case of a 

statistical experimental design (Brousseau, 1997). Researchers in the paradigm of 

didactical engineering aimed at reproducing results by manipulating one or more 

variables but, as can be seen in the study by Arsac et al. (1992), the task of reproducing a 

teaching and learning outcome was opposed by both time constraints and epistemological 

obstacles. Moreover, the learning that occurred in the classroom was not easily 

observable. In this study the case study methodology was used. The researchers had 
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seven different observers, one for each of six groups of students and another for whole 

class discussion. The sessions were video and audio taped. The teacher was also 

interviewed after watching the video recording. Data was analyzed using the theory of 

didactical situations as a framework. The results showed that it was probably not possible 

to control teaching situations and to control their effects on students’ learning (Arsac et 

al., 1992). 

Lesson study. Lesson study focuses on what occurs during the teaching in order 

to understand the teaching and learning process. Unlike didactical engineering, the 

researcher’s aim is not to manipulate, or control any constraints of the teaching. For 

instance, in a study using theory of didactical situation to characterize a mathematics 

teaching practice used in secondary schools, Hersant and Perrin-Glorian (2005) stated 

that “ the aim of this research is to gain knowledge and understanding of teaching 

phenomena. It is not to produce immediate action or to improve teaching in a direct way. 

Moreover our project is not one of didactic engineering” (p. 114). Consequently, a 

qualitative case study was chosen. The data, which consisted of classroom episodes, was 

collected through passive classroom observations and analyzed with reference to the 

didactical contract. 

It is important to note that observation of classroom activities is not without 

complexities because actions by the teacher, the student, or the observer can be 

interpreted differently (Brousseau & Gibel, 2005). It is not always possible to claim that a 

given observable behavior is a sign of reasoning. In order to study students reasoning in 

the teaching and learning process, Brousseau and Gibel (2005) went beyond the formal 

definition of reasoning and examined conditions in which a presumed reasoning can be 

considered an actual reasoning. Classroom episodes were analyzed using the theory of 
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didactical situations in mathematics. Brousseau and Gibel (2005) showed that although 

the students produced forms of reasoning when faced with a problem situation, they did 

not make progress in their practice of reasoning. For, “they have not reflected back on 

their reasoning, on its validity, relevance, or adequacy because the teacher was not able to 

process it” (p. 54). 

The lesson study that was commonly used in the literature that employed the 

theory of didactical situations in mathematics could be classified as either classroom 

observation or a participant observation. This is because lesson study was an approach 

that originated in Japan that is primarily used for professional development (Hart, Alston, 

& Murata, 2011). This version is very similar to didactical engineering in that the lessons 

studied were designed specifically for the purpose of observation and investigation. 

Moreover, according to Hart et al. (2011) the lesson study goes through a study cycle in 

order to revise and reteach the research lesson to a new group of students. Therefore the 

lesson study paradigm, although has roots in the Japanese tradition, is more akin to the 

ethnographic method of participant observation. 

Strengths and Weaknesses of Methodologies  

Strengths. Two of the main aims of research in mathematics education were to 

understand and to improve the teaching and learning of mathematics (see Table 1). The 

methodologies used in the literature on didactical situations in mathematics were well 

suited for these aims. For instance, in a study aimed at exploring the possibilities of 

making transition and connection between arithmetical and algebraic practices, Sadovsky 

and Sessa (2005) implemented a didactical engineering project which allowed them to 

present ideas for teaching, and conditions that enable effective teaching and learning. 

Using the theory of didactical situations Sadovsky and Sessa (2005) showed that it is 



	  

	  

45	  

possible to obtain an adidactic milieu which generated questions. Moreover, “the move 

from arithmetic to algebra is nurtured by questions framed in the social space of the 

classroom as a consequence of the work proposed by the teacher” (Sadovsky & Sessa, 

2005, p. 107). 

The methodologies used in the literature were also well suited for providing 

insights, descriptions and understandings on teaching phenomena and complexities in the 

mathematics classroom, because classroom observation is the dominant method used to 

collect data. Classroom observations were used both in the didactic engineering paradigm 

and the lesson study paradigm. Classroom observations provide the researcher with 

possibilities of probing into the contexts, the meanings, and the processes of production 

of mathematical knowledge as it occur in the mathematics classroom. 

Weaknesses. Classroom observations are local, and thus inevitably biased by 

local constraints. Therefore the notion of replicability and generalizability from the 

experimental sciences is not appropriate. Consequently, researchers have to provide 

lengthy discussions of the theoretical and methodological frames that undergird their 

studies. The theory of didactical situations in mathematics, which is the dominant theory 

that is used in the literature on didactical situations, is very sophisticated and contained a 

number of difficult concepts. 

Another weakness with the methodologies as cited in the literature, particularly 

with those used in the paradigm of didactical engineering, is that the classical 

experimental method, which involved carrying out different statistical tests, does not fit 

the purpose of research in didactical situations. For instance, Brousseau (1997) pointed 

out that the use of statistical tests is not ethically admissible because no professional can 
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agree a priori to teach in order to see what would happen. Moreover educational systems 

usually react to its own results by modifying its teaching conditions (Brousseau, 1997). 

Gaps in The Literature 

The literature on didactical situations in mathematics identified several 

phenomena of the teaching and learning situation, especially with regards to the 

didactical contract. However, the literature does very little in describing the nature of 

these phenomena, and the consequence that they have on future learning of the target 

knowledge. For instance, in a study focusing on the development of mathematical 

understandings that took place in a 10th grade geometry class, Schoenfeld (1988) pointed 

out that despite the fact that the class was well taught, and the students did well on 

relevant performance measures, the students learned some inappropriate and 

counterproductive conceptions about the nature of mathematics. Furthermore, these 

inappropriate conceptions were as a direct result of the instruction. 

Other phenomena such as the complexities in didactical situations identified by 

Brousseau (1997) provide significant insights into the complexities of the teaching and 

learning of mathematics. But the literature on didactical situations in mathematics fails to 

examine these phenomena, and how they serve in the construction and sustenance of 

mathematical knowing. Consequently, research investigating the nature of didactical 

phenomena is well needed. 

Summary and Conclusion 

 The purpose of this review was to provide an overview and synthesis of the 

research relating to didactical situations in the mathematics classroom. Didactical 

situations in mathematics are situations designed by the teacher in order to enculturate 
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students in an important part of human culture, that of mathematics. Several phenomena 

of the teaching and learning process serve as obstacles to the learning of mathematics.  

The two dominant methodologies that emerged in the literature in studying 

didactical situations in mathematics were didactical engineering and lesson study. The 

main data collection technique used in these methodologies was classroom observation.  

Data were analyzed using the theory of didactical situations in mathematics as the 

theoretical lens. Strength and weaknesses of the methodologies used in studying 

didactical situations were discussed and important gaps in the literature were identified. 

Finally, the literature review called for more research on didactical situations in the 

mathematics classroom, and demonstrated the need to research investigating the nature of 

the phenomenon of meta-didactical slippages in the mathematics classroom.  
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CHAPTER 3 

METHODOLOGY 

This chapter explains the methods used to carry out the study, providing special 

emphasis to the analysis of data. This chapter of the dissertation presents a review of the 

purpose statement and research questions, the theoretical framework that guided the 

methodology of the study, and the epistemology that informed the theoretical perspective. 

The remainder of the chapter presents (1) the design that governed my choice and use of 

participant observation and open-ended interviews as methods of data collection, (2) the 

data collection, (3) the data analysis techniques, (4) trustworthiness, (5) limitations of the 

study, and (6) a brief summary of the chapter. 

Purpose and Research Questions 

The purpose of this study was to (a) understand the nature of meta-didactical 

slippages and how meta-didactical slippages occur in a ninth grade predominantly 

African American mathematics classroom; and (b) describe the consequence of meta-

didactical slippage on a unit of study of ninth grade mathematics.  

The following questions guided the study: 

1. What is the nature of meta-didactical slippages that emerge in the practice of 

teaching mathematics? 

2. In what ways do these slippages affect students’ conceptual understanding of 

a unit of ninth grade mathematics? 
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Theoretical Perspective 

The philosophical stance of this study was rooted in the perspective of cultural 

anthropology. This perspective views culture as a set of cognitive structures that children 

learn as they grow up in a particular community, and that they use to make decisions 

about their own behaviors and that of the people around them. This stance spawned the 

theory of didactical situations in mathematics (Brousseau, 1997), which is the theoretical 

frame used in this study. Meanings are constructed in a social situation, and the meanings 

change from culture to culture and from individual to individual. The theory of didactical 

situations in mathematics helped me to isolate particular meanings that teachers and 

students construct in didactical situations in the mathematics classroom (see chapter 1 for 

a more detailed discussion). 

Epistemology 

This study was grounded in a social constructionist epistemology. Mathematics 

teachers and students construct meanings from both the situation and from the act of 

teaching and learning mathematics. Moreover, according to Crotty (1998), because of the 

essential relationship that human experience bears to its object, no object can be 

adequately described in isolation from its conscious being experiencing it, nor can any 

experience be adequately described in isolation from its object.  

Constructionist epistemology consists of at least two schools of thought. These 

schools of thought are sometimes called empirically oriented constructivism and radically 

oriented constructivism. The former holds that knowledge is anchored in the external 

environment and exists independently of the learner. The latter maintains that knowledge 

resides in the constructions of the subject. In this study, I follow the latter. 
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Study Design 

This study was a descriptive, qualitative, case study conducted in one ninth grade 

mathematics classroom over a 15-week period. The case study was selected because it is 

well suited to take into account the complexity of didactical interactions between teacher, 

student, and the content of mathematics. These interactions are intangible, yet the impact 

of these interactions on the student, the teacher, the institution, and hence the society at 

large, are very tangible. The case study is grounded in the lived reality and can help us to 

understand complex inter-relationships (Hays, 2004). Furthermore, the case study 

according to Hays (2004) seeks to answer focused questions by producing in-depth 

descriptions and interpretations over a short period of time. Thus, in order to probe 

beneath the surface of the didactical situations, and to get a better understanding of meta-

didactical slippages, the qualitative case study methodology is well suited. 

Qualitative researchers use multiple methods. The use of multiple methods 

reflects the researchers’ aim to secure an in-depth understanding of the phenomenon in 

question. This process of using multiple methods is referred to as triangulation in the 

literature (Berg, 2009; Cohen, Manion, & Morrison, 2013; DeMarrais & Lapan, 2004; 

Denzin & Lincoln, 2005; Hays, 2004; Yin, 2002). According to Denzin and Lincoln 

(2005), this combination of multiple methodological practices, empirical materials, 

perspectives, and observers is understood as a strategy that adds depth, rigor, breadth, 

complexity, and richness to an inquiry. Since didactical situations in the mathematics 

classroom are examples of a complex situation that involves multiple representations, the 

qualitative case study is an ideal research methodology. 

The case study is one of the many strategies of inquiry that the qualitative 

bricoleur can use to conduct research. According to Yin (2009) a rationale for selecting 
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the case study is when the researcher is studying contemporary events but “the relevant 

behaviors cannot be manipulated” (p. 11). Additionally, the research questions, that is to 

say the substance (what the research is about) and form (“who”, “what”, “where”, or 

“how”, questions) of the research questions, provide a good rationale for choosing the 

case study. The case study recognizes and accepts that there can be many factors 

operating in a single case. Accordingly, many types of data can be incorporated into a 

case study such as interviews, participant observations, documents, and quantitative data 

to provide rich and vivid descriptions of events relevant to the case. 

There are several typologies of case studies in the literature (Berg, 2009; 

DeMarrais & Lapan, 2004; Hays, 2004; Stake, 1995; Thomas, 2011; Yin, 2009). 

However, Yin (2009) identified three main types in terms of the intended aims: (a) 

exploratory, (b) descriptive, and (c) explanatory. Thus case studies can serve to explain, 

describe, illustrate, and enlighten. By studying didactical situations in the mathematics 

classroom, my aim was to describe the real-life, complex dynamic unfolding interaction 

of the phenomena in its natural occurring environment. Consequently, the qualitative case 

study is well suited to study didactical situations in mathematics classrooms. 

 The descriptive case study design required that the researcher presents a priori, a 

descriptive theory, which served as a framework for the study (Yin, 2009). In this study 

the theory of didactical situations in mathematics served as the descriptive theoretical 

framework that guided the study (Brousseau, 1997). Once the study is grounded in a 

theoretical framework, Yin (2009) identified five components of the research design: (1) 

the studies questions; (2) the studies propositions, if any; (3) the study’s unit(s) of 

analysis; (4) the logic linking the data to the propositions; and (5) the criteria for 
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interpreting the findings. In this study no propositions was formulated, because the 

primary goal was to describe the phenomenon as it occurred in its natural environment.  

Methods 

The intent of this investigation was to describe the nature of meta-didactical 

slippages that occurred in in a ninth grade mathematics classroom, and to investigate how 

those slippages affected students’ constructions, and productions on a unit of study. The 

analysis of the didactic classroom interactions determined the occurrence of slippages. 

The study thus maintained clear focus on the interactions between the students, teacher 

and the mathematics. To set a context for the study, I begin with a description of the 

school, classroom and mathematics content. 

School context. The investigation of this study took take place in one 9th grade 

mathematics classroom, located in a high school in a southeastern state. In the fall of 

2013 enrollment in this school was approximately 1400 students. The ethnic makeup of 

the school population was 70% African American, 20% White, 5% Hispanic and 5% 

Multiracial. The school is on an A/B block schedule, each class meets for 90 minutes 

every other day. Approximately 450 of the student population were ninth graders, and the 

school enrolled 20-32 students in each of ninth grade mathematics class. 

 Choosing the ninth grade was important because studies (e.g. Styron and Peasant 

(2010)) pointed out that ninth grade students struggled with the transition from middle 

school to high school because of higher expectations from teachers, additional 

homework, and the freedom of selecting the most appropriate classes and activities to 

prepare them for life after high school. In the study school the ninth grade mathematics 

was considered to be an area of weakness, based on performance on the State’s 

mandatory End of the Course Tests. Additionally, I chose the ninth grade because I 
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inferred that an understanding of the phenomenon of meta-didactical slippage would 

inform the design and implementation of mathematics teaching and learning in 

subsequent years. 

Classroom context. The study class consisted of 23 students, 14 females and 9 

males. Of the 23 students enrolled in the study class, 21 were African American, 1 White, 

and 1 Hispanic. The teacher was an African American male, who taught high school 

mathematics for over 12 years. The teacher was considered to have high mathematical 

content knowledge and pedagogical skills. The classroom was equipped with a large dry 

erase board, digital projector and projector screen. The classroom was also equipped with 

a number of small individual dry erase boards which students often used at their desks. 

The large dry erase board and projector were the dominant modes of presenting 

information to the class. Students frequently used the large dry erase board in the front of 

the room to report on their solution, and or give plenary discussion after small group. 

Students predominantly sat in pairs in rows facing the dry erase board. Student was 

allowed to move at will to other parts of the room either to sharpen pencil, or to consult 

with other students not in their pair, or their group. Although, the school was on A/B 

block schedule, the ninth grade mathematics classes met every day. This was a district’s 

initiative in order to improve the mathematics performance on the state’s mandatory end 

of the course tests. 

The mathematics content. As mentioned above, the school district added a 

“double dose” of mathematics for the ninth grade classes. All ninth grade mathematics 

class met for 90 minutes every day. The school was in their second year of implementing 

the Common Core State Standards for Mathematics. The target unit in this study dealt 

with relationships between quantities. This was the first of three units of study for the 
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semester, but the school district decided that students would only focus on the 

relationship between quantities unit of study for the semester. Additionally, the students 

would review pre-requisite skills for the ninth grade curriculum. Appendix E is a 

description of the curriculum standards for the relationship between quantities unit, which 

represented the target mathematical knowledge for ninth grade students. 

Selection of participants. Criterion sampling was used to select a school in the 

southern region of the United States. The study school met the following criteria: (a) the 

principal allowed access to the school (b) the teacher and students consented to 

participate in the study, (c) the teacher had a minimum of three years of teaching 

experience, and (d) the study class was a ninth grade mathematics class that was 

implementing the Common Core State Standards for Mathematics. In this study, the 

teacher participant selected the study class from among six sections of ninth grade classes 

that were taught by the teacher. 

Data collection and instrumentation. To answer the research questions 

proposed, I used four data collection techniques: (a) collection of document artifacts, 

which included student work samples and teacher lesson plans; (b) direct observation (c) 

open ended interviews, conducted with the teacher; and (d) researcher introspection. Data 

collection instruments include the interview protocol, the observation log, and the 

documents artifacts. 

Document artifacts. I collected artifacts such as teacher lesson plans and lesson 

notes (content notes, tasks, problem sets, etc.) and students’ work sample from the site. 

The documents produced by the teacher provided a priori information of the intended 

knowledge that was at stake for a particular lesson. I used this a priori information to 

determine whether or not a meta-didactical slippage occurred. I used the students’ work 
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sample to identify evidence of the affects of any slippages, and to provide insights about 

students’ conceptions about the mathematics content. 

Classroom observations. Participant observation was the main data collection 

technique. The study class met 5 days per week for 90 minutes. This allowed me more 

sustained observations in the classroom. The classroom visits were videotaped in order to 

facilitate analysis of the data. During observation of the lessons, I recorded data using an 

observation log derived from Table 2 (see Appendix A). I also used a composition 

notebook to record observations that I could not immediately place on the observation 

log. I observed generally, but more focused observations were triggered by a perceived 

failure in a didactic sequence. During observations, I looked for two specific observable 

instances to indicate a perceived failure in didactic sequence. One instance was by 

students’ didactic questions, which indicated a failure, and the other was whenever the 

teacher re-explained a didactic sequence, or provided more explanation, for content that 

was not asked for by any student. I also used gestures and other visible body language 

that may indicate that the teacher perceived a failure. Once I perceived a failure, I 

described that episode according to the type of situation and the type of knowing that was 

manifested. I observed a total of 30 classroom sessions. 

Interviews. Three formal open-ended interviews were conducted with the 

classroom teacher over the study period. Interviews with the teacher were videotaped and 

transcribed to facilitate analysis. The first interview was conducted at the beginning of 

the study. The second interview was conducted after analysis of initial data, and the final 

interview was conducted towards the end of the study. I held ongoing informal 

conversations with the teacher for the duration of the study. During the informal 

conversations, I asked the teacher to watch video clips from the class to focus our 
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conversations on specific interactions or specific mathematical concept. I also inquired 

about student representations on student work, or asked about the objective of the lesson 

and the target knowledge for a particular lesson. Some times the teacher insisted on 

discussing particular students, particular moments, or feelings that were associated with 

an episode. 

The goal of this study was to generate depth of understanding. Thus, the 

interviews were open-ended and in-depth, following what Rubin and Rubin (2005) called 

responsive interviewing. These unstructured interviews with the teacher helped me to 

achieve depth of understanding by going over context, dealing with complexities of 

overlapping themes, and paying attention to meanings and situations (Rubin & Rubin, 

2005). I used an interview protocol to guide with the interviews (see Appendix B), but 

the specific observations, and classroom situations were the main guide for the 

interviews. 

To structure the interview with the teacher, I asked three types of questions: 

descriptive questions, structured questions, and contrast questions (Spradley, 1979). 

Descriptive questions were designed to explore the broad topics in the research, and 

enable me to collect ongoing samples of the informants’ language (Spradley, 1979). For 

instance, a descriptive question was “Can you describe in detail all of the manipulative 

you use in your mathematics classroom?” The questions in the diagonal of the description 

matrix in Appendix C are also examples of descriptive questions. Structured questions 

enabled me to discover basic units in the participant’s cultural knowledge. An example of 

a structured question was “How does your teaching incorporate the use of student mini 

dry erase boards?” Finally, contrast questions probed into the dimension of meanings that 

the participants used to distinguish objects and events (Spradley, 1979). For example, 
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different actions or feelings could be associated with a single domain. An example of a 

contrast question was “what are the ways that students use calculators in the mathematics 

classroom?” 

Researcher introspect. In addition to my field notes where I wrote what I saw, I 

also kept a journal of my reflections. I wrote about my challenges, my fears, my 

mistakes, and things that I could do better. I also reflected on how I was feeling in the 

moment. At first my journal reflections was predominantly disappointments that felt. For 

example, my first few days I was overwhelmed. I felt like I was wasting time. I did not 

know what to observe. After reading what I was thinking, I became more focused in my 

observations. Thus, I used the data from my journal to improve the process of observing 

and being in the classroom. Over time I began to write analytic notes, and ideas that I got 

in the moment. 

All records taken from the site were kept private to the extent allowed by law. 

Pseudonyms were used on study records, and only the researchers had access to the 

information provided. The video files and typed notes were stored on a password 

protected external hard drive, kept in a locked drawer in my office. The school name, the 

names of participants, or other facts that might point to the participant’s identity were not 

reported. The findings were summarized and reported in-group form. Table 5 is a 

summary of all the data I collected. 
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Table 5 

Summary of the Data Collected from the Research Site. 

Data/Evidence Collected Purpose 

1) Videotapes in classroom Record classroom in action 
a) Student and teacher interaction 
b) Verification of classroom 

observation 
c) Look for instances of perceived 

failure 
d) Look for evidence of affects of 

slippages on students’ learning 
2) Classroom Observations a) Record my observation of classroom 

b) Record my reflections 
c) Look for evidence of the affects of 

slippages on students’ learning 
d) Verification of video data and 

document data 

3) Interview with Teacher a) Member Checking 
b) Conformation of themes from video, 

and observations 
c) Probing issues 
d) Understand teacher’s perspective 

 
3) Documents 
(Student work sample) 
(Teacher Lesson Plan/Notes) 

a) Identify instances of possible failure 
b) Identify possible (mis)conceptions 
c) Identify aims/target knowledge 
d) Provide insight on students’ 

construction 
e) Verification of classroom 

observation 

 

Procedure 

Initiating entry. In order to gain access to the study site, I contacted the 

principals in the school district to obtain permission to work in the school, and to obtain 

an estimate of the number of ninth grade mathematics teachers that met my study criteria. 

One of the principals in the school district gave approval to conduct research in the 
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school. After obtaining approval from the school principal, I contacted the school district, 

and completed the required documents in order to obtain permission to conduct research 

in the school district. Once the district IRB was granted, I completed the required IRB 

application for Georgia State University’s IRB department, and was granted IRB 

approval (see Appendix D). 

This study was conducted over 15 weeks, for 5 days per week. On my first day, I 

obtained a signed consent form from the teacher participant and had a short conference 

with the teacher before the class began. While I waited outside the classroom, the teacher 

informed the students in the study class that they would have an opportunity to engage in 

research, and that the researcher was coming to talk to the class. I was invited inside and 

the teacher introduced me as a student researcher and mathematics teacher. I explained 

the research process and provided each student with an approved consent form for his or 

her parents. I read and explained the consent process to the students and assured them 

that they did not have to participate, that non-participation would not affect their grades, 

and they would not be treated differently in any way if they chose not to participate in the 

study. I also explained the child assent procedure, and explained that they could not be 

forced to participate even if their parents signed the consent form. I provided the child 

assent forms and advised them to take it home and return it with the parent consent form. 

I designated a trey for the consent forms, and asked the student to return the forms in 

sealed envelopes to the designated area. I did not collect any consent forms on the first 

day and no videotaping was done on the first day. 

Conducting the study. On the second day, I collected 15, signed parental 

informed consent and 15 child assent forms. Students placed the forms in a designated 

spot in the classroom. I took out the forms and left the envelopes in the trey. I did not 
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videotape on the second day, but I stayed in the classroom and wrote field notes. For the 

remainder of the first week I observed the class and took field notes but I did not 

videotape. By the end of the first week, I obtained informed consent and child assent 

forms from all 23 students in the class. 

The second week I began to videotape. I conducted classroom visits every day 

that the class met for the duration of the study period. Each class lasted for 90 minutes. 

The class worked on a unit of study entitled “Relationships between Quantities”. 

Appendix F is description of the unit. During each classroom visit, I observed the 

interactions between the student, the teacher, and the content of mathematics. I also 

observed students working during independent work and collected student work samples 

(e.g., student response to problem sets).  

At the end of each day, I watched the video recordings in order to get a sense of 

what went on in the class. I also created clips of episodes from the class that I did not 

understand, in order to view with the classroom teacher at a later time. I then transferred 

the video recordings from the camera to my computer for data reduction and editing. 

Data Analysis 

The analysis of the data began with transcribing the field notes and video taped 

interviews with the teacher. As I transcribed the field notes and interviews, I noted key 

ideas, phrases, and mathematical concepts that emerged. The unit of analysis for this 

study was the classroom didactical situations (Bussi, 2005). More specifically, I parsed 

the didactical situations (or episodes) for instances of a perceived failure in the teaching 

endeavor (Brousseau, 1997). After watching the entire videotape for the day, I partitioned 

the videotapes into 5-second nodes, using Apple’s iMovie video editing software. The 

video editing software allowed me to select nodes for which a perceived failure occurred. 
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I collected these nodes and used them to create a separate video file for more focused 

analysis. The phenomenon of interest was meta-didactical slippage. The aim was to 

improve our understanding of meta-didactical slippages to inform what we know about 

didactical situations in mathematics, and more generally, the teaching and learning 

process. 

In order to achieve a more fine grained analysis two analytic techniques were 

used: ethnographic analysis using Spradley’s (1998) model and discourse analysis using 

Gee’s (2011) model. Episodes from the classroom were coded using the theory of 

didactical situations in mathematics to guide the construction of codes. A summary of my 

analytic procedure is shown in Figure 3. In order to maintain focus throughout the 

analysis, I asked the following questions of the data: (a) what is the genesis of these 

slippages? (b) how may this slippage be identified? (c) what are their attributes? (d) what 

are their affordances? (e) can they be predicted? and (f) how can they be controlled if 

possible? I used a combination of hand coding and computer qualitative software coding. 

I used the ATLAS.ti qualitative software to manage the data files and to retrieve codes 

quickly. 
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Figure 3. Summary of analytic procedure followed in this study. 

Coding 

In both analytic techniques, I used three coding techniques: a) open coding, which 

involves initial identification of topics; b) axial coding, where categories are specified in 

terms of the actions/interactions that give rise to it; and c) selective coding, which entails 

identification of the core category on which the analysis is focused (Ezzy, 2002). The 

first phase of coding was open coding as specific domains and/or themes emerged during 

the didactical interactions. This first phase of coding was followed by axial coding and 

then by selective coding. 

Open coding. Broadly speaking, open coding is the initial identification of topics, 

which consists of: (a) exploring the data; (b) identifying the units of analysis; (c) coding 

for meanings, feelings, and actions; (c) experimenting with the codes; (d) compare and 

contrast events, actions, and feelings; (e) integrating codes into more inclusive codes; and 
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(f) identifying the properties of codes (Ezzy, 2002). In this phase of my coding I used 

concepts derived from TDSM, and I identified perceived failures, according to the 

affordance and genesis. 

Axial coding. Axial coding according to Ezzy (2002) is to integrate codes around 

the axis of central categories. Axial coding involves: (a) exploring the codes identified in 

the open coding phase, (b) examining the relationships between the codes, (c) specifying 

the conditions associated with a code, and compare codes with preexisting theory. In this 

phase I combined classroom codes, which were essentially synonyms. I also checked 

with the teacher on my selected episodes and the particular codes that emerged. This 

resulted in further reduction of the data, because the teacher requested that some episodes 

not be included in my analysis. 

Selective coding. Selective coding involves the identification of the core 

categories around which the analysis is focused. This final stage of coding consisted of: 

(a) identifying the core code or central story in the analysis; (b) examining the 

relationship between the core codes and other codes; and (c) comparing the coding 

scheme with preexisting theory. In this process I identified four themes that emerged as 

slippages. Each of the four themes emerged as meta-didactical slippages. At this stage I 

went back to watching the tapes, reading the transcripts, looking at student work, and 

looking at teacher lesson notes.  

Ethnographic Analysis  

Ethnographic analysis is one way of analyzing, and making meaning of social 

settings. According to Spradley (1980), the goal in ethnography is to “discover the 

cultural patterns people are using to organize their behavior, to make and use objects, to 

arrange space, and to make sense out of their experience” (p.130). The mathematics 
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classroom is considered to be a form of culture. Spradley (1980) identified nine major 

dimensions of every social situation: (1) space, the physical place or places; (2) actor, the 

people involved; (3) activity, a set of related acts people do; (4) object, the physical 

things that are present; (5) act, single action that people do; (6) event, a set of related 

activities that people carry out; (7) time, sequencing that takes place over time; (8) goal, 

the things people are trying to accomplish; and (9) feeling, the emotions felt and 

expressed. 

These dimensions served as a guide as the classroom interaction was observed 

and analyzed. As part of the observation and analysis, a “descriptive question matrix” 

(Spradley, 1980, p. 80) was used (see Appendix A) to capture and probe the interrelation 

among the nine dimensions. 

According to Spradley (1979), domains are the first and most important units of 

analysis. Domain analysis was conducted to discover units of meaning that unfold in the 

didactical situation of the mathematics classroom. Domain analysis “involves a search for 

the larger units of cultural knowledge called domain” (Spradley, 1979, p. 94). An 

ethnographic domain analysis was appropriate for this study because I was interested in 

looking for the units of meaning that can be attributed to the cultural category of meta-

didactical slippage. In working through the data, I focused on the following questions: 

What act, or action indicates a perceived failure? What are specific units of this domain? 

And what feelings or actions are associated with each unit? This process helped me to 

describe the nature of meta-didactical slippage. 

I first made a preliminary domain search to analyze the interview data by using 

the verbatim interview transcript to search for names for things (mathematical concepts, 

skills, etc.) within the transcripts. I then look for possible names for categories of cultural 
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knowledge, followed by common terms that belong to the categories already identified 

(Spradley, 1979). From this preliminary search, I selected the semantic relationships that 

seemed important to conduct a domain analysis, following Spradley’s (1979) six-step 

method. The six steps are: (a) selecting a single semantic relationship, (b) preparing a 

domain analysis worksheet, (c) selecting a sample of informant statements, (d) searching 

for possible cover terms and included terms that appropriately fit the semantic 

relationship, (e) formulating structural questions for each domain, and (f) making a list of 

all hypothesized domains (Spradley, 1979). 

In order to maintain focus, and to increase validity, I initially followed a sequence 

of peer debriefings along with checking interpretations with the participating teacher, 

transcribing, reading, and coding early data, and writing journals and memos (Ezzy, 

2002). The data was sorted, resorted, organized, reorganized, labeled, and relabeled in 

order to answer the research questions in a meaningful way by providing thick 

descriptions of the occurrence and nature of meta-didactical slippage.  

The document artifacts were analyzed by focusing on the processes of production, 

consumption, and exchange (Prior, 2003). Specifically, I asked questions such as, “What 

was the student trying to convey?” “What conception is demonstrated by this 

production?” and “For what reason was this document produced?” I also parsed student 

work samples for mathematical errors. When an error was located, I tried to reconstruct 

the sequence of constructions that possibly occurred in order to produce the written 

product. Doing this allowed me to identify, conceptions, that possibly produced the 

written product. 
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Discourse Analysis 

Discourse, for Gee (2011), is any meaningful use of language, including gestures, 

where the primary function is to support the performance of social activities, social 

identities, and human affiliation within cultures, social groups, and institutions. Thus, 

discourse refers to the ways of representing, believing, valuing, and participating with all 

of the sign systems that people have at their disposal. 

Gee (2011) argued that language is very important in social situations because: (a) 

language is connected to engagement of social activities (e.g., classroom lessons), (b) 

language is connected to formation of social identities (e.g., students as learners), (c) 

language is connected to interactions of social groups (e.g., classroom communities), and 

(d) language is connected to the founding of social institutions (e.g., schools). 

The analytic technique is comprised of two levels. In the first level the researcher 

reads the data to identify what is represented, what is not represented, and what broad 

themes and patterns emerged. In the second phase, the researcher employs tools of 

discourse analysis to analyze how the structure and form of language expresses meaning 

(Gee, 2011). These tools are specific questions that the researchers ask of the data. Gee 

(2011) presented 27 tools and suggested that the researcher apply all 27 tools to the data. 

However, a study can focus on different tools depending on the research questions posed. 

This study used four of the 27 tools. These tools are, what Gee classified as 

theoretical tools: situated meaning (how is the language used in context?), social 

languages (what are the varieties of the language between participants?), figured worlds 

(are there taken-for-granted theories embedded in the language?), and discourses (what 

identities are enacted in time and space in this exchange?) (Gee, 2011). 
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Situated meaning tool. The situated meaning tool, which draws on cognitive 

psychology (Gee, 2011), states that “for any communication, ask of words and phrases 

what situated meanings they have. That is what specific meaning do listeners have to 

attribute to these words and phrases, given the context and how the context is 

constructed?” (p. 153). This tool helped me to make sense of the situated meanings that 

the teacher and students constructed in the teaching and learning process. 

The social language tool. The social language tool draws from sociolinguistic 

theories, which helps us to understand language work to allow humans to carry out and 

enact different types of social work and socially situated identities (Gee, 2011). The 

social language tool states that “for any communication, ask how it uses words and 

grammatical structure (types of phrase, clauses, and sentences) to signal and enact given 

social language” (Gee, 2011, p. 161).  

The figured world’s tool. The figured worlds tool, according to Gee (2011) 

draws on theories from psychological anthropology about how groups of people use 

narratives and images to make sense of the world. This tool states that:  

for any communication, ask what typical stories or figured worlds the words and 
phrases of the communication are assuming and inviting listeners to assume. 
What participants, activities, ways of interacting, forms of language, people, 
objects environments, and institutions, as well as values are in the figured worlds? 
(p. 171). 
 
The figured worlds tool then can play an important role in the mathematics 

classroom, because much of the communication takes place in the mathematics classroom 

uses symbols. Some symbols have meanings to a broad cultural group; however in the 

mathematics classroom, teachers and students construct local symbols, which are known 

to the group but not to outsiders. 
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The “big D” discourse tool. The final discourse tool I chose is the “big D” 

discourse tool, which draws from a variety of areas, such as cultural anthropology, 

psychology, philosophy, etc. to show that meanings goes beyond human minds and 

language to include objects, tools, technologies, and network of people collaborating with 

each other (Gee, 2011). The tool asks from the communication: 

How the person is using the language, as well as ways of acting, interacting, 
believing, valuing, dressing, and using various objects, tools and technologies in 
certain types of environments to enact a specific socially recognizable identity 
and engage in one or more socially recognizable activities (Gee, 2011, p. 181). 
 

Thus, it is important to identify what sorts of identity the speaker is enacting in 

the classroom. Moreover, what actions, interactions, values, and beliefs are associated 

with the communication? This allowed me to identify the in-depth details of the 

phenomenon in order to provide rich description of the nature of meta-didactical 

slippages in the mathematics classroom.  

Researcher Role 

The primary goal of the qualitative researcher is to better understand human 

behavior and experience, as well as to grasp the process by which people construct 

meaning and to observe what those meanings are (Bogdan & Biklen, 2007). Qualitative 

research according to Denzin and Lincoln (2005) is a situated activity that locates the 

observer in the participants’ world. Moreover, qualitative researchers study things in their 

natural setting, attempting to make sense of or interpret the phenomena in terms of the 

meanings people bring to them (Denzin & Lincoln, 2005). 

I visited the study classroom every day for the duration of the study. During the 

visits I observed the classroom interactions from the position of a passive observer. I did 

not interfere or assist with the planning or instruction of the lessons. I did not engage in 



	  

	  

69	  

conversations with the students, and I did not attempt to help the students on problems. I 

also did not interfere with any classroom management issues. Passive observation was 

necessary, in order to not disrupt the didactical contract of the classroom. Any active 

participation would not only disrupt the existing contract, but would also establish a new 

didactical contract. 

 During the study period, the students became increasingly conscious of the 

camera, and some students wanted to operate the camera and move around the classroom 

with the camera. Other students wanted to perform in front of the camera, which would 

block the view of the classroom. At the teacher’s request, I allowed the students to take 

turns recording. This seemed to accelerate the students’ acceptance of the camera 

equipment, and researcher in the classroom. Students eventually lost interest in the 

camera. 

The qualitative researcher is seen as bricoleur (Denzin & Lincoln, 2005). A 

bricoleur is essentially a person who works with his or her hands to get the job done. For 

Denzin and Lincoln (2005), there are many types of bricoleurs, such as interpretive, 

narrative, theoretical, and methodological. The interpretive bricoleur produces a “pieced-

together set of representations that is fitted to the specifics of a complex situation” 

(Denzin & Lincoln, 2005, p. 4). I used a bricolage of analysis and interpretation to help 

me to probe deep into the phenomenon of meta-didactical slippage in the classroom. I 

frequently made comparisons of the different forms of data, such as the observation and 

the interview data, along with the different analytic techniques in order to attend to issues 

of validity. 
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Trustworthiness 

Validity and reliability has very different meanings in qualitative and quantitative 

research paradigm. For instance in quantitative research, principles such as 

generalizability, neutrality, controllability, and replicability are essential (Bogdan & 

Biklen, 2007; Cohen et al., 2013; Denzin & Lincoln, 2005). In qualitative research, 

however, validity and reliability are replaced with principles such as credibility, 

consistency, applicability, trustworthiness, and dependability (Denzin & Lincoln, 2005). 

The central imaginary of validity according to Richardson (2000) is that of the crystal, 

which combines symmetry, and substance with a variety of shapes, 

multidimensionalities, and angles of approach. Therefore this study strived for 

crystallization, because crystallization “provides us with a deepened, complex, 

thoroughly partial understanding of the topic” (Richardson, 2000, p. 934). In this 

qualitative case study, several techniques were used to enhance the trustworthiness of the 

data and interpretation. These techniques included prolonged engagement, persistent 

observation, member checking, and crystallization (Berg, 2009; Bogdan & Biklen, 2007; 

DeWalt & DeWalt, 2002; Rubin & Rubin, 2005; Spradley, 1980; Yin, 2009). The 

trustworthiness of the research is increased when the researcher follow clearly defined 

principles. For instance, Yin (2009) established three principle of data collection which 

helps to deal with problems of validity and reliability of the case study. The principles 

are: (a) using multiple source of evidence, (b) creating a case study database, and (c) 

maintaining a chain of evidence. 

Using multiple sources of evidence and multiple analytic techniques helped to 

increase the trustworthiness of the study, because it allowed me to address a broader 

range of historical, attitudinal, and behavioral issues (Cohen et al., 2013). According to 
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Yin (2009) the findings or the conclusions in a case study are more likely to be more 

convincing and accurate if it is based on several different sources of information. As 

stated earlier, this study used four sources of data and two analytic techniques. 

The second principle was accomplished by creating a data inventory. Each datum, 

such as interview transcripts, observational transcripts, and document collected in the 

field, was carefully annotated and recorded in the data inventory. For data security, the 

inventory does not contain the actual data. The actual data was stored in a formal, 

presentable database (Yin, 2009). 

In order to accomplish the third principle, I carefully document pertinent 

information, such as time, place, and conditions under which the data was collected, for 

each piece of datum. I took precaution to ensure that the data presented in the final report 

was indeed the data that was collected (Yin, 2009). Additionally, I ensured that each 

conclusion was tied to the research question, and that evidence from the data was clearly 

identified. I used file names to identify the data. 

Study Limitations 

The following limitations applied to this study: 

• Meta-didactical slippage is a complex construct. The complexity of situations 

examined in this case study was difficult to represent simply. The task of 

identifying and describing them was very challenging. For example, by 

providing thick descriptions of one aspect of a situation simultaneously 

encapsulate other areas. It was not known a priori when meta-didactical 

slippages would occur, or if one would occur. Furthermore according to the 

theoretical framework, the teacher could follow different paths if the teacher 
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perceived a failure. Thus, there was no guarantee that the teacher’s negotiation 

of the didactical contract would result in a meta-didactical slippage. 

•  The volume of data produced in this case study made it difficult for data 

analysis. This possibly resulted in over simplification of the situation under 

investigation, and the inevitable reduction of data. 

•  The presence of the researcher and camera equipment in the classroom 

possibly changed the behavior of the teacher and students in ways that may 

have hindered the authenticity of the data collected. 

•  This study only investigated one unit of instruction, over a 15-week period. 

Studies over a longer period of time would reveal more about the nature of 

meta-didactical slippages. 
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CHAPTER 4 

RESULTS 

This study examined the nature of meta-didactical slippages that occurred in a 

ninth grade mathematics classroom, and catalogued any affects of these slippages on 

students’ learning on one unit of ninth grade mathematics. The study was a qualitative 

case study conducted in one, ninth grade mathematics classroom with special focus on 

the “relationships between quantities” unit of study. The chapter is organized in terms of 

the two specific research questions posed. The chapter first reports on the nature of meta-

didactical slippages that occurred in the classroom, and then it presents the ways that 

those slippages affected students’ conceptual understanding on the “relationships 

between quantities” unit. 

Research Questions 

The research questions that guided this study were: 

1. What is the nature of meta-didactical slippages that occurred in a ninth grade 

mathematics classroom? 

2. How did the teacher perceive these meta-didactical slippages affect teaching 

and learning of a unit of analysis of 9th grade mathematics? 

Previous conception of the effect of meta-didactical slippage was that it is a 

modality, which the teacher used to recuperate a perceived failed teaching. Thus, in the 

mathematics classroom meta-didactical slippage was based on the assumption that the 

teacher perceived a failure in a didactic sequence, and made an attempt to correct the 

error. However, the findings of this study showed that meta-didactical slippages in the 

mathematics classroom are non-trivial phenomena, which have profound impact on 
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student learning and retention of mathematics. Moreover, meta- didactical slippages often 

go unnoticed and thus uncorrected. 

In this study I used TDSM as theoretical lens for my analysis and interpretation of 

the data. Figure 4 is a summary of the conceptual framework, which guided my 

interpretation and representation of the data. In the conceptual framework, learning 

predominantly takes place in situations of formulation, action, and validation. 

 

 

 

 

Figure 4. Summary of the conceptual framework, which guided the interpretation of the 
data. 
 

In the next section I report the findings. To report the findings, I selected 

classroom episodes for which it was relatively simple to describe the mathematical ideas 

at stake and the milieu that sustained the didactical situation. Moreover, I selected 

episodes that the teacher approved. 

Findings 

In this study four themes emerged as illustrative of the nature of meta-didactical 

slippages: (1) over-teaching, (2) situational bypass, (3) language and symbolic 

representation, and (4) the design of didactical situation. Each theme emerged as an 

instance of meta-didactical slippage. For the purpose of this report I will number the 

slippages. I will also provide two episodes from the classroom to instantiate each 

slippage. The episodes are also numbered. The numbering is purely stylistic. Finally, 

Instruction	   Institutionalization	  

Formulation	  

Validation	  
Action	  

Learning	  
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there is a linkage between slippages. Thus, the episodes selected to illustrate a particular 

slippage, can simultaneously illustrating other slippages. Moreover, the slippages do not 

always operate independently in the mathematics classroom. 

Slippage 1: Over-Teaching 

Over-teaching emerged in my analysis as a slippage. The word “teaching” is a 

very complex and nuanced word in the mathematics classroom. There are different 

meanings when the teacher and students use the word “teaching”. Furthermore, the word 

teaching has different meanings when the same student used it at different moments in 

the mathematics classroom. The meaning of teaching in this context refers to the teacher 

“giving instruction”, often at the board. Therefore, the teacher “giving instruction to all 

the students at the board” manifests the slippage of over-teaching. This slippage however, 

cannot be identified by classroom observation alone. For, it only became known through 

the teacher’s reflection on the classroom episode. 

Episode 1. This episode is an example of the slippage of over-teaching. What 

follows is a description of the context, and the narrative and transcript from the 

videotapes. 

Context. This episode occurred on my 10th observation of the classroom. In the 

episode the teacher presented a linear equation with variables on both sides, to be solved 

using the method of graphing. The problem was first presented to the class as an opening 

activity, at the beginning of class to be solved algebraically. The students worked on the 

problem individually for five minutes. After the five minutes the teacher asked for a 

volunteer to come to the board. One student volunteered to present her solution on the 

board. As she presented her solution on the board, the students sitting at their desks, 

asked her to explain her solution. The student at the board was able to explain all the 
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steps that she took to complete the problem. After a healthy applause from the teacher 

and the other students, the student at the board went back to her seat. The teacher now 

asked the students to solve the problem graphically. The teacher’s lesson notes showed 

that the problem was designed to address two objectives: (a) to choosing an appropriate 

scale to graph linear equations, and (b) to separate an equation with variables on both 

sides of the equation into two functions of the form f(x) = g(x). To achieve the objectives 

the students were required to graph both functions on the same pair of axes in order to 

locate the solution. The teacher wrote the problem situation on the board as: Solve 8x - 4 

= -10x + 50 by graphing.  

Narrative and transcript. After presenting the problem on the board the teacher 

elicited feedback from the class as he went through a moment of instruction. The teacher 

reminded students that “here they have two expressions of the form y = mx + b”, and that 

they were to plot them on the same pair of axes. The teacher also reminded students that 

the solution is where the two graphs meets, and that they already knew what the solution 

was: 

Teacher: at this point you guys should know what to do because we spoken on that. 
If am graphing it what’s my first step anybody remembers? 

Student 1:  Variables on one side 
Student 2:  Isolate the y 
Teacher: Isolate the y? Where is the y? 
Student 2: No where 
Teacher: [smiling at the response then wrote on the board 8x- 4=y], You remember 

we say you gonna set up two equations… 
Student 3: Where did you get the y from? 
Teacher: We forgot that is the generic…. If we have the… [interrupted] 
Teacher: one second… If I have this, right? equals y [wrote 8x-4=y on the board] 

and I also have negative 10x +50 = y [wrote equation on the board] the 
fact is they are both equals y so we say we could set them equal to each 
other and solve algebraically… but if I want to solve it graphically we said 
you have to go back into your two separate equations… 

Student 4: You lost me! Where do you get the y from? 
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Teacher: I am coming here again ok fine… I see your hand yes... Yes [pointing to a 
student] 

Student 5: [not a didactic question] 
Teacher: Can we finish this first? Ok… We have two expressions that are equal to 

each other okay. This is an expression [circled 8x-4] and this is an 
expression [Circled the -10x+50]. I am saying both expressions are equal 
to y. Cause again that’s how I get my output, so I can set them equal to y 
in which case that gives me two equations and now I am going to graph 
each equations so that’s what we are going to do...[overlap by student 
question where did you get the y?] okay... So Let’s go to the graph sheet 
now and for your … [Teachers draws x and y axes showing positive 
quadrant] 

Student 6: So I can graph negative 4…[This was more of a question, but the response 
of the teacher indicated that it was not a question] 

Teacher exactly... exactly now we could graph each equation separately… So you 
with me, right? My x value I am going to have increments of 1, 2, 3, 4, 
5… and for this right here I am going to suggest we go up by 5 [marking 
the y axis with 5, 10, 15… as he speaks]. So could you just set your graph 
up for me please… we gonna go by fives! (Transcript of Video SL_12-5-
13) 

 
The problem was not an unfamiliar situation, because the class had already 

discussed the process involved in solving such an equation in a previous lesson. The 

silence met by the teacher’s comment that at this point they should know what to do, was 

broken by the teacher’s almost desperate plea for anyone to tell what is the first step in 

graphing a linear equation. At this point, the students as if felt compelled to answer the 

teacher’s question started to respond.  Student 1 suggested getting the variables on one 

side but the teacher did not acknowledge the response. While viewing the episode the 

teacher explained, “ I ignored that response because the students already solved the 

problem algebraically. Getting the variable on one side would be an algebraic technique, 

but the focus was to solve graphically” (INT_11-18-2013). The teacher responded when 

student 2 said, “isolate the y”, with the question “where is the y?” The question was not 

posed only to student 2, but to the whole class. This was an indication that the teacher 

perceived that the students did not sufficiently understand what to do or did not 
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remember the previous lessons where they discussed similar situations. The teacher wrote 

the two equations on the board and told students to remember that this was discussed 

before. The two equations that the teacher wrote on the board prompted other student 

questions, for instance student 3 asked, “Where did you get the y?” 

Experience with this curriculum demonstrated that separating a linear equation 

into two linear functions of the form f(x) = g(x) is a conceptual challenge for ninth grade 

students. Evidenced by the students’ questions, it appeared that although the teacher 

presented and explained the process of obtaining two linear equations, the students still 

had difficulty with the concept. For, as soon as the explanation was given, another 

student asked the question again using the same words as before, “where do you get the y 

from?” The teacher recuperated the situation by repeating the instruction. The repetition 

of the instruction however, seemed to do very little to help the situation, and the episode 

continued with the teacher giving instruction at the board. 

The decision to remain in a situation of instruction therefore prevented the 

situation from progressing to a situation of action, formulation, and validation. This 

decision however, was not intentional. It was the teacher’s intension to “stop teaching”, 

and to transfer responsibility of the problem to the students. In an interview, the teacher 

expressed his frustration with this episode: 

I definitely over teach this one. I really don’t know why I pushed pass the goal of 
the problem. I intentionally selected this problem so that the students would have 
to choose a scale for the y-axis that is different from 1, 2, 3, which we always use. 
Because, I know the standard clearly ask them to be able to choose an 
appropriate scale, and that is what they are going to be tested on. I did not expect 
the students to have so many questions on separating the two equations, because 
we spoke on that before. So I just rushed through it… like ok fine (INT_11-18-
2013). 
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The teacher’s decision to remain in a situation of instruction was therefore 

influenced by the questions that the students were asking. The teacher did not expect the 

students to have difficulty separating the equation into the two functions of the form f(x) 

= g(x). Students’ questions thus, accounted for the teacher’s decision to re enter a 

situation of instruction. For example after student 3, asked, “where did you get the y 

from?, the teacher initiated a didactic sequence to explain. Immediately after the 

explanation another student, who seemed to be engaged in the lesson, asked, “Where did 

you get the y from?” The teacher at this point chose not to re-explain. The teacher 

advanced the solution of the problem to the graphing of the two equations. Still in a 

situation of instruction, the teacher suggested what scale to use for the x-, and y-axes. 

This according to the teacher was a contradiction to the intended purpose of the problem, 

and was not his intension. Therefore, the kinds of questions that students asked in a 

didactical situation are affordances to the slippage of over teaching. Additionally, 

intentionality is a major affordance to this slippage. The next episode is another example 

of the slippage of over teaching with a different affordance. 

Episode 2. This is second episode that illustrated the slippage of over-teaching. 

The episode occurred towards the end of the teachers planned curriculum for the 

semester. The lesson was the 21st lesson that I observed. 

Context. In this second episode the teacher presented a situation that can be 

modeled by an exponential function of the form 𝑓 𝑥 = 𝑎(𝑏)!. The teacher wanted the 

students to solve the problem for a given value of f(x), by using a method of “guess and 

check”. The teacher presented the problem on the overhead projector: In the absence of 

predators, the natural growth rate of rabbits is 4% per year. A population begins with 

100 rabbits. The function 𝑓 𝑥 =   100(1.04)!gives the population of rabbits after x 
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years. (a) How long will it take for the population to double? (b) How long will it take for 

the population to reach 1000? In this situation the students did not have the knowledge of 

solving exponential equation using properties of logarithms and exponents. Therefore, the 

only way that they would be able to solve it is by “guess and check”. 

Narrative and transcript. After the teacher presented the problem on the overhead 

projector, he instructed the students to use the method of guess and check. They were 

also required to document their process. The teacher paused for two minutes to allow 

students to work the problem. It appeared that the teacher perceived that the students did 

not know what to do because he began to explain the first part of the question on the 

board. After completing part (a) on the board the teacher pause again, but this time only 

for one minute. The class was silent and all the students seemed to be engaged with the 

problem. The silence was broken as the teacher began an instructional sequence for part 

(b). I thought the teacher did not wait long enough because I was also working the 

problem in my notes and I did not complete the problem. I selected the transcript for part 

(a) because it is shorter and because the two instructional sequences progressed in a 

similar mode: 

Teacher [wrote the problem situation on the board: growth rate of rabbits: f(x) 
=100(1.04)x ], how long will it take to double? How long will it take the 
population to reach 1000? The way to do this is again by guess and 
check… yes, guess and check! 

Student A: So what if you get wrong... guess and check? 
Teacher:  So what do you want to plug in for x? 
Student B: 5 
Teacher:  let’s plug in 5 and see what you get. What do you get? 
Student C: 121 
Teacher:  121? 121 point something? [Overlapping talk]. So in that case 122. Stop 

there for a moment for me. We got 121, what do you think we should try 
next? 

Student D: 6 
Teacher: Let’s not try 6, because going up by 1 it’s going to work but lets take a 

leap of faith and try something big 
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Student D: 8…9… 
Teacher: 8? ok. Now if it is too big we can come back down [teacher erase the 5, 

and the 122, then wrote 8 for exponent] now what do you get? 
Student C: 136 
Teacher:  you got 136. So we had 122, now we have 136 so we should kinda go a bit 

higher. Maybe we should go above 10… 
Student E: 12 
Teacher: Let’s try 12. That’s all I would do in that case 
Student D: higher! 
Teacher:  you want to go higher still? Perfect, so how high? 
Student E: 15  
Teacher:  15.Again it’s going to take us a little time but in this case… So what do 

you get? 
Student F: higher, 180 
Teacher: That give us 180, so we are close right? 
Student D:  we should try 17 
Student E: no we should go higher! 18 
Teacher:  18? Ok. So we get 202. So about 18 years. Obviously it will be a little less 

than 18 years but this will do. (Transcript of Video PSL_12-5-13) 
 

In this episode five students participated in answering questions, or posing a 

response. The other students sat silent, and wrote in their notebooks. The situation was 

designed to allow students to formulate hypotheses, act on their formulations, and 

validate their formulations with the feedback from their calculations by comparing their 

results with the 200 rabbits. This situation had an objective milieu in that students would 

get feedback from the situation as to the validity of their solutions. 

The teacher asked the students to select a starting number. The students selected 

5. This indicated that the students were familiar with the process of guess and check, 

because 5 seemed to be sufficiently arbitrary. The teacher asked the class to act on the 5, 

and “see what you get”. After the students reported 121, the teacher elicited another 

formulation. The students selected 6, but the teacher rejected the 6 with no explicit 

explanation. Choosing the 6, would be ideal for the students to gain experience with the 

process of guess and check, because students would begin to see that the growth is slow 

by the next round of play. According to the teacher’s plan, the teacher wanted students to 
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begin to select “better numbers to try based on the answers they were getting”. The 

teacher “over-teaches” in this situation by asking the students not to select 6. By 

examining, student work, and for the remainder of the semester, and my data collection 

period, I did not find any evidence that indicated that the students understood why the 

teacher did not want them to select 6, and 7, and so on. The teacher simply asked the 

students to take a “leap of faith” and go higher. It appeared that students were not ready 

to enter a situation of formulation with part (b) of the problem, because they did not 

begin to work on the assigned problem for more than 3 minutes. The teacher walked 

around the room and possibly observed that students appeared to be waiting on him to 

work the problem on the board. I was not sure at this point if the students did not know 

what to do or if they collectively know that the teacher would re enter a situation of 

instruction, but after about five minutes, the teacher went to the board and begin the 

problem in a situation of instruction. Thus the teacher restricted the progression of 

situation by entering an instruction sequence. Moreover the situation stayed in 

instruction, which lasted for 6 minutes. In this sequence the teacher suggested the 

numbers to use. This instruction therefore prevented the situation from progressing to a 

situation of action, formulation, and validation. 

Conversation with teacher after watching the episode and discussing what 

happened, the teacher had this to say: 

I tell you... I felt a shift… I know what I wanted to happen, but I just did not know 
how to make it happen. I did not want them to quit on me either. So the big 
question is what is the optimal time to stop teaching? Should the teacher allow the 
situation to drop? And then try to recuperate it another time? What must the 
teacher do if after you pass the problem to the students they don’t progress with 
the situation? (INT_12-19-2013) 
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When the teacher said I “felt a shift”, I coded this as being influenced by the 

constraint of time, because it was only three weeks before the semester ends. Thus the 

lesson was very close to the end of the semester, and close to a county mandated 

benchmark test. Of the three weeks left in the semester, the last two weeks was scheduled 

for review and testing. However, when the teacher asked, “what is the optimal time to 

stop teaching?” I coded this as an example of a more complex experience in the 

mathematics classroom. The concerns that the teacher expressed is kin to what Brousseau 

(1997) called a paradox of devolution. In this paradox the teacher wants the student to 

find the answer by his or her self, but at the same time the teacher wants the student to 

find the correct answer. Thus when the teacher asked, “should you allow the situation to 

drop?” the teacher is questioning the social responsibility of wanting the students to get 

the correct answer. Consequently, the slippage of over-teaching which restricts the 

progression of a situation from entering into situations of formulation, action, and 

validation is also afforded through the legitimate social responsibility of wanting the 

students to produce the correct knowledge.  

Slippage 2: “Then We Can Practice Some”: Situational Bypass 

Practice emerged in the data as an important theme. Practice refers to the process 

by which the teacher assigns a problem-set for the students to complete in order to 

concretize, and formalize a skill that was previously learned. In this portion of my 

analysis I selected two episodes from the class. In these episodes the teacher forced the 

situation to progress directly from a situation of instruction to a situation where the 

students practice the skill. According to TDSM, practice is a situation of 

institutionalization whereby there is a canonization of a procedure or algorithm (see 

Table 2). Without going through situations of action, formulation, or validation, a 
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situation of institutionalization emerged as a meta-didactical slippage. I called this 

slippage a situational bypass. 

Episode 1. This first episode is an introductory lesson. Examination of the 

teacher’s lesson notes showed that the teacher planned to introduce exponential function, 

as well as to have students interpret each part of the exponential expression. 

Unbeknownst to the teacher, the situation progressed from instruction directly to 

practicing. Moreover, the situation shifted from interpreting the parts of the expressions 

to evaluating exponential functions. 

Context. This episode was the first lesson in a sequence of lessons dealing with 

exponential functions. This occurred on my 18th classroom observation. As this was an 

introductory lesson, the teacher presented a short PowerPoint presentation with the 

definition of exponential function, and some basic examples of exponential phenomena. 

The teacher gave examples such as the amount of money in a retirement account. Unlike 

solving linear equations and simplifying linear expressions, the exponential function was 

never introduced in lower grades. This was their first encounter with exponential 

functions. The students, sitting in pairs, copied the notes from the board and were 

expected to ask questions of the teacher as he goes through the presentation. 

Narrative and transcript. After presenting the “notes” as the teacher called it, the 

following occurred: 

Teacher:  All right let’s move on 
Student1:  No we’re not ready 
Teacher: (120.0) Alright let us go on…Again all I am going to do is just 

evaluate…so we just going to evaluate 
Student1: We don’t have to write the bottom one? [The bottom contained: An 

exponential function is of the form 𝑓 𝑥 = 𝑎𝑏! ,𝑤ℎ𝑒𝑟𝑒  𝑎 ≠ 0, 𝑏 ≠
1,𝑎𝑛𝑑  𝑏 > 0] 

Teacher: You should… again that is the generic formula… 
Student2: Question! What does x represent? 
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Teacher: The exponent…Base on this right here… I’ll show you in a minute… 
Student 2: I don’t need it right now I just need to know what it is… 
Teacher: Once we get to an example it will become clear. Today all I am going to 

do is to show you how to plug-in into the formula. We are going to 
evaluate… I think we ready to move on… 

Students:  Nooooo!… hold on! 
Student1: Now you see? I am not the only one 
Teacher: Alright… Let’s go back one… Now If you copy the table, from the 

previous page, you will notice that this formula represents the table on the 
previous page… So why don’t we go back a second, let me show you. [A 
student sitting at the computer clicked the slides back to the table]… f(x) 
is simply another way of saying y, right output f(x). What’s the initial 
value from the table? 

Student1: 2 
Teacher: 2? Alright 2 that’s my a... What’s my common ratio? [the teacher referred 

to mathematical content from a previous lesson] 
Student1: 3  
Teacher So we multiplying by 3 each time, and of course raised to the x power 

[teacher writes the function on the board] ok, that’s it so that’s how we 
came up with the formula… initial value times the common ratio raised to 
a power… now go back… you have one minute you all. So J... [student 2], 
Your question was  “What does the x represents? So if I am evaluating, we 
going to look at an example now, show you what the x is.. Could we move 
on? 

Students No! 
Teacher  (10.0) Sounds like you are ready. [The teacher presented problem 

situation: The function f(x) = 500(1.035)x models the amount of money in 
a certificate of deposit after x years. How much money will there be in 6 
years?]...So again that is all I am going to do today, just evaluating…  J 
you remember order of operation? What comes first?  What operation do 
you see? 

Student2: Parenthesis 
Teacher: You see parenthesis? What is inside the parenthesis? 
Student2: 1.035 
Teacher: So there is really nothing to do in there… So two operations 
Student 2: The second one is exponent 
Teacher: The second one is exponent what is the first one? 
Student 2: Parenthesis 
Teacher:  Parenthesis is not! Is nothing in the parenthesis! What does it imply? 
Student 3: Multiplication 
Teacher: Multiplication! That is what it implies right? Which one would you do 

first? 
Student 4: Exponent 
Teacher: Exponents… So you have to do exponents before you multiply [Writes 

f(6) = 500(1.035)6 on the board]. Now do you see the 6, we are going to 
replace x with 6 which is exactly what you said, and that’s all we gonna do 
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today which is evaluate. So 500 times 1.035 raised to the 6 power is 1.229 
so basically exponents is first and now multiply so f(6) = 614.63 

Students: [talking among themselves] that is not a lot after 6 years? 
Teacher: You all want to go into that? [Teacher heard the student comment and 

responded]That is for tomorrow. I just want to show you how to put it in, I 
am not going to give you too much right now... but it is based on the 
common ratio, so the bigger the common ratio the larger the output… At 
least it is a positive growth anyway so we will take that… Now let me just 
say one thing... what does the 6 represents? 

Student 5: Exponent 
Teacher:  Your exponent? Your x-value, which is your input and what does this 

represent? Your y-value, which is your output. So unlike what we were 
doing before. I can tell what the input is and what the output is. Why 
would that be important? 

Student 6: Cause it helps you figure out what your coordinate is. 
Teacher: It helps you figure out your coordinates. Now let’s talk about how to put 

this on the calculator. Then we can practice some. (Transcript of Video 
PSL_12-5-13) 

 
This episode occurred immediately after the PowerPoint presentation. The teacher 

wanted to provide an example of how to evaluate an exponential function, but the 

students, were not ready to move on. From the presentation the teacher introduced the 

topic and provided a table that shows the relationship between the input and output of an 

exponential function. The teacher also provided examples of the application of 

exponential functions. At the end of the presentation the teacher changed the situation to 

evaluating exponential functions. When the teacher said, “let’s move on”, Student 1 

answered for the class, “we are not ready”. Analyzing the classroom discourse showed 

that the response of student 1 was not simply an indication that they were still copying 

the notes, but rather an indication that the content was unfamiliar, and that they did not 

understand. This was a subtle indication of a failure in the teaching sequence. 

Immediately after the teacher’s response to student1, student 2 asked, “what does x 

represent?” Examination of the teacher’s notes indicated that this question was consistent 

with the content standard that the teacher presented in passed lessons, with linear 



	  

	  

87	  

relationships and again with exponential relationships at the beginning of the current 

lesson. The standard required students to interpret	  parts	  of	  an	  expression,	  such	  as	  

terms,	  factors,	  and	  coefficients. They were also required to interpret expressions that 

represent a quantity in terms of its context. Therefore, the students were indicating that 

the content was complex, and the symbolic representation was not clear. 

The students were aware of the teacher’s intention to continue with the lesson, 

because student 2, immediately postponed the question by saying, “ I don’t need it right 

now, I just need to know what it is”. It appeared to me that the teacher wanted to advance 

the sequence, and the students did not want to interrupt. My observation at that moment 

was that the students and the teacher negotiated equilibrium of a didactical contract. The 

question that student 2 asked was consistent with both the culture of the class, and the 

expectation that the teacher established. However, at this time the students opted to 

postpone the issue. Thus, the teacher pushed the lesson to a situation where the students 

must “practice some” problems similar to the example in order to gain the necessary skill. 

This was an instance whereby the situation jumped from instruction to a situation of 

institutionalization without allowing the situation to go through the situations of action, 

formulation, or validation. 

 In an interview later that day the teacher spoke about the need for pushing the 

students: 

The County has a benchmark coming up in two weeks, and all they want is for the 
students to plug-in, into the formula, so all I wanted to show them is just to 
evaluate. I figured that the only way to get them to do this is for them to practice. 
We will have to come back to the concept another time. But right now I got to 
move. (INT_12-9-2013) 
 
The teacher attributed this bypass of situation to actors outside the classroom. The 

county’s benchmark was coming up in two weeks. The benchmarks were important 
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because the student scores on the benchmarks were used to evaluate the teacher. 

Moreover, the benchmark does not require students to have a deep understanding of the 

mathematics. The benchmark only required students to “plug-in”.  This was my 18th 

classroom observation and I formulated from my observations that this teacher was 

deeply concerned about the conceptual understanding of mathematics. Furthermore, the 

teacher’s comment that “we will have to come back to the concept another time” 

indicated that the teacher believed that mere practicing evaluating exponential functions 

was not sufficient for the students to construct the knowledge. I considered the 

constraints of standardize testing to be affordances to the slippage of situational bypass. 

Moreover, the situated, cultural use of the test scores was also affordances to this 

slippage. 

Episode 2. In this next episode, the teacher started the class in a situation of 

institutionalization. This was a common practice in this classroom and classrooms in this 

school, because it was a required part of the teacher lesson plans that teachers submit to 

the principal. Therefore, the first 5 minutes of every class was devoted to a “Warm-up” 

activity. In this mathematics classroom, the warm-up activity was invariably a situation in 

which students are given a set of problems to practice for a standardized test. The episode 

shows another instance of situational bypass. 

Context. This episode occurred towards the end of data collection period, and the 

day following episode 1 above. The teacher began to prepare students for a benchmark 

test, which would be administered in two weeks. The activity was a review and skills 

practice activity. The activity was designed to address difficulties that students were 

having the previous day, particularly with the order of operations. The teacher presented 

eight problems on the overhead for the students to quickly work through. The problem-
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set is shown in Figure 5. After about five minutes, the teacher provided the answers to all 

the problems on the board. The teacher directed the students to check their work with the 

solutions presented and to correct their errors if any. The teacher also encouraged 

students to ask for an explanation of any discrepancies. 

 

Warm-Up 

Find the value of each expression 

1. 2! 

2. 2!! 

3. (0.2)!  

4. 15(!
!
)!  

5. −3! 

6. (−3)! 

7. 7(−4)! 

8. 12(−0.4)! 

Figure 5. Practice problem set used for warm-up and review activity. 
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Narrative and transcript. The following transcript shows the didactic sequence 

that occurred beginning with a student question: 

Student 1: I have one more question… 
Teacher: one more question? Let’s go 
Student1: You know how you have the negative inside the parenthesis. In number 

8… you have the answers up there so I don’t know… 
Teacher: It does not matter, we could still talk about the process of how we got it… 

so number 8 what about it? 
Student 1: You know how like for number 5, and number 6 you have the negative…. 

You know like in number 6 you don’t have the negative sign in the 
parenthesis…. I don’t even know what I want to say any more…. [Student 
typed numbers on calculator] so this? I don’t understand how this I get it 
out positive but it is coming up negative… 

Teacher: What answer? 
Student 1: For number 8. So when it is inside the parenthesis it is negative and when 

it is outside 
Teacher: No no [looking at student work] Be careful...careful…look at the 

exponent, the exponent is odd... so when you multiply -0.4 times -0.4 it 
becomes positive, and when you multiply by – 0.4 again it becomes 
negative again, because you doing it three times. So not only must it have 
to be parenthesis, the exponent has to be even for you to get and even 
output you see? But in this case it is odd 

Student 2: So you can’t just make that decision? 
Student 1: But ok for number 6, and number 8, not 8 number 5 [-3^4= -81], and 6 

You see how you say the negative sign is not in the parenthesis so it is 
going to be negative and for number 6 [(-3)^4 =81] it is inside the 
parenthesis so it is going to be positive? 

Teacher: Yes 
Student 3: Will that always happen in those situations? 
Teacher: It will, but there is what I am saying now ok… imagine I take this even 

number out and I put an odd number [changed (-3)^4 to (-3)^5] what’s 
going to happen now? It going to be negative… so what I am trying to 
show you is that for it to become positive the exponent has to be even. If 
the exponent is odd it is going to be negative even if you put it in 
parenthesis… you gonna get a negative. Because the exponent … 
[demonstrate on board] but the only time I really care to put parenthesis is 
if the exponent is even. But we’ll practice some more (Transcript of Video 
PSL_12-5-13). 

 
Although this situation started in institutionalization, it was transposed to a 

situation of instruction. Based on students’ questions, it appeared that students were 

having disagreement with weather or not the result was negative or positive. I observed 
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that students had the correct numerical value on their papers, but the incorrect signs. I 

was however, not sure if the incorrect signs was due to a mathematical conception or 

from the syntax of the calculators the students were using. The calculator syntax has 

different meanings to the expressions −𝑚!  and −𝑚 !. However, analysis of the 

classroom discourse showed that the students often treat both expressions as equivalent. 

Moreover, the students often disregard the difference of say –a, and +a, for they often 

argued that, “it is the same thing”.  

One student started to formulate an idea that if a negative is outside the 

parenthesis then the result is negative, and if the negative is inside the parenthesis, then 

the result is positive. That student acted on this formulation for question 8, but when the 

teacher disclosed the correct result for question 8, it was different than what the student 

got. The student made the formulation public, and requested an explanation. The teacher 

however, explained the situation by didactical means. After the teacher’s explanation, 

student 2 who sat behind student 1 commented, “So you can’t just make that decision?”. 

This was an indication that student 2 also made the same formulation as student 1. 

Following the same argument, student 3 who was sitting in the back of the classroom 

asked, “will that always happen in those situations?”. The students did not collaborate on 

their work because it was an independent activity, thus I presumed that the class had 

similar conceptions. Examining students’ work showed that many other students formed 

the same conception, because they had identical errors in their calculations. 

At the end of the episode the teacher said, “We’ll practice some more”. This was 

the same statement the teacher made the previous day with the same content, and almost 

identical situation. I could tell that the teacher wanted to begin the lesson for that day, but 

the issue was not resolved, because the students continued to ask questions about their 
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work. Therefore, the teacher went to a large bookshelf at the side of the classroom to get 

a stack of worksheets. He gave the worksheets to a student to distribute to the class. I 

could tell that the worksheets were not the intended problem set for that day, because the 

teacher had to search through a large stack of papers to find them. The work sheets 

contained 30 questions similar to Figure 6. For the remainder of the period the students 

worked in pairs to complete the worksheet. The teacher walked around the room, and 

provided individual instruction to students. 

 In TDSM, learning occurs when new connaissances and savoirs appear. In a 

situation of practice especially when the student associate a “grade” to their production, it 

is difficult for learning to take place, for there is seldom any need for the appearances of 

new connaissances and savoirs. It is only through the process of formulation, action, and 

validation, that new connaissances and savoirs are formed. Therefore I consider 

bypassing these moments an instance of meta-didactical slippage. 

For the next two weeks, of the semester and my data collection period the teacher 

spent a significant amount of class time on evaluating exponential expressions, in an 

effort to correct the conception that students had regarding parenthesis, and negative 

signs. By the end of data collection students still had the initial conception formulated by 

student 1. In a conversation with the teacher at the end of data collection, I asked about 

the conception that I thought the students made. The teacher explained that he heard the 

formulation but tried to quickly dispel the notion. He said that he could not understand 

why the students still kept that misconception after so many opportunities to practice. The 

teacher recalled, that at the time he thought the formulation was corrected by the practice 

problems and that he did not realize that “such a simple thing could have such a big 

effect”. I told the teacher that I thought the problem could be that the students uncritically 
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accept what the calculator output. While watching the episode the teacher recounted that 

such moments are frequent in the classroom, and that in those moments he is totally 

unsure of the source of the error. 

Slippage 3: Language and Symbolic Representation 

Language emerged as a major theme in the data. In the mathematics classroom the 

means of communication is often symbolic. Students drew symbols in the air with their 

fingers to communicate their ideas. Students also wrote on the board, or often students 

call the teacher to come to their desks to look at what they were “trying to say”. Other 

times it was the teacher that drew pictures, and symbols in order to communicate. In this 

portion of my analysis, I considered episodes in which the language or the symbolic 

representation emerged as an important theme to understand the nature of meta- 

didactical slippages.  

Episode 1. In this first episode the teacher used particular calculator syntax as 

part of the instruction. This calculator syntax gradually became a legitimate way of 

representing and knowing. Moreover, the calculator function became an obstacle to 

student’s conceptual understanding. The episode occurred in the middle of my 

observations (lesson 15). It was the second lesson in a sequence designed to teach the 

concept of geometric sequences. 

Context. In the previous lesson the teacher introduced geometric sequences. 

Students were given the common ratio, and the first term then were required to write 

down the sequence up to a given n terms. After the “Warm-up”, was completed and the 

teacher transitioned to this second lesson. The teacher wrote the objective on the board 

“how to find the common ratio of a geometric sequence”. He presented the problem in 

Figure 6 on the overhead. 
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The table shows the height of a bungee jumper’s bounces. 
 
 Bounce 1 2 3  

Height (Ft) 200 80 32 

 

Figure 6. Geometric sequence problem situation (FieldNote_10-31-20013) 

Narrative and transcript. The teacher started in a situation of instruction. The 

term common ratio was defined in a lesson prior to this episode: 

Teacher: How to find the common ratio given a geometric sequence… Obviously I 
am going to start with my numbers. Now… 200, 80, 32 

Student 1: Start at your numbers [student repeated what the teacher said] 
Teacher:  Because we multiply by a number to get the next term… I ‘ll do the 

opposite so I will take the second and the first term and I will divide them. 
So I will do 80/200 then I will take the third and second number and I will 
divide that. The reason why I am doing that is because I am looking to see 
if I have a common ratio... I can’t do it once, for it to be common it has to 
be repeated a few times ok, and it has to be every time so I ‘m gonna 
check to make sure it is common… Now 80/200 did I show you how to 
simplify that? 

Student 2:  Yes! You said press simp 
Student 3:  Press what? 
Student 2: S-I-M-P [spelling out the word simp] 
Teacher: Put 80/200 in the calculator [teacher ignored the student-student 

interaction] 
Student 2:  do you want me to simp it? Simp it to the smallest form? 
Student 4:  it will be 2/5 
Student 3: Where is this simp? What you guys talking about? (Transcript of Video 

PSL_12-5-13) 
 

Simplifying fractions according to the teacher was a problem for the students. 

Consequently, the teacher taught the students to use the calculators to simplify fractions. 

Observing the classroom I noticed, that students had four different types of calculators. 

The teacher provided two types of scientific calculators. One has a function called 

“simp”, which simplifies a fraction to simplest form if the fraction is entered with the 
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backslash (/) symbol. The other calculator does not have a “simp” function, but was able 

to compute fractions using a function key with the symbol “ab/c”. The two types of 

calculators were TI-30 scientific calculators. Other students had personal calculators. 

Some of which had the capability to perform operations with fractions and others did not. 

It seemed that student 2 was very competent with the function simp on the 

calculator. I presumed that the teacher only taught the class how to use the calculator that 

had the function simp, because student 2 answered the teacher’s question with “yes, you 

said press simp”.  In this context simp is a noun, which means a key on the calculator. 

However, simp is used as a verb, which means to perform an action. For instance, student 

2 said “do you want me to simp it?” Simp not only became a verb, but a mathematical 

discourse that had a specific meaning associated with it. Simp, which was now a 

legitimate language in this classroom, is simultaneously an obstacle to other students, for 

example, student 3 who did not have that function on her calculator. Student 2 was not 

aware that not on all calculators have the function “simp”, thus spelling out S-I-M-P 

would not help student 3 and others to find the key on their calculators. 

Another use of a cultural language is for example the teacher said, “Because we 

multiply by a number to get the next term… I ‘ll do the opposite so I will take the second 

and the first term and I will divide them”. The first part of the statement was a referent to 

the previous lesson on geometric sequence. The teacher used the same phrase in the 

previous lesson where students were required to list the geometric sequence. The second 

part of the teacher’s statement was problematic, and later resulted in a misconception. 

The referent to the previous lesson was needed to understand the second statement. Note 

that the teacher said, “We would do the opposite”. Do the opposite of what? The teacher 

took for granted that students would correctly interpret the meaning of the term 
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“opposite”.  Note also that when the teacher said, “I will take the second and the first 

term and I will divide them”, the teacher was enacting a situated meaning. That is to say, 

because he said the second term first, followed by the first term, then this was an 

indication that you should divide the second term by the first term. Nevertheless, the 

referent was not explicit. Therefore some of the students divided the first term by the 

second. For example while working on the same problem later on in the episode lesson 

this occurred: 

Student A:   I got 2.5. 
Teacher: You are doing division! I don’t want to do division! In order for it to work 

for you, you have to divide. But I am trying to keep it in a way where we 
are always multiplying because when it comes time to write the formula 
we want it in terms of multiplication…and not division. So again not that 
you are wrong, dividing by two and a half is perfectly fine, but instead of 
dividing I want to set up multiplication (Transcript of Video PSL_12-5-
13) 

 
Student A did not interpret the teacher referent as intended. What the student did 

was divided 200 by 80. Student A was proposing 2.5 as the common ratio, based on the 

teacher’s instruction to take the second term, and the first term and divide them. This was 

a misconception brought about by the language. The teacher also misinterpreted the 

student A’s response, and presumed that student A was using division instead of 

multiplication. The common ratio was 2/5. Therefore following the referent of the 

previous day, the teacher expected that students would construct 200  × !
!
= 80. The 

teacher thought that student A constructed 200  ÷ 2.5 = 80. Therefore the teacher put 

the student on trial for breaking the didactical contract. For, the teacher shouted, “You are 

doing division! I don’t want to do division!” This however was an error brought on by the 

language use.  
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Language use was an affordance to a slippage. Examination of students’ work 

showed that when students solved for the common ratio, the students intermittently 

presented the reciprocal as the common ratio. The previous lesson on geometric sequence 

was not a sufficient referent for students to correctly interpret the language used in 

discussing the common ratio. Additionally, when students presented a solution for the 

common ratio, the students did not validate their solutions. A situation of validation 

would determine if the common ratios could produce the sequence from which it came. 

This was also a consequence of the slippage of situational bypass discussed earlier. It was 

part of the classroom culture to practice a skill without actually validating the piece of 

knowledge. This culture was part of the didactical contract, because students were 

reluctant to validate their solutions even it the teacher explicitly required validation. 

Language use also appeared in very complex ways. The teacher’s language is 

often different than the students’ language. Both languages are often different than the 

language of the mathematics. Frequently, the teacher tried to translate the mathematical 

language into student language in order to ease communication in the classroom. 

However, this transposition sometimes resulted in (mis)conception of the mathematical 

meaning, which could become part of the students’ knowledge base. 

Episode 2. The next episode is an instance where the language use in one 

situation transcended the situation to form part of the students’ connaissance. 

Context.  After solving linear equations, the teacher instructed the students on 

solving literal equations. This episode occurred early in my data collection period. At this 

point I observed five lessons. This was my 6th classroom observation. According to the 

teacher, the sequencing of the lessons was critical. Solving linear equations was done 

before solving formulae, because the students would be able to apply their knowledge of 
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solving equations to solving formulae. The objective was for students to rearrange	  

formulae	  to	  highlight	  a	  quantity	  of	  interest,	  using	  the	  same	  reasoning	  as	  in	  solving	  

equations.	  The	  teacher	  wrote	  three	  problems	  on	  the	  board	  and	  selected	  three	  

students	  to	  present	  solutions	  on	  the	  board.	  When	  the	  students	  finished	  their	  

presentation	  the	  teacher	  made	  a	  short	  comment	  about	  their	  solution.	  

Narrative and transcript. A student completed her question at the board: 

Teacher: Good… now what I was suggesting is that you add W on both sides of 
Ax-W =3, so Ax = 3+W, and now you subtract 3 from both sides… so Ax 
-3 = W, and again it really don’t matter if you put W first or last [teacher 
writes W=Ax-3 or Ax-3 =W on board] we are interested in the process, but 
good job… (FieldNotes_10-31-3013) 

  
The teacher was probably ensuring that if different students had variations of 

solutions, then those students would know that their answer was also valid. The teacher 

made 15 similar comments over two 90-minute class periods, while reviewing the 

concept of transposing formulae. Each time a student presented a solution the teacher 

repeated a comment such as:  

 
Teacher: And again it really don’t matter if t is last or first. It’s all the same! or you 

put the constant first [Teacher wrote 2n+3 = t or t = 2n+3 on board]. 
(FieldNotes_10-31-2013) 

 
On my 8th classroom observation, the teacher moved on to solving inequalities 

after solving equations and transposing formulae for the past four classes. In the first 

lesson, the teacher introduced inequality with a problem situation.  After the discussing 

the situation the teacher extracted the symbolic representation of the problem as: 

4000+ 10𝑥   ≤ 25𝑥 

 
Teacher: So how do we solve this? 
Students: Uhmmmmmm… 
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Teacher: Pretend for a second that this is an equal sign. [Changed the inequality 
sign to an equal sign](FieldNotes_10-31-2013) 

 
The teacher replace the inequality symbol with an equal sign, then continued the 

problem in a situation of instruction. The students were able to follow the solution of the 

equation when the teacher replaced the inequality symbol with equal sign. The teacher 

wrote another symbolic problem on the board, replaced the inequality symbol with equal 

sign, then solve. This process was repeated four times in the lesson. The teacher provided 

a problem set with practice problems for the students to practice. All the problems on the 

problem set were written in symbolic form. The teacher walked around the room assisting 

students as the worked on the problem set. The teacher reminded students individually to 

change the inequality symbol and solve.  

The next lesson the teacher presented a warm-up problem. The teacher wrote, 

“Solve !!
!
𝑥 + 2   ≥ 8” on the board: 

Teacher: What is different? [Pointing to the inequality on the board !!
!
𝑥 + 2   ≥ 8] 

Student A: There is an inequality sign 
Teacher: Inequality right? But again I want you to see that the same thing you were 

doing for an equation you do the same thing here. Is the same process, 
only difference is the symbol is different. But you guys should not look at 
it as being something that drastically different... (Transcript of Video 
PSL_12-5-13) 

 
The teacher’s advice that solving inequality was the same as solving equations 

resulted in a slippage of which the genesis is language use. Note in the previous nodes, 

the teacher replaced the inequality symbol with the equal sign. Students’ work from the 

classroom showed that 10 of the 23 students in the class solved the inequality 12   < 2𝑥 −

6 as shown in Figure 7. Only two students had the correct solution and the other students 

did not attempt the problem. If solving inequalities were the same as solving equations, 

then all 10 students who solved the problem as shown in Figure 7 would have gotten the 
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correct solution. The reversal of the expressions in the second line is a legitimate 

technique when solving equations, because equality is a symmetric relation. However, it 

is not so for inequalities.  

It is never certain what meanings students construct from the language use in the 

classroom. The overuse of analogies and metaphors may result in unintended 

constructions that may later become obstacles for learning. When solving formulae, it 

appeared that the teacher preferred to have variables on the left hand side of the equation. 

This may account for the students reversing the expression to get the variable on the left 

hand side. Since equality is a symmetric relation, reversing expression will not affect the 

solution, but inequality is not symmetric. Thus reversing expressions would require that 

the inequality symbol be reversed. Observing the students as they worked showed that 

they replaced the inequality symbol with equal sign as they solved the problem. When 

they complete their solution they go back and replace all the equal signs with the original 

inequality symbol. It is important to note that this would be classified, as a student error 

on students’ work but the detection of, and correction of this error would be extremely 

difficult. 
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Figure 7. Students’ work on solving inequality (FieldNotes_11-18-2013). 

Slippage 4: The Design of Situations 

The design of situations emerged as a major theme in understanding the nature of 

meta-didactical slippage. For the proper functioning of the mathematics class, the teacher 

has only the situations or tasks that he or she designs. The students must achieve the 

lesson objective by providing a response to the situation that the teacher presented. In the 

mathematics classroom designing a situation is not always a simple matter. Moreover, the 

way in which the situation was design could result in a meta-didactical slippage. In this 

portion of my analysis I considered the documents as the primary source of data. I used 
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the teacher’s lesson plans/lesson notes, students’ work, problem sets, and my own 

observations and field notes.  

Episode 1. This first episode was an introductory lesson taken from the beginning 

of my observation period. In the episode the teacher abandoned a planned situation, for 

another. The teacher did not return to the abandoned situation for the remainder of the 

semester. 

Context. The students completed a warm up problem in which they had to graph a 

linear equation of the form y = mx +b. The teacher collected the graph from each student, 

and then transitioned to the lesson for the day. The teacher’s objective was for students to 

create	  equations	  and	  inequalities	  in	  one	  variable	  and	  use	  them	  to	  solve	  problems.	  

The	  teacher	  presented	  a	  problem	  set	  for	  students	  to	  create	  equations	  and	  solve	  (see	  

Figure	  9).	  

Narrative	  and	  transcript.	  As	  the	  lesson	  progressed,	  mainly	  in	  a	  situation	  of	  

instruction,	  the	  teacher	  assists	  the	  students	  to	  write	  an	  equation	  for	  the	  problem	  

“The sum of 38 and twice a number is 124. Find the number.”	  After	  the	  class	  

formulated	  the	  equation,	  the	  teacher	  told	  students	  to	  solve	  it	  on	  their	  own.	  The	  

teacher	  walked	  up	  and	  down	  the	  rows	  looking	  at	  the	  students	  work,	  but	  not	  

interacting	  with	  students,	  except	  to	  redirect	  off	  task	  behaviors.	  It	  appeared	  that	  the	  

teacher	  perceived	  that	  students	  were	  having	  difficulties	  solving	  the	  equation	  

38+ 2𝑛 = 124,	  because	  he	  stopped	  the	  class	  from	  working	  and	  went	  back	  to	  the	  

board.	  The	  teacher	  elicited	  volunteers	  to	  present	  their	  solutions.	  One	  students	  

proposed	  40n	  =	  124	  as	  part	  of	  the	  solution	  to	  the	  equation.	  I	  perceived	  that	  the	  

students	  were	  also	  having	  difficulties	  simplifying	  algebraic	  expressions	  in	  one	  
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variable.	  The	  teacher	  asked	  the	  class	  to	  stop	  working	  on	  the	  problem	  set,	  and	  posed	  

the	  problem	  “simplify	  4𝑥 + 8+ 3𝑥”	  for	  the	  students	  to	  solve.	  Three	  of	  the	  students	  

in	  the	  class	  working	  independently	  produced	  Figure	  8	  as	  a	  solution.	  

Five	  of	  the	  students	  got	  the	  correct	  answer,	  and	  the	  other	  15	  students	  in	  the	  

class	  did	  not	  have	  a	  solution	  on	  their	  papers.	  Most	  of	  the	  15	  students	  had	  eraser	  

marks	  on	  their	  papers,	  which	  indicated	  that	  they	  tried	  to	  solve	  the	  problem,	  but	  I	  

could	  not	  tell	  what	  their	  procedures	  were.	  The	  teacher	  abandoned	  the	  planed	  task	  of	  

having	  students	  create	  equations	  from	  given	  situations,	  and	  transformed	  the	  lesson	  

to	  simplifying	  algebraic	  expressions.	  	  

	  

Figure	  8.	  Student	  work	  on	  simplifying	  algebraic	  expressions	  (FieldNotes_10-‐23-‐
2013).	  
	   	  



	  

	  

104	  

For	  the	  remainder	  of	  the	  lesson,	  which	  lasted	  for	  60	  minutes,	  the	  teacher	  

wrote	  algebraic	  expressions	  on	  the	  board	  for	  students	  to	  solve.	  Students	  worked	  in	  

pairs	  at	  their	  desks,	  and	  then	  students	  presented	  their	  solutions	  at	  the	  board.	  It	  

appeared	  that	  the	  students	  were	  able	  to	  simplify	  algebraic	  expression	  by	  the	  end	  of	  

the	  class.	  The	  students	  did	  not	  hesitate	  to	  go	  to	  the	  board	  to	  display	  their	  solutions,	  

and	  they	  raised	  their	  hands	  with	  enthusiasm	  as	  the	  teacher	  called	  on	  different	  

students	  to	  go	  to	  the	  board.	  

The	  initial	  problem	  set	  remained	  on	  the	  board	  for	  the	  remainder	  of	  the	  class.	  

Moreover,	  the	  teacher	  did	  not	  recuperate	  the	  situation	  for	  the	  remainder	  of	  the	  

semester.	  This	  episode	  showed	  an	  instance	  where	  a	  situation	  was	  designed	  with	  

specific	  target	  knowledge,	  but	  was	  abandoned	  in	  the	  milieu.	  The	  decision	  to	  

abandon	  the	  situation	  was	  based	  on	  feedback	  from	  the	  student	  system.	  The	  meta-‐	  

situation	  was	  more	  appropriate	  for	  that	  particular	  lesson,	  but	  the	  knowledge	  from	  

the	  initial	  situation	  was	  a	  prerequisite	  knowing	  for	  other	  lessons	  later	  in	  the	  course.	  
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1. The sum of 38 and twice a number is 124. Find the number.  

2. The sum of two consecutive integers is less than 83. Find the pair of 
integers with the greatest sum.  

3. A rectangle is 12m longer than it is wide. Its perimeter is 68m. Find its 
length and width.  

4. The length of a rectangle is 4 cm more than the width and the perimeter is at 
least 48 cm. What are the smallest possible dimensions for the rectangle?  

5. Find three consecutive integers whose sum is 171.  

6. Find four consecutive even integers whose sum is 244.  

7. Alex has twice as much money as Jennifer. Jennifer has $6 less than 
Shannon. Together they have $54. How much money does each have?  

8. There are three exams in a marking period. A student received grades of 75 
and 81 on the first two exams. What grade must the student earn on the last 
exam to get an average of no less than 80 for the marking period?	  	  

Figure 9. Problem-set to create and solve equations (FieldNotes_10-23-2013). 

In my field notes I coded this event as an example of meta-didactical situation, 

but later during my analysis recoded this situation as an instance of a much larger 

occurrence in the mathematics classroom. This was an indication that the initial situation 

was not appropriately designed. In other similar cases whereby the teacher perceived the 

initial situation failed the phenomenon resulted in the slippage of over-teaching.  

Episode 2. This episode is another example in which the design of the situation 

resulted in a slippage. 

Context. This was a review lesson towards the end of data collection period. The 

teacher completed the curriculum for the semester. According to the teacher, this activity 

was a review activity designed to connect several skills from the course. I perceived 

however, that the teacher wanted the students to evaluate exponential expressions. The 
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objectives for the lesson were: (a) write	  and	  graph	  an	  equation	  to	  represent	  an	  

exponential	  relationship;	  (b) model a data set using an equation; and (c) Choose the 

best form of an equation to model exponential functions. The teacher presented the 

following problem on the board: Evaluate 3(2)!. 

Narrative and transcript. The students responded with the answer 216. The 

teacher told the class that the answer of 216 was wrong. The teacher began instruction by 

eliciting response from the students, “what is the order of operation?” The students 

replied “PEMDAS!” Then in a chorus the students said, “Please Excuse My Dear Aunt 

Sally”. The teacher, looking puzzled asked how did they get 216. One student shouted, 

almost in disbelief, “parenthesis first!” The teacher then proceeded to explain and correct 

the mistake. This particular error occurred several times in this classroom throughout the 

semester. 

In my analysis, I found the answer of 216 not to be a mistake, but a product of 

students’ conceptions regarding the use of parenthesis. The students followed the rules of 

order of operation, which they constructed from previous years, and multiplied the 3 by 

the 2 to give 6. “Parenthesis first!” Then the students apply the exponent, 6 raised to the 

3rd power is 216. Furthermore, expressions such 3(2) has been constructed and passed on 

in the mathematics classroom culture as multiplication. Howbeit, expression such as 2(3) 

is not a correct representation for multiplication. Parenthesis have a great many 

specialized meanings in mathematics, but in arithmetic expressions parentheses are used 

to denote modifications to the normal order of operations. This is a slippage of 

representation of which the genesis is very complex. Although the students corrected the 

error when the teacher pointed it out, they did not change their conception. Whenever a 
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similar problem situations reoccurred students produced a product based on their 

conception. For instance,  

Student A: [solving f (-2) = 2(3)-2] Look I don’t know how to do that without a 
calculator? 

Student B: So you got to do your exponents first… hold on (typed numbers into the 
calculator) Wait! How do you…If the exponent is negative how do you do 
that again? So this is just 2(-9) which is -18. You get? All you have to do 
is your exponent first. 

Student A: I told you that. (Transcript of Video SL_12-5-13) 
 

Although the negative exponent could be credited for this error, student work 

showed that students multiply the number outside the parenthesis first before applying the 

exponent. In order to address these kinds of student error, it requires situations to be 

designed to allow students to refute their conception. Moreover, the task should be 

designed to allow the students to go through the entire process of formulation, action and 

validation before institutionalization. The teacher reveled that to design the situation is 

problematic, because “How can the teacher know what situation to design in order to get 

the desired target knowledge?” Furthermore the teacher pointed out that, “The problem is 

how to design situations.”(INT_12-9-2013) 

Characteristics of Meta-Didactical Slippages 

This study found that the major affordances of meta-didactical slippage were (a) 

intentionality, (b) time constraints, (c) students’ questions, and (d) situated cultural use of 

student test scores. These affordances operate either simultaneously, or in tandem to 

undermine the mathematics that is actually taught in the mathematics classroom. These 

factors emerged as either the genesis of meta-didactical slippage, or the force that 

sustained the slippages. 

Intentionality. Intentionality emerged as a characteristic of meta-didactical 

slippage. Intentionality refers to the teacher formulating a conscious plan to perform or 
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not to perform a specified future act. The teacher’s lesson plan is an explicit indication of 

the teacher’s intentions to teach or not to teach some mathematical content. However, 

what intensions the teacher formulated in the mathematics classroom are not observable. 

Classroom observation together with interview with the teacher is needed to unearth 

intentionality. This study found that the teacher’s intention is partly responsible for the 

action that the teacher performs in the classroom. Moreover, the teacher’s conscious 

decision to perform or not to perform a specified act is connected to feedback from the 

milieu. For instance, if the teacher wants to complete a lesson before the class ends, the 

teacher may speed up the instruction, or continue to give instruction at the board, thus 

resulting in a slippage of over-teaching, or the slippage of situational bypass. 

Intentionality then is a paradox of the teaching, because the teacher has a social right to 

have an intention. 

Time constraint. Time constraint is another characteristic of meta-didactical 

slippage. Time plays and important role in the mathematics classroom because every 

didactic interaction must occur within school hours, taking into account, class periods, 

weekly schedules, testing schedules, and holidays. This constraint is inevitable, and the 

teacher has no control of the time. Time constraints are interconnected with 

intentionality. Depending on the amount of time the teacher has to complete a specific 

task, the teacher formulates different intensions. For example, the teacher calculated that 

the county’s benchmark was fast approaching and thus, decided to bypass situations of 

action formulation, and validation. This diversion of situation was done primarily to 

decreases the time required for the students to gain the target knowledge. This too is 

another paradox of the teaching, because in an effort to reduce the time taken to learn a 

piece of knowledge, the teacher effectively increased the time. This was because the 
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students did not construct a conceptual knowing of the target knowledge, and thus 

required continuous practice and revision in order to be able to do the mathematics. This 

study showed that although the teacher spent many days on for example, evaluating 

exponential expression, the students still had difficulties because they had 

mis(conceptions) about the order of operation. 

Students’ questions. The kinds of questions, and the number of questions that the 

students ask emerged as a characteristic of meta-didactical slippage. The questions that 

students ask provide the teacher with verbal feedback from the milieu. Frequently this 

feedback was an indication of a failure of the teaching sequence. The teacher then has to 

act on this feedback in order to recuperate the situation and to keep lesson moving. There 

are different ways (see Figure 3) that the teacher may choose to proceed. For instance, he 

may proceed in a situation of instruction, either by repeating the original information, or 

change the task to a meta-task. In my observation, the teacher predominantly recuperated 

by repeating the instruction. The decision to remain in instruction is not always 

intentional. This unintentional instruction results in a slippage of over teaching. In this 

slippage, the teacher provided the answer to the problem. The answer, according to 

TDSM, contained the target knowledge. Therefore, the students cannot produce the 

knowledge, because it has already been produced. This is another paradox of the teaching 

endeavor, because the teacher has a professional, and social right to provide instruction. 

Therefore, the slippage of over teaching, which is unearthed by the students’ questions, is 

interconnected with intentionality. For it is identified only through observation and a 

posteriori discussions with the teacher. Thus the only way for the observer to determine 

that over-teaching occurred is by knowing the intentions of the teacher. 
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Situated cultural use of test scores. Student test scores on standardize tests are a 

part of the culture of the mathematics classroom. The teacher emphasized the need for 

students to demonstrate high scores on the benchmarks tests. Moreover, the study school 

had a school wide policy of doing test preparation every day in all classes. This test 

preparation was called “warm-up” and was done by every teacher in the school. In the 

slippage of situational bypass the teacher reveled his intention to have students practice 

skills that is required on the standardize test. The teacher also revealed that the test scores 

are important, because the school district uses the scores to evaluate teachers and to 

design programs, which were not always in the best interest of the teaching and learning 

process. Therefore, The cultural use of test scores was interconnected with intentionality. 

The teacher also disclosed that the time remaining before the test is administered 

influenced his decision to remain in a situation of instruction, or to prescribe practice 

problems for the students to gain the skills required to achieve high scores on the test. 

Thus, time constraints are interconnected with both intentionality and the cultural use of 

test scores. 

Knowledge of situations. Knowledge of situations emerged as a major 

characteristic of meta-didactical slippage. Research in mathematics often focus on the 

teachers content knowledge and pedagogical practices (Andrews & Sayers, 2012; Clarke 

& et al., 1993; Dowling, 2001; Flores, 2002; G. L. Harel, 2005; Harwell, Post, Maeda, 

Davis, Cutler, Andersen, & Kahan, 2007; Hiebert, 2003; Labato & Thanheiser, 2002; 

Litwiller & Bright, 2002; Dina Tirosh, 2000), but the research failed to identify 

knowledge of situations as fundamental to the mathematics classroom. This study found 

that in addition to the teachers’ content knowledge, and pedagogical skills, the teacher 

must have a sound knowledge of situations. It is the situation that forms the core of the 
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milieu. The teacher gets feedback from the milieu only through interaction with the 

situation that the teacher contrived. Currently, the only means that the teacher has to 

determine whether or not the student learns a piece of knowledge is by evaluating the 

student work on problems. The student work is a document that the student produced. 

The teacher has access to this document after its production and thus cannot determine 

how it was produced. For example in figure 9 the teacher was able to determine that the 

student did not reverse the inequality symbol, but without observation the teacher could 

not determine that the students replaced the initial inequality symbol with the equal sign 

and then solved an equation. The student then erased the equal sign on the final 

production and rewrite the inequality symbol. Knowledge of the design of situations 

emerged as a meta-didactical slippage. The teacher does not always know what situations 

to design. Moreover the teacher does not always know what situations to design en vivo, 

so that students can have the opportunity to change or modify the conceptions that they 

hold. 

The second research question was concerned with the students’ conceptual 

understanding on the relationships and quantities unit. More specific the research 

question asked was: In what ways do these slippages affect students’ conceptual 

understanding of a unit of ninth grade mathematics? To answer this question I used the 

unit assessment, the teacher reflections, and students’ work to provide evidence. 

At the end of the unit the county administered a benchmark test to assess the 

students understanding of the unit. The teacher also administered several formative 

assessments to inform his teaching of the unit. On the county’s benchmark test, the 

average score was 40%. The minimum score was 16% and the maximum score was 61%. 

For test security, I was not allowed to review the test items. I was also not allowed to 
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observe the class during testing. The results of the benchmark test was reported to the 

teacher with no statistical analysis, except for description which include the average, 

minimum score, and maximum score. There was also a list that included the students’ 

names and actual scores on the test. 

The teacher revealed that he was disappointed with the scores, because “I feel that 

students could achieve more, based on the material we covered in class, but the students 

are doing the work, but the understanding is not there!” (INT_12-9-2013). The teacher 

indicated that the students are doing the work, which is an indication that students are 

busy working on practice problems, but without a conceptual understanding. Here the 

teacher disclosed that the emphasis to have students practice the skills in order to do well 

on tests was not advantageous. This was a consequence of the slippage of situational 

bypass. 

The teacher attributed the apparent lack of understanding of the relationships 

between quantities unit mainly to the slippage of over-teaching and the design of 

situations. For in over-teaching it is the teacher who restricts the situation from 

progressing to a space where learning happens. The teacher however pointed out that it 

was not easy to know when to stop teaching, “So the big question is what is the optimal 

time to stop teaching?” (INT_12-19-2013). For the teacher, there is an optimal time to 

stop teaching a mathematics lesson. This optimal time, will allow the students to develop 

a conceptual understanding of the topic. If the teacher continued to provide instruction 

after this point, the students may not learn the target knowledge. 
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Summary 

In this chapter, I reported and described four major slippages that emerged as 

important to understand the nature of meta-didactical slippages in the ninth grade 

mathematics classroom. I selected episodes, which does not require extensive 

mathematical background. The teacher approved the use of these classroom activities. 

The major slippages were: (a) over-teaching; (b) premature practice, a situational bypass; 

(c) language and symbolic representation; and (c) the design of situations. I described the 

context in which these slippages emerged as well as the affordances. Figure 10 shows the 

basic relationship of these slippages to the theoretical framework, which I used to 

conceive them. 

The slippages operate either alone or together to oppose the learning. Over 

teaching restricts the progression of the didactical situation whereas, situational bypass 

detours the situation to an algorithmic reduction of the target knowledge. The didactic 

situation that is contrived by the teacher can either increase the learning, or undermine 

the intended learning. Similarly the language use and symbolic representation can either 

increase the conceptual understanding of the mathematics, or undermines the learning of 

mathematics. 

Finally, I described some of the characteristics or factors that appeared to be the 

genesis of meta-didactical slippages in the mathematics classroom. In chapter 5, I discuss 

these themes and their implications for the teaching and learning of mathematics. I also 

provide recommendations for the mathematics teachers, school administrators, policy 

makers, and future researchers. 
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Figure 10. The relationship between meta-didactical slippages and the theoretical 
framework. 
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CHAPTER 5 

DISSCUSSION AND RECOMMENDATIONS 

This chapter presents a summary of the study and the conclusions drawn from the 

data presented in chapter 4. As an aid to the reader this chapter restates the research 

problem and reviews the major methods used in the study. It also provides a discussion of 

the implications for action and recommendations for future researchers. 

Summary of the Study 

Overview Of The Problem 

The complexity of the teaching endeavor is a major problem for teachers as they 

strive to meet the demands of all stakeholders of the teaching and learning process. There 

are many factors that contributed to the complexity of the teaching and learning process. 

These factors include the nature of mathematics, the classroom culture, current 

curriculum reform movements, and the need to improve students’ mathematics 

performance on state and local standardize tests. Mathematics instruction does not 

guarantee desired learning, because according to Schoenfeld (1988), even when the 

lesson is well taught undesired learning can take place as a direct consequence of the 

instruction. Moreover, Brousseau (1997) identified several undesired effects that may 

occur in the teaching and learning process. Some of these undesired effects are difficult 

to identify and describe. Brousseau et al. (2009) identified meta-didactical slippage as 

one of the undesired effects that may occur in the mathematics classroom. Research 

however, failed to describe how meta-didactical slippage is manifested in the 

mathematics classroom. Consequently, the purpose of this study was to describe the 

nature of meta-didactical slippage that occurred in a ninth grade mathematics classroom. 
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Research Questions 

The research questions that guided this study are: 

1. What is the nature of meta-didactical slippages that occurred in a ninth grade 

mathematics classroom? 

2. How did the teacher perceive these meta-didactical slippages affect teaching 

and learning of a unit of analysis of 9th grade mathematics? 

Review of the Methodology 

The study was a descriptive qualitative case study (Yin, 2009), conducted in one 

ninth grade mathematics classroom in a southeastern high school. The qualitative case 

study is grounded in the lived reality which helped me to understand complex inter-

relationships in the mathematics classroom (Hays, 2004). Furthermore, the case study 

according to Hays (2004) seeks to answer focused questions by producing in-depth 

descriptions and interpretations over a short period of time. I used the theory of didactical 

situations in mathematics (Brousseau, 1997) as the theoretical lens to interpret the 

findings. 

 One teacher and 23 students participated in the study. I observed and videotaped 

a total of 30 classroom sessions from October 14, 2013 to December 13, 2013. The 

classroom meets 5 day per week for 90 minutes. During the period from October to 

December, I interviewed the teacher three times. Moreover, I had informal conversations 

with the teacher on a regular basis. During the informal conversations, I used video clips 

from the classroom to elicit focused discussions with the teacher. 

I began data analysis by writing field notes and memos. I watched the entire 

videotapes to get a sense of the general culture of the classroom and to get a general 
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sense of what happened in the classroom. I used Apple’s iMovie video editing software 

to partition the video files into 5-second nodes. I parsed each node for instances of a 

perceived failure of a teaching sequence. Whenever I locate an instance, I selected the 

entire episode that contained the failure and created a new file. This process created two 

files, “possible slippages”, and ‘slippages’. I transcribed both files, and use them as the 

major video transcripts. I went back and forth from transcripts to the videos, always 

checking with the teacher at each stage of my analysis. 

I used two analytic techniques to analyze the data, ethnographic technique 

(Spradley, 1980) and discourse analysis (Gee, 2011). I presented and discussed the results 

of my analysis in Chapter 4. In the next section I discuss the major findings. 

Summary of Findings 

In Chapter 4, I presented four themes that emerged in the data, which illustrated 

the nature of meta-didactical slippage that occurred in one, ninth grade classroom. These 

themes were (a) over-teaching, (b) situational bypass, (c) language and symbolic 

representation, and (d) design of situations. The descriptions provided are far from 

exhaustive. However, they provide a means to begin to understand the phenomenon in 

the mathematics classroom. In order to understand the nature of the phenomenon, I 

focused on the genesis, qualities, and affordances. This study found that meta-didactical 

slippage is contextually nuanced and complex. Moreover, this study found that instances 

of meta-didactical slippages are not mutually exclusive. For, in one classroom interaction 

several kinds of slippages may occur which is afforded by two or more classroom factors.  

Findings Related to The Literature 

Research on didactical situations in mathematics is growing (Schoenfeld, 2012). 

For instance, Bussi (2005) point out the potential impact for research in mathematics 



	  

	  

118	  

education when classroom situations is used as the unit of analysis. The findings from 

this study revealed that analyzing classroom situations is necessary to uncover the nature 

of phenomena that may affect the teaching and learning process. For example, I 

discovered the slippage of over teaching only through analyzing classroom situations 

together with teacher reflection. Furthermore, only through discussions with the teacher, 

that I concluded that intentionality was a factor of that slippage. Therefore this study 

agrees with Bussi (2005) in calling for classroom situations to become the unit of analysis 

for research in didactical situations in the mathematics classroom. Moreover, this study 

suggests that classroom observation together with interviews can be used to describe 

teaching phenomena. Because I believe that classroom observation of didactical 

situations is fundamental to understand teaching and learning. Classroom observations 

can be more productive in obtaining teacher actions, intentions, and decisions in the 

mathematics classroom. 

Findings of this study suggest that the teacher’s intentions play an important role 

in the classroom. Intentionality was related to the literature in many ways. For instance, 

when Schoenfeld (1988) talked about the disasters of a well taught course, he was 

illustrating the nuanced connection of intentionality. In his study the teacher implemented 

a well taught lesson, but although the teacher had good intentions, the students learned 

inappropriate mathematical conception as a result of the teaching (Schoenfeld, 1988). 

Similarly, intentionality was also related to a study conducted by Henningsen and Stein 

(1997) which examined and illustrated how classroom-based factors can shape students' 

engagement with mathematical tasks. That study found that students' engagement in 

high-level cognitive processes continued or declined during classroom work on tasks. 

Consequently, this study suggests that open discussion of teachers’ intentions in the 
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mathematics classroom, can provide deeper understanding of didactical phenomena, such 

as meta-didactical slippage. 

Findings of this study suggest that slippages tend to occur whenever there are 

constraints operating in the classroom. These constraints, either imposed on the teacher 

by external actors, or imposed by actors in the milieu, served as fuel for the manifestation 

of meta-didactical slippages. For instance, according to BarbÉ, Bosch, Espinoza, and 

GascÓN (2005) observation of an empirical didactic process showed how the internal 

dynamics of the didactic process was affected by certain mathematical and didactic 

constraints that significantly determined the teacher’s practice and ultimately the 

mathematics actually taught. This was an example of a meta-didactical slippage, because 

the mathematics that was taught was not the initial intention of the teacher. This finding 

was similar to my findings, particularly the slippage of the design of situations. 

This study found that language use and symbolic representation emerged as a kind 

of meta-didactical slippage. This slippage is afforded through the language use, and the 

taken for granted meanings that was situated in the classroom. This finding was similar to 

the findings reported by G. Harel, Fuller, and Rabin (2008), which investigated the 

phenomenon of non-attendance to meaning by students in school mathematics. G. Harel 

et al. (2008) pointed out four particular teaching actions that de-emphasize meaning in 

the mathematics classroom. They categorized those teaching actions as pertaining to (a) 

purpose of new concepts, (b) distinctions in mathematics, (c) mathematical terminology, 

and (d) mathematical symbols. Moreover, when these actions were present the classroom 

students developed the belief that mathematics involves executing standard procedures, 

and that treatment of symbols was largely non-referential. These teaching actions were 
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instances of affordances to meta-didactical slippages, because the target knowledge was 

replaced with a meta-situation. 

Conclusions 

Implications for Actions 

Whereas a single case study cannot provide a sound basis for the practice of 

teaching and learning in the mathematics classroom, this study would suggest that 

teachers should be more purposive in how and when they intervene in problem situation 

in the mathematics classroom. This is so that they do not replace an initial mathematical 

situation that would have permitted an authentic activity on the part of the student, by a 

study of the mathematical circumstances, or by reducing the cognitive demand of the 

task. 

A second implication of this study is that the results of research on didactical 

situation be disseminated to mathematics teachers. I recommend that the results of this 

study (and other studies with similar findings) be included in professional development 

for mathematics teachers so that they can become aware of the phenomenon of meta-

didactical slippages. The findings showed that the mathematics classroom is a very 

complex and highly nuanced community. Thus the increased awareness of the 

phenomenon should influence teachers’ didactic decisions as they plan and implement 

mathematical lessons. In this way, the teacher is more sensitive to resist desire to take all 

mathematics activities as an object of teaching. 

Another implication of this study is for school districts to provide professional 

development for mathematics teachers to learn how to design didactical situations. 

Moreover, I recommend continuous discourse among mathematics teachers on the design 

and implementation of didactical situations. The findings of this study showed that 
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teachers’ knowledge of situations was essential to the functioning of the mathematics 

classroom. My recommendation is for professional development providers to provide 

opportunities for mathematics teachers to learn content knowledge, pedagogical skills, 

and how to design situations. I further recommend that content, knowledge, pedagogical 

skills, and design of situation to be considered and treated as one entity instead of three 

separate things. Finally, I recommend that teachers become more involved in classroom 

observation and reflection. The findings of this study showed that some classroom 

practices could not be identified without both observation and reflection on those 

observations. 

Recommendations for Further Research 

This study was a qualitative case study conducted in one mathematics classroom 

over one semester. The findings of the study are thus limited in the scope of application. 

Consequently, research conducted over a longer time period and in different mathematics 

classrooms could yield greater understanding on the nature of meta-didactical slippage. I 

recommend a longitudinal study where the researcher observed the same students for 

several years of their school mathematics classrooms. 

This study found that the genesis of some slippages was possibly due to past 

conceptions that students’ hold. Therefore I recommend that this study be repeated in 

elementary schools where students learn fundamental concepts in mathematics for the 

first time. 

Finally, for this study I used only one video camera. Focusing on any particular 

issue was at the same time overlooking others. I recommend that future studies used more 

than one camera so that they can capture many different perspectives of the classroom. I 

also recommend that further researchers increase the use of video data to study and 
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improve the teaching and learning of mathematics in school context. Furthermore, I 

recommend research in finding effective models, to aid in the use of capturing, 

transferring, analyzing, and disseminating video data. 

Concluding Remarks 

This project was very difficult for the participating teacher and me. As we 

watched episodes from the classroom we learned more about the teaching of 

mathematics. We both learned that there is more to a mathematics classroom than what 

meets the eye. The complexity of classroom situations is more than researchers, teachers, 

and observers can describe. It was also difficult to not focus on mathematical mistakes, 

and non-didactic interactions, which happened in the mathematics classroom. I had to 

remain focus on the purpose of this study in order to separate the “noise” from the data, 

lest this study become a deficit study.  

During my observation and writing my field notes, I often miss events that 

occurred, only to observe it on the video. Moreover, after watching the videos several 

times, I was able to observe events, which I missed on previous viewing of the video. In 

one particular session as the teacher and I watched the video, the teacher said, “I don’t 

recall that, but you got me on video.” There was another time where I had to stop the 

video, because I perceived that watching the video was invoking feelings of failure from 

the teacher. This prompted the very important question: how did participation in the study 

affect the teachers' teaching and understanding of what he does and how he does it? 

Additionally, how did this study affect my teaching and understanding of what I do and 

how do it? 

As I reflect on what I observed and experienced through the research process, I 

thought of my own teaching of mathematics. I became more aware of the kinds of meta-
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didactical slippages that occurred in my mathematics classroom. I found similarities with 

the number of analogies and metaphors that I use in my classroom. I became more aware 

of my language use and my symbolic representation of objects. As a result of this study I 

began to consider how the language that I used, the way in which I represent objects, and 

the kinds of feedback that I provide in the classroom, may affect students’ conceptual 

understanding of mathematics. As a consequence of this study, the teacher and I have 

started a collaborative effort to focus on minimizing the slippage of over-teaching. 

It is my hope that research such as this study, will help to combat the algorithmic 

reduction of mathematics that is occurring especially in school mathematics (Freudenthal, 

1981; Henningsen & Stein, 1997; Herbel-Eisenmann & Cirillo, 2009; Schoenfeld, 1988). 

I hope that teachers will ultimately participate in the discourses of didactical situations as 

well as in the difficulties and challenges of classroom research. 
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APPENDIXES 

APPENDIX A 
OBSERVATION LOG (ADOPTED FROM TABLE 2) 
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of Failure 

Mathematics 
Task 
Description 

Type of 
situation 

Type of 
knowings 
manifested 

Resolution/Decision Observer 
Comment 
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APPENDIX B 

INTERVIEW PROTOCOL 

Date.................................. 
Time................................... 
Place.................................... 
 
Interviewer: N. Wisdom 
 
I am interested in finding out more about mathematics teacher’s didactic decisions in the 
teaching process. We hope this will help us to better understand more about the 
classroom situations, in order to improve mathematics teaching and learning. Later, I 
would like to ask you about what initiate particular decision in the didactical situations, 
but first I would like start by asking you about your experience as a mathematics teacher, 
and your desired target knowledge for this unit of study. You have received a consent 
form to sign, which indicates your consent to the interview. The interview is being tape-
recorded.  
 

Questions and Probes 
 

1. Describe your experience as a mathematics teacher? 
2. How do you define success in a mathematics teaching sequence? 
3. Tell me about a time or lesson when you felt you were doing a good job in your 

content area, but you perceived the students were not learning your intended 
objective? 

4. Tell me some more about… 
a. What specific act caused you to perceive a failure? 
b. What did you do? 
 

5. How do you plan or contrive a didactical situation? 
6. What are types of things that you look for in the didactic situation that informs 

you of whether or not the students are learning the mathematics that you intend 
for them to learn? 

7. Describe in detail a successful secondary mathematics teaching and learning 
situation that you have had, and explain how you know it was successful? 

8. Describe in detail an unsuccessful secondary mathematics teaching and learning 
situation that you have had, and explain how you know it was unsuccessful? 

9. May I get back to you if I have questions when I go over the interview?  
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APPENDIX C 
OBSERVATION MATRIX 

 
 

SPACE 

SPACE OBJECT ACT ACTIVITY EVENT TIME ACTOR GOAL FEELING 
Can you 
describe in 
detail all 
the places? 

What are all 
the ways 
space is 
organized 
by objects? 

What are 
all the 
ways space 
is 
organized 
by acts? 

What are all 
the ways space 
is organized by 
acts? 

What are 
all the 
ways 
space is 
organized 
by 
activities? 

What 
spatial 
changes 
occur over 
time? 

What are 
all the 
ways 
space is 
used by 
actors? 

What are 
all the 
ways 
space is 
related 
to goals? 

What places 
are 
associated 
with 
feelings? 

OBJECT 

Where are 
objects 
located? 

Can you 
describe in 
detail all 
the objects? 

What are 
all the 
ways 
objects are 
used in 
acts? 

What are all 
the ways 
objects are 
used in 
activities? 

What are 
all the 
ways 
objects 
are used 
in events? 

How are 
objects used 
at different 
times? 

What are 
all the 
ways 
objects are 
used by 
actors? 

How are 
objects 
used in 
seeking 
goals? 

What are all 
the ways 
objects evoke 
feelings? 

ACT 

Where do 
acts occur? 

How do 
acts 
incorporate 
the use of 
objects? 

Can you 
describe in 
detail all 
the acts? 

How are acts a 
part of 
activities? 

How are 
acts a part 
of events? 

How do 
acts vary 
over time? 

What are 
the ways 
acts are 
performed 
by actors? 

What are 
all the 
ways 
acts are 
related 
to goals? 

What are all 
the ways acts 
are linked to 
feelings? 

ACTIVITY 

What are all 
the places 
activities 
occur? 

What are all 
the ways 
activities 
incorporate 
objects? 

What are 
all the 
ways 
activities 
incorporate 
acts? 

Can you 
describe in 
detail all the 
activities? 

What are 
all the 
ways 
activities 
are part of 
events? 

How do 
activities 
vary at 
different 
times? 

What are 
all the 
ways 
activities 
involve 
actors? 

What are 
all the 
ways 
activities 
involve 
goals? 

How do 
activities 
involve 
feelings? 

EVENT 

What are all 
the places 
events 
occur? 

What are all 
the ways 
events 
incorporate 
objects? 

What are 
all the 
ways 
events 
incorporate 
acts? 

What are all 
the ways 
events 
incorporate 
activities? 

Can you 
describe 
in detail 
all the 
events? 

How do 
events 
occur over 
time?  Is 
there any 
sequencing? 

How do 
events 
involve 
the various 
actors? 

How are 
events 
related 
to goals? 

How do 
events 
involve 
feelings? 

TIME 

Where do 
time 
periods 
occur? 

What are all 
the ways 
time affects 
objects? 

How do 
acts fall 
into time 
periods? 

How do 
activities fall 
into time 
periods?  

How do 
events fall 
into time 
periods? 

Can you 
describe in 
detail all the 
time 
periods? 

When are 
all the 
times 
actors are 
“on 
stage”? 

How are 
goals 
related 
to time 
periods? 

When are 
feelings 
evoked? 

ACTOR 

Where do 
actors place 
themselves? 

What are all 
the ways 
actors use 
objects? 

What are 
all the 
ways 
actors use 
acts? 

How are actors 
involved in 
activities? 

How are 
actors 
involved 
in events? 

How do 
actors 
change over 
time or at 
different 
times? 

Can you 
describe in 
detail all 
the actors? 

Which 
actors 
are 
linked to 
which 
goals? 

What are the 
feelings 
experienced 
by actors? 

GOAL 

Where are 
goals 
sought and 
achieved? 

What are all 
the ways 
goals 
involve use 
of objects? 

What are 
all the 
ways goals 
involve 
acts? 

What activities 
are goal-
seeking, or 
linked to 
goals? 

What are 
all the 
ways 
events are 
linked to 
goals? 

Which 
goals are 
scheduled 
for which 
times? 

How do 
the various 
goals 
affect the 
various 
actors? 

Can you 
describe 
in details 
all the 
goals? 

What are all 
the ways 
goals evoke 
feelings? 

FEELING 
 
 

Where do 
the various 
feeling 
states 
occur? 

What 
feelings 
lead to the 
use of what 
objects? 

What are 
all the 
ways 
feelings 
affect acts? 

What are all 
the ways 
feelings affect 
activities? 

What are 
all the 
ways 
feelings 
affect 
events? 

How are 
feelings 
related to 
various 
time 
periods? 

What are 
all the 
ways 
feelings 
involve 
actors? 

What are 
the ways 
feelings 
influence 
goals? 

Can you 
describe in 
detail all the 
feelings? 
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APPENDIX D 
GEORGIA STATE UNIVERSITY IRB APPROVAL LETTER 

 
INSTITUTIONAL REVIEW BOARD 
 
 Mail: P.O. Box 3999  In Person: Alumni Hall 
  Atlanta, Georgia 30302-3999  30 Courtland St, Suite 217 
 Phone: 404/413-3500 
 Fax:  404/413-3504 
October 2, 2013 
 
Principal Investigator: Chahine, Iman  
Protocol Department: Middle and Secondary Education 
Protocol Title: Meta-didactical slippages: A qualitative case study of didactical situations 
in ninth grade mathematics classroom 
Submission Type: Application H14035 
Review Type: Expedited Review, Category 6, 7 
Approval Date: October 2, 2013 
Expiration Date: October 1, 2014 
 
The Georgia State University Institutional Review Board (IRB) reviewed and approved 
the above referenced study in accordance with 45 CFR 46.111.  The IRB has reviewed 
and approved the research protocol and any informed consent forms, recruitment 
materials, and other research materials that are marked as approved in the application.  
The approval period is listed above. Research that has been approved by the IRB may be 
subject to further appropriate review and approval or disapproval by officials of the 
Institution.  
 
Federal regulations require researchers to follow specific procedures in a timely manner.  
For the protection of all concerned, the IRB calls your attention to the following 
obligations that you have as Principal Investigator of this study. 
 

1. For any changes to the study (except to protect the safety of participants), an 
Amendment Application must be submitted to the IRB.  The Amendment Application 
must be reviewed and approved before any changes can take place 

 
2. Any unanticipated/adverse events or problems occurring as a result of 
participation in this study must be reported immediately to the IRB using the 
Unanticipated/Adverse Event Form. 

 
3. Principal investigators are responsible for ensuring that informed consent is 
properly documented in accordance with 45 CFR 46.116.   

 
• The Informed Consent Form (ICF) used must be the one reviewed and 
approved by the IRB with the approval dates stamped on each page. 
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4. For any research that is conducted beyond the approval period, a Renewal 
Application must be submitted at least 30 days prior to the expiration date.  
The Renewal Application must be approved by the IRB before the expiration 
date else automatic termination of this study will occur.  If the study expires, 
all research activities associated with the study must cease and a new 
application must be approved before any work can continue. 

 
5. When the study is completed, a Study Closure Report must be submitted 
to the IRB.   

 
All of the above referenced forms are available online at https://irbwise.gsu.edu.  Please 
do not hesitate to contact Susan Vogtner in the Office of Research Integrity (404-413-
3500) if you have any questions or concerns. 
 
Sincerely, 
 
Andrew I. Cohen, IRB Vice-Chair 
 
Federal Wide Assurance Number:  00000129 
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APPENDIX E 
MATHEMATICS CURRICULUM FOR TARGET UNIT 

 
Reason quantitatively and use units to solve problems. 

MCC9-12.N.Q.1 Use units as a way to understand problems and to guide the solution of 
multi-step problems; choose and interpret units consistently in formulas; choose and 
interpret the scale and the origin in graphs and data displays.  

MCC9-12.N.Q.2 Define appropriate quantities for the purpose of descriptive modeling. 
MCC9-12.N.Q.3 Choose a level of accuracy appropriate to limitations on measurement 
when reporting quantities.  

Interpret the structure of expressions  

Limit to linear expressions and to exponential expressions with integer exponents.  

MCC9-12.A.SSE.1 Interpret expressions that represent a quantity in terms of its context. 
MCC9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and 
coefficients.  

MCC9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their 
parts as a single entity.  

Create equations that describe numbers or relationships  

Limit A.CED.1 and A.CED.2 to linear and exponential equations, and, in the case of 
exponential equations, limit to situations requiring evaluation of exponential functions at 
integer inputs. Limit A.CED.3 to linear equations and inequalities. Limit A.CED.4 to 
formulas with a linear focus.  

MCC9-12.A.CED.1 Create equations and inequalities in one variable and use them to 
solve problems. Include equations arising from linear and quadratic functions, and simple 
rational and exponential functions.  

MCC9-12.A.CED.2 Create equations in two or more variables to represent relationships 
between quantities; graph equations on coordinate axes with labels and scales.  

MCC9-12.A.CED.3 Represent constraints by equations or inequalities, and by systems 
of equations and/or inequalities, and interpret solutions as viable or non-viable options in 
a modeling context.  

MCC9-12.A.CED.4 Rearrange formulas to highlight a quantity of interest, using the 
same reasoning as in solving equations.  
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