
Georgia State University
ScholarWorks @ Georgia State University

Business Administration Dissertations Programs in Business Administration

Spring 4-15-2014

Improving Recurrent Software Development: A
Contextualist Inquiry Into Release Cycle
Management
Syed M. Kamran
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/bus_admin_diss

This Dissertation is brought to you for free and open access by the Programs in Business Administration at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Business Administration Dissertations by an authorized administrator of ScholarWorks @ Georgia State University.
For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Kamran, Syed M., "Improving Recurrent Software Development: A Contextualist Inquiry Into Release Cycle Management."
Dissertation, Georgia State University, 2014.
https://scholarworks.gsu.edu/bus_admin_diss/33

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/bus_admin?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from
Georgia State University, I agree that the Library of the University shall make it available for inspection
and circulation in accordance with its regulations governing materials of this type. I agree that permission
to quote from, to copy from, or publish this dissertation may be granted by the author or, in his/her absence,
the professor under whose direction it was written or, in his absence, by the Dean of the Robinson College
of Business. Such quoting, copying, or publishing must be solely for the scholarly purposes and does not
involve potential financial gain. It is understood that any copying from or publication of this dissertation
which involves potential gain will not be allowed without written permission of the author.

Kamran M. Syed

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University Library must be used only in accordance with
the stipulations prescribed by the author in the preceding statement.

The author of this dissertation is:

Kamran M. Syed
Georgia State University
Robinson College of Business
35 Broad Street NW
Atlanta, GA 30303

The director of this dissertation is:

Dr. Lars Mathiassen
Atlanta, GA 30326
Georgia State University
3344 Peachtree Road,
Atlanta, GA 30326

Improving Recurrent Software Development: A Contextualist Inquiry Into Release Cycle Management

BY

KAMRAN M. SYED

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Executive Doctorate in Business

In the Robinson College of Business

Of

Georgia State University

GEORGIA STATE UNIVERSITY
ROBINSON COLLEGE OF BUSINESS

2014

Copyright by

Kamran M. Syed
2014

ACCEPTANCE

This dissertation was prepared under the direction of the Kamran M. Syed Dissertation Committee. It has
been approved and accepted by all members of that committee, and it has been accepted in partial
fulfillment of the requirements for the degree of Doctoral of Philosophy in Business Administration in the
J. Mack Robinson College of Business of Georgia State University.

 H. Fenwick Huss, Dean

DISSERTATION COMMITTEE

Dr. Lars Mathiassen (Chair)

Dr. Wesley Johnston

Dr. Balasubramaniam Ramesh

TABLE OF CONTENTS

CHAPTER I: INTRODUCTION ...1

CHAPTER II: LITERATURE REVIEW ..5

II.I SOFTWARE RELEASE LITERATURE ..5

II.II SOFTWARE PROCESS IMPROVEMENT LITERATURE6

CHAPTER III: ANALYTICAL FRAMEWORK ...9

CHAPTER IV: RESEARCH METHODOLOGY ...14

IV.I PROBLEM-SOLVING CYCLE ..16

IV.II RESEARCH CYCLE ..38

IV.III DATA COLLECTION ..38

IV.IV DATA ANALYSIS ...39

CHAPTER V: RESULTS ..45

V.I DIAGNOSTIC PHASE ...45

V.II ESTABLISHMENT PHASE ...52

V.III ACTING PHASE ..57

V.IV LEARNING PHASE ..67

CHAPTER VI: DISCUSSION ..72

VI.I IMPROVING RELEASE CYCLE MANAGEMENT AT SOFTWARE INC. ...72

VI.II RELEASE CYCLE MANAGEMENT IN RECURRENT SOFTWARE

DEVELOPMENT ..76

VI.III A GROUNDED MODEL OF RELEASE CYCLE MANAGEMENT81

CHAPTER VII: CONCLUSION ...90

APPENDIX A: SHARED PLATFORM DOCUMENT ..95

APPENDIX B: SECURE-ON-REQUEST RELEASE MANAGEMENT

IMPROVEMENT PROJECTS – STATUS REPORT ...146

APPENDIX C: CUSTOMER ADVISORY BOARD - MEETING ITEMS148

v

APPENDIX D: OCTOBER 2013 RELEASE SECURE-ON-REQUEST RELEASE

CHECKLIST..150

APPENDIX E: DATA ANALYSIS SCHEMA (AS SEEN IN NVIVO)151

APPENDIX F: SECURE-ON-REQUEST NEW RELEASE CYCLE MODEL152

APPENDIX G: SECURE-ON-REQUEST RELEASE MANAGEMENT

ASSESSMENT AND IMPROVEMENT OPTIONS ..153

REFERENCES ..160

vi

LIST OF TABLES

Table 1: Research Design Summary (Mathiassen et al., 2012) ...4

Table 2: Key Analytical Constructs ...11

Table 3: Analytical Framework ...13

Table 4: Problem Solving Timeline ...17

Table 5: Release Management Practice-Based Assessment (Pre-intervention)20

Table 6: Improvement Projects Schedule ..22

Table 7: Improvement of Secure-on-Request Customer Relationship Project23

Table 8: Conceptual Definitions of the Six SaaS-Qual Factors (Benlian, et al., 2011;

Barqawi, 2014) ...26

Table 9: Improvement of Secure-on-Request Requirements And Quality27

Table 10: Improvement of Secure-on-Request Release Cycle Project30

Table 11: Reoccurring Meetings for the New Secure-on-Request Release Model37

Table 12: Release Management Practice-Based Assessment (Post-intervention)37

Table 13: Data Sources ..39

Table 14: A Grounded Model of Release Cycle Management (RCM) in Recurrent

Software Development...87

vii

LIST OF FIGURES

Number Page

Figure 1: Contextualist Inquiry Diagram (Pettigrew, 1987) ..10

Figure 2: IDEAL Model (McFeeley, 1996) ...16

Figure 3: Secure-on-Request Service Blueprint at Software Inc.21

Figure 4: The New Secure-on-Request Release Model ...36

Figure 5: Data Analysis Activities ...43

Figure 6: Secure-on-Request new and fixed defects trends ...68

Figure 7: Conceptual Representation of Release Cycle Management (RCM) in

Recurrent Software Development ..81

Figure 8: A Grounded Model of Release Cycle Management (RCM) in Recurrent

Software Development...88

viii

ABBREVIATIONS AND DEFINITIONS

CAB - Customer Advisory Board

CAR - Canonical Action Research

CPR - Collaborative Practice Research

GSU – Georgia State University

QA - Quality Assurance

RCM - Release Cycle Management

SPI - Software Process Improvement

TAM - Technical Account Manager

ix

 ABSTRACT

IMPROVING RECURRENT SOFTWARE DEVELOPMENT:
A CONTEXTUALIST INQUIRY INTO RELEASE CYCLE MANAGEMENT

BY

KAMRAN M. SYED

May 8th, 2014

Committee Chair: Dr. Lars Mathiassen

Major Academic Unit: J. Mack Robinson College of Business

Software development is increasingly conducted in a recurrent fashion, where the same product
or service is continuously being developed for the marketplace. Still, we lack detailed studies
about this particular context of software development. Against this backdrop, this dissertation
presents an action research study into Software Inc., a large multi-national software provider.
The research addressed the challenges the company faced in managing releases and organizing
software process improvement (SPI) to help recurrently develop and deliver a specific product,
Secure-on-Request, to its customers and the wider marketplace. The initial problem situation was
characterized by recent acquisition of additional software, complexity of service delivery, new
engineering and product management teams, and low software development process maturity.
Asking how release management can be organized and improved in the context of recurrent
development of software, we draw on Pettigrew’s contextualist inquiry to focus on the ongoing
interaction between the contents, context and process to organize and improve release cycle
practices and outcomes. As a result, the dissertation offers two contributions. Practically, it
contributes to the resolution of the problem situation at Software Inc. Theoretically, it introduces
a new software engineering discipline, release cycle management (RCM), focused on recurrent
delivery of software, including SPI as an integral part, and grounded in the specific experiences
at Software Inc.

x

INTRODUCTION

The costs and time to create customized business systems software are often prohibitive

(Carmel & Becker, 1995; Ncube, Oberndorf, Kark, 2008; Sawyer, 2000; Xu & Brinkkemper,

2007). As a result, the need for packaged business software has grown in recent years (Colomo-

Palacios, Soto-Acosta, García-Peñalvo & García-Crespo, 2012). The common business model of

the producers of software packages is to make one and then sell many copies (Xu &

Brinkkemper, 2007). However, academic literature often lacks clarity in differentiating between

software types, such as commercial off-the-shelf software (COTS), shrink-wrapped software or

commercial software (Xu & Brinkkemper, 2007). By not fully exploring the deeper implications

that emerge from considering that not all software development is the same, there remain gaps in

the research. For example, an important area of packaged software that is not emphasized in

literature is the recurrent nature of its development. Through using the term ‘recurrent’ we mean

that the software is incrementally updated with improvements or new features, so new versions

of the software can be released into the marketplace, ideally to fulfill or exceed the evolving

consumer requirements.

Hence, studies into the recurrent development of software have the potential to explore

new ground by exhibiting the unique aspects of these development processes and examining

ways to improve them. That is the approach taken in the dissertation. Specifically, the

dissertation examines how the recurrent development of software is managed and how the

processes can be improved. The study draws on Xu and Brinkkemper’s (2007) definition of

packaged software as a ready-to-use product that is available to buy off-the-shelf from vendors,

1

2

and requires little in the way of modification. The definition is often used in talking about

upscale enterprise software suites, such as customer relationship management (CRM) systems or

enterprise resource planning (ERP).

Release management has been increasingly studied, within the software literature, mostly

narrowly focusing on release management as separate activities, but also at times focusing

holistically at the entire set of activities involved. Still, there are no studies that focus specifically

on release management in the context of recurrent development of software. Similarly, software

process improvement (SPI) has been studied extensively to drive improvements in software

practices. There are a variety of SPI approaches available, mostly focused on process

improvements as separate activities that support software development through interventions

over time. There are a few studies of SPI as an emergent, integrated activity, but we found no

studies focused on SPI in the specific context of recurrent software development.

Against this backdrop, we conducted a collaborative action research study with Software

Inc., a large multi-national software provider. The study adopts two complementary

perspectives, one grounded in SPI and engineering practices, and the other grounded in service

delivery and customer interactions. This overall research design is described in detail in the

Shared Dissertation Platform Document, Appendix A. Drawing on these complementary

perspectives, through action research, we addressed the challenges the company faced in

managing releases and in organizing SPI to improve the recurrent development and delivery of a

specific product, Secure-on-Request. To factor in considerations to the specific environment at

Software Inc. and to emphasize the particular characteristics of recurrent software development,

we adopted Pettigrew’s contextualist inquiry (Pettigrew, 1987 & 1990) as analytical lens. This

3

theoretical framework has previously been used to support action research into software practices

(Frederiksen & Mathiassen, 2008; Napier et al., 2011), and it helped us organize a systematic

inquiry into the context, content, and process involved in transforming the release management

and process improvement at Software Inc.

On the basis of the above, the research focuses on the following research question: How

can release management be organized and improved in the context of the recurrent development

of software? This dissertation offers two contributions. Practically, it contributes to the resolution

of the problem situation at Software Inc. Theoretically, it introduces a new release paradigm,

release cycle management (RCM), focused on the recurrent delivery of software, including SPI

as an integral part, and, grounded in the specific experiences at Software Inc. This action

research, therefore, adds to the body of knowledge the concept of RCM which will be elaborated

upon and precisely defined during the study. The empirical insights gained from our problem

diagnosis, interventions and learning from Software Inc., are helpful to both practitioners and

academic researchers. Overall, this dissertation relies on the style composition for action research

(Mathiassen et al., 2012) summarized in Table 1. The different elements of this design will be

dissected, described and further elaborated upon in the subsequent sections of the dissertation.

4

Table 1: Research Design Summary (Mathiassen et al., 2012)

P (Problem setting) Improve Software Inc.’s release practices

A (Area of concern) Improving release management cycle in recurrent
development of software

RQ (Research Question) How can you organize and improve release management
in the context of recurrent development of software?

F (Conceptual Framework)

Fi: Pettigrew’s framework (1987 & 1990) for studying
organizational change - emphasizing content, the context,
and the process.
Fa: Models of recurrent development of software and
IDEAL model (McFeeley, 1996)

M (Research Method) Qualitative, action research study

CA (Contribution to A)

1. Improved release management at Software Inc.
2. Empirical contribution to improving RCM in recurrent

development of software
3. A grounded model of RCM in recurrent development

of software

LITERATURE REVIEW

This chapter provides a review of two major streams of scholarly literature. First, the field

of software release is reviewed, after which, the vast body of knowledge on SPI is examined. In

the conclusion of this chapter, the research opportunity is presented.

II.I Software Release Literature

The software release literature introduces a number of related practices. The literature

recognizes specific release related activities, like software release management, which covers

identifying, collecting, packaging, and distributing the components of a software item, such as

executable programs, documentation, release notes, and configuration information (Ballintijn,

2005; Scott & Nisse, 2001). Van Der Hoek, Hall, Heimbigner, & Wolf (1997) defines software

release management as: “The process through which software is made available to and obtained

by the user.” Similarly, the literature covers release planning as the activity of deciding how to

assign releasable product characteristics, such as features and requirements, to a planned

sequence of releases of an evolving software product (Carlshamre, 2002; Regnell & Kuchcinski,

2011; Ruhe & Saliu, 2005; Svahnberg et al., 2010). The literature also highlights a number of

approaches to release time estimation (Gaur & Oberoi, 2012). Related to release estimation, a

number of researchers have attempted to conceptualize software prediction mathematical models

to forecast the software release time (Qian, Yao & Khoshgoftaar, 2010). There are also studies

focused on the technical aspects of release build and configuration management (Mazlan, Sefat,

Selan & Lukose, 2013).
5

6

The specific release activities, like release management, release planning, release

estimation, release build and configuration management have been well studied. Furthermore,

there is an emerging literature that takes a broader, holistic view on software releases. For

example, Taborda establishes an end-to-end release framework which ensures initiatives are

planned and prioritized to streamline IT project portfolio execution and delivery in an enterprise

management context (Taborda, 2012). Similarly, Humble and Farley lay out a detailed, holistic

concept of release pipelines, in their study on improving release management (Humble & Farley,

2010). However, their study is only focused on the technical aspects of software release. While

both these studies are focused on software releases from a holistic perspective, their context is

different from recurrent development of software for the market. Therefore, the traditional

software release literature lacks a unified concept of release that presents how all the moving

parts fit together, including requirements management, development, testing, documentation,

user acceptance and delivery in recurrent software development.

One of the goals of this dissertation is to address this gap in the literature by developing a

holistic perspective of these different viewpoints about release, and assembling a multifaceted

understanding of a recurrent software release, from the point it is first identified and defined as

part of strategic planning, to its ultimate realization as a solution delivering additional benefits.

II.II Software Process Improvement Literature

The SPI literature covers a wide variety of approaches and practices aimed at improving

quality and reliability, employee and customer satisfaction, and return on investment in software

development (Muller et al., 2010). SPI has been adopted by many organizations as a strategy to

7

enhance their capability to deliver quality software (Grady, 1997; Humphrey, 1989; Mathiassen

et al., 2002). Although very successful cases have been reported (Diaz & Sligo, 1997; Haley,

1996; Humphrey et al., 1991; Larsen & Kautz, 1996), there is a critical debate about the

approach (Bach, 1995; Bollinger & McGowan, 1991; Fayad & Laitinen, 1997; Humphrey &

Curtis, 1991) and the feasibility and practicability of SPI initiatives (Bach 1995; Bollinger &

McGowan 1991; Brodman & Johnson 1995; Curtis 1994; Fayad & Laitinen 1997; Herbsleb et al.

1997; Humphrey et al. 1991; Ngwenyama & Nielsen 2003).

SPI projects usually rely on well-known models of software process maturity, such as the

Software Engineering Institute's Capability Maturity Model (CMM) (Paulk et al., 1993) and

Bootstrap (Kuvaja et al., 1994). Critics claim that the models offer an overly rigid and limited

view of software production and overlook the variety and complexities of software producing

organizations (Bollinger & McGowan, 1991; Kohoutek, 1996; Mathiassen & Sorensen, 1996;

Pries-Heje & Baskerville, 1999; Velden et al., 1996; Allison & Merali, 2007). Therefore, there is

a need to investigate alternative or complementary approaches in the SPI field.

An increasing volume of research proposes advice to achieve SPI success. McFeeley

(1996) discusses how to effectively organize learning cycles through the IDEAL model (i.e.

Initiate, Diagnose, Establish, Act, Learn) for SPI. Mashiko and Basili (1997) and Ravichandran

(2000) examine how SPI can benefit from software quality management ideas. Fichman and

Kemerer (1997) discuss organizational barriers towards adoption of software process

innovations. Abrahamsson (2000, 2001) discusses tactics to ensure and manage commitment

from different stakeholders. Nielsen and Nøerbjerg (2001) emphasize social and organizational

issues in SPI. Aaen (2002) suggests engaging software developers more actively in SPI, and

8

Borjesson and Mathiassen (2004) argue that it is important to balance practice pull and process

push, and to spend more resources on deployment.

While these contributions suggest how to achieve SPI success, there are few studies that

focus on the particular challenges and opportunities related to SPI in the context of the recurrent

development of packaged software (Allison & Merali, 2007; Carmel & Becker, 1995;Sawyer,

2000; Xu & Brinkkemper, 2007). As a consequence, there is little known about how to improve

release practices and how to leverage such processes in the wider context of SPI for the recurrent

development of packaged software. Furthermore, there is a need to investigate the emergent

nature of SPI, rather than consider it a deterministic activity. The emergent aspect of SPI would

consider the design and action of the change process as being intertwined and shaped by their

context in the recurrent development of software (Mathiassen, 1998; Truex, Baskerville & Klein,

1999).

In conclusion, the SPI literature has much to offer in terms of improving software quality,

meeting stakeholder expectations and boosting efficiency, but it has not been applied to release

processes in the context of recurrent software. Hence, there is a research opportunity to rethink

release management and its relation to SPI in that context. Against this backdrop, this

dissertation seeks to contribute to the literature of SPI and software release management for the

recurrent development of software. Moreover, our aim is to make the empirical insights gained

from our problem diagnosis, interventions, and learning from Software Inc., helpful to both

practitioners and academic researchers.

ANALYTICAL FRAMEWORK

We adopted Pettigrew’s (1987 & 1990) contextualist inquiry framework to investigate the

changes for improvement in the release cycle processes at Software Inc. Contextualist inquiry is

concerned with understanding how transformation efforts unfold in particular organizational

settings, focusing on the interactions between content, context, and process (see Figure 1).

Content refers to the areas being transformed; in this case we focused on how releases were

managed and on how process improvement could be supportive at Software Inc. Context refers

to the environment in which the organization operates, as well as the systems, processes, and

beliefs within the organization through which ideas for change have to proceed. Focusing here

on release cycle processes, we were particularly interested in how the actors and social support

elements of the context shape, and were shaped by, the process of improving release

management. Finally, process refers to the actions and interactions between various interested

parties as they attempt to transform practices. In our case, we focused on the actions and

interactions related to the improvement in processes through the IDEAL model (McFeeley,

1996) within Software Inc. This dissertation used contextualist inquiry’s core constructs (Table

2) to analyze the problems at Software Inc.

9

10

Figure 1: Contextualist Inquiry Diagram (Pettigrew, 1987)

Next, we will provide a brief account of the contextualist research approach in terms of its

basic concepts, and the ensuing framework for guiding this research. This is necessary, not only

for the sake of completeness of this dissertation, but also because, in a methodologically oriented

work like this, it would be difficult to appreciate the value and validity of our results without

having a basic understanding of the analytical approach used to arrive at them. In essence, the

contextualist approach arises out of a conviction that, to be understood and studied effectively,

organizations must be seen as “embedded” in and interacting with their social, cultural, political

and historical context. The immediate effect of such a dynamic view of organizations is a

profound shift of the researcher’s attention and analysis away from mere “change” to a whole

new kind of contextually driven, dynamic, analysis of the “process” of change in organizations.

11

Table 2: Key Analytical Constructs

Constructs Definition Application

Outer

Context

Outer context refers to the social,

political, economic and competitive

environment in which the firm

operates.

Outer context represented the environment

outside the Secure-on-Request unit. While

inner context was the environment within

the Secure-on-Request unit.

These constructs helped in understanding

key issues and opportunities related to

release activities and process improvement

at Software Inc.

'Why' of Change

Inner

Context

Inner context refers to the structure,

corporate culture, and political context

within the firm though which ideas for

change have to proceed.

Content

Content refers to the particular areas of

transformation under examination.

Release activities and process improvement

of Secure-on-Request at Software Inc.

'What' of Change

Process

The process of change refers to the

actions, reactions and interactions from

the various interested parties as they

seek to move the firm from its present

to its future state.

Improvement process guided by IDEAL

model for transforming release activities

and SPI of Secure-on-Request

 ‘How' of Change

12

 In addition, Pettigrew (1987 & 1990) explicitly draws our attention to the relations or

“interconnections” among the context, content and process concepts. Pettigrew’s following

comments are insightful: “The analytical challenge is to connect up the content, contexts and the

processes of change over time to explain the differential achievement of change objectives.

Perhaps the most critical connection is the way actors in the change process mobilize the

contexts around them and in so doing provide legitimacy for change. Changes in the outer

context can also be mobilized to fashion change …The contexts…are not inert or objective

entities. Just as managers and other actors perceive and construct their own versions of those

contexts, so do they subjectively select their own versions of the environment around them and

seek to reorder the … change agenda to meet perceived challenges and constraints.” (Pettigrew,

McKee & Ferlie, 1988). These comments are enlightening because they clearly emphasize the

need to study the drivers of change (context and process) and their interactions. They also remind

us that the interactions involved need to be studied over a period of time and should examine the

systems’ space-across the organization’s hierarchic levels- looking at subjective as well as

objective aspects.

In terms of concretely applying the contextualist approach, we identified and examined

multiple levels of the context involved, recognized the role of history, the present actors and the

processes in the Secure-on-Request unit. In developing the contextualist analytical framework for

our analysis, we also incorporated the various attributes of the recurrent development of Secure-

on-Request as the ‘content for change,’ and the phases of the IDEAL cycle (McFeeley, 1996) as

the ‘process of change.’ The resulting analytical framework (Table 3) helped us organize a

systematic inquiry into the context, content, and process involved in transforming the release

13

management and process improvement at Software Inc. As such, the analytical framework was

an ideal lens to study the transformation of release activities and the organizing of SPI to help

Software Inc., recurrently develop and deliver Secure-on-Request to its customers and the

market.

Consequently, the analytical framework, shown below, helped us form the concept of

RCM during our interventions at Software Inc. RCM will be elaborated upon and precisely

defined later in the study.

Table 3: Analytical Framework

 Diagnosing Establishing Acting Learning

O
ut

er

C
on

te
xt

 Competitors
Market
Customers
Software Inc. At Large

In
ne

r
C

on
te

xt

People
Technology
Management
Structure
Culture
Politics

C
on

te
nt

Recurrent Product Development
(Business Strategy, Product
Characteristics, Release Frequency)

Release Cycle Process(Development,
Testing, Documentation, Demonstration,
User Acceptance, Delivery)

Release Cycle Management (Planning,
Monitoring, Improving, Communication)

Release Cycle Organization (Roles,
Technologies, Structures)

RESEARCH METHODOLOGY

Action research is a form of collaborative social research (Miles & Huberman, 1994). Our

research at Software Inc., was conducted as an action research study to improve recurrent release

management practices and software development processes for Secure-on-Request software. Our

general research approach was collaborative practice research (CPR), a type of action research in

which methodological pluralism and collaboration between researchers and practitioners is

emphasized (Mathiassen, 2002). Through CPR methodology, we worked towards understanding

the release management and software engineering practices at Software Inc., through

interpretation, and improving the release management area by making interventions (Mathiassen,

2002).

Baskerville and Wood-Harper (1998) note that action research characteristics are

orientated toward the research process rather than merely the outcome of the research. Action

research methods are highly pragmatic in nature (Baskerville & Wood-Harper, 1996). Kurt

Lewin (1952), who is often cited as the originator of action research, believed that knowledge is

originated from problem solving in real-life situations. We believe the real-life problem at

Software Inc., presented in this dissertation is exactly what Baskerville, Wood-Harper and Kurt

Lewin have referred to. Our action research introduced changes to Secure-on-Request’s complex

release management and SPI processes, and observed the effects of these changes at Software

Inc. The social interaction that took place throughout this action research process was important

as it helped to bring about organizational learning and change at Software Inc., to improve

release management and SPI practices. By improving the release management and related

14

15

software processes at Software Inc., a real-life problem-solving situation, we generated

knowledge in the form of empirical insights gained from our problem diagnosis, interventions,

and learning which will help both practitioners and academic researchers. Hence, the outcome is

an increased understanding of the social situation, practical problem solving and an expansion of

scientific knowledge. The essence of this action research, laid in its objectives of advancing both

the software release management and SPI theories in research, as well as facilitating the resulting

organizational change at Software Inc. (Lee, 2003; Mumford, 2001).

Clark observes that: “for convenience it is useful to think of the practitioner as part of a set

of actors who are oriented to solution of practical problems, who are essentially organizational

scientists rather than academic scientists” (Clark, 1972, p. 65 in (Baskerville & Wood-Harper,

1996). As action researchers, we agreed to a set of rules to ensure a collaborative framework for

action with those already working at Software Inc. Shared Dissertation Platform Document

(Appendix A) provides more details on the overall research approach used for this study.

16

IV.I Problem-Solving Cycle

In our problem solving cycle, we collaborated with Software Inc., to support release

management innovation and proceed in a stepwise, iterative fashion, based on the approach

described in the IDEAL model (Figure 2). This model, developed in 1996 by the Carnegie

Mellon University Software Engineering Institute, presents a five-phase (Initiating, Diagnosing,

Establishing, Acting, and Learning) cyclic approach to SPI (McFeeley, 1996). The IDEAL

model can be seen as a specialized version of Susman and Evered’s (1978) classical action

research.

Figure 2: IDEAL Model (McFeeley, 1996)

17

Table 4: Problem Solving Timeline

Cycle Phase Phase Timeline Phase Overview

Initiation
January 5, 2013 –

April 9, 2013

Obtained commitment, set goals and established an

improvement infrastructure

Diagnostic
April 9, 2013 –

June 28, 2013

Assessed current practices; developed and

prioritized recommendations for improvements

Establishment
June 28, 2013 –

July 2, 2013

Created specific, focused improvement initiatives.

Teams were established to deal with each of the

recommended improvement areas from the

diagnostic phases

Acting
 July 2, 2013 –

October 26, 2013

Developed and implemented solutions for each

improvement area.

Learning
October 26, 2013 -

February 28, 2014

Evaluated results of the initiatives. Improvements

data were collected

As the research project was organized according to the IDEAL model (McFeeley, 1996),

this structure is also used in presenting the problem solving cycle (see Table 4). After initiating

the project, we diagnosed existing strengths, weaknesses, and opportunities with respect to

release practices. These insights fed an intervention cycle, focused on establishing improvement

teams to recommend suggested changes, and then acting upon those suggested changes. The

collaboration closed with a learning phase which asked identified stakeholders to reflect upon the

initiative’s impact and the effectiveness of the improvement organization. The Shared

Dissertation Platform Document (Appendix A) contains an overview and more details on the

18

IDEAL model and the problem-solving cycle of this research. Next, we will focus on each phase

in the IDEAL cycle:

1) The initiation phase is the initial step in the IDEAL model (McFeeley, 1996). In this phase,

the Software Inc., senior management understood the need for the SPI, and along with

Georgia State University (GSU) committed to the SPI program. From the release cycle

perspective, we defined the context for SPI during this phase. Getting the Software Inc.,

management commitment and support was vital to bring about release management

innovation in a way that would improve software engineering and management processes for

the Secure-on-Request team. With Software Inc.’s solid management commitment, the study

started on a strong footing. More details on the initiation phase are included in Shared

Dissertation Platform Document (Appendix A).

2) The purpose of the diagnostic phase was to perform the baselining activity to get a picture of

the current strengths and weaknesses in the release management area of Secure-on-Request

within Software Inc. We believe release practices, viewed in a broader perspective, are the

culmination of all the software engineering and management processes that are involved in a

cycle of developing a new version of software. Release management intrinsically depends on

and relates to these processes. Therefore, for our study at Software Inc., it made release

management an obvious choice of area to start driving software engineering and management

process improvement for the recurrent development of Secure-on-Request. During this phase,

we investigated release management from a dual perspective. We focused on the release

management activity itself, and used release practices as a lens to make sense of the Secure-

on-Request recurrent development at large.

19

We reviewed Secure-on-Request's organization structure and responsibilities, and

evaluated baseline information needed against Software Inc.’s business drivers for SPI. We

evaluated baseline information from the viewpoint of key stakeholders. We gathered

information through perception-based as well as practice-based methods (Napier,

Mathiassen, & Johnson, 2009). In the perception-based part of the assessment, we identified

individuals from Software Inc., who are involved in the release process of Secure-on-

Request, as well as internal and external customers. Participants’ viewpoints were analyzed

with a focus on strengths and weaknesses of the release management practices of Secure-on-

Request. For our practice-based assessment, we selected release management principles

identified in the release-management literature (Elephant, 2006; Team, 2006). We then

benchmarked these principles and current release management practices at Software Inc.

Based on the data collected (see Table 13) and observations, the research team assigned

scores to Software Inc.’s release management practices, based on how they compared to the

identified principles. The release management practice assessment and assigned scores are

shown in Table 5 below.

20

Table 5: Release Management Practice-Based Assessment (Pre-intervention)

 Principle Score
1 Define regular, targeted release dates High

2 All deployments performed by a team independent of development
team

High

3 Always have a tested back-out plan Medium

4 Use a mature Software Configuration Management (SCM) process and
tool to support the development of multiple releases in parallel

Medium

5 Test the deployment process at least once before deploying to live Medium
6 Link all release documentation and scripts to your deployment unit Low
7 Construct deployment units as early as possible Low
8 Use an independent team to build all releases Low

9 Automate as much as possible – use integrated tools for configuration,
change management and deployment management

Weak

10 Have a documented Release Policy Weak

We presented the diagnosis and a portfolio of proposed improvements to the steering

committee in June 2013 (Appendix G). As an outcome of the diagnostic phase, eight areas

were identified for improvement, and these were: specifying and stabilizing requirements,

prioritizing requirements across channels, managing technical debt, testing releases,

managing release cycles, maintaining complete service information, communicating releases

across customers and giving customers a voice. All these areas were interrelated and affect

the release management of Secure-on-Request.

This dissertation also utilized the Service Blueprinting technique (Bitner et al., 2008;

Barqawi, 2013). Service blueprinting revealed the complex context of Secure-on-Request in

an easy way. Using service blueprinting for Secure-on-Request, we displayed possible areas

for improvement and assigned the recommended project deliverables (during the

establishment phase) for improvement, as it is illustrated in Figure 3.

21

 Figure 3: Secure-on-Request Service Blueprint at Software Inc.
(Bitner et al., 2008; Barqawi, 2014)

The information gathered in this phase was then used to initiate development of the

strategic action plan that provided guidance and direction to the SPI program. More details

for the diagnostic phase are included in Shared Dissertation Platform Document (Appendix

A).

3) During the establishment phase, the steering committee developed a set of SPI strategic

action plans that provided guidance and direction to the SPI program. These SPI strategic

action plans were critical to provide clear guidance for the various process improvement

actions that would be taken (McFeeley, 1996). The gaps identified during the diagnostic

phase were prioritized, and strategies were developed for improvements, as explained in

greater detail in Shared Dissertation Platform Document (Appendix A).

The SPI strategic action plans were approved by the steering committee in form of

three projects: improvement of customer relations, improvement of requirements and quality,

and improvement of release cycle. As a result, three project teams were formed. The three

22

projects were integrated into the baseline findings and the recommendations during the

diagnosis phase. The project objectives and goals were well-defined. These projects provided

clear engineering and business reasons for conducting the SPI program and were clearly and

measurably linked to the organization’s vision and business plan (McFeeley, 1996). Project

schedules and milestones were determined, as shown in Table 6.

Table 6: Improvement Projects Schedule

Projects Milestones Target Dates
Project Start Date July 2, 2013

Midpoint Project Review August 19, 2013

Implementation Complete October 26, 2013

Lessons Learned February 28, 2014

We know from SPI literature that organizations face problems with the implementation

and deployment of SPI best practices. The majority of these problems belong to “people,

group, team and community culture and behavior” (Dorrenbos & Combelles, 2004). The

three project teams were made of individuals from cross-functional teams with diverse skills,

both in technology and business. We used the broader perspective of the release

management, presented in this action research, to address the problems Dorrenbos and

Combelles have referred. The lens of release management provided the project teams with a

shared understanding of evaluating and driving improvement of the broader engineering and

management processes involved in the recurrent development of Secure-on-Request

software. This approach helped us put a significant emphasis on the people and cross-team

23

collaboration aspects, and, therefore, the results from the projects were communicated easily

at all the levels of the organization (Stelzer & Melis, 1999).

Support from the leadership team and operational preparedness were part of the three

projects’ deliverables committed by Software Inc. (Dyba, 2005; Niazi et al., 2006).

Improvement of Customer Relationship Project

The deliverables and assigned roles of the Improvement of Customer Relationship

project are shown in Table 7.

Table 7: Improvement of Secure-on-Request Customer Relationship Project

The steering committee understood that Secure-on-Request could be prevented from

advancing until a common understanding of its functionality was established between the

Project Roles Project Deliverables

- Project Manager: Release
Manager

- Project Contributors:
Business Owner, Product
Manager, Technical
Account Managers,
Selected External
Customers

- Project Consultants:
Research team

- Project Sponsor: Secure-
on-Request business owner

Enhanced
Service
Usability

- Identify ways to enhance the
usability of Secure-on-Request
website, from the end-user’s
perspective

- Effective and smooth
communication of new features
and releases to customers

Value-Added
Services

- Enhance TAMs team weekly
status report

Capturing
The “Voice”
of The
Customer

- Early Adopters Program
- Customer Advisory Board (CAB)
- Web-based collaborative

customer service software

Measuring
Service
Quality

- Identify measurements that are
related to service quality and
establish a process for reporting
them

24

engineering team and the customers. Therefore, the deliverables of this project were clearly

identified for the engineering team to benefit from it. Secure-on-Request’s engineers must

have a positive, collaborative relationship with their customers to improve the software

engineering processes (Börjesson, Mathiassen, 2004; Mathiassen, Nielsen, & Pries-Heje,

2002). This view supports the broader perspective of release cycle processes presented in this

research. The Secure-on-Request’s engineering team had to develop an understanding from

their customers of how the application they were building was expected to function, when

released. This need for engineers to better understand their customer expectations would

improve engineering practices. This could be accomplished when release processes were

considered as a driver of SPI.

As part of the project of improving the customer relationship, the research team

working with Software Inc.’s key stakeholders recommended enhancing the service usability

for Secure-on-Request customers. The team suggested that focusing on the usability features

of the Secure-on-Request portal would enhance the service quality from the end-user

perspective. Also, improving the release documentation process would result in the smooth

communication of new features and releases to customers, and would consequently improve

release management.

The research team recommended improving the TAMs team’s weekly status report,

which highlighted key information, such as customer concerns and Software Inc.’s

responsiveness to the value-added services. The report was a tool used by management to

deal with customers’ issues, and it could also provide the engineering team with very

important information about Secure-on-Request customers.

25

Capturing the “voice” of the customer was crucial to ensure the Secure-on-Request

product team understood its customers’ expectations. It was also a key for improving the

customer relationship with the Secure-on-Request engineering team. Capturing the “voice” of

the customer enabled the Secure-on-Request engineering team to better understand the

customers’ perspective. The Early Adopters Program was an initiative in which Software

Inc., received feedback from customers about new product features prior to the formal

release. In addition, the web-based customer service collaborative tool was a valuable source

for Secure-on-Request’s engineering team to understand the needs of their customers.

For measuring service quality, the research team proposed that Software Inc., measure

the Secure-on-Request service delivery processes against SaaS-Qual service quality factors

(Benlian, et al., 2011; Barqawi, 2013). The conceptual definitions of the Six SaaS-Qual

factors are shown in Table 8. These measurements will benefit the engineering team by

providing more information about the Secure-on-Request business, which in turn will help to

deliver better value solutions to customers.

26

Table 8: Conceptual Definitions of the Six SaaS-Qual Factors (Benlian, et al., 2011;

Barqawi, 2014)

Factor Conceptual Definition

Rapport

Includes all aspects of an SaaS provider’s ability to provide knowledgeable,

caring, and courteous support (e.g., joint problem solving or aligned working

styles) as well as individualized attention (e.g., support tailored to individual

needs)

Responsiveness

Consists of all aspects of an SaaS provider’s ability to ensure that the availability

and performance of the SaaS-delivered application (e.g., through professional

disaster-recovery planning or load balancing) as well as the responsiveness of

support staff (e.g., 24-7 hotline support availability) is guaranteed

Reliability

Comprises all features of an SaaS vendor’s ability to perform the promised

services in a timely, dependable, and accurate fashion (e.g., providing services at

the promised time, provision of error-free services)

Flexibility

Covers the degrees of freedom customers have to change contractual (e.g.,

cancellation period, payment model) or functional/technical (e.g., scalability,

interoperability, or modularity of the application) aspects in the relationship with

an SaaS vendor

Features

Refers to the degree the key functionalities (e.g., data extraction, reporting, or

configuration features) and design features (e.g., user interface) of an SaaS

application meet the business requirements of a customer

Security

Includes all aspects to ensure that regular (preventive) measures (e.g., regular

security audits, usage of encryption, or antivirus technology) are taken to avoid

unintentional data breaches or corruptions (e.g., through loss, theft, or intrusions)

27

Improve Requirements and Quality Project

The deliverables and assigned roles of the Improve Requirements and Quality project

are shown in Table 9.

Table 9: Improvement of Secure-on-Request Requirements And Quality

Complex software like Secure-on-Request is more prone to defects (Kemerer,

1995). The complexity of Secure-on-Request influenced development defects (Banker,

Slaughter, 2000), and also production defects after the release (Banker, Datar,

Kemerer, Zweig, 1993; Banker, Davis, Slaughter, 1998). Development defects are

Project Roles Project Deliverables

- Project
Manager:
Release
Manager

- Project
Contributors:
Development
Manager,
Product
Managers,
Quality
Assurance (QA)
Managers

- Project
Consultants:
Research team

- Project Sponsor:
Secure-on-
Request business
owner

Requirement
Management
Process

- Visualization of requirements
(wireframes) using software
tools.

- Validation of requirements
through meetings and sessions
and unifying statements of all
stakeholders.

Quality
Improvement
Process

- QA to put together a regression
test plan

- Process to analyze escaped
defects each release

- Scheduled weekly meetings
with Dev to demonstrate new
completed features to QA

- Single point of QA contact for
the development

- Automation – Utilize
performance testing to address
performance business goals

- QA to develop end-to-end
business scenario based testing

28

those discovered prior to release, while production defects are bugs found after the

release (Harter, Kemerer, Slaughter, 2012).

On one hand, scholars like Juran (1959 & 1992), Deming (1992), and Crosby

(1979) have long advocated process improvement as a means to improve quality in

product development. Numerous studies have established a positive relationship

between SPI and software quality (Herbsleb, Zubrow, Goldenson, Hayes, Paulk, 1997;

Krishnan, Kellner, 1999; Li, Rajagopalan, 1998; Ramasubbu, Mithas, Krishnan,

Kemerer, 2008). On the other hand, according to Lahtela & Jantti (2011) a well-defined

release-management process can be pivotal to improving the quality of release

planning, building, testing, and deployment activities. This will likely reduce the

number of problems occurring after delivering the release to customers.

We find support to the argument presented in this research from the above

literature. Quality is strongly tied to SPI and software release practices. Hence, in this

project, using the broader lens of release management as a driver of SPI, we

understood, evaluated and helped to drive improvement of the quality processes

involved in the recurrent development of Secure-on-Request at Software Inc.

To improve the quality of Secure-on-Request, the research team recommended

putting processes in place for:

• Regression testing to ensure that a change for the new release did not introduce

new defects.

• Identifying and addressing common causes of both development and production

defects.

• Holding weekly development demonstrations for the QA team.

29

• Establishing a clear line of communication between development and QA

leaderships.

• Taking advantage of QA automation tools.

• Running end-to-end scenario-based testing, that depicted actual procedures

used by most Secure-on-Request customers.

An accurate understanding of the customers’ requirements was crucial for an

effective release. Poorly understood requirements create uncertainty (Mathiassen et al.

2008). For better requirements management, the team recommended using specialized

software tools for developing visual templates of requirements to help the Secure-on-

Request development team to implement customer requirements. The team proposed

that meetings be held to validate and align requirements coming from different

stakeholders.

Improve Release Cycle Project

The deliverables and assigned roles of the Improve Release Cycle project are

shown in Table 10.

30

Table 10: Improvement of Secure-on-Request Release Cycle Project

Given that Secure-on-Request changes could occur on a continuing basis, one concern

for release management at Software Inc., was determining when to issue a new release. The

severity of the problems addressed by the release, and measurements of the fault densities of

prior releases, affected this decision (Sommerville, 1995). Optimizing the release cycle of

Secure-on-Request would improve the release management practices. The team

recommended changing the release cycle from a 30-day to 60-day release model. This

adjustment to the release model would allow changes to other areas in the release-cycle and

contribute to maturing the software processes. For example, sufficient time would be allotted

Project Roles Project Deliverables
- Project

Manager:
Release
Manager

- Project
Contributors:
Development
Manager,
Product
Manager,
QA Manager

- Project
Consultants:
Research
team

- Project
Sponsor:
Secure-on-
Request
business
owner

- Revised
Release
Model

- Change the release frequency
from 30 days to 60 days. Longer
release cycles would allow for
process improvement.

- Customer
Communicati
on Strategy

- Revised release frequency to be
communicated to customers, and
benefits of these changes to be
explained

31

for implementing the requirement and quality process improvements suggested in the

previous project. The extra duration of the new release cycle would also contribute to the

recommended documentation process changes (as stated earlier) that would subsequently

improve customer communication and eventually make the release more successful. To

improve customer communication during a release cycle, the research team also proposed a

plan for communication to customers, involving product management and Technical Account

Manager (TAM) teams.

The required stakeholders of the three projects agreed on the recommended

improvement approach and execution plan (Appendix A, Table 4.3-2).

As stated above, improving the release model would positively impact all of the

software engineering and management processes in the context of the recurrent development

of Secure-on-Request. This project illustrated the core of the argument presented in this

action research, that from a broad perspective, software release practices can be seen as the

culmination of all the software engineering and management processes involved in one cycle

of developing a new version of Secure-on-Request. In this sense, the release was a unique

and important area that depended on, and was intrinsically related to, the other engineering

and management processes, and as such it would drive their improvement.

4) During the acting phase, the three project teams started developing improvements and

solutions to the process issues approved by Software Inc. The key problems discovered

during the diagnosing phase were prioritized and selected during the establishing phase.

Shared Dissertation Platform Document (Appendix A) has more details and key dates of the

32

acting phase activities at Software Inc. The acting phase ended on October 26, 2013. The

following is an overview of our activities during the acting phase for each project:

Improvement of Customer Relationship

o Enhanced Service Usability:

 To identify ways to enhance the usability of the Secure-on-Request portal,

from the end user’s perspective, the research team worked with the TAM

team to provide a list of requirements that could enhance portal usability.

The list was prioritized and communicated to the product management and

engineering teams. As a result, most of the items on the list were placed on

the product management roadmap.

 Product managers took ownership of coordinating the documentation

process to achieve effective and smooth release communication to

customers. The documentation team and product managers started

working early in the release cycle to review and identify documentation

impact activities.

o Value-Added Services:

 In order to enhance the effectiveness of the TAM team weekly status

report, the research team discussed the summary report with management

and TAMs. A summary section was added to the report, which included

main items for quick review.

o Capturing the Voice of the Customer:

33

 Regarding the early adopters program, introductory meetings between

PMs and customers that were identified as early adopters were completed.

Customers reported positive feedback, and more meetings for discussing

requirements and evaluating features were scheduled.

 The TAM management and the research team worked on the CAB

initiative. Information and sample agendas were discussed, and a list of

customers was identified. A CAB meeting was held in September 2013 at

Software Inc., conference for customers.

 Several demonstrations of the web-based collaborative customer service

tool were carried out by potential vendors. The solutions included live

chat, ticketing, and knowledge-based management systems. A solution

was chosen, and the development team implemented the integration of the

tool within Secure-on-Request website.

o Measuring Service Quality:

 To identify measurements that were related to service quality and to

establish a process for reporting them, the research team discussed service

quality measures with TAM and product management teams. A list of

measurements was recommended for measuring service quality, renewal

rates, expansion (new customers) and open and closed tickets.

Improvement of Requirements and Quality

o Requirement Management Process

34

 To use visualization aids (screenshots, mockups, etc.) for requirements, a

software tool was used by product managers to develop visualizations of

requirements for the development, quality assurance and documentation

teams.

 Requirements validation meetings started with all stakeholders, including

product managers, TAMs, quality assurance, and development teams

during the requirement gathering process. User acceptance criteria for

requirements implementation was also put in place.

o Quality Improvement Process

 Various initiatives were put in place to improve QA related processes. The

QA team put together a regression test plan to ensure that a change for the

new release did not introduce new faults. A process was put together to

analyze escaped defects during a release. Weekly development

demonstration sessions of the completed features were initiated for QA. A

clear line of communication was established between development and

QA leaderships. The QA team started putting together a plan of action to

utilize automation tools. The QA team then started running end-to-end

scenario-based testing, which depicted the actual procedures used by most

Secure-on-Request customers.

Improvement of Release Cycle

o Revised Release Model

35

 The release frequency was changed from 30 days to 60 days. See Figure 4

for the new release model. Longer release cycles allowed for processes

improvement, and consequently this helped to improve the Secure-on-

Request quality. A release model was developed by the release manager

and was agreed upon by all stakeholders. The first Secure-on-Request

release following this model was made on October 19, 2013. Table 11

shows the set of meetings for the new release model.

o Customer Communication Strategy

 The new release frequency was communicated with customers, and the

benefits of these changes were explained by product managers and TAMs.

5) In the learning phase, we reviewed the implemented solutions and evaluated the outcome of

the three improvement projects. Shared Dissertation Platform Document (Appendix A) has

details and key dates of the learning phase activities at Software Inc. Our learning phase

assessments included perception-based as well as practice-based methods (Napier et al.,

2009) with a focus on evaluating the impact on the service-delivery process of Secure-on-

Request. Our goal was to identify changes in each of the three project improvement areas, the

effect on the processes, as well as the challenges that occurred during implementing the

changes, and to make suggestions for improvement. For the practice-based part of the

assessment, we used the norms and practices from release management literature that were

identified in the diagnostic phase (Elephant, 2006; Team, 2006) and compared them to

software release management practices at Software Inc., after the implementation of the

improvement projects. The research team assigned scores based on data collected and

36

observations, and the assessment results were compared against those from the diagnosing

phase. The resulting assessments are summarized in Table 12. An overall assessment of the

improvement projects will be discussed in Chapter VI.

Figure 4: The New Secure-on-Request Release Model

37

Table 11: Reoccurring Meetings for the New Secure-on-Request Release Model

Meeting Purpose Schedule
Stakeholders Meeting Gather and discuss input from key stakeholders for

the requirements of the next release
Thursday of week #7 of previous
release

Sprint Planning Sprint team to negotiate the scope for the release
with the product manager Monday of the Week #1

Product Manager and
Docs Review

A requirements walkthrough by the product
manager, for the documentation lead, engaging the
documentation lead much earlier in the release cycle

Tuesday of week #1

Weekly Development
Team Demonstration

Weekly demonstration by the development team to
product managers, quality assurance and the
documentation teams for the completed new features
during previous week. Week #2 thru Week #5.

Wednesdays of week #2 thru
week #5

Sprint Demonstration
Development team to show the stakeholders the
work they have accomplished for the entire release
cycle

Monday of week #6

TAMs Demonstration Product manager to show TAMs the new set of
features included in the upcoming release Tuesday of week #6

Sprint Retrospective

A session for stakeholders to learn what worked and
what did not work during the previous release cycle
and subsequently make the necessary adjustments for
the next release cycle based on the learnings

First Thursday after the release

Table 12: Release Management Practice-Based Assessment (Post-intervention)

 Principle Score
1 Define regular, targeted release dates High
2 All deployments performed by a team independent of development team High
3 Always have a tested back-out plan High

4 Use a mature Software Configuration Management (SCM) process and
tool to support the development of multiple releases in parallel

Medium

5 Test the deployment process at least once before deploying to live High
6 Link all release documentation and scripts to your deployment unit High
7 Construct deployment units as early as possible High
8 Use an independent team to build all releases High

9 Automate as much as possible – use integrated tools for configuration,
change management and deployment management

Weak

10 Have a documented Release Policy High

38

IV.II Research Cycle

In parallel with the problem-solving cycle, the research unit at Software Inc., concentrated

on adding new knowledge to recurrent development of software, SPI and software release

streams of literature. This cycle was guided by the style composition for action research

developed by Mathiassen, et al. (2012) (Table 1). We reviewed recurrent development of

software, SPI and software release streams of literature, and this dissertation drew upon

Pettigrew’s contextualist inquiry theory(1987 & 1990). The research process was a collaborative

and iterative process, focused on problem diagnosis, change, and reflection (Avison et al., 2001).

Details on how our study satisfied the three methodological characteristics (Baskerville & Wood-

Harper, 1996) and how it deals with the three dilemmas (Rapoport, 1970) are covered in the

Action Research Design section in Shared Dissertation Platform Document (Appendix A). This

document also covers in detail how Canonical Action Research (CAR) principles of action

research were followed during our action study at Software Inc., to ensure rigor in our study.

(Davison et al., 2004).

IV.III Data Collection

We collected rich data from multiple primary and secondary sources (Myers, 2008), all

through our collaborative study. Using the guidelines from Yin, (2008) and Miles and Huberman

(1994), the principle data sources included semi-structured interviews, and problem solving

cycle documentation. We identified key individuals from Software Inc., to be interviewed for our

study. We conducted approximately one-hour face-to-face interviews, as well as phone

interviews. All interviews were conducted in English, and detailed notes were taken. All of the

39

interviews were recorded. During the course of our data collection, we used triangulation (Miles

& Huberman, 1994) to counterbalance any insider bias (Coghian, 2001). Table 13 shows the

primary and secondary data sources we used in our research.

Table 13: Data Sources

Primary Data Sources Secondary Data Sources

Meetings:

- Release Management Meetings
(Weekly)

- Bi-Weekly Scrums
- Release Planning and Demos
- Daily Customer Escalation Calls

Release management documentation tools:

- Rally Dev - Requirements tool
- Bugzilla - Defect Management tool
- Zoho – Customer Relationship

Management tool

Semi-structured interviews:

- Professional Services
- Sales
- Quality Assurance
- Product Management
- Operational Services
- Development
- Business Unit Owner
- Technical Account Management
- Project Management Office
- External Customer

IV.IV Data Analysis

To pursue the contextualist approach, we needed to apply its characteristically content and

process-oriented mode of analysis to the collected data, to see what major issues and problems

emerged vis-à-vis the release cycle processes. Here, we felt a clear need to further operationalize

the contextualist approach, especially its analysis aspects, to devise a practical way of analyzing

40

data to identify specific issues or challenges of possible empirical interest and significance. We

developed a comprehensive coding scheme for this purpose (Appendix E). The overall rationale,

and the general mechanics, of this analysis technique are explained below.

First, Pettigrew’s notion of ‘content,’ as “the what” of change (Table 2 & 3), sensitized us

to look for specific entities that are subject to possible change, as well as the particular nature of

that change. As the principal arena of observable changes of interest, we focused our attention

particularly on the release cycle processes (development; testing; documentation; demonstration;

user acceptance and delivery), release cycle organization (roles, technology and structure) and

release cycle management (planning, monitoring, improving and communicating) activities

within the inner context of the Secure-on-Request unit. Given our interest in more of a planned

future of the Secure-on-Request unit, we looked for both the “reactive change” in response to

environmental (outer context)pressures, and the planned “design change” that may be

intrinsically desirable from Software Inc., and its customers perspective on the Secure-on-

Request unit.

Second, the notion of “process,” as “the How” of change (Table 2 & 3), prompted us to

examine significant “actions, reactions and interactions” of any “actors” in terms of how they

caused or affected any changes in the Secure-on-Request unit. In either case, starting either from

the content end or from the process end, what we were looking for was a “significantly coupled

chain” of actors, their actions, and the changes that they caused or influenced.

We then scanned through the data to see if interesting themes emerged. We focused on

the changes in the Secure-on-Request unit that were expected to be either important or

controversial, and then identified the possible actions and the relevant actors that were likely to

41

impact those changes. In the other direction, we also scanned the entire data (inner and outer

context) for any actors that seemed to reveal a deductive influence, and we critically examined

their possible actions to see if a significant change process could be substantiated.

 A major strength of this approach was its built-in objectivity, enhanced by the logical and

objectively grounded reasoning, which the researcher must follow to systematically trace and

validate a possible chain before declaring it as important.

Furthermore, transcribed interviews and meetings, researchers’ notes, email

communications, and system performance data were reviewed multiple times. This analysis was

completed according to the data analysis procedures proposed by Miles and Huberman (Miles &

Huberman, 1994) for qualitative data analysis. Despite the more abstract nature of qualitative

research (by comparison to quantitative methods), rigorous approaches to data analysis were

developed which provided solid evidentiary support to the conclusions and insights. There were

methods to organize process, analyze and evaluate information from the qualitative data acquired

through well-designed research. Data was analyzed by entering into NVIVO software (Appendix

E). It was then coded and reviewed. The assessment data was further reviewed through the

research framework, as stated in the previous section. Key research themes were coded in the

transcriptions of the interviews and meetings, researchers’ notes, email communications, and

system performance data—all of which were imported to NVIVO (Appendix E). Subsequent to

the coding process, data analysis began. According to Miles and Huberman (Miles & Huberman,

1994), coding is helpful for the interpretation phase. We began coding with an initial list.

However, as the process continued, the initial coding list was enhanced to facilitate sense

making. Fundamentally, the key objective of the data analysis is to address the research

42

question. With that in mind, the data analysis processes in this research were aligned with the

three distinct components, as defined by Miles and Huberman (Miles & Huberman, 1994): data

reduction, followed by data display, and finally conclusion drawing and verification (Figure 5).

IV.IV.i Data Reduction

Data acquired during the research was continuously extracted and filtered through the

analytical lens and the general research themes. As such, Miles and Huberman (Miles &

Huberman, 1994) specifically describe data reduction as, “the process of selecting, focusing,

simplifying, abstracting, and transforming the data that appear in written-up field notes or

transcriptions.” The description of this phase—reduction—says it all. As in other phases, the

analytical lens for the research provided the backdrop so the ‘data reduction’ occurred within a

context rather than autonomously. The coding process sharpened, sorted, focused, discarded, and

organized collected data, which made it relevant to the research question and as a foundation for

the remaining data display, results and discussion sections. Significant portions of the transcribed

interviews and meetings, researchers’ notes, email communications, and system performance

data were marked and reviewed for inclusion in the subsequent analysis and presentation.

43

Figure 5: Data Analysis Activities

IV.IV.ii Data Display

Data display is the second flow of data analysis recommended by Miles and Huberman

(1994). Like data reduction, the processes of creating data displays are an iterative process

occurring throughout, and following, the data collections process. Classification and organization

characterized this phase, where data was displayed through a variety of formats. These

presentations helped us to view the data in a systematic structure that enabled pattern

observations and sense making. The data display phase allowed us to perceive greater insights

that might not have surfaced in the more detached data reduction phase. Data display through

tables, charts, models and matrices (Table 3, 7, 9, 8 & 11; Appendix F) revealed patterns that

helped us to draw conclusions.

IV.IV.iii Conclusion Drawing and Verification

Interwoven with data reduction and data display were the conclusion drawing and

verification processes. Before, during and after the data collection process, we drew conclusions

by noting regularities, patterns, explanations, possible configurations, and propositions from

44

available data. These conclusions were held lightly in the beginning. However, during the course

of this research, through conclusion drawing and verification, sense making and meaning

evolved stronger and stronger through substantiating the insights. Hence, conclusions became

increasingly explicit and grounded throughout the process (Miles & Huberman 1994, p11).

Verification occurred as the data was reviewed through iterations and reflection. The key focus

was to maximize objectivity and develop sound arguments for conclusions. It was important

during this phase to assess inconsistent and contradictory data. Miles and Huberman (Miles &

Huberman, 1994) refer to these as “surprises” and confirm the necessity of “checking the

meaning of outliers” and of “using extreme cases.”

RESULTS

In this chapter, through the empirical results of our study, we describe how Software Inc.

organized and improved release management to help recurrently develop and deliver Secure-on-

Request to its customers. In adherence to Pettigrew’s contextualist approach (1987 & 1990) we

identify aspects of the process, context, and content (Table 2 & 3) for each phase (Diagnostic,

Establishment, Acting and Learning) of the transformation to the Secure-on-Request release

activities and the organization of SPI. (Appendix A, Table 4.0; Table 6).

V.I Diagnostic Phase

V.I.i Process

Going into this phase, it was important to understand how the people in the organization

viewed the Secure-on-Request unit (Appendix A, Table 4.2-2). Such insights would help us to

anticipate challenges and structure our approach to tackle the challenges at Software Inc., and it

would serve as input to tailor release cycle processes later during the IDEAL cycle (Figure 2). If

change was to happen, we had to consider employee’s beliefs, issues and concerns. An important

first step was, therefore, to understand the culture as it existed and how the employees believed it

needed to change.

In the diagnostic phase, we established the foundation for the later phases in the process.

The goal was to understand the current practices and challenges in software release management

within Software Inc. We assessed existing software release practices related to Secure-on-

Request to establish a baseline for interventions (Appendix A, Table 4.2-3). We collected data

45

46

between March 2013 and June 2013 (Appendix A, Table 4.2-1), including twelve semi-

structured interviews, several meetings with Software Inc.’s, stakeholders, and a review of

performance data extracted from the internal tracking systems (Table 13). Our assessment

included perception-based methods from the interviews and meetings with Software Inc.’s

stakeholders. It also included practice based methods in which we looked at performance data

and reported results that were extracted from the tracking systems (Appendix G). We also

reviewed the release management literature to understand relevant industry practices. Hence, for

the practice-based component of the assessment, we selected norms and practices that were

identified in the release-management literature (Elephant, 2006; Team, 2006) and compared

them to current release practices at Software Inc. (Table 5).

In the perception-based part of the assessment, we identified individuals who were

involved in the release process of Secure-on-Request, as well as internal and external customers

(Appendix A, Table 4.2-2). The research team created an interview guide that discussed

objective and subjective information about release management and service delivery related to

Secure-on-Request. The research team met and analyzed the interviews to reflect upon emerging

themes. Participants’ viewpoints were analyzed with a focus on the strengths and weaknesses of

current release management and service delivery practices (Appendix G).

During the course of the study, the steering committee was kept informed of the activities

through weekly status reports and periodic status meetings. The research team documented the

assessment findings in a complete diagnostic report (Appendix G), and a steering committee

meeting was held on June 20, 2013 to present and discuss the findings and overall

47

recommendations. The meeting served to share the insights, it provided important feedback, and

it helped prioritize actions during the establishing phase (Appendix A, Table 4.2-4).

V.I.ii Content

Release cycle processes in the Secure-on-Request engineering and product team were

previously mostly ad hoc and chaotic. Release predictability for schedule, scope and quality was

weak. As a result, the release cycle which occurred every month did not operate in a stable

environment and most of the work was performed informally. Heterogeneous functions and

features that had been added to the software due to its large and diverse customer base made the

code complicated and vulnerable. In addition, monthly releases did not allow enough time for

requirements analysis, testing, documentation and customer communication. For instance, the

release at the time of the diagnoses in March 2013 had several poor quality features. As a result,

the development team spent considerable time after the release fixing defects that had been

mostly reported by customers, this was at the expense of working on the next release cycle.

According to the development manager:

“The volume of development work in each release cycle that goes to fixing defects that
comes out from the previous release is very high, I would say around 25%.”

Due to the short release cycles and the business ambition to release more features to beat

the competition, there would not be enough time left in the release cycle after the development

team had finished building new features. Often, the quality assurance team would get 1-2 days to

test three weeks of development work. This was not enough time. According to the quality

assurance manager:

 “We don’t have enough time between the end of the release and the time we put it out to
get full quality regression tests done.”

48

As a result, the product would be released with poor quality due to minimal testing. This

would cause a surge of customer escalations immediately after the release, which would force

the development team to start fixing bugs from that release. This would trigger a series of

frequent unplanned releases to rectify the quality issues.

The same time constraint, as mentioned above, would also impact documentation issues

during every release cycle, as the product manager noted:

“Release notes and user guide documentations have been a real challenge because we
have monthly release cycles. How can you write documentation if you are actually
writing code the night before the release goes out? It is pretty hard”

The release cycle planning process was also very weak. We discovered that unclear

requirements caused confusion and rework. Requirements prioritization within and between new

features was a major challenge. The product manager recognized the challenge of requirements

prioritization by saying:

“Our maturity and our ability to move forward with the prioritization process isn’t 100%
there, and we all agree that is not what we want it to be in the long term.”

A friendly and comfortable relationship existed between Secure-on-Request’s business

owner and most of the development team members. The business owner had worked with several

of the members for over ten years in a previous organizational setup, and had developed close

acquaintance with them over time. Since the product management and quality assurance teams

were new and still settling in, the close relationship between the development team and the

business owner strongly influenced key decisions during a release cycle. The business owner felt

the product management team was too new to be fully functional. He said:

“The junior product manager has been around for a year now, but she doesn’t know even
as much as the senior product manager and he is new to the organization and the
software.”

49

In the absence of fully functional product management and quality assurance teams, the

long-term product vision and product quality were not always considered in releasing new

features. Due to this dynamic, the development team was more concerned and involved with

day-to-day crises. The business owner was pushing the development team to catch up with the

competition in the market, but much of their time was spent reacting to crises, at the expense of

focusing on the long-term goals, such as building a solid roadmap for the product or developing

a good understanding of the customers’ expectations and needs. The business owner was

"shooting for the moon," while the development team lacked attention to the long-standing

benefits. For the most part, the development team tricked itself into thinking they were being

productive. To a great extent, being busy made them believe they generated good results.

There were no mature tracking mechanisms and defined standards for the release cycle. As

a result, there was a lack of visibility of planned features in a release cycle, among the team

members. In addition, there were no processes in place for assessing processes and improving

them. In short, the release cycle processes were unpredictable and were reacting to, rather than

shaping, the business environment.

V.I.iii Context

Secure-on-Request’s high frequency releases meant new features were often made

available to the customers. However, for some customers the monthly release cycles made it

difficult keeping up with the frequent updates. According to the product manager:

“Frankly, the customers can’t absorb these frequent updates and changes, and in the
process we haven’t been giving the customers enough time to know the service is
changing.”

50

For some customers, the rapid release cycles were a problem because it disrupted the

habits of their users, requiring changes in behavior largely due to major modifications in the

interfaces of the product. The consequential change processes were complicated and at times

costly. For example, in some cases the customers’ IT unit had to test their systems to ensure the

changes in the Secure-on-Request release did not break their internal processes. Sometimes the

IT unit had to redevelop the glue code between the components to make their local systems

connect to Secure-on-Request. In addition, there was very little or no information shared with

customers by the Secure-on-Request product management team about new features and changes

to existing features that would be included in the next release cycle. In most cases, customers

would find out about changes after the release when their local processes were impacted. These

kinds of surprises would make customers very frustrated. The product manager said:

“Customers have said things like: ‘you guys just released all that stuff and we were not
expecting it, we are glad you are doing all that kind of stuff, but we want advance
notice.’”

Also, in the absence of a reliable prerelease communication, customers did not always

understand the added value in a release. The product manager stated:

“Lack of certain usability features is seen as defects by customers, but this is not how we
see it.”

In addition, the Technical Account Managers (TAMs), who were the liaison between the

existing customers and the product team, felt that because of its close relationship with the

business owner, the engineering team was not giving appropriate priority to the issues that the

TAM team identified in the customer feedback. Most of the time, this made TAMs frustrated.

One TAM shared with us:

“Some engineering team members believe that what TAMs do in reality is all academic.”

51

As a result, TAMs were not very engaged in the engineering and product release processes.

When we asked one of the TAMs about the release process, his response was:

“To be honest, I am sitting here trying to think, what is the Secure-on-Request release
process? Maybe that’s one of the weaknesses right there.”

The business owner and some of the other members of the business group believed beating

competitors in the market and winning new customers would bring more revenue to the Secure-

on-Request team than customer retention. However, TAMs, who represented existing customers

at Software Inc., believed customer retention was equally important for success. This difference

in perspective, at times, caused tension in the organization.

Due to his closeness to the business owner, at one point, the development manager

suggested the development team saw TAMs as a distraction, based on the nature of their requests

to his team. It revealed a problematic relationship between the development and TAM teams.

Development manager said:

“The TAMs are actually more of a problem for us.”
In addition, the high release frequency increased the presence of bugs due to weak

engineering processes. This adversely impacted the software quality and reliability which again

negatively affected the customers’ perception of the service.

There was no organizational learning. The success of Secure-on-Request largely depended

on the individual heroism of key team members. The know-how of the software could easily be

lost if an engineer left the company. This made the organization people-dependent. For example,

one engineer shared his view about one of his colleagues:

“He is the guy who has all the knowledge so everybody tends to go to him. However, the
knowledge needs to be distributed.”

52

Although monthly releases helped Software Inc., quickly catch up with competition in the

market, it also contributed to constant deadline pressures. As a result team members worked in a

fast-paced environment, which at times was chaotic because the expectations were high and the

resources were limited. The engineering and product teams worked overtime to achieve results.

This situation made attrition risks very high. The quality assurance manager, like many others in

the team, was stressed due to the chaos around him:

“I am trying to make this work with the environment that we have and it is stressful."
Despite these challenges, trust and support among team members was high. As reflected in

the ‘High’ rating in the release management practice assessment (Table 5), the team members

were technically strong and experienced, and consequently, managed to negotiate quality issues

one way or another. Managers and developers were committed to doing the best job they could

under difficult circumstances.

V.II Establishment Phase

Based on the GSU diagnostic report (Appendix G), the steering committee committed to

continue working with the GSU research team for the next few months to change release

practices in the Secure-on-Request unit (Table 6).

V.II.i Process

In the establishment phase (Appendix A, Table 4.3-1), we prioritized the issues that

Software Inc., would address (Appendix A, Table 4.3-2), and we developed strategies for

reaching solutions. We completed the detailed process improvement plan, based on the agreed

strategy, and designed plans to execute it (Table 6, 7, & 9). The suggested improvement strategy

53

was implemented through three dedicated project teams with clearly identified deliverables and

timelines. The steering committee members agreed to form three teams to work on three

improvement projects: customer relations, software quality, and release cycle. The steering

committee approved the overall plans for the improvements identified in the diagnostic phase.

V.II.ii Content

Thanks to the diagnosing phase (Appendix A, Table 4.2-3 & Table 4.2-4) we saw an

improvement in the stakeholders’ awareness, during the establishing phase. They were aware of

the benefits of building a reliable release cycle (Appendix F), and they desired to become more

disciplined in the software processes. The stakeholders now had a much better understanding of

benefits, such as an improvement of productivity, time efficiency, product quality, customer

satisfaction and increasing staff morale by better managing the Secure-on-Request release cycles.

Through the three improvement projects the steering committee members decided to

increase the length of release cycles to sixty days (Appendix A, Table 4.3-2). This change would

provide the much needed time for key activities, such as detailed requirements analysis, quality

assurance, documentation and prerelease customer communication. This change also relaxed the

development team members. According to a development engineer:

“This longer cycle will give us more time to develop better functionality in the core
capability of the product and give us better focus.”

The change would involve the quality assurance team early in the release cycle to support

development of test cases based on requirements. The new release model would strengthen

collaboration between functional teams about requirements, test cases, test results, and defect

correction (Table 9).

54

To finalize requirements for the October 2013 release cycle, steering committee members

decided key stakeholders would share their input for requirements with the product manager in a

standing meeting that would be held three weeks before the start of the new release cycle (Table

11). During the same meeting, the requirements would be prioritized mainly through consensus.

However, in case of disagreement, the product manager and business owner would make the

final decisions. After this step, requirements would be explicated and effectively shared across

development, quality assurance and documentation teams. It was also decided that the product

manager would, if needed, approve any changes to requirements in the middle of a release cycle.

Furthermore, steering committee members agreed to make use of wireframes—a common

practice to ensure effective communication between technical and business teams.

It was further decided that for better communication, development team would hold

weekly demonstration sessions of the newly developed features for key stakeholders (Table 11).

The weekly demonstrations would stress the importance of executable software as proof of

progress. Each weekly demonstration would verify the system architecture, adherence to

requirements and stakeholder needs, as well as the software quality. In addition, it would

emphasize real progress during the release cycle by producing demonstrable results. It would

give stakeholders visibility into the real progress, not the perceived and subjective view of

progress. This would be possible because a working version of the system would be available for

inspection each week during the development cycle, emphasizing an important concept. By

practicing incremental development, the teams would stay focused on results.

The other key area of focus during this phase was emphasis on some key roles. The

diagnosing phase had revealed that roles for TAMs, quality assurance engineers and product

55

managers needed to change to better manage the Secure-on-Request release cycle. Therefore, the

process improvement projects focused on ways to make these roles stronger. Through their

established relationships with customers, TAMs could play a more effective role to grow

business with existing customers by working closely with the product management and

engineering teams to provide improved solutions. In this regard, TAMs who believed there was a

greater potential for generating more revenue from the existing customers needed to get support

from the business owner (Table 7). The quality assurance team was still very new and needed to

establish a strong presence with the rest of the functional teams to improve the much needed

quality of the product (Table 9). Finally, the product managers could improve the requirements

management practices to help the engineering team deliver better solutions. For example, the

business owner thought the engineering team could benefit a great deal through the use of visuals

like screenshots during requirements specification, especially for more complex requirements:

 “In detailing our requirements, there should always be a picture or a screenshot
(wireframe) of what it should look like if it is a customer-facing interface, so there will be
no confusion.”

V.II.iii Context

After the diagnosing phase, stakeholders started to believe in building a more relaxed

culture, which would provide the necessary focus and stimulus to the engineering team to

continuously improve software processes during release cycles. The steering committee was

committed to improve the chaotic culture in the engineering team. The product manager shared

with us his thoughts on the existing culture:

“A lot of our guys are cowboys, cowboy developers, consultants who just want to figure
out a way to hack it together and make it work. We want to resist doing it this way and
fall off the wagon. I mean okay, we need this functionality, but we have to follow the

56

process. We need to put the requirements for it in our internal tracking tools first and
then look at it there with other requirements and do it the right way.”

As a result, the improvement program was gathering more social support in the

organization. The business owner had involved more people in the strategic planning. This

helped create the suggested improvement strategy and carried it forward in a collaborative

manner. The social commitment to the action research study showed a willingness to break the

traditions and consider alternative ways of thinking. The steering committee members were open

to direction, criticism, and new ways of thinking.

However, as we will share ahead, organizational politics and some resistance for change

would prevent Software Inc., from easily realizing the SPI benefits. The biggest challenge was

the close relationship which existed between the business owner and the development manager.

For example, it was very common for them to bypass the regular flow of communication related

to a routine release issue, thus keeping other important product functional groups like TAMs,

quality assurance and product management out of the loop. This would later result in surprises.

The quality assurance manager pointed to some of these dynamics:

“The development manager is trying to please everyone (implying business owner). I
think this is probably putting his team under tremendous pressure. Although he is a hard
worker, everybody are hard workers, we cannot release high-quality products under this
pressure. And, we can’t keep this crisis management for the next six months. We have to
do something about it.”

Related to the above, the development manager said:

“Volume workwise, I would say 60% of requests to my team come through the front door
and 40% come through the backdoor.”

Much of the “backdoor” requests to the development team came from the business owner

due to his closeness with the development team. The business owner agreed that he gets involved

in low-level details in the product changes:

57

“I am pretty intimately involved in the details of the product. I have been in the market
since 2004, so it has been quite a while, and I know the product very well. I know the
competitors.”

This interplay between the business owner and the development team was setting a major

tone in the organizational politics of the group.

V.III Acting Phase

The acting phase began in July 2013 with the kickoff meetings of the three improvement projects

(Appendix A, Table 4.4; Table 6).

V.III.i Process

In the acting phase, the GSU research team focused on the improvement projects to

address the areas for improvement identified during the diagnosing phase (Appendix A, Table

4.3-1 & Table 4.3-2). The strategy and prioritization, as well as deliverables, were agreed upon

in the establishment phase. The research team and steering committee members held a kickoff

meeting for each improvement project. At the kickoff meetings, the teams were given a set of

objectives and deliverables. The teams were provided with draft project plans along with

expected delivery dates (Appendix B). Numerous meetings were held between research team

members and improvement teams to work on the deliverables and assess progress. An interim

status meeting for the steering committee was held on August 19, 2013, where a status update on

the three projects was presented and progress was discussed. The project team members provided

deliverables for review by October 19, 2013. This phase was closed on October 26 2013 a week

after the first 60-day release went live.

58

V.III.ii Content

The execution of the improvement projects was started during this phase (Appendix A,

Table 4.3-2). The new release cycle (Appendix F) helped achieve better product quality, as it

engaged the quality assurance team to work early, gathering important information during design

and development. This meant that the tests were more proficient, had better coverage, and

resulted in fewer builds. The development manager was happy with the progress seen in the

quality assurance team:

 “I think we did a very good job, and you can tell that the quality did get improved. I
mean we did do the regression test through some of that stuff and a lot of that made a
real difference with the customers. I think even [business owner name] said that he didn’t
have a big issue with defects this time.”

Similarly, the business owner, who had always been critical of the product quality, had this

to say:

 “We are getting a lot better at QA.”
Weekly demonstrations conducted by the development team provided an early preview to

the stakeholders of the new features as they were being developed, and it also provided an

opportunity for the development team to receive early feedback (Table 11). The development

manager felt the weekly demonstration was helping:

“I think they have been very helpful and the fact that I wasn’t here last week is testament
to how helpful they are, because it irritated people that I wasn’t at the demo last week.
You really don’t know how important these things are until you miss one and people are
irritated, so I can only say that the weekly demos are extremely help to QA and other
stakeholders.”

Product management provided wireframes to the engineering team, for bigger features,

which not only allowed for a clearer way to communicate the working of the new features, but

59

also provided a way for the product manager to develop a more informed and profound thinking

process while the new feature was still being designed. According to the business owner:

“Improvements in the requirements management area made a huge difference. The
wireframes help us stabilize and know what we are getting beforehand. A great example
was a requirement that we did, we all thought we knew what we wanted. We wireframed
it out, and when we had it in at the UAT, we realized it is not what we wanted. It wasn’t
fault of QA and it wasn’t fault of development. It is just when you start clicking around it
gets too confusing, and thankfully we could fix it before the release.”

As discussed, the product manager found the screenshots useful too:

 “We are using wireframes as a rule in place, to provide more visual examples. So where
possible, provide visuals, even above user stories. This is also about sharing of
understanding of requirements. It’s not only a question of getting them specified, but to
reasonably specify them so the programmers and testers, and for that matter everyone,
understand the same thing. So a picture is better than words.”

A requirements walkthrough by the product manager, for the documentation lead, engaged

the documentation lead much earlier in the release cycle (Table 11). This change helped in three

ways. Firstly, it made the product manager the center point of contact for the requirements,

which was what stakeholders wanted to see. Secondly, it detached the development team and the

documentation lead to a greater extent, which helped the development team to focus on the

development tasks. And finally, the product manager and documentation lead contact ensured

that the documentation was slanted more towards the customers’ perspective. The development

manager was happy with this setup, and he saw value in it:

“It would bring the escalations down because a lot of them (customer escalations) are
about how the system works”

Furthermore, the new release model (Appendix F) allowed holding retrospective meetings

after each release, which provided a feedback mechanism to apply valuable learnings from the

previous release cycle to the next. The business owner expressed his appreciation of the

retrospective meetings:

60

“I think one of the most valuable things that we have done during the improvement
program, is holding the retrospective sessions that we have started after each release. It
focuses on what worked and what did not work during the release, and we just did one,
for example, one of the problems that we have is, who makes the release go/no-go
decision? It used to be my decision, and then we said no we need to push this; the
product manager needs to make a decision, so we changed this a little bit. That kind of a
change is always going to happen, because we evolve.”

Moreover, TAMs, who kept their fingers on the pulse of customers (Appendix C) and try

to cater to their needs on regular basis, suggested important product improvements to

engineering, which the engineering team incorporated. By listening, learning, and responding to

customers through TAMs, this interaction strengthened the engineering team's understanding of

the customers’ needs and expectations, which contributed to a successful release in October 2013

(Table 7). One of the new features incorporated into the release, based on TAM’s input, was the

ability for the customers to open support tickets and chat with an expert in the event of an issue.

This feature was implemented under the customer self-service model, where the idea was that

customers could be more self-sufficient in support release issues, and in the process, allow

TAMs to focus on other priorities. According to the business owner:

“These features freed up 15% of TAMs time. It allowed them to be more strategic with
the customers, so they are not just supporting people. TAMs should spend less time on
individuals working on the other systems and spend more time trying to make customers
trying to increase the utilization of the service.”

The product manager was happy to see these new features implemented by the engineering

team, despite challenges:

“It’s not perfect, but now customers can create tickets, they can use chat, all that stuff
that we wanted to do is there in one full scoop. So I think we exceeded the expectations.”

One of the TAMs was thrilled to see a feature which he championed with the product

manager and the engineering team:

61

“One of the biggest improvements that we have done is trying to capture all the data that
is necessary on the scan form in the portal, and now there is no floating data. It will help
build customer profiles to introduce more intelligence in future. I think we did a very
good job with that. I would give it is a 9 out of 10.”

A significant observation during this phase was the mutual reinforcement of the three

improvement projects (Appendix A, Table 4.3-2), where the activities of one project supported

the deliverables of the other two projects. For example, the new release model (Appendix F)

provided a fitting framework for the key deliverables of the other two projects. The requirements

management and the quality improvement deliverables seamlessly corresponded with the new

release model (Table 9). As an example, the new release model allowed the quality assurance

team the additional time to introduce regression testing during the release cycle. Introducing

regression testing was one of the key deliverables of the quality improvement project. Similarly,

in accordance with the new release model, product managers could now start working on the

requirements for the next release cycle much earlier. This helped the deliverables of the

requirements improvement project, due to the additional time built into the new release model to

account for the release readiness activities. Some of the deliverables for the customer

improvement projects were also facilitated by the new release model, such as improving the

customer prerelease communication by informing them of upcoming new features to customers

three weeks before the release date (Table 7).

In addition, the synergies from the three improvement projects also helped instill a culture

of continuous process improvement in the engineering team. For example, the engineering team

felt that having a separate environment would allow a preview of new features to key business

stakeholders, like TAMs, earlier in the release cycle, and hence, this would provide them with

valuable feedback. Having early feedback during the release cycle was critical for a smooth

62

release, as it would significantly reduce the element of surprise to the business when the new

version of the product was made available to customers. In addition, such a dedicated

environment for “user acceptance testing” would provide a more stable platform for feedback,

since a shared environment with other engineering teams could result in availability issues due to

simultaneous engineering activities, which could disrupt business stakeholders during their

preview activities. The development manager was delighted and relieved with this new setup:

“This release cycle has helped us in managing expectations with the business that has
eased things tremendously, like in that previous release cycle, the business had different
expectations and then the release day came and they were like what was this feature
doing here, because they hadn’t seen the new version earlier. Now we definitely solved
that problem with the UAT environment and getting this out to the business a little bit
sooner, the communication to the business is much better, and I do think this time we are
on the same page with the business, mentally. We have ended things a little bit early now
and giving stakeholders the visibility to the product earlier, which had a great impact to
the business.”

The quality assurance lead had his own reasons to feel relieved with the new environment:

Due to the UAT environment, valuable feedback came from the product managers and
the TAMs. Especially that the TAMs were able to jump in and do testing in the UAT
environment. I mean, the TAMs were there constantly working on it, so it gave me a little
feeling of comfort that my team wasn’t the only pair of eyes to test it. And it made the
live-chat feature one of the quietest features to be tested because they spent a long time
working on it.”

Another process innovation instance was seen when the engineering team started tracking,

and providing visibility about the final release activities. This was made possible by circulating

the status of the release checklist to all stakeholders (Appendix D). This communication helped

tie together all the teams involved in the release cycle and allowed a consolidated focus on the

final release cycle activities. The business owner saw value in the release checklist:

“One of the things that we have done a good job of, is putting a defined schedule together
for every release. So putting like a graph with a time limit that says here are all the

63

things that are going to happen, and we update it and send it out and it says get JAD
done, get XYZ done, and get security testing done.”

The quality assurance lead found this release checklist very beneficial too:

“I really like the release checklist with status as we near the release date. By sending
everyone email showing when we are reaching specific goals, it is very helpful for me
because this way I find which steps are affecting QA.”

Everyone was happy working with the new release model (Appendix F) as it allowed more

time for requirement analysis, testing, documentation and customer communication. Below are

some related quotes:

“I like the 60 day cycles. It allows us to take bigger changes at once. We don’t have to
break up our changes into releasable components. I think if you get more than two
months, you start to run into problems in that you have big giant branches that you can
put back together. Two months seems like you are doing decent size work but you are not
going crazy.” - Development Engineer
“Going for two month cycles has been huge. It helped us get rid of a lot of chaos. I think
it has made a major improvement on the quality of life of the staff because you know you
can’t run forever. Going into a fast walk, and going into a two month release is much
easier for them.” – Business Owner
“The move to sixty days proved to be a great one in my opinion.” – Product manager
“I am really happy with going to the 60 day release cycle.” – Quality assurance lead

There were a few instances where passive change resistance was observed. One area of

such a resistance was seen while improving the requirements management practices (Table 9), an

area led by the product manager. The GSU research team sensed her passive resistance when she

started missing her deadlines for the same deliverables multiple times. Specifically, her

deliverables were to provide screenshots of the new features to the engineering team. These new

features were included in the next release. It was not until the GSU research team interceded to

provide her support in overcoming her resistance before she provided her deliverables. As a

result, it caused a delay of a few weeks in her deliverables. The improvement changes required

the product manager to come out of her comfort zone, as it required her driving the requirements

64

management tasks more actively with members of the engineering team and various people in

business operations side. She had associated this change with the loss of her existing comfort

zone, her skillset, and her prestige within the organization. She did not resist the change itself, so

much as she resisted the uncertainties, fear and discomforts associated with it. However, once the

GSU research team provided her support in delivering the requirements, it addressed her fear of

the unknown.

Another area of resistance was observed when a stronger role of the TAMs started to

emerge as a result of the improvement projects. Their role had strengthened because the key

stakeholders realized the need to retain the existing software customers happy in order to

continue to grow business with them (Table 7). Part of this realization stemmed from the

requirement to place greater importance on incorporating the feedback from existing customers

during the development of new product features (Appendix C). This made the input from the

TAMs key in the development process. The shift to give more attention to the TAMs did not

align favorably with business managers who wanted to focus on winning new customers. The

business owner felt that the TAM's priorities would conflict with other business initiatives, since

both required engineering resources. The business owner told us:

“In one of the releases TAMs were screaming because they wanted something, and I
came in and say you don’t need it.”

However, TAMs successfully backed their claims with strong data that showed there is a

serious revenue upside in selling more services to existing customers. This helped some of the

skeptical business managers to understand the business value behind the claims the TAMs were

making, and they started to come to terms with TAM's stronger role, which focused on doing

more business with existing customers. Below, is what the business owner shared with us at a

65

much later point, which showed how much Software Inc., benefited from the TAM's efforts to

keep their customers happy in order to earn more business with them:

“We also get customers that we know are one-time customers, and they are like we want
to buy single assessment I got an audit, I am not going to come back. We had several of
these customers that had basically a 3 million dollar contract with us, but we didn’t know
if we will be renewing with them, but they went from 3 million to 11 million just to
expand their coverage.”

V.III.iii Context

The mutual reinforcements from the three projects (Appendix A, Table 4.3-2) created a

powerful thrust in moving the change (improving the release cycle processes) forward with

significant force, like a powerful river flowing directly to open sea, letting nothing block its path.

For example, it was getting difficult for the business owner and development teams to sustain

their close interaction, as it would negatively interfere with the deliverables of the improvement

projects, and personally, it would look embarrassingly awkward for them. In the new emerging

reality, the release cycle actions were required to move forward through a formalized channel,

respecting the roles of the functional teams. As a result, we saw a swift change in the team

culture. The culture was now more relaxed.

Also during this phase, smoother relationships started to develop between various actors

(Appendix A, Table 4.2-2). The development manager, who during the diagnosing phase saw

little value from the product manager, had a changed perspective:

“The product manager’s ownership of the requirements is pushing forward, and he has
been very helpful. He has been running to us with these requirements, and he started
pushing these requirements, and he is going to do more work… I do believe that the
product manager is the one to count on to be the source of requirements and not those
fifty sources for requirements, I think the right relationship is there now, and I do believe
that he is someone that I can start to count on to be my source of requirements… I mean

66

we are starting to build up a little bit of trust there…I think he is starting to produce
better documents for us to follow and it will make a difference.”

Similarly, the quality assurance lead was happier with his team’s relationships with the

development team:

“I am happy with all that development has done in terms of getting better and better. The
development manager is making good attempts in making good communications. We are
having meetings outside of the regular ‘QA-Dev’ meetings if issues come up.”

The Secure-on-Request business was expanding, both in terms of new customers and

revenue. During this phase, Secure-on-Request closed the biggest single deal in terms of money

with an existing customer. In addition, there were also many more significant deals being made.

As a result, the Secure-on-Request business was exceeding expectations in terms of revenue.

This new wave of success of the Secure-on-Request software was largely due to customers

seeing value in the product. Mostly, this value came in the form of the recent features added and

changes made to the product by the engineering team, with guidance from product management

team. As a result, the continued business success of Secure-on-Request was energizing the

engineering team by making them feel that they were directly contributing to the success. This

was creating an overall environment of pride and a spirit of, “let’s do even better.” The product

manager attributed part of this success to the engineering by saying:

“Well, I think we’re as well-positioned as anyone in the industry, from a competitive
perspective. I think part of it is our growth. We don’t win every deal, but we beat our
numbers revenue-wise, we won some very big deals, and in part because of our ability to
turn pretty quickly on features and functions and requirements, and I think that a lot of
folks feels that we’re pretty nimble. I mean one customer said, ‘I’ve been asking for this
thing from your competitor for a year and you guys did it in, you know, two months.’”

67

V.IV Learning Phase

The learning phase began in October 2013 and ended in February 2014, when the initial

GSU and Software Inc., collaboration ended (Appendix A, Table 4.5). During this phase,

Software Inc., started to focus mostly on practicing software processes that the company had

developed over the previous phases.

V.IV.i Process

Even though there was a distinct learning phase, through the IDEAL model (McFeeley,

1996), learning also happened during the whole research collaboration period. After the

collaboration period, we evaluated the whole process and reviewed the proposed solutions, as

well as the impacts of the three improvement projects (Appendix A, Table 4.3-2). We also

carried out the practice-based assessment and reviewed performance data extracted from

Software Inc.’s internal tracking systems. After reviewing the results and assessing the strategies

that we used for the process improvement project, we interviewed several employees about the

impact of the initiatives (Appendix A, Table 4.2-2). Having successfully introduced a number of

improvements in the release cycle (Appendix A, Table 4.2-4), the team validated and analyzed

what had been done. The GSU research team, the steering committee and the three improvement

project teams (Appendix A, Table 4.3-2) had worked well together and had achieved initial

success. The team effort had a reinforcing effect on establishing more effective release cycle

processes.

68

V.IV.ii Content

There had been a positive impact on all aspects of the process as a result of the

undertaking. Almost all of the targeted areas for improvements were successfully achieved. The

biggest achievement was the transition to the 60-day release model (Appendix F). This model

provided the Secure-on-Request functional teams a foundation to successfully manage the

release cycle activities. Better software was being produced as defects were reduced (Figure 6)

and tracked back to the source, allowing effective, preventive action to be taken to avoid

reoccurrence.

Figure 6: Secure-on-Request new and fixed defects trends

It was determined that the effort had been an overall success, which led to improvements to

the release cycle processes, as reflected in the October 2013 release, which was the first to

benefit from the interventions. The product manager reflected on the October release:

“We just had the first release of it. We don’t know yet what the full impact is, but it’s
been quiet. Quietness is goodness, typically, in this space. Because we released all these
capabilities in October and we had nothing blow up. No one’s calling saying, ‘This is
not working, we need help!...’ Overall, we’ve achieved improvements in communication
between the teams. I think we achieved improvement in overall quality across the board.
We’ve got better defined requirements. We’ve stuck more rigidly to the schedules. And

69

then I think we did a better job on managing requirements and trying to provide a little
more granularity with respect to the release plans."

The business owner, reflecting on his thoughts about the final outcome of the improvement

projects, stated:

“I am thrilled in terms of achievements. We have achieved five times more than I thought
we would achieve. I think the outcome has been extremely positive, you know. I don’t
know about anything that we didn’t achieve, and I didn’t think we wouldn’t achieve, so I
don’t know about anything that we missed during the process.”

The quality assurance lead was excited about the overall outcome:

“Overall, I keep my expectations lower around here, but I was kind of surprise that some
of the things ended up working out very well. I mean, in general I am happy. So in my
expectation I kept them low, but I am pleasantly surprised.”

Some of the improvements started in the October 2013 release would require more time to

be further optimized during future release cycles, as those improvement areas are closely related

to the cultural aspects of the team members. According to the product manager:

“There’s still the kind of interactions that happen outside the process that we’re trying to
work on where we ask ‘why do we do that?’ ‘Well, so-and- so called me, and we needed
to go do it.’ This still happens to some degree, but I think that overall it’s improved a lot.
And we need to keep improving it by holding each other accountable.”

The only area of improvement which could not be satisfactory met was the introduction of

automated testing, due to organizational priority issues (Appendix A, Table 4.2-4). However, the

team did plan to follow up on this improvement during the future release cycles.

V.IV.iii Context

In general, the people we interviewed considered the improvement program very

successful. One common theme was a heavy emphasis on the continuous process improvement

going forward. There was a commitment to an organizational culture of continuous awareness,

responsiveness to feedback, and openness to improvement. When the Secure-on-Request team

70

knew how to improve, then they would improve. During the improvement program, we made

changes, observed effects, and started to digest the change. Now, Software Inc., needed to turn

this pattern into a habit. If they did, they would hit a plateau from which they could absorb more

feedback and identify new opportunities. This is how the project manager reflected on it:

“My biggest concern is we slip back into bad habits. It’s still hard. We’ve still got to
keep doing it. It’s hard to keep it going. It’s like that huge wheel, that rock that grinds
the wheat, you’ve got to keep pushing that thing because it doesn’t just keep spinning.
We implemented four or five major improvements, but that’s not the pinnacle of where
you want to be, and so, as we move forward, we have to keep getting crisper on our
timeframes, on our requirements, on our release plans, and so on.”

On a similar note the business owner reflected:

"Now it’s not perfect. We can still continue to improve that. Make sure we don’t fall off
the wagon. So it’s like, you know, alcoholics are still alcoholics, they have to make sure
they stay on the wagon."

Another important area for learning was the engineering team’s ability to strike a delicate

balance between working on product features, which was tied to business revenue, and working

on improving the product maturity by being focused on improving the technical architecture of

the software. This balance played a key role towards the outcome of the improvement projects.

The general tendency from the engineering teams is to be more biased towards doing more

technical changes, which creates some level of tension with the business teams. However,

according to the business owner:

“There is no pressure from the development manager to do that. I think he understands
that business revenues are more important sometimes, so he gets a person to balance it,
but he also knows how to scream if there is like, ‘Hey we are getting into a problem
here,’ so I don’t feel like we have a problem balancing.”

The business owner was a very powerful person in the organization. His leadership style

would heavily influence on the organizational culture. When asked about his personal learnings

from the improvement program, his response was:

71

"One of the personal learnings is that we have to take more time to stop and think how
we are doing things. We need to stop and say, great let’s think about the next 45 days
because that is like our next focus, and think about the last quarter and about what we
wanted to achieve in it and we didn’t achieve, and next quarter what you want to achieve
and how you want to achieve."

One process improvement specialist, the author, is still employed full-time by the

company, as the process improvement specialist. Moving forward this role will be focused on

driving the continuous processes improvements in the organization, as referred to above, to build

on the improvement work started in this research collaboration.

In conclusion, the findings in this chapter revealed how Software Inc. adopted the release

cycle management (RCM) approach that organized and improved release processes to help

recurrently develop and deliver Secure-on-Request to its customers. The RCM approach

provided a holistic view of the Secure-on-Request release, focusing on how all the moving parts

fitted together in effectively managing the release cycle, and how it provided a basis of

continuous SPI at Software Inc. This chapter presented an important basis to thoroughly

understand RCM. As a result, RCM at Software Inc. made a compelling case in managing

releases, as well as providing an efficient approach for SPI in recurrent software development.

The concept of RCM will be further elaborated upon and precisely defined in the next chapter.

DISCUSSION

As discussed earlier, a review of the literature found no studies that empirically examined

the implementation of SPI into software release processes in the recurrent development of

software. Moreover, we found an emerging literature that looks at the release processes with a

holistic perspective. However, there is no literature with such a viewpoint of release processes in

the recurrent development of software. In an effort to address these gaps, the action research at

Software Inc., drew upon Pettigrew’s contextualist inquiry (1987 & 1990) and uses the IDEAL

cycle (McFeeley, 1996) for improvement. The research explored the holistic concept of software

release, focusing on how all the moving parts fit together to effectively manage a release cycle,

and how the new release concept can provide a basis of continuous SPI in the recurrent

development of software. In the following pages, we discuss organization and improvement of

RCM at Software Inc., and the subsequent contributions to theory based on a grounded model of

RCM in recurrent software development.

VI.I Improving Release Cycle Management at Software Inc.

VI.I.i Release Cycle Management

By applying the concept of RCM, we helped Software Inc. take an approach that focused

on release as a common thread running through strategic planning, execution, delivery and

operations processes, each of which aimed to manage the success of the release by imposing

governance over its evolution (Tarboda, 2012). Therefore, as the release transitioned through a

series of states in a cycle (Appendix F), the successive release milestones became shared goals

that brought together the different perspectives of managers, developers, testers, TAMs, and end
72

73

users (Appendix A, Table 4.2-2). This approach seamlessly linked the entire array of software

engineering processes, synthesizing and capturing the essence of the release in a manner that was

relevant and appropriate to the stakeholders during a release cycle (Table 11). Creating highly

cohesive and integrated processes proved to be the key to smoothly move forward the software

delivery to their customers (Table 7).

VI.I.ii Problem Solving

Before our research and intervention at Software Inc., monthly releases did not allow

enough time for requirements analysis, testing, documentation and customer communication

(Appendix A, Table 4.2-3). Now, the new release model (Appendix F) has allowed the required

time for these activities. Another problem that we encountered was that requirements were

unclear, causing confusion and additional work (Table 9). Requirements prioritization within and

between new features were a major challenge. Now, requirement prioritization takes place

through a structured process involving a series of meetings between product manager and

stakeholders (Table 11). Mockups, feature design meetings and weekly demonstration sessions

are also now conducted by the development team to ensure requirements specification processes

are effective (Appendix A, Table 4.2-4). Previously, the product would be released with poor

quality due to minimal testing, causing a surge of customer escalations immediately after the

release. Now, more time is available for quality assurance activities to run software testing.

Furthermore, moving the user acceptance milestone to an earlier time period in the release cycle,

allowed stakeholders to access the software well in advance before the formal release date

(Appendix F). It also allowed stakeholders to provide more timely feedback about the software

quality to the engineering team. Before our interventions, documentation was a real challenge

74

(Appendix A, Table 4.2-3). During the monthly release cycles, the development team was

writing new code until very late for the documentation to be completed in a timely fashion.

Under the new model, the documentation activity is started early in the release cycle, and the

documentation team now works directly with the product manager through requirements. This

new arrangement allows feature development and documentation processes to be carried out in

parallel, whereas, they were previously conducted sequentially. Before our interventions, the

product management team did not have a good understanding of the customers’ expectations and

needs. Now, due to the creation of a customer advisory board (Appendix C), the product

management team has a better understanding of customers’ expectations and needs (Table 7).

Finally, in the old release model, the software code was still being changed very late in the cycle.

As a result, the final release content was often unknown until the very end. Therefore, the

customers could not be communicated to, well in advance, about the content of the new release.

Now, due to the introduction of the feature-freeze milestone in the release cycle (Appendix F),

the content of the outgoing release is known well in advance of the release date, allowing timely

communication to customers, listing the features to be included in the new version of the

software.

VI.I.iii Continuous Improvement

Our post-implementation interview laid the foundation for continuous improvement by

revealing that our interventions set the groundwork for the Secure-on-Request team to achieve

future collective accomplishments (Table 12; Appendix A, Table 4.2-2). The Secure-on-Request

team has learned how to use rudimentary tools for sustaining change. Although the GSU

research team has handed over the baton to have the team at Software Inc. carry it forward for

75

the next lap, sustaining the positive results of the interventions is their next challenge.

Furthermore, the managers want to establish RCM KPIs for three levels of monitoring and

reporting: executive, manager, and operations. Finally, learnings stimulated by the interventions

are still emerging, and it is not well defined how new RCM practices (Appendix F) are

identified, presented, and diffused across the organization. As the product manager stated: “I

think you have to work harder at it (sustaining the change) earlier on. So, you probably know

after two or three cycles that it becomes a second nature. But if you start to take it (change for

improvement) for granted, it will become lax.”

VI.I.iv Software Quality

Figure 6 provides relevant indicators of quality for Secure-on-Request releases since April

2013. The spike of new defects opened during the October 2013 release cycle (the first release

made after closing of the IDEAL cycle (McFeeley, 1996) at Software Inc.) reflects that the

longer release model (Appendix F) provided a more open situation for the quality assurance team

to report new defects and acknowledge development’s fixing of those defects during a cycle.

Furthermore, over time fewer and fewer new defects were reported which indicated stabilization

of the software. This is represented by the declining trend in the number of new defects opened

(Figure 6) since the October 2013 release. In addition, we also see from the figure that the

development team consistently fixed a significant portion of all reported defects during each

release cycle after the interventions. As a result, it contributed to significantly improving the

quality of Secure-on-Request, a view also confirmed by different stakeholders in their post-

intervention interviews.

76

VI.I.v Stakeholder Assessment

To learn how the new RCM was perceived at Software Inc., we conducted post

implementation interviews (Appendix A, Table 4.2-2). The interviews revealed that the new

requirement practice was effective (Table 9), quality was improving (Figure 6), the new release

cycle (Appendix F) made the chaotic culture more relaxed, customers believed the product team

met their request for new features with agility (Appendix C), the engineering team was doing a

great job balancing technical debt and working on the new features in the software. Engaging the

documentation team earlier in the release was helping to effectively capture software information

about the new features in the release, and, the quality and timeliness of prerelease

communication to the customers was also improving (Table 7).

VI.II Release Cycle Management in Recurrent Software Development

Our study contributes to the existing body of knowledge by providing new insights into the

area of recurrent software development, software release practices and SPI. Specifically, the

study adopted an analytical lens based on Pettigrew’s contextualist inquiry (1987 & 1990) to

explore how RCM can be organized to facilitate SPI in the recurrent development of software.

The literature has been focused on software release as an isolated activity (Ballintijn, 2005;

Carlshamre, 2002; Gaur & Oberoi, 2012; Mazlan, Sefat, Selan & Lukose, 2013; Qian, Yao &

Khoshgoftaar, 2010; Regnell & Kuchcinski, 2011; Ruhe & Saliu, 2005; Scott & Nisse, 2001;

Svahnberg et al., 2010; Van Der Hoek, Hall, Heimbigner, & Wolf, 1997). This dissertation

focuses on release practices in recurrent software development as a common thread, running

77

through the stages of strategic planning, execution, delivery and operations, with the aim of

managing the success of a release and imposing governance over its evolution.

Furthermore, software releases in recurrent development represent a continuous process of

planning, monitoring, improving and communicating of software engineering activities within

and between target releases. RCM provides a powerful way to identify and apply the required

changes to development and management activities to improve the software. SPI normative

models are often criticized for the inflexibility of their pre-defined actions and their underlying

deterministic assumptions about implementation (Allison & Merali, 2007; Bollinger &

McGowan, 1991; Kohoutek, 1996; Mathiassen & Sorensen, 1996; Pries-Heje & Baskerville,

1999; Velden et al., 1996). To address these concerns, the challenge is to understand change

driven by SPI, not as a predictable or designed causal outcome, but as an emergent process

developed from the relationship between people and their context (Allison & Merali, 2007). An

emergent view of SPI helps to understand the way the actions intertwine to inform each other

and how they are shaped by their context. While the literature recognizes the emergent nature of

software development practice (Mathiassen, 1998; Truex, Baskerville & Klein, 1999), the

dynamics of emergence is under-explored (Allison & Merali, 2007). This dissertation contributes

to the literature by using a contextualist lens to elucidate the dynamics of emergence by

integrating SPI into RCM.

Based on an analysis of our collaboration with Software Inc., our study adds to existing

knowledge by extending our current understanding of release cycle processes in recurrent

development environments. As explained below, our study focuses on the role of RCM in

realizing SPI in such environments.

78

First, we offer new insights into the contextual characteristics of recurrent software

development literature (Carmel & Becker, 1995; Colomo-Palacios, Soto-Acosta, García-Peñalvo

& García-Crespo, 2012; Ncube, Oberndorf, Kark, 2008; Sawyer, 2000; Xu & Brinkkemper,

2007). By referring to a contextualist perspective (Pettigrew, 1985, 1987), this action research

investigated the challenges around the recurrent development of Secure-on-Request by focusing

on how releases of such software are managed and on how process improvement can be

supportive. In the process, our study revealed how the articulations between the different

contextual elements continually unfolded and built up again through the complex interplay

between actors in the Secure-on-Request unit.

The contextual challenges from within the Secure-on-Request unit (inner context

challenges), included recent acquisition of additional software, complexity of service delivery,

new engineering and product management teams, low software development process maturity.

Outer contextual challenges included the commercial pressure that shaped their RCM processes.

In the midst of these challenges, through our action research, we saw that the software processes

at Software Inc., were enacted through a constant process of negotiation between the engineers,

TAMs, and the managers. The research provided rich insights into how the different

competencies, characteristics and experiences of the software team shaped their actions for

improvement and how those actions reinforced and altered the context at all levels. Hence, the

interplay between the “content” and the “context” in this action research added rich insights to

the literature by focusing on how the Secure-on-Request release was managed and on how

process improvement supported it.

79

Second, based on the analyses of our collaboration with Software Inc., our study adds to

our current understanding of release by focusing on how all the moving parts in recurrent

development of software fit together. The holistic view of the release is discussed in the literature

(Humble & Farley, 2010; Taborda, 2012). Expanding on this research, our study applies the

holistic perspective of the release within recurrent software development. We combined a

contextualist inquiry framework (Pettigrew, 1985, 1987) and an IDEAL cycle approach

(McFeeley, 1996) to closely analyze how the holistic view of release at Software Inc., helped

improve their software processes.

We saw at Software Inc., that it was the significance of the delivery milestone that

provided the impetus to understand how the release came into being. As the release went through

different states, our contextualist (Pettigrew, 1987 & 1990) inquiry helped us to understand how

the successive release milestones became shared goals that brought together the different

perspectives of managers, developers, testers, and TAMs. This shift in release perspective, in

turn, benefited both the Secure-on-Request unit and its customers.

Third, software RCM is a continuous process of planning, monitoring, improving and

communicating software engineering activities between the target releases. SPI literature

acknowledges that the activities of developing and delivering software and improving the related

processes, are not mutually exclusive, even though they are normally considered as separate

(Allison & Merali, 2007). Our study adds to existing research by explicating how well-organized

RCM can provide powerful means to identify and apply changes for improvement to the

development and management activities, in order to recurrently deliver software to existing

customers and the market.

80

At Software Inc., when someone saw a clear purpose in introducing a new technique, for

example the building of a dedicated user acceptance testing (UAT) environment for stakeholders,

or revising a current method, for example the documentation lead started working directly with

the product manager instead of the development manager, they were prepared to apply their own

resources and the team’s resources to its introduction. Hence, improvements occurred through

the ongoing practice and improvisations of the practitioners as they identified and sought to solve

perceived problems, or as they found and shaped an external solution to solve a problem

previously identified. Therefore, RCM can naturally blend with SPI, forming a very powerful

phenomenon to continuously focus on developing software and improving the relevant

processes.

Finally, we offer a conceptual understanding of RCM and how it unfolds over time (Figure

7). In a setting of recurrent development (Carmel & Becker, 1995; Colomo-Palacios, Soto-

Acosta, García-Peñalvo & García-Crespo, 2012; Ncube, Oberndorf, Kark, 2008; Sawyer, 2000;

Xu & Brinkkemper, 2007), because of its repetitive occurrence, a release ceases to be a

milestone and instead takes on more of a process focus. The interpretation of a release as a

process that guides the development of a work-in-progress creates a new awareness of the release

as a relevant management construct across the entire product life cycle (Taborda, 2012). This

makes the conventional release management a more regular activity, requiring its own processes

associated with the continual incremental delivery of evolving software. Based on this notion,

this dissertation contributes to literature by developing a new release paradigm in the recurrent

development of software called release cycle management (RCM), which can be defined as:

81

Software release cycle management is a continuous process of planning, monitoring,

improving and communicating of software engineering activities and its organization, within and

between the target releases, where release priorities need constant adjustment based on the

learnings in the cycle and changing business strategies.

Figure 7: Conceptual Representation of Release Cycle Management (RCM) in

Recurrent Software Development

Between target release cycles, RCM also provides a strong basis for incremental

improvements in software processes, which are continuous, concerted and cumulative.

In conclusion, our analyses suggests that our Pettigrew’s contextualist inquiry (1987 &

1990) offered a powerful approach, to clarify the software improvement process in a recurrent

software development environment, and also to expand knowledge as it relates to RCM.

VI.III A Grounded Model of Release Cycle Management

The emerging research on release management highlights a new trend within software

engineering. In a first study, Louis Taborda (2012) presents a new paradigm for software releases

for evolving businesses. He refers to this paradigm as enterprise release management (ERM).

82

Through this paradigm, he takes a holistic view of change that offers a synthesis of traditional

management approaches, including project and change management, enterprise architecture, and

development practices like configuration and release management. His study establishes an end-

to-end release framework that ensures initiatives are planned and prioritized to streamline

portfolio execution and delivery. Benefits of this release-centric approach include reduced

execution and operational risk, improved demand management and optimized release

throughput. Taborda’s study offers a fresh enterprise perspective that addresses strategic change

and the release life cycle, providing managers with the tools they need to chart and track the

course of their business.

Similarly, in a second study, Jez Humble and David Farley (2010) lay out a detailed

concept of release pipelines, in a holistic sense, in their study on improving release management.

Through their concept of pipelines, they present a pattern that can be implemented to model an

end-to-end path to the release of software. They summarize this pipeline as: "in essence, an

automated implementation of your application’s build, deploy, test, and release processes."

Hence, this emerging line of research provides valuable insights by recognizing release as the

common thread running through strategic planning, execution, delivery and operations, where

each process aims to manage the success of the release and impose governance over its

evolution.

In contrast, this study provides insights into how RCM allows software practitioners to

integrate a number of familiar software engineering management disciplines into a holistic view

in a recurrent software development setting. The richness of the release concept across the

recurrent software product development is at the heart of RCM that taps the concept’s emerging

83

relevance to management. It is the goal of RCM to attempt a unification of different viewpoints

about release and to assemble a multifaceted understanding of the release from the point that it is

first identified and defined, as part of strategic planning, to its ultimate realization as a solution

that delivers the promised benefits.

Accordingly, our study advances the discussion of SPI by revealing how RCM can be used

as a vehicle to achieve continuous process improvements in the recurrent development of

software. Considering the importance of the contextual factors, we adopted Pettigrew’s

contextualist inquiry (1987 & 1990) as an analytical perspective to make sense of the rich data

from Software Inc., during the problem solving cycle. As a result, we developed a detailed

account of how software engineering practices were improved by focusing on the RCM

processes. Pettigrew’s contextualist inquiry (1987 & 1990) provided insights into how various

engineering practices were improved by focusing on the RCM processes. Specifically,

Pettigrew’s contextualist approach (1987 & 1990) helped us to identify the contextual factors

playing out during the improvement projects at Software Inc. This theoretically informed

analysis revealed the underlying approaches, tensions and intricacies involved at the various

stages of the improvement phases.

Based on the empirical account presented in this dissertation, we offer a grounded process

model of how the RCM processes were organized and improved at Software Inc., (Figure 8 &

Table 14). This model reveals how software RCM is a continuous process of planning,

monitoring, improving and communicating software engineering activities, within and between

target releases. Based on the learnings gained in changes to both the cycle and the business

84

strategy, priorities need constant adjustment, as software RCM creates a continuous and

cumulative process of incremental improvement.

Below we provide brief details of the roles involved in this model:

1) Business Executive: This role sponsors the recurrent releases. The person in this role

looks for releases to deliver business value and expects to avoid frustrating delays that

impede the progress of the business strategies.

2) Product Manager: This role collects and analyzes requirements to flesh out the software

strategy and drive the solution design. This role is responsible for aligning business and

technology strategies and identifying alternative solutions, while ensuring business and

technology impacts are understood across the increasingly complex and interdependent

contexts.

3) Operations Staff: These roles are responsible for maintaining smooth operations in a

software engineering unit by providing the necessary support functions to the core roles

of software engineering.

4) Engineer: This role applies the principles of engineering to the design, development,

maintenance, testing, and evaluation of the software.

5) Manager: This role applies the technological problem-solving skills of engineering,

combined with the organizational, administrative, and planning abilities of management

in order to deliver partially or completely recurrent releases from conception to

completion.

85

6) Business Operations Staff: These roles interface with the engineering software unit from

Outside Context with business operational perspectives for the software to be successful

in market.

7) Customer: This role purchases the software (or the services derived from the software)

and/or is the user of the software (or the services derived from the software).

8) In addition to the above roles, through the argument presented in this dissertation, a new

role in a recurrent development of software unit emerges, which we will refer to as the

Release Cycle Manager. Traditional software engineering units have roles like project

managers and dedicated roles for SPI. The Release Cycle Manager role can substitute

these roles in recurrent development. When recurrent releases are seen from the broader

perspective, as argued in this dissertation, a single role needs to lead and oversee the

improvement processes. Such a role can be the orchestrator of the release cycle

processes. In short, this role is the go-to person. As a project has a definite start and end

date, unlike the recurrent development of software, a traditional project manager role will

not be suitable to manage such releases. Hence, the more effective role of the Release

Cycle Manager emerges.

In retrospect, based on the empirical accounts of our analysis and previous literature, our

grounded model presents software development as being conducted in a recurrent fashion, where

the same product or service is continuously being developed as a consequence of updates and

feedback from customers, defects in the previous release cycle(s), market factors, new

customer demands and other technical and non-technical requirements. The model focuses on

how releases of such software are managed and how SPI is an emergent and integrated activity in

86

such a setting. The contextualist perspective in the model takes into account the sensitivity to the

environment and helps highlight the particular characteristics of recurrent software. Therefore,

the model has a built-in systematic inquiry into the context (outside context and inside context),

content (recurrent development of software), and process (SPI as an integral part of RCM),

which optimizes the RCM and the process improvement in the recurrent development of

software.

87

Table 14: A Grounded Model of Release Cycle Management (RCM) in Recurrent Software

Development

Entities Sub- entities Description
Application
from Software
Inc.

Roles Involved

SPI
- Improvement Goals
- Improvement Organization

(formal, informal)

A continuous process
to improve software
development by
leveraging the ongoing
recurrent development
processes

RCM (also)
acting as SPI

- Managers
- Engineers
- Business Executives
- Customers
- Release Cycle Manager

Context

Outside
Context

- Social
- Political
- Economical
- Competitive
Environment

The inside and outside
environment in which
the software unit
operates

Environment
around
Secure-on-
Request unit

- Managers
- Engineers
- Business Executives
- Support Staff
- Customers
- Operations Staff
- Release Cycle Manager

Inside
Context

- Structure
- Corporate Culture
- Political Context
- People

Recurrent
Development

- Release Activities
(Requirements, DEV, QA,
Documentation,
Demonstrations, User
Acceptance, Delivery)

- Release Management
(Planning, Monitoring,
Adaptation,
Communication)

- Release Organization (Roles,
Technology, Structure)

- Release Frequency
- Engineering Services

The same unit
recurrently produces
incremental versions
for the market

Software
engineering
and
management
processes in
Secure-on-
Request unit

- Managers
- Engineers
- Business Executives
- Operations Staff
- Release Cycle Manager

Software
Solution

- Software Characteristics
- Business Strategy
- Support Activities

A software-intensive
arrangement satisfying
the specific needs of a
particular market
segment

Secure-on-
Request

- Business Executives
- Business Operations
Staff
- Customers
- Release Cycle Manager

88

Figure 8: A Grounded Model of Release Cycle Management (RCM) in Recurrent Software

Development

In the conclusion, we will elaborate on some methodological observations about the model

as a whole, in terms of its significance and value for further research. Firstly, given the wide

variation of the entities within the model, we expect that different researchers will find it useful

in different ways, depending on their research questions and research objectives. Secondly, we

should note that once we adopt the overall contextualist perspective, the entities within the model

emerge easily, based simply on our familiarity. Finally, while the ultimate value of this research

approach lies in what the analyses tell us regarding the value of RCM in the recurrent

development of software, we must not forget that the model in Figure 8 and Table 14 represents

a valuable result, from the use of the contextualist approach.

89

We believe our research is unique and is a valuable contribution, in particular, as we were

unable to identify any other major efforts within the existing software literature that attempt to

create a comprehensive model of RCM in the recurrent development of software.

CONCLUSION

Drawing upon Pettigrew’s contextualist inquiry (1987 & 1990) through an action research

at Software Inc., we addressed the challenges the company faced in managing releases and

organizing SPI to help recurrently develop and deliver a specific product, Secure-on-Request.

The study has brought to light a number of interesting insights to theory:

1) We offer detailed insights into the specific characteristics of recurrent software

development.

2) We suggest RCM as a comprehensive framework for understanding and managing

recurrent software development.

3) We demonstrate how SPI may be integrated into RCM to support recurrent software

development.

4) We offer a conceptual understanding of RCM and how it unfolds over time.

5) We provide a grounded model of RCM by focusing on how releases of such software

are managed and how process improvement can be supportive, through a

contextualist approach.

As a testament to the robustness of our action study and the approach we used,

stakeholders at Software Inc. have reported that our intervention directly resulted in

improvements to the release cycle processes. The resulting insights may have significant

implications for both academics and practitioners alike.

There are, however, important limitations of the proposed approach. Most importantly, the

research was carried out within one particular organization, Software Inc. Therefore, before

90

91

adopting the contextual approach suggested in this study, software managers should carefully

consider the conditions that shaped our investigations. If these conditions are considerably

different in their own organization, managers should consider alternative approaches. If

sufficiently similar conditions exist, we encourage them to adapt the proposed approach. This

requires careful consideration of the specific software engineering practices they intend to

improve. We have not suggested a procedure to be followed. Rather, we have outlined how the

content, context, and process of implementing RCM may be approached, supported by concepts

and frameworks from the literature and lessons from Software Inc. Hence, effective adoption of

this contextual approach requires appreciation of the specific history of the software engineering

processes and careful examination of the experiences, skills, and other resources available to

improve its benefits. Accordingly, we propose the following lessons for managers:

Lesson 1: Organize the initial assessment to improve existing software engineering

practices based on the IDEAL framework (McFeeley, 1996). The IDEAL-based process allowed

us to be flexible and adapt to emerging issues and events at Software Inc. It helped us to gain a

rich understanding of software engineering practices through triangulation of data from different

sources and analyses. Finally, the IDEAL framework’s (McFeeley, 1996) focus on diagnoses,

learning and active involvement of key stakeholders helped us understand the problems at

Software Inc., rather than promoting solutions based on general models of best practices. In this

way, we relied extensively on stakeholders within the organization, and our contextual inquiry

was, in this sense, problem-based rather than model-based.

Lesson 2: View release holistically. At Software Inc. a release-centric approach helped us

capture the essence of the release in a manner that was relevant and appropriate to the

92

stakeholders across the recurrent software development cycle. For example, the conventional

focus of the release on the sharp end of delivery was changed to place greater emphasis on the

early stages of a release life cycle. Instead of simply managing the technical integrity of the final

solution, release management increasingly encompassed earlier phases, such as release planning,

where requirements were prioritized and assigned to current and future planned releases. For this

reason, we suggest recurrent development of software units to seriously consider benefiting from

the role of the Release Cycle Manager who can oversee all of the activities in the suggested

unified fashion during a release cycle under the same umbrella.

Lesson 3: Design improvement through planned and adaptive change. The process of

improvement needed to account for reactive, reflective changes when the processes were to be

improved, not just extemporized. We promoted sustainable development of the processes by

integrating the experiences of the developers, their learning through action, and also through the

sharing of that learning experience. The learning processes that informed the SPI activity were

ongoing, not simply delivered via training. It was when a need was clearly answered, often

serendipitously, within a training event that it was incorporated into the practice. Changes in the

process-in-use at Software Inc., were seen to occur through different forms of innovation.

Finding a way to facilitate this level of inventiveness within the software process is an important

lesson learned from this study.

Lesson 4: Linking SPI to business objectives. The interventions at Software Inc., were not

coupled with the business objectives. Indirectly the objectives were taken into account through

the software management team’s awareness of the business priorities. However, to have

identified specific business goals, for instance, to reduce the cost of reuse, would have enabled

93

the tasks to be better aligned to these goals, and the benefits of the SPI project would have been

evident to the steering committee. At Software Inc., the sales continued to grow, and their market

leadership was strengthened. To support this market-oriented perspective, we needed to develop

an agile approach to SPI through RCM so that the process improvement reflects the needs of the

given context. An agile approach to SPI would be responsive and flexible to local needs, and it

would encourage innovation in the process, build SPI innovation around those who are

motivated, encourage self-organizing competent teams, and promote sustainable development of

the processes.

Lesson 5: Ensure commitment and active participation on all levels of software

management. The strong commitment and active participation of the business owner was

instrumental during this process. Also, his engagement helped our collaborative relationships to

managers, engineers, and TAMs. These relationships at Software Inc., played a major role in

identifying new software engineering approaches and in implementing the new program as an

integral part of the management and organizational context.

SPI has been well researched, but perceived challenges persist. In terms of further research,

our study demonstrates a fresh understanding of process improvement through RCM. From this

theoretical perspective, it is anticipated that a more agile and blended view of SPI with day-to-

day software engineering processes is required if organizations are to leverage the emergent

nature of the process improvement activity. Continued efforts could validate and further develop

the proposed contextual approach to improve software engineering processes through RCM in

settings that are different from the one at Software Inc., for example, in smaller software

94

organizations or software organizations that are have been in existence for a longer period of

time.

By combining the real-world experience of those involved at every process of recurrent

software release with academic concepts and frameworks, this study has closely followed the

principles of “engaged scholarship.” As Van de Ven (2007. p.9) states, engaged scholarship is:

“a participative form of research for obtaining the different perspectives of key stakeholders

(researchers, users, clients, sponsors, and practitioners) in studying complex problems.” A

singular sphere of knowledge alone, from within a software development organization would not

have provided the required depth of knowledge to effectively examine the release cycle

processes in the Secure-on-Request unit at Software Inc., and to recommend solutions. Through a

commitment to an engaged scholarship model, this comprehensive study across every process,

from conception to final delivery, has provided the deep, multi-dimensional knowledge needed

to provide a unique understanding of the problems and solutions in recurrent software release

cycles.

APPENDIX A: SHARED PLATFORM DOCUMENT

Improving Processes and Services in a Software Unit: An Action

Research Study into Release Cycle Management

Neda Barqawi and Kamran Syed

J. Mack Robinson College of Business
Georgia State University

96

A1.0 PROBLEM SETTING

As part of its corporate business strategy, Software Inc. has decided to develop

and reposition its on-line security testing solution, Secure-on-Request. This Software-as-

a-Service (SaaS) application enables an organization to test the security of its software

quickly, accurately, affordably, and without installing additional software. This action

research investigated the challenges around the recurrent release management and the

continuous service delivery functions of Secure-on-Request at Software Inc. The release

management team of the application faces four significant problems: (1) the recent

acquisition of the software; (2) the complexity of service delivery; (3) a new engineering

and product management team; and (4) software engineering process immaturity.

A1.1 Recently Acquired Software

Software Inc. inherited Secure-on-Request through a recent acquisition. The

company plans to develop and reposition this SaaS to realize its full potential. There were

issues with Secure-on-Request stemming from before the acquisition: the original design

needed rethinking, parts of the system were difficult to use, and the system’s use of

resources was less than optimal. Overall, the software is complicated, and its components

need better alignment and consistency. As a result, the SaaS is somewhat fragile and until

recently, the engineering team would not modify its core. Instead, they built everything

around it for new functionality, and consequently the advancement of Secure-on-Request

has been severely limited.

97

This innovation challenge is a predicament for the production group. The group is

facing difficult to manage technology at a time when Software Inc. faces serious

challenges from startup companies that threaten its market position with new, innovative

technology. In this situation, Software Inc. needs to find ways to respond to customer

needs and market demands as quickly as its smaller competitors. The company’s best

option is to adopt more agile approaches and business technology systems that respond

nimbly to both changing market conditions and competitive challenges.

“Security testing as a service is a way for enterprises to reduce upfront costs and

to augment limited internal resources when undertaking a software security program.

This technology area is growing and will have a significant impact on the application

security market over the next 12-18 months.” — Joseph Feiman, Ph.D., Research Vice

President and Gartner Fellow

A1.2 Complexity of Service Delivery

Secure-on-Demand is a complex, SaaS-based security-testing solution. Each

customer application submitted for security analysis is unique. A team of experts

conducts a thorough audit of each application for security vulnerabilities and provides a

comprehensive and accurate analysis. This service tests a variety of technologies (21

different development languages) for back-end, web, mobile or cloud-based applications.

It encompasses the testing of thousands of applications, security expert teams located on

98

four continents, services provided to sixteen diverse industries including civilian and

defense agencies, and companies of various sizes.

A1.3 New Engineering and Product Management Team

Due to the repositioning of Secure-on-Request, Software Inc. has formed several

new teams to support the recurrent release of the software. These teams, each with a

specific function, include engineering development, quality assurance, product

management, program management, and infrastructure operations. These functional

teams are heterogeneous with unique skills and knowledge. Across these teams, there are

disparities in commitment due to competing priorities. In this complex organizational set-

up, the newly formed teams face two critical issues: establishing appropriate

collaboration patterns and effective processes, and developing the capability to

recurrently release new versions of the SaaS to market.

A1.4 Low Software Engineering Process Maturity

Processes for recurrent release-management and related activities are mostly ad

hoc. On the whole, software development is performed informally without proper

documentation. As a result, the release-management function does not operate in a

repeatable fashion. Due to this less than optimal software-development lifecycle maturity,

the release-management team must work overtime to meet set deadlines and customer

expectations. There are some mature tracking mechanisms and defined standards in

99

place. However, quality issues are mainly addressed by individual team members that are

technically strong and experienced. As a result, the degree of predictability in schedule,

budget, scope and quality is not high and the success of a release depends upon the

heroism of a few key team members. Moreover, because there are no effective

mechanisms for organizational learning, the know-how of the software can easily be lost

if an engineer leaves the company.

A1.5 Actors

The key functional leaders associated with this challenging situation include the

head of the program management office, the development manager, the product manager

and the business owner of the services provided by the application. Each of these people

faces different but overlapping problems.

The head of the program management office is frustrated by the low visibility,

weak predictability, and inefficient processes in delivering quality software to the market.

He believes that these problems make it difficult to quickly and flexibly respond to

problems and address the needs of end-users. Fluctuating and conflicting requirements is

a problem for the development manager. The business owner of the service delivery of

the software application is unhappy with the quality and the speed at which solutions are

being delivered. The product manager feels he is sucked into day-to-day issues due to

weak engineering processes which do not allow him sufficient time to focus on customer

needs. Together, these players seek intervention to improve this problematic situation.

100

Toward this end, we agreed to conduct an action research study with the above-

mentioned individuals as collaborators.

We consider release management a good starting point for intervention to

improve Software Inc.’s capabilities related to Secure-on-Request. Release management

is the nub at which all of the above-described functions meet. The release-management

area oversees end-to-end software engineering functions including requirement gathering,

planning, designing, developing, testing, and coordinating deployment activities in the

Software Development Lifecycle (SDLC). Looking at release management from the

perspective of the product management and engineering teams provided a rich, internal

picture emphasizing software engineering and management. At the same time, looking at

the release-management function from a customer-perspective provided an external,

service-oriented view. Hence, release management served as a platform for addressing

the observed portfolio of problems, and drove improvements both in software process

improvement and service innovation.

101

A2.0 RELEASE CYCLE MANAGEMENT

Software release management is defined as “the process through which software

is made available to and obtained by the user” (A. Van Der Hoek, Hall, Heimbigner, &

Wolf, 1997). It includes the typically recurrent identification, packaging, and distribution

of the elements of a product such as an executable program, documentation, release

notes, and configuration data (Ballintijn, 2005; Scott & Nisse, 2001). The term “release”

refers to the distribution of software outside of the development activity, and this includes

internal releases as well as outside customers (Scott & Nisse, 2001). A well-defined

release-management process can be the crux of increased quality of release- planning,

building, testing, and deployment activities. This will likely reduce the number of

problems occurring after delivering the release to customers (Lahtela & Jantti, 2011).

The fact that Secure-on-Request was inherited through acquisition might be part

of the problem in the release-management process. High-tech companies acquire

commercial off-the-shelf software components as a strategy to achieve efficient new

product development (Brown & Eisenhardt, 1995; Kakola, Koivulahti-Ojala, &

Liimatainen, 2009; Meyer & Seliger, 1998). Companies try to shorten the cycle of new

product development while reducing cost and improving product quality and service

delivery of their products in order to succeed in the global markets of software-intensive

products and services (Kakola et al., 2009; Krishnan, 1994; Prasad, 1994). In general,

software release management is further complicated by the increasing tendency for

software to be assembled as a “system of systems," constructed from pre-existing,

102

independently created systems. Both developers and users of such software are affected

by these trends (André Van der Hoek & Wolf, 2002)

Releasing a large software application is a complex procedure. In the case of

Secure-on-Request, this complexity is heightened by the number of customers that use

the service. A diverse and large customer base indicates a need for a substantial number

of features to be included in the service. Furthermore, as the service evolves over time to

incorporate the changing needs of customers, the release takes a great deal of effort and

tends to be error-prone (Ballintijn, 2005). Delivering features that reliably meet customer

requirements is an essential part of the release-management process; low-quality releases

affect customer operations and the long-term relationship with their software providers

(M. Kajko-Mattsson & Yulong, 2005). On-time delivery is equally critical to customer

satisfaction (Prasad, 1994). Creating a robust software-release model and an effective

release-management process will benefit business by reducing general cost and

enhancing customer satisfaction (Rana & Arfi, 2005) .

Release management involves technical and management activities that take a

release from a set of requirements to the final-delivery stage of the software (Danesh,

Saybani, & Danesh, 2011). New management of the Secure-on-Request team adds

challenges to the release process, since software typically result from the efforts of

multiple individuals and teams (Otte, Moreton, & Knoell, 2008). Managing the work of

multiple teams requires careful planning to ensure the quality of every part of the

application. Meeting deadlines and documenting milestones is equally important. A

103

release manager can be appointed to coordinate the teams and to identify problems that

might affect the software-release process (C. Jensen & Scacchi, 2005).

Release managers play the diverse role of interacting, planning and coordinating

with different stakeholders, as well as understanding technical issues (C. Jensen &

Scacchi, 2005; Michlmayr, Hunt, & Probert, 2007) .

Software quality and the success of release management hinge on having the right

processes in place. Managers and developers must be provided with accurate information

and guidelines to improve decision-making processes, plan and schedule activities,

predict bottlenecks, allocate resources, and optimize implementation of change requests

(Basili et al., 1996). Van der Hoek et al. (1997) noted that release management is “a

poorly understood and underdeveloped part of the software process,” and they pointed

out several pertinent issues. Because efficient management of new-release production can

improve software quality and customer satisfaction, the release-management process is

crucial to the success of large software projects (Danesh et al., 2011) .

Software release management has garnered substantial academic and practical

interest. We categorized the reviewed articles into four areas: standardization and

development of models, process improvement, software quality, and customer and

business perspectives. Standardization was the focus of several studies on software

release management (Ballintijn, 2005; Biswas, 2007; M. Kajko-Mattsson & Yulong,

2005; Ramakrishnan, 2004; A. Van Der Hoek et al., 1997; André Van der Hoek & Wolf,

2002). Two studies identified specific issues in software-release management, offered a

104

list of requirements and proposed a prototype for a software release management tool

called “SRM.” The tool was designed to aid both customers and developers in the

software-release management process (A. Van Der Hoek et al., 1997; André Van der

Hoek & Wolf, 2002). Several studies examined the overall release process. These studies

identified problems and practices for release-management processes and offered practical

suggestions (Bjarnason, Wnuk, & Regnell, 2010; Danesh et al., 2011; Erenkrantz, 2003;

Kakola et al., 2009; Lahtela & Jantti, 2011). Release management has also been looked at

in terms of release-quality (Boote et al., 2007; Michlmayr, 2005; Prasad, 1994; Rana &

Arfi, 2005). For instance, Michlmayr (2005) found that improvement of release

management impacted on quality issues facing open-source development. This research

identified problems in release practices, and developed ways to improve release

management in free-software projects. Finally, release management has been investigated

from business and customer perspectives (B. B. Jensen, Lyngshede, & Søndergaard; M

Kajko-Mattsson & Meyer, 2005; Krishnan, 1994). Krishnan (1994) presented an

economic model to evaluate the tradeoffs involved in software-release decisions, and

discussed techniques to achieve optimal software-release time (Krishnan, 1994) .

Research on software release management is limited. Consequently, no major

improvements have been seen in tools and processes used in this area. Furthermore, it has

been suggested that software-release processes have been “ad hoc and homegrown” in

nature (Wright, 2009). Fierce market competition is now demanding a transformation of

development strategies that provides timely product introduction and responsiveness to

105

customer need (Krishnan, 1994; Pratim Ghosh & Chandy Varghese, 2004). Therefore, we

are proposing an action research study at Software Inc. on software rerelease

management. Improvements in both software processes and service-delivery quality are

targeted results. The theory and practice of release management is likely mainly

instrumental in nature when focusing on the activity itself, that is, the perspective is of a

first-order nature. We also zoomed in on and explored release management on a second-

order level, that is, as an approach to organizational learning and innovation. In addition,

we looked at release management from both an internal (engineering orientation) and

external (customer orientation) perspective. Accordingly, our study contributed to the

software organization and release-management literature regarding development of high-

reliability capability, and to the SaaS and service-innovation literature regarding

enhancing service-delivery quality by improving the release-management process. This

knowledge will be of both practical and academic interest, as currently, significant

resources are being expended on the software-release management process.

106

A3.0 RESEARCH METHODOLOGY

A3.1 Engaged Scholarship

To achieve deep insight into the process, we applied the principles of engaged

scholarship, implying “negotiation and collaboration between researchers and

practitioners in a learning community; such a community jointly produces knowledge

that can both advance the scientific enterprise and enlighten a community of

practitioners” (Van de Ven (2007), p.7).

Van de Ven describes engaged scholarship as a participative form of research for

obtaining the views of key stakeholders to understand a complex problem. By exploiting

differences between these viewpoints, he argues that engaged scholarship produces

knowledge that is more penetrating and insightful than when researchers work alone.

Four alternative forms of engaged scholarship are defined by Van de Ven: (1) informed

basic research with stakeholder advice that is undertaken to describe, explain or predict a

social phenomenon; (2) co-produced knowledge with collaborators entailing a greater

sharing of power and participation between researchers and stakeholders; (3) policy,

design and evaluation research undertaken to develop knowledge related to design and

evaluation of policies, programs and models for addressing practical and professional

problems; and (4) action and intervention research for solving a client’s problem while at

the same time, contributing to the academic body of knowledge (Van de Ven, 2007). Of

the four forms of engaged scholarship, we adopted action research for a number of

107

reasons: we had unlimited access to Software Inc., we had close relationships to the

leadership of Secure-on-Request, we wanted to actively contribute to addressing the

problems faced by the Secure-on-Request teams, and, we assumed such interventions

would provide new valuable insights into release management and service provisioning

in recurrent software practices. As a result, we adopted a clinical intervention approach to

diagnose and resolve a portfolio of problems in a specific client context.

Action research was introduced by Kurt Lewin, and it makes use of intervention

within challenging social situations as a means of developing scientific knowledge

(Lewin, 1951; Rapoport, 1970). Rapport described action research as aiming “to

contribute both to the practical concerns of people in an immediate problematic situation

and to the goals of social science by joint collaboration within a mutually acceptable

ethical framework” (1970, p. 499). Several action research approaches have been

developed by subsequent scholars. Susman and Evered developed what has become

known as Canonical Action Research (CAR) by expanding the work of Lewin and

Rapoport to develop a client-system infrastructure and a multi- phased cyclical process

for action research consisting of diagnosing, action planning, action taking, evaluating,

and specifying learning (Davison, Martinsons, & Kock, 2004; Susman & Evered, 1978).

McKay & Marshall, 2001 further developed the cyclical process of action research and

introduced the two simultaneous cycles of research and problem-solving. McKay and

Marshall’s dual cycle framework enables researchers to diagnose problems and develop

solutions in the problem-solving cycle while working closely with key stake holders. The

108

research cycle allows researchers to focus on developing and evaluating theory, while

they start with an initial area of research interest and adopt the appropriate theoretical

framework (McKay & Marshall, 2001). Figure 3.0 illustrates the two cycles and the

exchange of information between them.

Figure 3.0: Dual Cycle Model of Action Research at Software Inc. (McKay and

Marshall 2001)

A3.2 Action Research Design

Our action research study aimed to simultaneously support the Secure-on-Request

repositioning effort at Software Inc. and contribute to the body of scientific knowledge

(Avison, Baskerville, & Myers, 2001; Baskerville & Wood-Harper, 1996). The general

research approach is collaborative practice research (CPR). It is an action research

methodology that advocates methodological pluralism and collaboration between

109

researchers and practitioners (Mathiassen, 2002). CPR methodology goal is to understand

practice through interpretation, and to improve practice through interventions

(Mathiassen, 2002). CPR suggests ways to achieve the right balance between relevance

and rigor, requiring a dedicated effort involving both research and organizational work.

Throughout our study we facilitated collaboration and managed the different agendas

involved (Mathiassen, 2002). CPR disciplines complemented our action research

approach, and allowed for collecting data systematically in addition to applying methods

of interventions appropriately (Mathiassen, 2002).

We followed McKay and Marshall (2001) and organized our research into two

parallel cycles: the problem-solving cycle and the research cycle. We adopted the IDEAL

model (McFeeley, 1996) to guide our activities in the problem-solving cycle. Moreover,

to ensure applicability and accuracy, we followed the five principles and associated

criteria for Canonical Action Research (CAR) suggested by Davison et al. (2004). In

Section 5, we provide a detailed account of how these principles were applied to our

research at Software Inc.

Our action research was collaborative and iterative and focused on problem

diagnosis, change, and reflection (Avison et al., 2001). Three methodological

characteristics apply across the action research cycles (Baskerville & Wood-Harper,

1996). First, the researcher is actively involved with expected benefits for both the

researcher and the organization. In our case, one of the researchers is the release manager

of the project we are studying at Software Inc. His organization benefited from the ideas

110

developed during the problem-solving cycle through the enhancement of the knowledge

base of their release management process. Second, immediate application of the

knowledge obtained, and cyclical process linking theory and practice. As we moved

forward with our activities, we applied the knowledge gained. Finally, the cyclical

process should link theory and practice. Most participants were, to some extent, involved

in all aspects of the action research cycles.

Rapoport (1970) identified three characteristic dilemmas of action research:

ethics, goals and initiative. He suggested that a resolution in the science direction could

lead away from action and vice versa. He also argued that “good” action research

selectively combines elements of both directions. We were on the look-out for these

dilemmas in our research with Software Inc. Examples of ethical dilemmas include

researcher reactions to the client, managing confidentiality of participants, being

approached by a competitor of a client, and personal involvement in the client’s

organization (Rapoport, 1970). Since one of the researchers is a manager at Software

Inc., we were conscious of his dual role as researcher and employee of the client for

whom we conducted the study. We consider that working with two other researchers and

other stakeholders, and triangulating the data, will reduce the risks associated with dual

allegiance. The discrepancy between practice and academic goals is the second dilemma

identified by Rapport. We managed this dilemma by applying the recommended style

composition practices (Mathiassen, Chiasson, & Germonprez, 2012), identifying the dual

cycles of action research (McKay & Marshall, 2001), and recognizing the role duality as

111

an insider action research project raised by (Coghian, 2001). Initiative, which in this

context concerns the solving of a client’s problem as opposed to the pursuit of knowledge

for knowledge’s sake, is the third dilemma identified by Rapoport (Rapoport, 1970). The

combined effort of multiple stakeholders when conducting engaged scholarship and

action research provided the proper platform for us to deal with this dilemma.

112

A4.0 PROBLEM-SOLVING CYCLE

We worked in a collaborative, stepwise, iterative fashion as we engaged in the

problem-solving cycle to support the release-management and service-delivery processes

at Software Inc. To guide our activities in the problem-solving cycle, we adopted the

IDEAL model (McFeeley, 1996). This model is an approach for innovating software

practices and was developed in 1996 by the Carnegie Mellon University Software

Engineering Institute (McFeeley, 1996). The IDEAL model (Initiating, Diagnosing,

Establishing, Acting, and Learning), illustrated in Figure 4.0, is very similar to the CAR

five-phase cyclical approach (diagnosing, action planning, action taking, evaluating, and

specifying learning) developed by Susman and Evered (1978). Enacting the phases of the

IDEAL process guided our activities in the problem-solving cycle as well as provided

opportunities to make research contributions as we studied the change processes over

time.

113

Figure 4.0: IDEAL Model (McFeeley, 1996)

Table 4.0: IDEAL Model Phases (McFeeley, 1996)

Initiation phase Obtaining commitment, setting goals and establishing an
improvement infrastructure

Diagnostic
phase

Assess current practices; develop and prioritize recommendations
for improvements

Establishment
phase

Create specific, focused improvement initiatives. Teams are
established to deal with each of the recommended improvement
areas from the diagnostic phases

Acting phase Develop and implement solutions for each improvement area.

Learning phase Develop plan based on the results of the initiatives. Improvements
data are collected and new evaluation is prepared

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish
infra-

structure

Appraise &
Characterize

current process

Develop recommendations
& Document results

Set strategy &
Priorities

Establish
process action
teams & Action

plans

Define processes & measures
Plan & Execute pilots
Plan. Execute, & Track installation

Document &
Analyze lessons

Revise
organizational

approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

114

A4.1 Initiation Phase

In the initiation phase, we created an initial improvement infrastructure and

established the “mutually acceptable ethical framework” (Rapoport, 1970) that served as

the foundation for our study. We also secured a commitment from Software Inc. to work

on the possible improvement areas (McFeeley, 1996). Table 4.1: Initiation Phase Key

Dates provides a summary of key dates during the initiation phase at Software Inc. The

research team received Institutional Review Board approval (IRB) on March 8 2013. The

research team created a memorandum of understanding (MOU) which functioned as the

researcher-client agreement (RCA) (Davison et al., 2004) for the study. The MOU

defined the initial roles and responsibilities of both Software Inc. and the research team.

It also clarified the dual objectives of contributing to research and practice, and provided

an overview of project outcomes. Subsequently, we obtained approval for the

improvement plans as well as a commitment for resources to accomplish future tasks.

Table 4.1: Initiation Phase Key Dates

Date Activity

January 5, 2013 Email sent to Software Inc. senior manager regarding possible
collaboration

January 12, 2013 Invitation to collaboration meeting with Software Inc. senior
management

115

March 08 , 2013 IRB Approval for Protocol Application Number: H13290

March 11, 2013 The Memorandum of Understanding was shared and agreed to by
Software Inc.

March 15, 2013 First meeting for the project steering committee

April 09, 2013 Starting Diagnostic Phase : First diagnostic interview was conducted

A4.2 Diagnostic Phase

In the diagnostic phase, we established the foundation for the later phases in the

process. The goal of the diagnostic phase was to understand the current practices and

challenges related to software release management and service delivery within Software

Inc.

 We assessed existing software-release and service-delivery practices related to

Secure-on-Request at Software Inc. and established our baseline. We collected data

between March 2013 and June 2013 to assess current practices from the viewpoint of key

stakeholders at Software Inc. (Table 4.2-1: Diagnostic Phase Key Dates). Our diagnostic

work included 16 semi-structured interviews, several meeting with Software Inc.

stakeholders, and a review of performance data extracted from Software Inc. internal

tracking tools and systems. Our assessment included perception-based methods

constructed from our interviews and meetings with Software Inc. stakeholders (Napier,

Mathiassen, & Johnson, 2009). It also included practice-based methods, derived from a

review of release-management and service- delivery practices in the literature. Finally,

116

we analyzed the performance data and reported results extracted from the main tracking

systems of Software Inc.

Table 4.2-1: Diagnostic Phase Key Dates

Date Activity

April 09, 2013 Starting Diagnostic Phase : First diagnostic interview was
conducted

April 10, 2013 Meetings with product management team of Secure-on-
Request started

April 11, 2013 Meetings with software development team of Secure-on-
Request started

May 22, 2013 Last interview for initial diagnosis was completed

June 05, 2013 Release-management standards assessment completed

June 10, 2013 Service-quality standards assessment completed

June 14, 2013 First draft of diagnostic report completed

June 20, 2013 Steering committee meeting to share and discuss
diagnostic findings

June 28, 2013 Establishment phase begins: First meeting to plan
improvement projects

For the practice-based part of the assessment, the research team selected norms

and practices that were identified in the release-management literature (Elephant, 2006;

Team, 2006), and compared them to current release practices at Software Inc. We also

selected service-delivery principles identified in the service-science literature (Karpen,

Bove, & Lukas, 2012; Schneider & Bowen, 2010; Vargo & Lusch, 2004), and compared

117

them to current service-delivery practices at Software Inc. The research team assigned

scores based on data collected and observations, as it will be illustrated in the individual

dissertation documents for the research team members (Barqawi, 2014; Syed, 2014)

In the perception-based part of the assessment we identified individuals from

Software Inc. who were involved in the release process of Secure-on-Request as well as

internal and external customers (Napier et al., 2009). The research team created an

interview guide that discussed objective and subjective information about the release

cycle and service-delivery processes related to Secure-on-Request. The research team

conducted semi-structured interviews with the individuals listed in Table 4.2-2:

Diagnosing Interview Sources.

Table 4.2-2: Diagnosing Interview Sources

Group Role Count

Software Development Manager
Engineer 2

Quality Assurance Manager
Engineer 2

Product Management Manager
PM 2

Project Management Manager
Release Manager 2

Internal Customers

Business Owner
Professional Services
Sales
Technical Account
Managers

6

118

External Customers Managers 2

 Total 16

The research team met and analyzed the interviews to reflect upon emerging

themes on release-management and service-delivery practices related to Secure-on-

Demand. Participants’ viewpoints were analyzed with a focus on strengths and

weaknesses of current release- management and service-delivery practices. The identified

areas for improvement are illustrated in Table 4.2-3. We will expand on these identified

areas in the research team members’ individual dissertation documents (Barqawi, 2014;

Syed, 2014), as it relates to their research focus.

Table 4.2-3 Identified Possible Areas for Improvement at Software Inc.

Area Identified Issues

Specifying and Stabilizing
Requirements

• Unclear requirements cause confusion, rework,
delayed releases and adverse effects on our ability to
ensure software quality.

• Inadequate verification of requirements quality
“In detailing our requirements there should always be a
picture or a screenshot (wireframe) of what it should
look like if it is a customer facing thing, so there will be
no confusion”

119

Area Identified Issues

Prioritizing Requirements
Across Channels

• Expectations are high, release timeline is short, and
resources are limited

• Too many inputs for requirements for detailed
analysis due to time constraint

• Prioritization within and between new features
development, escalations, fixing defects and technical
debt are major challenges

“Our maturity and our ability to move forward with the
prioritization process isn’t still 100% there, and we all
agree that is not what we want to be in the long term”

Managing Technical Debt

• Inherent product maturity issues
• Deadline pressure due to short release cycle
• Lack of unit test, peer code review, definition of

“done”
• Technical debt often results in escalation of customer

problems

“We definitely have some technical debt, and I would say
moderate quality, it is not high quality, I think it is
important to say that our technical debt in January was
much higher than it is now”

120

Area Identified Issues

Testing Releases

• New quality assurance team and new management.
Continue to mature quality assurance processes

• Unclear and changing requirements adversely affect
ability to ensure software quality

• Lack of visibility of planned features for releases: adding
features late in the sprint creates challenges for QA

• Frequency of releases is affecting the time allowed for
better testing for and stabilization of the software

 “We don’t have enough time between the end of the release
and the time we put it out to get full quality regression tests
done”

Managing Release
Cycles

• Monthly releases help catch up with competition in
market

• Monthly releases does not allow enough time for
requirements analysis, testing, documentation and
customer communication

“Frankly the customers can’t absorb this frequent updates
and changes, and in the process we haven’t been given the
customers enough time to know it is changing”

“We could do a 90 day cycle that could give us more time to
provide more components and focus on the core capability of
the application”

Maintaining Complete
Service Information

• Information about features in new releases is not
effectively communicated to TAM’s and customers

• Release frequency is not allowing enough time for
generating complete service information

 “Release notes and user guide documentations, have been
a real challenge because we have a monthly release cycles
and how can you write documentation if you are actually
writing codes the night before it goes out, it is pretty hard”

121

Area Identified Issues

Communicating
Releases Across
Customers

• Release process is unclear for internal customers
• Technical account managers feel the need to “hedge”

their communication to avoid failure to meet customers’
expectations

• Customers require early notice of new features released
• Engineering work closely with Technical account

managers, Beta is an initiative in this direction, Recent
UI changes made to help

“Customers commented on one of latest releases as the
following: you guys just released all that stuff and we were
not expecting it, we are glad you are doing all that kind of
stuff, but we want more notice”

Giving Customers a
Voice

• Servicing large and diverse customer base allows for
developing heterogeneous functions and features

• A need for better way to understand and address
customer expectations and needs

• Fixing problems without changing the user interface
making it difficult for customers to appreciate the
enhancement

“Lack of certain usability features is seen as defects by
customers, but this not how we see it”

During the course of the study, the steering committee was kept informed of the

activities through weekly status reports and periodic status meetings. The research team

documented the assessment findings in a complete diagnostic report, and a steering

committee meeting was held on June 20, 2013 to describe the findings and overall

recommendations. Table 4.2-4 illustrates the list of improvement options and

recommendations shared with the steering committee during that meeting.

122

Table 4.2-4 Suggested Improvement Options at Software Inc.

Area Improvement Options

Release Frequency Move from 30 day to 90 day release model

Service Requirements

• Allow more time for requirements analysis
• Ensure key stakeholders agree on requirements and

how they are prioritized
• Ensure requirements are explicated and effectively

shared across developers, QA and documentation
• Ensure requirements changes are managed explicitly

and shared effectively
• Use Wireframes to ensure effective communication

between technical and business people
• Early demo of feature for key stakeholders

Software Quality

• Allow time for testing by reducing release frequency
• Involve QA early in the process to support development

of test cases based on requirements
• Strengthen collaboration between development and QA

about requirements, test cases, test results, and defect
fixing

• Introduce automatic testing to free resources from
mundane testing, provide quick feedback to developers,
and focus on high-priority issues

Customer
Relationships

• Help customers build knowledge and competence by
maintaining complete service information and
scheduling monthly customer webinars

• Gain better insight into customer needs and
expectations by integrating support capability directly
in the portal and scheduling quarterly on site reviews
with customers

• Improve communication of releases across TAMs and
customers by providing updates and notifications in the
system on new features upon application access

• Continue assessments with key people, TAM’s and
customers to create stronger basis for improving
customer relationships

123

A4.3 Establishment Phase

In the establishment phase, we prioritized the issues that Software Inc. would

address and we developed strategies for reaching solutions (Table 4.3-1: Establishment

Phase Key Dates).

Table 4.3-1: Establishment Phase Key Dates

Date Activity

June 28, 2013 Establishment phase begins: First meeting to plan
improvement projects

July 1 , 2013 Meetings with steering committee members to agree on
strategy and deliverables of improvement projects

July 2, 2013 Acting phase begins: Kick-off meetings for
improvement projects started

We completed the detailed process-improvement plan based on the agreed-upon

strategy, and designed plans to execute it. The suggested improvement strategy were

implemented through a number of dedicated project teams with clear timelines and

identified deliverables. The steering committee members agreed to form three teams to

work on three improvement projects: customer relations, software quality, and release

cycle. The details of these improvement projects will be discussed in the individual

dissertation documents for the research team members (Barqawi, 2014; Syed, 2014).

Table 4.3-2 shows an overview of the three improvement projects approved by the

steering committee members. The steering committee was responsible for approving the

overall plans for the improvements identified in the diagnostic phase.

124

125

Table 4.3-2 Secure-on-Request Release Management and Service Delivery

Project Name Project Roles Project Deliverables

Improve Customer
Relationship

• Project Manager: Release
Manager

• Project Contributors: Business
Owner, Product Manager,
Technical Account Managers,
Selected External Customers

• Project Consultants: Research
team

• Project Sponsor: Secure-on-
Request business owner

• Enhanced Service
Usability

• Value Added Services
• Capturing The Voice of

The Customer
• Operational

Preparedness
• Implementation Plan
• Leadership Team

Commitment

Improve
Requirements And

Quality

• Project Manager: Release
Manager

• Project Contributors: Development
Manager, Product Managers, QA
Managers

• Project Consultants: Research
team

• Project Sponsor: Secure-on-
Request business owner

• Requirement
Management Process

• Requirement
Specification Formats

• Development–Test
Exchange Process

• Development–Test–
Documentation
Management

• Operational
Preparedness

• Implementation Plan
• Leadership Team

Commitment

Improve Release
Cycle

• Project Manager: Release
Manager

• Project Contributors: Development
Manager, Product Manager, QA
Manager

• Project Consultants: Research
team

• Project Sponsor: Secure-on-
Request business owner

• Revised Release Model
• Customer

Communication
Strategy

• Operational
Preparedness

• Implementation Plan
• Leadership Team

Commitment

126

A4.4 Acting Phase

In the acting phase, we positioned the improvement projects agreed on at

Software Inc., to address the areas for improvement identified during the diagnosing

phase (Table 4.4: Acting Phase Key Dates). The strategy and prioritization as well as

deliverables were agreed upon in the establishment phase. The research team and steering

committee members held a kick-off meeting for each improvement project. At the kick-

off meetings, the teams were given a set of objectives and deliverables. The teams were

provided with draft project plans along with expected delivery dates. Numerous meetings

were held between research team members and improvement teams to work on the

deliverables and assess progress. An interim status meeting for the steering committee

was held on August 19, 2013, where a status update on the three projects was presented

and progress was discussed.

Table 4.4: Acting Phase Key Dates

Date Activity

July 2, 2013 Acting phase begins: Kick-off meetings for
improvement projects started

July 2 , 2013 Kick-off meeting for improved customer relationship
project

July 3, 2013 Kick-off meeting for improved requirements and
quality project

July 5, 2013 Kick-off meeting for improved release cycle project

August 19, 2013 Interim status meeting for steering committee members

127

September 30,
2013 Deliverables from project teams due

October 26, 2013 Learning Phase begins: acting phase completion
meeting

The project team members provided projects deliverables for review on

September 30, 2013. The completion meeting to close this phase was conducted on

October 19, 2013. The details and key outcomes for each project are included in the

individual dissertation documents for the research team members (Barqawi, 2014; Syed,

2014).

A4.5 Learning Phase

In the learning phase, we reviewed the implemented solutions as well as evaluated

the outcome of the three improvement projects (Table 4.5: Learning Phase Key Dates).

Our learning phase assessments included perception-based as well as practice-based

methods (Napier et al., 2009) with a focus on evaluating the impact on the release cycle

and service-delivery process of Secure-on-Request. our goal was to identify changes in

each of the three project improvement areas, the effect on the processes as well as the

challenges that occurred during implementing the changes, and suggestions for

improvement. For the perception-based assessment, we conducted fourteen semi-

structured interviews with the key stakeholders. Each interview was around 45 minutes,

and was recorded, and later transcribed. Our goal was to determine how different

stakeholders perceived the overall value of the improvement projects implemented, their

128

satisfaction with their own level of involvement, as well as suggestions for future

improvement. For the practice-based part of the assessment, we used the norms and

practices from release management and service-delivery literature identified in the

diagnostic phase (Elephant, 2006; Team, 2006; Karpen, Bove, & Lukas, 2012; Schneider

& Bowen, 2010; Vargo & Lusch, 2004) and compared them to software release

management service-delivery practices at Software Inc. after implement the improvement

projects. The research team assigned scores based on data collected and observations, and

the assessment results were compared against those from the diagnosing phase as it will

be illustrated in the individual dissertation documents for the research team members

(Barqawi, 2014; Syed, 2014). The resulting assessments and findings were summarized.

An overall assessment of the value of the improvement projects will be discussed in

details the individual dissertation documents for the research team members (Barqawi,

2014; Syed, 2014).

129

Table 4.5: Learning Phase Key Dates

Date Activity

October 26, 2013 Learning Phase started
November 14,

2013 First learning phase interview was conducted

December 5, 2013 Last learning phase interview was completed
February 28,

2014 Release-management standards assessment completed

February 28 ,
2014 Service-quality standards assessment completed

130

A5.0 RESEARCH CYCLE

The research cycle for this study was guided by the style composition for action

research developed by Mathiassen, et al. (2012). Our research explored software release

management, software improvement, and software-as-a-service and service-science

streams of literature. The study employed Pettigrew’s contextualist inquiry theory

(Pettigrew, 1985) to analyze how release cycle management can be improved in the

context of recurrent development of software. Additionally, the study adopted Service-

dominant logic as a theoretical framework (Vargo & Lusch, 2004) to analyze how the

release management process can be organized to improve Software Inc.’s ongoing value

co-creation with its customers. Our research process was a collaborative and iterative

process highlighting problem diagnosis, change, and reflection (Avison et al., 2001).

Furthermore, our study satisfied the three methodology characteristics that were

described across action research cycles (Baskerville & Wood-Harper, 1996). First, the

researcher is actively involved with expected benefits for both the researcher and the

organization. In our case, one of the researchers was the release manager of the project

we are studying at Software Inc. We expect that as a manager, his organization will

benefit from the suggestions developed during the problem-solving cycle and add to the

understanding of their release-management process. Secondly, we linked theory and

practice through immediate application of the knowledge obtained, and by following the

cyclical process. Using our research at Software Inc., we applied knowledge gained as we

moved forward to the next set of activities.

131

We followed CAR principles of action research to guarantee rigor as we

conducted our study and depicted the research cycles (Davison et al., 2004). As explained

in Section 3 on the adopted action research design, the authors provided specific

questions and criteria for each principle (Davison et al., 2004) to guide the study.

A5.1 Data Collection

Action research and qualitative research require rigorous documentation, data

collection, and documentation methods (Avison et al., 2001; Miles & Huberman, 1994).

Our study employed several sources for data collection, which include interviews,

meetings, field observations, researchers’ notes, and unlimited access to Software Inc.

internal systems reports and process documentation. For our diagnostic phase, we

identified key individuals from Software Inc. to be interviewed for our study. We

conducted sixteen one-hour face-to-face as well as phone interviews. All interviews were

conducted in English, and detailed notes were taken. All interviews were recorded.

During the course of our data collection, we used triangulation (Miles & Huberman,

1994) to counterbalance any insider bias (Coghian, 2001). Table 5.1 outlines the specific

primary and secondary data sources for our data collection phase. Data collection

methods for the study are discussed in more detail in the individual dissertation

documents for the research team members (Barqawi, 2014; Syed, 2014).

132

Table 5.1: Primary and Secondary Data Sources

Primary Data Sources Secondary Data Sources

Meetings:

• Release Management Meetings (Weekly)
• Bi-Weekly Scrums
• Monthly Release Planning and Demos
• Daily Customer Escalation Calls

Release management documentation
tools:

• Requirements Management tool
• Defect Management tool
• Customer Relationship

Management tool

Semi-structured interviews:

• Professional Services
• Sales
• Quality Assurance
• Product Management
• Operational Services
• Development
• Business Unit Owner
• Technical Account Management
• Project Managers
• External Customer

A5.2 Data Analysis

Analysis was performed using a variety of qualitative data analysis techniques

and followed the guidelines suggested by Miles and Huberman (1994). We used

Pettigrew’s contextualist inquiry theory and its adopted constructs (Pettigrew, 1985) in

analyzing the data related to the study of release management focused on the internal

software process improvement at Software Inc. We also used Service-dominant logic as

framework (Vargo & Lusch, 2004, 2008) in analyzing the data related to the service

delivery practices of Secure-on-Request. Additionally, our study followed the qualitative

133

data analysis strategy offered by Miles and Huberman (1994). They propose three

concurrent flows of activities: data reduction, data display, and conclusion drawing and

verification. These activities were enacted continuously throughout the data collection

process as it is explained in more detail in the individual dissertation documents for the

research team members (Barqawi, 2014; Syed, 2014).

Our team of researchers independently analyzed the interviews and meetings

transcripts and used triangulation throughout the data analysis to offset potential for

insider-bias related to the role held by one of our research team members in Software Inc.

(Coghian, 2001). Qualitative data analysis software (NVIVO) was used to classify,

tabulate, and visualize the data. We used the constructs and concepts from the adapted

theoretical framework to analyze and code our data. Data analysis strategy and outcome

of the study will be discussed in more detail in the individual dissertation documents for

the research team members (Barqawi, 2014; Syed, 2014).

134

A6.0 PRINCIPLES OF CANONICAL ACTION RESEARCH

We followed the principles of CAR to ensure rigor as we conducted our study at

Software Inc. Davison, Martinsons and Kock write that CAR is directed by five

principles: 1) researcher-client agreement; 2) cyclical process model; 3) theory; 4) change

through action; and 5) learning through reflection (2004). The authors provide criteria for

each principle that we followed to ensure the rigor and relevance of our study (Davison et

al., 2004).

Following the principle of Researcher-Client Agreement (Davison et al., 2004),

we provided a framework for our research by communicating the overall objectives of the

study and by explaining the roles of research team members. The Memorandum of

Understanding on Research Collaboration (MoU) that we initially shared with Software

Inc. clearly stated the objective of the research project. Software Inc. committed the time

and resources needed to complete the study. The business owner of the product Secure-

on-Request at Software Inc. became the sponsor of the project and helped identify the

roles of the steering committee as well as those of the problem-solving project’s team

members. Key deliverables and evaluation criteria were communicated to all

stakeholders. Software Inc. also agreed to our data collection methods including

interviews, meeting attendance, and data and reports from internal systems and internal

communications. Table 6.1 lists the evaluation of the principle of Researcher-Client

Agreement criteria of our study.

135

Table 6.1: Criteria for the Researcher-Client Agreement

Principle 1 – Criteria for the
Researcher - Client

Agreement
Applied to Software Inc.

1a – Did both the researcher and the
client agree that CAR was the
appropriate approach for the
organizational situation?

No
No explicit agreement with Software
Inc., but we followed the CAR
principles to guide our research effort.

1b – Was the focus of the research
project specified clearly and
explicitly?

Yes

Our MoU with Software Inc. clearly
stated the objective of the study:
Improving processes and services in a
software unit: An action research study
into release management.

1c – Did the client make an explicit
commitment to the project? Yes

Software Inc. committed to the project
the time and resources needed to
complete the study.

1d – Were the roles and
responsibilities of the researcher
and client organization members
specified explicitly?

Yes Steering committee as well as the
problem solving team were specified.

1e – Were project objectives and
evaluation measures specified
explicitly?

Yes Key deliverables and evaluation criteria
were communicated to all stakeholders.

1f – Were the data collection and
analysis methods specified
explicitly?

Yes

Software Inc. approved our data
collection methods, including
interviews, meeting attendance, data
and reports from internal systems, and
internal communications.

The principle of the Cyclical Process Model evaluates the relationship between

diagnosing and acting (Davison et al., 2004). It emphasizes the need for modifying

processes based on continuing evaluations. We followed McKay and Marshall’s (2001)

dual-cycle model; therefore, the information gleaned from the problem-solving cycle was

136

incorporated into the research cycle, and the knowledge from the research cycle was

integrated in the problem-solving cycle. We modified our project plans throughout the

course of our study in response to challenges encountered and new knowledge gained.

Continuous evaluation of our strategy and results were discussed in meetings held

between steering committee members. Table 6.2 summarizes the evaluation of the

principle of Cyclical Process Model criteria of our study.

Table 6.2: Criteria for the Cyclical Process Model

Principle 2– Criteria for
the Cyclical Process

Model (CPM)
Applied to Software Inc.

2a – Did the project follow the
CPM or justify any
deviation from it?

Yes

We followed McKay and Marshall’s (2001)
dual-cycle model, therefore the information
from the problem-solving cycle added to the
research cycle while the knowledge from the
research cycle was employed in the problem-
solving cycle.

2b – Did the researcher conduct
an independent diagnosis of
the organizational situation?

Yes

2c – Were the planned actions
based explicitly on the
results of the diagnosis?

Yes

2d – Were the planned actions
implemented and evaluated? Yes

2e – Did the researcher reflect
on the outcomes of the
intervention?

Yes

137

2f – Was this reflection
followed by an explicit
decision on whether or not
to proceed through an
additional process cycle?

Yes

Throughout the course of our study we
modified our project plans based on
challenges encountered and new knowledge
gained. Continuous evaluation of our strategy
and results were discussed in meetings held
between steering committee members.

The Principle of Theory focuses the research cycle and the project by ensuring

that the research is guided by a theoretical framework (Davison et al., 2004). We adopted

Pettigrew’s contextualist inquiry theory as a framework to analyze how release cycle

management can be improved in the context of recurrent development of software

(Pettigrew, 1985). Based on insights from our analysis, the study developed

recommendations for software providers to manage their software releases and software

processes. Our study also adopted the service-dominant logic framework (Vargo &

Lusch, 2004) to analyze how the release-management process can be organized to

improve Software Inc.’s ongoing value co-creation with its customers. As a result, the

study contributed to improving release management at Software Inc. and added to

knowledge about the challenges and opportunities for software vendors to manage

releases and improve the value delivered to and co-created with their customers. The

theoretical frameworks chosen for our study guided our interventions and research

activities as well as helped in evaluating the outcomes. Table 6.3 summarizes the

evaluation of the Principle of Theory criteria of our study.

138

Table 6.3: Criteria for the Principle of Theory

Principle 3 – Criteria for the
Principle of Theory Applied to Software Inc.

3a – Were the project activities guided by a
theory or set of theories? Yes

We adopted Pettigrew’s
contextualist inquiry theory as a
framework to analyze how release
cycle management can be
improved in the context of
recurrent development of
software.
Service-dominant logic
framework was adopted to
analyze how the release
management process can be
organized to improve Software
Inc.’s ongoing value co-creation
with its customers.

3b – Was the domain of investigation and
the specific problem setting relevant to,
and significant for, the interest of the
researcher’s community of peers as
well as the client?

Yes

3c – Was a theoretically based model used
to derive the causes of the observed
problem?

Yes

3d – Did the planned intervention follow
from this theoretically based model? Yes

The theoretical frameworks
chosen for our study guided our
intervention and research
activities at Software Inc. as well
as helped in evaluating the
outcomes.

The principle of Change through Action helps researchers and clients isolate and

resolve problems (Davison et al., 2004). Research team members and the steering

committee agreed to improve both the release process of Secure-on-Request and the

service quality delivered to their customers. The researchers and steering committee

members identified specific areas for improvement after a comprehensive assessment was

conducted. The research team ensured that decisions were made with the involvement of

all relevant stakeholders at Software Inc. The process and plans for the project were

documented and progress was communicated to all stakeholders. Consequently, Software

139

Inc. was supportive of our efforts throughout the project and was appreciative of the work

done to improve their release-management process and service quality. Table 6.4

summarizes the evaluation of the principle of Change through Action criteria.

Table 6.4: Criteria for the Principle of Change through Action

Principle 4 – Criteria for the Principle of
Change through Action Applied to Software Inc.

4a – Were both the researcher and client motivated to
improve the situation? Yes

Software Inc. and the
research team
members agreed on
improving the release
process of Secure-on-
Request and
improving the service
quality delivered to
customers.

4b – Were the problem and its hypothesized cause(s)
specified as a result of the diagnosis? Yes

Specific areas for
improvement were
identified after a
comprehensive
assessment was
conducted at Software
Inc.

4c – Were the planned actions designed to address the
hypothesized cause(s) Yes

4d – Did the client approve the planned actions before
they were implemented? Yes

Decisions were made
with the involvement
of all relevant
stakeholders. Project
plans were
documented and
progress was
communicated to all
stakeholders.

4e – Was the organization situation assessed
comprehensively both before and after the
intervention?

Yes

4f – Were the timing and nature of the actions taken
clearly and completely documented? Yes

The principle of Learning through Reflection concerns learning through reflection

from practical work as well as research (Davison et al., 2004). The research team

140

discussed in a meeting with the steering committee members the areas targeted for

improvement in the software-release and the service-delivery process. Shortly thereafter,

initial recommendations for improvement in these areas were communicated to Software

Inc. The research team provided an update on the status of each improvement project in a

weekly communication that was sent out to key stakeholders. Several meetings were held

with key stakeholders from Software Inc. to assess progress and discuss ways to ensure

continuous improvement and rigorous data collection. Table 6.5 summarizes the

evaluation of the principle of the Learning through Reflection criteria.

141

Table 6.5 Criteria for the Principle of Learning through Reflection

Principle 5 – Criteria for the
Principle of Learning through

Reflection
Applied to Software Inc.

5a – Did the researcher provide progress
reports to the client and
organizational members?

Yes

The research team provided an
update on the status of each
improvement project, in a weekly
communication material that was
sent out to Software Inc. key
stakeholders.

5b – Did both the researcher and the
client reflect upon the outcomes of
the project?

Yes The research team discussed the
areas needed for improvement

Software Inc. Initial
recommendations for improvement

were communicated to key
stakeholders shortly thereafter.

5c – Were the research activities and
outcomes reported clearly and
completely?

Yes

5d – Were the results considered in terms
of implications for further action in
this situation?

Yes

Several meetings were held with
key stakeholders from Software
Inc. to assess progress and discuss
ways to ensure continuous
improvement and rigorous data
collection

5e – Were the results considered in terms
of implications for actions to be taken
in related research domains?

Yes

5f – Were the results considered in terms
of implications for the research
community (general knowledge,
informing/re-informing theory)?

Yes

5g – Were the results considered in terms
of the general applicability of CAR? Yes

In sum, we applied literature-derived knowledge on, Pettigrew’s contextualist

inquiry theory and service-dominant logic as theoretical frameworks (Pettigrew, 1985;

Vargo & Lusch, 2004, 2008), and action research as a methodology (Davison et al., 2004;

142

Lewin, 1951; Mathiassen, 2002; McKay & Marshall, 2001; Rapoport, 1970), and

engaged in collaborative research and problem-solving at Software Inc. Our research

aimed to provide rich data for software-process and service-delivery improvements at

Software Inc.

143

APPENDIX A REFERENCES

Avison, D., Baskerville, R., & Myers, M. (2001). Controlling action research projects.
Information technology & people, 14(1), 28-45.

Ballintijn, G. (2005). A case study of the release management of a health-care information
system. Paper presented at the proceedings of the IEEE International Conference on Software
Maintenance, ICSM2005, Industrial Applications track.

Barqawi, N. (2014). Software Service Innovation: An Action Research into Release Cycle
Management.

Basili, V., Briand, L., Condon, S., Kim, Y.-M., Melo, W. L., & Valett, J. D. (1996).
Understanding and predicting the process of software maintenance release. Paper presented at
the Proceedings of the 18th international conference on Software engineering.

Baskerville, R. L., & Wood-Harper, A. T. (1996). A critical perspective on action research as a
method for information systems research. Journal of Information Technology, 11(3), 235-
246.

Biswas, P. K. (2007). Autonomic Software Release Management for Communications Networks.
Paper presented at the Integrated Network Management, 2007. IM'07. 10th IFIP/IEEE
International Symposium on.

Bjarnason, E., Wnuk, K., & Regnell, B. (2010). Overscoping: Reasons and consequences—A
case study on decision making in software product management. Paper presented at the
Software Product Management (IWSPM), 2010 Fourth International Workshop on.

Boote, J. W., Hanemann, A., Kudarimoti, L., Louridas, P., Marta, L., Michael, M., . . .
Tsompanidis, I. (2007). Quality assurance in perfSONAR release management. Paper
presented at the Quality of Information and Communications Technology, 2007. QUATIC
2007. 6th International Conference on the.

Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings,
and future directions. Academy of management review, 343-378.

Coghian, D. (2001). Insider Action Research Projects Implications for Practising Managers.
Management Learning, 32(1), 49-60.

Danesh, A. S., Saybani, M. R., & Danesh, S. Y. S. (2011). Software release management
challenges in industry: An exploratory study. African Journal of Business Management,
5(20), 8050-8056.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research.
Information Systems Journal, 14(1), 65-86.

Elephant, P. (2006). ITIL IT Service Management Essentials. Course Workbook. Burlington,
Ontario: Pink Elephant Inc.

Erenkrantz, J. R. (2003). Release management within open source projects. Proceedings of the
3rd Open Source Software DevelopmentWorkshop, 51-55.

Jensen, B. B., Lyngshede, S., & Søndergaard, D. Quality Assurance Recommendations for Open
Source Developers.

Jensen, C., & Scacchi, W. (2005). Collaboration, leadership, control, and conflict negotiation and
the netbeans. org open source software development community. System Sciences, 2005.
HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on, 196b-196b.

144

Kajko-Mattsson, M., & Meyer, P. (2005). Evaluating the acceptor side of EM< sup> 3</sup>:
release management at SAS. Paper presented at the Empirical Software Engineering, 2005.
2005 International Symposium on.

Kajko-Mattsson, M., & Yulong, F. (2005). Outlining a model of a release management process.
Journal of Integrated Design and Process Science, 9(4), 13-25.

Kakola, T., Koivulahti-Ojala, M., & Liimatainen, J. (2009). An Information Systems Design
Theory for Integrated Requirements and Release Management Systems. Paper presented at
the System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on.

Karpen, I. O., Bove, L. L., & Lukas, B. A. (2012). Linking Service-Dominant Logic and Strategic
Business Practice A Conceptual Model of a Service-Dominant Orientation. Journal of Service
Research, 15(1), 21-38.

Krishnan, M. S. (1994). Software release management: a business perspective. Paper presented at
the Proceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative
research.

Lahtela, A., & Jantti, M. (2011). Challenges and problems in release management process: A case
study. Paper presented at the Software Engineering and Service Science (ICSESS), 2011
IEEE 2nd International Conference on.

Lewin, K. (1951). Field theory in social science: selected theoretical papers (Edited by Dorwin
Cartwright.).

Mathiassen, L. (2002). Collaborative practice research. Information Technology & People, 15(4),
321-345.

Mathiassen, L., Chiasson, M., & Germonprez, M. (2012). Style composition in action research
publication. MIS Quarterly, 36(2), 347-363.

McFeeley, B. (1996). IDEAL: A User's Guide for Software Process Improvement: DTIC
Document.

McKay, J., & Marshall, P. (2001). The dual imperatives of action research. Information
Technology & People, 14(1), 46-59.

Meyer, M. H., & Seliger, R. (1998). Product platforms in software development. Sloan
Management Review, 40(1), 61-74.

Michlmayr, M. (2005). Quality improvement in volunteer free software projects: Exploring the
impact of release management. Paper presented at the Proceedings of the First International
Conference on Open Source Systems.

Michlmayr, M., Hunt, F., & Probert, D. (2007). Release management in free software projects:
Practices and problems. Open Source Development, Adoption and Innovation, 295-300.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook:
Sage Publications, Incorporated.

Napier, N. P., Mathiassen, L., & Johnson, R. D. (2009). Combining perceptions and prescriptions
in requirements engineering process assessment: an industrial case study. Software
Engineering, IEEE Transactions on, 35(5), 593-606.

Otte, T., Moreton, R., & Knoell, H. D. (2008). Applied quality assurance methods under the open
source development model. Paper presented at the Computer Software and Applications,
2008. COMPSAC'08. 32nd Annual IEEE International.

Pettigrew, A. M. (1985). Contextualist research and the study of organizational change processes.
Research methods in information systems, 53-78.

145

Prasad, R. K. (1994). Towards a zero-defect product-the End-To-End test process. Paper
presented at the Software Testing, Reliability and Quality Assurance, 1994. Conference
Proceedings., First International Conference on.

Pratim Ghosh, P., & Chandy Varghese, J. (2004). Globally distributed product development using
a new project management framework. International Journal of Project Management, 22(8),
669-678.

Ramakrishnan, M. (2004). Software release management. Bell Labs Technical Journal, 9(1), 205-
210.

Rana, A. I., & Arfi, M. W. (2005). Software Release Methodology: A Case Study. Paper
presented at the Engineering Sciences and Technology, 2005. SCONEST 2005. Student
Conference on.

Rapoport, R. N. (1970). Three dilemmas in action research with special reference to the Tavistock
experience. Human relations, 23(6), 499-513.

Schneider, B., & Bowen, D. E. (2010). Winning the service game: Springer.
Scott, J. A., & Nisse, D. (2001). Software configuration management. SWEBOK, 103.
Susman, G. I., & Evered, R. D. (1978). An assessment of the scientific merits of action research.

Administrative Science Quarterly, 582-603.
Syed, K. (2014). Improving Recurrent Software Development: A Contextualist Inquiry into

Release Cycle Management.
Team, C. P. (2006). CMMI for Development, version 1.2.
Van de Ven, A. H. (2007). Engaged Scholarship: A Guide for Organizational and Social

Research: A Guide for Organizational and Social Research: Oxford University Press.
Van Der Hoek, A., Hall, R., Heimbigner, D., & Wolf, A. (1997). Software release management.

Software Engineering—ESEC/FSE'97, 159-175.
Van der Hoek, A., & Wolf, A. L. (2002). Software release management for component‐based

software. Software: Practice and Experience, 33(1), 77-98.
Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of

marketing, 1-17.
Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of

the Academy of Marketing Science, 36(1), 1-10.

Wright, H. K. (2009). Release engineering processes, models, and metrics. Paper presented at the
Proceedings of the doctoral symposium for ESEC/FSE on Doctoral symposium.

146

APPENDIX B: SECURE-ON-REQUEST RELEASE MANAGEMENT

IMPROVEMENT PROJECTS – STATUS REPORT

147

148

APPENDIX C: CUSTOMER ADVISORY BOARD - MEETING

ITEMS

149

150

APPENDIX D: OCTOBER 2013 RELEASE SECURE-ON-REQUEST

RELEASE CHECKLIST

151

APPENDIX E: DATA ANALYSIS SCHEMA (AS SEEN IN NVIVO)

152

APPENDIX F: SECURE-ON-REQUEST NEW RELEASE CYCLE

MODEL

153

APPENDIX G: SECURE-ON-REQUEST RELEASE MANAGEMENT

ASSESSMENT AND IMPROVEMENT OPTIONS

Meeting with Steering Committee - June 20th 2013

154

155

156

157

158

159

REFERENCES

Aaen, I. (2002, January). Challenging Software Process Improvement By Design. In ECIS (pp.
379-390).

Abrahamsson, P. (2000). Is management commitment a necessity after all in software process
improvement?. In Euromicro Conference, 2000. Proceedings of the 26th (Vol. 2, pp. 246-
253). IEEE.

Abrahamsson, P. (2001). Rethinking the concept of commitment in software process
improvement. Scandinavian Journal of Information Systems, 13, 69-98.

Allison, I., & Merali, Y. (2007). Software process improvement as emergent change: A
structurational analysis. Information and software technology, 49(6), 668-681.

Avison, D., Baskerville, R., & Myers, M. (2001). Controlling action research projects.
Information technology & people, 14(1), 28-45.

Bach, J. (1995). Enough about process: what we need are heroes. Software, IEEE, 12(2), 96-98.

Ballintijn, G. (2005, September). A Case Study of the Release Management of a Health-care
Information System. In ICSM (Industrial and Tool Volume) (pp. 34-43).

Banker, R. D., & Slaughter, S. A. (2000). The moderating effects of structure on volatility and
complexity in software enhancement. Information Systems Research, 11(3), 219-240.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software complexity and
maintenance costs. Communications of the ACM, 36(11), 81-94.

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development practices, software
complexity, and software maintenance performance: A field study. Management Science,
44(4), 433-450.

Barqawi, N., & Syed, K. (2014). Improving Processes and Services in a Software Unit: An
Action Research Study into Release Management.

Barqawi, N. (2014). Software Service Innovation: An Action Research into Release Cycle
Management.

Baskerville, R. L., & Wood-Harper, A. T. (1996). A critical perspective on action research as a
method for information systems research. Journal of Information Technology, 11(3), 235-
246.

Baskerville, R., & Pries-Heje, J. (1999). Grounded action research: a method for understanding
IT in practice. Accounting, Management and Information Technologies, 9(1), 1-23.

Baskerville, R., & Pries-Heje, J. (1999). Knowledge capability and maturity in software
management. ACM SIGMIS Database, 30(2), 26-43.

161

Baskerville, R., & Wood-Harper, A. T. (1998). Diversity in information systems action research
methods. European Journal of Information Systems, 7(2), 90-107.

Benlian, A., Koufaris, M., & Hess, T. (2011). Service quality in software-as-a-service:
developing the SaaS-Qual measure and examining its role in usage continuance. Journal of
Management Information Systems, 28(3), 85-126.

Bitner, M. J., Ostrom, A. L., & Morgan, F. N. (2008). Service blueprinting: a practical technique
for service innovation. California Management Review, 50(3), 66.

Bollinger, T. B., & McGowan, C. (1991). A critical look at software capability evaluations.
Software, IEEE, 8(4), 25-41.

Borjesson, A., & Mathiassen, L. (2004). Successful process implementation. Software, IEEE,
21(4), 36-44.

Brodman, J. G., & Johnson, D. L. (1995). Return on investment (ROI) from software process
improvement as measured by US industry. Software Process: Improvement and Practice,
1(1), 35-47.

Carlshamre, P. (2002). Release planning in market-driven software product development:
Provoking an understanding. Requirements Engineering, 7(3), 139-151.

Carmel, E., & Becker, S. (1995). A process model for packaged software development.
Engineering Management, IEEE Transactions on, 42(1), 50-61.

Coghian, D. (2001). Insider Action Research Projects Implications for Practising Managers.
Management Learning, 32(1), 49-60.

Colomo-Palacios, R., Soto-Acosta, P., García-Peñalvo, F. J., & García-Crespo, Á. (2012). A
study of the impact of global software development in packaged software release planning.
Journal of Universal Computer Science, 18(19), 2646-2668.

Crosby, P. B. (1979). Quality is free: The art of making quality certain (Vol. 94). New York:
McGraw-Hill.

Curtis, B. (1994). A Mature View of the CMM. American Programmer, 7, 19-19.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research.
Information systems journal, 14(1), 65-86.

Deming, W. E. (1992). Out of Crisis, Massachusetts Institute of Technology, Centre for
Advanced Engineering Study.

Diaz, M., & Sligo, J. (1997). How software process improvement helped Motorola. Software,
IEEE, 14(5), 75-81.

Dorenbos, D., & Combelles, A. (2004). Introduction: Lessons Learned around the World: Key
Success Factors to Enable Process Change. Software, IEEE, 21(4), 20-21.

162

Dyba, T. (2005). An empirical investigation of the key factors for success in software process
improvement. Software Engineering, IEEE Transactions on, 31(5), 410-424.

Elephant, Pink. (2006). ITIL IT Service Management Essentials. Course Workbook. Burlington,
Ontario: Pink Elephant Inc.

Fayad, M. E., & Laitnen, M. (1997). Process assessment considered wasteful. Communications of
the ACM, 40(11), 125-128.

Fichman, R. G., & Kemerer, C. F. (1997). The assimilation of software process innovations: an
organizational learning perspective. Management Science, 43(10), 1345-1363.

Frederiksen, H. D., & Mathiassen, L. (2008). A contextual approach to improving software
metrics practices. Engineering Management, IEEE Transactions on, 55(4), 602-616.

Gaur, P., & Oberoi, A. (2012). A Resource Oriented Intelligent Scheduling Scheme to Estimate
Software Release. International Journal, 2(9).

Grady, R. B. (1997). Successful software process improvement (p. 253). Prentice Hall PTR.

Guerrero, F., & Eterovic, Y. (2004). Adopting the SW-CMM in a Small IT Organization.
Software, IEEE, 21(4), 29-35.

Haley, T. J. (1996). Software process improvement at Raytheon. Software, IEEE, 13(6), 33-41.

Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process improvement
reduce the severity of defects? A longitudinal field study. Software Engineering, IEEE
Transactions on, 38(4), 810-827.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997). Software quality and
the capability maturity model. Communications of the ACM, 40(6), 30-40.

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases through build,
test, and deployment automation. Pearson Education.

Humphrey, W. S. (1989). Managing the Software Process (Hardcover). Addison-Wesley
Professional.

Humphrey, W. S., & Curtis, B. (1991). Comments ona critical look'[software capability
evaluations]. Software, IEEE, 8(4), 42-46.

Humphrey, W. S., Snyder, T. R., & Willis, R. R. (1991). Software process improvement at
Hughes Aircraft. Software, IEEE, 8(4), 11-23.

Juran, J. M. (1959). A Note on Economics of Quality. Industrial Quality Control, pp. 20-23,
1959.

Juran, J. M. (1992). Juran on quality by design: the new steps for planning quality into goods and
services. SimonandSchuster.com.

163

Kemerer, C. F. (1995). Software complexity and software maintenance: A survey of empirical
research. Annals of Software Engineering, 1(1), 1-22.

Kohoutek, H. J. (1996). Reflections on the capability and maturity models of engineering
processes. Quality and reliability engineering international, 12(3), 147-155.

Krishnan, M. S., & Kellner, M. I. (1999). Measuring process consistency: Implications for
reducing software defects. Software Engineering, IEEE Transactions on, 25(6), 800-815.

Kuvaja, P., & Bicego, A. (1994). BOOTSTRAP—a European assessment methodology. Software
Quality Journal, 3(3), 117-127.

Lahtela, A., & Jantti, M. (2011, July). Challenges and problems in release management process:
A case study. In Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd
International Conference on (pp. 10-13). IEEE.

Larsen, E. A., & Kautz, K. (1996, December). Quality assurance and software process
improvement in Norway. In Software Process, 1996. Proceedings., Fourth International
Conference on the (pp. 131-148). IEEE.

Lee, Y. W. (2003). Crafting rules: context-reflective data quality problem solving. Journal of
Management Information Systems, 20(3), 93-119.

Lewin, K. (1952). Field theory in social science: Selected theoretical papers. D. Cartwright (Ed.).
London: Tavistock.

Li, G., & Rajagopalan, S. (1998). Process improvement, quality, and learning effects.
Management Science, 44(11-Part-1), 1517-1532.

Mashiko, Y., & Basili, V. R. (1997). Using the GQM paradigm to investigate influential factors
for software process improvement. Journal of Systems and Software, 36(1), 17-32.

Mathiassen, L. (1998). Reflective Systems Development. Scandinavian Journal of Information
Systems, 10(1&2), 67-118.

Mathiassen, L. (2002). Collaborative practice research. Information Technology & People, 15(4),
321-345.

Mathiassen, L., & Pedersen, K. (2008). Managing uncertainty in organic development projects.
Communications of the Association for Information Systems, 23(1), 27.

Mathiassen, L., & Sørensen, C. (1996). The capability maturity model and CASE. Information
Systems Journal, 6(3), 195-208.

Mathiassen, L., Chiasson, M., & Germonprez, M. (2012). Style Composition in Action Research
Publication. MIS Quarterly, 36(2), 347-363.

Mathiassen, L., Nielsen, P. A., & Pries-Heje, J. (2002). Learning SPI in practice. Improving
Software Organizations: From Principles to Practice.

164

Mazlan, M. A., Sefat, M. H., Selan, N. E., & Lukose, D. (2013). Holistic approach to software
build and release process with pre-emptive measures for sustainable quality control. In 22nd
Australasian Software Engineering Conference: ASWEC 2013 (p. 12). Engineers Australia.

McFeeley, B. (1996). IDEAL: A User's Guide for Software Process Improvement (No.
CMU/SEI-96-HB-001). CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook.
Sage.

Müller, S. D., Mathiassen, L., & Balshøj, H. H. (2010). Software Process Improvement as
organizational change: A metaphorical analysis of the literature. Journal of Systems and
Software, 83(11), 2128-2146.

Mumford, E. (2001). Helping Organizations to Change. Qualitative Research in International
Settings: Issues and Trends, 46.

Myers, M. D. (2008). Qualitative research in business and management. Sage.

Napier, N. P., Mathiassen, L., & Johnson, R. D. (2009). Combining perceptions and prescriptions
in requirements engineering process assessment: an industrial case study. Software
Engineering, IEEE Transactions on, 35(5), 593-606.

Napier, N. P., Mathiassen, L., & Robey, D. (2011). Building contextual ambidexterity in a
software company to improve firm-level coordination. European Journal of Information
Systems, 20(6), 674-690.

Ncube, C., Oberndorf, P., & Kark, A. W. (2008). Opportunistic software systems development:
making systems from what's available. IEEE Software, 25(6), 38-41.

Ngwenyama, O., & Nielsen, P. A. (2003). Competing values in software process improvement:
an assumption analysis of CMM from an organizational culture perspective. Engineering
Management, IEEE Transactions on, 50(1), 100-112.

Niazi, M., Wilson, D., & Zowghi, D. (2006). Critical success factors for software process
improvement implementation: an empirical study. Software Process: Improvement and
Practice, 11(2), 193-211.

Nielsen, P. A., & Nørbjerg, J. (2001). Software process maturity and organizational politics.
Working Conference on Realigning Research and Practice in Information Systems
Development: The Social and Organizational Perspective, 2001, pp. 221–240.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity model,
version 1.1. Software, IEEE, 10(4), 18-27.

Pettigrew, A. M. (1987). Context and action in the transformation of the firm. Journal of
management studies, 24(6), 649-670.

165

Pettigrew, A. M. (1990). Longitudinal field research on change: theory and practice. Organization
science, 1(3), 267-292.

Pettigrew, A., McKee, L., & Ferlie, E. (1988). Understanding change in the NHS. Public
Administration, 66(3), 297-317.

Qian, L., Yao, Q., & Khoshgoftaar, T. M. (2010). Dynamic Two-phase Truncated Rayleigh
Model for Release Date Prediction of software. Journal of Software Engineering &
Applications, 3(6).

Ramasubbu, N., Mithas, S., Krishnan, M. S., & Kemerer, C. F. (2008). Work dispersion, process-
based learning, and offshore software development performance. MIS quarterly, 32(2), 437-
458.

Rapoport, R. N. (1970). Three dilemmas in action research with special reference to the Tavistock
experience. Human relations, 23(6), 499-513.

Ravichandran, T., & Rai, A. (2000). Quality management in systems development: an
organizational system perspective. Mis Quarterly, 381-415.

Regnell, B., & Kuchcinski, K. (2011, August). Exploring Software Product Management decision
problems with constraint solving-opportunities for prioritization and release planning. In
Software Product Management (IWSPM), 2011 Fifth International Workshop on (pp. 47-56).
IEEE.

Ruhe, G., & Saliu, M. O. (2005). The art and science of software release planning. Software,
IEEE, 22(6), 47-53.

Sawyer, S. (2000). Packaged software: implications of the differences from custom approaches to
software development. European Journal of Information Systems, 9(1), 47-58.

Scott, J. A., & Nisse, D. (2001). Software configuration management. SWEBOK, 103.

Sommerville, I. (1995) Software Engineering, Fifth Edition, Addison-Wesley, Reading,
Massachusetts.

Stelzer, D., & Mellis, W. (1998). Success factors of organizational change in software process
improvement. Software Process: Improvement and Practice, 4(4), 227-250.

Susman, G. I., & Evered, R. D. (1978). An assessment of the scientific merits of action research.
Administrative science quarterly, 582-603.

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., & Shafique, M. U. (2010). A
systematic review on strategic release planning models. Information and software technology,
52(3), 237-248.

Taborda, L. J. (2011). Enterprise Release Management: Agile Delivery of a Strategic Change
Portfolio. Artech House.

166

Team, CMMI Product. (2006). CMMI for Development, version 1.2.

Truex, D. P., Baskerville, R., & Klein, H. (1999). Growing systems in emergent organizations.
Communications of the ACM, 42(8), 117-123.

Van Der Hoek, A., Hall, R. S., Heimbigner, D., & Wolf, A. L. (1997). Software release
management (Vol. 22, No. 6, pp. 159-175). ACM.

Van der Velden, M. J., Vreke, J., Van Der Wal, B., & Symons, A. (1996). Experiences with the
Capability Maturity Model in a research environment. Software Quality Journal, 5(2), 87-95.

Xu, L., & Brinkkemper, S. (2007). Concepts of product software. European Journal of
Information Systems, 16(5), 531-541.

Yin, R. K. (2008). Case study research: Design and methods (Vol. 5). Sage

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 4-15-2014

	Improving Recurrent Software Development: A Contextualist Inquiry Into Release Cycle Management
	Syed M. Kamran
	Recommended Citation

	List of Tables
	List of Figures
	Abbreviations and Definitions
	ABSTRACT
	INTRODUCTION
	Literature Review
	II.I Software Release Literature
	II.II Software Process Improvement Literature

	Analytical Framework
	Research Methodology
	IV.I Problem-Solving Cycle
	IV.II Research Cycle
	IV.III Data Collection
	IV.IV Data Analysis
	IV.IV.i Data Reduction
	IV.IV.ii Data Display
	IV.IV.iii Conclusion Drawing and Verification

	Results
	V.I Diagnostic Phase
	V.I.i Process
	V.I.ii Content
	V.I.iii Context

	V.II Establishment Phase
	V.II.i Process
	V.II.ii Content
	V.II.iii Context

	V.III Acting Phase
	The acting phase began in July 2013 with the kickoff meetings of the three improvement projects (Appendix A, Table 4.4; Table 6).
	V.III.i Process
	V.III.ii Content
	V.III.iii Context

	V.IV Learning Phase
	V.IV.i Process
	V.IV.ii Content
	V.IV.iii Context

	Discussion
	VI.I Improving Release Cycle Management at Software Inc.
	VI.I.i Release Cycle Management
	VI.I.ii Problem Solving
	VI.I.iii Continuous Improvement
	VI.I.iv Software Quality
	VI.I.v Stakeholder Assessment

	VI.II Release Cycle Management in Recurrent Software Development
	VI.III A Grounded Model of Release Cycle Management

	Conclusion
	Appendix A: Shared Platform Document
	A1.0 Problem Setting
	A1.1 Recently Acquired Software
	A1.2 Complexity of Service Delivery
	A1.3 New Engineering and Product Management Team
	A1.4 Low Software Engineering Process Maturity
	A1.5 Actors

	A2.0 Release Cycle Management
	A3.0 Research Methodology
	A3.1 Engaged Scholarship
	A3.2 Action Research Design

	A4.0 Problem-Solving Cycle
	A4.1 Initiation Phase
	A4.2 Diagnostic Phase
	A4.3 Establishment Phase
	A4.4 Acting Phase
	A4.5 Learning Phase

	A5.0 Research Cycle
	A5.1 Data Collection
	A5.2 Data Analysis

	A6.0 Principles of Canonical Action Research
	Appendix A References
	Appendix B: Secure-On-Request Release Management Improvement Projects – Status Report
	Appendix C: Customer Advisory Board - Meeting Items
	Appendix D: October 2013 Release Secure-on-Request Release Checklist
	Appendix E: Data Analysis Schema (as seen in NVivo)
	Appendix F: Secure-on-Request New Release Cycle Model
	Appendix G: Secure-On-Request Release Management Assessment And Improvement Options
	References

