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ABSTRACT  

EXAMINATION OF PARAMETER ESTIMATION USING RECURSIVE BAYESIAN 
ANALYSIS IN SIMULATED ITEM RESPONSE THEORY APPLICATIONS 

by 
Robert Hendrick 

 
 For the past several years, high-stakes testing has been the predominant indicator 

used to assess students' academic ability. School systems, teachers, parents, and students 

are dependent upon the accuracy of academic ability estimates designated, θs, by item 

response theory (IRT) computer programs. In this study, the accuracy of 3 parameter 

logistic (3PL) IRT estimates of academic ability were obtained from the BILOG-MG and 

WinBUGS computer programs which were employed to compare the use of non-

informative and informative priors in θ estimation. The rationale for comparing the 

output of these two computer programs is that the underlying statistical theory employed 

in these two computer programs is different, and there may be a notable difference in the 

accuracy of θ estimation when an informative prior is used by WinBUGS in analyzing 

skewed populations. In particular, the θ parameter estimates of BILOG-MG using 

traditional IRT analysis with non-informative priors in each situation and the θ parameter 

estimates of WinBUGS using Recursive Bayesian Analysis (RBA) with informative 

priors are compared to the true simulated θ value using Root Mean Square Errors 

(RMSEs). To make this comparison, Monte Carlo computer simulation is used across 

three occasions within three conditions giving nine comparison situations. For the priors 

and data generated, results show similar θ estimation accuracy for a normally distributed 

latent trait (RMSE = 0.35), a more accurate θ estimation process using RBA compared to 

traditional analysis (RMSEs of 0.36 compared to 0.76) when using latent trait 

distributions skewed in a similar direction, and less accurate θ estimation using RBA 



compared to traditional analysis (RMSEs of 1.48 compared to 0.80) when using 

extremely skewed negative then positive distributions in a longitudinal setting. 

Implications for further research include extensions to other IRT models, developing 

prior elicitation equations, and applying Bayesian informative prior elicitations in 

BILOG-MG.  
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CHAPTER 1 

THE PROBLEM 

 Researchers, both Bayesian and traditional, have voiced concern over poorly 

specified informative priors in item response theory (IRT) analysis (Fox, 2010; Mislevy, 

1986). The observation is that a poorly specified distribution as the prior may adversely 

affect the accuracy of item and/or person parameter estimation. Priors are part of a 

Bayesian process in which the belief about a latent trait prior to seeing the observed data 

related to the latent trait is a part of the outcome that estimates the latent trait. Traditional 

analysis holds that incorporating a prior is too subjective; therefore, only the data should 

be analyzed. In the event of needing a prior distribution, the traditional analysis uses a 

non-informative prior that provides little information to the analysis about the outcome. 

Therefore in many traditional analyses that use Bayesian techniques, priors used are non-

informative so the outcomes are based primarily on the data. Conversely, Bayesian 

analysis uses the belief about the state of nature and changing beliefs about the state as 

subsequent Bayesian analyses are performed. The prior may start out as non-informative 

but is combined with the likelihood to produce the posterior or the calculated probability 

of the outcome. This intermediate posterior governs our belief in a subsequent Bayesian 

analysis in which the posterior from the first Bayesian analysis informs the prior in a 

subsequent Bayesian analysis. Recursive Bayesian analysis (RBA) occurs when the 

informed prior is based upon the previous posterior and the analysis is iterative. Among 

the current applications using RBA are RADAR tracking, robotics, navigation, and 

profile building software for commercial sites. This dissertation examines the accuracy of 

the latent trait estimation when using RBA compared to the accuracy of latent trait 
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estimation using traditional analysis using a combination of normal and skewed latent 

trait distributions in a longitudinal setting. 

Overview of Previous Research 

 Many comparisons of the Monte Carlo Markov Chain (MCMC) using Gibbs 

sampling to marginal maximum likelihood/expected a posteriori (MML/EAP) methods 

have indicated "little difference in item parameter recovery with samples of 300 or more" 

(Kieftenbeld & Natesan, 2012, p. 415). Therefore, one can assume that BILOG-MG and 

WinBUGS will produce similar item and person parameters using test lengths of 40 and a 

sample size of 500. Both programs allow the user to adjust the specified prior, but in this 

study, I use WinBUGS with RBA and BILOG-MG with traditional analysis in each 

situation across three occasions in three conditions. The RBA uses the posteriors from 

previous situations to inform the prior in subsequent situations simulating a longitudinal 

application represented by three occasions. There is a need for further examination of the 

creation of informative priors in IRT analysis. Proctor, Teo, Hou, and Hsieh (2005) 

indicated that exact or informative priors increased the accuracy of estimation of item 

parameters in a 2 parameter logistic (PL) IRT model using the WinBUGS software 

(Lunn, Thomas, Best, & Spiegelhalter, 2000). Studies by Patz and Junker (1999), Proctor 

et al. (2005), Liu and Gambrell (2009), and Kieftenbeld and Natesan (2012) have 

compared BILOG-MG (Mislevy & Bock, 1990) and the MCMC with Gibbs sampling 

used in WinBUGS. For samples of 300 or more simulated users with non-informative 

priors used in each program, BILOG-MG and WinBUGS have been found to produce 

relatively comparable item and person parameter estimates using actual data. 
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Overview of Simulated Situations 

  In this study, I employ a use of RBA compared with traditional analysis 

employing a 3PL IRT parameter estimation process in each simulated situation. Three 

conditions are examined with this simulation: Baseline, Favorable to RBA, and 

Unfavorable to RBA. All three conditions are analyzed across three occasions in a 

simulated longitudinal manner. Using a simulated sample size of 500 in each situation 

and actual 3PL IRT item parameters, the BILOG-MG estimation uses traditional analysis 

and non-informative priors and WinBUGS uses RBA with informative priors across the 

three occasions in each condition. In each case the c item parameter, or asymptomatic 

parameter is fixed at .17 for all situations. I will describe the simulated situations prior to 

stating the research questions in a technical sense; however, the following questions are 

addressed by the Baseline, Favorable to RBA, and Unfavorable to RBA conditions 

respectively: 

1. Does the use of Recursive Bayesian Analysis (RBA) improve the accuracy 

in estimating the latent trait compared to traditional analysis in a 

longitudinal setting when the simulated sample distributions are normal in 

each of three situations? 

2. Does the use of Recursive Bayesian Analysis (RBA) improve the accuracy 

in estimating the latent trait compared to traditional analysis in a 

longitudinal setting when the simulated sample person ability distributions 

progress from slightly to moderately to highly negative-skewed in each of 

three situations? 
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3. Does the use of Recursive Bayesian Analysis (RBA) improve the accuracy 

in estimating the latent trait compared to traditional analysis in a 

longitudinal setting when the simulated sample person ability distributions 

are normal, highly negative-skewed normal, and highly positive-skewed 

normal, respectively, in each of three situations? 

 The accuracy of the BILOG-MG and WinBUGS parameter estimation for items 

and persons are compared to the known true item parameters and the true simulated 

sample parameters in all conditions and occasions for each situation. BILOG-MG and 

WinBUGS were found by researchers to produce similar accurate estimates of actual item 

and person parameters using actual data in sample sizes of over 300 (Kieftenbeld & 

Natesan, 2012). Little evidence of IRT simulations applied in longitudinal settings has 

been found, but cross-sectional simulated data has been identified by researchers 

comparing BILOG-MG and WinBUGS (Proctor et al., 2005; Liu & Gambrell, 2009; 

Kieftenbeld & Natesan, 2012).  

Conditions: Baseline, Favorable to RBA, and Unfavorable to RBA 

 The first condition is Baseline 3PL IRT parameter estimation in a longitudinal 

setting which in situations 1, 2, and 3 the sample of 500 simulated users is drawn from a 

normal distribution. I hypothesize that the informative prior will lead to more accurate 

estimation of item and/or person parameters. Even though the simulated sample is 

different in each situation, it is drawn from a normal distribution. According to findings 

of Proctor et al. (2005), WinBUGS using exact (informative) priors was more accurate 

than the estimation of WinBUGS or BILOG-MG using non-informative priors in a cross-
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sectional comparison (Proctor et al., 2005). As stated the first condition serves as a 

baseline comparison with a normal distribution used in each situation. 

 In the condition Favorable to RBA, the sample of 500 simulated users is drawn 

from a slightly negative-skewed normal distribution in situation 4, a moderately negative-

skewed normal distribution in situation 5, and a moderate to highly negative-skewed 

distribution in situation 6. In the Favorable to RBA and Unfavorable to RBA conditions 

the adjusted Fisher-Pearson standardized moment coefficient is used to indicate skew. 

These informative priors may increase or decrease accuracy of estimation for item and/or 

person parameters across the three situations in the condition Favorable to RBA because 

the informative priors are based on the θ posterior distribution from the previous 

situation. This study will produce evidence to help determine the influence of informative 

priors on RBA of 3PL IRT applications in a simulated longitudinal manner. The skew 

begins as slight (- 0.40); progresses to moderate (-0.80); then ends with a moderate to 

high negative skew (-1.20). The informative prior of the latent trait may produce more 

accurate estimates of item and person parameters or conversely, the informative priors 

may restrict the estimation process toward the center of the prior distribution and produce 

a less accurate estimate (Fox, 2010; Mislevy, 1986).   

 In the condition Unfavorable to RBA, the sample of 500 simulated users is drawn 

from a normal distribution in situation 7, a moderate to high negative-skewed (-1.20) 

normal distribution in situation 8, and a moderate to high positive-skewed (1.20) normal 

distribution in situation 9. The informative priors are based on the θ posterior distribution 

from the previous situation, these informative priors may increase or decrease accuracy 

of estimation for item and/or person parameters across the three situations in the 
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condition Unfavorable to RBA and indicate if there is a trend (if any) between situations. 

This study will provide evidence of the effect of RBA with informative priors on typical 

test development and deployment using 3PL IRT in a longitudinal manner.  

 Occasion 1 represents the initial situation in each condition (Situations 1, 4, and 

7). In the initial occasion, RBA uses a non-informative prior distribution for θ because 

there is no previous posterior distribution to inform the initial prior. For those situations 

using RBA in occasions 2 and 3 (situations 2, 3, 5, 6, 8, and 9) the posterior distribution 

from the previous situation informs the subsequent prior. These simulated situations 

across occasions simulate a 3PL IRT application in a longitudinal setting. In occasion 1 

the test items administered to the sample total 40 and include 4 items that have extreme 

discrimination or difficulty values. Typically these 4 items with "poor" discrimination or 

difficulty parameters would not be detected by IRT tools until after occasion 1. 

Therefore, in occasion 1 in all three conditions the same 40 test items are administered. 

To simulate the replacement of test items, which occurs in typical longitudinal IRT 

applications, a portion of the items with "poor" discrimination or difficulty parameters 

are removed on each of the following occasions (2 and 3) in all conditions and replaced 

with items from the actual data from the New Mexico Proficiency Test (Fundamentals of 

Item Response Theory, Appendix A) This action of item removal and replacement is 

typical of actual IRT application across time. The following are research questions 

phrased in a more technical sense that guided my research: 

1. To what extent, if any, does RBA with WinBUGS using informative 

priors increase the accuracy of estimation for person parameters compared 

to traditional analysis with BILOG-MG using non-informative priors 
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employing a 3PL IRT model in a longitudinal setting when the simulated 

sample distributions are normal on each of three situations? 

2. In what way does RBA with WinBUGS using informative priors affect the 

accuracy of estimation for person parameters compared to traditional 

analysis with BILOG-MG using non-informative priors employing a 3PL 

IRT model in a longitudinal setting when the simulated sample person 

ability distributions progress from slightly to moderately to highly 

negative-skewed on each of three situations? 

3. In what way does RBA with WinBUGS using informative priors affect the 

accuracy of estimation for person parameters compared to traditional 

analysis with BILOG-MG using non-informative priors employing a 3PL 

IRT model in a longitudinal setting when the simulated sample person 

ability distributions are normal, highly negative-skewed normal, and 

highly positive-skewed normal, respectively, on each of three situations? 

 There are three conditions (Baseline, Favorable to RBA, and Unfavorable to 

RBA) and three occasions (representing administrations of the test) yielding nine 

situations for each comparison of software platforms (BILOG-MG and WinBUGS). In 

each situation within all three conditions, item parameter estimates (a and b) and person 

parameter estimates (θ) are generated by BILOG-MG with traditional analysis and 

WinBUGS with RBA. The researcher uses root mean square error (RMSE) to compare 

the item parameter estimates and person parameter estimates generated by BILOG-MG 

and WinBUGS with known true item parameters and true simulated person parameters in 

each situation. The RMSE comparison of actual item parameters with estimated item 
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parameters and simulated true person parameters with estimated person parameters 

indicates whether more accurate estimates are produced by BILOG-MG using a 

traditional analysis or WinBUGS using RBA within the specific situation.     
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CHAPTER 2 

LITERATURE REVIEW 

 Classical Test Theory was developed more than 100 years ago, and Item 

Response Theory grew from improvements in measurement used for Classical Test 

Theory (Baker, 2001; Hambleton, Swaminathan, & Rogers, 1991; Lord, 1952). Basically, 

Item Response Theory allows one to assess the item characteristics within a multiple item 

test and estimate the examinee's ability given the item parameters and the response 

pattern to the test by that examinee. Classical Test Theory examined the true score of the 

test; therefore, the observed score is equal to the true score plus error. The true score is 

not observable and is similar to the examinee's latent ability found in Item Response 

Theory (Baker, 2001; Hambleton et al., 1991). To estimate the latent ability of an 

examinee, the items of the test produce a probability or likelihood that the item will be 

answered correctly by the examinee. The formal mathematics for i items and j examinees, 

where X is the item response, x is a correct response, θ is latent ability, and P is 

probability, is as follows: 

  1 

For a difficult item, the probability of an examinee of average ability answering the item 

correctly would be lower than an easier item presented to the same examinee. Therefore, 

the Item Characteristic Curve (ICC) is a nondecreasing function in θ (Rupp, 2003). The 

graph of the examinee’s latent trait on the x-axis and the probability on the y-axis 

produces a cumulative density function (curve) similar to the one shown in Figure 1.  
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Figure 1. Logistic cumulative density function. 

In Figure 1, the curve is a logistic ogive that indicates a latent ability of 0 (average 

ability) and a probability of answering correctly for the item is .5; in the curve in Figure 

1, the item parameters are a = 1 (discrimination) and b = 0 (difficulty). The 

discrimination or a parameter is the slope of the curve at the point of inflection. The 

resulting equation for plotting this curve is as follows for the 2 parameter logistic model: 

  2 

 In Equation 2, D = 1.7 which is a scaling coefficient for the logistic curve; a = 1, 

which is the discrimination parameter, and b = 0, which is the difficulty parameter. Theta 

or θ is the latent ability of the examinee and e is a constant that is approximately 2.718. In 

Figure 1, P(θ), the probability of theta having a correct answer, is shown on the y-axis 

and the latent ability (theta) is shown on the x-axis. Therefore, as theta increases, the 

probability of a correct answer also increases. This premise forms the basis for Item 

Response Theory (IRT) (Baker, 2001; de Ayala, 2009; Hambleton et al., 1991). 
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 There are at least three basic models that are typically used in IRT analysis. The 

1PL model makes the assumption that all items have the same discrimination; therefore, 

in all 1PL models the a is assumed to equal 1 and the parameter does not influence the 

estimated latent ability. The equation for the 1PL model can be written as follows: 

  3 

The 1PL model is similar to the Rasch Model in that the item difficulty is used to 

estimate the latent ability of the examinee (Hambleton et al., 1991). 

 Though an examinee's latent ability may be below average, that examinee may be 

able to answer more difficult items correctly by context clues or by guessing. The 3PL 

model allows for the probability of examinees within the lower latent ability range to get 

an answer correct by chance. The c parameter or pseudo-chance-level parameter within 

the 3PL model tries to account for just such an occurrence (Hambleton et al., 1991). The 

c parameter elevates the lower asymptote of the curve and influences both the a and b 

parameters as follows:  

  4 

 Therefore, a test with a number p of items and n examinees using the 3PL model 

in which i = an item, j is an examinee, D = 1.7 scaling coefficient, θ is the latent ability, a 

is the discrimination parameter, b is the difficulty parameter, and c is the pseudo-chance 

parameter, the probability that the jth examinee answers the ith item correctly is written 

as follows: 

  5 

This equation can be expressed in a simpler form: 
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 6 

 7 

in which logit (x) = log  (Curtis, 2010). 

 For this study, an IRT analysis assumes that the test is unidimensional, that the 

test items are independent and that local independence is maintained. Typically, the 

unidimensionality of a test is determined using factor analysis. Most tests have multiple 

factors that could influence the determination of a latent ability. For example, an 

individual who does not read English very well would have a more difficult task 

completing a word problem test in mathematics if all of the items included English 

passages. The specific mathematics problem-solving ability cannot be adequately 

measured for examinees who have difficulty reading English passages. Also, the 

structures of many Criterion Reference Tests (CRTs) are typically unidimensional for 

specified groups within a population. In factor analysis, a scree plot is sometimes used to 

determine unidimensionality. When the first factor of a test loads at a high eigenvalue 

and is separated from the other factors by a wide margin, the test typically meets the 

assumption of unidimensionality (Hambleton et al., 1991). The idea of unidimensionality 

also pertains to local independence of test answers. Hambleton et al. (1991) claimed, 

"when the assumption of unidimensionality is true, local independence is obtained: in this 

sense the two concepts are equivalent" (p. 10).       

 When an IRT analysis fits the data, the examinees' ability estimates are not test 

dependent and the item parameters are not group dependent (de Ayala, 2009). Data 

analyzed are dichotomous within this study; however, using polytomous data and 

applying multidimensional IRT algorithms have been developed by other researchers and 
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continued refinement of those concepts are underway (de Ayala, 2009; Fox, 2010; van 

der Linden & Hambleton, 2010). 

 Some recent studies have examined a skewed distribution of the latent ability 

(Bazan, Branco, & Bolfarine, 2006; Bolfarine & Bazan, 2008; Broccoli & Cavrini, 2010). 

Using a skew latent distribution relaxes an IRT assumption that the latent ability should 

be transformed to a normal distribution with mean equal of 0 and a standard deviation of 

1 (Hambleton et al., 1991). These skew distribution studies propose an asymmetrical 

distribution of the latent variable rather than a symmetrical normal distribution. The 

studies develop the ideas that Samejima (1997, 2000) expressed regarding modeling 

using asymmetric item characteristic curves, and Bazan et al. (2006) introduced a skew 

variable λ as an added parameter. Bazan et al. (2006) showed that if λ = 0, the normal 

probability density function is created. Normal distributions of latent ability may not 

occur in many educational testing situations and assuming an asymmetrical or skewed 

distribution may hold practical value (Samejima, 2000).  

In another study, Broccoli and Cavrini (2010) determined that using a "skew 

normal distribution" for the latent variable appeared more effective when model fit was 

improved. In their study, they administered a five-item health questionnaire to a large 

sample of school children with the hypothesis that because the questionnaire measures 

self-perception of health, the supposed latent ability distribution of children completing 

the questionnaire would be skewed to the right. Three IRT models were used to analyze 

the data: a partial credit model; IRT mixed model; and IRT mixed model with a skewed 

latent variable. The program WinBUGS was used to estimate the parameters and the fit 

was indicated by the Deviance Information Criterion (DIC). Broccoli and Cavrini (2010) 
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found that by using a prior skewed latent distribution the DIC index was improved 

slightly from the second model (model 3 DIC was 129.8, model 2 DIC was 133.3). Also, 

it is observed that convergence occurred in less time using the skew latent distribution, 

which could be another indication of better model fit (Broccoli & Cavrini, 2010).  

In another recent study, Bolfarine and Bazan (2008) used simulated data from 

known parameters of 18 items and 974 students of a fourth grade mathematical test. The 

distribution of the observed scores indicated that the latent variable was skewed in the 

population, so a skewed logistic model was applied to the simulated data. In this analysis, 

WinBUGS was used to estimate the parameters and DIC was also used to indicate model 

fit. Bolfarine and Bazan (2008) found that the skewed latent distribution model fit better 

than the IRT models without skewed latent distribution. The researchers proposed a new 

ICC to IRT named the reflection of the logistic positive exponent (LPE) model or RLPE. 

These two models represent a portion of the skewed logistic models proposed by 

Samejima (1997, 2000) and support the use of asymmetrical latent distributions and 

corresponding ICCs. 

 There have been many applications of IRT using one, two, and three parameter 

models during the past 40 years (e.g., Baker, 2001; de Ayala, 2009; Fox, 2010; van der 

Linden & Hambleton, 2010). As desktop computers became more powerful in the 

decades following the 80s, more researchers started applying IRT to test analysis and 

construction because of the advantage over Classical Test Theory in which the examinee 

scores are dependent. Baker (1985) released a small book, The Basics of Item Response 

Theory, and included software written for the current state-of-art computers (Apple II and 

IBM PC). This publication inspired other researchers to begin IRT work with the 
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available computer systems and currently, there are many computer applications 

available for ability and parameter estimation (Hambleton et al., 1991). One of the more 

prominent computer applications of IRT is BILOG-MG (Mislevy & Bock, 1984; Rupp, 

2003). 

 BILOG-MG is commercially available software for IRT applications from 

Mislevy and Bock (1984) and is regularly updated. The current version is 3.0 and can 

handle 1PL, 2PL, and 3PL IRT models. Though one can choose Joint Maximum 

Likelihood (JML) and Marginal Maximum Likelihood procedures, the default procedure 

is Expected A Posteriori using a default value of 20 Expectation Maximization (EM) 

cycles followed by a maximum of 2 Newton cycles if needed (de Ayala, 2009). The 

default procedure typically performs faster and yields more accurate parameter estimates 

of the procedures for dichotomous data (Foley, 2010).  

There have been numerous studies comparing BILOG-MG to many other 

programs that generate parameters and latent ability levels from response data (Foley, 

2010). One of the earliest comparisons of software was conducted by Yen in 1987 (cited 

in Rupp, 2003) in which LOGIST and BILOG-MG were compared using a simulated test 

of 10 to 40 items and 1000 simulated examinees. In Yen's study (1987) BILOG-MG was 

identified as estimating parameters more accurately than LOGIST for short tests. In a 

similar simulation, Mislevy and Stocking (1989) also found that BILOG-MG performed 

better than LOGIST on a 15-item test with 1500 simulated examinees. In 1993, Yoes 

(cited in Foley, 2010) conducted a large simulation study using LOGIST, ASCAL, and 

BILOG-MG. Within Yoes' simulation several sample sizes (250, 500, 1000, and 2000), 

differing test lengths (15, 20, 50, 75, and 100), and differing latent ability distributions 
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(normal, uniform, and negatively skewed) were used. BILOG-MG was identified in the 

majority of the studies as estimating the item parameters accurately with sample sizes of 

500 to 1000 examinees and latent ability levels more accurately using shorter test lengths 

(15 to 20 items) (Foley, 2010). An interesting study by Abdel-fattah in 1994 comparing 

BILOG-MG and LOGIST used non-informative default priors for LOGIST and BILOG-

MG, but also used informative priors with BILOG-MG only. Comparison of the three 

estimation methods indicated that BILOG-MG using informative priors produced more 

accurate estimates than either LOGIST or BILOG-MG using default priors.  

Patsula and Gessaroli presented a comparison of BILOG-MG and TESTGRAF at 

the 1995 National Council for Measurement in Education Annual Meeting which 

indicated that though close in estimation, TESTGRAF had more accurate estimations of 

latent ability given shorter tests. However, as test length increased the estimates of latent 

ability were similar and as sample size increased the item parameter estimates were 

similar between BILOG-MG and TESTGRAF. Yoes, who had completed a comparison 

in 1993, expanded his study to include ASCAL, BILOG-MG, LOGIST, and XCALIBRE 

in 1995. The 1995 Yoes' study used two of the same data sets used in the 1993 study, test 

lengths and sample sizes were the same as 1993, but the varied distributions for the latent 

ability were not used in the 1995 study. The evaluation was consistent with Yoes' 1993 

results. BILOG-MG and XCALIBRE produced more accurate estimates of item 

parameters for small sample sizes and all programs performed similarly regarding larger 

sample sizes and longer test lengths. In numerous studies, BILOG-MG emerged as the 

program that produces the most accurate estimates of item and ability parameters for 
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sample sizes from 300 to 2000 and test lengths from 20 to 60 items. These studies are 

indexed in table 1.  

Table 1 

Research Studies Comparing BILOG-MG with Other Programs  

Researcher(s) Year Model 
Programs 
Compared 

Test 
Length 

Sample 
Size 

Ability 
Distribution 

Yen 1987 3PL BILOG-MG 
LOGIST 

10, 40 
 

1000 Normal 
Right skew 
Left skew  

Mislevy 
Stocking 

1989 3PL BILOG-MG 
LOGIST 

15, 45 
 

1500 Normal 

Yoes 1993 3PL ASCAL 
BILOG-MG 
LOGIST 

15, 20, 
50, 75, 
100 

200, 500, 
1000, 
2000 

Normal, 
Uniform, 
Negative 
Skew 

Abdel-fattah 1994 3PL BILOG-MG 
LOGIST 

20, 60 200, 500, 
1000, 
2000 

Normal 
(informative 
item 
parameters) 

Patsula 
Gessaroli 

1995 3PL BILOG-MG 
LOGIST 

20, 40 100, 250, 
500, 
1000 

Normal 

Yoes 1995 3PL ASCAL 
BILOG-MG 
LOGIST 
XCALIBRE 

15, 20, 
50, 75, 
100 

200, 500, 
1000, 
2000 

Normal 

 

In most of the comparison studies, the point estimates of parameters have been 

compared to true parameters using the Root Mean Squared Error (RMSE). The RMSE of 

the parameter estimations shows the difference between the predicted parameters and the 

true parameters for BILOG-MG and compared estimation programs. The RMSE is 

calculated using the following formula: 

 8 
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where the estimated parameter for the ith item is  ,  is the true parameter for the ith 

item and n represents the sample size.  

 Central to the computing ability of BILOG-MG is the Expectation Maximization 

(EM) algorithm (Hsu, Ackerman, & Fan, 1999; Mislevy & Bock, 1984). Though Bock 

has characterized the EM cycles within BILOG-MG as being related to the EM 

algorithm, Hsu et al. (1999) provided a mathematical proof that the EM cycle used in 

BILOG-MG is a special case of the EM algorithm when θ is assumed to be continuous or 

discrete. The modified EM algorithm used in BILOG-MG is a rather complicated series 

of equations that estimate a parameter through selecting expected values of the 

parameters given established quadrature intervals and response patterns of examinees. 

The values of the parameters are then maximized to produce the maximum likelihood 

estimate of the parameters. Using a Bayesian prior, these parameter estimates are within a 

typical distribution, thus eliminating inappropriate estimations. The kernel of the EM 

implementation with respect to the posterior probability for θ is as follows from the Rupp 

(2003) article: 

       9 

In the above equation, g(θ) represents prior beliefs and d(θ) represents observed data 

regarding the population distribution of θ. Beginning with this premise, the EM algorithm 

executes three steps iteratively until convergence of the item parameter estimates is 

reached.  

 First, the posterior probability of θ is calculated for each examinee i at each 

quadrature point k using the following equation: 
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   10 

Second, the posterior probabilities incorporate artificial data for each item j at each 

quadrature point k in the following: 

 11 

 12 

Third, the derivatives with respect to item parameters of the following equation 

 13 

are set to 0 to determine the maxima of the equation. This maximizes the estimated item 

parameters and is rewritten using artificial data in the former equation. The iterative 

process continues until the program reaches the specified convergence value (typically 

0.001). The Bayesian prior distributions for each item parameter can be set by the 

BILOG-MG user or default program settings can be used to estimate item parameters (de 

Ayala, 2009; Mislevy & Bock, 1984; Rupp, 2003).  

 BILOG-MG has been compared to LOGIST, ASCAL, TESTGRAF, XCALIBRE, 

ICL, and other item parameter estimation programs (Foley, 2010; Mead, Morris, & Blitz, 

2007). In the majority of comparisons, BILOG-MG has provided the best estimates of 

item parameters using smaller sample sizes and has been as successful as other programs 

in estimating item parameters using large datasets (Foley, 2010). BILOG-MG also makes 

use of Bayesian informative priors for the latent variable as well as the estimated 

parameters. When using proper informative priors, BILOG-MG has performed the 

estimation of parameters more accurately than using non-informative priors (Foley, 

2010).  
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 Mislevy (1986) applied a Bayesian framework to the estimation process of 

BILOG-MG to improve the performance of the software. Taking a Bayesian approach 

and applying it to the entire IRT estimation process, Jean-Paul Fox (2010) released a 

book, Bayesian Item Response Modeling, in which the program WinBUGS is used to 

estimate item parameters. Fox and Glas (2001) use the Bayesian approach to IRT using a 

Monte Carlo Markov Chain (MCMC) with Gibbs sampling instead of the EM algorithm 

used by other researchers. A handful of young researchers have continued to use the 

WinBUGS program to extend the IRT modeling development to multidimensional IRT, 

skewed distributions, and bi-factor multidimensional IRT (Suh, 2010; Sheng, 2005; 

Fukuhara, 2009; Bolfarine & Bazan, 2010). 

  WinBUGS is a Bayesian modeling software that runs within the Microsoft 

Windows environment. Called BUGS (Bayesian inference Using Gibbs Sampling), it is 

open source and can run within R (Lunn, Thomas, Best, & Spiegelhalter, 2000). The 

MCMC simulation with Gibbs sampling uses the Metropolis-Hastings algorithm to 

estimate unknown parameters (Congdon, 2010; Fox, 2010). The item parameter 

estimation process within WinBUGS is different from that of the EM algorithm used in 

the BILOG-MG program. The Gibbs sampling technique does not rely on integration but 

on the Markov Chain properties. There are instances in which the solving of the integral 

is very difficult, so instead of solving or approximating the parameter directly, a random 

member within the parameter's known distribution is selected as an initial value for the 

parameter within a transition process. The initial value of the parameter is exchanged in 

the Markov procedure for a random value within the known distribution of the parameter 

and is conditional on the other unknown parameters and the known observed responses. 
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In estimating an unknown parameter, θ, Gibbs sampling manages a transition process and 

the form of the conditional densities. The transition process begins by making draws at 

iteration m+1 from the conditional probability density function as follows: 

 

 

 

 

The transition from  is completed if  

 14 

Where is the mth observation from random variable U. In this manner, the Gibbs 

sampling continues until the process reaches convergence. The initial replications of the 

process are deleted and called a "burn-in" period in which the values are more extreme or 

volatile (Fox, 2010).  

 There are some issues with MCMC calculation in that the extreme estimates are 

brought closer to the mean because of informative priors (Mislevy, 1986; Fox, 2010). 

However, without the influence of the priors, the maximization of parameters can lead to 

inconsistent and inflated parameter estimates (Mislevy, 1986). There have been 

comparisons of BILOG-MG and MCMC algorithms used to estimate item parameters. 

Patz and Junker (1999) examined MCMC methods of estimation compared to the EM 

algorithm of BILOG-MG. The study used similar normal priors for the latent ability and 

the b parameter, while a log-normal prior was used for the a parameter. One Markov 

chain was used to provide the parameter estimates with a 400 iteration burn-in and 7000 

iterations after the initial burn-in period. The results were practically identical for both 
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programs. Other studies that compared the MCMC process to BILOG-MG, and 

PARDUX were conducted into the early 2000s (Proctor, Teo, Hou, & Hsieh, 2005) with 

similar results using actual test data; however, when using simulated data with known 

parameters the MCMC method appeared to estimate the parameters better than BILOG-

MG (Proctor et al. 2005). 

 The use of the MCMC method for estimating IRT parameters was difficult to 

access for many IRT users. The MCMC method required the user to code the algorithm 

in S-Plus or other software (Proctor et al., 2005). However, subsequent to the release of 

WinBUGS, the IRT models could be programmed directly into the software which uses 

the MCMC method to estimate parameters. Proctor et al. (2005) decided to compare the 

parameter estimation of WinBUGS and BILOG-MG within their study. Proctor et al. 

(2005) used SASTM to simulate data for a 30 item dichotomous test and 1000 examinees. 

Fifteen datasets were generated and the dataset with the fewest responses that were all 

correct or incorrect was used for the simulation. The reason for the selection is that the 

Maximum Likelihood (ML) algorithm used in BILOG-MG does not process the extreme 

item responses of all correct or all incorrect. 

 All of the simulated dataset was processed through BILOG-MG and WinBUGS to 

produce estimates of the item parameters. Default settings were used for the priors in 

BILOG-MG (latent ability was normal [N(0, 1)], difficulty parameter was the default 

[N(0, 2)], and the discrimination parameter was the default [LN(1, 1)]. Within 

WinBUGS, there were "exact" or informative priors set and non-informative priors. For 

the "exact" or informative priors, latent ability and difficulty were set at N(0, 1) and the 

discrimination parameter was set at LN(0,.5). For their non-informative priors, Proctor et 
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al. (2005) set difficulty at N(0, 32), discrimination at LN(0, 32), and latent ability at N(0, 

1). Three Markov chains were completed for each of the exact prior settings and non-

informative prior settings. The iterations for burn-in were 1500 for the exact priors and 

2500 for the non-informative priors. The iterations used to estimate the parameters were 

2500 for the exact priors and 1500 for the non-informative priors (Proctor et al., 2005). 

The graphs produced for autocorrelation indicate that the chains converged on the 

stationary distribution. 

 The researchers used a 95% confidence interval around the true parameters to 

indicate accuracy rather than RMSE results. Their findings indicate that WinBUGS using 

exact priors was better in estimating item parameters. WinBUGS using exact priors was 

marginally better than WinBUGS using non-informative priors, and both WinBUGS 

scenarios performed better than BILOG-MG at estimating the item parameter values 

(Proctor et al., 2005). The results of this study also demonstrate that setting the exact 

priors in WinBUGS gives the program an advantage in estimating item parameters. The 

researchers called for more research in this area that involves actual data to measure the 

accuracy of item parameter estimates, varied test length, and varied numbers of 

examinees.  

 Liu and Gambrell (2009) referenced Proctor et al. (2005) and expanded upon their 

findings. Liu and Gambrell (2009) analyzed simulated response data using a 36 item, 

multiple choice test with published item parameters (a , b, and c) treated as true 

parameters. Item responses were simulated using the 3PL IRT model and published item 

parameters for 200, 500, 1000, and 2000 users from a normal [N(0, 1)] distribution. The 

item parameter estimates were then conducted using BILOG-MG based upon the 
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simulated item response data. The item parameter estimates were also conducted in 

WinBUGS using the same simulated item response data. There were four item parameter 

estimations made with each of the programs, BILOG-MG and WinBUGS, to indicate the 

item parameter estimation accuracy compared to the true item parameters with 200, 500, 

1000, and 2000 simulated users. The results of the item parameter estimation were 

mixed: WinBUGS was superior to BILOG-MG in estimating the a parameter when 

simulated users were 500 or less, BILOG-MG was superior to WinBUGS in estimating 

the b parameter when simulated users were 500 or less, and WinBUGS was superior to 

BILOG-MG in estimating the c parameter at all sample sizes. For both programs the item 

parameters a and b were better estimated for items without extreme a and b true 

parameters, and the c parameter was better estimated for more difficult items by both 

programs. Similar uninformative priors were used for both WinBUGs and BILOG-MG 

(Liu & Gambrell, 2009). The study did not report the accuracy of estimation regarding 

the person parameter, θ, or use informative priors for either of the programs.  

 Recently, Kieftenbeld and Natesan (2012) compared the parameter estimation of 

Marginal Maximum Likelihood with MCMC using Samejima's grade response model. 

During this extensive study, test length, sample size, latent trait distribution, and 

estimation procedures were investigated yielding 120 fully crossed conditions. Some of 

the results indicated that test length influenced the estimation of person parameters but 

did not have much effect on item parameter estimation. Conversely, sample size had a 

measureable influence on estimation of item parameters using both estimation 

techniques, but sample size had little influence on estimation of person parameters. The 

independent variables of test length were 5, 10, 15 and 20 items. The estimation of person 
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parameter was found to improve from a test having a length of 10 items to 15 items, but 

the improvement between 15 and 20 items was negligible (Kieftenbeld & Natesan, 2012). 

Five sample sizes were examined: 75, 150, 300, 500, and 1000 simulated users. Results 

indicate that item parameter estimation improves as sample size increases using both 

MML and MCMC; however, "there is little difference in item parameter recovery with 

samples of 300 people or more" (Kieftenbeld & Natesan, 2012, p. 415). This finding 

regarding required sample size is typical within studies using dichotomous IRT models. 

In contrast to Bazan et al. (2006) and Bolfarine and Bazan (2008), Kieftenbeld and 

Natesan (2012) used a normal prior latent trait distribution [N(0, 1)] to estimate person 

parameters given a normal, uniform, and skewed user distribution. In this study, 

Kieftenbeld and Natesan (2012) found that "the unit normal person parameter worked 

well even when it did not match the uniform or skewed latent trait distribution in the 

sample" (p. 416), indicating that the normal distribution prior for the latent trait did not 

appreciably improve the θ estimate when differing latent distributions are simulated in 

the sample. A common suggestion for further research concerns establishing more 

informative priors used in the Bayesian analysis (Kieftenbeld & Natesan, 2012; Proctor et 

al., 2005).  

 Kieftenbeld and Natesan (2012), Liu and Gambrell (2009), and Proctor et al. 

(2005), have all added to the published literature pertaining to the comparison of BILOG-

MG and WinBUGs by previous researchers. There is agreement that in the simulated 

situations examined that both programs function well with samples of 500 or more, that a 

test about 15 items in length is the minimum for estimating a person parameter that has a 

high degree of accuracy, and the use of informative priors may improve the Bayesian 
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estimation of item and person parameters. However, there are different opinions 

regarding the estimation of latent parameters using a normal distribution when the 

distribution of the latent parameters is known to be skewed (Samejima, 1997, 2000; 

Bolfarine & Bazan, 2008; Kieftenbeld & Natesan, 2012). A typical use of IRT in a test 

making context across a number of occasions may allow use of informative priors in a 

recursive Bayesian format. The use of informative priors has been reported to increase 

the accuracy of estimation by Proctor et al. (2005); however, the use of informative priors 

may not be beneficial when the informative prior is based on past data and the current 

data has a different distribution, creating a nonconjugate prior (Mislevy, 1986). RBA uses 

the Bayes theorem, in which the posterior [probability of the trait given the data, p(A|B)] 

is proportional to the prior [probability of A, p(A)] combined with the likelihood 

[probability of the data given the trait, p(B|A)]. The Bayes theorem for two states of 

nature is as follows: 

      15 

In Equation 15, A forms an observed dichotomous variable (  = 1,  = 0). The left side of 

the equation represents the posterior probability, p(A|B). In applying RBA, the posterior 

distribution found in occasion 1 of data analysis is retained and informs the prior 

distribution for occasion 2 analysis. The posterior distribution of occasion 2 is retained 

and informs the prior distribution for occasion 3, and so on in a longitudinal process. In 

RBA, the information retained in the subsequent posterior is used to inform the following 

prior, thus possibly increasing the degree of accuracy of the estimation. This is a 

possibility at this point because the posterior/prior is reflective of the sample tested, 

which may change slightly from year to year in practical educational applications of IRT 
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(Hambleton, et al. 1991). The informative prior could possibly be too restrictive for 

different samples and could result in a worse estimate than non-informative priors for the 

person parameters (Fox, 2010; Mislevy, 1986). Thus, the study simulates three years of 

item responses so that I can analyze the longitudinal process with BILOG-MG using non-

informative conjugate priors compared with WinBUGS and RBA with informative 

priors.   

 With this research, I seek to expand upon the previous work comparing BILOG-

MG and WinBUGS with the following variations. For test length, I use one initial set of 

item length of 40 items and replace "poor" items in subsequent situations so the test 

length of 40 items is maintained. In this manner, I simulate the act of removing "poor" 

test items from the initial set and replacing those items with published items. This action 

is typically done when creating a high-stakes test (Sinharay, 2006). In addition, the 

number of examinees is fixed for each test length comparison using 500 simulated 

examinees. The sample size of 500 was identified by researchers as being effective for 

item parameter estimation by both BILOG-MG and WinBUGS (Ayala, 2009; 

Kieftenbeld & Natesan, 2012; Proctor et al., 2005).  

In the Baseline condition, 500 simulated users are drawn from a normal 

distribution in each simulated situation, 1 through 3. In the condition Favorable to RBA, 

500 simulated users will be drawn from a slightly negative-skewed normal distribution   

(-.40) for situation 4, a moderately negative-skewed normal distribution (-.80) in 

simulated situation 5, and a moderate to highly negative-skewed normal distribution       

(-1.20) in simulated situation 6. In the condition Unfavorable to RBA, 500 simulated 

users are drawn from a normal distribution  for situation 7, a moderate to highly negative-
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skewed normal distribution (-1.20) in simulated situation 8, and a moderate to highly 

positive-skewed normal distribution (1.20) in simulated situation 9. A different sample of 

500 simulated users is drawn from the aforementioned distributions for each respective 

condition and occasion. Thus, the estimation accuracy of item and person parameters by 

BILOG-MG and WinBUGS is compared in each situation across three occasions within 

each of the three conditions. Both BILOG-MG and WinBUGS uses the same distribution 

in each of the simulated situations to estimate item and person parameters.  

There are four items in which the discrimination or difficulty parameter are 

artificially assigned extreme values. These are the four items that are replaced within the 

test, three just prior to occasion 2 in all conditions and the remaining item just prior to 

occasion 3 in all conditions. By the slight difference in true test item parameters, varying 

distributions of examinees (in the condition Favorable to RBA and Unfavorable to RBA), 

utilization of informative priors and posteriors, and repeating the process across three 

occasions, the researcher attempts to simulate a typical and practical use of the 3PL IRT 

model in a longitudinal setting.  

 Root mean square error (RMSE) is determined for the item parameter estimations 

and person parameter estimations for each of the situations with the item parameters and 

person parameters being compared with the true parameters in each case. This effort 

substantially expands the research of Kieftenbeld and Natesan (2012), Liu and Gambrell 

(2009), and Proctor et al. (2005) and draws upon the established comparison methods 

used by Patz and Junker (1999) and others to determine accurate parameter estimates.  
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CHAPTER 3 

METHOD 

 I use SASTM Software (Fan, Xitao, Felsovalyi, Silvo, & Keenan, 2001) to 

simulate test responses with known item parameters for the 3PL model and use the 

simulated response data to estimate item parameters within BILOG-MG and WinBUGS 

using the 3PL model. The degree of estimation accuracy of parameters of WinBUGS 

using informative priors compared with the degree of estimation accuracy of BILOG-MG 

using non-information priors is examined for three conditions. Each condition is 

simulated across three occasions of incorporating new data. The 3PL IRT simulation 

model for the longitudinal situations within the Baseline condition is shown in Figure 2. 

For the Baseline condition in situation 1, the sample distribution of the latent trait or 

person parameter is normal [N(0, 1)] for both programs. Non-informative priors are used 

in both programs, those are as follows: 

  

  

  

  

For the Baseline condition in situation 1, there is a simulated sample size of 500 users 

drawn at random from a normal distribution with a mean of 0 and a standard deviation of 

1. The minimum number of recommended examinees for the 2PL and 3PL model is 1000 

(Hambleton et al., 1991); however, Kieftenbeld and Natesan (2012) indicated that there is 

little improvement in parameter estimation between 500 and 1000 users. Therefore, the 

researcher simulates the number of examinees at 500 to provide a comparison using a  
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Figure 2. Baseline Condition for 3PL IRT Simulation 
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relatively small group within the 3PL platform. To make the comparison of item 

parameter estimation more accurate, the c parameter is fixed at 0.17 within the 3PL 

model. The number of test items is set at 40 and maintained at that length across 

situations 1, 2, and 3. The previous studies recommended using 30 to 60 items, so the 

consistency is maintained with item count and number of examinees. These 500 

simulated users have their latent ability and the relative difficulty of the item form a 

probability of a correct answer. That probability is then compared with a random number 

drawn from a uniform distribution bounded by 0 and 1. A response of 1 occurs if the 

probability of a correct answer is greater than the random draw from a uniform 

distribution; the response is 0 otherwise. The dichotomous response is recorded for all 

items and persons creating a response matrix consisting of either 1 or 0 that is 500 X 40 

for all situations. The generation of the response matrix process is repeated 50 times in an 

iterative manner on all situations, yielding a total number of simulated users of 25,000 

per situation (500x50=25,000). Those dichotomous response matrices are analyzed by 

BILOG-MG using the aforementioned non-informative priors in all situations. This is a 

typical use of BILOG-MG when the true parameters of the sample are unknown and there 

are changes in the item parameter distributions because of item replacement (Sinharay, 

2006). The same dichotomous response matrices are analyzed by WinBUGS using the 

same non-informative priors in situation 1 and using informative priors (informed by the 

posterior distribution) for situations 2 and 3. Analysis of parameter estimation compared 

to the true parameter is conducted using RMSE compared to the true parameters for both 

programs in all situations. 
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 The process for situation 2 in the Baseline condition is similar to the situation 1 

process. Differences are that three items are removed and replaced with three published 

items maintaining the length of the test, yielding 40 test items for situation 2. This action 

simulates typical use of IRT diagnostic information and is indicative of practical 

scenarios. Three of the "poor" items are replaced within the test. Also, there is a new 

generation of the sample of 500 simulated users and the analysis is completed for 50 

replications. To simulate typical use, the BILOG-MG analysis uses non-informative 

priors because the typical sample latent trait presents unknown parameters. The choice of 

non-informative priors for the BILOG-MG analysis is typical for situation 2. Conversely, 

using RBA allows the researcher to incorporate prior information that can help in 

estimating person parameters. The posterior distribution from the person parameter 

estimation process in situation 1 informs the prior distribution for the person parameter 

estimation process in situation 2. In this manner, data are not duplicated in the analysis, 

but the information from the previous analysis is retained within the RBA. However, with 

the actions of replacing items and creating a different simulated sample in situations 2 

and 3, the prior information may narrow the analysis and actually reduce the degree of 

accuracy of the estimation if the prior distribution is a poor predictor of the changing 

sample (Mislevy, 1986). By simulating typical use of IRT in test development and 

deployment, the practical use of RBA can be investigated through the RMSE analysis of 

parameters in each situation. With the aforementioned exceptions, all other processes in 

situation 2 are the same as situation 1 in the Baseline condition. 

 The process for situation 3 in the Baseline condition has some differences from 

situation 2. The test length is maintained at 40 through the simulated replacement of 
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another "poor" item and the sample of 500 simulated users is drawn from a normal 

distribution. RBA is again used by WinBUGS by incorporating the situation 2 person 

parameter posterior distribution to inform the situation 3 person parameter prior 

distribution and the BILOG-MG priors remain non-informative. All other processes in 

the Baseline condition in situation 3 proceed as described for situation 1. The Baseline 

condition simulates a typical application of the IRT process across three occasions in 

which the items in the test are refined and the actual samples change across the three 

occasions. However, in each situation samples are drawn from the normal distribution. 

 For the Favorable to RBA condition in situation 4, the sample distribution of the 

latent trait or person parameter is a slightly negative-skew normal distribution for both 

programs shown in Figure 3. The same non-informative item and person priors are used 

in both programs as in the previous condition. The Favorable to RBA condition in 

situation 4 uses a simulated sample size of 500 users drawn at random from a slightly 

negative-skew normal distribution (-.40) with a mean of 0.5 and standard deviation of 1. 

To make the comparison of item parameter estimation more accurate, the c parameter is 

fixed at 0.17 within the 3PL model. The number of test items is set at 40 and maintained 

at that length across situations 4, 5, and 6. The creation and analysis of the dichotomous 

response pattern for the favorable to RBA condition is similar to the Baseline condition 

and is repeated 50 times in an iterative manner in all situations. 

 The process for situation 5 in the favorable to RBA condition is similar to the 

situation 4 process. Differences are that three items are removed and replaced with three 

published items maintaining the length of the test, yielding 40 test items for 
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Figure 3. Favorable to RBA Condition for 3PL IRT Simulation 
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situation 5. This action simulates typical use of IRT diagnostic information and is 

indicative of practical scenarios. Three of the "poor" items are replaced within the test. 

Also, there is a new generation of the sample of 500 simulated users using a moderately 

negative-skew distribution (-.80) with a mean of 0.75 and standard deviation of 1. To 

simulate typical use, the BILOG-MG analysis uses non-informative priors because the 

sample distribution presents unknown parameters for this condition.  

The choice of non-informative priors for the BILOG-MG analysis is typical for 

situation 5. Conversely, using RBA allows the researcher to incorporate prior information 

that can help in estimating person parameters. The posterior distribution from the person 

parameter estimation process in situation 4 informs the prior distribution for the person 

parameter estimation process in situation 5. In this manner, data are not duplicated in the 

analysis, but the information from the previous analysis is retained within the RBA. 

However, with the actions of replacing items and creating a different simulated sample 

from a slightly different distribution in situations 5 and 6, the prior information may 

narrow the analysis and actually reduce the degree of accuracy of the estimation if the 

prior distribution is a poor predictor of the changing sample (Mislevy, 1986). By 

simulating typical use of IRT in test development and deployment, the practical use of 

RBA can be investigated through the RMSE analysis of parameters in each situation. 

With the aforementioned exceptions, all other processes in situation 5 are the same as 

situation 4 in the Favorable to RBA condition. 

 The process for situation 6 in the Favorable to RBA condition has some 

differences from situation 5. The test length is maintained at 40 through the simulated 

replacement of another "poor" item and the sample of 500 simulated users is drawn from 
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a moderate to highly negative-skew normal distribution (-1.20) with a mean of 1.0 and a 

standard deviation of 1. RBA is again used by WinBUGS by incorporating the situation 5 

person parameter posterior distribution to inform the situation 6 person parameter prior 

distribution and the BILOG-MG priors remain non-informative. All other processes in 

the Favorable to RBA condition in situation 6 proceed as described in situation 4. The 

Favorable to RBA condition simulates a typical application of the IRT process across 

three occasions in which the items in the test are refined and the actual samples change 

across situations 4, 5, and 6. Each of the three samples is drawn from a negatively 

skewed distribution that is progressively more skewed in each situation. 

For the Unfavorable to RBA condition, shown in Figure 4, in situation 7, the 

sample distribution of the latent trait or person parameter is a normal distribution for both 

programs. The same non-informative priors will also be used in both programs as in the 

previous initial occasion. The Unfavorable to RBA condition in situation 7 uses a 

simulated sample size of 500 users drawn at random from a normal distribution with a 

mean of 0 and a standard deviation of 1.  To make the comparison of item parameter 

estimation more accurate, the c parameter is fixed at 0.17 within the 3PL model. The 

number of test items is set at 40 and maintained at that length across situations 7, 8, and 

9. The creation and analysis of the dichotomous response pattern for the Unfavorable to 

RBA condition is similar to the previous conditions and is repeated 50 times in an 

iterative manner in all situations.   

 The process for situation 8 in the Unfavorable to RBA condition is similar to the 

situation 7 process. Differences are that three items are removed and replaced with 
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Figure 4. Unfavorable to RBA Condition for 3PL IRT Simulation 
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three published items maintaining the length of the test, yielding 40 test items for 

situation 8. This action simulates typical use of IRT diagnostic information and is 

indicative of practical scenarios. Three of the "poor" items are replaced within the test. 

Also, there is a new generation of the sample of 500 simulated users using a moderate to 

highly negative-skew distribution (-1.20) with a mean of 1.0 and a standard deviation of 

1. To simulate typical use, the BILOG-MG analysis uses non-informative priors because 

the sample distribution presents unknown parameters for this situation. The choice of 

non-informative priors for the BILOG-MG analysis is typical for situation 8. Conversely, 

using RBA allows the researcher to incorporate prior information that can help in 

estimating person parameters. The posterior distribution from the person parameter 

estimation process in situation 7 informs the prior distribution for the person parameter 

estimation process in situation 8. In this manner, data are not duplicated in the analysis, 

but the information from the previous analysis is retained within the RBA. However, with 

the actions of replacing items and creating a different simulated sample from a highly 

different distribution in situations 8 and 9, the prior information may narrow the analysis 

and actually reduce the degree of accuracy of the estimation if the prior distribution is a 

poor predictor of the changing sample (Mislevy, 1986). By simulating typical use of IRT 

in test development and deployment, the practical use of RBA is investigated through the 

RMSE analysis of parameters in each situation. With the aforementioned exceptions, all 

other processes in situation 8 are the same as situation 7 in the Unfavorable to RBA 

condition. 

 The process for situation 9 in the Unfavorable to RBA condition has some 

differences from situation 8. The test length is maintained at 40 through the simulated 
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replacement of another "poor" item and the sample of 500 simulated users is drawn from 

a moderate to highly positive-skew normal distribution (1.20) with a mean of -1.0 and a 

standard deviation of 1. RBA is again used by WinBUGS by incorporating the situation 8 

person parameter posterior distribution to inform the situation 9 person parameter prior 

distribution and the BILOG-MG priors remain non-informative. This condition is termed 

"Unfavorable to RBA" because the sample distribution undergoes an extreme change 

from negative skew -1.20 in situation 8 to positive skew 1.20 in situation 9. The person 

parameter prior distribution is unlike the given sample distribution to test the accuracy of 

using recursive Bayesian estimation within extreme situations. All other processes in the 

Unfavorable to RBA condition in situation 9 proceed as described in situation 7. 

 An analysis using RMSE is completed for the estimated parameters for each 

condition in each situation compared with the true parameters used for each condition in 

each situation. In that manner an investigation of using RBA with informative priors is 

assessed in a typical IRT application when the sample distribution remains normal 

(Baseline condition), experiences gradual change in a consistent direction (Favorable to 

Recursive Bayesian Analysis condition), and experiences extreme change in different 

directions (Unfavorable to Recursive Bayesian Analysis condition).  

 A SASTM software program is used to simulate the dichotomous response data for 

the test items. For the 40 item test, items 10, 20, 30, and 40 comprise the "poor" items 

that are removed from the test across occasions 2 and 3 in all conditions. These 

artificially assigned parameters help to identify issues in the estimation of extreme item 

parameter values by the WinBUGS and BILOG-MG programs. The parameters are 

shown in Table 2 and reflect extreme low and high discrimination and difficulty within 
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those items. Items 10 20 and 30 are removed prior to situation 2 and item 40 is removed 

prior to occasion 3. After these items are removed, those items will be replaced with 

published items from the New Mexico Proficiency Test (Fundamentals of Item Response 

Theory, Appendix A). The removal and replacement of items is intended to simulate a 

typical IRT diagnostic process of identifying "poor" test items regarding difficulty and 

discrimination parameters and making adjustments to the test in the test development 

process (Sinharay, 2006). 

Table 2 

Parameters of “Poor” Items 

 Item Parameters 

Item a b c 

10 0.02 0.0 0.17 

20 1.0 -3.0 0.17 

30 2.0 0.0 0.17 

40 1.0 3.0 0.17 

 

The 40 items in the test help show the accuracy of person parameter estimation of 

WinBUGS and BILOG-MG when using authentic data from actual tests in the 3PL IRT 

model. The initial test items are taken from actual data from the New Mexico Proficiency 

Test (Fundamentals of Item Response Theory, Appendix A) showing actual item 

parameters for the 3PL model in Hambleton et al. (1991). There are a total of 75 items 

that have 3PL true parameters listed. The initial test (first occasion for all conditions) 

includes the first 36 items and four "poor items"; the second test (second occasion for all 
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conditions) includes the first 39 items and one "poor item"; and the third test (third 

occasion for all conditions) includes the first 40 items.  

The simulation is actually a nested model with two programs (BILOG-MG 

parameter estimation using traditional analysis and WinBUGS parameter estimation 

using RBA) in each situation across three occasions within each of three conditions (3 × 

3 =  9 situations). For both WinBUGS and BILOG-MG parameter estimation in each 

condition and occasion described below, the SASTM software 3PL simulation script uses 

predefined item parameters and randomly generated person parameters (abilities) (θ). 

Given the item parameters and the simulated abilities, response probabilities for each 

item within each condition and occasion are calculated and compared with random 

numbers drawn from a uniform distribution (0,1) to generate a discrete variable. The 

SASTM software program will read the true parameter file given a, b, and c parameters 

from a data file for the 40 items for simulation in each condition and occasion. The text 

of these files is shown in Appendix C.  

The number of simulated examinees is 500 and is a random draw from a 

simulated population of examinees with normal distribution, mean = 0 and standard 

deviation = 1 in the Baseline condition in all situations 1 through 3. In the Baseline 

condition, a separate random draw of 500 simulated users from a normal distribution is 

made for each occasion and within each situation there are two programs compared to the 

true parameters. The parameter estimates are calculated using WinBUGS with RBA, and 

parameter estimates are calculated using BILOG-MG. In each estimation process within a 

condition and situation both programs will use the same sample and response pattern in 

the analysis and estimation of the person parameter. This Baseline measurement is to 
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determine how RBA may perform in a longitudinal study when there is no difference in 

the sample’s normal distribution between occasions. The normal distribution of the latent 

variable may be found in tests that are norm-referenced or tests that measure a latent trait 

or ability that is normally distributed in the population.   

In the Favorable to RBA condition, the simulated sample distributions across 

situation 4 through 6 become progressively negative skewed. In the Favorable to RBA 

condition in situation 4, the simulated sample distribution is negative skewed by -.40; in 

situation 5, the simulated sample is negative skewed by -.80; and in situation 6, the 

simulated sample is negative skewed by -1.20. The distribution in all three situations is 

negative skewed in increasing amounts. This simulates a test in which the students are 

given the criteria and pertinent curriculum that the test is based upon. On subsequent 

occasions the tested population gradually improves their test scores through more direct 

and effective teaching of the concepts tested. This may be indicative of Criterion-

Referenced-Tests (CRT) where the outcome may be negative skewed. 

In the Unfavorable to RBA condition the simulated sample distributions across 

situation 7 through 9 show extreme change. In the Unfavorable to RBA condition in 

situation 7, the simulated sample distribution is normal; in situation 8, the simulated 

sample is negative skewed by -1.20; in situation 9, the simulated sample is positive 

skewed by 1.20. The Unfavorable to RBA condition simulates changing test 

administration or population treatments that result in extreme shifts in the scoring 

outcomes across occasions. 

In the Favorable and Unfavorable to RBA conditions the variations for occasions 

1, 2, and 3 involve a change from the normal distribution. To simulate the skewed normal 
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distributions, Fleishman's (1978) power transformation was used as a part of the SASTM 

code (Appendix A). To further simulate the skewed normal distributions the mean of the 

distribution was also slightly shifted in each of the transformations as follows: slight 

negative skewed mean = 0.5, moderate negative skewed mean = 0.75, highly negative 

skewed mean = 1.0, and highly positive skewed mean = −1.0. These changes simulate 

typical population skewed distributions found in many educational settings in which CRT 

testing is utilized and are consistent with skewed distributions simulated by Bazan et al. 

(2006), Kieftenbeld and Natesan (2012), and Samejima (1997).  For the Favorable and 

Unfavorable to RBA conditions the detailed description of the sample distributions are 

shown in Table 3.  

Table 3 

Sample Distributions in the Favorable and Unfavorable to RBA Conditions  

 Favorable Unfavorable 

Situation 4 5 6 8 9 

Mean 0.5 0.75 1.0 1.0 -1.0 

SD 1 1 1 1 1 

Skew -0.40 -0.80 -1.20 -1.20 1.20 

Excess kurtosis 0.4 0.7 1.4 1.4 1.4 

 

Transformed from the 0 to 1 range of the typical beta distribution to a -3 to 3 

range, the progressively negative skewed normal distributions generated in the Favorable 

to RBA condition can be modeled as β(7.4,5),  β(8.7,4), and β(16.1,3) respectively. The 

extreme change in the Unfavorable to RBA condition goes from a normal distribution to 
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β(16.1,3) to  β(3,16.1) in each of three situations showing extreme changes in the shape 

of the distribution. Each of these skewed distributions is slightly, moderately, or highly 

skewed from normal and may be representative of a typical population in which a CRT 

may be administered.  In each of three conditions there are three occasions that are 

examined within this study with parameters a, b, and θ being estimated by WinBUGS 

and BILOG-MG for a total of 9 situations (three conditions x three occasions). In each 

situation the estimates from WinBUGS and BILOG-MG are compared with the true item 

parameters used to generate the dichotomous responses and the true θ values selected by 

the SASTM simulation. The conditions represent a consistent normal distribution in the 

Baseline condition, a progressively negative skewed distribution in the Favorable to RBA 

condition, and an extreme shift in the distributions in the Unfavorable to RBA condition. 

The situations simulate outcome data across three occasions within each condition and 

simulate outcome distributions from year to year in typical IRT practical applications. 

The SAS TM code for each condition and occasion is shown in Appendix B. 

 The root mean square error of the parameter estimations is calculated for the 

estimated item parameters compared with the true item parameters and placed in tables 

by the designated situation. The RMSE shows the difference between the estimated 

parameters and the true parameters for BILOG-MG and WinBUGS within two sections 

of the tables for each situation. Sample items will be provided in a comprehensive table 

to examine trends, if any, among the situations within the simulated data. The RMSE is 

calculated using the following formula: 

 16 
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where  is the estimated parameter for the ith item,  is the true parameter for the ith 

item, and n = 25,000 (500X50). In addition to calculating RMSE for the item parameters, 

RMSE is calculated for the person parameters estimated in each situation. The true 

person parameters are indications of the latent ability or trait being examined. Within 

each situation, 500 simulated users are draw at random from differing distributions. The 

true person parameters drawn by SASTM are compared to the person parameters estimated 

by BILOG-MG and WinBUGS for each situation. The intent of this study is to 

investigate the accuracy of item and person parameter estimation using RBA in a 

simulated longitudinal process of test development using 3PL IRT.  

Numerous studies have shown that BILOG-MG and WinBUGS are similar at 

estimating item and person parameters with sample sizes of 500 and more (Kieftenbeld & 

Natesan, 2012; Liu & Gambrell, 2009; and Proctor et al., 2005). More research has called 

for investigating the use of informative priors in Bayesian IRT analysis (Kieftenbeld & 

Natesan, 2012; and Proctor et al., 2005). The RBA allows the researcher to retain the 

information from prior and posterior information and apply that information in a 

subsequent analysis. Classical analysis typically starts with a "clean state" and does not 

consider prior information in a current analysis. This study seeks to simulate a typical use 

of a 3PL IRT process within conditions and across occasions to provide evidence of the 

comparable accuracy of item and person parameter estimation in a simulated longitudinal 

process. 

 The process used in forming the prior for the following situation consists of 

evaluating the posterior distribution estimated by WinBUGS in the former situation. In 

all three conditions: Baseline, Favorable to RBA, and Unfavorable to RBA, the first 
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occasion uses a non-informative prior in the Bayesian analysis. In each condition, 

occasions 2 and 3 use the former posterior distribution to inform the subsequent prior. 

The posterior is analyzed using the four central moments of the posterior distribution: 

mean, variance, skewness, and kurtosis. These four central moments describe the 

location, dispersion, and shape of the posterior distribution. The informative prior for the 

following situation is a transformed beta distribution with similar moments to the 

posterior distribution found in the previous situation. The beta distribution shape 

parameters are adjusted to a similar location, dispersion, and shape as measured by the 

first four central moments of the beta distribution. Finally Pearson's χ2 statistic is used to 

examine the "goodness of fit" of the current prior in transformed beta distribution format 

and former posterior distributions. 

 Some IRT Monte Carlo simulations include large samples and few replications, 

others select an arbitrary number of replications that may produce confusing outcomes; 

however, this Monte Carlo simulation sets the replications at 50 and the sample size at 

500 for a total of 25,000 users in each situation (50 x 500 = 25,000). When estimating the 

a, b, and θ parameters, the total sample size number times the number of replications 

provides a large simulated population of 25,000 users. A recommended minimum 

number of replications is 25 (Harwell, Stone, Hsu, & Kirisci, 1996), but because the 

person parameter, θ, is the focus of the study, 50 replications and 500 sample size are 

combined to yield the desired precision.        
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CHAPTER 4 

RESULTS AND DISCUSSION 

 The purpose of this study is to examine the increase, if any, in the accuracy of 

person parameter estimates using RBA compared to traditional analysis with 3 PL IRT 

applications in a longitudinal setting. The simulation procedures described in chapter 3 

were completed and the results for each of the conditions: Baseline, Favorable to RBA, 

and Unfavorable to RBA are reported. 

Restating from chapter 3, there are three occasions within each condition, the 

Baseline condition, Favorable to RBA condition, and Unfavorable to RBA condition. 

Each situation in the occasion applies the same item data and simulated user data to 

estimate the item and person parameters a, b, and θ using BILOG-MG and WinBUGS. 

Microsoft Excel is used to calculate and analyze the RMSE of the estimates compared to 

the true parameters. In each situation within all conditions the sample size was 500 with 

50 replications of the two programs (BILOG-MG and WinBUGS) which are automated 

within a SAS TM program (Appendix B). BILOG-MG results are recorded as BILOG-MG 

output files (.PH1, .PH2, and .PH3) in a designated directory. Likewise, WinBUGS 

output files are placed in another designated directory and the simulated true person 

parameters are recorded by SAS TM in yet another directory. Estimates of θ and the item 

parameters, a and b, from all of the output files are cataloged and RMSE calculations are 

made for all 50 replications per situation. Therefore, the analysis of RMSE is provided 

for each situation within all conditions.  
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Baseline Condition Results 

Each program, BILOG-MG and WinBUGS, used non-informative priors in the 

initial occasion of the Baseline condition. The RMSE when estimating the latent ability 

or trait ranges from 0.34 to 0.38 for BILOG-MG and from 0.32 to 0.37 for WinBUGS 

across the 50 replications. The means of the RMSE for θ estimation are also similar with 

0.36 for BILOG-MG and 0.35 for WinBUGS, which indicates slightly more precision for 

WinBUGS; however, the accuracy of the θ estimation is virtually the same. 

In the Baseline condition the posterior of situation 1 informs the prior distribution 

of situation 2. The total sample size for the situation 1 posterior distribution is 25,000 

(500 × 50) and the posterior distribution is calculated using the total sample size. Because 

the posterior distribution is normal, the informed prior distribution for situation 2 will 

only use the first two central moments of the former posterior distribution (mean and 

variance). The informed prior used in situation 2 was N(0.00898, 0.93012) which is very 

similar to the default prior and the latent trait distribution of N(0, 1) in the Baseline 

condition. The RMSE of the θ estimates compared to the simulated true θ values is 0.37 

for BILOG-MG and 0.36 for WinBUGS for situation 2. Similarly, the informed prior 

distribution for situation 3 in the Baseline condition is N(0.0162, 0.9642) and the RMSE 

of the θ estimates compared to the simulated true values are 0.36 for BILOG-MG and 

0.35 for WinBUGS using RBA in situation 3. Because the informative prior distribution 

used in the RBA is very similar to the non-informative priors and the simulated latent 

ability distributions in situations 2 and 3 of the Baseline condition, the RMSE of the 

traditional analysis using BILOG-MG and the RMSE of the RBA are very similar for a 

normally distributed latent variable. This finding indicates that the use of RBA with 
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WinBUGS compared to traditional analysis with BILOG-MG does not increase the 

accuracy of the θ estimation using a sample size of 500 or more that is distributed 

normally, N(0, 1). The finding is consistent with the published literature which indicates 

that BILOG-MG and WinBUGS have similar accuracy when estimating the θ parameter 

Table 4 

Root Mean Square Error (RMSE) Calculations for Baseline Condition 

Estimated Parameter BILOG-MG WinBUGS 

Situation 1 (500 × 50) 

θ 0.36 0.35 

a 0.14 0.19 

b 0.19 0.28 

Situation 2 (500 × 50) 

θ 0.37 0.36 

a 0.12 0.16 

b 0.16 0.28 

Situation 3 (500 × 50) 

θ 0.36 0.35 

a 0.13 0.14 

b 0.15 0.24 

 

using a sample size of 500 or more that have a normal N(0, 1) distribution. This finding 

also suggests a baseline level of precision of approximately 0.35 for the estimation of the 

θ parameter for both BILOG-MG with traditional analysis and WinBUGS using RBA in 

this simulation. 
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Though the accuracy of estimating the item parameters, a and b, are not the focus 

of this study, item parameter estimates by BILOG-MG and WinBUGS are compared with 

the true item parameters (Appendix C) using RMSE. The findings of this study show that 

in the Baseline condition the a, or discrimination parameter estimates are similar for 

BILOG-MG and WinBUGS as shown in Table 4. The b, or difficulty parameter estimates 

in the Baseline condition from BILOG-MG are more precise with a RMSE of 0.19, 0.16, 

and 0.15 in situations 1, 2, and 3 respectively. The difficulty item parameter estimates for 

WinBUGS have a RMSE that is 0.28, 0.28, and 0.24 for the same three situations using a 

normal distribution of the latent variable. The default prior of the difficulty parameter for 

BILOG-MG and the prior for the difficulty parameter set in WinBUGS was N(0, 0.5) for 

all situations within the Baseline condition. 

Favorable to RBA Condition Results 

Each program, BILOG-MG and WinBUGS, use non-informative priors in the 

initial occasion of the Favorable to RBA condition. The RMSE when estimating the 

latent ability or trait ranges from 0.51 to 0.67 for BILOG-MG and from 0.47 to 0.61 for 

WinBUGS across the 50 replications. The means of the RMSE for θ estimation are also 

similar with 0.61 for BILOG-MG and 0.55 for WinBUGS (see Table 5), which indicates 

slightly more precision for WinBUGS; however, the accuracy of the θ estimation is 

virtually the same with the difference indicated approximately 0.06. Both programs 

generate less accurate θ estimates than the RMSE calculations in situation 4 compared to 

the RMSE value previously found in the Baseline condition. The sample is drawn from a 

negative skewed distribution with mean = 0.5, standard deviation = 1, skew = -0.40, and 

excess kurtosis = 0.4 as shown in chapter 3, table 2. Because the dichotomous response 
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Table 5 

Root Mean Square Error (RMSE) Calculations for Favorable to RBA 
Condition 

Estimated Parameter BILOG-MG WinBUGS 

Situation 4 (500 × 50) 

θ 0.61 0.55 

a 0.16 0.20 

b 0.62 0.42 

Situation 5 (500 × 50) 

θ 0.76 0.36 

a 0.19 0.21 

b 0.87 0.30 

Situation 6 (500 × 50) 

θ 0.79 0.37 

a 0.34 0.28 

b 1.16 0.25 

 

matrix is also generated from the comparison of the probability of a correct answer with a 

random uniform variable, each simulated true θ value for each sample of 500 users has a 

mean range of 0.36 to 0.57 and the mean is 0.49; however in a skewed distribution the 

median is a better indicator of central tendency, therefore the median range is 0.36 to 0.63 

and the median is .53. The standard deviation of the simulated sample is 0.92 and the 

skew has a wide range of -0.70 to 0.01 among the 50 samples, with the total skew equal 
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to -0.31. The following chart in figure 5 shows the prior, latent trait, and posterior 

distributions for the initial occasion in the Favorable to RBA condition.    

Though the latent trait distribution in typical IRT applications is unknown, it is 

known in these simulated data and the latent trait distribution yields data which are 

negative skewed which is dissimilar to the non-informative prior in simulation 4, N(0, 1). 

This difference in the prior produces parameter estimates that have less accuracy in 

predicting person parameters than instances when the latent trait is distributed normally 

around a mean of 0, as demonstrated by elevated RMSE values in the Favorable to RBA 

condition, situation 4 than those RMSE values previously shown in the Baseline 

condition. 

 

 
Figure 5. Bayesian analysis for Favorable condition, situation 4 – using non-informative 
prior. 

In the Favorable to RBA condition the posterior of situation 4 informs the prior 

distribution of situation 5. The total sample size for the situation 4 posterior distribution 
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is 25,000 (500 x 50) and the posterior distribution is calculated using the total sample 

size. The informed prior distribution for situation 5 uses the first four central moments of 

the former posterior distribution (mean, variance, skew, and kurtosis), because the 

posterior distribution shown in Figure 5 is negative skewed. The informed prior used in 

situation 5 is represented as a transformed beta distribution which uses shape parameters 

α and β. The beta distribution can approximate a uniform, normal, negative skew, and 

positive skew distribution. Also α and β values are easily interpreted into mean, variance, 

skew, and excess kurtosis using the following equations: 

                                                       17 

                                               18 

                                                                           19 

                                                       20 

In equation 17, which indicates the first central moment, μ equals the mean, min is the 

minimum of the range, max is the maximum of the range, and α and β are shape 

parameters. The mean is the first central moment and is considered the strongest 

indication of central tendency in normal distributions. However, because the posterior 

distribution from the Favorable to RBA condition, situation 4 has a negative skew, the 

stronger indication of the center of the distribution may be the median or mode. In 

equations 18, 19 and 20 which indicate the second, third, and fourth central moments, 

equals the variance, γ equals the skewness, and k equals the excess kurtosis. Typically, 

the mean and variance are used to describe a distribution because those are the measures 

with the greatest precision when there are homogenous data. In using the skewness and 



54 
 

 

kurtosis to inform the prior probability distribution, the precision is far less than that of 

the mean and variance with the uncertainty of the skewness statistic about 2.45 times the 

uncertainty of the central tendency (Wheeler, 2011). The kurtosis statistic has more 

variation at about 4.9 times the uncertainty of the central tendency of the distribution. 

Therefore, caution is recommended when using either the skewness or kurtosis statistic of 

the posterior distribution to inform the subsequent prior distribution. A large sample 

(25,000) and homogeneous data are used to inform the subsequent prior because the 

uncertainty is greater using the skewness and kurtosis.   

The first four central moments typically provide the characteristics of a 

distribution and by carefully matching the first four central moments of the posterior with 

a beta distribution transformed to the -3 to 3 range the next prior distribution can be 

informed. The previous posterior distribution central moments are used to inform the 

subsequent prior distribution in a transformed beta, given a large sample and 

homogeneous data. It is interesting that even distributions with exactly the same mean, 

variance, skew, and kurtosis may not be exactly the same; however, those distributions 

will be similar (Wheeler, 2011). In analyzing the situation 4 posterior distribution the 

characteristics are shown in the Table 6. 

Table 6 shows the first four central moment values of the Favorable to RBA 

condition, situation 4 posterior distribution of the total sample size across all replications 

(500 × 50 = 25,000). The transformed beta distribution α shape parameter is assigned the 

value of 5.4 (because an α value of 5.4 creates a beta distribution with similar shape to  
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Table 6 

Characteristics of Posterior Distribution Favorable Condition, Situation 4 

Mean 0.059703259 

Standard Error 0.005819662 

Median 0.1223 

Mode 1.064 

Standard Deviation 0.920169374 

Sample Variance 0.846711676 

Excess Kurtosis -0.232830971 

Skewness -0.277216436 

Range 5.48 

Minimum -3.149 

Maximum 2.331 

Sum 1492.581473 

Count 25000 

 

the posterior distribution) and the β parameter is calculated using the formula shown in 

Equation 21. 

                                                         21 

where α is a beta shape parameter of 5.4, min is the minimum value in the range of the 

distribution, max is the maximum value, and μ is the measure of central tendency. 

Typically in a normal distribution, μ is recognized as the mean; however, because the 

posterior distribution has a skew statistic of -0.28, the posterior distribution has a slight 

negative skew which indicates that a better measure of central tendency may be the 
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median or mode. Substituting the values for the min, max, α, and setting μ equal to the 

median (0.12), the β value is 5.06 producing a transformed distribution beta (5.4, 5.06). 

That beta (5.4, 5.06) distribution has a mean of 0.15, variance of 0.89, skew of -0.04, and 

excess kurtosis of -0.44. Though the mean and variance are similar to the central 

tendency value (median) and variance of the posterior distribution the skew statistic is not 

similar with the posterior indicating greater negative skew than the beta; thus, additional 

fitting is needed. 

 Another process of fitting uses the Pearson χ2 statistic that compares the posterior 

distribution with the transformed beta prior distribution. Using 13 equivalent intervals 

within the range of both distributions the χ2 statistic was calculated using the following: 

                                                                                              22 

where i is the number of a specific interval, n is the total number of intervals,  is the 

observed count for interval i, and   is the expected count for interval i. In this 

simulation the posterior distribution contains the observed value and the subsequent prior 

distribution contains the expected value. The β parameter is adjusted to minimize the χ2 

statistic in an effort to fit the transformed beta prior distribution to the observed posterior 

distribution. The adjustment results in a reduction in the β parameter from 5.06 to 4.8; at 

which the χ2 statistic is minimized.  

The posterior distribution is shown in graphical format in Figure 6, with the 

transformed beta (5.4, 4.8) distribution (in process of fitting) superimposed. The 

transformed beta (5.4, 4.8) distribution has characteristics: μ = 0.32,  = 0.82, γ = -0.10, 

and k = -0.45. The mean of the transformed beta distribution is between the median and  



57 
 

 

 

Figure 6. Bayesian analysis for Favorable condition, situation 5 – prior distribution beta 
(5.4, 4.8) informed by posterior distribution situation 4. 
 
mode of the situation 1 posterior distribution which is consistent with determining the 

central tendency of a skewed sample. The variance is similar (0.82 and 0.85); however, 

the skew values are not similar (-0.10 and -0.28) and the excess kurtosis values are not 

similar (-0.45 and -0.23). Though these distributions indicate similar central moment 

values for variance, the values for skewness are not similar. Because the central tendency 

indicator of a skewed distribution is better indicated by the median or mode, the mean for 

the transformed beta distribution is compared to the median or mode of the posterior. 

Also the skew value has a slightly negative skew in the posterior and the skew of the 

transformed beta distribution is currently much less skewed. The skewness value of the 

beta (5.4, 4.8) distribution is -0.10 which is not similar to the skewness value of the 

posterior distribution of -0.28 

The application of the Pearson fit statistic is somewhat problematic. The χ2 

statistic is minimized at about beta (5.4, 4.8) and fits the transformed beta prior to the 

posterior distribution when the bins to describe the distributions are limited to the -1.5 to 
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1.5 range, or focused on the center of the distributions. The statistic for that central 

portion of the distributions is,  which is less than  . 

However, when the tails are included in the bins, the statistic is 398.87, which greatly 

exceeds the critical value. This inconsistency between the central part of the distribution 

and the tails indicates that the transformed beta distribution tails may not conform to the 

posterior tails so that the fit statistic becomes an insignificant indicator of fit. Due to the 

fact that the transformed beta distribution needs to be similar to the posterior distribution, 

the application of the  fit statistic may lead to over fitting the prior distribution to the 

former posterior distribution because the central portion of the posterior distribution was 

influenced by the non-informative situation 4 prior and biased toward the mean of that 

non-informative prior.  

The lower accuracy in θ estimation is evidenced by the elevated RSME (0.55 and 

0.61) for θ estimation by WinBUGS and BILOG-MG, shown in table 4 for the Favorable 

to RBA condition, situation 4. The lower accuracy may be attributed to the slightly 

skewed likelihood and resulting posterior distribution. To make estimates with higher 

accuracy, the researcher proposes that the skew values may be made more similar 

between the former posterior distribution and subsequent prior distribution by further 

adjustment of the β parameter. It is the belief of the researcher that the second and third 

central moments (variance and skew) of the posterior distribution should be primarily 

used to inform the prior distribution because of the inconsistency in skew values between 

the posterior and prior and decreased dependence of the mean as an indicator of central 

tendency in a skewed distribution. Since the posterior distribution is influenced by the 

non-informative prior in situation 4, the posterior distribution's skew value may indicate 
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that the transformed beta distribution used for the prior in situation 5 needs to increase 

the negative skew. Typically the negative skew is increased by reducing the β shape 

parameter in a beta distribution; therefore, the informative prior is adjusted to beta (5.4, 

3.8), thus reducing the β shape parameter from the previous beta distribution. The 

transformed beta (5.4, 3.8) distribution has characteristics: μ = 0.57,  = 0.86, γ = -.20, 

and k = -0.44. With this new distribution the mean is still between the median and mode 

(0.122 and 1.064) of the posterior distribution, the variance is consistent, the skew values 

are similar (-0.20 and -0.28), and the kurtosis is relatively unchanged. Since a slightly 

more platykurtic prior distribution is desirable for a prior distribution, the excess kurtosis 

of -0.44 is acceptable. The transformed beta (5.4, 3.8) distribution superimposed upon the 

posterior distribution from situation 4 is shown in graphic form in Figure 7.

 

Figure 7. Bayesian analysis for Favorable condition, situation 5 – prior distribution beta 
(5.4, 3.8) informed by posterior distribution situation 4. 
 

Therefore, the Favorable to RBA condition, situation 5 prior distribution is beta 

(5.4, 3.8) for WinBUGS and N (0,1) (the default) for BILOG-MG.  The RMSE when 

estimating the latent ability or trait ranges from 0.69 to 0.84 for BILOG-MG and from 
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0.32 to 0.39 for WinBUGS across the 50 replications. The means of the RMSE for θ 

estimation are not similar with 0.76 for BILOG-MG and 0.36 for WinBUGS, which 

indicates more precision for WinBUGS; in this case the accuracy of the θ estimation 

indicates a 95% credible interval for WinBUGS at ± 0.71 and the BILOG-MG 95% 

credible interval at ±1.53. In this simulation, the accuracy in estimating θ is improved by 

using an informative prior in the Favorable to RBA condition, situation 5. 

The simulated sample for situation 5 is drawn from a negative skewed distribution 

with mean = 0.75, standard deviation = 1, skew = -0.80, and excess kurtosis = 0.7. The 

dichotomous response matrix is also generated from the comparison of the probability of 

a correct answer with a random uniform variable and the total simulated sample of true θ 

values for 25,000 users (500 users and 50 replications) has a total mean of 0.66; however, 

in a skewed distribution the median (0.82) is a better indicator of central tendency. The 

standard deviation of the simulated sample is 0.78 and the total skew equal to -1.12, 

which is highly skewed. Figure 8 shows the prior, latent trait, and posterior distributions 

for situation 5 in the Favorable to RBA condition.  

Figure 8 shows that the posterior distribution is more consistent with the latent 

trait distribution in the Favorable to RBA condition, situation 5 using the informative 

transformed beta prior. The RMSE is similar to the estimation error previously displayed 

by both programs in the Baseline condition, thus the Favorable to RBA θ parameter  



61 
 

 

 
Figure 8. Bayesian analysis for Favorable condition, situation 5 – using informative prior 
beta (5.4, 3.8). 

estimation may have the most precision achieved in this simulation with a negatively 

skewed sample and the RMSE is much more accurate than using non-informative N(0,1) 

priors when the sample is skewed. In analyzing the situation 5 posterior distribution to 

inform the situation 6 prior, the characteristics of the situation 5 posterior distribution are 

shown in Table 7. 

Table 7 shows the first four central moment values of the Favorable to RBA 

condition, situation 5 posterior distribution of the total sample size across all replications 

(500x50=25,000). A process using the estimated shape and calculation of the β parameter 

that is very similar to the fitting process for the situation 5 prior is completed. During that 

process, a transformed beta prior distribution for situation 6 using shape parameters of α 
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equal to 7.5 and β equal to 4.73 is fitted to the situation 5 posterior distribution. The 

posterior distribution is shown in graphical format in Figure 9, with the transformed beta 

(7.5, 4.73) distribution superimposed.  

Table 7 

Characteristics of Posterior Distribution Favorable Condition, Situation 5 

Mean 0.582571581 

Standard Error 0.005250524 

Median 0.7268 

Mode 1.209 

Standard Deviation 0.830180725 

Sample Variance 0.689200036 

Excess kurtosis -0.033306977 

Skewness -0.69732275 

Range 4.279 

Minimum -2.151 

Maximum 2.128 

Sum 14564.28952 

Count 25000 

 

In comparing the situation 5 posterior distribution with the transformed beta (7.5, 

4.73) prior distribution, the mean of the prior, 0.729 is similar to the posterior median 

0.727 and falls between the median and mode. Also the variance is similar at 0.645 for 

the prior distribution and 0.689 for the posterior. The skew value for the prior is -0.24 and 

the skew value for the posterior shows more negative skew at -0.69, while the adjusted 

negative skew from normal aided the accuracy of θ parameter estimation in situation 5 

the researcher believes that using a moderate to extreme skew value in the prior might 

produce a more leptokurtic distribution (as shown by the posterior).A more leptokurtic  
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Figure 9. Bayesian analysis for Favorable condition, situation 6 – prior distribution beta 
(7.5, 4.73) informed by posterior distribution situation 5. 

prior distribution may affect the accuracy of the estimation by the mean’s proximity to 

the upper limit of the normal ability range (3) and latent person ability parameters may 

not be estimated as accurately as it was in the Baseline condition. Therefore, the skew 

value of -0.24 found in the beta (7.5, 4.73) distribution is deemed sufficient for the prior 

distribution. Likewise the excess kurtosis of the posterior distribution is nearly 0 at -0.033 

and the beta (7.5, 4.73) distribution excess kurtosis is -0.31 which is more platykurtic, 

and therefore more acceptable in a prior distribution.  

 The fit statistic has very little information to contribute to selecting a suitable fit 

for a prior distribution with the fit statistic over 3000 in the process; however, the fit 

statistic did decrease when the transformed beta (7.5, 4.73) distribution for the central 

binned range of -1.5 to 1.5. Because the fit statistic has not been a productive analysis 

in the selecting of the subsequent prior, the use of the fit statistic is discontinued in this 

condition.  
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The Favorable to RBA condition, situation 6 prior distribution is beta (7.5, 4.73) 

for WinBUGS and N (0, 1) (the default) for BILOG-MG.  The RMSE when estimating 

the latent ability or trait ranges from 0.71 to 0.85 for BILOG-MG and from 0.32 to 0.48 

for WinBUGS across the 50 replications. The means of the RMSE for θ estimation are 

not similar with 0.79 for BILOG-MG and 0.37 for WinBUGS, which indicates more 

precision for WinBUGS; in this case the accuracy of the θ estimation indicates a 95% 

credible interval for WinBUGS at ± 0.73 and the BILOG-MG 95% credible interval at 

±1.57. In this simulation, the accuracy in estimating θ is improved by using an 

informative prior in the Favorable to RBA condition, situation 6. 

The simulated sample for situation 6 is drawn from a negative skewed distribution 

with mean = 1.0, standard deviation = 1, skew = -1.2, and excess kurtosis = 1.4. The 

dichotomous response matrix is also generated from the comparison of the probability of 

a correct answer with a random uniform variable and the total simulated sample of true θ 

values for 25,000 users (500 users and 50 replications) has a total mean of 0.63; however 

in a skewed distribution the median (0.87) is a better indicator of central tendency. The 

standard deviation of the simulated sample is 0.60 and the total skew equal to -2.28, 

which has an extreme negative skew. Figure 10 shows the prior, latent trait, and posterior 

distributions for situation 6 in the Favorable to RBA condition. In this final situation of 

the Favorable to RBA condition, the latent trait distribution has an extreme negative skew 

and the both the posterior and prior have negative skew. The latent trait (through the 

likelihood) influences the posterior to be much more leptokurtic than the prior and the 

prior influences the posterior to moderate to a less leptokurtic distribution. 
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 Overall, in the Favorable to RBA condition, the RSME values for θ estimation 

were consistent between WinBUGS and BILOG-MG in situation 4 with both programs 

using non-informative priors. When WinBUGS was used with informative priors in 

situations 5 and 6, the RMSE values for θ estimation decreased to nominal levels  

 

 
Figure 10. Bayesian analysis for Favorable condition, situation 6 – using informative 
prior beta (7.5, 4.73). 

similar to those RMSE values previously shown in the Baseline Condition, while the 

RMSE values for θ estimation using BILOG-MG with non-informative prior increased as 

the negative skew of the sample increased. Thus, the use of RBA with WinBUGS was 

more accurate at θ estimation in the Favorable to RBA condition. 
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 Though the accuracy of estimating the item parameters, a and b, are not the focus 

of this study, item parameter estimates by BILOG-MG and WinBUGS are compared with 

the true item parameters (Appendix C) using RMSE. The findings of this study show that 

in the Favorable to RBA condition the a, or discrimination parameter estimates are 

similar for BILOG-MG and WinBUGS as shown in table 5. The use of the informative 

prior with WinBUGS marginally improves the estimation of the a parameter over 

BILOG-MG as the sample's negative skew increase in situation 6. The b, or difficulty 

parameter estimates in the Favorable to RBA condition from both BILOG-MG and 

WinBUGS are larger in situation 4 with a RMSE of 0.62 and 0.42 respectively. However, 

the situation 5 and 6 b parameter estimation RMSEs for WinBUGS decrease to baseline 

levels (0.30 and 0.25), while the b parameter estimation RMSEs for BILOG-MG show a 

marked increase (0.87 and 1.16) over the same two situations. The default priors of the 

discrimination and difficulty parameters for BILOG-MG and the priors for the 

discrimination and difficulty parameters set in WinBUGS are LN(0, 0.5) and N(0, 2) 

respectively for all situations within the Favorable to RBA condition. The θ prior 

distribution is the normal default N (0,1) for all situation in BILOG-MG and N (0, 1), 

beta (5.4, 3.8), beta (7.5, 4.73) for WinBUGS in situations 4, 5, and 6, respectively. 

Unfavorable to RBA Condition Results 

Each program, BILOG-MG and WinBUGS, use non-informative priors in the 

initial occasion of the Unfavorable to RBA condition. The RMSE when estimating the 

latent ability or trait ranges from 0.33 to 0.39 for BILOG-MG and from 0.32 to 0.39 for 

WinBUGS across the 50 replications. The means of the RMSE for θ estimation are also 

similar with 0.36 for BILOG-MG and 0.36 for WinBUGS (see Table 8), which indicates 
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that the accuracy of the θ estimation is virtually the same in situation 7. Both programs 

generate similarly accurate θ estimates to the RMSE calculations as previously shown in 

the Baseline Condition. The sample is drawn from a normal distribution with mean = 0, 

standard deviation = 1, skew = 0, and excess kurtosis = 0, which is the same as the 

sample distribution shown in the Baseline Condition. The dichotomous response matrix is 

also generated from the comparison of the probability of a correct answer with a random 

uniform variable and each simulated true θ value for each sample of 500 users has a mean  

Table 8 

Root Mean Square Error (RMSE) Calculations for Unfavorable to RBA Condition 

Estimated Parameter BILOG-MG WinBUGS 

Situation 7 (500 × 50) 

Θ 0.36 0.36 

A 0.15 0.19 

B 0.22 0.30 

Situation 8 (500 × 50) 

Θ 0.79 0.66 

A 0.32 0.34 

B 1.14 0.48 

Situation 9 (500 × 50) 

Θ 0.80 1.48 

A 0.29 0.23 

B 0.95 1.10 
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of 0.002. The standard deviation of the simulated sample is 1 and the total skew is equal 

to 0.04. Figure 11 shows the prior, latent trait, and posterior distributions for situation 7 

in the Unfavorable to RBA condition. The figure indicates that when the prior is normal 

and closely fits the latent trait distribution, the posterior is also very closely fit. Though a 

graphic is not included for all situations in the Baseline Condition, situation 7 in the 

Unfavorable to RBA condition indicates that the when the prior distribution and latent 

trait distribution match there is small indication of RSME for both programs (0.36) as 

shown in Table 8 situation 7 for the θ estimation. In analyzing the situation 7 posterior 

distribution to inform the situation 8 prior, the characteristics are shown in Table 9. 

 
Figure 11. Bayesian analysis for Unfavorable condition, situation 7 – using non-
informative prior N(0,1). 

 Table 9 shows the first four central moment values of the Unfavorable to RBA 

condition, situation 7 posterior distribution of the total sample size across all replications 

(500 × 50 = 25,000). The transformed beta distribution α shape parameter is assigned the 

value of 4.63 (because an α value of 4.63 creates a beta distribution with similar shape to 

the posterior distribution) and the β parameter is calculated using formula 21. The  
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Table 9 

Characteristics of Posterior Distribution Unfavorable Condition, Situation 7 

Mean 0.011014769 

Standard Error 0.005874297 

Median 0.004529 

Mode 1.048 

Standard Deviation 0.928807967 

Sample Variance 0.86268424 

Excess kurtosis -0.438219406 

Skewness 0.046620227 

Range 5.388 

Minimum -2.854 

Maximum 2.534 

Sum 275.3692247 

Count 25000 

 

mean represents the central tendency because a normal distribution is used for the latent 

trait. Substituting the values for the min, max, α, and setting μ equal to the mean (0.006) 

the β value is 4.61 producing a transformed distribution beta (4.63, 4.61) which has a 

mean of 0.06, variance of 0.88, skew of -0.002, and excess kurtosis of -0.49. The mean, 

variance, skew, and kurtosis of the transformed beta prior distribution are similar to the 

corresponding central moment values of the posterior distribution shown in table 9.  

 The Pearson χ2 statistic that enables comparison of the posterior distribution with 

the transformed beta prior distribution is 7.23 for the central seven bins. This χ2 statistic 

has 6 degrees of freedom and is lower than the critical value of 12.59. However, as in 

prior usage, when the additional three bins on either side of the central portion of the 

distribution are added, the 13 equivalent intervals indicate a statistic of χ2(12)=80.23 and 
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the critical value of 21.03 which indicates that the shape of tails of the distribution 

include points that are outside of the 95% confidence interval in comparing the two 

distributions for fit. 

The posterior distribution is shown in graphical format in Figure 12, with the 

transformed beta (4.63, 4.61) distribution superimposed. The process of informing 

 
Figure 12. Bayesian analysis for Unfavorable condition, posterior situation 7 – informing 
prior beta (4.63, 4.61) distribution, situation 2. 

this prior for the Unfavorable to RBA condition, situation 8 is similar to the informative 

prior formation throughout this simulation: A beta distribution is matched to the first four 

central moments of the situation 7 posterior distribution. The difference from the 

Favorable to RBA condition, situation 7 is that the latent trait in the Unfavorable to RBA 

condition, situation 7 is normally distributed (shown in figure 11). Thus, the posterior and 

prior are virtually symmetrical with the mean of the posterior at 0.011 and the mean of 

the transformed beta (4.63, 4.61) prior equal to 0.06. The variance is also similar at 0.86 

and 0.88 for the posterior and prior, respectively. The skew value and kurtosis are also 

similar with the skew value in both cases being near 0 and the excess kurtosis is -0.44 for 
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the posterior and -0.49 for the prior. Therefore, the transformed beta (4.63, 4.61) prior 

will be used in the Unfavorable to RBA condition, situation 8. 

 The Unfavorable to RBA condition, situation 8 prior distribution is beta (4.63, 

4.61) for WinBUGS and N(0,1) (the default) for BILOG-MG.  The RMSE when 

estimating the latent ability or trait ranges from 0.74 to 0.83 for BILOG-MG and from 

0.59 to 1.08 for WinBUGS across the 50 replications. The means of the RMSE for θ 

estimation are similar with 0.79 for BILOG-MG and 0.66 for WinBUGS, which indicates 

slightly more precision for WinBUGS; however, in this case the accuracy of the θ 

estimation indicates a 95% credible interval for WinBUGS at ± 1.32 and the BILOG-MG 

95% credible interval at ±1.58. In this simulation, the accuracy in estimating θ is similar 

for WinBUGS and BILOG-MG in the Unfavorable to RBA condition, situation 8. 

The simulated sample for situation 8 is drawn from an extreme negative skewed 

distribution with mean = 1, standard deviation = 1, skew = -1.2, and excess kurtosis = 

1.4. The dichotomous response matrix is also generated from the comparison of the 

probability of a correct answer with a random uniform variable and the total simulated 

sample of true θ values for 25,000 users (500 users and 50 replications) has a total mean 

of 0.63; however in a skewed distribution the median (0.86) is a better indicator of central 

tendency. The standard deviation of the simulated sample is 0.60 and the total skew equal 

to -2.25, which is extremely skewed. Figure 13 shows the prior, latent trait, and posterior 

distributions for situation 8 in the Unfavorable to RBA condition. The graph indicates 

that the prior distribution is near normal and is not similar to the latent trait distribution 

and the posterior clearly shows the influence of the prior distribution in that it has 

characteristics of both distributions. Situation 8 in the Unfavorable to RBA condition 
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indicates that the when the near normal prior distribution is used to predict an extremely 

negative skewed latent trait distribution there is a increase of RSME (or decrease in 

accuracy of estimation) for both BILOG-MG at 0.79 and WinBUGS at 0.66 as shown in 

table 7, situation 8 for the θ estimation. The range across 50 replications is 

 

 
Figure 13. Bayesian analysis for Unfavorable condition, situation 8 – using informative 
prior beta (4.63, 4.61). 

smaller for BILOG-MG (0.74 to 0.83) than for WinBUGS (0.59 to 1.08); however, 

because the θ priors for both BILOG-MG, N(0,1) and WinBUGS, beta (4.63, 4.61) are 

similar, the accuracy of the θ estimation was also similar. In analyzing the situation 8 

posterior distribution to inform the situation 9 prior, the characteristics are shown in 

Table 10. 

Table 10 shows the first four central moment values of the Unfavorable to RBA 

condition, situation 8 posterior distribution of the total sample size across all replications 

(500x50=25,000). The transformed beta distribution α shape parameter is assigned the 

-3 -2 -1 0 1 2 3 

Pr
ob

ab
ili

ty
 

Ability 

Prior 

Latent Trait 

Posterior 



73 
 

 

value of 9.3 (because an α value of 9.3 creates a beta distribution with similar shape to 

the posterior distribution) and the β parameter is calculated using formula 21. Because 

situation 8 in the Unfavorable to RBA condition uses an extreme negative skewed 

distribution for the latent variable, the resulting posterior distribution is skewed (-0.84), 

therefore the central tendency is represented by the median or mode. Substituting the 

values for the min, max, α, and setting μ equal to the median (0.29) the β value is 7.84 

producing a transformed distribution beta (9.3, 7.84). That beta (9.3, 7.84) distribution 

Table 10 

Characteristics of Posterior Distribution Unfavorable Condition, Situation 8 

Mean 0.152140434 

Standard Error 0.004903754 

Median 0.2867 

Mode 1.048 

Standard Deviation 0.775351599 

Sample Variance 0.601170101 

Excess kurtosis 0.428286887 

Skewness -0.839853072 

Range 4.298 

Minimum -2.45 

Maximum 1.848 

Sum 3803.510842 

Count 25000 

 

has a mean of 0.31, variance of 0.49, skew of -0.08, and excess kurtosis of -0.29. The 

mean is similar to the posterior distribution's median, but the variance, skew, and kurtosis 

of the transformed beta prior distribution are not similar to the corresponding central 

moment values of the posterior distribution shown in Table 10. 
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 Using the χ2 fit statistic is of little use due to the skew of the posterior and the 

resulting asymmetrical distribution. The Pearson χ2 fit statistic is calculated to be over a 

value of 10,000. Therefore, the use of the χ2 fit statistic is discontinued in this condition. 

The posterior distribution is shown in graphical format in Figure 14, with the transformed 

beta (9.3, 7.84) distribution superimposed. In figure 14, the transformed beta (9.3, 7.84) 

 
Figure 14. Bayesian analysis for Unfavorable condition, situation 9 – prior distribution 
beta (9.3, 7.84) informed by posterior distribution situation 8. 

distribution has characteristics: μ = 0.31,  = 0.49, γ = -0.08, and k = -0.29. The mean of 

the transformed beta distribution is between the median (0.29) and mode (1.05) of the 

situation 8 posterior distribution which is consistent with determining the central 

tendency of a skewed sample. The variance is similar (0.50 and 0.60); however, the skew 

values are not similar (-0.11 and -0.84) and the excess kurtosis values are not similar  

(-0.29 and 0.42). Though these distributions indicate a similar central value for variance 

and an acceptable indication of mean/median comparison, the values for skew and excess 

kurtosis are not similar and the transformed beta distribution skew value needs 

adjustment. 

Similar to situation 5 of the Favorable to RBA condition, the central portion of the 

posterior distribution in the Unfavorable to RBA, situation 8, was influenced by the non-
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informative situation 7 prior and biased toward the mean of the normal distribution. This 

is evidenced by the elevated RSME (0.66) for θ estimation by WinBUGS, shown in table 

7 for the Unfavorable to RBA condition, situation 8. The second and third central 

moments (variance and skew) of the posterior distribution are primarily used to inform 

the prior distribution because of the decreased dependence on the mean as an indicator of 

central tendency in a skewed distribution. 

 Since the posterior distribution is influenced by the non-informative prior in 

situation 7, the posterior distribution's skew value may indicate that the transformed beta 

distribution needs to increase the negative skew. Typically, the negative skew is 

increased by reducing the β shape parameter in a beta distribution; therefore, the 

informative prior is adjusted to beta (9.3, 5), thus reducing the β shape parameter from 

the previous beta distribution from 7.84 to 5. The transformed beta (9.3, 5) distribution 

has characteristics: μ = 0.95,  = 0.53, γ = -0.30, and k = -0.22. With this new 

distribution the mean is still between the median (0.29) and mode (1.05) of the posterior 

distribution, the variance is consistent, the skew values are closer, but not similar, and the 

excess kurtosis is relatively unchanged. Since a slightly more platykurtic prior 

distribution is desirable, the excess kurtosis of -0.22 is acceptable.  

In evaluating the skew, the moderate to highly skewed (-0.83) posterior influences 

a change in the transformed beta skew value to -0.30. Adding additional negative skew 

will increase the mean indicated by the beta to be near the extremes of central tendency. 

Therefore, the increase in mean (0.95) caused by the adjustment of negative skew is 

limited to the 0.29 to 1.05 (median to mode) range. The transformed beta (9.3, 5) 

distribution superimposed upon the posterior distribution from situation 8 is shown in 
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graphic form in Figure 15. This procedure of using the skew value of the situation 8 

posterior to inform the formation of the situation 9 prior is consistent with matching the 

two distributions using the first four central moments of the posterior matched with the 

first four central moments of the transformed beta prior.  

 

Figure 15. Bayesian analysis for Unfavorable condition, situation 9 – prior distribution 
beta (9.3, 5) informed by posterior distribution situation 8. 

The Unfavorable to RBA condition, situation 9 prior distribution is beta (9.3, 5) 

for WinBUGS and N (0, 1) (the default) for BILOG-MG.  The RMSE when estimating 

the latent ability or trait ranges from 0.73 to 0.86 for BILOG-MG and from 1.40 to 1.55 

for WinBUGS across the 50 replications. The means of the RMSE for θ estimation are 

not similar with 0.80 for BILOG-MG and 1.48 for WinBUGS, which indicates more 

precision for BILOG-MG; however, in this case the accuracy of the θ estimation 

indicates a 95% credible interval for WinBUGS at ± 2.96 and the BILOG-MG 95% 

credible interval at ±1.60. In this simulation, the accuracy in estimating θ is poor for 

WinBUGS and BILOG-MG in the Unfavorable to RBA condition, situation 9 with 

WinBUGS estimates being influenced by the informative prior beta (9.3, 5). In this 
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situation, the prior distribution is skewed in the opposite direction from the latent trait 

distribution which produces a greater RMSE in the MCMC estimation of the latent ability 

or trait. 

The simulated sample for situation 9 is drawn from an extreme positive skewed 

distribution with mean = -1, standard deviation = 1, skew = 1.2, and excess kurtosis = 1.4 

as shown in chapter 3, Table 2. The dichotomous response matrix is also generated from 

the comparison of the probability of a correct answer with a random uniform variable and 

the total simulated sample of true θ values for 25,000 users (500 users and 50 

replications) has a total mean of -0.64; however in a skewed distribution the median (-

0.87) is a better indicator of central tendency. The standard deviation of the simulated 

sample is 0.60 and the total skew equal to 2.32, which is extremely skewed. Figure 16 

shows the prior, latent trait, and posterior distributions for situation 9 in the Unfavorable 

to RBA condition.  

Figure 16 indicates that the prior distribution has a negative skew and is not 

similar to the latent trait distribution, which has an extreme positive skew. The posterior 

clearly shows the influence of the prior distribution in that it is biased toward the mean of 

the prior distribution. Situation 9 in the Unfavorable to RBA condition indicates that 

when the negative skewed prior distribution is used to predict θ values from an extremely 

positive skewed latent trait distribution there is an increase of RSME (or decrease in 

accuracy of estimation) for WinBUGS at 1.48 as shown in table 7 situation 9 
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Figure 16. Bayesian analysis for Unfavorable condition, situation 9 – using informative 
prior beta (9.3, 5). 

for the θ estimation. The RMSE range across 50 replications in situations 8 and 9 are 

similar for BILOG-MG (0.74 to 0.83 and 0.73 to 0.86) because the normal non-

informative prior is maintained, N(0, 1), as the latent trait distribution changes from an 

extreme negative skew to an extreme positive skew. Though the RSME remains similar 

for the BILOG-MG estimation of θ, the accuracy of that estimation is poor at 

approximately ±1.60 for situations 8 and 9. The application of using an informative prior 

distribution for WinBUGS is the least accurate in situation 9. The case of using an 

informative prior distribution that has a negative skew with a latent trait distribution that 

has extreme positive skew produced an RMSE value of 1.48 (±2.96) across 25,000 

simulated users. 

Though the accuracy of estimating the item parameters, a and b, are not the focus 

of this study, item parameter estimates by BILOG-MG and WinBUGS are compared with 
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the true item parameters (Appendix C) using RMSE. The findings of this study show that 

in the Unfavorable to RBA condition the a, or discrimination parameter estimates are 

similar for BILOG-MG and WinBUGS within each situation as shown in table 7. The b, 

or difficulty parameter estimates in the Unfavorable to RBA condition from both BILOG-

MG and WinBUGS are larger in situations 8 and 9 with a RMSE of 1.14, 0.95 and 0.48, 

1.10 respectively. However, the situation 7 b parameter estimation RMSEs for both 

BILOG-MG and WinBUGS decreased to baseline levels (0.22 and 0.30). The default 

priors of the discrimination and difficulty parameters for BILOG-MG and the priors for 

the discrimination and difficulty parameters set in WinBUGS are LN(0, 0.5) and N(0, 2) 

respectively for all situations within the Unfavorable to RBA condition. The θ prior is the 

normal default N(0, 1) for all situations in BILOG-MG and N(0, 1), beta (4.63, 4.61), 

beta (9.3, 5) for WinBUGS in situations 7, 8, and 9 respectively. 

In summary, there were three conditions with three occasions that describe the 

situations within each condition in the simulation (3 x 3 = 9). The RSME is calculated by 

comparing the estimated θ parameters to the true θ parameters of the sample of 500 

simulated users over 50 replications, which total 25,000 estimations of the θ person 

parameter. Also estimated a and b item parameters are compared to the true item 

parameters using RSME.  

The Baseline condition uses a normal distribution for the latent trait and prior 

distributions in each situation. The analyses result in a normal distribution for the 

posterior in the case of both BILOG-MG and WinBUGS. The RSME calculations for θ 

estimation for both programs across all situations (3) are consistently at the baseline level 
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of 0.35 (as seen in Table 3), which is determined as the baseline accuracy level for this 

simulation. 

 In the Favorable to RBA condition, the RMSE values are less accurate than 

baseline values in situation 4 (BILOG-MG = 0.61 and WinBUGS = 0.55), but near 

baseline values for WinBUGS in the subsequent two situations (0.36, 0.37). While θ 

estimation accuracy improved for WinBUGS across the three occasions of the Favorable 

to RBA condition, θ estimates using BILOG-MG showed increasing RMSE (0.61, 0.76, 

0.79) in the three occasions respectively, which indicates a substantial loss of accuracy 

for BILOG-MG using non-informative priors as the latent trait distribution became 

progressively more skewed. In fact, the slight negative skew of the latent trait in situation 

4 produced θ estimates using BILOG-MG that have a 95% credible interval of ±1.22 on a 

-3 to 3 scale.  

In the Unfavorable to RBA condition, situation 7 repeats the Baseline Conditions 

and the θ estimation results are very similar for both BILOG-MG and WinBUGS 

(BILOG-MG = 0.36 and WinBUGS = 0.36). For the subsequent two situations the latent 

trait distributions are extremely negative skewed and extremely positive skewed. In these 

situations, RMSE values of BILOG-MG θ estimates are consistent at 0.79 and 0.80, 

which produce 95% credible intervals of about ±1.6. WinBUGS using informative priors 

in a RBA has an RMSE of 0.66 in situation 8 and 1.48 in situation 9 showing that an 

informative prior distribution that is extremely different from the latent trait distribution 

yields a θ estimation that is very poor in accuracy with a 95% credible interval of ±2.96 

on a -3 to 3 scale. 
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CHAPTER 5 

CONCLUSIONS 

 As stated this dissertation sets three conditions: Baseline, Favorable to Recursive 

Bayesian Analysis (RBA), and Unfavorable to RBA. Within each condition are three 

occasions denoted as occasion 1, occasion 2, and occasion 3. There are nine situations 

which represent the intersections of the conditions and occasions. The latent trait, θ, is 

normally distributed in all three situations in the Baseline condition. In the Favorable to 

RBA condition, θ is distributed with a negative skew that progresses from -0.40 in the  

situation 4, -0.80 in situation 5, to -1.20 in situation 6. This condition is Favorable to 

RBA because the skew is consistently negative or in the same direction. The Unfavorable 

to RBA condition starts with θ distributed normally in situation 7, then extreme negative 

skew in situation 8 and extreme positive skew in situation 9. This condition is 

unfavorable because the θ distribution changes from extreme negative to extreme positive 

skew in adjacent situations. A chart showing the three conditions and occasions with the 

accompanying true θ distributions, prior distributions, and RMSE values is in figure 17.  

 A SASTM simulation generating 500 users over 50 replications is used for each 

situation. RBA and traditional analysis were compared using the same 40 item instrument 

in each situation. RBA is employed to estimate θ using WinBUGS in each situation and 

traditional analysis is employed to estimate θ using BILOG-MG in each situation. These 

programs were compared over three conditions and in three occasions within each 

condition. In each situation, BILOG-MG and WinBUGS used the same dichotomous test 

data. BILOG-MG used a non-informative prior for the θ estimation in each situation and 
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WinBUGS used a non-informative prior in the first occasion of each condition and an 

informative prior in occasions 2 and 3 in each condition. In total there were 9 situations,  

 

 Figure 17. Latent Trait and Prior Distributions for All Conditions and Occasions with 
RMSE Indicated for Each Situation. 
 
(3 x 3 = 9) in which the estimation of θ by BILOG-MG and WinBUGS were compared 

with the true simulated θ value. 

 The Baseline was the first condition in which there was little difference between 

RBA and traditional analysis in estimation of θ. In the three situations of the Baseline the 

RMSE found in comparing the θ estimates to the true θ were consistently at about 0.35 

for both programs, indicating that using RBA did not increase the accuracy of estimation 

of θ when the latent trait had a normal distribution. The Baseline condition also indicated 
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the RSME value (0.35) in this simulation for the estimation of θ when the latent trait 

distribution is normal. 

 The Favorable to RBA or second condition examined the accuracy of θ estimation 

when the latent trait distribution has a progressive negative skew across three occasions. 

In situation 4 of the Favorable to RBA condition, both BILOG-MG and WinBUGS used 

a non-informative prior and had a slightly negative skew (-0.40) for the latent trait. The 

RMSE of the θ estimation compared to the true θ value increased to 0.61 and 0.55 for 

BILOG-MG and WinBUGS, respectively. The increase in RMSE from 0.35 to 0.61 

indicates a decrease in the precision of the θ estimate. The increase in RMSE continued 

across situations 5 and 6 for the Favorable to RBA for BILOG-MG with values of 0.76 

and 0.79, respectively, indicating that as the skew of the latent trait increased the RMSE 

also increased. In contrast, WinBUGS using an informed prior through RBA decreased 

the RMSE to 0.36 and 0.37 in situations 5 and 6 when a progressively negative skew 

latent trait distribution was used. This RMSE value is near the previously measured 

baseline level and improves the accuracy of estimation by roughly a factor of two (0.76 to 

0.36).This finding supports the alternative hypothesis that using RBA increases the 

accuracy of θ estimation in WinBUGS when the latent trait has a progressively negative 

skew distribution. Based on the simulation, this finding supports using RBA when the 

latent trait is skewed. 

 The Unfavorable to RBA or third condition was the final condition of the 

simulation. In this condition the researcher examined the accuracy of θ estimation when 

the latent trait distribution has a normal distribution as a baseline condition in situation 7, 

followed by an extreme negative skew in situation 8, and followed by an extreme positive 
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skew in situation 9. Though this is an extreme simulation and not often seen in actual 

practice, it is valuable to test the extreme cases to try and determine the θ estimation 

related to an informative prior when the latent trait distribution is dissimilar. In situation 

7 both BILOG-MG and WinBUGS used a non-informative prior and a normal 

distribution for the latent trait. The RMSE of the θ estimation compared to the true θ 

value was 0.36 for both BILOG-MG and WinBUGS, which similar to the Baseline 

condition previously measured. BILOG-MG using an uninformative prior through 

traditional analysis maintained a RMSE of 0.79 and 0.80 in situation 8 and 9 with an 

extreme change from a negative skew to a positive skew latent trait distribution. The 

RMSE value increased across situations 8 and 9 for WinBUGS with values of 0.66 and 

1.48. The extreme changes in the latent trait distribution produced a negative skew 

informed prior distribution that was actually opposite the extreme positive skew of the 

latent trait distribution. In the Unfavorable to RBA condition, the use of RBA resulted in 

decreased accuracy in the θ estimation when there were extreme changes in the latent 

trait distribution.  This finding supports the null hypothesis for the research question 

because using RBA decreased the accuracy of θ estimation when the latent trait had an 

extreme change from a negative skew to a positive skew distribution. The researcher also 

maintains that the extreme change simulated in the Unfavorable to RBA condition is 

believed to be very rare when real data are analyzed rather than simulation data. 

Applications 

 The analysis of skewed distributions may be productive in particular situations 

(Samejima, 1997, 2000). The Georgia education system places great emphasis on 

Criterion-Referenced Competency Tests (CRCT) to indicate student achievement, 
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instructional quality, and school efficacy (Georgia Department of Education; Governor's 

Office of Student Achievement, 2013). In the State of Georgia, students in middle 

schools who meet or exceed the standards on the CRCT , total 96.8% of students in 

reading, 94.3% of students in English /language arts, and 83% of students in mathematics 

(Georgia Department of Education, 2013). The CRCT results are not only used for 

student achievement indicators, but the College and Career Ready Performance Index 

(CCRPI) uses the CRCT mean in all subjects to assign a point value to the school. CRCT 

means that meet the state target for meets or exceeds numbers will earn the school up to 

70 CCRPI points which is the maximum number of points for student achievement 

(Georgia Department of Education; Governor's Office of Student Achievement, 2013). 

For example, a distribution of the CCRPI scores for all middle schools within Georgia is 

shown in Figure 18. The extreme negative skew distribution of the graph shows the 

CCRPI middle school scores and may be a rough indication of the ability distribution of 

that group (Samejima, 1997). This actual student distribution mirrors the negative skew 

distribution used in the simulation to represent the latent trait. The simulation described 

in this dissertation indicates that when a skewed distribution is examined through IRT 

processes, θ estimation is less accurate when a non-informative prior is used by either 

BILOG-MG or WinBUGS as evidenced by an RMSE of 0.61 and 0.55 in the Favorable 

to RBA condition, situation 4, respectively. Seen in the subsequent situations (5 and 6) of 

the Favorable to RBA condition, using RBA produces lower RMSE values (0.37 and 

0.36) yielding more accurate θ estimation than using a non-informative prior (0.66 and 

0.72). If the latent trait distribution in subsequent situations is similar to or is skewed in 

the same direction consistently, then an informative prior which is a transformed beta 
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distribution informed by the previous posterior distribution improves the θ estimation 

accuracy roughly by a factor of two. This process may be applicable to determining 

 
Figure 18. Middle school achievement distribution CCRPI. 

 the latent trait associated with the CRCT tests, which likely produce a negative skew in 

the latent trait distribution.   

 Rather than examining the assessment or items within the assessment similar to 

Bazan, Bronco, and Bolfarine (2003) in determining skewness, the emphasis of this 

dissertation is on the assessed population which is saturated with instruction specific to 

the assessment questions in the time prior to the assessment. More specifically, this 

dissertation examines an application of RBA typically used in target tracking, robot geo-

location, or navigation in which the posterior informs the subsequent prior. Typically in 

Bayesian analysis, estimation of θ is based upon the prior belief about the distribution of 

the assessed population multiplied by the likelihood or the observed scores and the 

posterior is proportional to that product. A similar process is completed in the RBA in 
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which the process is recursive and the posterior informs the subsequent prior. This 

recursive process is used when there are seconds or milliseconds between Bayesian 

processes such as observed in real-time navigation of robotic drones; however, this 

dissertation applies RBA to the IRT process which does not have similar time demands. 

RBA also retains the independence of the data and does not resample, rather, the prior is 

informed by the former posterior as the belief about a specific population's assessment 

scores may change.  

 A hypothetical example of applying RBA to actual data can be demonstrated in as 

follows in five steps.  

 Step 1: WinBUGS uses a default θ prior distribution of N(0, 1) to estimate 

θ in a large population.  

 Step 2: The researcher analyzes the posterior distribution generated in Step 

1 and defines the first four central moments of the posterior distribution. For this 

example, those values can be μ = .04, σ2 = 0.886, γ = -0.47, and k = -0.45, where μ 

is the mean, σ2 is the variance, γ is the skew, and k is the excess kurtosis. The 

median may be a better indication of central tendency because the posterior 

distribution is skewed. In this case, the median is 0.53.  

 Step 3: The initial formation of the beta shape parameters α and β are 

created. An α value of 5 is set to have a similar shape to the posterior distribution 

and the β value is calculated using equation 21 substituting the median for the 

mean. The result for β is 3.8 and the equations 17 through 20 are used to calculate 

the first four central moments of the beta (5, 3.8) distribution. Those calculations 

are μ = 0.46, σ2 = 0.90, γ =-0.16, and k = -0.47.  
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 Step 4: The first four moments of the posterior and transformed beta prior 

distributions are compared. The prior mean (0.46) is near the posterior median 

(0.53), the variance is similar (0.886 and 0.90), the skew is not similar (-0.47 and 

-0.16); however it is in the same direction, and the excess kurtosis is similar (-

0.45 and -0.47). Because the skew value has a large standard deviation compared 

to the mean and variance, the transformed beta distribution is accepted and 

applied as the informed prior in the next IRT analysis.  

 Step 5: When the subsequent IRT analysis is complete, evaluate the 

accuracy of θ estimation through increased model fit compared to the Step 1 IRT 

analysis. A better model fit can be an indication of a more accurate θ estimation. 

Limitations 

A possible limitation in this dissertation is relaxing the assumption that the latent 

trait has a normal distribution in the Favorable and Unfavorable to RBA conditions. 

Typically, the distribution of the latent trait is assumed to be N (0,1) as is simulated in the 

Baseline condition. The negative skew distribution in the Favorable to RBA condition 

and extreme negative and positive skew distributions in the Unfavorable to RBA 

condition was manipulated to simulate latent trait distributions similar to CRCT results 

published by the State of Georgia. While the general practice of transforming skewed 

distributions to normal distributions is sometimes employed in IRT applications, the 

asymmetrical distribution may provide latent trait indicators that are lost in data 

transformation; thus, the relaxation of the normal assumption was applied in the 

Favorable and Unfavorable to RBA conditions.   
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Implications for Future Research 

This is a computer simulation using SASTM programming to call WinBUGS and 

BILOG-MG and the θ distribution is manipulated using Fleishman's (1978) skew 

transformation and a linear transformation of the mean to simulate real CRCT data. The 

latent trait distributions were simulated, therefore an extension of this study may use 

actual latent trait distributions. Distributions of the latent trait typically are not known in 

the actual application of the 3PL IRT model; however, the first four central moments of 

the posterior distribution can be used to inform the subsequent prior even when latent 

trait distributions are not observed or manipulated artificially. The accuracy of the 

estimation process may be evaluated using a model fit statistic. 

 The use of the Pearson χ2 fit statistic may give more productive information if a 

transformed beta distribution is not used as the informative prior. It is possible that an 

equation can be derived from the posterior distribution that can be used to inform the 

subsequent prior. This is similar to Bayesian techniques which have been used since the 

1990s in navigation and tracking applications. Additional research in this area may show 

an additional increase in the accuracy of IRT parameter estimation. 

 The analysis of skew distributions is discussed by Samejima (1997, 2000); Bazan, 

Bronco, and Bolfarine (2003); and Broccolli and Cavrini (2007) and a similar approach to 

the estimation of θ within a skew distribution is used by these researchers. Samejima 

(2000) introduced an "item complexity" parameter in addition to the difficulty and 

discrimination parameters that is "based on a skewed conditional distribution of the item 

response tendency" (p. 325). The skew is positive or negative depending on the 

characteristics of the model and the assessed population. Samejima (2000) established the 
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Logistic Positive Exponent (LPE) family of distributions and Bolfarine and Bazan (2008) 

added another negative skew distribution called Reflection Logistic Positive Exponent 

(RLPE). Closely related to these developments, Bazan et al. (2003) and Broccoli and 

Cavrini (2007) also used a skew hyperparameter to examine skewed ICCs that would 

lead to a skewed distribution of the latent trait. Common to all of these approaches, is 

developing a hyperparameter at the item level that relates to the skew seen in the 

distribution of the latent trait. Further exploration of a Bayesian approach to gather 

information from the conditional distribution of the posterior may be used to inform the 

subsequent prior at the item level for some tests. 

 BILOG-MG uses Bayesian techniques and can apply informative priors that may 

increase the accuracy of θ estimation also. WinBUGS employs an informative prior in a 

different manner, therefore, an investigation of the creation and use of informative priors 

for BILOG-MG and any subsequent change in the θ estimation accuracy is an area that 

future research may examine.  

 This dissertation used the IRT 3PL model with RBA; however, other examples of 

dichotomous, polytomous, or multidimensional IRT models may be evaluated using the 

RBA methods if a manner to elicit information for the prior is established. This process 

may be straight forward with other dichotomous and polytomous models, but can be 

extremely complicated when working with a multidimensional IRT model. An extension 

of this research would be applying RBA in other IRT models.  
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APPENDIXES 

APPENDIX A 

Fleishman's SASTM Code for Non-normal Distributions 
 
/* This program calculates the coefficients for Fleisman's power 
transformation in order to obtain univariate non-normal variables */ 
 
PROC IML; 
/* in the following matrix 'SKEWKURT', specify the skewness and 
kurtosis for each  
   variable. Each row represents one variable. In each row, the ith 
number is the  
   skewness and the 2nd number is the kurtosis of the variable;                   
*/ 
 
SKEWKURT={-.40 .4, 
     -.80 .7, 
          -1.20 1.4, 
           1.20 1.4}; 
 
START NEWTON; 
 RUN FUN; 
 DO ITER = 1 to MAXITER 
 WHILE(MAX(ABS(F))>CONVERGE); 
  RUN DERIV; 
  DELTA=-SOLVE(J,F); 
  COEF=COEF+DELTA; 
  RUN FUN; 
 END; 
FINISH NEWTON; 
MAXITER=25; 
CONVERGE=.000001; 
START FUN; 
 X1=COEF[1]; 
 X2=COEF[2]; 
 X3=COEF[3]; 
 F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-
1)//(2*X2*(X1**2+24*X1*X3+105*X3**2+2)-
SKEWNESS)//(24*(X1*X3+X2**2*(1+X1**2+28*X1*X3)+X3**2*(12+48*X1*X3+141*X
2**2+225*X3**2))-KURTOSIS); 
FINISH FUN; 
START DERIV; 
 J=((2*X1+6*X3)||(4*X2)||(6*X1+30*X3))//((4*X2*(X1+12*X3))||(2*(X1
**2+24*X1*X3+105*X3**2+2))||(4*X2*(12*X1+105*X3)))//((24*(X3+X2**2*(2*X
1+28*X3)+48*X3**3))||(48*X2*(1+X1**2+28*X1*X3+141*X3**2))||(24*(X1+28*X
1*X2**2+2*X3*(12+48*X1*X3+141*X2**2+225*X3**2)+X3**2*(48*X1+450*X3)))); 
FINISH DERIV; 
DO; 
NUM = NROW(SKEWKURT); 
DO VAR = 1 TO NUM; 
 SKEWNESS=SKEWKURT[VAR,1]; 
 KURTOSIS=SKEWKURT[VAR,2]; 
 COEF={1.0, 0.0, 0.0}; 
 RUN NEWTON; 
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 COEF=COEF`; 
 SK_KUR=SKEWKURT[VAR,]; 
 COMBINE=SK_KUR || COEF; 
 IF VAR=1 THEN RESULT=COMBINE; 
 ELSE IF VAR>1 THEN RESULT=RESULT // COMBINE; 
END; 
 PRINT "COEFICIENTS OF B, C, D FOR FLEISMAN'S POWER 
TRANSFORMATION" ; 
 PRINT "Y = A + BX + CX^2 +DX^3" ; 
 PRINT "A = -C" ; 
 MATTRIB RESULT COLNAME=({SKEWNESS KURTORSIS B C D}) 
       FORMAT=12.9; 
 PRINT RESULT; 
END; 
QUIT;  
 

Output of SASTM Program 

 

                      The SAS System        14:37 Wednesday, March 5, 2014    
 
                   COEFICIENTS OF B, C, D FOR FLEISMAN'S POWER TRANSFORMATION 
 
 
                                     Y = A + BX + CX^2 +DX^3 
 
 
                                             A = -C 
 
 
                                             RESULT 
                    SKEWNESS    KURTOSIS            B            C            D 
 
                -0.400000000  0.400000000  0.973646447 -0.063985169  0.007362577 
                -0.800000000  0.700000000  1.002054839 -0.141323322 -0.007467128 
                -1.200000000  1.400000000  1.032194765 -0.257844888 -0.035001562 
                 1.200000000  1.400000000  1.032194765  0.257844888 -0.035001562 
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APPENDIX B 

SASTM Code for the Simulation Study 

Baseline Condition, Situation 1 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Baseline Condition, Situation 1*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel1.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta[i] ~ dnorm(0,1) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini1.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
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PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0))),"   
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt1 'c:\Winbugs\WinBUGS\runirt1.txt'; 
DATA _NULL_; 
  FILE runirt1; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel1.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata1.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini1.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog1.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt1.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=,SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT1; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion1.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
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   do k=1 to &sz1;   /* set sample size*/ 
       t1=rannor(0);  /*Used in Baseline condition for 
occasion one for BILOG-MG and WinBUGS (1X1X2= 2 situations) */ 
               SIM=&SIM; 
 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT1; run; 
 
data Work.simcsv1; 
 set Work.SIM_IRT1 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=1); 
proc export data=work.sim_irt1 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt1&n..csv" 
   dbms=csv 
   replace; 
%_sexport(data=Simcsv1, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata1.txt', 
var =y1-y40); 
run; 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file */ 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog1.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults1&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults1&n..log"'; 
 
/*Analyze the results*/ 
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DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults1&n..txt" TRUNCOVER ; 
INPUT all $90.; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp1&n..txt"; 
PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 100 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\B1&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT1) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\BASE1&n..blm "; 
put     
%str(">TITLE    Baseline Condition;" ) / 
"        Occasion one  ;     "      / 
%str(">GLOBAL DFName= 'C:\B1&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = Base1 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=BASE,Occ=1,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Baseline1&n..bat"; 
    put     



102 
 

 

    %str("cd\program files\bilogmg" ) / 
    %str("blm1 BASE1&n")/  
    %str("blm2 BASE1&n" )/ 
    %str("blm3 BASE1&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Baseline1&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=BASE,Occ=1,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 
 
 

Baseline Condition, Situation 2 
 
 
 
TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Baseline Condition, Situation 2*/ 
/* specify theta prior by analysis of Situation 1 posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel2.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta[i] ~ dnorm(0.00898,0.93014) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 



103 
 

 

   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini2.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))," 
 
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt2 'c:\Winbugs\WinBUGS\runirt2.txt'; 
DATA _NULL_; 
  FILE runirt2; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel2.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata2.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini2.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog2.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt2.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
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%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=,SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of draws from random normal; 
 
/* SIM Data Generation*/ 
 data SIM_IRT2; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion2.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=rannor(0);  /*Used in Baseline condition for 
occasion one for BILOG-MG and WinBUGS (1X1X2= 2 situations) */ 
               SIM=&SIM; 
 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT2; run; 
 
data Work.simcsv2; 
 set Work.SIM_IRT2 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=2); 
proc export data=work.sim_irt2 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt2&n..csv" 
   dbms=csv 
   replace; 
%_sexport(data=Simcsv2, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata2.txt', 
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var =y1-y40); 
run; 
 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog2.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults2&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults2&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults2&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp2&n..txt"; 
PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 100 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\B2&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT2) 
 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
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   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\BASE2&n..blm "; 
put     
%str(">TITLE    Baseline Condition;" ) / 
"        Occasion two  ;     "      / 
%str(">GLOBAL DFName= 'C:\B2&n..dat', NPArm = 3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER =(1(1)40), INAMES =(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = Base2 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel = 1.000, cycles = 25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=BASE,Occ=2,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Baseline2&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 BASE2&n")/  
    %str("blm2 BASE2&n" )/ 
    %str("blm3 BASE2&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Baseline2&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=BASE,Occ=2,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
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Baseline Condition, Situation 3 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Baseline Condition, Situation 3*/ 
/* specify theta prior by analysis of Situation 2 posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel3.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta[i] ~ dnorm(0.0162,0.9642) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini3.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))," 
 
RUN; 
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/*Scripts to run WinBUGS*/ 
FILENAME runirt3 'c:\Winbugs\WinBUGS\runirt3.txt'; 
DATA _NULL_; 
  FILE runirt3; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel3.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata3.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini3.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog3.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt3.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=,SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT3; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion3.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=rannor(0);  /*Used in Baseline condition for 
occasion one for BILOG-MG and WinBUGS (1X1X2= 2 situations) */ 
               SIM=&SIM; 
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            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT3; run; 
 
data Work.simcsv3; 
 set Work.SIM_IRT3 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=3); 
proc export data=work.sim_irt3 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt3&n..csv" 
   dbms=csv 
   replace; 
%_sexport(data=Simcsv3, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata3.txt', 
var =y1-y40); 
run; 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file to view the DIC*/ 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog3.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults3&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults3&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults3&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp3&n..txt"; 
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PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 100 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\B3&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT3) 
 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\BASE3&n..blm "; 
put     
%str(">TITLE    Baseline Condition;" ) / 
"        Situation one  ;     "      / 
%str(">GLOBAL DFName= 'C:\B3&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = Base3 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=BASE,Occ=3,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Baseline3&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 BASE3&n")/  
    %str("blm2 BASE3&n" )/ 
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    %str("blm3 BASE3&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Baseline3&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=BASE,Occ=3,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 

Favorable to RBA Condition, Situation 4 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Favorable Condition, Situation 4*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel4.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta[i] ~ dnorm(0,1) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
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#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini4.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))," 
 
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt4 'c:\Winbugs\WinBUGS\runirt4.txt'; 
DATA _NULL_; 
  FILE runirt4; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel4.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata4.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini4.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog4.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt4.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=, SIM=); 
 
 libname temp "C:\"; 
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 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT4; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion1.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=.5+sqrt(1)*rannor(0);  /*Used in FAVORABLE 
condition for occasion one for BILOG-MG and WinBUGS (1X1X2= 2 
situations) */ 
               SIM=&SIM; 
      t1 = .063985169 + .973646447*t1 + -
.063985169*t1**2 + .007362577*t1**3; /* Fleisman non-normality 
transformation skew = -.4, kurtosis = .4 */ 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT4; run; 
 
data Work.simcsv4; 
 set Work.SIM_IRT4 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=4); 
proc export data=work.sim_irt4 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt4&n..csv" 
   dbms=csv 
   replace; 
run; 
%_sexport(data=Simcsv4, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata4.txt', 
var =y1-y40); 
run; 
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/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog4.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults4&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults4&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults4&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp4&n..txt"; 
PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 50 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\F4&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT4) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\FAV4&n..blm "; 
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put     
%str(">TITLE    Favorable Condition;" ) / 
"        Situation one  ;     "      / 
%str(">GLOBAL DFName= 'C:\F4&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = FAV4 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=BASE,Occ=4,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Favorable4&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 FAV4&n")/  
    %str("blm2 FAV4&n" )/ 
    %str("blm3 FAV4&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Favorable4&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=BASE,Occ=4,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 

Favorable to RBA Condition, Situation 5 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
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/*WinBUGS program for 3PL IRT Favorable Condition, Situation 5*/ 
/*Prior will be set by obtaining information from Situation 4 
posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel5.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta1[i] ~ dbeta(5.4,3.8) 
  } 
   for (i in 1:N){ 
   theta[i] <- ((theta1[i]*6)-3) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini5.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))" 
 
RUN; 
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/*Scripts to run WinBUGS*/ 
FILENAME runirt5 'c:\Winbugs\WinBUGS\runirt5.txt'; 
DATA _NULL_; 
  FILE runirt5; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel5.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata5.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini5.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog5.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt5.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=, SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT5; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion2.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=.75+sqrt(1)*rannor(0);  /*Used in FAVORABLE 
condition for occasion two for BILOG-MG and WinBUGS (1X1X2= 2 
situations) */ 
               SIM=&SIM; 
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      t1 = .141323322 + 1.002054839*t1 + -
.141323322*t1**2 + -.007467128*t1**3; /* Fleisman non-normality 
transformation skew = -.8, kurtosis = .7 */ 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT5; run; 
 
data Work.simcsv5; 
 set Work.SIM_IRT5 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=5); 
proc export data=work.sim_irt5 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt5&n..csv" 
   dbms=csv 
   replace; 
run; 
%_sexport(data=Simcsv5, 
file ="C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata5.txt", 
var =y1-y40); 
run; 
 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file to view the DIC*/ 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog5.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults5&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults5&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults5&n..txt" TRUNCOVER ; 
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INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp5&n..txt"; 
PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The situation is repeated 50 
times for WinBUGS and 50 times for BILOGMG. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\F5&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT5) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\FAV5&n..blm "; 
put     
%str(">TITLE    Favorable Condition;" ) / 
"        Situation two  ;     "      / 
%str(">GLOBAL DFName= 'C:\F5&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = FAV5 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=FAV,Occ=5,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Favorable5&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
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    %str("blm1 FAV5&n")/  
    %str("blm2 FAV5&n" )/ 
    %str("blm3 FAV5&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Favorable5&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=FAV,Occ=5,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 

Favorable to RBA Condition, Situation 6 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Favorable Condition, Situation 6*/ 
/*Prior will be set by obtaining information from Situation 5 
posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel6.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta1[i] ~ dbeta(7.5,4.73) 
  } 
   for (i in 1:N){ 
   theta[i] <- ((theta1[i]*6)-3) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
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   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini6.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))" 
 
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt6 'c:\Winbugs\WinBUGS\runirt6.txt'; 
DATA _NULL_; 
  FILE runirt6; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel6.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata6.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini6.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog6.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt6.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
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%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=, SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT6; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion3.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=1+sqrt(1)*rannor(0);  /*Used in FAVORABLE 
condition for occasion three for BILOG-MG and WinBUGS (1X1X2= 2 
situations) */ 
               SIM=&SIM; 
      t1 = .257844888 + 1.032194765*t1 + -
.257844888*t1**2 + -.035001562*t1**3; /* Fleisman non-normality 
transformation skew = -1.2, kurtosis = 1.4 */ 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT6; run; 
 
data Work.simcsv6; 
 set Work.SIM_IRT6 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=6); 
proc export data=work.sim_irt6 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt6&n..csv" 
   dbms=csv 
   replace; 
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run; 
%_sexport(data=Simcsv6, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata6.txt', 
var =y1-y40); 
run; 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog6.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults6&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults6&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults6&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp6&n..txt"; 
PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 100 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\F6&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT6) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
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   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\FAV6&n..blm "; 
put     
%str(">TITLE    Favorable Condition;" ) / 
"        Situation three  ;     "      / 
%str(">GLOBAL DFName= 'C:\F6&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = FAV6 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=BASE,Occ=6,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Favorable6&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 FAV6&n")/  
    %str("blm2 FAV6&n" )/ 
    %str("blm3 FAV6&n") / 
    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Favorable6&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=BASE,Occ=6,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
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Unfavorable to RBA Condition, Situation 7 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Unfavorable Condition, Situation 7*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel7.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta[i] ~ dnorm(0,1) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini7.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))" 
 
RUN; 
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/*Scripts to run WinBUGS*/ 
FILENAME runirt7 'c:\Winbugs\WinBUGS\runirt7.txt'; 
DATA _NULL_; 
  FILE runirt7; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel7.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata7.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini7.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog7.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt7.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
%macro gen(sz1=, length=,SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT7; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion1.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=rannor(0);  /*Used in Unfavorable condition for 
occasion one for BILOG-MG and WinBUGS (1X1X2= 2 situations) */ 
               SIM=&SIM; 
 
            do over p; 
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      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT7; run; 
 
data Work.simcsv7; 
 set Work.SIM_IRT7 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=7); 
proc export data=work.sim_irt7 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt7&n..csv" 
   dbms=csv 
   replace; 
run; 
%_sexport(data=Simcsv7, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata7.txt', 
var =y1-y40); 
run; 
 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file to view the DIC*/ 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog7.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults7&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults7&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults7&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp7&n..txt"; 
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PUT all; 
RUN; 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 100 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\U7&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT7) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
   /* Create BLM file for BILOGMG */ 
data _null_ ; 
 file "C:\Program Files\BILOGMG\UNFAV7&n..blm "; 
put     
%str(">TITLE    Unfavorable Condition;" ) / 
"        Situation one  ;     "      / 
%str(">GLOBAL DFName= 'C:\U7&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = UNFAV7 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ; 
run; 
%end; 
%mend RepBILOG1; 
%RepBILOG1 (Cond=UNFAV,Occ=7,Rep=1) 
%macro RepBILOG2 (Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
 
/*****     End Algina                                                         
***/ 
data _null_ ; 
     file "C:\SIMIRTBLM\Unfavorable7&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 UNFAV7&n")/  
    %str("blm2 UNFAV7&n" )/ 
    %str("blm3 UNFAV7&n") / 
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    %str("exit") /; 
run ; 
/*                    Call Bilog                                        
*/ ; 
DATA _NULL_; 
dm " x C:\SIMIRTBLM\Unfavorable7&n..bat" ; 
 
/*****           End BILOG-MG call                                            
*/ ; 
 
 
run ; 
 
%end; 
%mend RepBILOG2; 
%RepBILOG2 (Cond=UNFAV,Occ=7,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 

Unfavorable to RBA Condition, Situation 8 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Unfavorable Condition, Situation 8*/ 
/*Prior will be set by obtaining information from Situation 7 
posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel8.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta1[i] ~ dbeta(4.63,4.61) 
  } 
   for (i in 1:N){ 
   theta[i] <- ((theta1[i]*6)-3) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   



130 
 

 

#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini8.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))," 
 
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt8 'c:\Winbugs\WinBUGS\runirt8.txt'; 
DATA _NULL_; 
  FILE runirt8; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel8.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata8.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini8.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog8.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt8.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
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%macro gen(sz1=, length=, SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT8; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion2.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       t1=1+sqrt(1)*rannor(0);  /*Used in UNFAVORABLE 
condition for occasion two for BILOG-MG and WinBUGS (1X1X2= 2 
situations) */ 
               SIM=&SIM; 
      t1 = .257844888 + 1.032194765*t1 + -
.257844888*t1**2 + -.035001562*t1**3; /* Fleisman non-normality 
transformation skew = -1.2, kurtosis = 1.4 */ 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT8; run; 
 
data Work.simcsv8; 
 set Work.SIM_IRT8 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=8); 
proc export data=work.sim_irt8 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt8&n..csv" 
   dbms=csv 
   replace; 
run; 
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%_sexport(data=Simcsv8, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata8.txt', 
var =y1-y40); 
run; 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file to view the DIC*/ 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog8.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
 
DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults8&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults8&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults8&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp8&n..txt"; 
PUT all; 
RUN; 
 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 50 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\U8&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT8) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
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data _null_ ; 
 file "C:\Program Files\BILOGMG\UNFAV8&n..blm "; 
put     
%str(">TITLE    Unfavorable Condition;" ) / 
"        Situation two  ;     "      / 
%str(">GLOBAL DFName= 'C:\U8&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = UNFAV8 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ;     
 
run; 
%end; 
%mend RepBILOG1; 
data %RepBILOG1(Cond=UNFAV,Occ=8,Rep=1); 
%macro RepBILOG2(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
 
      /*****     End Algina                                                         
*********/ 
    data _null_ ; 
   
     file "C:\SIMIRTBLM\Unfavorable8&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 UNFAV8&n")/  
    %str("blm2 UNFAV8&n" )/ 
    %str("blm3 UNFAV8&n") / 
    %str("exit") / 
    run; 
    /*****                    Call Bilog                                          
****/ 
 
    dm " x C:\SIMIRTBLM\Unfavorable8&n..bat" ; 
 
    *****           End BILOG-MG call                                            
********* ; 
 
 
    run ; 
%end; 
%mend RepBILOG2; 
data %RepBILOG2(Cond=UNFAV,Occ=8,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
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Unfavorable to RBA Condition, Situation 9 

TITLE 'Run WinBUGS from SAS: Recursive Bayesian Analysis using 3PL IRT 
(2013)'; 
 
/*WinBUGS program for 3PL IRT Unfavorable Condition, Situation 9*/ 
/*Prior will be set by obtaining information from Situation 8 
posterior*/ 
FILENAME model "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtmodel9.txt"; 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model  
{ 
  for (i in 1:N) { 
      for (k in 1:T) { 
   p[i,k] <- c[k]+((1-c[k])*(phi(a[k]*theta[i]-b[k]))) 
   y[i,k] ~ dbern(p[i,k]) 
       } 
 
      theta1[i] ~ dbeta(9.3,5) 
  } 
   for (i in 1:N){ 
   theta[i] <- ((theta1[i]*6)-3) 
   }  
 
   for (k in 1:T) { 
      a[k] ~ dlnorm(0,0.5) 
      b[k] ~ dnorm(0,2) 
      c[k] <- 0.17 
   } 
 
#b1 ~ dpois(2)   
#b2 ~ dpois(2)   
#b11 <- b1+1 
#b12 <- b2+1 
 
#b11 ~ dunif(2,100) 
#b12 ~ dunif(2,100) 
} 
 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
/*Starting values*/ 
DATA _NULL_; 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtini9.txt"; 
PUT 
"list(a=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)," 
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PUT  
"(b=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0)))" 
 
RUN; 
 
/*Scripts to run WinBUGS*/ 
FILENAME runirt9 'c:\Winbugs\WinBUGS\runirt9.txt'; 
DATA _NULL_; 
  FILE runirt9; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtmodel9.txt')" ; 
  PUT@1 "data('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata9.txt')"; 
  PUT@1 "compile(1)"; 
  PUT@1 "inits(1, 'C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtini9.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(1000)"; 
  PUT@1 "set(a)"; 
  PUT@1 "set(b)"; 
  PUT@1 "set(theta)"; 
  PUT@1 "update(5000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtlog9.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 
FILE "C:\Winbugs\runirt.bat"; 
PUT '"C:\Winbugs\WinBUGS\WinBUGS.exe" /PAR runirt9.txt'; 
PUT 'exit'; 
RUN; 
options linesize=72; 
%macro runsimirt; 
   %let n=1; 
      %do %while(&n <= 50); 
 
%macro gen(sz1=, length=, SIM=); 
 
 libname temp "C:\"; 
 
 %do i=1 %to 5; *number of replications; 
 
/* SIM Data Generation*/ 
 data SIM_IRT9; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array c c1-c&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'G:\IRT HW\SAS\NM_SPE_40Occasion3.dat'; /*parameter 
a b and c reference*/ 
 
   do over a; 
        input item a b c; 
   end; 
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   do k=1 to &sz1;   /* set sample size*/ 
       t1=-1+sqrt(1)*rannor(0);  /*Used in UNFAVORABLE 
condition for occasion three for BILOG-MG and WinBUGS (1X1X2= 2 
situations) */ 
               SIM=&SIM; 
      t1 = -.257844888 + 1.032194765*t1 + 
.257844888*t1**2 + -.035001562*t1**3; /* Fleisman non-normality 
transformation skew = 1.2, kurtosis = 1.4 */ 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t1-b)))); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data temp.SIM&SIM&i; set SIM_IRT9; run; 
 
data Work.simcsv9; 
 set Work.SIM_IRT9 (keep=y1-y40); /* Create dichotomous file for 
BILOG and WinBUGS analysis */ 
run; 
 
 
  proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, length=40, SIM=9); 
proc export data=work.sim_irt9 (keep=k t1 SIM) 
   outfile="c:\SIMIRTBLM\sim_irt9&n..csv" 
   dbms=csv 
   replace; 
run; 
%_sexport(data=Simcsv9, 
file ='C:\Winbugs\WinBUGS\Bugs\SAStoWB/irtdata9.txt', 
var =y1-y40); 
run; 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 
X "C:\Winbugs\runirt.bat"; 
RUN; 
QUIT; 
 
 
 
DATA log; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\irtlog9.txt" TRUNCOVER ; 
INPUT log $90.; 
 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
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DM OUTPUT 'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults9&n..txt"'; 
DM LOG    'FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults9&n..log"'; 
 
/*Analyze the results*/ 
DATA temp; 
INFILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\allresults9&n..txt" TRUNCOVER ; 
INPUT all $90.; 
 
FILE "C:\Winbugs\WinBUGS\Bugs\SAStoWB\temp9&n..txt"; 
PUT all; 
RUN; 
 
 
%macro MakeDatFiles (Datain= ); 
/*  The original file, Sim_IRT&Sim is used in each situation; therefore 
the data given   
   to BILOG and WinBUGS is the same within each situation. The format 
of the file is changed  
   to accomodate the different programs. The original file was 
replicated 50 times. */ 
 
Data _NULL_ ; 
 SET  Work.&DataIn ; 
 ID = 5 ; 
 FILE "C:\U9&n..dat" ; 
 PUT  @1  ID  @2  (y1-y40) (1.) ;  
run ; 
 
    
%mend  MakeDatFiles ; 
%MakeDatFiles (datain=Sim_IRT9) 
%macro RepBILOG1(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
  
data _null_ ; 
 file "C:\Program Files\BILOGMG\UNFAV9&n..blm "; 
put     
%str(">TITLE    Unfavorable Condition;" ) / 
"        Situation three  ;     "      / 
%str(">GLOBAL DFName= 'C:\U9&n..dat', NPArm=3; ")/  
%str(">LENGTH NITems = (40);")/ 
%str(">INPUT NTOtal = 40, NALt = 7, NIDch = 1 ; " ) / 
%str(">Items INUMBER=(1(1)40), INAMES=(Y1(1)Y40);"  ) / 
%str(">TEST1 TNAme = UNFAV9 , GUESS = (0.1700(0)40);")/ 
%str("(1A1,40A1)  ") / 
%str(">CALIB ACCel=1.000, cycles =25, GPRior, READPRIOR;" ) / 
%str(">PRIORS1 ALPHA = (100(0)40), BETA = (500(0)40);" ) / 
%str(">SCORE ;  ") ;     
 
run; 
%end; 
%mend RepBILOG1; 
data %RepBILOG1(Cond=UNFAV,Occ=9,Rep=1); 
%macro RepBILOG2(Cond= ,Occ= , Rep= ); 
   %do q=0 %to &Rep; 
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      /*****     End Algina                                                         
*********/ 
    data _null_ ; 
   
     file "C:\SIMIRTBLM\Unfavorable9&n..bat"; 
    put     
    %str("cd\program files\bilogmg" ) / 
    %str("blm1 UNFAV9&n")/  
    %str("blm2 UNFAV9&n" )/ 
    %str("blm3 UNFAV9&n") / 
    %str("exit") / 
    run; 
    /*****                    Call Bilog                                          
****/ 
 
    dm " x C:\SIMIRTBLM\Unfavorable9&n..bat" ; 
 
    *****           End BILOG-MG call                                            
********* ; 
 
 
    run ; 
%end; 
%mend RepBILOG2; 
data %RepBILOG2(Cond=UNFAV,Occ=9,Rep=1); 
 
%let n=%eval(&n+1); 
   %end; 
%mend runsimirt; 
%runsimirt; 
 

One SAS Macro from Sparapani was used in the simulation to change the SAS file 

format to a WinBUGS format. The SAS Macro file is below: 

%put NOTE: You have called the macro _SEXPORT, 2004-05-19.; 
%put NOTE: Copyright (c) 2004 Rodney Sparapani; 
%put; 
 
/* 
Author:  Rodney Sparapani <rsparapa@mcw.edu> 
Created: 2004-00-00 
 
This file is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation; either version 2, or (at your option) 
any later version. 
 
This file is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
GNU General Public License for more details. 
 
You should have received a copy of the GNU General Public License 
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along with this file; see the file COPYING.  If not, write to 
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 
 
In short: you may use this file any way you like, as long as you 
don't charge money for it, remove this notice, or hold anyone liable 
for its results. 
*/ 
 
/* _SEXPORT Documentation 
    Export a BUGS or R/S+ "structure" data file from a SAS Dataset. 
     
    REQUIRED Parameters   
 
    FILE=                   "structure" file to create 
    VAR=                    list of arrays to be included 
                            Ex. two arrays: VAR=one1-one5 two1-two8 
                             
    Specific OPTIONAL Parameters 
                             
 
    DATA=_LAST_             default SAS dataset used 
    FORMAT=best12.          default format for variables 
    LINESIZE=80             default line length 
    LS=LINESIZE             alias 
    OUT=DATA                default name of object 
    R=                      by default create BUGS-style "structure" 
                            if set to anything, create a S+/R-style  
    SPLUS=R                 alias 
     
    Common OPTIONAL Parameters 
     
    LOG=                    set to /dev/null to turn off .log                             
*/ 
 
%macro _sexport(file=REQUIRED, var=REQUIRED, data=&syslast,   
    format=best12., linesize=80, ls=&linesize, out=&data, 
    r=, splus=&r, log=); 
 
%_require(&file &var); 
 
%let file=%scan(&file, 1, ''""); 
%let splus=%length(&splus); 
     
%if %length(&log) %then %_printto(log=&log); 
 
%local nobs i j var0 name; 
%let nobs=%_nobs(data=&data); 
%let var0=%_count(&var); 
 
proc format; 
    value __na 
        .='NA' 
        other=[&format] 
    ; 
run; 
 
data _null_; 
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    file "&file" linesize=&ls; 
 
    put %if &splus %then "%lowcase(%trim(&out)) <- ";  
        "list(N=&nobs, T=%_count(%_list(&&var&i)), " @; 
     
%do i=1 %to &var0; 
    %let var&i=%scan(&var, &i, %str( )); 
    %let j=%_indexc(&&var&i, 0123456789); 
    %let name=%_substr(&&var&i, 1, &j-1); 
 
    put "%_tr(&name, from=_, to=.) = structure(.Data = c("; 
         
        do i=1 to &nobs; 
            set &data(keep=&&var&i) point=i; 
             
            put (&&var&i) (__na.-r ',') @; 
             
            if i=&nobs then put '), ' @; 
            else put ',' @; 
        end; 
     
        put %if &splus %then ".Dim = c(%_count(%_list(&&var&i)), 
&nobs))"; 
            %else ".Dim = c(&nobs, %_count(%_list(&&var&i))))"; 
            %if &i=&var0 %then ')'; 
            %else ','; 
        ;  
%end; 
         
    stop; 
run; 
 
%if %length(&log) %then %_printto; 
 
%mend _sexport; 
 
%*VALIDATION TEST STREAM; 
/* un-comment to re-validate 
             
data matrix; 
    input col1-col5; 
    datalines; 
    1 2 3 4 5 
    6 7 8 9 10 
run; 
 
%_sexport(data=matrix, var=col1-col5, file=_sexport.txt); 
%_sexport(data=matrix, var=col1-col5, file=_sexport.r, r=1); 
 
*/ 
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APPENDIX C 

Item Parameters for Each Occasion (from Hambleton, Swaminathan, & Rogers, 1991, p 

156) 

Occasion One Item Parameters 

 
 
 

 
 
 

#    a    b    c 
1   .84 .58 .17                                            
2   .91 -.51 .17 
3   1.10 -.28 .17 
4   .37 -1.69 .17 
5   .69 -.97 .17 
6   .64 1.11 .17 
7   .79 -.90 .17 
8   .67 -.09 .17 
9   .53 -1.36 .17 
10  .02 .00 .17 
11  .65 -.14 .17 
12  .37 -.11 .17 
13  .56 .22 .17 
14  .88 -.67 .17 
15  1.30 .76 .17 
16  1.53 -.04 .17 
17  .66 -1.32 .17 
18   .66 -.32 .17 
19  1.23 .51 .17 
20  1.00 -3.00 .17 
 
 
 
 
 
 
 
 
 
 

#    a    b    c 
21  .59 -.68 .17 
22  .74 -.46 .17 
23  .74 .63 .17 
24  1.25 -.64 .17 
25  .98 -.12 .17 
26  .65 1.18 .17 
27  1.08 -.52 .17 
28  .91 -.12 .17 
29  .62 -.91 .17 
30  2.00 .00 .17 
31  .58 .08 .17 
32  .68 -.90 .17 
33  .87 .78 .17 
34  1.10 .03 .17 
35  1.04 1.40 .17 
36  .94 -.50 .17 
37  .63 1.54 .17 
38  .64 -1.10 .17 
39  .69 -.09 .17 
40  1.00 3.00 .17 
 
 
 
 
 
"Poor items" 
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Occasion Two Item Parameters 

 
 
 
#    a    b    c 
1 .84 .58 .17 
2 .91 -.51 .17 
3 1.10 -.28 .17 
4 .37 -1.69 .17 
5 .69 -.97 .17 
6 .64 1.11 .17 
7 .79 -.90 .17 
8 .67 -.09 .17 
9 .53 -1.36 .17 
10 .62 .19 .17 
11 .65 -.14 .17 
12 .37 -.11 .17 
13 .56 .22 .17 
14 .88 -.67 .17 
15 1.30 .76 .17 
16 1.53 -.04 .17 
17 .66 -1.32 .17 
18 .66 -.32 .17 
19 1.23 .51 .17 
20 .73 -.31 .17 
 
 
 

#    a    b    c 
21 .59 -.68 .17 
22 .74 -.46 .17 
23 .74 .63 .17 
24 1.25 -.64 .17 
25 .98 -.12 .17 
26 .65 1.18 .17 
27 1.08 -.52 .17 
28 .91 -.12 .17 
29 .62 -.91 .17 
30 .86 -.81 .17 
31 .58 .08 .17 
32 .68 -.90 .17 
33 .87 .78 .17 
34 1.10 .03 .17 
35 1.04 1.40 .17 
36 .94 -.50 .17 
37 .63 1.54 .17 
38 .64 -1.10 .17 
39 .69 -.09 .17 
40 1.00 3.00 .17 
 
"Poor Item" 

 

 

 

 

 

 

 

 

 



143 
 

 

Occasion Three Item Parameters 

#    a    b    c 
1 .84 .58 .17 
2 .91 -.51 .17 
3 1.10 -.28 .17 
4 .37 -1.69 .17 
5 .69 -.97 .17 
6 .64 1.11 .17 
7 .79 -.90 .17 
8 .67 -.09 .17 
9 .53 -1.36 .17 
10 .62 .19 .17 
11 .65 -.14 .17 
12 .37 -.11 .17 
13 .56 .22 .17 
14 .88 -.67 .17 
15 1.30 .76 .17 
16 1.53 -.04 .17 
17 .66 -1.32 .17 
18 .66 -.32 .17 
19 1.23 .51 .17 
20 .73 -.31 .17 

#    a    b    c 
21 .59 -.68 .17 
22 .74 -.46 .17 
23 .74 .63 .17 
24 1.25 -.64 .17 
25 .98 -.12 .17 
26 .65 1.18 .17 
27 1.08 -.52 .17 
28 .91 -.12 .17 
29 .62 -.91 .17 
30 .86 -.81 .17 
31 .58 .08 .17 
32 .68 -.90 .17 
33 .87 .78 .17 
34 1.10 .03 .17 
35 1.04 1.40 .17 
36 .94 -.50 .17 
37 .63 1.54 .17 
38 .64 -1.10 .17 
39 .69 -.09 .17 
40 1.50 .58 .17 
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