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ABSTRACT 

DNA sliding clamps are structurally conservative toroid-shape proteins that encircle and 

slide along DNA, serving as scaffold for other functional enzymes to act on DNA and ensuring 

the replication proccessivity, thereby, of fundamental biological significance across domains of 

life. Mechanistic details and related functional implications concerning clamp opening, interac-

tion between clamp and clamp-interactive proteins, post-translational modification of sliding 

clamp remain largely elusive due to technical difficulties in single molecule level manipulations 

and structural studies on large biological complex.  

Toward the end of providing a unified molecular-level description on clamp loading that 

would account for all available experimental observations, we calculated the interface binding 

energy and depicted the residue pair contributions using MM/PBSA and MM/GBSA calculations 



to compare the different interfaces of sliding clamps, and dissolved the uncertainty in compara-

tive stability of different sliding clamp interfaces. The possible interface breaking pathways were 

investigated by sampling the opening state of interfaces using SMD simulations.  

Functioning as a polymerase accessory factor, sliding clamp associates with the dual en-

zymatic functional polymerase B (PolB) as DNA replication occurs. The massive conformational 

switch of PolB between replicating and editing mode is recognized for its functional significance 

but little is understood in the context of the PCNA/PolB/DNA complex. We integrated the struc-

tural informations from individual and binary crystal structures, as well as low-resolution struc-

tural information and other functional assay results, to build the complex atomistic models in 

both modes and refine them through atomistic simulations. The transition process was probed 

using TMD and ENM to reveal the structural characteristics and determinants of the transition. 

Sliding clamp is also a master coordinator of cellular responses to DNA damage. Efforts with the 

same methodology were made on human PCNA/FEN1/DNA ternary complex to investigate the 

reversible associations of FEN1 to PCNA and the conformational switching leading to exchange 

of repair intermediates.  

 In the third thrust, we modeled the ubiquitin-modified and SUMO-modified PCNA using 

protein-protein docking and atomic simulation. Alongside with the SAXS data, our results re-

vealed the structural basis for the distinct functional outcomes upon different posttranslational 

modification of PCNA. 

 
INDEX WORDS: DNA replication, DNA repair, Sliding clamp, Proliferating cell nuclear anti-

gen (PCNA), Polymerase B (PolB), Flap endonuclease-1 (FEN1), MM/PBSA, 
MM/GBSA, Molecular dynamics (MD), Steered molecule dynamics (SMD), Targeted 
molecule dynamics (TMD), Small angle X-ray scattering (SAXS) 
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CHAPTER 1.  SLIDING CLAMP IN DNA REPLICATION AND REPAIR 

1.1 Replisome 

Genome replication is a vital event in the life cycle of all organisms. During the chromo-

some replication phase, the physical integrity of DNA is preserved through a precisely controlled 

semiconservative mechanism, which is carried out by a macromolecular assembly that consti-

tutes numerous proteins, the replisome (1). During DNA replication, the replisome has to couple 

the unwinding of parental double-stranded (ds) DNA with nascent DNA synthesis on both 

strands. Two dsDNA duplexes with the exact same sequence as the parental dsDNA are pro-

duced via replication, while in real life it is not as straightforward as it appears to be since the 

replisome also needs to integrate DNA damage response signals into the progression, arresting, 

and resume of replication fork progression (1,2). 

The replisome’s various functionalities arise from its constituent modules, common to all 

domains of life: the helicase, single strand binding protein (SSB), primase, DNA polymerase, 

proofreading 3’-5’ exonucleases, primer removal endonuclease, ligase, sliding clamp and the 

clamp loader. These modules facilitate the loading of toroidal sliding clamps onto primed DNA, 

guaranteeing high processivity in DNA replication (1,3,4). Followed by the assembly of the 

replisome at sequence-specific positions along DNA, known as origin sequences, duplex DNA is 

separated into leading and lagging template strands by a helicase. The SSBs then bind to the two 

separated DNA strands to stabilize them and prevent annealing. To initiate DNA synthesis, a 

short strand of RNA primer must be synthesized by primase for either leading or lagging-strand. 

The replicase is then being able to start synthesizing the nascent DNA with the template and 

primer on each strand. Since replicases proceed in a unidirectional manner during replication, 

and because both strands of the nascent DNA synthesis occur in the 5’ to 3’ direction, the anti-
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parallel nature of dsDNA dictates that the leading strand be extended in the same direction as 

replication fork movement, while the lagging strand has to be synthesized in the opposite direc-

tion. As a result, the lagging-strand template accumulates single-strand (ss) DNA as a collection 

of Okazaki fragments (5). It’s worth noting that the sliding clamp has to be loaded onto each 

template strand by a clamp loader prior to the initiation of replication to ensure processsivity (6). 

Even though replication is carried out by a high fidelity replicase, it is still subject to an intrinsic 

low error rate due to the misincorporation of incorrect deoxynucleoside triphosphate (dNTP) into 

the growing chain. Most of these errors can be detected and corrected by the intrinsic 3’ to 5’ 

exonuclease activity of the replicase. The primer for nascent strand DNA strand needs to be re-

moved by organism-specific enzymes such as DNA polymerase I, RNAse H, flap endonuclease 

1 (FEN1), etc. In the last stage, the ligase must connect the Okazaki fragments on the lagging 

strand to complete the replication (1-3). 

Despite substantial conservation of the core components and functional mechanisms of 

cellular replisomes, significant differences in the complexity, inter-component interactions and 

mechanistic regulation have evolved between different domains of life (3). A comparison of 

these differences between a selection of different organisms is shown in Table 1.1. 

1.1.1 Prokaryotic replisome 

As with many other in vivo studies, examining the replisome is easiest in prokaryotes. For 

example, the E. coli replisome is comprised of the replicase DNA polymerase III (Pol III), slid-

ing clamp (β-clamp), the clamp loader (γ-complex) etc. (Table 1). The homohexameric 

DnaBencircles one strand of the parental DNA, utilizing the energy from ATP hydrolysis to sep-

arate the duplex DNA into two daughter strands by translocating along the strand in the 5’ to 3’ 

direction within its DNA-binding pore. SSB proteins are then recruited to each strand to remove 
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thermodynamically favorable secondary structural formations that may impede replication and 

prevent proper annealing. The Pol III complexes for both leading- and lagging-strand are teth-

ered to a β-clamp (also complexed with DnaB), synthesize complementary DNA strands with 

template and primer, which is created by DnaG, an RNA primase.   

 

Table 1.1 The replicase components from different domains of life 

 

Component E.coli Eukaryotes Archaea T4 Phage 

Polymerase 

Pol III Core 

(αεθ) Pol α/δ/ε Pol δ gp43 

Sliding clamp β-clamp PCNA PCNA gp45 

Clamp loader γ-complex RFC RFC gp44/62 

SSB SSB RPA RPA gp32 

Primase DnaG Pol α-primase Primase gp61 

Helicase DnaB 

MCM2-

7/CMG MCM gp41 

 

 

With the help of accessory proteins, Pol III becomes very efficiency and attains the high-

est specificity of all E. coli DNA polymerases. Each Pol III core consists of 3 subunits: α, ε, and 

θ (7,8).  The α subunit is encoded by dnaE gene, possesses DNA polymerase activity, is capable 

of incorporating 8 nucleotides/second (ntd/s), on the order of magnitude of Pol III core activity 

(20 ntd/s) (9). The ε subunit is a proofreading 3′-5′ exonuclease, encoded by dnaQ. While the ε 
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subunit is essential to maintain the processivity of Pol III , the small θ subunit (holE) bears no 

substantial recognized function but a slight stimulation on the activity of ε (10). Pol III operates 

with high fidelity, misinorporating one incorrect dNTP in about every 106 to 107 bases (11). The 

ε subunit of the polymerase removes incorrect dNTPs to augment fidelity. The dimeric, ring-

shaped β-clamp, tethered to Pol III, topologically encircles template DNA, preventing the disso-

ciation of the polymerase from the DNA and furthering proccessivity. With energy from ATP 

hydrolysis, the clamp loader opens and then reseals the β-clamp subunit-subunit interface around 

DNA (3).  

Pol III synthesizes lagging-strand Okazaki fragments in a series of 1–2 kilo-base (kb) 

pieces by traveling in the opposite direction of replication fork progression (12,13). The C-

terminal extension of the clamp loader τ subunits’ simultaneous binding of Pol III and DnaB 

keeps the replisome from falling apart while creating a DNA loop between the lagging strand β-

clamp and the helicase. When Okazaki fragment synthesis is nearly complete, the β-clamp disso-

ciates from Pol III and DNA, and the loop region relaxes (14,15). The Pol III complex and β-

clamp then recycles on the upstream RNA primer for the new Okazaki fragment synthesis. After 

Okazaki fragment synthesis, DNA Pol I has to replace the RNA primer with DNA when an Oka-

zaki fragment is completed. The gaps between Okazaki fragments are fixed by ligase in the end 

(3).  

1.1.2  Eukaryotic replisome 

The replisome in eukaryotic cells contains modules of similar functionalities to those 

found in E. coli replisome. The homohexameric helicase MCM (Minichromosome Maintenance, 

Mcm2-7) contains six distinct subunits; its prokaryotic analog being DnaB in E. coli. MCM en-

circles the template leading-strand and translocates in the direction of 3’ to 5’ to disrupt the du-
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plex DNA. Instead of Pol III operating on both strands for DNA synthesis as in E. coli, Pol ε and 

Pol δ act as two separate polymerases on the leading and lagging-strand, respectively (16). The 

eukaryotic, homotrimeric sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is the homo-

trimer sliding clamp in eukaryote, adopts the ring-shaped structure. The Pol α-primase contains 

four subunits that include a primase and DNA polymerase, capable of synthesizing the RNA-

DNA hybrid primer rather than the single-stranded RNA fragment. The heterotimeric Replica-

tion Protein A (RPA) is the E. coli SSB functional counterpart in eukaryotes, removing second-

ary structure impediments and stabilize the single-stranded template DNA. 

Some other proteins such as Cdc45, Sld2, Sld3, Dpb11, GINS complex (Go, Ichi, Nii, 

and San), etc., are also involved in the initiation and progression of replication without known 

prokaryotic counterparts. The exact functions of most of these participants remain largely un-

clear (17), while it has been proved that the functioning processes of many of these proteins are 

precisely regulated by posttranslational modification, such as phosphorylation, ubiquitination 

and sumoylation. These modifications are thought to be critical modulators in cell cycle control 

and DNA-damage responses (18). The synthesis of the lagging-strand follows a similar mecha-

nism as that in E. coli, with the eukaryotic Okazaki fragments being only 100–200 bases, much 

shorter than the 1–2 kb in E. coli (19). The RNA primers are hydrolyzed by either DNA2 nucle-

ase or FEN1. The gaps between Okazaki fragments are then fixed by DNA ligase I. 

1.2 Sliding Clamp 

Sliding clamps tether polymerases to DNA templates, drastically increasing both the 

length of DNA being synthesized per association event and the rate of DNA synthesis. Although 

sliding clamps are largely viewed as accessory or scaffold proteins, they also play critical roles in 
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cell cycle control and DNA repair checkpoints by coordinating numerous proteins involved in 

signaling pathways. 

1.2.1 Structural features of sliding clamps 

Sliding clamps from different domains of life do not share much sequence identity; how-

ever, they all adopt the toroid shape structure that could encircle the dsDNA. Bacterial clamps 

are ring-shaped homodimers, such as the β-clamp in E. coli (20), PCNA eukaryotic clamp 

(21,22), gp45 clamps from T4 bacteriophage (23) and most archaeal PCNA clamps are homotri-

mers (24-26). On contrary, the Rad9-Hus1-Rad1 checkpoint clamp and the clamp from the ar-

chaebacteria Sulfolobus solfataricus are heterotrimeric complexes (27,28). Regardless of the 

subunit composition difference and the little sequence homology over sliding clamps from dif-

ferent species, the overall structures of them are substantially similar. Each clamp consists of six 

domains held together through non-covalent interactions between adjacent domains. Inter-

domain connector (IDC) loops, positioned on the outer surface of the ring structure serve as link-

ers between domains. Each clamp subunit contains three domains in the case of dimeric clamps 

such as β-clamp, and contains two domains in trimeric clamps such as PCNA. In the clamp load-

ing process, the subunit-subunit interfaces formed by the non-covalent interaction between 

neighboring subunits need to be disrupted before template DNA can be threaded in. 

Subunits within a clamp are arranged in a head-to-tail fashion so that each subunit adopts 

the same directionality around the rotational axis of symmetry. In addition, this arrangement cre-

ates two surfaces with distinct structural features on the surface of the planar ring. It’s been 

shown that all proteins known to interact with a sliding clamp associate with the same clamp sur-

face that has the IDC loops on it, binding the IDC loops through a clamp-binding motif (which 

features a cluster of hydrophobic residues) in both prokaryotes and eukaryotes (29,30). Sequence 
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alignments and binding assays suggest a consensus binding sequence for PCNA has been pro-

posed to be Qxx(I/L/M)xxF(F/Y) for PCNA (31,32) and QLxLF (33) or QxxL(x)F (34) for E. 

coli β-clamp based on sequence alignments and binding assays. These motifs are capable of 

binding to a hydrophobic patch on the surface of IDC loops of the clamps (29,30). Each clamp 

subunit contains one such binding pocket, so there are multiple binding pockets for either PCNA 

or E. coli β-clamp. However, steric hindrances prevent the clamp from binding to multiple inter-

active partners. For example, clamp loader dissociation is prerequisite to polymerase-sliding 

clamp interaction. 

PCNA is known to interact with a variety of protein partners involved in DNA replication 

and repair, translesion DNA synthesis, chromatin structure remodeling, cell cycle control and a 

variety of metabolic pathways by coordinating the functions of various proteins (35-38). The 

structural basis for the broad array of PCNA-interacting proteins is a weak consensus sequence 

binding motif. PCNA’s protein association versatility is exemplified by specific RFC clamp 

loader binding. It’s been known that an alternative RFC clamp loaders in which one subunit is 

replaced by another protein that specializes in different function; the alternative clamp loader is 

capable of load the checkpoint clamp (9-1-1) instead of PCNA  at specific target sites (39,40).  

Interactions between the DNA backbone and the side chains lining the PCNA pore are 

primarily non-specific electrostatic interactions between phosphorylate group and positively 

charged residue side chains, providing an interface conducive to sliding at physiological ionic 

strength. 

1.2.2 Clamp loading process 

An opening and resealing process of a clamp is required for loading it onto DNA. This 

process is facilitated by a clamp-loader, which is a multi-protein clamp-loading ATPase. In eu-
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karyotic cells, the replication factor C (RFC) is the clamp loader, consisting of five different ho-

mologous proteins that are in turn homologous to the γ and δ’ subunits of E. coli γ-complex, the 

prokaryotic analog of RFC (29,41). All subunits of RFC are members of the AAA+ protein fami-

ly, and they are arranged in a circle (42,43). Common sequence motifs among these clamp-

loader AAA+ proteins have been termed RFC boxes.  

In E. coli, the β-clamp enables the distributive DNA polymerase III to become highly 

processive, remaining bound with DNA template through the extensive reactions of incorporat-

ing dNTPs during DNA replication. The γ-complex binds to the β-clamp, triggering ring opening, 

which then leads to DNA association. ATP binding is necessary for triggering the clamp opening 

and DNA template positioning, and the subsequent ATP hydrolysis reseals the clamp (44). This 

loading process occurs only once per round of replication on the leading strand, while multiple 

loading events are necessary on the lagging strand due to the nature of the Okazaki fragments. 

Finally, the clamp dissociates from the replication machinery upon reaching the 5' end of the pre-

existing daughter DNA.  

In eukaryotic cells, RFC loads PCNA onto a 3′ primer/template junction and then disso-

ciates upon ATP binding, freeing PCNA for association with Pol δ (3). The pentameric arrange-

ment of the RFC subunits was originally proposed based on sequence and subunit interaction 

similarities to E. coli γ-complex, and was later proven by structural studies (29,45). The five 

RFC subunits in S. cerevisiae are referred to as RFC1 through RFC5. RFC1 resembles the δ sub-

unit of E. coli γ-complex in the conserved clamp-interacting residues and its position in the com-

plex. RFC2–4 share characteristics of the γ subunit of E. coli γ-complex in forming a trimeric 

ATPase subassembly. The positioning of RFC5 in RFC complex resembles that of the δ′ subunit 

in E. coli γ-complex. RFC5 contains an SRC motif (a conserved serine-arginine-cysteine motif 
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present in all known clamp loaders) but lacks the consensus phosphate-binding loop (P-loop). 

The ATP binding sites of RFC or γ-complex (γ3δδ′) are located at subunit-subunit interfaces, 

while RFC contains four competent ATPase sites as opposed to three since RFC1 also binds 

ATP whereas δ does.  

The PCNA loading process is highly sequential. RFC binds two ATP molecules before 

associating with PCNA. RFC then binds a third ATP before threading the primer/template DNA 

through the PCNA pore. The DNA binding triggers ATP hydrolysis followed closely by PCNA 

resealing and RFC dissociation (Figure 1.1) (46). Mutagenesis studies of the residues involved in 

ATP binding have illustrated that all four consensus ATP binding sites are critical for RFC activ-

ity (47,48). P-loop region mutants retain the ability to bind PCNA but are incapable of binding 

DNA (47). A number of crystal structures of RFC-PCNA complexes have provided detailed in-

formation on how clamp loaders interact with clamps, greatly enhancing our understanding of 

clamp loading mechanisms (29,49). 
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Figure 1.1 Clamp-loading mechanism and subsequent exchange of the clamp loader with 
DNA polymerase on the sliding clamp. 

In the presence of ATP, the clamp loader binds and opens the ring-shaped DNA sliding 

clamp for its loading on the DNA. The clamp loader then hydrolyzes ATP before its dissociation 

from the clamp–DNA complex. In the final step, DNA polymerase binds to the clamp to begin 

DNA replication. 
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CHAPTER 2.  METHODS  

2.1 Molecular Dynamics 

Since the first application of Molecular Dynamics (MD) simulation to protein in 1977 

(50), MD simulation has been vastly developed and become an established powerful tool in 

studying biological macromolecular systems, probing the structural, dynamic, kinetics, thermo-

dynamic, and other time dependent features (51-53). The successful applications of MD simula-

tions have covered many studies on bimolecular stability, conformational and allosteric proper-

ties, dynamic properties, molecular recognition and the properties of complexes, ion and small 

molecule transport, protein lipid interaction etc. (54). With MD simulations, detailed dynamic 

atomistic level information can be obtained to facilitate the interpretation of experimental data to 

gain access to information not directly accessible or inaccessible by experiments. Therefore, it is 

a valuable tool in advancing our knowledge of many biomolecular systems.  

The motions of the particles in a MD simulation obey Newton’s laws of motions so the 

electronic degrees of freedom are not explicitly handled in a MD system. Therefore, MD simula-

tions are only applicable in describing the bond and angle distortions instead of any events that 

involve bond breaking/formation, isomerizations, or excited states (55). In general, a MD simula-

tion involves the following stages: 

 1. Obtaining the initial coordinates and assigning the velocities to the atoms in the MD 

system. Available structural information of biomolecules is provided through x-ray crystallog-

raphy or NMR studies and can be retrieved from the PDB databank. Initial velocities of the at-

oms are usually assigned by Maxwell-Boltzmann distribution.  

2. Computing the instantaneous forces exerted on the particles in the system and numeri-

cally integrating the Newton’s equation of motion using small finite timestep to evolve the sys-
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tem along a specified timescale. This is conducted iteratively to accumulate the ensemble that to 

be analyzed.  

3. Analyzing the resulting ensemble (often refer to trajectory) to retrieve the desired time-

dependent properties mentioned above. 

2.1.1 Amber Force Field 

The intra- and inter- molecular forces experienced by the atoms are computed with an 

empirical force field in a MD simulation. The empirical force field, also known as the potential 

energy function, allows for the calculation of the potential energy (V) as a function of the coordi-

nates of the system in a 3-dimensional space (R). The potential energy function is an additive 

function consists of several energy terms describing bonded and non-bonded interactions be-

tween atoms.  

ܸሺܴሻ௧௢௧௔௟ ൌ ܸሺܴሻ௜௡௧௥௔௠௢௟௘௖௨௟௔௥ ൅ ܸሺܴሻ௜௡௧௘௥௠௢௟௘௖௨௟௔௥      (2.1) 

The bonded interactions terms include bonds, bond angels and dihedral angles; the non-

bonded interactions contain Coulombic and Lennard-Jones interactions. The bond lengths and 

bond angels are both considered independent, and the magnitude of atomic partial charges are 

fixed so that the potential energy function is purely additive. In a carefully designed force field 

with all the finely tuned parameters primarily obtained by experimental and/or quantum mechan-

ical studies, the harmonic approximations for each energy term are sufficiently accurate for bio-

molecular simulations due to the fact that the simulations of biological systems are typically car-

ried out at physiological temperatures where the bond lengths and angles only varies very little 

about the equilibrium values. Many force fields have been specifically developed for biomole-

cule simulations, including CHARMM22 (56-59), AMBER force field (60) as the most prevail-
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ing ones. In particular, the AMBER force field is used in this dissertation, with the following 

functional form: 
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where the first four terms are the intramolecular terms, and the last two terms are the in-

termolecular terms. K
r
, K , K  and K   are the force constants of bond length, bond angle, 

dihedral angle and improper angle energy term, respectively. Accordingly, , , ,  are the 

instantaneous values of the bond length, bond angel, dihedral angel and improper angle. The 

subscript “ ” stands for the equilibrium values for each type of interaction.  is the effective 

dialectic constant.   and  represent the partial charge of atom  and , respectively. In the 

dihedral term, n is the multiplicity,  is the instantaneous torsion angle, and δ is the phase shift. 

The first intermolecular term is the Lennard-Jones term, where ܴ௜௝
௠௜௡ is the minimum interaction 

radius (dependent on the interacting atoms and determined by experiment), ε௜௝ is the Lennard-

Jones well depth, ሺ
ଵ

௥೔ೕ
ሻ଺ describes the attractive interactions, and ሺ

ଵ

௥೔ೕ
ሻଵଶ describes the repulsive 

interactions. All atoms including hydrogens in AMBER force field are treated explicitly. The 

parameter sets are optimized from experimental measurements, such as vibrational spectra, tor-

sional energy surfaces, experimental heats and free energies of vaporization, solvation and sub-

limation, dipole moments and molecular volume etc., supplemented with ab initio calculations, 

so that they are largely empirical. AMBER force field for the most part is sufficient to model 

general biomolecules with its comprehensive parameter sets including proteins, nucleic acid, li-
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pid, and carbohydrates with consistency between these sets (60). However, it is likely that we 

need extra or modified parameters for certain particular purpose or when the regular sets lead 

into problems such as when we need to use the PARMBSC0 in our simulations to improve the 

DNA performance in my dissertation studies (61). 

2.1.2 Integration of Newton’s equation 

 Once the initial structure of the system is obtained and the initial velocities of all the at-

oms have been assigned, the evolution of the system can be determined by integrating Newton’s 

second law of motion: 

F  ma     (2.3) 

where ܨ is the force exert of an atom, ݉ is the atom mass, and ܽ is the acceleration. Alternative-

ly, the force can be described in the form of the gradient of the potential energy function: 

F  U R    dU

dR
    (2.4) 

As the acceleration can be expressed as the second order derivative of position with re-

spect to time, we can now relates the derivative of the potential energy with respect to coordi-

nates to the changes in position as a function of time: 


dU

dR
 m

d 2R

dt2
   (2.5) 

The MD simulation system evolves on the basis of the equation 2.5, the Newtonian equation. 

Numerical integration is done with finite difference methods using small time interval, which is 

typically referred to “timestep”, ݐ߂, in MD simulations. Once the acceleration is obtained, we 

can derive the new positions and velocities at time ݐ ൅  using the positions and velocities at ݐ߂

time ݐ. By iterating this step, we can keep updating the system till a specified time point. Since 

the highest frequency motions in a MD system is the stretching vibrational motions of the heavy 
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atom-hydrogen bond, which occurs on a ~ 10 fs timescale, the ݐ߂ is then empirically chosen to 

be ~ 1/10 of this scale (1 fs) to accurately describe the fastest degrees of freedom of the system 

(62). To improve computational efficiency, algorithms including the SHAKE were developed to 

enable using timestep of 2 fs (63,64). By applying SHAKE algorithm, all the covalent hydrogen 

bonds in the system are constrained in order to remove the highest frequency motions, this pro-

cedure is validated by the fact the these highest frequency motions are mostly of the least interest 

comparing with other low frequency motions. 

 One of the representative integrators that have been implemented to conduct the integra-

tion is the Verlet algorithm (65), in which two Taylor expansion of the atom position as a func-

tion of time were utilized to obtain the updated atom position: 

   (2.6) 

   (2.7) 

where ݎ௡ is the position at step n, ݎ௡ାଵ is the position at next step.  is the term of order ݊ 

or higher as a function of . Adding equation 2.6 and 2.7 gives the Verlet algorithm for updat-

ing the atom positions: 

   (2.8) 

With equation 2.8, the ݎ௡ାଵ can be obtained by using the current position ݎ௡, the previous posi-

tion ݎ௡ିଵ, and the current force ܨ௡ acting on the atom. This calculation is done for all the atoms 

in the system for each timestep over the simulation. Note that the velocity of each atom is not 

explicitly involved in the algorithm, but it can be easily computed by subtracting equation 2.8 

from 2.7:  
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    (2.9) 

A different version of the integrator is the leapfrog algorithm (66), in which a modification was 

made to reduce the errors over the velocity propagation when using Verlet algorithm. Instead of 

determine the velocity at the end point of a timestep, it was evaluated at the midpoint, therefore, 

the algorithm becomes: 

    (2.10) 

     (2.11) 

where ݒ௡േଵ/ଶ is the velocity at the midpoint of a timestep, ݐ േ ሺ
ଵ

ଶ
ሻݐ߂. With leapfrog algorithm, 

we firstly also calculate the current force ܨ௡. The force and the previous midpoint velocity were 

then used to compute the next midpoint velocity with equation 2.10. Finally, the next step posi-

tion can be obtained by using equation 2.11. 

2.1.3 Non-bonded interactions 

 For an explicit solvent biomolecular MD simulation system of thousands of atoms, the 

calculation of non-bonded terms turns to be quite computationally expensive since they include 

many more interactions than the bonded interactions for each atom, and this is even more prob-

lematic for the electrostatic terms. The number of bonded terms in a given force field is propor-

tional to the number of atoms in the system, ܰ, while the non-bonded terms exist between every 

pair of atoms so the number increases on the order of ܰଶ. The attractive and repulsive forces of 

the Lennard-Jones potential decay rapidly as the distance increases: at distance of 2.5 σ, it de-

creases to only ~ 1% of the value at σ (the force between the two interacting particles is zero at 

distance of σ). However, the electrostatic energy does not decay as rapidly as the Lennard-Jones 

potential does; it is proportional to the reciprocal of the distance between two point charges. A 
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variety of algorithms have been developed to reduce the computational cost on calculating the 

nonbond terms. 

2.1.3.1 Cutoffs 

Cutoff methods are commonly applied when computing the Lennard-Jones interaction 

energies. These methods calculate the interaction energies between all pairs of atoms within a 

specified threshold, which is known as the cutoff distance. The cutoff value implemented for bi-

omolecular systems is generally set to 10-12 Å (67).  

An abrupt truncation at the cutoff distance introduces discontinuities in the potential en-

ergy function and would cause instability in simulation if not fixed. A few approaches have been 

developed to circumvent this problem. One is to use a shifted potential function, in which a con-

stant term is subtracted from the original potential at all values so that the potential at cutoff val-

ue is of zero and the continuity of the function is maintained. Another way is to use a polynomial 

switching function ܵሺݎሻ that modifies the non-bonded energy smoothly over a buffer window of 

typically 1-2 Å before the cutoff point so that the potential energy gradually approaches to zero 

over this region and remains the same values before the buffer region (68).  

2.1.3.2 Long-range electrostatic interaction 

Cutoff methods used to be applied to treat electrostatics interactions as well to reduce the 

computational cost. However, artifacts were found in the simulation that involves substantial lo-

calized charges, such as the distortion of DNA and instability of α-helices when using cutoffs for 

electrostatic interactions (69). As a matter of fact, the long-range electrostatic interactions are 

important in maintaining protein structural integrity. Therefore, more accurate way of treating 

the electrostatic interactions becomes necessary. The most popular way to handle the long-range 
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interaction is the Ewald summation (70), which was developed by Paul Peter Ewald in the 1920s 

to compute the interaction energy in crystals.  

In the Ewald method, a particle interacts with all other particles in the unit cell and with 

all of their images in the periodic system. The electrostatic contribution to the potential energy 

for all pairs of charges in the central cell is given by: 

    (2.12) 

where ܰ is the number of atoms in the system, ݍ௜, ݍ௜ are the partial charges on atom ݅ and 

݆ respectively, ߝ଴ is the dielectric constant, ݎ௜௝ is the minimum distance between atoms ݅ and ݆, 

and 1/2 is to avoid double-counting. The charge-charge contribution between the atoms in the 

central cell and all the atoms in the images of the periodic system is given by:  

   (2.13) 

where ܮ is the length of the central unit box,  ݊ is a vector whose components are integral 

multiples of ܮ (݊	 ൌ 	݊௫ܮ, ݊௬ܮ, ݊௭ܮ). The Ewald method breaks the summation into two series 

that both of them converge much faster than the right-hand-side of equation 2.14, which con-

verges very slowly. This conversion is based on the following mathematical foundation:  

    (2.14) 
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   (2.15) 

In the Ewald sum, each charge is considered to be surrounded by a neutralizing charge 

distribution which is of equal magnitude but of opposite sign. This is commonly a Gaussian dis-

tribution of the form: 

   (2.16) 

The point charges summation is now the summation of the interactions between charges 

and the neutralizing Gaussian distributions. The real space part of Ewald sum is of the following 

form: 

   (2.17) 

The summation with the prime indicates that the series does not include the interaction 

݅	 ൌ 	݆ at ݊	 ൌ 	0. The new summation with the error function converges rapidly and the value is 

considered negligible beyond some cutoff distance. The rate of convergence depends on ߙ (the 

width of the Gaussian distribution), and the wider it is, the faster the sum converges. 

A background charge distribution is then added to counteract the neutralizing Gaussian 

distribution. This summation is conducted in the reciprocal space sum and is a Fourier series: 

  (2.18) 
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ing in higher computational cost. A value of ߙ of 5/ܮ and 100-200 reciprocal vectors ݇ have 

been shown to provide acceptable results. The real space sum of the neutralizing Gaussians in-

cludes the interaction of each Gaussian function with itself. Therefore, the following term must 

be subtracted: 

    (2.19) 

Another correction term is also required if the simulation is conducted in vacuum, which 

has the relative permittivity of 1: 

    (2.20) 

In the end, the full Ewald summation is given by: 

 (2.21) 
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-ሺܰሻ (72). In the PME method, the trigonometric function values of the Fourier series pre݃݋݈ܰ

sent in the reciprocal space sum are evaluated by a smooth approximation of the potential over a 
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grid, or mesh. The smoothing function is known as the Euler spline, which expresses the value of 

the trigonometric function at the actual charge coordinates in terms of the charge value at neigh-

boring grid points. The resulting sums over the grid points are then evaluated efficiently by a fast 

Fourier transform. The PME method is implemented in the NAMD simulation package (73,74), 

which is used intensively throughout this thesis. It’s worth mentioning that there are still internal 

limitations in the treatment of electrostatics due to the basic assumption of “fixed-charge” model 

used in most of the current force fields, in which each atom is assigned by a single value for the 

atomic charge that is not influenced by the local electrostatic environment. For a more practical 

matter, electronic polarization in current force field is accounted for in an average way to pro-

duce reasonable agreement with experimental measurements. Advances such as “fluctuating-

charge” (75,76) and dipole model (77) to take polarization into account are underway.  

2.1.4 Solvent	model	and	boundary	conditions	

Since the stability and functions of biomolecules are sensitive to the environment, a rea-

sonable representation of the solvent environment of these biomolecule models in simulations 

becomes crucial for characterizing the properties of the solute. As a result, biomolecular simula-

tions have to be conducted in certain solvent environment in accordance to the reality.  

With implicit solvent model, the macromolecule interacts only with itself, but the electro-

static interactions are modified to account for the solvent. All solvent effects are contained in the 

dielectric constant (78,79) ߝ. For example, ߝ ൌ 1 for vacuum, ߝ ൌ 1~20 for internal region of 

protein, ߝ ൌ 78~80 for water solvent. 

With explicit solvent model, the macromolecule is surrounded by solvent molecules (wa-

ter, ions), with which the macromolecule interacts. Specific nonbond interactions are calculated 

explicitly using the force field potential energy functions. Over the years, the explicit solvent 
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models have been made possible by current understanding on it and the growing computing re-

sources (80). A particular example is the TIP3P (81) water model, which is a rigid water model 

with each atom treated explicitly. This water model is used to study all the protein or pro-

tein/DNA complex models in the thesis. 

To recover the macroscopic properties from a MD simulation with limited number of so-

lute and solvent molecules, we have to consider using the boundary conditions. A conventional 

way to simulate an infinite system is to use the periodic boundary condition, in which the solute 

and solvent of the simulated system are confined in a unit cell that has an infinite number of im-

ages in all three dimensions (55). Only the molecules in the unit cell are considered explicitly 

during the simulation. However, if an atom in a unit cell leaves the cell and enters an image unit, 

an image atom would enter to replace it to maintain the number of atoms in the system. Practical-

ly, a minimum image convention is usually applied so forces are only calculated with the closest 

periodic unit cell that the computational cost would be limited. Different shapes of the periodic 

cell are available, including the cubic cell, rectangular cell, and spherical cell. The choice of the 

shape of the periodic cell is dependent on the underlying geometry of the simulation system.  

2.1.5 Temperature	control	

The total energy is conservative in conventional MD simulations. Therefore, the time av-

erages from MD simulation are equivalent to ensemble averages computed from the NVE en-

semble (constant number of particles, constant volume, and constant total energy; also known as 

microcanonical ensemble) given the simulation is long enough. The flexibility of MD is greatly 

enhanced by having techniques extend MD simulation to the NVT (constant number of particles, 

constant volume, and constant temperature) or NPT (constant number of particles, constant pres-

sure, and constant temperature) ensembles as well. To control the temperature in MD simulation, 
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there are essentially three ways: scaling velocities, adding stochastic forces and/or velocities, and 

using “extended Lagrangian” formalisms (68). 

2.1.5.1 Velocity Scaling: Isokinetics and the Berendsen Thermostat 

Thy temperature of the canonical ensemble (NVT) is related to the time average of the 

kinetic energy, which is given by: 

2
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2 2
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B i i
i

Nk T m v


     (2.22) 

In simple velocity scaling, the velocities are chosen randomly from a range (for example, 

[-0.5, 0.5]) and could be then rescaled to result in a desired temperature with equation 2.22. It 

could be converted to a dynamic scheme with which the velocities are continuously scaled so 

that the total kinetic energy is conserved with the isokinetic thermostat. Let the temperature im-

mediately after a velocity update be ௜ܶ, and the instaneous temperature be ܶ. If the velocities 

were scaled by a constant ߣ, we can calculate the associated temperature change as: 
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where the scaling factor 
  
  T / Ti . The isokinetic thermostat is not applicable in in the canoni-

cal ensemble simulation, but is good for the initialization or heating-up stage of a MD simulation. 

This velocity rescaling can be performed at each or every few steps.   

Another popular velocity scaling thermostat is that of Berendsen (82), in which the sys-

tem is coupled to an external heat bath that can be fixed at the desired temperature. The bath 

provides or absorbs heat from the simulation system. The velocity is such scaled that temperature 

change rate is proportional to the temperature difference between the bath and the system.  

 1i
bath i

dT
T T

dt 
    (2.24) 
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where   is a constant called the “rise time” of the thermostat. It describes the strength of the 

coupling of the system to a hypothetical heat bath. The larger the  is, the weaker the coupling. 

The change in temperature between successive timesteps is: 

 bath i

t
T T T




     (2.25) 

The velocity scaling factor is then:  
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   (2.26) 

       

where bathT can be set to the desired temperature, ݐ߂ is the integration time step, a larger   

means it takes longer time to reach to a prescribed temperature. Regardless of the simple imple-

mentation and efficiency, velocity scaling thermostats are not commonly used in production 

stages of MD simulation since they do not strictly conform to the canonical ensemble (83). 

2.1.5.2 Stochastic NVT Thermostats 

The Andersen thermostat (84) introduces a stochastic element to the temperature by hav-

ing random collisions of molecules with an imaginary heat bath at the desired temperature. In the 

single-particle approach, a random particle is chosen and its velocity is drawn from the Maxwell-

Boltzmann distribution at the desired temperature at each step: 
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   (2.27) 

where ݌ሺݒ௜௫ሻ is the probability that an atom ݅ of mass ݉௜ has velocity ݒ௜௫ in the ݔ direction at a 

temperature ܶ , ݇஻ is the Boltzmann constant. This applies to each component of the particle’s 

velocity. Alternatively, a massive collision can be used in which each velocity component of 
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every particle is reassigned simultaneously. The time between collisions, or the number of colli-

sions in some (short) time interval is decided randomly, with the following Poisson distribution: 

ሻݐሺ݌ ൌ ܿ݁ି௖௧      (2.28) 

where ܿ is the stochastic collision frequency. The system evolves at constant energy between 

collisions. In practice, if ܿ is too high the temperature control algorithm dominates and the sys-

tem does not fluctuates in kinetic energy; if the collision rate is too low the system does not sam-

ple from a canonical distribution of energies.  An optimal choice has been found: 
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where ܽ is a dimensionless constant, ߢ is the thermal conductivity, ܸ is the volume, ݇஻  is the 

Boltzmann constant, and ߩ is the number density of particles, ߩ ൌ ܰ/ܸ. Andersen thermostat has 

been shown to generate correct NVT probabilities in the limit of infinitely long trajectory aver-

aged over many heat bath collisions. Nevertheless, it should be noted that the random collisions 

decorrelate the velocities of particles faster than the NVE dynamics. In other words, the particles 

would lose memory of their velocities from some previous time. As a result, Andersen thermo-

stat does not preserve true molecular kinetics.  

Another scheme is the Langevin thermostat (85), in which the particles experience a ran-

dom force and a constant friction. The average magnitude of the random forces and the friction 

are related to obey the “fluctuation-dissipation theorem” (86), thereby guarantees the NVT statis-

tics. The Newtonian’s equation becomes the Langevin’s equation as: 

  (2.30) 

where U  is the particle interaction potential,  is a friction coefficient, and the dot is a time de-

rivative (  is the velocity and  is the acceleration). The random force ( )iW t  is determined by a 
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Gaussian distribution to add kinetic energy; the variance of ( )iW t is a function of the prescribed 

temperature and timestep. In this way, the random force is balanced with the frictional force to 

maintain the temperature. 

2.1.5.3 Nosé-Hoover thermostat 

In the Nosé-Hoover thermostat (87,88), a heat bath is considered as an integral part of the 

system. An artificial coordinate  (identical to the real system), associated “mass” Q  ( 0Q  ), 

and velocity  are assigned to the heat bath. The magnitude of Q determines the coupling 

strength between the bath and the real system and hence, the temperature fluctuation.  is a time-

scaling parameter, which stretches the timescale in the extended system by the factor of . The 

real and virtual variables are related as following: 

     (2.31) 

      (2.32) 

     (2.33) 

      (2.34) 

     (2.35) 

  For the extended system, the Lagrangian is: 

 (2.32) 

The first term of the right hand side is the kinetic energy, and the second is potential en-

ergy of the real system. The rest terms are the kinetic energy the potential of . The potential is 

chosen to ensure producing a canonical ensemble. With Nosé-Hoover formalism,
 dfg N  

(number of degree of freedom) for real-time sampling, while with Nosé-formalism,
 

1dfg N   
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for virtual-time sampling. The equations of motion is therefore given by the following two equa-

tions: 

    (2.34) 

    (2.35) 

In the extended system , a microcanonical ensemble is sampled by these equations 

while the real system energy oscillates. Heat transfers between the real system and the heat bath 

occurs when fluctuates, thereby, regulates the temperature of the real system. It can be shown 

that a canonical ensemble for the real system can be sampled by the equations. The Nosé equa-

tions of motion can be reformulated using real system variables with the following transfor-

mations: 

      (2.36) 

    (2.37) 

     (2.38) 

     (2.39) 

Given , the Lagrangian equations of motion can then be re-written with: 

    (2.40) 

 (2.41) 

Q  determines the coupling strength and thereby the temperature control. If Q  is too large (loose 

coupling), the canonical distribution can only be recovered with very long simulation; if it is too 
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small (tight coupling), high-frequency temperature oscillation would be introduced. The Nosé 

equations of motion can be expressed with a more intuitive choice for the coupling strength: 

  (2.42) 

with the effective relaxation time being: 
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N k T
     (2.43) 

By computing the oscillation frequency for small deviations  from the average , 

the relaxation time can be approximated. 

2.1.6 Pressure control 

In an isothermal-isobaric ensemble, the volume is a dynamic variable that fluctuates in 

the simulated system. The pressure can be calculated using the Clausius virial theorem: 

 
2

3V
Ekin  

 
(2.44) 

where V  is the box volume, Ekin is the kinetic energy, and   is the inner virial for additive 

pairwise interactions, the explicit form of it is: 

 
1

2
rij  f rij 

i j
   (2.45) 

where f rij  is the force between particles ݅ and ݆ at a distance rij
. While the pressure in a peri-

odic system a second order tensor instead of a scalar, it can still be expresses as a scalar in a iso-

tropic system: 

P  Tr   3    (2.46) 
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As a common procedure for many types of barostats, the pressure can be controlled through ad-

justing the inner virial through scaling the distances of inter particle. Barostats with constant box 

shape (isotropic barostats) includes Berendsen barostats (82), Andersen barostats (84), Nosé-

Hoover barostats (87,88), etc. Only two isotropic barostats will be described in the following. 

2.1.6.1 Berendsen barostat 

With Berendsen barostat, the simulation system is weakly coupled to an external “pres-

sure bath”. The rate of change of pressure is given by: 

   bath

pbath

dP t P P t

dt 
  

 
 

  (2.47) 

where p  is the time constant for the coupling,  bathP  is the pressure of the “bath”, and  P t  is 

the instantaneous pressure at time ݐ.  A proportional coordinate scaling factor   is introduced to 

the equations of motion: 

x v x    (2.48) 

So the corresponding volume change is: 

3V V   (2.49) 

Since the pressure change can be related to the isothermal compressibility  : 
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      (2.50) 

we then have  evaluated to: 
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Substituting equation 2.47 into 2.44 gives us the final equation of motion in Berendsen barostat: 
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  
3

bath

p

P P t
x v x





    (2.52) 

2.1.6.2 Andersen barostat 

In Andersen barostat, the coordinates ir  is replaced by scaled coordinates as: 

1/3
i ir V    (2.53) 

The new Lagrangian is given by: 
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If we consider Q  as the volume V , the first two terms of the right hand side are the original La-

grangian. The third and fourth terms are the kinetic and potential energy of Q  respectively. The 

simulation system can now be considered as is in a container and can be compressed by a piston 

(of mass M ) with an external pressure 0p  acting it, with Q  (whose value is the volume V ) be-

ing the piston coordinate. With equations of motion for the scaled system derived and translated 

back to the real system, the final equations of motion are given (detailed derivations are omitted 

in here): 
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2.2 Advanced Sampling Methods in MD 

2.2.1 Steered Molecular Dynamics 

Steered molecular dynamics (SMD) simulation introduces a biased force to steer the sys-

tems along a particular degree of freedom. The biased force can be time-dependent or position-

dependent. SMD allows for the sampling the rare events that might only happen over a large 

timescale while keeping manageable computational expense. In many respect, it serves as a 

computational counterpart to the experimental techniques such as optical tweezers (89), atomic 

force microscopy (AFM) (90), biomembrane force probes (91), and dynamic force spectroscopy 

(92), in which an external mechanical manipulations to molecules were usually applied.  

SMD would be equivalent to umbrella sampling when the force applied was sufficiently 

small since the induced conformational change in each timestep will be minimum. However, it is 

often more interesting to violate this limit in cases where major structural changes and also cor-

respondingly deviations from equilibrium are experienced. Examples of such cases include lig-

and dissociation and protein unfolding, etc. Free-energy differences can be calculated from the 

exponential averages of irreversible works from multiple SMD simulations, as revealed by the 

Jarzynski's equality equation (93,94).  

eG  eW   (2.58) 

where G  is the free energy change of the process, and W  is the irreversible work. It can be 

seen that the average of exponential term of Jarzynski's equality is dominated by trajectories 

producing small work values. These trajectories are usually very few in the simulations, so the 

sufficient sampling can be a problem (93,94).  
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2.2.2 Targeted Molecular Dynamics 

A related technique is targeted molecular dynamics (TMD) in which a bias force depend-

ent on the structural difference between the current conformation and a target conformation is 

applied to drive the evolution of the specified molecule toward the target conformation. The de-

sired conformational change would occur on a much shorter timescale than the biological time-

scale. The bias force is established on the root mean square deviation (RMSD) of the current 

conformation with respect to the target conformation (computed over the specified atoms). In a 

TMD simulation, the RMSD constraint is initialized as the RMSD between the initial and the 

target conformation in the beginning, and is decreased by some small value at each timestep over 

the simulation. The instant biased force is along the direction from the current to the target posi-

tions, and the magnitude of it is given by:   

UTMD 
1

2

k

N
RMSD t   RMSD* t  

2
  (2.60) 

where  RMSD t   is the instantaneous RMSD of the current from the target conformation; and 

RMSD* t   evolves linearly from the initial RMSD at the first TMD step to the final RMSD at 

the last step. The force constant k  is scaled down by the number of targeted atoms, N . Since the 

biased force alters the energy barriers, the resulting TMD pathway is not guaranteed to be the 

minimum energy pathway. However, TMD is efficient in the sense that it produces all-atom tran-

sition pathways that reveal important qualitative characteristics of the transition process. 

2.3 Integrative Modeling 

To understand the mechanistic of a biological assembly’s function, an atomistic model of it 

would be great value as it provides the detailed structural information of each component and a 

route to dissect the interaction between them. Structures of atomic level resolution are usually 

obtained through X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, 
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however, the flexibility of biological assemblies often poses technical difficulties and renders 

them to be ineffective in determining the structures of large biological assemblies. Tremendous 

amount of critical cellular activities are actually carried by multi-biomolecular assemblies in-

stead of a single protein component. The unveiled structures of these assemblies have impeded 

the process of exploring the mechanistic of their functions. Over the last decade, this situation 

has been alleviated by the advancement of cryo-electron microscopy (cryo-EM). Cryo-EM usual-

ly generates models of 8-20 Å resolution, which is substantially lower than a common X-ray 

crystal structure. On the other hand, it does not require as high concentration as X-ray crystallog-

raphy does, and it has the advantage of generating the in-solution structure information, which is 

generally of more relevance to the in vitro condition.  

Apart from the aforementioned techniques, structural information in terms of the shape of 

biological molecule or assembly can be obtained through Electron microscopy (EM), small angel 

X-ray scattering (SAXS) etc.; interaction information are accessible through various biochemical 

and biophysical avenues, such as chemical footprinting, cross-linking, FRET, MS, proteomics 

studies, and so on. The large body of these heterogeneous information, however, are mostly dis-

persed in literatures, lacking a high level of uniformity. Therefore, an integrative modeling ap-

proach which aiming at combing these experimental data and translate them into a uniform struc-

tural representation would be ideal in advancing our understanding on these assemblies, hence, 

the relevant biological functions. Such an approach would greatly reduce the time cost on con-

ventional modeling and improve the homogeneity of the results. The generated model would also 

be of more reference value to the experimentalists as it could not only consolidate/disprove the 

experimental data, but also provide new hypothesis for further experimental tests. 
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To start the integrative modeling, all available data from different areas of study includ-

ing experimental, physical, bioinformatics, and statistical have to be collected. Upon a proper 

choice of the resolution on which the system of interest will be defined in the model, the applica-

ble data that was collected would have to be translated into spatial restraints on the entire or part 

of the system. For example, a residue-residue contact can be incorporated by applying a harmon-

ic function on the distance between these two residues, and a cryo-EM density map can be used 

to generate a 3D-grid based function to bias the system to evolve toward it. To sample these re-

straint functions as a whole, various methods could then be applied, such as molecular dynamics, 

Monte Carlo, Brownian dynamics, docking, etc. In the end, an ensemble of models is generated 

for analysis and determination of the final model. Recent successes in implementing integrative 

modeling include a variety of systems, utilizing experimental data from X-ray, NMR, cryo-EM 

and SAXS. These applications have brought forth to prosperity of integrative modeling and 

many innovative findings in biomolecular assemblies. Karca et al. gave a comprehensive review 

on how different types of experimental data could be translated into one of the four categories of 

restraints such as binding sites, distance, orientation, and shape on a high level abstraction level 

(95). In this dissertation, applications on cryo-EM and SAXS based integrative modeling using 

atomistic MD simulation will be exemplified by chapter 5, chapter 6, and chapter 7.  

2.4 MM/PBSA and MM/GBSA 

The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Mo-

lecular Mechanics/Generalized Born Surface Area (MM/GBSA) models are used to calculate 

binding free energies for macromolecules by combining molecular mechanics and continuum 

solvation models (96). In the MM/PBSA or MM/GBSA model, the energy of a molecule, ܩ, 
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comprises the MM energy in gas phase and the solvation free energy (equation 2.61). The gas 

phase MM energy can be calculated by equation 3.  

     (2.61) 

   (2.62) 

A thermodynamic cycle in Figure 2.1 has to be utilized to calculate the binding free ener-

gy of a ligand (L) binding to a receptor (R).  

 

 

                 

            

Figure 2.1. Thermodynamic cycle 

 

  (2.63) 

The binding free energy, ∆ܩ௕௜௡ௗ , comprises the gas phase MM energy ∆ܩ௚௔௦  and the 

solvation free energy ∆ܩ௦௢௟. Given the assumption that the binding process does not change the 

intra-molecular energies significantly, ∆ܧ௜௡௧ can be safely neglected. Hence, ∆ܩ௚௔௦ can be calcu-

lated by equations 2.64 and 2.65: 

  (2.64) 

   (2.65) 

The solvation free energy ∆ܩ௦௢௟௩ can be computed with equations 2.66 and 2.77 using the 

thermodynamic cycle. Each term on the right hand side of equation 2.66 comprises the polariza-

tion energy (electrostatic interaction energy), ∆ܩ௉஻/ீ஻ , and the non-polar energy (non-
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electrostatic energy), ∆ܩௌ஺. The polarization energy can be computed with either the PB or GB 

model, while the non-polar energy is estimated with solvent accessible surface area (SAS).  

    (2.66) 

    (2.67) 

The polarization energy by PB is the difference in the work of charging a molecule in the 

gas phase with a dielectric constant of unity and in solution with a dielectric constant of 80~78) ߝ 

for water environment). The work of creating the charge distribution in a dielectric media is 

called the reaction field energy ܩ௥௘௔௖௧௜௢௡, which can be determined with equation 2.68: 

    (2.68) 

where ∅ሺݎሻ is the electrostatic potential can be calculated by numerically solving the Poisson-

Boltzmann equation: 

 
(2.69) 

Here ߩሺݎሻ is the free charge density; ݍ is the electronic charge;  ݇஻  is the Boltzmann constant; 

is a simple switching function, which is zero in regions inaccessible to the electrolyte and one 

otherwise; and ߣሺݎሻ, the Debye length, is a function of ionic strength of the electrolyte solution. 

For a conducting sphere with a charge spreading out uniformly on the surface, the Poisson-

Boltzmann equation has an analytical solution and the equation used to calculate the polarization 

energy of this ideal system is so-called the Born equation. The GB model is an extension of the 

Born model for a molecule with an arbitrary shape. The polarization energy of the GB model is 

calculated with equation 2.70: 

   (2.70) 
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where ߛ௜௝ has a unit of inverse length and a well-recognized functional form of is as the follow-

ing: 

   (2.71) 

 is effective Born radius. The non-polar energy in both ߙ ;௜௝ is the inter-atomic distanceݎ 

models is the leftover excluding the polarization energy from the solvation free energy. It is 

comprised of the free energy required to form the solute cavity in a solvent that mainly accounts 

for the entropy penalty associated with the reorganization of solvent molecules around a solute, 

and the van der Waals interaction between the solute and solvent. The non-polar energy ܩௌ஺ is 

simply estimated by multiplying a constant, which is known as the surface tension, to the solvent 

accessible surface area (ܣ) of the solute plus an intercept	ܾ: 

     (2.72) 

In MM/PBSA or MM/GBSA, each free energy component is subjected to intrinsic sub-

stantial uncertainty so that the accumulated error could end up being intolerable if the calculation 

protocol is poor designed. Nevertheless, comparing to the free energy perturbation (FEP) and 

Thermodynamic Integration (TI) (97) methods that require a sampling of the entire transfor-

mation path, MM/PBSA or MM/GBSA only evaluates the end-points of the system and therefore, 

is much more computationally efficient (96).  

2.5 Trajectory Analysis 

2.5.1 RMSD  

Root Mean Square Deviation (RMSD) is a quantitative measurement of the structural dif-

ference between two conformations of a molecular structure. To calculate the RMSD, the two 
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conformations of the structure have to be overlaid so as to eliminate the translational and rota-

tional deviations. The RMSD can then be calculated by: 

RMSD 
1

N
rn

i  rn
j 2

n1

N

   (2.73) 

where N is the number of atoms included in the measurement, ݊ is the index of the atom, 

and ݎ is the coordinates of the n-th atom, i and j refer to the i-th and j-th conformation of mole-

cule respectively. The summation in equation 2.73 can include any set of atoms of the structure 

and is usually in the unit of Å. With biomolecular simulations system, the RMSD analysis often 

includes only the heavy atoms (non-hydrogen atoms). In the case of proteins and DNA, the anal-

ysis usually only includes the backbone or alpha carbons (Cα) of the protein and phosphate 

groups of the DNA backbone since they are usually sufficient to describe the RMSD difference.  

2.5.2 Principal Components Analysis 

Principal components analysis (PCA) is generally a data analysis method that identifies 

patterns in multi-dimensional data and highlights both similarities and differences from different 

samples. In PCA, the original data set is transformed to a new coordinate system, in which the 

greatest variance exists when the original data was projected onto the first principal component 

(PC), and the second greatest variance does on the second PC, and so on and so forth. PCA has 

been shown to alleviate the difficulty in grasping the largest-amplitude modes (slowest dynamic 

motions), which are often of the most interest to us, from biomolecular simulation systems (98).  

Consider an ݉-dimensional trajectory data set consisting ݊ snapshots from a MD simula-

tion. This trajectory data set can be expressed as a matrix ܺ of ݉ columns and ݊ rows. The data 

set is multidimensional, and the whole point of PCA is to reduce dimensionality in order to ex-

amine the relationships of the different conformations from the simulations. To perform PCA, 



 39

the mean of each dimension of the data set is firstly subtracted from each dimension following 

by constructing a covariance matrix ܥ as showing equation 2.74. The covariance between any 

pair of variables (dimensions) indicates the magnitude of one variable of varying from the mean 

with respect to the other.  

cov(x, y) 
xi  x 

i1

m

 yi  y 
m 1 

  (2.74) 

With the multi-dimensional MD trajectory data set, there are multiple covariance can be 

calculated using different pairs of variables. As a result, ܥ would become a ݉ by ݉ matrix for a 

݉ dimensional trajectory data, with each element being the covariance between one pair of vari-

ables. Noticing that this covariance matrix is symmetric since ܿݒ݋ሺݔ, ሻݕ 	ൌ ,ݕሺݒ݋ܿ	  ሻ, and theݔ

elements on its diagonal are the covariance between one variable and itself (ܿݒ݋ሺݔ,  ሻ), which isݕ

the variances of it. The eigenvectors of the covariance matrix are the PCs we are interested in. 

By diagonalizing the covariance matrix, the eigenvectors and corresponding eigenvalues will be 

obtained. We could then represent the original trajectory data in terms of these orthogonal eigen-

vectors instead of the original Cartesian coordinates. The variance magnitude in the direction of 

one particular eigenvector is indicated by the corresponding eigenvalue. 

After the eigenvectors and eigenvalues for the covariance matrix are found, they are sort-

ed from high to low according to eigenvalues, with the first PC being the eigenvector the with 

highest eigenvalues, indicating it contributes the most to the variance of the trajectory data set. It 

is usually the first few PCs that interest us since they account for the most part of variance (the 

percentage of the contribution of one PC can be calculated by dividing the associated eigenvalue 

by sum of all eigenvalues). Projecting the original data set onto the chosen PCs would allow for 
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reducing the dimensionality and retaining the large-scale motions of the of the trajectory data set. 

The transformation can be done by using equation 2.75:  

X
r
 ET  X T   (2.75) 

where rX  is the transformed data matrix with reduced dimensionality given not all the 

eigenvectors were chosen, TE  is the transposed matrix of the chosen eigenvectors, and XT  is the 

transpose of the original data matrix with the means subtracted for each dimension. The original 

trajectory data set is now represented in terms of the eigenvectors of choice. It’s usually of inter-

est to plot the first up to 3 PCs against one another to visualize the projections of the data onto 

them so that the large-scale motions can be identified by locating the paths between clusters in 

the plot. 

2.5.3 Normal Mode Analysis 

 Strictly speaking, Normal Mode Analysis (NMA) a simulation technique to probe the 

large-scale motion of the biomolecules instead of being an analysis tool for MD trajectory. A 

standard NMA requires a set of coordinates, a force field describing the interactions between the 

atoms. The process of a standard NMA includes minimization of the potential energy function, 

constructing the Hessian matrix (the second derivative matrix of the potential energy function 

with respect to the mass-weighted atomic coordinates), and the diagonalization of the Hessian 

matrix (the mathematical treatment is the same as it was with the covariance matrix in PCA). It is 

computationally expensive due the high dimensionality of the biomolecular systems. Therefore, 

a simplified model called Elastic Network Model (ENM) was introduced into protein study (99) 

and become popular due to its simplicity. In ENM, the atoms are connected by a network of elas-

tic springs. With ENM, the energy minimization is not needed given all the elastic springs are at 

the equilibrium distances, and the number of atoms included in the model is greatly reduced to 
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the number of residues (or even less). Even with a great deal of simplification comparing to the 

standard NMA, a respectable degree of correspondence has been shown between the two meth-

ods (99). 
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CHAPTER 3.  PROBING DNA CLAMP MECHANICS WITH SINGLE-MOLECULE 

FORCE SPECTROSCOPY  

3.1 Abstract 

Detailed mechanisms of DNA clamps in prokaryotic and eukaryotic systems were inves-

tigated by probing their mechanics using single-molecule force spectroscopy. Specifically, the 

mechanical forces required for the E. coli and yeast clamp opening were measured at the single-

molecule level by optical tweezers. With the aid of steered molecular dynamics simulations, 

these forces were translated into subunit interface binding energies associated with the clamp 

opening processes. In combination with additional computational studies we identified the con-

tact networks that contribute the most to the interface stability of the yeast and E. coli clamps. 

These studies provide a vivid picture of the mechanical and energy landscape for clamp opening 

and reveal how the prokaryotic and eukaryotic clamps function through different pathways. 

3.2 Introduction 

DNA sliding clamps play a pivotal role in DNA replication and repair and, hence, cell re-

production and survival. DNA clamps have been investigated extensively. Crystallographic stud-

ies indicate that DNA clamps retain a well-conserved structure in all three domains of life. Fur-

ther structural investigations of clamp loader complexes with their cognate clamps (6,29,100-

102) have shown more detailed interactions between sliding clamps and clamp loaders. The yeast 

clamp loader RFC (replication factor C), a pentameric AAA+ ATPase (29,103-105), was ob-

served in complex with its corresponding clamp in a close conformation (29). In the absence of 

ATP, RFC has a weak interaction (Kd ~20 nM) with PCN. However, in the presence of ATP, 

RFC affinity to PCNA was significantly increased (Kd ~1 nM) (106). In the crystal structure 

RFC assumes a spiral arrangement with three of the five RFC subunits (RFC-A, RFC-B and 
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RFC-C) in contact with the surface of the clamp. Yet, an archaeal complex examined by electron 

microscopy revealed an open clamp in complex with its clamp loader and DNA, suggestive of an 

intermediate stage during clamp loading (100). Though they do not reveal the dynamics or the 

underlying energy landscape, these structures have provided vital information to facilitate de-

tailed mechanistic studies both in the literature and in our current research. 

  A general mechanism suggests that DNA clamps serve as a mobile platform for DNA 

polymerases to slide freely on the DNA thereby increasing the processivity of these polymerases. 

More detailed ensemble kinetic studies reveal that clamps are opened by clamp loaders in the 

presence of either ATP or ATPγS, suggesting that ATP hydrolysis is not required for the clamp 

opening. Instead ATP hydrolysis is implicated in the clamp ring closure or clamp loader dissoci-

ation from the DNA (106,107). Steady-state examination of the events involving ATP binding by 

RFC suggests that the yeast clamp loader binds two ATP molecules before binding the sliding 

clamp PCNA (proliferating cell nuclear antigen) (22,37). Subsequently, the RFC/PCNA complex 

bound one more ATP molecule followed by the binding of DNA and an additional ATP mole-

cule (108). Hydrolysis of an unknown number of ATP molecules led to the loading of the clamp 

on DNA and clamp loader dissociation from the clamp-DNA complex. Based on pre-steady state 

kinetic studies, Hingorani et al. proposed a model for the ATP binding and hydrolysis along the 

clamp loading pathway (107,109). In their model the clamp loader binds three molecules of ATP 

and initiates a slow conformational change that enables it to bind and open the clamp as well as 

to bind two additional ATPs. The clamp loader thus locks the clamp in an active loading con-

formation. After the hydrolysis of three ATP molecules, the clamp closes around the DNA. 

Additional research featured a combination of single-molecule and ensemble techniques 

to examine the kinetics of the PCNA loading–unloading pathways (110). A fluorescence reso-
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nance energy transfer (FRET) reporter system was constructed at the interface of the clamp to 

follow its opening and loading on DNA and provided crucial information about the timescale and 

the extent of interfacial strand separation during clamp opening. Using primarily FRET signals 

from a fluorescently labeled forked-DNA and PCNA, clamp loading has been shown to be sto-

chastic and is successful only after several failed attempts (111). 

To better understand the mechanics of clamp opening, theoretical studies have been car-

ried out to map the underlying free energy landscape. Computational investigation (112) of the 

yeast PCNA/RFC complex has suggested that RFC, instead of destabilizing the closed state of 

PCNA, functions by selective stabilization of the open clamp conformation. The new interface 

formed between RFC and PCNA compensates for the binding energy lost upon PCNA subunit 

interface disruption. Furthermore, the barrier for the transition of the closed state to the open 

state was consistent with clamp opening occurring on a millisecond timescale. 

Previous studies have suggested that the mechanism of yeast clamp opening by its cognate 

clamp loader is very similar to that of E. coli clamp opening (6). Their very similarity has at-

tracted us to examine them as paradigms for prokaryotic and eukaryotic systems. In the current 

research we have measured the forces required to open an interface of either the yeast or the E. 

coli clamp with optical tweezers. We have found that, remarkably similar in terms of overall 

structures and functions as they are, the eukaryotic clamp (yeast PCNA) differs considerably 

from its prokaryotic counterpart (E. coli clamp) in detailed enzymatic actions. Combined with 

the steered molecular dynamics (SMD) simulations, the study provides detailed mechanistic in-

formation of clamp opening for both yeast and E. coli clamps.  
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3.3 Experimental Procedures 

Construction of single-chain clamps- The S. cerevisiae PCNA’s native cysteines 

(C22/C30/C62/C81) were mutated to serines. A single-chain PCNA was cloned into the pET28a 

vector preceded by an N-terminal 6-His tag as described by MacNally et al. (113). The C-

terminal glutamate residues of the first and second PCNA subunits and the N-terminal methio-

nine residues of the second and third subunits in the chain were all deleted. The linker sequence 

between the first and second subunits was GSNSQSNGSGA and the linker sequence between 

the second and third subunits was GSNSQASNSGA. A cysteine was introduced by site-directed 

mutagenesis at positions K107 or D122 in the first subunit and F185 or D223 in the third subu-

nits respectively. Similarly, a single-chain β-clamp was cloned in the pET28 vector and a cyste-

ine was introduced at E64 or G102 in the first subunit and at E314 or E298 in second subunit.   

Biotin and digoxygenin DNA handles- The yeast PCNA gene was amplified from the 

pET22b PCNA plasmid using either 5-Biotin-TTATTCTTCGTCATTAAATTTAGG-3 or 5-

Dig-TTATTCTTCGTCATTAAATTTAGG-3and5-AmATGTTAGAAGCAAAATTTGAAG-

3. The 777bp PCR fragment was purified by a Qiagen PCR cleanup kit and quantified by 

NanoDrop™ spectroscopy. The 777bp PCR fragment containing a biotin on one end and an 

amine group on the other end was reacted with a water-soluble amine-to-sulfhydryl linker (sulfo-

SMCC, Thermo Scientific) at room temperature in buffer-A (20 mM sodium phosphate, 150mM 

sodium chloride, pH 8.3). After 30 min of reaction the cross-linked DNA was purified quickly 

with a Qiagen PCR cleanup kit and eluted with buffer-B (100 mM sodium phosphate, 150mM 

sodium chloride, pH 7.2). The 777bp PCR fragment containing a digoxigenin on one end and an 

amine group on the other was made and purified similarly. The DNA handles were made for 

immediate use.  
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Coupling of DNA handles to clamps- We used sulfhydryl-maleimide chemistry to link ma-

leimide activated DNA linkers to the PCNA cysteines. Single-chain PCNA was incubated at 

room temperature for 10 min in buffer-B containing a hundred molar excess of tris-(2-

carboxethyl) phosphine (TCEP). The biotin and digoxygenin DNA handles mixed in 1:1 ratio 

before being added to the TCEP treated PCNA and the reaction was incubated at room tempera-

ture for 30 min and then at 4 C overnight. The DNA handles were similarly attached to the E. 

coli single-chain β-clamp. 

Tethering of PCNA on a quartz slide- The surface of a quartz slide was functionalized with 

biotin as reported elsewhere (114). Then the slide surface was passivated with liposome (ref.) 

followed by an extensive buffer wash. A solution of approximately 50nM streptavidin in Buffer 

B was applied on the slide surface and incubated for 15 min. and then washed away with buffer 

B. A complex of PCNA or β-clamp with DNA handles was first incubated for 30 min. with anti-

digoxigenin-coated beads (2 micron) before being applied onto the functionalized quartz surface 

for incubation for over 1 hr to get tethered to the slide surface via biotin-avidin interactions.  

Force measurements by optical tweezers- A homebuilt optical tweezers setup was used to 

measure the PCNA rupture force (114). The quartz slide with the tethered PCNA was mounted 

on a computer-controlled, custom-built, x-y translation piezo stage. Anti-digoxigenin-coated 

beads were captured by the laser trap and tracked one at a time. While the stage was moving at a 

designated speed (100 nm·s-1) to rupture the clamp interface, a video was recorded through a 

100X1.49 NA oil immersion objective by charged coupled device (CCD) camera. Traces for 

bead displacements from the center of the optical trap were extracted by processing the recorded 

videos. The displacements were converted to the actual force applied by the optical tweezers on 

the clamps. 
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Molecular Dynamics Simulation- The crystal structure of E coli β-clamp and Saccharomy-

ces cerevisiae PCNA were obtained from the Protein Data Bank (PDB ID: 2pol and 1plq, respec-

tively). Molecular dynamics simulations were performed using intact trimeric clamps. Subse-

quent molecular mechanics Poisson−Boltzmann surface area (MM/PBSA) calculations were car-

ried out on reduced models generated from the above MD trajectories, which contained a single 

subunit interface. The truncated-clamp model retained the N-terminal domain from the first sub-

unit (residues 1 to 241) and the C-terminal domain (residues 122 to 366) of the second subunit. 

For the yeast clamp we simply removed one of the equivalent subunits leaving a single interface 

between the other two remaining subunits. The xLeap module of AMBER 9 (115) was used to 

add hydrogen atoms to the models. All ionizable side chains were assigned to their protonation 

states at pH 7.0 using the WHATIF server. Each system was then solvated with TIP3P (116) wa-

ter leaving a minimum distance of 10.0 Å from the protein surface to the edge of the simulation 

box. Counter ions were added to achieve charge neutralization and additional 100 mM NaCl 

concentration was introduced to mimic physiological conditions. 

The systems were then minimized for 5000 steps with fixed backbone atoms followed by 

5000 steps of minimization with harmonic restraints (k= 15 kcal mol-1 Å-2) to remove unfavora-

ble contacts. All systems were then gradually heated to 300 K over 50 ps in the NVT ensemble 

while keeping the protein backbone restrained. The equilibration was then continued for another 

1.8 ns in the NPT ensemble and the harmonic restraints were gradually released in 5 stages. 

Production runs were carried out in the isothermal isobaric ensemble (1 atm and 300 K) for 

20 ns for all the systems. Long-range electrostatic interactions were evaluated with the smooth 

particle mesh Ewald (SPME) algorithm (117). For the short-range non-bonded interactions we 

employed a cutoff of 10 Å with a switching function at 8.5 Å. The integration time step was 2 fs 
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and the bonds between hydrogen and heavy atoms were fixed to eliminate the most rapid oscilla-

tory motions in the system. The r-RESPA multiple time step method (118)  was adopted with a 2 

fs time step for bonded, 2 fs for short-range non-bonded interactions and 4 fs for long-range elec-

trostatic interactions. All simulations were performed using the NAMD 2.7 code (73) with the 

AMBER Parm99SB parameter set (119)  containing the force field for nucleic acids and pro-

teins, on Hopper II, a Cray XE6 system at the National Energy Research Scientific Computing 

Center. Data were analyzed using the PTRAJ utility in AMBER (115) and custom VMD (120) 

TCL scripts. 

Steered Molecular Dynamics- For the steered molecular dynamics runs we selected 5 con-

formations ~2 ns apart along the MD production trajectories of the yeast and  β-clamp systems. 

These statistically independent, uncorrelated configurations were used to initiate constant veloci-

ty steered molecular dynamics (SMD) simulations (93,94,121-124). External forces in SMD 

were applied on the following pairs of residues: K107-R185 and D122-D223 for yeast PCNA; 

E64-E314 and G102-E298 for the β-clamp. In each case we selected the center of mass (COM) 

distance between the residue pair as our SMD pulling coordinate. The two residues were pulled 

away from each other by applying a harmonic restraint to their COMs (k = 25 kcal mol-1 Å-2) and 

moving the restraint with constant velocity of 3 Å ns-1 along the line connecting the COMs of the 

two residues. Configurations from the SMD pulling trajectories were sampled for analysis at an 

interval of 10 ps. To analyze the disruption of contacts at the subunit interfaces we computed the 

number of hydrogen bonds as a function of pulling distance. For this hydrogen bond analysis a 

H-bond distance cutoff of 3.2 Å and angle cutoff of 30° were assumed. For each hydrogen bond 

detected during the pulling trajectory the time of last occurrence was used to identify the contact 

break-up. The interface opening mechanisms were then mapped onto the force-extension profile. 
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Binding Free Energy Calculation- The molecular mechanics Poisson−Boltzmann surface 

area (MM/PBSA) method in AMBER 9.0 (115) was applied to calculate relative binding ener-

gies for the subunit interfaces of the β-clamp and yeast PCNA. The MM/PBSA calculations were 

carried out using the last 10 ns from the free MD trajectory for each clamp system. In total, 2500 

frames were used for averaging. The free energy of binding can be calculated for each snapshot 

from the following expression:  

Gb  EMM  Gsol TS  (3.1) 

where ΔEMM is the gas-phase molecular mechanics binding energy, contributed by van 

der Waals and electrostatic interactions; ΔGsol is the change in solvation free energy upon bind-

ing, comprised of electrostatic and nonpolar interactions; ΔS is the gas-phase entropy change up-

on binding. The electrostatic solvation energy is determined using the finite difference Pois-

son−Boltzmann (PB) method. In the PB calculation, a 0.5 Å grid size was used, and the dielectric 

constants of protein and water were set to 1.0 and 78.0, respectively. The nonpolar contribution 

to the solvation free energy was determined from the solvent-accessible surface-area according 

to the equation:  

Gnonpolar   A  b      (3.2) 

where A is the solvent-accessible surface area, and the solvation parameters γ and b are 

0.0072 kcal mol−1Å−2 and 0 kcal mol−1, respectively. The probe radius of the solvent was set to 

1.4 Å. The surface area A was calculated using MolSurf in AMBER 9. The optimized set of 

atomic radii in AMBER 9 was used, and the atomic charges of the protein were taken from the 

ff99SB force field. It is important to note that the entropy contribution was not included and, 

therefore, the computed binding energies should be considered only relative to one another.  
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The total binding energies were further decomposed into individual contributions from res-

idues forming the subunit interfaces of yeast and E. coli clamps. The energy contribution from 

individual residue was calculated by summing its interaction energy over all residues in the 

clamp system.  The same dynamics trajectories utilized in the MM-PBSA calculations were used 

for energy decomposition. The contribution to the binding energy from each residue includes 

three terms: van der Waals contribution (ΔEvdw), electrostatic contribution (ΔEele), and solvation 

contribution (ΔGGBSA). PTRAJ module of AMBER TOOLS 12 and VMD (120) were used for 

the analysis of trajectories and structural visualization.  

3.4 Results and Discussion 

Construction of single-chain clamps- Yeast PCNA is a homotrimer whereas the E. coli β-

clamp, a homodimer. However, both retain a ring-shaped structure with inner diameters suffi-

cient to accommodate dsDNA. To measure the mechanical force required for clamp opening us-

ing optical tweezers we constructed a single-chain clamp, which possesses only one subunit in-

terface that can be opened, thereby avoiding potential complications involved in the measure-

ments. PCNA is composed of three monomers (A, B and C) aligned in a head-to-tail fashion.  In 

brief, a single-chain clamp was created by incorporating 10 amino acid linkers between the sub-

units A-B and B-C leaving a single open interface between subunits A-C. In addition we intro-

duced a cysteine on subunits A and C by site-directed mutagenesis. These cysteines were used to 

attach DNA handles via sulfhydryl-maleimide chemistry. Previously MacNally et al. have re-

ported that the single-chain PCNA generated by this method is structurally identical to wild-type 

PCNA while retraining full activity. The enhanced ATPase activity of RFC in the presence of the 

clamp served as an assay for clamp functionality (46). We have measured the ATPase activity of 

the clamp loader in the presence of the single-chain clamp using an enzyme-coupled reaction in 
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ing the average bead displacements. To convert bead displacements in arbitrary units to the rup-

ture force, we multiplied the observed bead displacement by the trap stiffness, 0.15 pN·unit-1. 

We also found that the mechanical force required for the PCNA interface opening was dependent 

on the position of attachment. When yeast PCNA was pulled at residues K107 and F185, we ob-

served that 1.7 ± 0.6 pN was sufficient for the PCNA ring opening. In contrast, when pulling 

PCNA at residues D122 and D223, a substantially higher rupture force, 11 ± 1 pN, was required. 

A control experiment using only a 1-kb DNA linker with an anti-dig bead on one end and biotin 

on the other was performed to confirm that the observed rupture forces are due to the clamps 

(Figure 3.4). In these control experiments, no rupture events were observed within the operative 

regime of the optical trap. 

 

 
 

Figure 3.2 Ten force-extension curve examples  
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The DNA-clamp complex was pulled at a constant speed (100 nm/s). The applied force 

was calculated by multiplying the bead displacement by the trap stiffness (0.15 pN·nm-1). The 

extension is calculated by subtracting the bead displacement from the stage displacement and 

post-synchronized to be zero at the moment of rupture. 

 

 

 

Figure 3.3 Histograms of PCNA interface rupture force  

A) PCNA pulled at residues K107 and F185. The interface was ruptured at 1.7 ± 0.6 pN. 

B) PCNA pulled at residues 122 and 223. The interface was ruptured at 11 ± 1 pN.  
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Figure 3.4 Typical force extension curves 

 1kb DNA linker with an anti-dig bead on one end and biotin on the other. No rupture 

events were observed within the operative regime of the optical trap (0 - 40 pN). 

 

In a similar fashion we performed experiments with the E. coli  β-clamp and constructed 

histograms (Figure 3.5A and 3.5B). In the case of the E. coli clamp we found that clamp opening 

force was also dependent on the position of attachment. When β-clamp was pulled at residues 

E64 and E314, we observed that 5.8 ± 0.5 pN was sufficient for its opening whereas pulling at 

residues G102 and E298 resulted in a higher rupture force of 12 ± 0.3 pN. By comparing the 

minimum force required for yeast PCNA opening vs. E. coli β-clamp opening, we found that the 

E. coli β-clamp requires at least three times higher opening force than the yeast PCNA.  
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Figure 3.5 Histograms of the β-clamp interface rupture force  

A)  β-clamp pulled at residues E64 and E314. The interface was ruptured at 5.8 ± 0.5 pN. 

B) β-clamp pulled at residues G102 and E298.The interface was ruptured at 12 ± 0.3 pN. 

 

The data show that in both systems, the mechanical force required for clamp opening was 

dependent on the position of attachment. This can be explained by inspecting the locations of the 

attachments. Smaller rupture forces were observed when the pulling force was applied directly 

near the subunit–subunit interface (PCNA: K107-F185, Figure 3.2A; β-clamp: E64-E314, Figure 

3.3A). Larger rupture force was required when the pulling force was applied away from the sub-

unit–subunit interfaces (Figure 3.3B and 3.5A), which might be due to disruptions of other inter-

actions outside of the subunit interface. Thus, the smaller force values are more accurate assess-

ments of the forces necessary to disrupt the interactions in the clamp subunit interfaces. 
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Interface interaction energies - To analyze the energetics of the clamp interfaces, various 

components of the interaction energy of the subunit-subunit complexes were evaluated using 

MM/PBSA analysis (Table 3.1). We note that unlike the case of MM/PBSA applied to small lig-

ands, it is difficult to accurately assess the entropic contribution to binding. Calculating the en-

tropic component from normal mode analysis would typically lead to large standard deviations 

for the binding free energies. Therefore, to quantitatively compare the interfaces we have opted 

to focus only on the enthalpic contribution. Thus, the values in Table 3.1 represent binding ener-

gies rather than free energies. As expected, due to lack of entropy-enthalpy compensation, the 

absolute binding energies are overestimated compared to the corresponding experimental free 

energies. Nonetheless, previous applications of MM/PBSA to protein interfaces have shown the 

usefulness of comparing the relative stabilities of the binding epitopes and identifying binding 

hotspots based on energy decomposition(126). 

 

Table 3.1 Free Energy Analysis (kcal mol-1) for the formation of clamp subunit interfac-
es 

Contribution PCNA β-clamp 

∆Eele 2138.80 ± 58.24 -486.51  ± 36.39 

∆Evdw -73.95 ± 4.37 -60.99 ± 5.93 

∆Gnonpolar -11.28 ± 0.45 -11.19 ± 0.52 

∆Gpolar (PB) -2076.70 ± 59.39 463.11 ± 32.38 

∆Gsol (PB)a -2087.98 ± 59.22  451.92 ± 32.17 

∆Gele (PB)b 62.09 ± 8.32 -23.40 ±10.45 

∆∆Gb (PB) -23.14 ± 7.64 -95.58 ± 8.25 

aThe polar/nonpolar (ΔGsol = ΔGpolar + ΔGnonpolar) contribution. bThe electrostatic (ΔGele = 

ΔEele + ΔGpolar) contributions. 
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The MM/PBSA analysis for our complexes leads to substantial negative binding energies 

for both the E. coli β-clamp and S. cerevisiae PCNA. This is consistent with the experimental 

evidence suggesting both clamps remain closed in solution (127). Furthermore, the binding ener-

gy ΔGb for the E. coli β-clamp interface was found to be four times larger than the corresponding 

energy for the yeast PCNA interface (Table 3.1). The difference is significant (even when we 

take into account the neglect of the entopic effects) and it also correlates very well with the out-

come from the optical trap rupture force measurements.  

More importantly, the factors contributing to interface stability are entirely different for 

the E. coli β-clamp versus S. cerevisiae PCNA. To evaluate these factors we compared the indi-

vidual components of the binding energies in Table 3.1. The intermolecular (gas-phase) van der 

Waals interactions are favorable and contribute almost equally to the stability of both interfaces, 

while the gas-phase electrostatic interactions are favorable for the E. coli β-clamp interface and 

unfavorable for the yeast PCNA interface. The nonpolar solvation energy (ΔGnonpolar) corre-

sponds to the burial of solvent-accessible surface area (SASA) and contributes favorably to the 

stability of both interfaces. By contrast, the electrostatic solvation energy (ΔGpolar) disfavors 

binding for the E. coli β-clamp interface whereas it favors greatly binding for the yeast PCNA 

interface. Thus, there is a compensation effect between the gas-phase electrostatics and the elec-

trostatic solvation energy, which act in opposite directions for each clamp interface. For the yeast 

clamp the total electrostatic energy (sum of unfavorable gas-phase and favorable solvation ener-

gies) was found to disfavor binding. By contrast, the β-clamp interface is characterized by unfa-

vorable electrostatic solvation energy and favorable gas-phase electrostatic contribution,which in 

the balance produce total electrostatic energy that still favors binding. This outcome can be ra-

tionalized by the fact that the opposing sides of the yeast PCNA subunit interface are both nega-
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tively charged. By contrast the β-clamp interface is composed of an anti-parallel beta sheet with 

the positive and negative residues sequestered on each strand and forming salt bridges across the 

interface. Such salt bridge interactions, found in the context of largely hydrophobic environment, 

contribute to the far greater overall stability of the E coli clamp when compared with the yeast 

clamp. As expected, MM/PBSA overestimates the absolute value of binding free energy due to 

the omission of entropy in the calculation. 

The total binding energy at each subunit interface was further decomposed into individual 

residue contributions as shown in Figure 3.6. Residues contributing more than ±1.5 kcal/mol to-

ward the stability of each interface are labeled explicitly (Figure 3.6A and 3.6C). The residues 

contributions are also mapped onto the structure of the two subunit interfaces and color-coded 

from positive (blue) to negative (red) in panels 3.6B and 3.6D.  
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Figure 3.6 Binding energy contributions from the interface residues 

A-B) yeast PCNA and C-D) E. coli β-clamp. Individual residue contributions are indicat-

ed on the graphs and residues contributing more than 1.5 kcal·mol-1 are labeled explicitly. The 

binding energy contributions are also mapped onto the structures of the two interfaces and are 

colored from red (negative) to blue (positive). 
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For the yeast clamp the dominant contribution to the binding epitope comes from resi-

dues positioned along the interfacial antiparallel β−strands (Ile175 to Lys183 on strand βD2, and 

Phe185on the loop region right above strand βD2; and Arg110 to Ala112, Tyr114, Leu116 on 

βI1). Thus, the subunit interface is largely hydrophobic and, in this hydrophobic context, stability 

is primarily determined by the presence of 7 main chain hydrogen bonds. Notably, for the yeast 

PCNA the residues with greatest contributions to stability are not evenly distributed along the 

length of the beta strands giving rise to the possibility of asymmetric disruption of the interface 

upon opening. In such a scenario, the interface would preferentially unzip from one end of the β-

sheet wherein the residue contacts are least stable. 

The α-helices at the back of the antiparallel β-sheet, facing the central hole of PCNA 

(αB1 and αΑ2), were found to contribute to a far lesser extent to the interface stability. Favorable 

contributions arise from residues Ile78, Cys81 on helix αB1, and Leu151, Leu154, on the oppos-

ing αΑ2 helix. Furthermore Lys146 on αΑ2 helix was found to destabilize the interface by 3.02 

kcal·mol-1 due to unfavorable electrostatic interaction with the Arg110 on the opposing βI1 

strand.  

The β-clamp interface is organized differently with electrostatic interactions playing a 

much more prominent role. Five glutamate residues, Glu298, Glu300, Glu301, Glu303, and 

Glu304 are all positioned along the interfacial β-strand β4’’. Arg103, Arg105 from the β8 strand 

and Lys74 from the α2 helix are all segregated across the interface from the negative residues. 

This positioning contributes greatly to the total binding energy (Figure 3.6B). Meanwhile, hy-

drophobic residues such as Ile78 on α2, Leu108 on β8, Ile272 and Leu273 from α1’’ greatly sta-

bilize the interface through hydrophobic interactions. Residues Phe106, Ser107 and Leu108 on 

β8, Ala302 and Ile305 on β4’’ also contribute to interface stability by forming a hydrophobic 
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core and additionally through backbone hydrogen bonds across the β8-β4’’ sheet. Additionally, 

Arg24 on a distant loop connecting α1 and β2 stabilizes the interface, mostly likely through elec-

trostatic interaction with the negatively charged Glu298 on the β4’’ strand.  

Interface rupture mechanisms- Sliding clamp opening is an activated process. Activated 

rare events are not commonly accessible to straightforward MD simulations. To enforce separa-

tion of the two interfacial beta strands of S. cerevisiae PCNA and the β-clamp we relied on 

steered molecular dynamics: a method that involves the use of a harmonic constraint moving at a 

constant velocity to “steer away” the centers of mass of groups of atoms and, thus, promote en-

hanced sampling. SMD was used to force open the clamp subunit interfaces by applying external 

forces to steer the centers of mass of the selected residue pairs along the direction connecting the 

residue COMs. A force constant k of 25 kcal·mol-1·Å-2 was sufficient to open the interfaces of 

either PCNA or the β-clamp. The steering velocity v was selected to be 3.0 Å/ns for all 5 differ-

ent starting conformations for each clamp. Additional SMD with reduced steering velocity of 1.0 

Å/ns was later carried out on the starting conformations which resulted in the lowest work profile 

from each system to consolidate the 3.0 Å/ns pulling results (data not shown). SMD simulations 

probe the energy barriers for interface disruption in a way analogous to single molecule optical 

tweezers experiments. However, the timescales involved in computational pulling runs are much 

shorter than the corresponding experimental timescales. As a result, the computed force-

extension profiles include a sizable contribution from non-equilibrium effects, which is not pre-

sent in the corresponding experimental profiles. Therefore, the rupture forces probed by the 

SMD simulations are not directly comparable to the experimental pulling data. Nonetheless, 

mechanistic details regarding subunit interface disruption under external forces can be analyzed 

and the relative magnitude of the forces between different systems can be compared. Residue 
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contacts along the interface break in stages leading to a characteristic seesaw pattern (several 

peaks and shoulders) along the profile. Integrating the force/extension plot yields a work vs. dis-

tance profile. 

Five runs of the yeast clamp (Lys107-Phe185 pair) all opened up completely after ap-

proximately 40 ns simulation, while only one β-clamp (G102-Glu298) completely opened after 

50 ns. The other four β-clamp systems eventually open but undergo contact breaking and refor-

mation between residues not involved in the original interface. Force-extension profiles from the 

run that opened the β-clamp without complications and from the run that yielded the lowest work 

profile for the yeast clamp are shown in Figure 3.7. The force applied by the virtual spring on the 

pulling residue accrues upon the extension until a threshold is reached, indicated by the peaks in 

the plots, results in the breaking of the interaction between the subunits and subsequent force de-

crease. The different stability of the yeast and E. coli clamp interfaces is evident from the fact 

that the yeast clamp requires a smaller maximum force to open up compared to the β-clamp. The 

major peak on the β-clamp profile is 15.52 kcal·mol-1·Å-1 - approximately 3.3 times larger than 

the corresponding peak of the yeast clamp profile (4.74 kcal·mol-1·Å-1). This finding is in good 

correspondence with the outcome of the MM/PBSA analysis and also consistent with the exper-

imental pulling data (Figure 3.3 and 3.5). 
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peaks in the force-extension profiles. The force is representative for the running average of every 

3 Å to smooth the plots. 

 

The structural differences at the subunit interfaces in yeast PCNA and E. coli β-clamp 

lead to observed distinct opening mechanisms in the SMD trajectories. Four distinct groups of 

residue contacts get disrupted consecutively along the yeast PCNA pulling trajectory with corre-

sponding peaks readily identified in the force extension profile (Figure 3.7A). Specifically, yeast 

PCNA was found to open by gradual unzipping of the interfacial anti-parallel beta sheet βD2-

βI1. The strand separation is initiated from the end of the interface holding the residue pair 

Lys107-Phe185. Interestingly, this end is presumed to be more stable based on the MM-PBSA 

binding energy decomposition analysis. This indicates that the exact position where the external 

forces are applied matters for the observed directionality of opening. This finding is also con-

sistent with the results from the optical tweezers experiments, which showed that the maximum 

rupture force is dependent on the positions of the residue pair being pulled.  

Unlike the yeast PCNA, β-clamp interface is stabilized the most by residues in the middle 

of the antiparallel beta sheet β8-β4’’. Its strength is derived from the presence of a hydrophobic 

core as well as main chain hydrogen bonds and salt bridge interactions. Therefore the SMD pull-

ing run reveals a much more abrupt opening whereby a large number of contacts are broken co-

operatively (as indicated by a prominent initial peak in the force extension profile in Figure 

3.7B). The remaining few contacts in the middle of the interface correspond mainly to charged 

contacts between positive and negative residues on the opposing sides of the interface. These 

contacts are the last to be cleared simply due to the long side chains of Arg residues that allow 

substantial extension before breaking of the contact. 
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Energy requirements for clamp opening- A significant amount of mechanical energy is 

required for clamp opening. Among all possible energies the minimum ones are most meaning-

ful. To roughly estimate the minimum energies required, we combined the clamp-opening dis-

tances derived from the steered molecular dynamics (SMD) simulations and the forces measured 

by optical tweezers. SMD simulations afforded the pulling distances until the clamps were fully 

opened. For yeast PCNA the clamp-opening distance was estimated to be 35Å and for E. coli β-

clamp, 31Å. Experimentally the clamp-opening distance for yeast PCNA was determined by 

FRET to be about 34Å (128),  a distance similar to the one computed by SMD. That result con-

firmed the validity of our SMD simulations. The mechanical forces required to open the clamps 

were provided by our optical tweezers experiments. The minimum forces measured 1.7 ± 0.6 pN 

at residues K107 and F185 for yeast PCNA and 5.8 ± 0.5 pN at residues E64 and E314 for E. 

coli β-clamp. Generally, as the pulling distance is rather small, we can legitimately assume that 

the force (f) linearly increases with the pulling distance (d) and thereby, approximating the inte-

gral of the pulling force over the distance as the area of a triangle, we can roughly calculate the 

energy (E) by the following equation: 

1

2
E f d     (3.3) 

Using the equation above, we have estimated that the minimum energy required for clamp-

opening is around 0.43kcal·mol-1 for the yeast PCNA and 1.29kcal·mol-1 for the E. coli β-clamp.  

The overall clamp loading process is driven by ATP hydrolysis. So naturally we expect 

that most of the energy released by ATPs should be used for clamp opening. Yet, based on the 

number of hydrolyzed ATPs estimated from ensemble kinetic studies (107,109), there exist huge 

disparities between the energy generated by ATP hydrolysis and that required to open the clamp. 

Consequently, quite contrary to our expectations, only a small fraction of the energy by ATP hy-
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drolysis is used to open clamps. Thus, the opened clamp together with its clamp loader forms a 

low energy and relatively stable complex instead of a short-lived high energy one. The kinetic 

advantage of the complex for clamp loading is well illustrated by our single-molecule kinetic 

studies by FRET (111), in which several attempts are required before the clamps are fully loaded 

on DNA. During clamp loading, a long-lived complex will have more opportunity to survive 

failed attempts and hence enhance the overall efficiency of clamp loading. In the loading process 

the energy by ATP hydrolysis is mostly likely to be dissipated after the clamp is successfully 

loaded on DNA. Consequently, ATP hydrolysis may be ultimately associated with dissociation 

of the clamp loader in addition to closure of the clamp (129,130).  

3.5 Conclusion 

The studies conducted by optical tweezers probed the mechanics of clamp loading and re-

vealed the mechanical forces and energies required for opening the subunit interfaces of the two 

clamps. And the differences in clamp opening were investigated structurally and mechanistically 

by MD or SMD simulations. Specifically, we quantify these differences in terms of specific hy-

drophobic and polar contacts from MM/PBSA analysis as well as delineate the detailed mecha-

nism of disruption of the interfaces. We observe distinct opening mechanisms – gradual unzip-

ping in the case of yeast PCNA versus abrupt cooperative disruption for the E. coli β-clamp. 

These differences are dictated by the distinct nature of the contacts formed at the subunit inter-

faces. In comparison with yeast PCNA, at the β-clamp interface we observe a far greater number 

of strong hydrophobic interactions in addition to favorable electrostatics and strong specific salt-

bridge interactions. All of them result in a large overall difference in interface stabilities and thus 

in the mechanical forces required for clamp opening in the yeast and E. coli clamps. 
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CHAPTER 4.  OPENING PATHWAYS OF THE DNA CLAMPS PROLIFERATING 

CELL NUCLEAR ANTIGEN AND RAD9-RAD1-HUS1 

4.1 Abstract 

Proliferating cell nuclear antigen (PCNA) and the checkpoint clamp Rad9-Rad1-Hus1 (9-

1-1) topologically encircle DNA and act as mobile platforms in the recruitment of proteins in-

volved in DNA damage response and cell cycle regulation. To fulfill these vital cellular func-

tions both clamps need to be opened and loaded onto DNA by a clamp loader complex – a pro-

cess, which involves disruption of the DNA clamp’s subunit interfaces. Herein, we compare the 

relative stabilities of the interfaces using the molecular mechanics Poisson−Boltzmann solvent 

accessible surface (MM/PBSA) method. We identify the Rad9-Rad1 interface as the weakest 

and, therefore, most likely to open during clamp loading. We also delineate the dominant inter-

face disruption pathways under external forces in multiple–trajectory steered molecular dynam-

ics runs. We show that, similar to the case of protein folding, clamp opening may not proceed 

through a single interface breakdown mechanism. Instead, we identify an ensemble of opening 

pathways, some more prevalent than others, characterized by specific groups of contacts that dif-

ferentially stabilize the regions of the interface and determine the spatial and temporal patterns of 

breakdown. In 9-1-1 the Rad9-Rad1 and Rad9-Hus1 interfaces share the same dominant unzip-

ping pathway whereas the Hus1-Rad1 interface is disrupted concertedly with no preferred direc-

tionality. 

4.2 Introduction 

Genome duplication and maintenance are essential for all life and the dynamic molecular 

machinery responsible for these vital biological functions is the replisome (131 ). Proliferating 

Cell Nuclear Antigen (PCNA) (22,38,132) and a related checkpoint protein, Rad9-Rad1-Hus1 
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(9-1-1) (133) are DNA clamps, which act as platforms for the assembly of core replisomal com-

ponents on DNA (35). In this capacity, DNA clamps are essential in cellular activities ranging 

from DNA replication, repair of DNA damage, chromatin structure maintenance, chromosome 

segregation, cell-cycle progression and apoptosis (35,38,134-139). PCNA is a recognized master 

coordinator of multiple pathways controlling replication and DNA damage response. The clamp 

has a toroidal shape that wraps around DNA and topologically links the replicating DNA poly-

merase to its substrate. During lagging strand DNA synthesis, PCNA organizes three core repli-

cation proteins - DNA polymerase, Flap endonuclease 1 (FEN1), and DNA ligase I (Lig1) 

(36,140). Similarly, the checkpoint clamp 9-1-1 is a crucial constituent of complexes responsible 

for checkpoint signaling and base excision repair (BER). While PCNA features three identical 

subunits, 9-1-1 (28,141,142) is heterotrimeric (Figure 1) reflecting the distinct roles of PCNA 

and 9-1-1 in DNA processing (143). Unlike PCNA, 9-1-1 does not associate with replicative 

polymerases but recruits checkpoint effector kinases to sites of DNA damage. 9-1-1 also stabiliz-

es stalled replication forks (136,144,145) and stimulates BER enzymes (including FEN1, and 

Lig1), thus linking BER activities to checkpoint coordination (146-149).  

PCNA and 9-1-1 are composed of three subunits forming closed rings encircling DNA. 

Each subunit includes two wedge-shaped domains connected by a long inter-domain connector 

loop (IDCL) (22,132). Most partner proteins associate with the clamps through the IDCL using a 

consensus sequence called PIP-Box. The clamp subunits delimit an inner cavity whose walls are 

rich in positively charged residues needed for contacting DNA. The fact that PCNA and 9-1-1 

form stable trimers implies an activated mechanism for loading onto DNA (6,108,150,151). A 

clamp-loader (AAA+ ATPase) opens and subsequently re-closes the clamps around DNA (105). 

Specifically, PCNA is loaded onto primer-template DNA by the pentameric replication factor C 
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(RFC) complex (29,103,105,108,109,152). 9-1-1 is loaded by a variant clamp loader wherein the 

large Rfc1 subunit has been replaced by Rad17 (135,153) The clamp-loading mechanism is con-

served in the three domains of life and involves opening of the pre-formed rings along a single 

subunit interface. Since all three 9-1-1 interfaces are distinct, naturally, a question arises whether 

one interface is preferentially opened during clamp loading. Furthermore, since the protein ma-

chinery responsible for clamp loading is essentially the same for PCNA and 9-1-1 (besides the 

replacement of Rfc1 by Rad17), this prompts two important questions: (i) does subunit interface 

stability play a role in determining which interface is opened; and (ii) is there an intrinsic differ-

ence in the energy required to open and load PCNA versus 9-1-1? 

For the heterotrimeric 9-1-1 clamp, the question of which interface opens to allow a pre-

formed ring to be loaded onto DNA junctions is still unresolved. There have been two competing 

proposals. First, Dore’ at el. argued that the Rad9–Rad1 interface serves as an opening gate dur-

ing clamp loading. In their 9-1-1 structure (28) (PDB id: 3G65) the Rad9–Rad1 interface was 

found to be most polar and had the smallest buried surface area (1100 Å2). By contrast, Sohn et 

al. (141) independently solved the 9-1-1 structure (PDB id: 3A1J) and argued that the Hus1–

Rad1 interface was most likely to open due to its close structural resemblance to the human 

PCNA interface. Finally, Jiang et al. (142) published a third 9-1-1 crystal structure (PDB id: 

3GGR) and proposed association between Rad1 and human Rad17 in the complex of 9-1-1 with 

the clamp loader. Due to the chiral arrangement of the 9-1-1 subunits (Rad9, Rad1, and Hus1 in 

anticlockwise order viewed from the top) the Rad9 subunit would then be located beneath the 

Rfc5 subunit of the clamp loader. This would position the Rad9-Rad1 interface at the gap be-

tween Rfc5 and Rad17. Such positioning also implied the Rad9-Rad1 interface could be the 

gateway to open the checkpoint clamp.  
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Despite the availability of three independently determined 9-1-1 structures, this conun-

drum cannot be easily resolved for several reasons: (i) buried surface area (BSA) is an imperfect 

indicator of interface stability; (ii) specific residue contacts at the interfaces differ among the 

three available structures; (iii) there are unresolved residues close to the interfaces in two of the 

three experimental structures (28,141,142). In this contribution, we analyze the DNA clamp in-

terfaces to determine the interface serving as the opening gateway in 9-1-1. Specifically, we ap-

ply the MM/PBSA (MM/GBSA) method (96,154) in the AMBER package (115,155) to compute 

binding energies for the subunit interfaces in PCNA and 9-1-1, providing an unbiased compari-

son of relative interface stabilities. Furthermore, pairwise decomposition of the MM/GBSA bind-

ing energies allowed us to delineate the significant interactions contributing to the stability of 

each interface. Finally, by analyzing series of multiple-trajectory steered molecular dynamics 

runs (pulling runs), we characterized the mechanical properties of the DNA clamp interfaces and 

their breakdown mechanisms under external forces. 

4.3 Material and Methods 

 We adopted a three-step computational strategy to evaluate the clamp interfaces. First, 

the molecular mechanics Poisson−Boltzmann (Generalized Born) solvent accessible surface area 

(MM/PBSA or MM/GBSA) method was applied to calculate binding energies and compare the 

relative stabilities of the four subunit interfaces of human PCNA and 9-1-1. Second, the comput-

ed binding energies were decomposed to reveal aggregate per residue contributions to interface 

stabilization. We also carried out pairwise MM/GBSA decomposition to construct a matrix of 

pair interaction energies for residues forming each interface. Third, we performed multiple-

trajectory steered molecular dynamics simulations to monitor the pattern of breakdown for all 
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energetically significant residue contacts identified in the MM/GBSA pairwise decomposition. 

Description for each of the three stages in our modeling protocol is given below. 

Systems Setup and Molecular Dynamics- The crystal structures of PCNA (22) (PDB ID: 

1VYM) and Rad9-Rad1-Hus1 (28,141,142) (PDB ID: 3A1J, 3GGR, 3G65) were obtained from 

the Protein Data Bank. Molecular dynamics simulations prior to MM/PBSA analysis were per-

formed using the intact trimeric clamps. Unresolved residues in the 3G65 and 3A1J structures 

were fixed based on the 3GGR structure. For the subsequent MM-PBSA calculations we re-

moved one clamp subunit to ensure only one interface (between the remaining two subunits) was 

evaluated. To limit computational expense, we carried out all SMD runs on reduced models, 

wherein we retained only the N-terminal domain of the first subunit and the C-terminal domain 

of the neighboring subunit. This approach is justified by the outcome of the MM/GBSA analysis, 

which showed no substantial contributions to the binding energies from residues outside the two 

adjacent domains defining each interface. The XLeap module of AMBER 9 (115,155) was used 

to add hydrogen atoms. All ionizable side chains were assigned to their ionization states at pH 

7.0 using the WHATIF server (156). Each system was solvated with TIP3P water molecules (81) 

leaving a minimum distance of 10.0 Å from the protein surface to the edge of the simulation box. 

Counter ions were added to achieve charge neutralization and additional 100 mM NaCl concen-

tration was introduced to mimic physiological conditions.  

The systems were minimized for 5000 steps with fixed backbone atoms followed by 5000 

steps of minimization with harmonic restraints on the protein backbone atoms (k=25 kcal/mol) to 

remove unfavorable contacts. All systems were then gradually heated to 300 K over 200 ps in the 

NVT ensemble while keeping the protein backbone constrained. The equilibration was continued 

for another 1.0 ns in the NPT ensemble and the harmonic restraints were gradually released.  
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Production runs were carried out in the isothermal isobaric ensemble (1 atm and 300 K) 

for 20 ns for the intact clamp systems (for MM/PBSA). Long-range electrostatic interactions 

were evaluated with the smooth particle mesh Ewald (SPME) algorithm (117). For the short-

range non-bonded interactions we employed a cut off of 10 Å with a switching function at 8.5 Å. 

The integration time step was 2 fs and the bonds between hydrogen and heavy atoms were fixed 

to eliminate the most rapid oscillatory motions. The r-RESPA multiple time step method (118)  

was adopted with a 2 fs time step for bonded, 2 fs for short-range non-bonded interactions and 4 

fs for long-range electrostatic interactions. All simulations were performed using the NAMD 2.7 

code (73,74) with the AMBER Parm99SB parameter set (119) containing the force field for nu-

cleic acids and proteins. Data were analyzed using the PTRAJ utility in AMBER (115) and cus-

tom VMD TCL scripts (157).  

Binding Energy Calculation- To calculate binding energies for all four clamp interfaces 

we employed the molecular mechanics Poisson−Boltzmann solvent accessible surface area 

(MM/PBSA) method (96,154). For the purposes of MM/PBSA analysis we sampled frames at 

4ps intervals from the last 10 ns of the MD trajectories (the first 10 ns were discarded as equili-

bration). In total 2500 frames were used for averaging. Free energy of binding can be computed 

as follows (same as equation 3.1): 

Gb  EMM  Gsol TS  (4.1) 

where ΔEMM represents gas-phase molecular mechanics binding energy (van der Waals 

and electrostatics); ΔGsol is the change in solvation free energy and ΔS is the gas-phase entropy 

change upon binding. The electrostatic solvation energy contribution to ΔGsol can be estimated 

using the finite difference Poisson−Boltzmann (PB) method. A grid size of 0.5 Å was used in the 

PB calculation, and the dielectric constants for protein and water were set to 1.0 and 78.0, re-
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spectively. The nonpolar contribution to ΔGsol was estimated by the solvent-accessible surface 

area according to equation (same as equation 4.2): 

Gnonpolar   A  b      (4.2) 

The solvation parameters γ and b are set to be 0.0072 kcal mol−1 Å−2 and 0 kcal mol−1, re-

spectively. The surface area A was calculated using MolSurf in AMBER 9 (115). The probe ra-

dius of the solvent was set to 1.4 Å. The optimized set of atomic radii in AMBER 9 was used, 

and the atomic charges of the protein were taken from the ff99SB force field. It is important to 

note that the entropy contribution was not included and, therefore, the computed values for the 

binding energies should be considered only relative to one another. Computed relative binding 

energies represent an appropriate measure of interface stability under the assumption that the 

gas-phase entropy terms are similar for the PCNA and 9-1-1 interfaces. The similar extent and 

secondary structure of the four clamp interfaces justifies such an approach. 

Finally, we carried out two types of binding energy decomposition calculations. First ag-

gregate contributions of individual residues toward interface stability were evaluated (1-

dimensional decomposition). Second, a pairwise (2-dimensional) decomposition was carried out 

to pinpoint residue pairs contributing significantly (above -1.0 kcal/mol for PCNA and Hus1-

Rad1; -2.0 kcal/mol for Rad9-Hus1 and Rad9-Rad1) toward the interface binding energy. To re-

duce the computational expense of the pairwise decomposition, we employed model truncation 

analogous to the one used in SMD. The MM/GBSA decomposition follows an established meth-

od to estimate the contributions of residues from each of the two subunits to the total binding en-

ergy by means of component analysis (158). PTRAJ module of AMBER TOOLS 12 and VMD 

(157) were used for the analysis of trajectories and structural visualization.  
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Steered Molecular Dynamics- To examine the mechanical properties of the subunit inter-

faces in PCNA and 9-1-1 and establish interface disruption mechanisms under external forces we 

relied on the steered molecular dynamics (SMD) method (122). To initiate the SMD runs we se-

lected snapshots from preliminary 10 ns unbiased simulations of PCNA and 9-1-1 (3A1J) at 

equal intervals along the trajectories. These statistically uncorrelated configurations were used to 

initiate constant velocity steered molecular dynamics (SMD). In each interface we have applied 

constraints to the 　-strand of the N-terminal domain while applying a harmonic force k = 15 

kcal mol-1 Å-2 to the center of mass of the other strand. The pulling direction was along the line 

connecting the centers of mass of the two domains. The constant pulling velocity was 1 Å ns-1 

and the pulling run had a total duration of 12 ns so as to achieve an opening of 12 Å of the inter-

face. During the pulling trajectories 1200 structures were sampled at intervals of 10 ps for analy-

sis. In total, the SMD simulation time exceeded 1.4 s necessitating the use of extensive supe　 r-

computing resources. Thus, the project required over 1 million CPU hours at two supercompu-

ting facilities (NICS Kraken and NERSC Hopper II supercomputers). 

Analysis of the SMD runs was carried out by following the time evolution of the contacts 

identified as significant contributors to binding in the pairwise (2-D) MM/GBSA decomposition 

(158). The contacts were classified as hydrogen bonds, salt-bridges, hydrophobic interactions 

and suitable cutoffs applied to determine the presence of the contact in the trajectory frames. For 

each contact detected during the pulling trajectory the time of last occurrence (allowing for the 

possibility of contact breaking and reforming) was used to identify the breakdown time. The in-

terface opening mechanism could then be followed on a contact map wherein the color-coding 

scheme signified groups of contacts cleaved within the same time interval. 
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4.4 Results and Discussion 

Rad9-Rad1 interface requires least amount of energy to open – To understand the structur-

al and energetic basis for interface stability in PCNA and 9-1-1, we analyzed all four subunit in-

terfaces (PCNA-PCNA, Rad9-Rad1, Rad9-Hus1 and Hus1-Rad1) through MD simulations along 

with the application of the molecular mechanics Poisson−Boltzmann solvent accessible surface 

area (MM/PBSA) method (96,154). We employ complete and fully relaxed models of the trimer-

ic sliding clamps (PDB id: 3GGR, 3A1J and 3G65) (28,141,142) embedded in an aqueous sol-

vent environment. Subunit interface binding energies were averaged over 2500 independent con-

formations. Various components of the subunit interaction energy ΔGb were evaluated for all 

three available 9-1-1 X-ray structures (Table 4.1, 4.2 and 4.3). When MM/PBSA is applied to 

extended interfaces it is challenging to accurately assess the gas-phase entropic contribution. 

Therefore, quantitative comparison of the interfaces involved only the enthalpic contribution and 

the values in Tables 4.1, 4.2 and 4.3 represent binding energies rather than free energies. As ex-

pected, due to lack of entropy-enthalpy compensation, the absolute binding energies are overes-

timated. Nonetheless, previous applications of MM/PBSA to protein interfaces have shown the 

usefulness of comparing the relative stabilities of binding epitopes and identifying binding 

hotspots based on energy decomposition (126,159). 

 

Table 4.1 Binding energy analysis (kcal mol-1) for the DNA clamp interfaces in PCNA 
and 9-1-1 (3GGR model) 
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aPolar/nonpolar (ΔGsol=ΔGpolar+ΔGnonpolar) contributions to ΔGb. 

bElectrostatic (ΔGele 

=ΔEele+ΔGpolar) contributions to ΔGb. Calculation of ΔGb does not explicitly consider entropy 

contributions. Standard deviations are shown in parentheses. Averaged buried surface areas 

(BSA) for the interfaces are given units of Å2. These apply to Table 4.2 and 4.3 as well. 

 

Table 4.2 Binding energy analysis (kcal mol-1) for the DNA clamp interfaces in PCNA 
and 9-1-1 (3A1J model)  
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Table 4.3 Binding energy analysis (kcal mol-1) for the DNA clamp interfaces in PCNA 
and 9-1-1 (3G65 model)  

 

 

From the data in Table 4.1 (also Table 4.2 and 4.3) we immediately conclude that the 9-

1-1 interfaces differ substantially in stability. For the most complete structure (3GGR), the com-

puted binding energies ΔGb establish the following order of stability: Rad9-Hus1>Hus1-

Rad1>Rad9-Rad1≈PCNA-PCNA (ratios of ΔGb of 1.71 : 1.39 : 1.10 : 1.0). This ordering is 

maintained regardless of which x-ray structure was used in constructing the model (e.g. for 3G65 

the ΔGb ratios are 1.86 : 1.49 : 1.16 : 1.0). The only outlier value is the Rad9-Hus1 binding ener-

gy in the 3A1J model. Missing residues at this interface were added by homology modeling (us-

ing 3GGR as template) likely leading to a marginally lower ΔGb. Comparison among the inde-

pendently set-up 3G65, 3A1J and 3GGR models reveal that the binding energy ratio ΔGb (Rad9-

Rad1)/ΔGb (PCNA) is remarkably consistent irrespective of the initial structural model (ratio of 

1.16, 1.12 and 1.10, respectively). The Rad9-Rad1 interface is the weakest and, thus, a clear 

choice to be the gateway for opening the checkpoint clamp. Furthermore, the binding energy of 
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Rad9-Rad1 is practically indistinguishable from the binding energy of the PCNA-PCNA inter-

face. Therefore, the energetic requirement for the Rad17-RFC2–5 complex to open 9-1-1 is es-

sentially same as the requirement for RFC to open the PCNA ring. From an evolutionary stand-

point this outcome implies 9-1-1 and PCNA may have been subject to evolutionary pressure to 

optimize the overall stability of one subunit interface (Rad9-Rad1 or PCNA-PCNA) to match the 

requirements of the clamp loading machinery.  

Despite the almost perfect match in overall binding energies, the stability of Rad9-Rad1 

and PCNA-PCNA interfaces is achieved by very different means. The PCNA interface is largely 

flat and hydrophobic and does not display electrostatic complementarity between the opposing 

binding epitopes (Figure 4.1C). By contrast, the Rad9-Rad1 interface features more polar con-

tacts and a shorter hydrophobic patch between the two antiparallel β-strands S9-S13 (141) (Fig-

ure 4.3B). The binding surfaces from the Rad9 and Rad1 subunits display high electrostatic 

complementarity (Figure 4.1F) as reflected in the computed gas-phase electrostatic energy. ΔEele 

is favorable for the Rad9-Rad1 interface but unfavorable for the PCNA interface (Table 1). By 

contrast, the electrostatic solvation energy (ΔGpolar) disfavors Rad9-Rad1 binding whereas it fa-

vors PCNA interface formation. Rad9-Hus1 and Hus1-Rad1 also display favorable ΔEele due to 

electrostatic complementarity between the 9-1-1 subunits (Figure 4.1D-F) – a feature, which is 

absent in the PCNA interface. 



 79

 

Figure 4.1 Common toroidal architecture of the DNA clamps PCNA and 9-1-1 

A) Structure of PCNA with the equivalent subunits shown in red, blue and green; B) 

Structure of the checkpoint clamp with Rad9 shown in red, Rad1 in green and Hus1 in blue; C) 

Surface electrostatics of the PCNA interface; D) Surface electrostatics of the Hsu1-Rad1 inter-

face; E) Surface electrostatics of the Rad9-Hus1 interface; F) Surface electrostatics of the Rad9-

Rad1 interface. Electrostatic potential is mapped onto the molecular surface for each interface 

and color-coded from red (negative) to blue (positive). 
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Finally, it’s notable that the computed BSA values for the interfaces averaged over the 

simulation trajectories (Table 4.1, 4.2 and 4.3) do not correlate well with the computed binding 

energies. Using only ΔGnonpolar (or alternatively BSA) to evaluate the 9-1-1 interfaces would sug-

gest Hus1-Rad1 to be marginally less stable than Rad9-Rad1, inverting the order of stability es-

tablished through the total binding energies ΔGb. However, interface formation is driven by both 

polar (ΔGpolar and ΔEele) and non-polar interactions (ΔGnonpolar and ΔEvdw), which in the balance 

determine ΔGb. Since BSA accounts only for the ΔGnonpolar contribution, it is a poor gauge of rel-

ative interface stability.  

Structural determinants of PCNA and 9-1-1 interface stability – To delineate the structur-

al features that affect 9-1-1 interface stabilities, we decomposed the total binding energies ΔGb 

into aggregate per residue contributions (1-D decomposition) (158). All residues contributing 

substantially toward interface stabilization/destabilization above a ±1.5 kcal mol-1 threshold are 

shown in Figure 4.2 and Figure 4.3. Residue contributions are also color mapped onto the struc-

ture of the respective interfaces. First, we note that all interfaces in 9-1-1 and PCNA are stabi-

lized entirely by local interactions with no above-threshold contributions arising from residues 

outside the adjacent N-terminal and C-terminal domains. Despite dissimilar sequences, the 9-1-1 

and PCNA interfaces share common structural features (22,28). At the core of each clamp inter-

face is an antiparallel β-sheet (strands S9 and S13), forming part of the outer shell of the trimeric 

PCNA or 9-1-1 ring. This β-sheet is reinforced to varying degrees by two adjacent α-helices (la-

beled H2 and H3) facing toward the central cavity of each clamp. Such an arrangement of sec-

ondary structure elements imparts structural stability to the clamps. Residue contacts in the loop 

regions above and below the central β-sheet contribute with varying extent to the overall binding 

energy of each interface. The planar ring architecture results in the clamps being two-sided: the 



 

front (to

tors (no

acterize

front an

IDCL-p

opening

 

op) face exp

tably DNA 

d by three l

nd back side

presenting fa

g pathways f

poses the ID

polymerase

oops denote

e and in the

ace is deno

follows the 

DC loops an

es and the c

ed as P-loop

e analyses t

oted as “top

same conve

nd is thus re

lamp loader

ps (or guide 

that follow 

” and the b

ention.  

esponsible f

r). The back

loops). The

we have o

back face is

for binding 

k (bottom) s

e 9-1-1 inter

riented all 

s “bottom”. 

most replic

side of PCN

rfaces likew

interfaces s

Classificati

81

cation fac-

NA is char-

wise have a 

so that the 

ion of the 

 



 

F
D MM/G

A

and resi

the indi

the stru

represen

 

Figure 4.2 O
GBSA deco

A) Aggrega

idue contrib

vidual resid

cture (right

nted.  

Origins of in
omposition a

ate binding 

butions map

dues of the 

t). Only resi

nterface sta
analysis 

energies fo

pped onto th

Hus1-Rad1 

idues contri

ability for th

or the indiv

he structure

 interface (l

ibuting abo

he PCNA an

idual residu

e (right); B)

left) and res

ve a ±1.5 k

nd Hus1-Ra

ues of the P

) Aggregate

sidue contri

kcal mol-1 t

ad1 interface

PCNA inter

 binding en

ibutions map

threshold in

82

es from 1-

rface (left) 

nergies for 

pped onto 

n G　 b are 

 



 83

Figure 4.3 Origins of interface stability for the Rad9-Hus1 and Rad9-Rad1 interfaces 
from 1-D MM/GBSA decomposition analysis 

A) Aggregate binding energies for the individual residues of the Rad9-Hus1 interface 

(left) and residue contributions mapped onto the structure (right); B) Aggregate binding energies 

for the individual residues of the Rad9-Rad1 interface (left) and residue contributions mapped 

onto the structure (right). Only residues contributing above a ±1.5 kcal mol-1 threshold in G　 b 

are represented.   

 

In Figure 4.2 we first compare the interfaces PCNA-PCNA and Hus1-Rad1, which were 

suggested by Sohn et al. (141) to be structurally most similar. Indeed, both interfaces are flat and 

hydrophobic, which is clearly reflected in the presence of two prominent largely symmetric 

peaks in the binding energy graphs. The peaks correspond to the two antiparallel β-strands at the 

core of the PCNA or Hus1-Rad1 interface and together account for most of the computed ΔGb. 

The roughly symmetric peaks suggest that there is no preferred directionality to open these two 

interfaces from either the top or the bottom side. For PCNA the central β-sheet (V111-K117 and 

L175-L182) is the primary determinant of interface stability with 15 residues having above-

threshold contributions. The interface is stabilized by the presence of 7 stable backbone hydro-

gen bonds in a largely hydrophobic sequence context. The residues in the middle of the sheet 

contribute more significantly to ΔGb than the flanking residues at the edge of the sheet. There are 

very few residues outside the β-sheet with above-threshold contributions. Interactions between 

the adjacent helices H2 and H3 are considerably less substantial, except for a single salt bridge 

between residues D86 and R146 at the back of the interface. Together these two residues add -

10.56 kcal/mol to the total binding energy. Three additional residues C81, H153 and I154 from 

helices H2 and H3 also contribute -2.95, -1.89 and -2.30 kcal/mol, respectively.  
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While the Hus1-Rad1 interface superficially resembles the PCNA interface (16 contrib-

uting residues in the core β-sheet; V128-N135 and L198-F205), the average computed binding 

energy per residue within the β-sheet is higher (-2.91 kcal/mol) for Hus1-Rad1 compared to 

PCNA-PCNA (-2.65 kcal/mol). Additionally, there are significantly more hydrophobic residues 

from the adjacent H2 and H3 helices contributing above the threshold level (V88, I95, F96, 

V169, N175, I176). Such differences in the extent of the hydrophobic contacts justify the ob-

served order of stability with the PCNA-PCNA interface being easier to open than Hus1-Rad1. 

In Figure 4.3 we compare the two more polar interfaces - Rad9-Hus1 and Rad9-Rad1. 

Once again interactions within the central β-sheets play the most prominent role (R127-P134 and 

M193-L199 for Rad9-Hus1; V118-L124 and A196-P204 for Rad9-Rad1;) resulting in two pri-

mary peaks in the 1-D MM/GBSA decomposition graphs. In contrast to PCNA-PCNA and Hus1-

Rad1 the peaks in Figure 3 are largely asymmetric, featuring a broader distribution of binding 

energies. Stronger contacts are clustered at the bottom of the two interfaces. These stronger con-

tacts are likely to break late during the interface rupture induced by the clamp loader, while weak 

contacts would break first. Therefore, the decomposition of ΔGb (either 1-D or pairwise 2-D) 

gives us a clear prediction of the preferred direction for opening the subunit interfaces under ex-

ternal forces. The observed asymmetry of the peaks for Rad9-Rad1 and Rad9-Hus1 is indicative 

of preferred direction to open both interfaces from the top side. This trend is especially well pro-

nounced for Rad9-Rad1, which is also the most polar of the three 9-1-1 interfaces. However, 

there are also substantial differences between Rad9-Rad1 and Rad9-Hus1 in terms of the number 

and type of residues contributing to ΔGb. Rad9-Rad1 is clearly the weaker interface due to fewer 

contacts within the core β-sheet and only two above-threshold contributions from outside the β-

sheet: residues M89 and R85 from helix H2. By contrast, the Rad9-Hus1 interface features not 
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only exceptionally strong contributions within the core β-sheet (per residue average of -3.51 

kcal/mol) but also many contributing residues outside the core of the interface - N97 from helix 

H2, L157 and P158 from helix H3, F110 and S123-S125 from loop regions of the interface. 

Thus, Rad9-Hus1 appears to be the most substantial of all 9-1-1 subunit interfaces. 

Clamp opening pathways under external force – To address the mechanisms and path-

ways for clamp opening we monitored subunit interface disruption under external forces. This 

was accomplished by multiple-trajectory steered molecular dynamics (SMD) runs using truncat-

ed PCNA and 9-1-1 models. Truncation to include only the N-terminal and C-terminal domains 

from each interface is fully justified by the MM/GBSA results, which showed the clamp subunits 

to be held together entirely by local interactions. The external forces were applied to pull apart 

the β-strand at the core of each interface. Visual classification of the SMD trajectories/opening 

pathways (Table 4.4) was performed prior to detailed contact analysis. Our SMD simulations 

showed that similar to the case of protein folding, the clamp opening for both PCNA and 9-1-1 

does not occur through a single uniform breakdown mechanism. Instead, the results are con-

sistent with the existence of an ensemble of parallel clamp-opening pathways, some more preva-

lent than others. These pathways are characterized by specific groups of contacts that differen-

tially stabilize the regions of the interface and, thus, determine the spatial and temporal patterns 

of breakdown. The stochastic nature of interface opening is consistent with recent work of Ben-

kovic et al. (111), which pointed out that clamp loading proceeds by an inefficient and largely 

heuristic search. Instead of a single, highly confined pathway the process involves multiple at-

tempts and many intermediates (possibly also off-pathway states). Thus, in addition to its prima-

ry function, the clamp loader has to recycle incorrectly loaded clamps. 
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Table 4.4 Classification of the DNA clamp opening pathways from SMD 

Number of pathway classified as “top-down”, “bottom-up” or “concerted” for each clamp 

subunit interface are shown. 

 

 

Despite the stochastic nature of clamp opening, the dominant pathways exhibit certain 

common features. Interface break-up almost invariably involves unzipping of the central β-sheet 

(strands S9-S13) followed by separation of the more loosely connected H2 and H3 helices and 

the loop regions of the interface. The unzipping of the β-sheet can occur in the top-down, bot-

tom-up direction or by cooperative collapse of the contacts between the S9 and S13 strands. 

Therefore, in Table 4.4 we classify the opening pathways as “top-down”, “bottom-up” or “con-

certed”. We note that the classification is based on the overall direction of opening for the entire 

interface (not just the β-sheet collapse). In a small number of SMD runs (less than 10%), the ini-

tial opening was followed by partial re-formation of the contacts at the interface. These runs 

were excluded from the pathway classification in Table 4.4.  
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Time evolution of significant contacts for A) the PCNA interface in the “top-down” 

pathway; B) the PCNA interface in the “bottom-up” pathway; C) the Rad9-Hus1 interface in the 

“top-down” pathway; D) the Rad9-Rad1 interface in the “top-down” pathway; E) the Hus1-Rad1 

interface in the “top-down” pathway; F) the Hus1-Rad1 interface in the “bottom-up” pathway. 

Averaged break-up times of above-threshold contacts from the pairwise MM/GBSA decomposi-

tion are color-mapped on the panels from red (0ns) to blue (8ns). 

 

Under external forces the four clamp interfaces display distinct rupture mechanisms. For 

PCNA-PCNA and Hus1-Rad1 clamp opening in the “top-down” or “bottom-up” direction is 

equally probable. Indeed for PCNA all three pathways, including the concerted pathway, are 

equally represented. For Hus1-Rad1 there is a higher tendency for the opening process to start 

from the ends of the interface. However, once initiated, the unzipping is completed within a nar-

row time interval, which is indicative of almost cooperative disruption of the backbone hydrogen 

bonds at the interface core (Figure 4.4E and 4.4F). By contrast the more polar Rad9-Rad1 and 

Rad9-Hus1 interfaces open preferentially in the “top-down” direction. This outcome is fully con-

sistent with our prediction from the one-dimensional and pairwise MM/GBSA decompositions 

(Figure 4.2, Figure 4.3 and Figure 4.5). The origin of preferred directionality lies in the uneven 

distribution of strong polar or charged contacts along these interfaces. Moreover, polar contacts 

found outside the central β-sheet exert more significant bias on the opening direction. The reason 

for this outcome is that these contacts involve specific side-chain interactions, while contacts 

within the core β-sheet occur mostly through the backbone and are thus non-specific. Preferred 

directionality is lost when the core of the interface is primarily hydrophobic and held together by 

backbone hydrogen bonds (as is the case for PCNA-PCNA and Hus1-Rad1).  
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tacts contributing above-threshold in the pairwise MM/GBSA decomposition (Figure 4.5) were 

considered and their time evolution monitored throughout the pulling trajectory. To follow the 

contact dynamics, we first classified the MM/GBSA residue pairs by type of interaction. For hy-

drogen bond contacts (backbone, side-chain H-bonds and direct salt bridges) we employed heavy 

atom distance cutoff of 3.3 Å and an angle cutoff of 50º. Hydrophobic contacts were identified 

by considering whether heavy atoms from the first hydrophobic residue were in van der Waals 

contact with any heavy atom from the second hydrophobic residue. Polar residues not involved 

in hydrogen bonding were treated by applying the same distance criterion used for hydrophobic 

contacts. The time of last occurrence (within the specified cutoffs) of each MM/GBSA pair was 

recorded and these times were averaged over the trajectories belonging to the same pathway. 

Naturally, identical contacts collapse at different times in different trajectories. However, we ob-

served that within each pathway the rupture events for specific contacts occurred within narrow 

time intervals, justifying the use of averaged break-up times in defining the opening mechanism.  

Results from this analysis are shown in Figure 4.4 and reveal the characteristics of the 

dominant pathways for subunit interface disruption in PCNA and 9-1-1. Description of the con-

tacts includes average break-up times in nanoseconds and interaction energies ΔGb from the 

pairwise MM/GBSA decomposition (noted in parenthesis after each contact). For PCNA (Figure 

4.4A and 4.4B) the opening mechanism is dominated by the disruption of the two antiparallel β-

strands in the outer shell of the clamp. There is no clear distinction between the “top-down” and 

“bottom-up” pathways in terms of timing of contact disruption. Indeed the majority of contacts 

between the β-strands disappear in a relatively narrow time interval from 1.5 ns to 4 ns regard-

less of whether strand unzipping is initiated from the top or bottom side.   
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For the 9-1-1 interfaces, it generally took more time to initiate S9-S13 strand separation. 

This is illustrated by the shift in color toward the green/blue end of the scale as compared to 

PCNA in overall agreement with our ΔGb results. Pulling the Hus1-Rad1 interface did not result 

in a single dominant pathway (Figure 4.4E and 4.4F) consistent with the flattened binding energy 

profile in the 1-D or pairwise 2-D MM/GBSA decompositions. Rupture of the core β-sheet in 

Hus1-Rad1 occurred with no obvious directionality and within an even narrower time range 

compared to PCNA: 2.9 ns – 3.6 ns for the top-down pathway, and 2.9 ns – 4.0 ns for the bot-

tom-up pathway. The pair Val199–Lys133 (-1.76 kcal/mol) lasted longer than any other β-sheet 

contact (5.8 ns) due to the long flexible side chain of Lys133 reaching across the interface. The 

strongest contacts from the H2, H3 α-helices N175-D91 (-4.54 kcal/mol), K172-D91 (-4.05 

kcal/mol) and K172-S94 (-2.80 kcal/mol) lasted beyond the complete separation of the β-strands 

in both pathways (rupture times of 8.2, 8.1 and 7.5 ns, respectively). Therefore helix separation 

on the inner side of the interface occurred after the rupture of the core β-strands. We conclude 

that just like in PCNA, the Hus1-Rad1 interface opens by cooperative, non-directional unzipping 

of the core β-strands dominated by disruption of hydrophobic contacts.  

The top-down pathway was the dominant mechanism for opening the Rad9-Hus1 inter-

face (Figure 4.4C). Disruption of the core β-strands for this interface occurred in a much broader 

time range (2.0 ns – 7.0 ns) compared to PCNA, indicating the presence of persistent contacts 

whose break-up requires much larger external forces. This notion is consistent with Rad9-Hus1 

being the most stable of all 9-1-1 interfaces. The strongest interaction identified in the pairwise 

decomposition was between charged residues D203–R127 (-10.8 kcal/mol) and was positioned at 

the extreme back side of the interface. Not surprisingly, this was the last contact to break at 10.6 

ns. Other robust contacts included E154–R127 (-4.12 kcal/mol), E202–S125 (-4.45 kcal/mol), 
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E202–Ser124 (-5.62 kcal/mol), D203–S123 (-2.66 kcal/mol) and L157–K93 (-3.38 kcal/mol), 

which all resided in the bottom region of the interface and cooperatively resisted separation until 

average break-up times well above 6.5 ns. All of these pairs included polar or charged residues, 

corroborating the importance of charged interactions in maintaining interface stability and estab-

lishing a predominant opening direction. 

The opening mechanism of the Rad9-Rad1 interface (Figure 4.4D) revealed an even more 

pronounced tendency for directional opening as compared to Rad9-Hus1. Rupture of the inter-

face was initiated from the top side, which incidentally is also the side binding the clamp loader. 

Thus it is attractive to speculate that the Rad9-Rad1 interface is weakest precisely at the point of 

application of mechanical force by the clamp loader. A group of resilient pairwise interactions at 

the bottom of the interface is responsible for the observed “top-down” directionality of opening. 

These interactions feature both charged and hydrophobic residue contacts: R119-D202 (-16.50 

kcal/mol), R85-E169 (-6.55 kcal/mol), F116-L209 (-2.54 kcal/mol), F116-S207 (-2.66 kcal/mol), 

and V118-Y203 (-2.98 kcal/mol). The strongest contact R119–D202 resides at the lower end of 

the β-sheet and along with V118-Y203 did not break until a very late stage (5.8 ns) of interface 

separation. Phe116–Leu209 was typically the last contact to rupture (11.7 ns) in most of the 

SMD trajectories. Despite the overall top-down rupture pattern, there were a couple of persistent 

contacts at the top of Rad9-Rad1. These involved the salt bridge R85–E169 (-6.55 kcal/mol) and 

the S86–E169 pair, both located at the top of the H2, H3 α-helices. Maintaining these two con-

tacts until the latter stages of interface separation (7.8 ns) was made possible by the long side 

chains of Arg85 and E169, which could reach across the partially opened S9-S13 β-strands. 

Once again, the results highlight the importance of salt bridges in determining the interface open-

ing mechanism and for the overall architecture of the DNA clamps.  
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4.5 Concluding remarks  

The toroidal architecture adopted by DNA clamps is a perfect example of how molecular 

shape follows function. Despite low sequence similarity, clamps from bacteriophage to archaea 

and humans all form trimeric rings encircling DNA. The function of these protein rings is to 

serve as mobile scaffolds in the coordinated assembly of the DNA replication and repair machin-

ery. In this case, function requires a subtle balance between the ability to form stable trimers and 

the necessity to open to be loaded onto DNA. All clamps employ a common loading mechanism, 

wherein a single subunit interface is ruptured by the clamp loader to allow threading of primer-

template DNA and followed by closure of the ring.  

Why have two distinct clamps, PCNA and 9-1-1, evolved in humans? One may speculate 

that the purpose of the heterotrimeric 9-1-1 is to ensure selective recruitment of different partners 

to different subunits on the same ring-shaped platform. This cannot be accomplished by PCNA, 

except in a stochastic manner, because the PCNA subunits are equivalent. Importantly, the dif-

ferent subunits of 9-1-1 not only differentiate the clamp from PCNA but also open up the possi-

bility that affinity differences among the clamp interfaces may have functional significance. Spe-

cifically, it has been proposed that the Rad9-Rad1 interface of the checkpoint clamp is the weak-

est and, therefore, serves as the opening gate for loading 9-1-1 onto chromatin. However, this 

proposal remains controversial with others positing Hus1–Rad1 is the opening gate based on 

structural resemblance to the PCNA interface. Through detailed subunit interface analysis, we 

identified Rad9-Rad1 as having the lowest affinity among all 9-1-1 interfaces. This finding 

makes Rad9-Rad1 a clear candidate to be the 9-1-1 opening gate. The Hus1-Rad1 interface was 

similar to PCNA in overall structure and hydrophobicity and opened up by an analogous rupture 

mechanism. However, the total binding energy ΔGb of Hus1-Rad1 was higher than the energy of 
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Rad9-Rad1. Furthermore, the affinities of Rad9-Rad1 and PCNA-PCNA were very closely 

matched, despite pronounced dissimilarities in interface contacts and polar character. Thus, 

matching affinities may reflect the common energetic requirements of the clamp loading ma-

chinery to open PCNA and Rad9-Rad1.  

Using external SMD forces as a surrogate of the clamp loader, we also identified the 

dominant pathways for interface disruption in PCNA and 9-1-1. In agreement with recent exper-

imental work, we demonstrate the stochastic nature of clamp opening and observe an ensemble 

of opening pathways. We find that the overall directionality and cooperativity of the dominant 

pathways are distinct among the four clamp interfaces. Groups of contacts (especially charged 

and polar contacts) differentially stabilize the top and bottom regions of the Rad9-Rad1 and 

Rad9-Hus1 interfaces and determine the spatial and temporal patterns of breakdown. In Rad9-

Rad1 and Rad9-Hus1 the dominant pathway involves unzipping of secondary structure elements 

in the “top-down” direction. By contrast the predominantly hydrophobic Hus1-Rad1 and PCNA 

interfaces are disrupted concertedly with no preferred directionality. Collectively, the results 

provide a framework for future experiments to examine the DNA clamp opening mechanisms. 

Specifically, single molecule micromanipulation experiments (with optical or magnetic tweezers) 

along with mutational substitution of residue pairs at the clamp interfaces could be used to probe 

the computationally identified pathways and establish the barriers and energy requirements for 

clamp opening.  
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CHAPTER 5.  SWITCHING FROM POLYMERASE TO EXONUCLEASE ACTIVITY 

IN THE DNA POLYMERASE POLB INVOLVES LARGE-SCALE CONFORMA-

TIONAL REARRANGEMENT OF POLB ON PCNA 

5.1 Abstract  

Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing ac-

tivities – DNA synthesis (polymerization activity) or proofreading (3’-5’ exonuclease activity). 

The polymerase (pol) and exonuclease (exo) reactions are performed alternately and are spatially 

separated in different protein domains. Thus, the growing DNA primer terminus has to undergo 

dynamic conformational switching between two distinct functional sites on the polymerase. Fur-

thermore, the pol-to-exo mode transition must occur in the context of the replisome, wherein the 

polymerase is physically associated to its processivity factor PCNA. The mechanism of this con-

formational switching had remained obscure, largely due to the dynamic nature of the ternary 

Pol/PCNA/DNA assemblies. Here, we present computational models of the ternary assemblies 

for an archaeal polymerase, PolB. We combine all available structural information for the binary 

complexes, low-resolution negative stain EM data on the exo-mode PolB complex and refine at-

omistic models for the ternary PolB/PCNA/DNA complexes using extensive molecular dynamics 

simulations. In addition to the canonical PIP-box/IDCL interface of PolB with PCNA, contact 

analysis of the simulation trajectories revealed secondary binding interfaces, distinct between the 

pol and exo states. Using targeted molecular dynamics (TMD) we also explored the conforma-

tional transition from pol to exo-mode. In the TMD simulations we identified a flexible hinge 

region in the palm domain of PolB, critical for conformational switching. With the thumb do-

main anchored onto the PCNA surface, the neighboring palm domain executed a simple rotation-

al motion around the hinge, bringing PolB down to form an additional interface with the PCNA 
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surface. A helix from PolB containing a patch of Arg residues was involved in the binding, lock-

ing the complex in the exo mode conformation. Together, these results provide a structural view 

of how the pol and exo states of PolB are coordinated through PCNA to achieve efficient proof-

reading. 

5.2 Introduction 

DNA polymerases catalyze the template-dependent incorporation of deoxynucleoside tri-

phosphates (dNTPs) to extend the 3’ end of a DNA primer strand. In addition to this polymeriza-

tion activity many polymerases also possess 3’-5’ exonuclease activity (proofreading), which 

allows the removal of misincorporated nucleotides from the nascent DNA (160,161). The fact 

that polymerization and proofreading are sequestered into spatially separated active sites within 

the polymerase suggests a switching mechanism must exist to transfer the primer terminus from 

one site to the other. The archaeal family-B DNA polymerases (PolB) share a common architec-

ture comprised of five protein domains - fingers, palm, thumb, N-terminal, and exonuclease do-

main (24-26,162-164). The distance between the polymerase and exonuclease domains exceeds 

20 Å in all available structures, requiring the substrate DNA to transition between the  polymer-

ase and exonuclease sites to ensure replication fidelity (165). This process is accompanied by 

substantial conformational changes of both the polymerase and DNA as evident in the crystal 

structures of PolB in replication and editing mode (163,164,166,167). While structures of 

PolB/DNA complexes in both pol and exo mode exist, details of the switching mechanism be-

tween the two modes have remained elusive. Moreover, during replication PolB functions as part 

of the replisome and must accomplish conformational switching while bound to multiple pro-

teins, including proliferating cell nuclear antigen (PCNA, sliding clamp). PolB’s association with 

PCNA is essential for full PolB activities (35,168). The trimeric PCNA protein encircles duplex 
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DNA as a closed ring and serves as a mobile platform for DNA polymerase to act on DNA, 

thereby, ensuring processive replication (38,168,169). PCNA-interacting proteins commonly in-

clude within their flexible tail regions a conserved sequence termed PCNA-interacting protein 

motif (PIP-box). This motif associates with a hydrophobic patch beneath the PCNA inter-domain 

connector loop (IDCL). The PIP-box/IDCL interaction confers the primary affinity for binding to 

the clamp (32,38,168). Consistent with this notion, disruption of the PolB PIP-box interaction 

results in substantial loss of enzymatic activity in both pol and exo mode. Since different PCNA 

partner proteins feature similar PIP motifs (which localize to the same sites on the clamp sur-

face), the PIP-box interactions alone achieve only simple tethering to the clamp and are insuffi-

cient to ensure active orientation for core replication proteins (e.g. Pol). Emerging evidence has 

pointed to the critical role of secondary interfaces with the PCNA subunits to attain functional 

complexes. By locking the Pol enzyme in an optimal orientation these contacts regulate access to 

the substrate. Such secondary contacts have been previously identified for the ternary 

PolB/PCNA/DNA complexes (170,171) from low-resolution EM structural models. Since the 

contacts appear mutually exclusive in pol and exo modes, they have been proposed to modulate 

the conformational transition from polymerization to proofreading (171). In this contribution we 

provide atomically detailed models to more fully describe these secondary interfaces for the ar-

chaeal polymerase PolB from Pyrococcus furiosus (Pfu). We also delineate the large-scale con-

formational dynamics of the PolB/PCNA/DNA ternary complexes underlying the switch from 

polymerase to exonuclease function. 

5.3 Results and Discussion 

 Structural models for the PolB/PCNA/DNA assemblies in Different Mode - Multinanosec-

ond MD simulations were carried out to explore the conformational and structural dynamics of 
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the ternary Pfu PCNA/PolB/DNA complex in both pol-mode and exo-mode. The initial model of 

pol-mode was constructed based on PCNA/PolB and PolB/DNA binary structures from the Pro-

tein Data Bank (accession codes 3A2F and 4AIL) (164,170). The exo-mode was obtained by fit-

ting the homology structure of Pfu PolB/DNA based on crystal structure of Pyrococcus abyssi 

polymerase (accession code 4FLV) (163) and the PCNA from PCNA/PolB binary structure into 

the corresponding ternary complex cryo-EM density map (EMDB accession code emd-5220) 

(171) using MDFF (172,173). The DNA in the active sites in each mode was preserved as what 

they were in the corresponding crystal structure; an extra dsDNA was added to each mode to ex-

tend the DNA so that it could pass through the PCNA ring.  

The final refined model for either mode is the closest structure to the centroid of the ma-

jor cluster generated by pairwise rmsd clustering analysis with corresponding MD trajectory. The 

sliding clamp in either model shows no structural discrepancies with the original crystal structure 

and no steric hindrance between proteins or DNA (Figure 5.1A, 5.1C). In our pol-mode model, 

PolB is anchored on the interface of PIP-IDCL with the core of the enzyme leaning toward the 

central hole of the PCNA ring, adopting an overall tilted position that partially obscures the cen-

tral cavity of PCNA ring looking from the side of the IDCLs (cartoon representation, Figure 

5.1A). This configuration is in line with the “tethered model” that was developed from the RB69 

DNA polymerase/PCNA complex, in which the polymerase also fully covers the central hole of 

the clamp in either pol-mode or exo-mode (166,167). A resting ‘‘locked-down’’ configuration 

was observed in the E.coli translesion DNA polymerase (pol IV)/β-clamp complex, where the 

polymerase attached to the β clamp on the rim, taking no coverage over the central cavity (174). 

The polymerase in the latest “stand-by model” developed from the Pfu PCNA/PolB structure 

adopted an intermediate state between the active tethered state and the resting locked-down state 
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(170). In fact, the tethered model is the only one that allows for the substrate dsDNA to pass 

through the PCNA ring without steric hindrance, as evidenced by the initial pol-mode model 

(Figure 5.2B). Substantial kinking of the DNA duplex would have to be induced to accommodate 

the DNA in either the stand-by or locked-down models without adjusting the relative position of 

polymerase with respect to the sliding clamp, therefore, these models are likely not in an active 

mode. The functioning state of the complex with substrate DNA, on the other hand, would have 

to have the polymerase to associate with the DNA substrate in a more natural relaxed manner to 

gain the proccessivity, which was exactly what was observed in our MD simulation. 

The single-particle EM has been utilized to investigate the Pfu PCNA/PolB/DNA assem-

bly structure in exo-mode and produced a EM map, in which the PolB adopted a fully coverage 

over the PCNA central cavity as it is in the tethered model, forming a more extensive interface 

with the PCNA surface comparing with that in the pol-mode, primarily accomplished through the 

formation of the new interactions between the palm domain of PolB and the PCNA2 subunit sur-

face (Figure 5.1C) (171). Functional studies have revealed a direct interaction between the argi-

nine patch (R379R380L381R382 in PolB palm domain) and the E171 on the PCNA surface in 

the exo-mode. To integrate these crucial information into the atomistic structure, we applied 

MDFF to generate the initial exo-mode ternary complex structure, which is shown in cartoon in 

contrast to the original cryo-EM density envelope in gray surface at a conservative density 

threshold of 2.25 (Figure 5.3B). Upon the MDFF on PolB part, a substantial agreement in terms 

of the overall structure can be seen in the comparison. More importantly, the arginine patch on 

the palm domain of PolB was driven into the proper density region, in the vicinity of the PCNA 

E171 sidechain, with both R379 and R382 having a good chance to interact with E171 through 

electrostatic interaction (in this orientation, R380 was not likely to interact with E171). The final 
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structure generated by the subsequent MD simulation starting from the initial MDFF model does 

not drift away from the initial to any substantial extends. PolB maintained its fully coverage on 

the central cavity of PCNA and the extensive interface with the PCNA surface over the MD sim-

ulation, indicating a stable state of the MDFF-fitted model (Figure 5.1C).  

For each mode, the flexibility of the complex was investigated by computing the B-

factors for each residue, over the relevant trajectory, with the first 100 ns discarded as equilibra-

tion stage. Upon comparison of the B-factors for both modes, it is clear that the exo-mode com-

plex adopts a more rigid structure than the pol-mode (Figure 5.1B, 5.1D). This disparity is also 

reflected in the rmsd profiles for both modes, wherein the pol-mode converges more slowly and 

shows a higher level of fluctuation overall (Figure 5.4). This is a functionally important detail of 

the PolB transition dynamic. In polymerase mode, PolB must move quickly and be more ac-

commodating to the dynamics inherent in DNA, while in edit mode the complex may need to 

pause temporarily for proofreading and would need a more rigid structure to do so. 
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Figure 5.1 The closest structure to the centroid of the dominant cluster for the ternary Pfu 
PCNA/PolB/DNA complex from MD trajectory clustering analysis 

A) pol-mode and C) exo-mode; complexes are shown in cartoon representations. The 
PCNA subunits are shown in different color: PCNA1 in ice blue, PCNA2 in lime, PCNA3 in 
gold, PolB in magenta, and DNA in black. The gray surface is the PCNA/PolB crystal structure 
(3A2F) in pol-mode, and the conformation obtained after the MDFF fitting in exo-mode, i.e., the 
starting conformation of the free MD for exo-mode; C and D) Computed B-factors mapped onto 
the ternary structures in each mode. Coloring corresponds to computed B-factor values from high 
(red) to low (blue). (Insets) Highlight of the B-factor difference for DNA parts.  
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sible interactions between the sidechain of positively charged residues and oxygen atoms in the 

DNA backbone phosphate groups. The association of DNA with PCNA in either case tends to be 

asymmetric in terms of the number of the residues involved in PCNA is not evenly distributed 

among its three subunits. PCNA2 does not participate much in PCNA/DNA interaction in pol-

mode (with the exception of residue K11) (Figure 5.5A, 5.5C), although it interacts strongly with 

DNA in the exo-mode (Figure 5.5B, 5.5C). This can be understood by envisioning the pol-mode 

to exo-mode transition, which would naturally force the DNA from one side of the PCNA pore 

to the other. The DNA bending showing by the DNA axis calculated with the Curvers+ program 

(175) reflects the relative positioning of DNA with respect to PCNA (Figure 5.5C). In addition, 

slight geometric parameter discrepancies of the DNA can be observed in the exo-mode: the 

spanning difference between major and minor grooves become trivial due to the compressing of 

the duplex part right above the PCNA ring induced by the transition.  
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PCNA3 in gold. The dsDNA phosphodiester groups and the side-chain heavy atoms of basic res-

idues on the inner surface of PCNA involved in persistent contacts (observed in more than 50% 

of the frames in the MD trajectories) are shown in gray spheres and red surfaces respectively; C) 

All persistent DNA-protein contacts are listed explicitly for rep pol-mode (upper panel) and exo-

mode (lower-panel) respectively. The residue label texts are colored so they are in consistence 

with corresponding subunit color; D) Averaged structure of the DNA duplex from pol-mode 

(left), and exo-mode (right) simulation. The DNA is shown in ribbons representation. The DNA 

axis and the widths of major or minor grooves were computed with the program Curves+ and are 

shown in orange and gray lines respectively.  

 

Moreover, it is intriguing to notice that the PolB-DNA association in the exo-mode is 

stronger that the pol-mode with respect to the number of persistent contacts of PolB-DNA (7 vs. 

18) (Figure 5.5D). The greater number of the contacts in exo-mode makes it possible that the 

DNA duplex is consistently tracked after it leaves the PCNA cavity (Figure 5.5D). Alternately, 

the two discrete contact groups evident in the pol-mode yield a discontinuity in the protein-DNA 

association (Figure 5.5C). The difference in the coupling strength is likely rooted in the function-

al differences between the two modes: a less extensive coupling might favor the fast process of 

the replication machinery while a stronger coupling is preferable for the complex to pause and 

fix the errors. Therefore, a correlation can be drawn between the numbers of protein-DNA con-

tacts, the rigidity of the complex and the function PolB is performing (editing or replication). 

The PolB Orientation in either Mode is determined by Specific Secondary Interactions 

with PCNA - It has been noted that the primary PIP-IDCL interactions between functional en-

zymes and sliding clamps do not confer much beyond an anchor point. The secondary contacts 



 108

that are off the primary sites are actually the ones determining the functional orientation of the 

enzymes, which has been seen in many cases including the FEN1/PCNA, Ligase/PCNA and 

RNA pol/PCNA systems (143,176). Our computed model also revealed many other direct inter-

action sites between PolB and PCNA surface other than the canonical PIP-IDCL interaction in 

either mode. We used geometric criteria to determine the interactions (H-bond, salt-bridge, hy-

drophobic interaction) throughout the production phase of the MD trajectories, considering inter-

actions that occur < 50% of the trajectory to be transient. Therefore, all contacts shown are con-

sidered stable and persistent for each model (Figure 5.6). The long C-terminal tail of PolB makes 

stable contacts with the IDCL on PCNA1 subunit through a hydrophobic cluster, generally in-

volving the same group of hydrophobic residues in both modes (Figure 5.6B, 5.6D). While there 

are only two H-bonds between PolB and PCNA1, both near the hydrophobic pocket in the pol-

mode (Figure 5.6A), a stronger H-bond and salt-bridge network contributes substantially to the 

relatively lockedup orientation of the C-terminal tail of the exo-mode PolB (Figure 5.6C). In the 

pol-mode, the major interface other than the PIP-IDCL site is the formed by electrostatic com-

plementarity between the thumb domain of PolB and the PCNA (Figure 5.7A). Four persistent 

salt-bridges and one H-bond are formed on this interface, such as K686-D42 (PCNA3), K724-

E119 (PCNA3), K725-D117 (PCNA3), R706-E171 (PCNA1), and R706-E26 (PCNA3) (Figure 

5.6A), whereas the R706-E171 was retrieved with 90.8% occupancy over the trajectory and was 

previously identified to be critical to the polymerase activity in the complex (170). In addition, a 

hydrophobic cluster of 3 residues further strengthens the stability of this interface (Figure 5.6B). 

Although the PIP-IDCL interaction is invariant, the salt-bridge network and the hydrophobic 

cluster are largely disappeared in the exo-mode, leaving a much smaller hydrophobic pocket, two 

salt-bridges and one H-bond, such as the K690-E249 (PCNA3), R706-D25 (PCNA3), and R706-
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S21 (PCNA3), on the slightly rearranged interface between thumb domain of PolB and PCNA 

(Figure 5.6C, 5.6D, 5.7B). The difference of the PolB-PCNA interface in exo-mode from pol-

mode is mostly introduced by the formation of the interaction between the palm domain of PolB 

and PCNA2. Notably, the salt-bridge formed by R382 from the arginine patch in the palm do-

main and E171 from PCNA2 is consistent with the previously reported importance of the argi-

nine patch in maintaining the full exonuclease activity of PolB in ternary complex (171). The 

electrostatic surface potential profiles of the protein components show that the E171 of PCNA2 

fits nicely into the groove of the arginine patch on PolB (Figure 5.7B). Interestingly, the R379 

that was found to be critical did not reveal itself as contributing to any substantial level to this 

interface in our simulation. Considering the heterogeneity of the ternary complex EM images, 

and the relatively minor degradation of exonuclease activity (20%) of the ternary complex with 

complete charge reversion mutant R379E, it might have overshot the contribution of a single res-

idue to the stability of this interface by highlighting R379 only. Without R380 or R382 point mu-

tant, it’s hard to elucidate the importance of a singular arginine within the arginine patch. Re-

gardless of the discrepancy, it is more reasonable to accredit the entire arginine patch rather than 

any single arginine given the multiple mutations greatly decreased the exonuclease activity (171).  

Given the persistency of these secondary interactions, it’s highly possibly that they play 

important roles in maintaining the proper distinct fully functional orientation of the PolB in dif-

ferent mode. While the direct available experimental evidence only support one single pair inter-

action for each mode, it’s very likely that the single pair interaction is in cooperation with other 

interaction network to lock a complex of this size in a particular orientation. In addition, the resi-

dues involved in the identified contacts mentioned above are largely conservative cross many 

species as revealed by the multi-sequence alignment (Figure S5.1), therefore, it is worthwhile to 
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To highlight the relative motions observed in PolB, we aligned the trajectory (projected onto cor-

responding principal component) based on PCNA and color-coded the most mobile regions of 

PolB by physical time. Motion in the first component of pol-mode reveals a horizontal twisting 

motion of PolB with respect to the PCNA ring planar (Figure 5.8A), and the second component 

motion indicates a vertical swing motion of the PolB toward the PCNA ring (Figure 5.8B). A 

slanted twisting motion, which can be viewed as the combination of the horizontal twisting and 

vertical swing is revealed by the first principal component motion of the exo-mode (Figure 5.8C). 

Also present is the vertical swing captured by the second component of the exo-mode (Figure 

5.8D). The magnitude of motions from the exo-mode is uniformly smaller than that from the pol-

mode due to the overall structural flexibility difference of them (Figure 5.1B, 5.1D; Figure 5.4).  



 

F

A

projectin

motion 

Figure 5.8 L

A) The hor

ng the pol-m

is captured 

Large-scale 

rizontal twis

mode MD t

as the seco

motions of 

sting motion

trajectory on

ond signific

PolB with r

n is capture

nto its first p

ant global m

respect to PC

ed as the m

principal co

motion by p

CNA reveal

most signific

omponent; B

projecting th

led by PCA

ant global m

B) The verti

he pol-mode

113

A 

motion by 

ical swing 

e MD tra-

 



 114

jectory onto its second principal component; C) A slanted twisting motion is captured as the 

most significant global motion by projecting the exo-mode MD trajectory onto its first principal 

component; D) The vertical swing motion is captured as the second significant global motion by 

projecting the exo-mode MD trajectory onto its second principal component. The structures were 

all aligned on PCNA to highlight the relative motion of PolB with respect to PCNA, and the pro-

gression of the transition is color coded on PolB (excluding the less mobile thumb domain) from 

red to blue (or from blue to red). 

 

Similar to the first few principal components from PCA, the low-frequency modes from 

normal mode analysis (NMA) have been shown related to large-scale motion of macromolecules 

(177,178). To explore the global motions from a different perspective we conducted the NMA 

for both ternary complex models using the PATH-ENM server (179). In the pol-mode, the slant-

ed twisting motion corresponding to the lowest frequency normal mode (Figure 5.9A) and the 

vertical swing motion to the second lowest frequency normal mode (Figure 5.9B) are consistent 

with the principal components from MD (Figure 5.8A, 5.8B). As for the exo-mode, the horizon-

tal twisting and vertical swing in the two lowest frequencies normal modes for exo-mode (Figure 

5.9C, 5.9D) indicate a considerable correlation with corresponding PCA results (Figure 5.8C, 

5.8D). This consistency is in line with the observation that the low-frequency normal modes and 

the first few principal components obtained from MD simulations have shown clear similarity 

(180,181).  
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PCNA to highlight the relative motion of PolB with respect to PCNA, and the progression of the 

transition is color coded on PolB (excluding the less mobile thumb domain) from red to blue (or 

from blue to red). 

 

The transition between pol-mode and exo-mode of polymerase happens on the millisec-

ond timescale (182). Therefore, it’s difficult to sample the transitioning dynamics with free MD 

with a system of the ternary complex size (~240000 atoms). To overcome the timescale limita-

tion, the TMD method was used to accelerate the transition, wherein a rmsd based biased poten-

tial was introduced to drive the instant state of the system toward the targeted final state. Alt-

hough TMD does not guarantee a minimum free-energy pathway and might produce unphysical 

intermediate states when was conducted using large force constant, it’s rather computationally 

efficient in exploring qualitative characteristics of large-scale conformational changes with prop-

er consideration given to the force constant applied (183-185). In this effort, TMD was used to 

probe the dynamics of the Pfu PCNA/PolB/DNA over the transition from pol-mode to exo-mode. 

A profile of the rsmd on all the backbone atoms of the ternary complex over the TMD simulation 

indicates a smooth transition without jumps or discontinuities (Figure 5.10A). Upon a visual in-

spection on the TMD trajectory, it becomes noticeable that besides the compression and separa-

tion of the DNA duplex (rmsd variation is 5.66  2.84 Å, Figure 5.10B), the internal motion is 

mostly contributed by the conformational change in PolB, which is evident by the rmsd profiles 

of different components computed following alignment to the initial conformation of each of 

them (Figure 5.10B). The PCNA has a rmsd of 1.99  0.98 Å, and the rmsd of PCNA with the 

thumb domain of PolB is slightly larger as of 3.28  1.61 Å. This is consistence with the obser-

vation that the thumb domain maintains its relative positioning with respect to PCNA throughout 
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the transition. As a result, it is the motions of the N-terminal, exonuclease and palm domain all 

together with respect to the thumb domain that reflects the internal motion of PolB. The relative-

ly quasi-rigid, concerted motion of these three domains is also reflected by its small rmsd varia-

tion of 2.06  1.13 Å over the transition. Therefore, the overall internal motion of the ternary 

complex can be captured by the relative motion of the three domains with respect to the other 

protein components, which is a simple pivoting of them on the hinge region locates at the inter-

face of thumb and palm domain (Figure 5.11A). This pivoting motion can be decomposed into 

two components: one is the clockwise twisting in the plane parallel to PCNA ring viewing from 

above PolB; the other is the vertical swing toward the PCNA ring until the arginine patch in the 

palm domain is in contact with PCNA surface (Figure 5.11A, 5.11C). The substrate DNA close 

to the polymerase active site does not separate until late stage of the TMD simulation (~16 ns of 

the 21 ns simulation), and the 3’ end template DNA continuously tracks with the long loop re-

gion of the palm domain (Figure 5.11D). On the thumb domain end, the contact of it with PCNA 

surface rearranges to accommodate the final orientation of PolB in the exo-mode (Fig. 5.11B). 

This is also reflected by the distinct group of contacts shown on this interface in either mode (Fig. 

3).  

It can be easily identified that horizontal twisting and vertical swing components of the 

simple twisting observed in the TMD transition (Figure 5.11A) perfectly correlates with the first 

and second principal components of the MD trajectory from either rep- or exo-mode complex 

(Figure 5.8A). A fairly similar strong correlation pattern holds when we compare the two com-

ponents of the twisting motion to the low frequency motions revealed by NMA. In another word, 

the pivoting motion observed in TMD can be reconstituted with the first two principal compo-

nents from PCA or the lowest frequency vibrations of the complex. Therefore, this simple pivot-
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thumb domain (cartoon representation) detaches and reattaches to the PCNA surface over the 

transition, with double arrow arcs showing the different contact sites; C) View of the transition 

from the palm domain side with palm domain showing in cartoon representation and other do-

mains of PolB omitted. The overall motion is reflected by the swing of the palm from distant 

with PCNA2 to interacting with its surface; D) The single stranded part of the template DNA 

strand (surface representation) tracks along the palm domain (cartoon representation) as it swings. 

The progression of the transition is color coded from red to blue in all 4 panels. 

5.4 Conclusion 

The motion in the TMD can be recapitulated with a rather simple pivoting motion of 

PolB on the interface between the thumb and palm domain, herein referred to as the hinge region. 

Projection of the free MD trajectories onto the first and second principal components obtained by 

principal component analysis (PCA) revealed the large scale conformational change in either 

mode is consistent with the simple pivoting that was captured in TMD. In addition, the lowest 

and second lowest frequency normal modes generated by the elastic network model (ENM) (179) 

reproduce the pivoting motion obtained by TMD, correlating well with the PCA results. All to-

gether, these suggest a fundamental dynamic feature of the transition between pol-mode and exo-

mode of DNA polymerases. 

The transition between the pol-mode and exo-mode is important for polymerases possess 

exonuclease activity to function properly. With distinct structural features of PolB in different 

mode being appreciated by the crystal structures and cryo-EM studies, still very little is known 

about the switching mechanism. The results from our computational approach have provided in-

sights into the Pfu PCNA/PolB/DNA ternary complex by obtaining the thorough functional re-

lated atomistic level interaction information between different components in the complex in-
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cluding the protein-protein and protein-DNA interactions. Specific interactions in different mode 

modulate the complex in its corresponding functional orientation and probably determine the free 

energy profile and hence the transition rate between the modes. In short, the most detailed and 

complete picture of the PolB transition between pol-mode and exo-mode to date was captured in 

the context of ternary complex. The pivoting motion of PolB on its hinge region was found to be 

fundamental to this transition, therefore, shed lights on the switching mechanism of DNA poly-

merases, and serve as a springboard for future experimental lines of evidence to further illustrate 

the biological significance of this unique process. 

5.5 Materials and Methods 

Model construction and MD simulation - The replicating ternary complex was constructed 

using two structures: the PCNA/PolB complex (PDB ID code 3A2F) (170) and the PolB/DNA 

structure (PDB ID code 4AIL) (164). In the PCNA/PolB binary structure, PolB adopts an upright 

position of with respect to the PCNA ring (Fig. 1A). An initial overlay of the PolB/DNA struc-

ture onto the PCNA/PolB structure based on an alignment over all PolB backbone atoms reveals 

a discrepancy in the conformation of PolB, whereas PolB adopts an overall more compact con-

formation in the PolB/DNA structure than in the PCNA/PolB structure due to it interacts with the 

substrate DNA. Therefore, an overlay across entire PolB would be sub-optimal in maintaining 

the original contacts formed by the PolB and PCNA in the PCNA/PolB binary structure. To cir-

cumvent this problem, the two binary structures were superimposed based on the part of the 

thumb domain only (D636 to G750) so that the thumb domain in PolB/DNA structure would 

have a better chance to form contact with the PCNA from the PCNA/PolB structure (Figure 

5.2A). With the initial relative positions of the PolB and PCNA been determined, an upstream 

dsDNA (Figure 5.12) extension would only be allowed to pass through the PCNA ring with a 
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in this case, without any substantial clashes with the PCNA ring. 21 ns MDFF was ensued to fit 

the PolB into the corresponding cryo-EM map density in order to recover the extensive 

PCNA/PolB interface in this mode. In MDFF, external biased forces proportional to the EM den-

sity gradient are applied to drive the atoms into the high-density regions of the EM density map. 

The DNA substrate was excluded from the MDFF fitting procedure due to the incomplete densi-

ty of DNA. The PCNA was also not included since the PCNA interface would have to be rup-

tured to fit into the density map of PCNA part. After the MDFF, the system was also refined by a 

~200 ns free MD.  

Production runs were carried out in the NPT ensemble (1 atm and 300 K) for ~200 ns for 

the each complex. Long-range electrostatic interactions were evaluated with the smooth-particle 

mesh Ewald algorithm (186). The short-range nonbonded interactions were calculated used a 

cutoff of 10 Å with a switching function at 8.5 Å. The integration time step was 2 fs and the 

SHAKE algorithm was applied to fix the bonds between the hydrogens and the heavy atoms. The 

r-RESPA multiple time-step method (118) was utilized with a 2 fs time step for bonded and 

short-range nonbonded interactions, and 4 fs for long-range electrostatic interactions. All simula-

tions were performed using the NAMD 2.9 code (73,187) with the AMBER Parm99SB parame-

ter set (188) containing the basic force field for nucleic acids and proteins, as well as the refined 

parameters for backbone dihedrals for protein (SB) and nucleic acids dihedrals (BSC0) on Edi-

son, a Cray XE6 system at the National Energy Research Scientific Computing Center. Data 

were analyzed using the PTRAJ utility in AMBER and custom VMD TCL scripts. DNA struc-

tural parameters were analyzed with the program CURVES + (175). 
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Targeted Molecular Dynamics - To accelerate the transition from pol-mode to exo-mode 

of the ternary complex, a TMD simulation was performed in the NPT ensemble by applying the 

following time-dependent, harmonic energy bias to all the backbone atoms in the system. 

   (5.1) 

where N is the number of atoms subjected to the bias, k is the harmonic force constant, 

and RMSD is the root-mean-square deviation between a configuration at time point t and the tar-

get configuration. When the reference RMSD value ρ(t) at time t is monotonically decreasing, 

the initial structure is gradually driven toward the target structure. Different k vaues of 200, 400, 

600 and 800 kcal mol−1 Å−2 were tested with 2 ns for each to determine an optimal balance be-

tween accuracy and efficiency. The 600 kcal mol−1 Å−2 was then chosen for the 20 ns production 

run by the standard of minimal value, which did not compromise any secondary structures in the 

model. The initial structure of the TMD was chosen to be the closest conformation to the cen-

troid of the dominant cluster from the second half of pol-mode MD simulation trajectory. To 

eliminate the difference in the DNA length, the upstream DNA in the pol-mode was cut by 3 

base pairs to match that in the exo-mode; and the system was then equilibrated with a 4 ns free 

MD before the TMD was introduced. Similarly, the target structure is the closest conformation to 

the centroid of the dominant cluster from the second half of the exo-mode MD simulation trajec-

tory. 

Molecular Dynamics Flexible Fitting - The initial complex of the exo-mode was obtained 

by flexible fitting into the EM map using the molecular dynamics flexible fitting (MDFF) meth-

od (172,173). A preliminary rigid body fitting was performed using Chimera, a program from 

University of California San Francisco. MDFF involves a MD simulation in which external forc-

es proportional to the EM density gradient are applied, biasing the motion of the protein atoms 

UTMD 
1

2
Nk(rmsd  (t))2
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toward the high density regions of the map (PCNA and DNA was excluded from the MDFF fit-

ting procedure). To prevent secondary structural distortions, bond, angle and dihedral angle re-

straints were imposed on the well-defined secondary structure regions defined by DSSP (189). 

The MDFF was applied in several stages with progressively higher values of the MDFF force 

scaling factor ξ, which was chosen to vary from 0.01 to 0.1. The convergence of fitting was then 

assessed by monitoring the RMSD and the cross-correlation coefficient (CCC) of PolB between 

the atomic model and the original EM density map (Figure 5.3).  
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CHAPTER 6.  REPAIR COMPLEXES OF FEN1 ENDONUCLEASE, DNA, AND RAD9-

HUS1-RAD1 ARE DISDINGUISED FROM THEIR PCNA COUNTERPARTS BY 

FUNCTIONALLY IMPORTANT STABILITY 

6.1 Abstract  

Processivity clamps such as proliferating cell nuclear antigen (PCNA) and the checkpoint 

sliding clamp Rad9/Rad1/Hus1 (9-1-1) act as versatile scaffolds in the coordinated recruitment 

of proteins involved in DNA replication, cell-cycle control and DNA repair. Association and 

handoff of DNA-editing enzymes such as flap endonuclease 1 (FEN1) with sliding clamps are 

key processes in biology, which are incompletely understood from a mechanistic point of view. 

We have used an integrative computational and experimental approach to define the assemblies 

of FEN1 with double-flap DNA substrates and either PCNA or the checkpoint sliding clamp 9-1-

1. Fully atomistic models of these two ternary complexes were developed and refined through 

extensive MD simulations to expose their conformational dynamics. Clustering analysis revealed 

the most dominant conformations accessible to the complexes. The cluster centroids were subse-

quently used in conjunction with single particle electron microscopy (EM) data to obtain a 3-

dimensional EM reconstruction of the human 9-1-1/FEN1/DNA assembly at 18 Å resolution. 

Comparing the structures of the complexes revealed key differences in the orientation and inter-

actions of FEN1 and double-flap DNA with the two clamps that are consistent with their respec-

tive functions in providing inherent flexibility for lagging strand DNA replication or inherent 

stability for DNA repair. 

6.2 Introduction 

Flap endonuclease 1 (FEN1) belongs to a class of essential nucleases (the FEN1 5′ nucle-

ase superfamily) present in all domains of life (190). FEN1 catalyzes the endonucleolytic cleav-
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age of bifurcated DNA or RNA structures known as 5′ flaps. 5′ flaps are generated during lag-

ging strand DNA synthesis or during long-patch base excision repair (LP-BER). The FEN1 sub-

strates are in fact double flap DNA (dfDNA) with DNA on the opposite side of the 5′ flap form-

ing a single nucleotide 3′ flap when bound to the enzyme (191,192).  By removing the 5' ssDNA 

or RNA flap from such substrates FEN1 produces a single nicked product that could be sealed by 

the subsequent action of a DNA ligase. Consistent with its crucial role in DNA replication and 

repair, FEN1 is highly expressed in all proliferative tissues and its activity is key for the mainte-

nance of genomic integrity (193). FEN1 has been identified as a cancer susceptibility gene and 

mutations in it have been linked to a number of genetic diseases, such as myotonic dystrophy, 

Huntington’s disease, several ataxias, fragile X syndrome and cancer (134,194-197). 

The FEN1 nuclease activity can be stimulated by its association with processivity clamps 

such as proliferating cell nuclear antigen (PCNA), which encircle DNA at sites of replication and 

repair (198-200). PCNA is a recognized master coordinator of cellular responses to DNA dam-

age and interacts with numerous DNA repair and cell cycle control proteins. In this capacity, 

PCNA serves not only as a mobile platform for the attachment of these proteins to DNA but, im-

portantly, plays an active role in the recruitment and release of these crucial participants at the 

replication fork(36,38). The dominant mode of interaction for many of these factors is through 

attachment to the interdomain connector loop (IDCL) of PCNA and the PCNA C-terminus 

(191,200,201). The trimeric PCNA ring can provide at most three binding sites for replication 

and repair factors. The crystal structure of the human FEN1 with PCNA indeed revealed three 

FEN1 enzymes bound to the sliding clamp in different orientations(201). Additionally, a bio-

chemical study of the Sulfolobus solfataricus proteins supported the idea that distinct protein 

partners such as DNA polymerase, FEN1, and DNA ligase could simultaneously associate with 
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PCNA(101). The competition among proteins to simultaneously bind to the surface of PCNA as 

well as to their common DNA substrate has led to the notion of conformational switching and 

handoffs of repair intermediates(101,202). These are key processes in PCNA biology, which are 

incompletely understood from a mechanistic perspective. 

In addition to PCNA FEN1 is known to associate with the alternative checkpoint clamp 

Rad9-Rad1-Hus1 (9-1-1 complex). While PCNA is comprised of three identical subunits, 9-1-1 

is an example of a heterotrimeric sliding clamp (141,142,203). This fact reflects the different 

protein partners the two clamps engage and the distinct roles these complexes play in coordinat-

ing DNA processing.  In contrast to PCNA, the 9-1-1 complex is thought to serve as a recruit-

ment platform to bring checkpoint effector kinases to sites of DNA damage, thus activating 

checkpoint control, and also functions to stabilize stalled replication forks that have encountered 

DNA lesions(136,144,145). It has also been demonstrated that 9-1-1 interacts with and stimu-

lates enzymes involved in base excision repair (BER), such as NEIL1, MYH, TDG, FEN1, and 

DNA Ligase I, thus potentially linking BER activities to checkpoint coordination(146-149).  

In view of their crucial involvement in replication and LP-BER, a detailed structural 

comparison of the ternary PCNA/FEN1/DNA and 9-1-1/FEN1/DNA complexes would be of 

great value. While structural snapshots are available for the individual components of such as-

semblies (PCNA (pdb id: 1VYM), human 9-1-1 (3GGR)) (Figure S1) and, for some binary com-

plexes (FEN1/DNA (3Q8L) and FEN1/PCNA (1UL1)(22,141,142,192,201,203), the larger ter-

nary assemblies present extreme challenges to molecular crystallography (MX). We have adopt-

ed a strategy that integrates high and low resolutions structural data from different sources 

through computational methods to characterize the structures of such complexes. Here we report 

models for the ternary PCNA/FEN1/dfDNA and 9-1-1/FEN1/dfDNA assemblies, which were 
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constructed by combining all available high resolution MX data for the individual components 

and subassembles. The models were refined by multi-nanosecond atomistic MD simulations. 

Single particle electron microscopy of negatively stained samples indicated that the structure de-

fined by the 9-1-1/FEN1/dfDNA model exists in solution. Subsequently, the computational mod-

el was integrated with the EM data resulting in a 3D reconstruction for the ternary assembly de-

termined at 18 Å resolution. Finally, we present a detailed comparative analysis of the two ter-

nary complexes highlighting the differences in interactions and in the modes of association for 

FEN1 and dfDNA with PCNA and with the checkpoint clamp.  

6.3 Results and Discussion 

Overall structure of the ternary FEN1 complexes- To shed light on the conformations and 

structural dynamics of the ternary complexes we relied on extensive multi-nanosecond molecular 

dynamics simulations. Integrating the available high-resolution structural data, we were able to 

refine credible models for the ternary complexes of FEN1/PCNA/DNA and FEN1/9-1-1/DNA, 

which exhibited no structural discrepancies or steric hindrance between the sliding clamps, DNA 

and FEN1 (details provided in Supplementary Methods). The models indicated that FEN1 occu-

pies an overall upright position on the polymerase binding face of PCNA or on the correspond-

ing face of the checkpoint clamp. In both models the enzyme was facing the central cavity of the 

PCNA or 9-1-1 ring. The final models were selected after pairwise RMSD clustering analysis of 

the MD trajectories (204,205) and the structure closest to the centroid of the most populated clus-

ter was chosen as representative for each ternary complex (Figures 6.1A and 6.1B). Time evolu-

tion of the two systems over 100 ns of dynamics was conveniently monitored in terms of RMSD 

values for each ternary assembly and its constituent parts (Figure 6.2). Our data revealed that the 

most adaptable component in both complexes was the double-flap DNA substrate, which under-
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went the largest displacement in average heavy atom RMSD (7.14 ± 0.76 Å (s.d.) for the PCNA 

and 6.11 ± 0.54 Å (s.d.) for the 9-1-1 complex, respectively). By contrast the core domain of 

FEN1 and the subunits of PCNA and the 9-1-1 clamp displayed minimal internal displacements 

(1.90±0.14 Å (s.d.) for the FEN1 core, 2.31±0.18 Å (s.d) for PCNA and 3.54±0.24 Å (s.d.) for 9-

1-1) The most significant internal motions were confined to surface loops of the clamps (e.g. P-

loop of PCNA, IDC loops of Hus1 and Rad9), the extreme C-terminal ends of PCNA and a few 

flexible outer helices in FEN1 (α13, α4 and α5, α10, α11 and α12; detailed view of these struc-

tural elements is presented in Figure 6.2). Importantly, although motions bringing FEN1 closer to 

the PCNA central cavity were observed in the simulation (Figure 6.1A and Figure 6.3), the over-

all displacement along this mode was rather subtle. It was reflected in the observed RMSD for 

the complexes (3.58±0.49 Å (s.d.) for the PCNA complex and 6.94±0.38 Å (s.d) for the 9-1-1 

complex excluding DNA). The finding that the DNA substrate is the most adaptable component 

in both assemblies is further corroborated by the data presented in Figure 6.1B-E. The figure de-

picts the computed B-factors mapped onto the structures of the two ternary complexes. Not sur-

prisingly, the entire DNA substrate was found to be highly flexible. The one exception is the cen-

tral portion of the upstream DNA duplex, wherein the DNA backbone was found to form exten-

sive contacts with the positive inner surface of the sliding clamps. Notably, the B-factors for this 

middle region of the upstream duplex are lower in the case of the 9-1-1 complex indicating tight-

er association between 9-1-1 and dsDNA as compared to the PCNA complex. Other mobile re-

gions included the H2TH DNA binding motif (helices α10, α11 and α12) and the “helical arch” 

region (helices α4 and α5), which caps the 5’ flap and the active site of FEN1.  

 



 131

 

Figure 6.1 Representative structures for the FEN1/PCNA/dfDNA and FEN1/9-1-
1/dfDNA complexes from integrative computational modeling 

 A) the PCNA complex overlayed onto the original DNA-free x-ray structure (1UL1, 

chain Y); B) the 9-1-1 complex overlayed onto a model based on the 1UL1 structure wherein 

PCNA has been replaced by 9-1-1 (retaining the relative FEN1 orientation); C-F) Computed B-

factors mapped onto the PCNA and 9-1-1 models. The coloring is by B-factor values ranging 

from blue to red. For both complexes lateral and anterior views are presented and important 

structural elements are labelled accordingly. 
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Figure 6.2 Structures and electrostatic potential maps 

A) PCNA B) the checkpoint clamp 9-1-1 and C) FEN1. The structures of PCNA and 9-1-

1 are colored by individual subunits; FEN1 is colored by secondary structure. The electrostatic 

potential is mapped onto the molecular surface and colored from red (negative) to blue (positive 

potential). The surface of FEN1 facing the clamps is characterized by basic patches, which 

electrostatically complement an acidic patch on the top side of the PCNA ring.  In 9-1-1, only the 

Rad1 subunit possesses an electrostatic pattern complementary to the bottom surface of FEN1. 

 



 133

 

Figure 6.3 Time evolution of the RMSD values for the ternary assemblies and their con-
stituent parts  

A) RMSD values for the FEN1/dfDNA/PCNA complex (blue), FEN1 core excluding the 

C-terminal tail (red), PCNA (yellow), dfDNA(purple) and FEN1-PCNA(green); B) RMSD val-

ues for the FEN1/dfDNA/9-1-1 complex (blue), FEN1 core excluding the C-terminal tail (red), 

9-1-1 (yellow), dfDNA(purple) and FEN1/9-1-1(green). In both cases the reference structure re-

flects the FEN1 orientation observed in the x-ray structure of Sakurai et al (1UL1, Chain Y). 
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Structural determinants of flexibility for the ternary assemblies-The modest change in the 

orientation of FEN1 from the original crystallographic position could be explained by two intrin-

sic features of the complexes that permit structural adaptation: (i) the dfDNA substrate is 

kinked(192,202) by ~100˚and features a moderately flexible single stranded region; and (ii) a 

pronounced tilt is observed between the axis of the upstream DNA duplex and the plane of the 

PCNA or 9-1-1 ring (Figure 6.4). The dsDNA fragment goes through the plane of the sliding 

clamp ring at a sharp tilt angle: 17.34±2.87˚(s.d) for PCNA and 27.19±1.96˚(s.d) for 9-1-1. In-

teractions between the dsDNA phosphodiester backbone and basic residues lining the inner sur-

face of the clamps are responsible for the observed binding mode in the two ternary complexes 

and will be discussed later in greater detail. Our findings carry strong parallels to previous com-

putational work (206) on the association of PCNA with dsDNA, which arrived at a similar mark-

edly asymmetric model for the PCNA/dsDNA assembly. Conventional models for PCNA encir-

cling DNA entail that the clamp is perpendicular to the DNA axis, rendering all three PCNA 

binding sites equivalent. In contrast, recent evidence has collectively suggested that sliding 

clamps bind DNA asymmetrically. The breaking of the threefold symmetry of the clamp upon 

DNA binding offers an ideal mechanism for handoff of protein partners. Experimentally, the x-

ray structure of the bacterial β-clamp-DNA complex (207) revealed dsDNA passing through the 

clamp at a sharp angle of 22°. More recently, EM analysis of DNA ligase-PCNA-DNA and Pol-

β/PCNA/DNA assemblies showed that dsDNA was tilted by 16° and 13°, respectively (208,209). 

By contrast, in the replication factor C/PCNA/DNA ternary assembly the DNA axis was found to 

be nearly perpendicular to the PCNA ring (100). This versatile mode of association between the 

sliding clamp and DNA appears to be a universal feature observed in bacterial, archaeal and eu-
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karyotic clamps and may explain how the sliding clamp is able to accommodate distinct protein 

partners and correctly position them to complete their functions. 

 

 

Figure 6.4 Time evolution of the contacts between the side chain N atoms of basic resi-
dues positioned within 4.5 Å of DNA backbone P atoms 

Data for the PCNA complex is shown in panel A and for the 9-1-1 complex in panel B. In 

both panels the contacts are broken down by individual subunits and colored in blue (PCNA-A 

and Rad9), yellow (PCNA-B and Hus1) or green (PCNA-C and Rad1) Panel C shows the time 

evolution of the tilt angle between the DNA axis and the ring-plane of the sliding clamp for the 

PCNA (red) and 9-1-1 (blue) complex, respectively. Panel D schematically illustrates how the 

tilt angle is defined. 
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EM analysis and MDFF flexible fitting of the 9-1-1/FEN1 binary and ternary complexes- 

Hybrid methods for structural analysis constitute an emergent area, which could shed light on 

biological complexes with high degree of structural plasticity. The FEN1 ternary assembles are 

examples of this type of systems, wherein the inherent flexibility has so far precluded crystallo-

graphic analysis. As a direct visualization technique, single particle electron microscopy (EM) 

has the potential to investigate flexible assemblies (210) (211). Given the importance ascribed to 

the dfDNA substrate in determining the “upright” position of FEN1 in the models, the next step 

in our analysis involved comparison of a binary (DNA-free) and a ternary (substrate-bound) 

complex using single particle EM. 

Specifically, binary complex formation for FEN1 and 9-1-1 was assessed by incubating 

both proteins at 30C and subsequently running size-exclusion chromatography. Analysis of the 

corresponding fractions by SDS-PAGE showed 9-1-1 and FEN1 eluting at different retention 

times, thus indicating weak interaction under our experimental conditions (Figure 6.5). To in-

crease the stability of the complex the sample was cross-linked prior to the chromatography step. 

Fractions containing the 9-1-1/FEN1 complex were then visualized by EM and data collected as 

described in Materials and Methods. In parallel a 3-dimensional EM reconstruction of the 9-1-1 

checkpoint clamp was generated for comparison purposes (Figure 6.6). 
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Figure 6.5 FEN1 and 9-1-1 do not form a stable complex under the experimental condi-
tions tested  

h9-1-1 in the presence of 3-fold excess of FEN1 was incubated at 30C for 15min and 

then applied to a Superdex 200 size-exclusion column. Visualization of the corresponding frac-

tions (labeled from A11 to B6) by SDS-PAGE shows that proteins elute at different retention 

times. Molecular weight markers are indicated on the left. FEN1/dfDNA/9Δ-1-1 sample purifica-

tion through size-exclusion chromatography for EM studies. Peaks corresponding to the ternary 
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complex and DNA are indicated. Fraction numbers and lane numbers of the SDS-PAGE gel are 

equivalent (first lane: molecular weight markers).  

 

Figure 6.6 Three-dimensional reconstruction of the full-length h9-1-1 complex expressed 
in insect cells 

Front, lateral and back views are shown in solid grey.  

 

Figure 6.7A shows reference-free 2D class averages for the binary 9-1-1/FEN1 complex. 

Individual images could be classified as either six-lobed rings with an additional density in the 

periphery of the ring or as compact two-lobed rods with an extra density region to one side. 

Comparing the images to the 3D reconstruction of 9-1-1, the six-lobed rings and two-lobed rods 

were respectively assigned as top and side views of the checkpoint clamp. The extra density ad-

jacent to the 9-1-1 ring was highly variable in its orientation and corresponded in all cases to a 

single FEN1 enzyme bound to the clamp. Our finding corroborates the idea that only one of the 

9-1-1 subunits is competent to associate with FEN1. Importantly, the side views clearly showed 

how FEN could swing by at least 90 degrees from a position in-line with the plane of the ring to 

an upright orientation facing the central hole of 9-1-1. This is a particularly interesting observa-

tion in light of the multiple FEN1 orientations found by Sakurai et al (201) in the binary PCNA 

complex. In their structure chain X corresponded to the in-line (“sideways”) position while 

chains Y and Z corresponded to the “upright” position. Our results show that the binary FEN1/9-
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1-1 complex displays the same range of conformational variability as the binary FEN1/PCNA 

complex, pointing to the functional significance of flexibility in these two systems. In fact, the 

FEN1 positioning in the Sakurai structure could, in principle, be limited by specific crystal con-

tacts and steric constrains within the crystal. By contrast, our EM results are likely to reflect the 

conformational range of the binary complexes in solution. Thus, we propose that both the 9-1-

1/FEN1 and PCNA/FEN1 binary assemblies are flexibly tethered. The functional role of such 

flexibility could be to allow initial FEN1 binding in the “sideways” orientation. In this position 

FEN1 could stay associated and move along DNA without affecting the function of proteins 

bound to the front face of the clamp. Upon encountering the correct DNA substrate, FEN1 could 

swing into the catalytically competent “upright” orientation and engage in handoffs with proteins 

simultaneously attached to the other two clamp subunits.  

 



 140

 

Figure 6.7 FEN1 interacts flexibly with Rad1 and adopts a fixed position in the presence 
of the DNA substrate 

 A) Six representative reference-free 2D class averages (both top and side views) for the 

FEN1/h911 binary complex are compared to those corresponding to the FEN1/DNA/h9Δ11 ter-

nary complex. Top and side views of the h911 complex are shown in the lower panel for refer-

ence. B) Side and top views of the FEN1/DNA/h9Δ-1-1 3D reconstruction (scale bar 40 Å). C) 

MDFF flexible fitting of the FEN1/9-1-1/dfDNA complex into the 3D map of the ternary com-
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plex with individual components colored as follows:  FEN1 in grey, Rad9 - blue, Rad1-green and 

Hus1 – yellow and dfDNA in red. 

Next, we focused on the structural characterization of the ternary FEN1/9-1-1/DNA com-

plex. The selection of DNA substrate followed the work of Tsutakawa et al (192) except that 10 

additional bases were introduced at the 3’ end. A band shift assay was performed in the presence 

of either full-length 9-1-1 or a truncation construct lacking the extra C-terminal tail of Rad9 

(h9-1-1). No band shift was observed with the full-length h9-1-1 (Figure 6.8, upper left panel) 

suggesting that in the absence of the check-point clamp loader the Rad9 C-terminal tail may in-

terfere with DNA binding. However, the appearance of an extra band was observed when FEN1 

and DNA where incubated with the truncated version of h9-1-1 clearly indicating the formation 

of a FEN1/h9-1-1/DNA ternary complex (Figure 6.8, upper right panel).  After cross-linking 

and purification of the ternary complex by size-exclusion chromatography (Figure 6.8, lower 

panel) samples were visualized by negative stain EM. The small size of the complex (140 kDa) 

precluded us from carrying out cryo-EM studies. 
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Figure 6.8 Band shif assay on FEN1/DNA/h9Δ-1-1 complex 

A) FEN1/DNA/h9Δ-1-1 forms a stable complex as judged by band shift assays. Four dif-

ferent DNA substrates varying in length were incubated with FEN1 in the presence or absence of 
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h9Δ-1-1 (right panel; + and – indicate the presence or absence of h9Δ-1-1). The presence of a 

band around 140kDa shows the formation of a ternary complex. No band shift was observed 

when full-length 9-1-1 was used (left panel, first lane); B) FEN1/dfDNA/9Δ11 sample purifica-

tion through size-exclusion chromatography for EM studies. Peaks corresponding to the ternary 

complex and DNA are indicated. Fraction numbers and lane numbers of the SDS-PAGE gel are 

equivalent (first lane: molecular weight markers) 

 

Figure 6.7A (middle panel) shows representative reference-free 2D class averages of the 

ternary FEN1/9-1-1/DNA complex. It is evident from the images that in the presence of DNA the 

extra density lobe above the 9-1-1 ring adopts a well-defined fixed position. Thus, the class aver-

ages strongly indicated that addition of dfDNA locks FEN1 into the “upright” position facing the 

central cavity of the 9-1-1 clamp. This finding is fully consistent with the simulation results for 

FEN1/9-1-1/DNA, which similarly displayed only this upright conformation.  

In order to produce a 3D reconstruction from our EM data we took advantage of the 

FEN1/9-1-1/DNA model generated from our simulations. The atomistic model was used to cre-

ate a three-dimensional density map that was low-pass filtered to 60 Å resolution. Computation-

ally generated projections of this low-resolution model qualitatively resembled the EM refer-

ence-free class averages (Figure 6.9). Thus, we decided to use this filtered structure as an initial 

model to assign relative orientations to the different experimental views of the complex. We per-

formed our three-dimensional refinement using iterative projection matching in EMAN2 

(212,213) reaching a final 3D reconstruction of the FEN1-DNA-h9∆11 complex at an estimated 

resolution of 18 Å (Figure 6.7B). The 3D map contains two principal features - a hexagonal non-

symmetrical ring with an external diameter of ~85 Å and a central channel of ~30 Å correspond-



 144

ing to h911; and a two-lobed extra density ~70 Å in length, corresponding to FEN1. This densi-

ty was connected to a single lobe of the 9-1-1 ring. The atomic model was positioned by eye into 

the density as a rigid body and docking was further refined using the fitting tool of the Chimera 

program. Although the presence of DNA has a clear effect in the relative positioning of Fen1 

with respect to the h911 ring, the reconstruction does not show clear density for DNA. However, 

this was not very surprising, given the well-documented difficulty in visualizing DNA by nega-

tive staining. 

 

 



 145

Figure 6.9 2D class averages of the FEN1/DNA/9d11 complex 

Panel of reference-free 2D class averages of the FEN1/DNA/9Δ-1-1 complex (odd col-

umns) compared to the forward projections of the model filtered at 60 Å used for projection 

matching (even columns). 

 

As a final stage of our atomistic model generation and refinement we employed flexible 

fitting into the experimental EM map using the MDFF method (172,173) (Figure 6.7C). MDFF 

involves a molecular dynamics simulation wherein external forces proportional to the EM densi-

ty gradient are applied to bias the atoms of the model into the high-density regions of the EM 

map. The fitting was carried out in stages as described in the SI Methods section. After the re-

finement and minimization the FEN1/9-1-1/DNA atomic model exhibited excellent agreement 

with the EM experiment with fewer than 300 atoms found outside the EM density envelope (at a 

conservative density threshold of 3.6). All flexible elements including the surface loops of 9-1-1 

and the helical arch of FEN1 were consistent with the EM map. The main observation we draw 

from the fitted atomistic model is that despite the overall upright position for FEN1 on 9-1-1 

there is a lateral shift of the FEN1 core (also seen in the simulation) so that the dominant con-

formation of FEN1 is more “lopsided” compared to the FEN1/PCNA/DNA model and the FEN1 

core ends up in closer proximity to the surface of the checkpoint clamp. Thus, a closer compari-

son of the two ternary complexes reveals significant differences in the mode of association, 

which correlate with their distinct functions in DNA replication and repair and will be elaborated 

in the following sections. 

The dsDNA interactions of 9-1-1 and PCNA in the ternary complexes are distinct- Our 

experimental results established that FEN1 is flexibly tethered to 9-1-1 and that DNA binding 

locks the FEN1 enzyme into an upright conformation in the 9-1-1 complex. How could the dou-
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ble flap DNA affect the overall conformation of the complex? In the simulations, we observe 

specific interactions in the upstream DNA duplex with the inner surface of the sliding clamps. 

PCNA(22,37) and 9-1-1 (141,142,203) are each composed of three subunits that come together 

and delimit a ring-shaped inner cavity capable of encircling duplex DNA. The walls of this inner 

cavity are rich in basic residues (Figure 6.2), largely conserved from yeast to human and im-

portant for making contacts with the DNA backbone. We argue that these interactions are re-

sponsible for the correct positioning of FEN1 and allow the enzyme to assume an upright posi-

tion on the two sliding clamps. 

Despite similarity in overall architecture, PCNA and 9-1-1 present distinct inner surfaces 

to dsDNA that are characterized by different shapes, electrostatics, hydrophobic and polar patch-

es and secondary structure elements. The dynamic association of the upstream DNA duplex to 

the inner cavity of PCNA and 9-1-1 was exhaustively sampled in the simulations, which allowed 

us to delineate and compare the interactions of dsDNA with the two clamps. Surprisingly, the 

mode of association with dfDNA was strikingly different for PCNA versus 9-1-1 (Figure 6.10). 

For the PCNA ternary complex a highly asymmetric mode of association was confirmed, with 

only one of the PCNA subunits forming the majority of stable contacts with the DNA backbone 

(K20, K217, R149, R146 and K14). The second subunit was contributing three stable contacts 

(K217, K80, K20) and the third subunit made no persistent contacts with DNA at all. Further-

more, the Arg and Lys residues making salt bridge interactions with the DNA phosphate groups 

were found to be evenly distributed between the two strands of the DNA duplex. By contrast, in 

the 9-1-1 complex the majority of such contacts track along the template strand as it passes 

through the 9-1-1 central hole. The extended interface formed between the template strand and 9-

1-1 contains 10 persistent contacts. Three additional contacts (K229 from Rad9, K25 from Hus1 
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and K92 from Rad1) are made with the opposite strand and are positioned roughly one helical 

turn apart. Consistent with the previously noted differences in the computed B-factors, 9-1-1 dis-

plays significantly tighter association with DNA, forming 13 stable contacts with the DNA back-

bone (compared with 9 contacts in the PCNA complex). 

 

 

Figure 6.10 In the ternary complexes PCNA and 9-1-1 engage the upstream DNA duplex 
in two distinct binding modes 

A-B) Cartoon representations of PCNA and 9-1-1 binding to dsDNA, colored in blue for 

Rad9 and PCNA1, yellow for Hus1 and PCNA3 and green for Rad1 and PCNA2. The dsDNA 
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phosphodiester groups (grey spheres) and basic residues on the inner surface of PCNA and 9-1-1 

(red surfaces) are shown. Below we explicitly list all persistent DNA contacts (observed in more 

than 50% of the frames in the MD trajectories) for the PCNA and the 9-1-1 complex, respective-

ly. C) Averaged structures for the upstream DNA duplex from FEN1/dfDNA(left), 

FEN1/dfDNA/PCNA(middle) and FEN1/dfDNA/9-1-1(right) simulations. The DNA is shown in 

ribbons representation. The DNA axis was computed with the program Curves+ and shown in 

red. The gray lines are representative of the widths of the major and minor grooves of DNA. 

 

Unlike the asymmetric interface in PCNA, the set of contacts with 9-1-1 are evenly dis-

tributed among the three subunits (4 contacts with Hus1, 4 with Rad1 and 3 with Rad9) and are 

also more persistent in the MD trajectories compared with the PCNA complex (Figure 6.4). The 

distinct distribution of basic residue contacts in the two complexes has consequences for the 

overall positioning of the dsDNA substrate (Figure 6.4C). It also results in observed differences 

in the local structure of the upstream DNA duplex as it passes through the sliding clamp ring. In 

Figure 3c, we compare results from three simulations: (i) the FEN1/dfDNA complex in the ab-

sence of PCNA or 9-1-1; (ii) the FEN1/dfDNA/PCNA ternary complex and (iii) the 

FEN1/dfDNA/9-1-1 ternary complex. In each case, the structure of the DNA substrate was aver-

aged over 80 ns (excluding the first 20 ns as equilibration) and the axis of the upstream duplex 

was computed with the program Curves+ (214). In the absence of either clamp, the dsDNA axis 

is essentially straight and DNA duplex conforms closely to the expected canonical B-form ge-

ometry. By contrast, the asymmetric mode of association observed for the FEN1/dfDNA/PCNA 

complex results in a moderate bending of the DNA axis by ~20 degrees. Consistent with the 

more symmetric contacts distribution, the 9-1-1 complex exhibits no such tendency for DNA 
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bending. While the evenly spaced basic residues lead to a straight axis, the DNA is not entirely 

free from structural distortion – we observe contraction of the minor groove at the level of the 9-

1-1 interface accompanied by major groove widening above and below the interface.  

Collectively, our findings point to a different mode of association for the double flap sub-

strate when bound within the PCNA versus the 9-1-1 complex. We argue that such differences 

may allow the 9-1-1 complex to function specifically in the sensing and repair of damaged DNA 

and, thus, carry important implications for the way 9-1-1 operates in base excision repair. Sur-

prisingly, a recent study, which carried out a large-scale comparative analysis of processivity 

clamps from a variety of organisms, showed that the electrostatic properties of the human check-

point protein Hus1 and to a lesser degree Rad9, but not of Rad1, were more similar to non-ring 

viral processivity factors than to the eukaryotic PCNA (215). These viral processivity factors 

(e.g. UL42, UL44) possess an increased positive charge on the DNA-binding face compared to 

the ring-forming clamps (PCNA, PolIII  subunit). They are also known to bind to the DNA 　

directly rather than rely on a topological connection to DNA. Our results are consistent with this 

view that elevated positive potentials on the inner surface of 9-1-1 (specifically for Hus1 and 

Rad9; Figure 6.2) lead to tighter association of the checkpoint clamp with DNA, which is likely 

related to the dual role of the checkpoint clamp as a recruiting platform in base excision repair 

and as a damage sensor in checkpoint control.  

Specific contacts with the clamp surface modulate the FEN1 orientation in the complex-

es- While the interactions of dfDNA with PCNA or the 9-1-1 clamp are crucial in establishing 

the “upright” orientation of FEN1 in the ternary complexes, a multitude of additional direct in-

teractions between FEN1 and the surface of the two clamps appear to be significant. These inter-

actions are schematically presented in Figure 6.11 and classified by type as hydrogen bonding, 
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side chain hydrophobic or charged contacts. Notably, in our analysis we have taken care to aver-

age along the simulation trajectories and, based on a geometric criterion for each interaction 

type, to exclude contacts occurring only transiently. Thus, all contacts shown are stable and per-

sistent above a characteristic threshold level. Importantly, these contacts at the interface between 

FEN1 and PCNA or 9-1-1 appear important in fine-tuning the orientation of the FEN1 core. Spe-

cifically, we note that the long C-terminal tail of FEN1 makes extensive contacts with Rad1 or 

PCNA along the IDC loop region. Biochemical analyses have highlighted the role of the FEN1 

C-terminal tail, which is required for stimulation of FEN1 activity by either PCNA or the check-

point clamp. Intriguingly, the exact C-terminal residues responsible for stimulation by the two 

clamps appear to be distinct (216). The residues within the PIP-box are critical for stimulation by 

PCNA. By contrast, residues at the extreme C-terminal end (last 21 residues) are important for 

stimulation by 9-1-1. In our two models, the FEN1/PCNA interface features more hydrophobic 

contacts, displaying two distinct hydrophobic pockets ((i) P234, V233, A208, I128, L47, V45 

and (ii) M119, L118, A96, M68, A67 and L66). Residues from these pockets interact directly 

with the FEN1 PIP-box (βA–αA motif). In contrast, the Rad1 surface appears less hydrophobic 

in this region, lacking both hydrophobic pockets (Figure 6.11). Suggestively, the closer proximi-

ty of the tilted FEN1 catalytic core to Rad1 might allow the FEN1 C terminus to come back up to 

interact with the FEN1 catalytic core in the 9-1-1 complex, providing a rationale for the perplex-

ing data that the extreme C terminus is required for 9-1-1 stimulation but not for stimulation by 

PCNA. 
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Figure 6.11 Schematic representations of the FEN1/PCNA and FEN1/9-1-1 interfaces re-
veal significant differences in the way FEN1 engages the two clamps 

Panel A) shows FEN1/PCNA interface contacts; panel B) shows FEN1/9-1-1 interface 

contacts. Persistent residue contacts (more than 50% for H-bonds and salt bridges; more that 

90% for hydrophobic contacts) are shown as lines and colored according to type – salt bridg-
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es(blue),  hydrogen bonds (red; side chain – lines; backbone – dotted lines), side chain hydro-

phobic contacts (green). Secondary structure elements are shown for the FEN1 C-terminal tail in 

orange and sliding clamp (PCNA/9-1-1) in blue. The core of FEN1 is shown in ribbon represen-

tation and colored by secondary structure. Hydrophobic pockets on the PCNA surface are high-

lighted in green.   

6.4 Concluding remarks 

The role of sliding clamps in increasing processivity for DNA-editing enzymes has been 

long appreciated. Whether these clamps simply act as tethers or play a more active mechanistic 

role in DNA replication and repair remains controversial. Our combined EM and computational 

results provide insights into the ternary complexes PCNA/FEN1/DNA and 9-1-1/FEN1/DNA 

(Figure 6.12). and imply an active role for the clamps. The observed FEN1 interactions in the 

models are consistent with distinct functions for the complexes. Our models show the DNA sub-

strate is functionally bound by FEN1 with the upstream duplex passing through the inner hole of 

the ringed clamps. Due to segmental flexibility, in the DNA-free complexes FEN1 is able to oc-

cupy multiple positions. In the ternary complexes the DNA substrate locks FEN1 into an upright 

position producing a single incision-capable state. The DNA passes through the rings at a tilt and 

the tilt angle is larger by 9° in the 9-1-1 complex. The computational analyses also suggest that 

9-1-1, which has more positive inner surface than PCNA, has almost 50% more charged interac-

tions with the DNA. It is interesting to note that the more symmetrical PCNA ring shows a bi-

ased DNA interaction toward one side of the ring, whereas the 9-1-1 interactions involve all 

three subunits. The distinct DNA interactions are consistent with different roles for the two 

clamps in DNA replication and repair. During replication, PCNA must be mobile and slide on 

DNA along with replicative polymerases. However, the checkpoint clamp 9-1-1 acts as a tempo-
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rary scaffold during repair of a section of DNA. Such functional differences arguably dictate cor-

responding differences in the interactions and the mode of association of the clamps in their re-

spective replication/repair complexes. The tethered flexibility observed in the binary complexes 

of PCNA/FEN1 and 9-1-1/FEN1 would allow FEN1 to swing from an out-of-the-way position 

on the outside of the ring to the upright functional position. This flexibility is consistent with the 

rapid interchange between PCNA-bound polymerase and FEN1 during Okazaki fragment matu-

ration. 

 

 

 

Figure 6.12  Functionally important differences between the PCNA/FEN1/DNA and 9-1-
1/FEN1/DNA complexes.  

PCNA and 9-1-1 serve different functions and, as a consequence, display different modes 
of association to FEN1 and DNA. The DNA and FEN1 are more tilted in 9Δ-1-1 complex than in 
the corresponding PCNA complex. The 9Δ-1-1 ring shows more interactions with the upstream 
duplex and stabilizes DNA passing through the ring. Such differences at the structural level may 
translate into functional differences in the ways these complexes engage at the replication fork. 
PCNA/DNA interactions are linked to processive and mobile sliding, whereas the tighter 9-1-1 
interactions would be consistent with a scaffolding role for 9-1-1. Materials and Methods 



 154

Sample preparation, EM data collection and processing- FEN1-h911 binary complex was 

formed by incubating h911 with a 3 molar excess of FEN1 at RT for 15min in 20mM Hepes 

pH=7.6, 80mM KCl. Complex was cross-linked and purified by size-exclusion chromatography. 

FEN1-DNA-h9∆11 ternary complex was cross-linked and further processed as for the binary 

complex. 4 µl of the purified complexes were loaded onto continuous carbon grids and complex-

es were stained either with 2% PTA (FEN1-h911 binary complex) or 2%UAc (FEN1/DNA/-

h9∆11 ternary complex and h911 alone). After cross-linking and purification of the complexes 

the samples were visualized by negative stain EM. Samplers were visualized using the Leginon 

data collection software (217) on a Fei Tecnai F20 microscope. Data was collected using a 

80000X magnification (1.5Å/pixel) in low dose mode (20e-/Å2) on a Gatan 44K pixel CCD 

camera (15m pixel size). All the processing of two-dimensional data was performed using pro-

grams and utilities contained within the Appion processing environment (25). 

Computational models and protocols- Initial models were constructed based on structures 

from the Protein Data Bank (accession codes 1UL1 and 3Q8L) (192,201). The FEN1-DNA 

complex was superimposed onto the FEN1-PCNA structure by optimally aligning FEN1 to the Y 

chain in the 1UL1 complex and the 3’ end of the dfDNA was extended so that it could pass 

through the PCNA/9-1-1 ring. Hydrogen atoms, counterions (Na+), an additional 100 mM NaCl 

concentration and TIP3P solvent(218) we introduced. The systems were then minimized and 

equilibrated. Production runs were carried out in the NPT ensemble (1 atm and 300 K) for 120 ns 

for the FEN1/PCNA/DNA and 100 ns for the FEN1/9-1-1/DNA complex. The simulations em-

ployed SPME electrostatics(117), 10 Å cutoff for short-range non-bonded interactions and 2 fs 

integration time step. All the simulations were performed using the NAMD 2.7 code(219) with 
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the AMBER Parm99SB parameter set(119) with modified  nucleic acid parameters (BSC0) (61) 

on Hopper II, a Cray XE6 system at the National Energy Research Scientific Computing Center.   
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CHAPTER 7.  STRUCTURALLY DISTINCT COMPLEXES OF UBIQUITIN- AND SU-

MO-MODIFIED PCNA LEAD TO DISTINCT DNA DAMAGE RESPONSE PATH-

WAYS  

7.1 Abstract  

Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also con-

trols cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and 

ubiquitin plays a substantial role in modulating these responses. How the modifiers alter PCNA-

dependent DNA repair and damage tolerance pathways (e.g. translesion syntheisis or homolo-

gous recombination) is largely unknown. Here we employed a hybrid computational protocol to 

model ubiquitin-modified and SUMO-modified PCNA. We combined the resulting models with 

small angle X-ray scattering (SAXS) data to assess the structural differences among three modi-

fied PCNA complexes: PCNAK164-Ub, PCNAK107-Ub and PCNAK164-SUMO. Our results argue 

against allosteric models for the role of the modifier. We show that SUMO and ubiquitin have 

distinct modes of association to PCNA. Ubiquitin binding is characterized by segmental flexibil-

ity with multiple docked Ub positions on PCNA. By contrast, SUMO associates by simple teth-

ering and adopts extended flexible conformations. Such dissimilarities could be traced to the an-

ticorrelated surface electrostatic potentials of the two modifiers. Thus, our integrative modeling 

approach reveals a structural basis for the distinct functional outcomes upon PCNA ubiquitina-

tion or SUMOylation. 

7.2 Introduction 

Dynamic assembly, coordinated access to DNA, and conformational switching are criti-

cal aspects of DNA replication and repair, essential processes upon which life depends. In both 

processes, the sliding clamp proliferating cell nuclear antigen (PCNA) (22,38,132) acts as a mas-
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ter coordinator of multiple pathways controlling replication and DNA damage responses (DDR). 

PCNA’s toroidal shape allows it to topologically encircle DNA while also binding to core repli-

somal constituents, numerous repair and cell cycle control proteins (35,36,38,134). In this capac-

ity, the sliding clamp acts as a platform for the assembly of the replication machinery on DNA. 

How PCNA achieves coordination of multiple replication and repair activities is incompletely 

understood. Partner proteins bind to PCNA predominantly through a consensus sequence termed 

PIP box motif. The PIP-box is considered the primary element conferring affinity for partner 

proteins. However, different enzymes feature similar PIP motifs, which in turn localize to the 

same sites on the clamp surface. Therefore, it is unclear how PIP-box interactions alone could 

mediate the mechanisms wherein PCNA differentially coordinates activities of multiple partners. 

Furthermore, the PIP-box motifs are commonly found within flexible tail regions of the proteins. 

Therefore, direct PIP-box interactions achieve only simple tethering to the clamp. If not the PIP-

boxes then what are the controlling elements responsible for partner coordination? Clues have 

emerged from recent studies, suggesting that secondary contacts with the PCNA subunits and the 

tilting of the DNA duplex going through the ring-shaped clamp play an important role (143,206). 

By locking each enzyme in an optimal orientation these contacts regulate access to the substrate. 

They may also temporarily block PCNA attachment of other partners to ensure correct ordering 

of the DNA-editing transactions in replication and repair. 

Emerging evidence suggests that posttranslational modifications (PTMs) of PCNA also 

play a critical role in coordinating DNA damage responses to suppress genome instability. This 

added level of regulation is realized through the interplay of PTMs and partner protein recruit-

ment to PCNA. Specifically, reversible covalent attachment of ubiquitin or ubiquitin-like (UBL) 

proteins (220-226) (e.g. SUMO) selects among alternative damage processing pathways such as 
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homologous recombination or translesion synthesis (TLS). The structural basis for such selection 

has so far remained elusive. Ubiquitin and SUMO both attach to their PCNA target through a 

glycine residue from the end of their flexible carboxy termini. This glycine forms an isopeptide 

linkage with a specific lysine side chain on the target. Despite sharing a common -GRASP fold, 

SUMO and ubiquitin elicit distinct functional outcomes, and characteristically have been por-

trayed as having antagonistic roles (220). However, recent studies (227) have significantly atten-

uated this picture by showing the two modifiers could act in concert to affect cellular fates.  

UV irradiation or exposure to DNA damaging agents commonly results in lesions that 

cause replication fork stalling. The cellular response in this case is mono-ubiquitination of PCNA 

at a conserved lysine K164, which in turn triggers translesion synthesis (TLS) – an essential 

damage tolerance pathway (224,227). In TLS the replicative polymerase is transiently exchanged 

with a specialized TLS polymerase capable of progressing past lesions in the template strand 

(228). Ubiquitin attachment provides an additional binding surface for the TLS polymerase, 

which usually possesses an ubiquitin-binding motif (222). By contrast, PCNA SUMOylation at 

positions K164 or K127 leads to suppression of homologous recombination through the recruit-

ment of the antirecombinogenic helicase Srs2 (229). Srs2 interacts with PCNA through its car-

boxy-terminal domain, which harbors tandem receptor motifs (230,231) (a SUMO interaction 

motif (SIM) and a non-canonical PIP-box). Both motifs are required for specific recognition of 

SUMO–PCNA. The function of Srs2 is to inhibit the formation of Rad51 filaments (232,233), 

thereby assisting the ubiquitin-dependent TLS pathway. Thus, PCNA ubiquitination and 

SUMOylation offer a striking example of crosstalk between pathways controlled by distinct 

PTMs (221,227). While attachment of a single ubiquitin is the dominant DDR response in 

mammalian cells, yeast PCNA can also undergo polyubiquitination through the non-proteasomal 
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K63 linkage (224). Polyubiquitination of PCNA at K164 channels DDR to yet another pathway - 

error-free damage bypass by template switching. Finally, in yeast PCNA mono-ubiquitination at 

position K107 helps cells to overcome defects in DNA ligation (234). How could PTMs intro-

duced at different positions on PCNA result in such vastly divergent functional outcomes? Fur-

thermore, how do posttranslational modifications of PCNA facilitate recruitment of subsequent 

effector proteins in these pathways?  

To answer these questions we modeled PCNA covalently modified by ubiquitin and 

SUMO at different attachment positions using a multiscale computational protocol. The models 

were used in conjunction with solution X-ray scattering data (SAXS) (235-238) to assess the 

structural differences among three PTM-PCNA complexes (PCNAK164-Ub, PCNAK107-Ub and 

PCNAK164-SUMO). Here we show that SUMO and Ub have distinct modes of binding to PCNA 

and that the position of ubiquitin attachment, 107 versus 164, alters conformation. Ubiquitin 

bound to PCNA can dynamically adopt multiple discrete conformations and has segmental flexi-

bility. By contrast, SUMO associates to the clamp by simple tethering, resulting in extended 

flexible conformations.  

7.3 Results  

Distinct architectures of modified PCNA complexes uncovered by SAXS data- We con-

ducted small angle X-ray scattering (SAXS) experiments to probe the overall architecture and 

flexibility of PCNAK107-Ub and PCNAK164-SUMO complexes in solution. These experiments 

involved constructs comprised of Saccharomyces cerevisiae PCNA with Ub/SUMO moieties ex-

clusively attached at positions K107 and K164, respectively. Covalent attachment in the PCNA-

Ub complex was achieved by chemical cross-linking with a K107C PCNA mutant (239). The 

PCNA-SUMO complex was formed by split-fusion (231,240). The split-fusion and chemical li-
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gation methods yield linkages close to the enzymatically produced isopeptide bond and offer a 

simple and specific approach to introduce Ub or SUMO modifications without the complexity of 

multiple enzymatic steps. Previous studies have validated these strategies by showing that chem-

ically and enzymatically ubiquitinated PCNA have identical biochemical properties (239). Fur-

thermore, previous solution structural results (241) on PCNAK164-Ub species were found to be 

consistent, irrespective of the exact linkage (split-fusion or chemically cross-linked). For 

PCNAK107-Ub and PCNAK164-SUMO, SDS-PAGE analysis showed that the Ub and SUMO moi-

eties were present in 1:1 ratio relative to the PCNA subunit in both constructs. Therefore, each 

PCNA clamp harbors three ubiquitin or SUMO moieties corresponding to the three equivalent 

points of attachment on PCNA. 

SAXS data were collected for PCNAK107-Ub and PCNAK164-SUMO complexes and com-

pared to the previously obtained scattering profile of PCNAK164-Ub and simulated profiles from 

available crystal structures (split-fusion PCNAK164-Ub (240) and PCNAK164-SUMO (230); PDB 

ID 3L10 and 3V60, respectively). All three experimental scattering profiles (Figure 7.1) are dis-

tinct, revealing that the three PTM complexes adopt conformations with different levels of com-

pactness in solution. PCNAK107-Ub is slightly more compact than PCNAK164-Ub. SUMOylated 

PCNA presents an I(q) profile (Figure 7.1A) with similar overall shape to the SAXS profile of 

the 3V60 crystal structure, but considerably more extended (Figure 7.1B). Fitting to the SAXS 

data, the crystal structures 3L10 and 3V60 produced high χfree values consistent with significant 

discrepancies between the conformations adopted in the crystal structures and the solution phase 

ensembles. Guinier plots (Figure 7.1C) for PCNAK107-Ub and PCNAK164-SUMO were linear, 

indicating that the samples were not aggregated. The radius of gyration, Rg, is accurately defined 

by SAXS regardless of sample concentration and contrast and therefore provides an important 
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and PCNAK164-Ub (red); C) Guinier analyses of SAXS data for PCNAK107-Ub (green) and 

PCNAK164-SUMO (blue) showing relative linearity of the samples in Guinier region, indicating 

lack of aggregation. 

 

Table 7.1 Models identified by the minimal ensemble search (MES) 

 

aContributed by each model; bModels were highlighted in Figure 3 

 

Ubiquitin- and SUMO-PCNA conformations from conjugated protein docking- To further 

explore the substantial differences between ubiquitin and SUMO positioning in the modified 

PCNA complexes, we constructed computational models of ubiquitin (SUMO) ligated to PCNA. 

We used a recently developed protocol for conjugated protein docking in Rosetta 3.4. The meth-

od samples the conformational space available to ligated proteins (242-244) using a standard Ro-

setta Metropolis Monte Carlo random sampling tool (245). The protocol involved docking a sin-

gle Ub (SUMO) moiety to PCNA conjugated at the K107 or K164 position, respectively. In total, 

4,970 PCNA-Ub models and 7,525 PCNA-SUMO models were produced, of which 4,791 

PCNAK107-Ub models and 4,449 PCNAK164-SUMO models passed the score and buried surface 

area filter. The short linker between the modifier and the PCNA attachment point limited acces-

sible conformations. This allowed us to locally saturate the PCNA surface with decoys (i.e. 



 163

Ub/SUMO docking poses) and achieve extensive sampling. Scoring results from Rosetta are 

shown in Figure 7.2. For PCNAK107-Ub, the all-atom score of the docking decoys is plotted as a 

function of the C root-mean-square deviation (RMSD) from the lowest scoring PCNA-Ub 

structure. For PCNAK164-SUMO, the X-ray structure 3V60 (230) was used as a reference to 

compute the C RMSD. Figure 7.2 revealed a clear distribution pattern for the decoys, which 

clustered into bands around specific RMSD values. For PCNA-Ub the lowest scoring decoys 

formed score “funnels” indicating several preferred position for Ub to reside on the surface of 

PCNA. The majority of PCNAK107-Ub decoys had Rosetta energy scores ranging from −1360 to 

−1100. For PCNAK164-SUMO most scores were found in a much narrower range between −1030 

to −920. Collectively, the higher Rosetta scores, the narrow score range and the absence of low-

scoring outliers for the PCNA-SUMO complex implied significantly weaker association between 

PCNA and SUMO as compared to ubiquitin. Next, we selected the lowest-scoring structurally 

distinct models from the Rosetta output (Figure 2). These docking positions (one chosen from 

each score funnel) were refined using all-atom explicit solvent molecular dynamics (MD) with 

the program NAMD (73,74). The MD simulation and analysis allowed us to eliminate confor-

mations where the Ub or SUMO moiety interacted primarily through polar contacts and conse-

quently departed from the PCNA surface during MD refinement. Nine unique docked positions 

for each system were selected to build triplet structures of modified PCNA. These structures af-

ter the MD refinements (sorted by Rosetta score) are presented in Figure 7.3.  
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Figure 7.2 Rosetta score versus RMSD plots for ubiquitinated and SUMOylated PCNA 

A) Decoys from PCNAK107-Ub docking are shown in gray. Lowest-scoring structurally 

distinct models (selected for building triplets) are shown red. One model (blue dot) departed 

from its binding position during MD and was not considered for MES analysis; B) Decoys from 

PCNAK164-SUMO docking are shown in gray. Lowest-scoring models (selected for building 

triplets) are shown red. Four models (blue dots) departed during MD and were not considered for 
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MES analysis. One partially flexible position (purple) was subsequently included in MES analy-

sis. 

 

Figure 7.3 Rosetta binding positions used in constructing PCNA triplet structures for 
MES analysis 
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A) PCNAK107-Ub and B) PCNAK164-SUMO structures. PCNA, Ub and SUMO are 

shown in cartoon representation and colored in gray, green and blue, respectively. The K107 and 

K164 residues of PCNA are depicted as a red spheres. 

 

Optimal positions of Ubiquitin/SUMO on PCNA from Minimal Ensemble Search- To de-

termine which positions were occurring in solution, we generated models with three ubiquitin or 

three SUMO moieties linked to homotrimeric PCNA for comparison to the experimental SAXS 

data.  Twelve positions for PCNAK107-Ub (including 3 detached flexible Ub positions identified 

by averaging from the MD ensemble) and twelve positions for PCNAK164-SUMO (including the 

3V60 X-ray structure and 3 detached flexible SUMO positions) were used to build triplet struc-

tures for the modified complexes. All possible combinations of positions were generated with 

three Ub or SUMO moieties per PCNA homotrimer. Thus, we produced a final set of 568 

PCNA-Ub triplet models and 1728 PCNA-SUMO triplet models.  

Structural information on dynamic assemblies (such as modified PCNA in solution) can 

be determined by SAXS (235,241,246,247). Fourier transform of SAXS data yields a distribution 

of electron pair distances P(r). Since the P(r) function encodes all interatomic distance infor-

mation (even from low-populated flexible conformations) it allows SAXS to sensitively discrim-

inate among structural models. Thus, structural interpretation is predicated on the generation and 

filtering of an ensemble of atomistic models. To implement this strategy we computed theoretical 

SAXS profiles for all triplet models of the modified complexes using the program FoXS and fit-

ted these profiles to the experimental scattering data. The goodness-of-fit χ values provide a 

measure to assess the agreement between the experimental scattering data and each of the struc-

tural models. We recalculated the identified ensembles using χfree (248), to give a noise-reduced 
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assessment of the fit. Computed χ values for PCNAK107-Ub and PCNAK164-SUMO are plotted in 

Figure 7.4A, B as a function of CRMSD for each conformation. The single best fit to the ex-

perimental data was χ=1.80 (χfree=2.32) for PCNAK107-Ub and χ=2.55 (χfree=2.97) for PCNAK164-

SUMO, respectively. However, in a flexible system, multiple conformations will contribute to 

the SAXS profile. Therefore, a minimal ensemble search (MES) (249) was employed to identify 

a small subset of conformations that optimally represent the scattering data. In the case of 

PCNAK107-Ub an excellent agreement to the experimental curve was obtained (χ=1.60; 

χfree=2.10) (Figure 7.4C) by a set of three distinct conformers with ensemble contributions of 

45%, 47% and 8% (Figure 7.4G). In these conformers the Ub occupied primarily docked posi-

tions, closely associating with the PCNA surface. In the case of PCNAK164-SUMO, however, the 

ensemble was dominated by two flexible, extended conformations (45% and 31% occupancy) 

and a third flexible but more compact conformation (24% occupancy) (Figure 7.4H). MES nota-

bly improved the goodness-of-fit to the PCNA-SUMO SAXS data (χ=2.17, χfree=2.41, Figure 

7.4D). Conversely, large discrepancies between the X-ray structure 3V60 and the solution SAXS 

profile were observed (χ=6.70, χfree=7.65, Figure 7.4B) indicating that the conformation found in 

the crystal is not prevalent in the solution phase ensemble.  

In all models selected by MES we calculated the occupancy of docked versus extended 

flexible positions for PCNAK107-Ub and PCNAK164-SUMO. In the PCNA-Ub complex, the ubiq-

uitin was found in the docked position (in the groove above the subunit interface of PCNA) with 

occupancy of 50%, with 34% occupancy in the back of PCNA along the P-loop and 16% occu-

pancy in the central cavity of PCNA. The possibility for Ub to interact with the helices of the 

central cavity of PCNA distinguishes the PCNAK107-Ub from the PCNAK164-Ub complex. The 

reason is that K107 is positioned on the back face of the clamp close to the subunit interface. 
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This makes it possible for Ub through its flexible linker to extend further toward the central cavi-

ty of the clamp. Ub position blocking the central cavity of PCNA is not expected to be function-

ally relevant in the situation when the clamp is loaded onto DNA. However, it may reflect the 

small difference in compactness between the PCNAK164-Ub and PCNAK107-Ub complexes seen 

by SAXS. In the case of PCNA-SUMO, extended positions were included in the MES calcula-

tion. As shown in Figure 7.4D, MES analysis identifies SUMO with 84% occupancy in two ex-

tended flexible positions. Interestingly, MES did not pick any positions docked to the PCNA sur-

face despite inclusion of the 3V60 crystallographic position in the MES optimization. This out-

come indicates that SUMO is largely flexible in solution. The docked positions observed by 

crystallography (230,231) (3PGE and 3V60) are probably stabilized by lattice contacts.  
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Figure 7.4 Ub primarily adopts docked positions in PCNAK107-Ub while SUMO occu-
pies extended positions in PCNAK164-SUMO 

A minimal ensemble search (MES) produces the best fit to the experimental SAXS data for 

PCNAK107-Ub and PCNAK164-SUMO. A) χ values for the triplet PCNAK107-Ub structures 

plotted against RMSD. Conformations selected by MES are highlighted in blue, magenta and 
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red, respectively; B) χ values for the triplet PCNAK164-SUMO structures plotted against 

RMSD. Conformations selected by MES are highlighted in blue, magenta and red, respectively; 

C) Overlaid experimental SAXS profile for PCNAK107-Ub (green), computed profile for 3L10 

X-ray structure (red dotted line) and computed profile from MES model (black); D) Overlaid ex-

perimental SAXS profile for PCNAK164-SUMO (blue), computed profile for 3V60 X-ray struc-

ture (red dotted line) and computed profile from MES model (back); E) P(r) functions for 

PCNAK107-Ub (green), 3L10 X-ray structure (red dotted line) and MES model (black); F) P(r) 

functions for PCNAK164-SUMO (blue), 3V60 X-ray structure (red dotted line) and MES model 

(black); G) The three most populated structures from MES analysis of PCNAK107-Ub. (H) The 

three most populated structures from MES analysis of PCNAK164-SUMO. The P-loop is shown 

in purple; the K107 and K164 attachment points are depicted in red. PCNA, Ub and SUMO are 

shown in gray, green and blue, respectively. The MES occupancies for the three conformations 

are labeled in blue, magenta and red, respectively. 

 

Detailed interactions in the MES identified models- To identify specific structural features 

that might drive the closer association of Ub to PCNA, we inspected the three most populated 

MES triplet models. One distinct position selected by MES identified Ub positioned in a groove 

of the PCNA ring directly above the PCNA subunit interface (Figure 7.4G). The surface of the 

ubiquitin that interacted with PCNA was the hydrophobic surface centered on Ile44 and Val70 

known to associate with a variety of other proteins (250,251). In addition to hydrophobic con-

tacts, we observed several electrostatic and hydrogen bonding interactions: notably, salt bridges 

Lys48Ub-Glu113PCNA, Arg42Ub-Glu104PCNA and Glu51Ub-Lys168PCNA. The MES results also im-

ply that a substantial fraction of ubiquitin is found on the back face of the ringed clamp and the 
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C-terminus linker of Ub closely interacts with the P-loop of PCNA. This is consistent with the 

split-fusion PCNA-Ub crystal structure, which identified Ub in two positions close to the P-loop. 

We further verified that Ub positioned along the P-loop did not obstruct duplex DNA passing 

through the PCNA ring (Figure 7.5). Since PCNA was not loaded onto DNA, ubiquitin in 

PCNAK107-Ub could also be situated in the central cavity of PCNA. Our MES results further 

suggest that covalently attached SUMO makes few contacts to PCNA and adopts extended flexi-

ble positions away from the tips of the PCNA subunits. The crystal structure of PCNAK164-

SUMO revealed that the interface with the modifier comprises loop regions of PCNA and SU-

MO, which involve acidic residues from both sides. Furthermore, the outer surface of PCNA is 

overwhelmingly negatively charged. We verified that these interfacial contacts from the crystal 

structure could not be maintained in an MD simulation. The reason becomes apparent upon in-

spection of the surface electrostatic potentials for Ub, SUMO and PCNA (Figure 7.6). For all 

three dominant docked conformations of PCNAK107-Ub we observe electrostatic complementari-

ty at the Ub/PCNA interface. By contrast, there is clear repulsion for the PCNAK164-SUMO crys-

tal structure where both surfaces are negatively charged. Thus, it is likely that the docked con-

formation identified in the X-ray structure is stabilized by the crystal environment and may not 

be highly populated in solution. 
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Figure 7.5 Model of PCNAK107-Ub with duplex DNA threaded through the clamp 

The most populated structure from MES analysis was used to represent PCNAK107-Ub. 

The DNA was positioned by overlaying PCNA to the E. coli beta-clamp-DNA structure (PDB 

ID 3BEP). The complex was then relaxed in a 40ns MD simulation. The structure shown is from 

the end of the trajectory and demonstrates that Ub at the back of PCNA does not obstruct the 

passage of DNA through the PCNA ring. 
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Figure 7.6 Structural differences in PCNAK107-Ub and PCNAK164-SUMO complexes 
from the anticorrelated electrostatic potential of Ub and SUMO  

A) Ub docked onto PCNA in the most populated MES positions (subunit interface groove, 

P-loop and central cavity positions) and SUMO position from the 3V60 crystal structure. Ub, 

SUMO and PCNA are colored green, blue and grey, respectively. The IDCL and P-loops on 

PCNA are shown in orange and magenta, respectively. The attachment positions, K107 and 

K164 residues, are displayed as red balls; B) Electrostatic potential surfaces corresponding to the 

bound positions of Ub and SUMO on PCNA (groove, P-loop and central cavity, from left to right 

for PCNAK1o7-Ub and 3V60 structure for PCNAK164-SUMO). Charges were assigned using 

PDB2PQR server and electrostatic potentials were calculated using APBS. 100 mM NaCl con-
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centration was introduced to screen the electrostatics mimicking physiological conditions. The 

potential varies from −5KBT/e to +5KBT/e and is depicted from red to blue, respectively. 

7.4 Discussion 

PCNA monoubiquitination and SUMOylation are reversible dynamic modifications that 

orchestrate cellular events in response to DNA damage. How Ub and SUMO associate with 

PCNA and how this association may facilitate subsequent partner interactions has not been fully 

established. Three general models can be envisioned: (i) simple tethering; (ii) structured interface 

formation or (iii) allosteric response. Under the simple tethering model, the only function of the 

modifier (ubiquitin or SUMO) is to provide affinity to the protein partner carrying ubiquitin- or 

SUMO-interacting domain. Under the structured interface model, the modifier participates with 

PCNA in the assembly of higher order complexes with downstream effector proteins. In this 

case, affinity to PCNA augments the affinity for the ubiquitin- or SUMO-interacting partner. In 

the allosteric model, Ub or SUMO conjugation induces conformational change in PCNA, which 

in turn facilitates recruitment of downstream effectors in the respective pathways. This allosteric 

hypothesis is exemplified by the case of thymine DNA glycosylase (TGD) wherein product re-

lease by the enzyme involves large conformational change assisted by SUMO modification 

(252,253).  

Our results argue strongly against an allosteric model for the role of PCNA ubiquitination 

or SUMOylation in effecting distinct functional responses to DNA damage. Multiple trajectory 

MD simulations fail to observe any substantial changes in the conformation of PCNA in the 

modified complexes. In the ubiquitinated complexes the modifier appears to be stabilized against 

the PCNA surface and is able to adopt several discrete positions relative to the PCNA ring. From 

MES the most populated position in PCNAK107-Ub was the sideways position above the subunit 
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interface of the PCNA ring. A similar orientation was found as predominant also for the 

PCNAK164-Ub complex. Ub can also reside at the back of the PCNA ring close to the P-loop in 

both the K107 and K164 ubiquitinated complexes. Finally, for K107 a small population of Ub 

can interact with the helices of the central hole of PCNA. To describe this situation, we use the 

concept of segmental flexibility and define it as the stabilization of “functionally-relevant” posi-

tions in otherwise flexible systems. Both PCNAK107-Ub and PCNAK164-Ub exhibit such segmen-

tal flexibility and feature primarily docked positions for the Ub modifier. Thus, for the Ub modi-

fied PCNA complexes our results support the structured interface mechanism for partner protein 

recruitment. Furthermore, segmental flexibility is likely a common characteristic of eukaryotic 

ubiquitin regulatory systems.  

By contrast, the PCNAK164-SUMO complex adopted extended flexible conformations 

wherein SUMO was attached to K164 but was not otherwise interacting with the surface of 

PCNA. Therefore, for SUMOylated PCNA recruitment the results support the simple tethering 

model, consistent with the model of the SRS2 interaction with SUMOylated PCNA that adopted 

two positions (230). The structurally distinct modes of association of Ub and SUMO to the slid-

ing clamp rationalize the ability of the modifiers to promote distinct functional responses even 

when the PTMs occur at the exact same position on PCNA. Notably, the inherently dynamic 

PTM positioning may not be easily construed from static crystal structures available for PCNA-

SUMO or PCNA-Ub suggesting combined computational-experimental approaches may be criti-

cal to accurate structural analyses. 

In this respect, our work on modified PCNA underscores the power of combining hybrid 

computational models with experimental SAXS data to gain structural understanding of protein 

complexes in solution (254). Segmental flexibility is often necessary for the function of protein 
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machines (143,255-257). In crystals, conformations can be blocked or formed by crystal contacts 

(230,231) or influenced by crystallization conditions, thus, restricting our knowledge of intrinsi-

cally flexible systems to the few available X-ray structures. Therefore, generation of conforma-

tional ensembles for the complexes by hybrid methods (starting from high-resolution structures 

of their individual components) and validating the models by SAXS reveals a more accurate and 

complete representation of the diverse conformational states present in solution. In this context, 

the results afford insights into how PCNA post-translational modifications by Ub and SUMO 

provide both the necessary specificity and flexibility to regulate recruitment and coordinated ac-

tions of effector proteins to promote genomic stability.  

 

 

Figure 7.7 Biological implications of the different mode of association of ubiquitin and 
SUMO to PCNA 

The PCNA trimer is shown in gray; the Ub modifier in green; SUMO in blue; the attach-

ment positions are indicated by a red dots; curved arrows indicate flexible attachment. Approxi-

mate occupancy (%) of the identified distinct positions of the modifiers on PCNA a given below 

each model. 
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7.5 Materials and Methods 

SAXS analysis of PCNAK164-Sumo and PCNAK107-Ub- SUMOylated and cross-linked 

yeast PCNA was purified as before (231,239,258,259). SAXS data were collected at the SIBYLS 

12.3.1 beamline at the Advanced Light Source, LBNL (238,260,261). Scattering measurements 

were performed on 20 l samples at 15 °C loaded into a helium　 -purged sample chamber, 1.5 m 

from the Mar165 detector. Prior to data collection, modified PCNA were purified by size exclu-

sion chromatography on a 24 mL Superose6 column equilibrated in 20 mM Tris pH 7.5, 150 mM 

NaCl, 5% glycerol. Data were collected on both the original gel filtration fractions and samples 

concentrated ~2x-8x from individual fractions. Fractions prior to the void volume and concentra-

tor eluates were used for buffer subtraction. Sequential exposures (0.5, 0.5, 5, and 0.5 s for 

PCNAK164-SUMO and 0.5, 0,5, 2, 5, 0.5 s for PCNAK107-Ub) were taken at 12 keV. Although 

scattering of the split-fusion PCNAK164-SUMO showed radiation-induced aggregation, the scat-

tering of the cross-linked PCNAK107-Ub showed a decrease in slope, indicative that the mole-

cules in solution were becoming smaller. It is likely due to irradiation breaking the disulfide 

bond. The first and second 0.5 second exposures overlaid, so the first exposure was assumed to 

have only minimal damage. The best data, based on signal-to-noise and Guinier, were collected 

on split-fusion PCNAK164-Sumo (2.7 mg/ml, 0.5 sec exposure) and cross-linked PCNAK107-Ub 

(4.1 mg/ml, 0.5 sec exposure). Data was analyzed using PRIMUS. The Porod exponent was de-

termined from a linear regression analysis (I vs Q) of the top of the first peak in the Porod-Debye 

plot (q4*I(q) vs q4) of the scattering data, implemented in SCÅTTER, available at beamline 

12.3.1(236,261). Χ2
free of selected models was calculated using Scatter (248). 

Computational models and protocols- To model the PCNAK107-Ub and PCNAK164-SUMO 

complexes, we employed a chemically conjugated docking protocol written as a part of the Ro-
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setta 3.4 suite (242-244). We used the standard Rosetta scoring function − score12 to rank and 

select the top-scoring models (245,262). The protocol was designed to search the conformational 

space available to ubiquitin chemically conjugated via an isopeptide bond and samples rotations 

about torsional angles in the vicinity of the isopeptide bond. To initiate the sampling for 

PCNAK107-Ub we used the 1UBQ structure for ubiquitin (263) and 1PLQ structure for yeast 

PCNA (22). For the PCNAK164-SUMO complex, we used the structure of SUMOylated PCNA 

(PDB ID: 3V60) (230). The initial PDB structures were minimized with the Rosetta relax proto-

col while employing all-heavy-atom constraints prior to conjugated docking. For the isopeptide 

linker, protocol UBQ_Gp_LYX-cterm was used. Torsions allowed to change included: the chi 

angles of Lys107 or Lys164 of PCNA, the isopeptide bond and both phi and psi for the Gly76, 

Gly75 and Arg74 of ubiquitin (Gly98, Gly97 and Ile96 of SUMO). Sampling was performed 

with a standard Rosetta Metropolis Monte Carlo search protocol (245). Results were automati-

cally filtered according to the solvent accessible surface area (SASA) buried at the protein inter-

face (> 500 Å2) and total score of the docked complex (< 0). In total the sampling produced 

4,791 decoys for PCNA-Ub and 4,499 decoys for PCNA-SUMO using 20,000 Monte Carlo cy-

cles per trajectory. All Rosetta docking calculations were performed on the Stampede supercom-

puter at the Texas Advanced Computing Center (TACC). To identify low-scoring outliers we 

relied on Rosetta score vs. RMSD plots. In this case RMSD is defined in reference to an arbitrary 

structure and is merely a way to spread the points out and make groups of points that stand out 

clearly from the cloud. Selected low-scoring decoys were used for further MD refinement. 

Model refinement- Outliers with best scores from Rosetta docking were refined using all-

atom explicit solvent molecular dynamics. In setting up for MD hydrogen atoms, counterions 

(Na+) and TIP3P solvent (264) were introduced using the XLeap module in the AMBER 9 
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(115,265,266). Additionally, 100 mM NaCl concentration was introduced to mimic physiological 

conditions. The systems were then minimized for 5000 steps with backbone atoms fixed fol-

lowed by 5000 steps of minimization with harmonic restraints to remove unfavorable contacts. 

The systems were then gradually brought up to 300 K and run for 50 ps in the NVT ensemble 

while keeping the protein backbone restrained. The equilibration was continued for another 2 ns 

in the NPT ensemble and the harmonic restraints were gradually released. The 60 ns production 

simulations were performed in the NPT ensemble (1 atm and 300 K) without constraints. A 

short-range cutoff of 10 Å was used for the short-range non-bonded interactions with a switching 

function at 8.5 Å. The long-range electrostatic interactions were treated with a smooth particle 

mesh Ewald method (117). An integration time step of 2 fs was used under a multiple time step-

ping scheme. The r-RESPA multiple timestep method (118) was adopted with a 2 fs time step for 

bonded, 2 fs for short-range non-bonded interactions and 4 fs for long-range electrostatic interac-

tions. Bonds between hydrogen atoms and heavy atoms of the protein were constrained with 

SHAKE. All simulations were performed using the NAMD 2.8 code (73,74) using the AMBER 

Parm99SB force field. Models, which departed substantially from the initial Rosetta docking po-

sition during MD were eliminated from further consideration.  

Minimal Ensemble Search- Twelve positions for PCNAK107-Ub (including 3 detached 

flexible Ub positions identified by averaging from the MD ensemble) and twelve positions for 

PCNAK164-SUMO (including the 3V60 X-ray structure and 3 detached flexible SUMO positions) 

were used to build triplet structures for the modified complexes. All possible combinations of 

positions were generated with three Ub or SUMO moieties per PCNA homotrimer. Thus, we 

produced a final set of 568 PCNA-Ub triplet models and 1728 PCNA-SUMO triplet models. 

Computation of scattering profiles from the models and comparison to the experimental data 
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used the FoXS code. FoXS (247) is a method for computing a theoretical scattering profile of a 

structure and fitting to the  experimental profile. For a given structure the SAXS profile is com-

puted based on the Debye formula: 

Iሺqሻ ൌ ∑ ∑ f୧
୒
୨ୀଵ

୒
୧ୀଵ ሺqሻf୨ሺqሻ

ୱ୧୬	ሺ୯ୢ౟ౠሻ

୯ୢ౟ౠ
    (7.1) 

where the intensity, I(q), is a function of the momentum transfer, q ൌ ସ஠ୱ୧୬஘

஛
; 2θ is the 

scattering angle and λ is the wavelength of the incident X-ray beam; f୧ሺqሻ is the form factor of an 

atom i, d୧୨ is the distance between atoms i and j, and N is the number of atoms in the system. The 

SAXS profile computed from the structure is fitted to the experimental SAXS profile by mini-

mizing χ:  

χ ൌ ටଵ

୑
∑ ሺ

୍౛౮౦ሺ୯౟ሻିୡ୍ሺ୯౟ሻ

஢ሺ୯౟ሻ
ሻଶ୑

୧ୀଵ      (7.2) 

where Iୣ୶୮ሺq୧ሻ and Iሺq୧ሻ are the experimental and computed profiles, σሺq୧ሻ is the error of 

the experimental profile, M is the number of points in the profile, and c is the scaling factor.  

The coexistence of different conformations that contribute to the experimental scattering 

curve has to be taken into account by considering the flexibility of different Ub or SUMO posi-

tions. An algorithm developed by Pelikan et al. (249) was used to search for the minimal ensem-

ble (MES) of conformations from the pool of all Rosetta generated triplet models. The multi-

conformational scattering I(q) from such a minimal ensemble is computed by averaging the indi-

vidual scattering patterns from the conformers. The final model was fitted to the experimental 

curve I(q) minimizing χ between the experimental and calculated multi-conformational curve 

according to equation 7.2. 
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