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The REF-1 family proteins are distinguished by the presence of two basic helix-loop 

helix domains. The REF-1 family members are considered functional homologs of the 

Hairy/Enhancer of Split in humans. HLH-25 is one of the six members of the REF-1 family. 

HLH-25 has not been studied extensively. In preliminary studies from our laboratory, genes 

identified by microarray analysis of hlh-25 mutants were essential for embryogenesis, larval 

development, and growth. Thus, the present study was designed to further characterize HLH-25 

and to more precisely define its role during embryonic and larval development. The gene 

encoding HLH-25 is actively expressed in embryos, larvae and adults. In the absence of hlh-25, 

animals show a 54% embryonic lethality, a reduced brood size, an increased number of 

unfertilized eggs, a slower movement rate, a longer life span, and a longer dauer recovery. The 

human tumor suppressor PTEN homolog, daf-18 is one of the HLH-25 target genes.   
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1 

1     INTRODUCTION  

1.1 Transcription Factors 

Transcription factors are a diverse family of proteins that bind to the promoter region, a 

specific DNA section upstream of a gene, in order to regulate its expression. Transcription 

factors can also bind to multi-subunit protein complexes to manipulate transcription either 

negatively or positively [2-7], and they determine how cells function by determining the time 

and place of their gene expression.  

Transcription factors that control homeotic genes (i.e. genes that control the pattern of 

body formation) usually are vital for the normal development of the organism.  In Drosophila, 

the transcription factor Bicoid, for instance, is necessary for the embryonic development of the 

anterior half of the embryo.  Embryos with a mutation in Bicoid grow into larva with posterior 

structures at both ends and with two spiracles, instead of one, at the posterior end [8, 9].  Another 

function of transcription factors is to determine whether a gene functions or not at a given time.  

For example, HES mutations in the developing mouse embryo cause neural progenitor cells to 

prematurely differentiate causing neural defects [10] and sometimes small and deformed brain 

structures [11]. 

Transcription factors are often grouped into families based on their sequence 

similarity and their structure.  Examples of different transcription factor families include winged 

helix, zinc fingers, homeodomain proteins, zinc-finger proteins, and basic helix loop helix 

proteins.  These different families also typically have characteristic functions.  For instance, in 

humans, the transcription factor T18 is part of the zinc-finger family.  T18 acts as a breast cancer 

tumor suppressor [12]. In plants, many transcription factors from the family of basic 
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region/leucine zipper motif (bZIP) proteins, like the bZIP protein lotus, regulate processes 

including photomorphogenesis, leaf and seed development [13, 14].  

 

1.2 The Basic Helix Loop Helix (bHLH) superfamily 

Members of the basic helix-loop-helix (bHLH) transcription factor family have two 

highly conserved domains, the basic domain and the helix-loop-helix domain.  The basic domain 

is located at the N-terminus; this domain binds to specific sequences of DNA upstream of the 

promoter region [15].  The second domain contains an HLH domain located at the C-terminus 

formed by two amphipathic helices connected by a loop region consisting of amino acids [16].  

The HLH domain interacts with other proteins.  These domains are approximately 60 amino 

acids long [15].  The HLH domain binds to other proteins to form homodimeric and 

heterodimeric complexes [17].  For example, bHLH proteins LYL1 form a heterodimeric 

complex with TCF3 in hematolymphoid cells to regulate blood vessel maturation and 

hematopoiesis [18].  bHLH transcription factors also have the ability to differentially regulate 

transcription based dimerization.  For instance, in the fungal plant Fusarium oxysporum, the 

bHLH protein FoSTUA differentially regulates the development of two kinds of asexual pores, 

macroconidia and microconidia.   FoStuA acts as a positive regulator for macroconidia and as a 

negative regulator for chlamydospores during development [19]. 

Different attempts have been made to subcategorize bHLH proteins.   Atchley and Fitch 

[20], subdivided the bHLH proteins into four groups based on their binding to DNA at the 

hexanucleotide E-box, the amino acid patterns in other components of the motif, and the 

presence/absence of a leucine zipper.  Group A proteins bind to the E-box (CAGCTG) usually to 

activate  transcription.  They have a distinctive pattern of amino acids at sites 5, 8, and 13.  This 
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group has only small aliphatic residues.  An example of a group A protein in mammals is the 

MyoD protein family.  Group B proteins bind to the G-box (CACGTG).   This group has 

arginine at site 13, a basic amino acid at site 5, and an E-box configuration at sites 5–8-13. 

Protein families with a LZ motif are included in group B. Sequences with an LZ have a very high 

frequency of N residues (93%).  An example of a group B protein in Drosophila is the Hairy and 

Enhancer of split bHLH.  Group C has the PAS domain, which is a protein-protein interaction 

region. Proteins with a PAS domain usually function as signal sensors [21].  For instance, human 

PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channel proteins [22].  

Group D proteins lack the DNA binding basic region, and thus, are unable to bind DNA, but they 

can form heterodimers with other bHLH proteins usually as negative regulators.  An example of 

group D in mammals is the ID protein family [23, 24]. 

The superfamily bHLH is found in many organisms including yeast, mice, worms, and 

humans.  bHLH transcription factors are involved in the regulation of many developmental 

processes including, cardiovascular development [25], mouse brain development [26, 27] , 

neurogenesis [28], cell cycle regulation, and embryogenesis [10, 29]. They typically act in 

cascades, one after the other, to cause increasing degrees of specialization.  For example, the 

regulation of the cell elongation (i.e. cell specialization) in Arabidopsis depends on a chain of 

antagonistic switches comprised of transcription factors, PREs, IBH1, and HBI1 [30]. 

Transcriptional regulators are required for the development of differentiated neurons. 

Many proteins are involved in neuron differentiation and HLH proteins regulate parts of this 

process. In mammals, different bHLH proteins work in a cascade to control different steps 

behind neurogenesis.  In mice, two bHLH transcription factors, Ascl1 and Hand2, are necessary 

at every step of the cascade for proper parasympathetic and sympathetic neuron development, 
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respectively [31].  Ascl1 has also been implicated in the differentiation of the P19 EC cells into 

neuronal cells, and reduction of Ascl1 causes delayed neurogenesis of the P19 EC cells [32].  

Hand 2 impacts development of the enteric nervous system (ENS).  Mutations in Hand2 affect 

both neural precursor and neuron numbers, such as complete loss of neuronal nitric oxide 

synthase (NOS) and vasoactive intestinal peptide (VIP) neurons [33]. 

 

1.3 Hairy/Enhancer of Split (HES)  

The Hairy/Enhancer of Split (HES) proteins form a sub-family within the bHLH 

superfamily.  The founding members of the HES family were first described in Drosophila 

where it was demonstrated that HES proteins are direct targets of Notch signaling [34-36]. Notch 

signaling is a conserved cell to cell communication necessary for proper development in many 

organisms.  Notch signaling has been implicated in the development of embryogenesis, the 

nervous system, the cardiovascular system, and the endocrine system [11, 34, 37, 38].   In 

humans, for instance, a mutation in NOTCH1 causes T-cell acute lymphoblastic leukemia [39].  

Proteins of the HES family have three structural domains: bHLH, Orange, and WRPW.  

The bHLH domain contains a highly conserved proline residue that is typically absent in other 

members of the bHLH family.  The Orange domain consists of two amphipathic helices and 

regulates the selection of bHLH heterodimer partners [11, 35].  For example, the Orange domain 

in Xenopus is required for heterodimerization of XHRT1 with Xhairy2b [40].  The WRPW 

domain is found at the C-terminal end of the protein and is required for repression of 

transcription.  This domain consists of four amino acids Trp-Arg-Pro-Trp that mediates 

degradation of its own protein.  For instance, WRPW recruits Groucho to actively repress 

transcription [41, 42].  
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Even though HES proteins are critical for normal function and play central roles in 

embryogenesis by maintaining progenitor cells in an undifferentiated state [11], little is known 

about how they work.  HES mutations have been associated with lung and breast cancer in 

mammals [43, 44]  and oocyte death [29]. 

1.4  REF-1 family proteins  

The members of the REF-1 family in C. elegans, like the HES family, are also a direct 

target of the Notch signaling [45] , but they also act in Notch-independent functions [46].  Both 

families share a sequence similarity at the bHLH domain[2], and they regulate a variety of target 

genes that influence embryo development.  Therefore, the REF-1 family members are considered 

functional homologs of the HES family. 

Unlike other bHLH members, the REF-1 family proteins are distinguished by the 

presence of two basic helix-loop helix domains instead of one [2], and unlike the HES proteins, 

REF-1 proteins do not have a conserved Orange domain [47].   The six members of the REF-1 

family are REF-1(HLH-24), HLH-25, HLH-26, HLH-27, HLH-28 and HLH-29.   The REF-1 

family also lacks the WRPW domain, but at the C-terminal of each member has a slightly 

different pentapeptide repeat sequence:  REF-1 has FRPWE; HLH-25 has LDIIN; HLH-26 has 

IDIVG; HLH-27 has VDISN; and HLH-28 and HLH-29 have IDIIG (Figure 1).   These 

pentapeptide repeat sequences have similar net charges to those of the WRPW sequences, and 

the sequences in REF-1 has been shown to interact with the C. elegans Groucho homolog [45]. 

Alignment of bHLH domains from Drosophila HES-6, the C. elegans REF-1 family and 

the C. briggsae showed that the first bHLH domain in the REF-1 family proteins is more closely 

related to each other than to the second bHLH domain, and the first bHLH domain is also 

significantly more similarto the bHLH domain in the Hairy/E(spl)/LIN-22 [2]. Therefore, we 
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postulated that the second bHLH domain in the REF-1 family could functionally replace the 

Orange domain and may act to provide stability during protein-protein interactions.  

 

 

 

 

 

 

 

 

 

 

REF-1 was the first member to be studied. It has been shown that REF-1 regulates HOX 

genes, genes that control the body plan of the embryo; thus making it an important transcription 

factors needed for development during embryogenesis [48].   Mutations to ref-1 affect cell fate 

decisions in different body regions along the C. elegans AP body axis, giving rise to aberrant 

physical phenotypes such as irregular head shapes and multivulva [48]. REF-1 also affects the V 

ray lineage in C. elegans males resulting in a partial transformation of the ray identity from V6 to 

V5 [48, 49]. 

The hlh-28 gene is nearly identical to hlh-29 and their gene products are identical [50].  

Therefore they are usually studied together.   They are expressed in all cells of the early MS and 

Figure 1 Domain Organization of HES and REF-1 family members. 

This figure was adapted from Dawson at el.1995 and Neves et al. 2005. Unlike HES, the REF-1 family 

lacks the Orange domain present in HES. It is postulated that the second basic helix-loop-helix domain 

can functionally substitute for the orange domain.   
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E lineages.  Both of these members are also involved in embryonic development and 

reproduction.  RNAi against hlh-29/hlh-28 affects the embryonic viability, adult egg-laying and 

organismal homeostasis [51].  Also, HLH-29 regulates the ability of oocytes to enter and exit the 

spermatheca, within the IP3 signaling pathway [52]  

 Even though HLH-26 and HLH-27 are known to activate in response to Notch signaling 

during embryogenesis [2], they have not yet been studied extensively. However, hlh-27 and hlh-

25 are almost identical and may work redundantly in the mesoderm and endoderm networks 

in C. elegans [46, 53].  

 HLH-25 is expressed during embryonic development in response to Notch signaling [45], 

in Abp granddaughters (beginning after eight-cell stage) and in four of the EMS granddaughters 

(MSaa, MSap, MSpa,Mspp) [45].  HLH-27 is also expressed in the early MS lineage [46, 53].   

hlh-25 is one of the MED-1 target genes which participates in specifying the mesendoderm [54].  

It has been shown that overexpression of hlh-25 restores muscle differentiation in development 

in a small proportion of embryos with skn-1 and pal-1 mutations [46, 53].   Since the cascade 

controlling muscle development incudes members of the bHLH family, MyoD, myogenin, Myf5, 

and MRF4, it is believed that HLH-25 may be involved in muscle development [46, 53]. 

Using enriched GO annotations, previous studies have shown that HLH-25 DNA binding 

specificities are associated with candidate target genes required for cytoskeleton, reproduction, 

cuticle/molting, secretion, cell division, locomotion, signaling, development, and metabolism 

[55].   In preliminary studies from our laboratory, genes identified by gene expression microarray 

analysis of hlh-25 mutants were grouped under regulation of growth, embryonic development 

ending in birth or egg hatching, nematode larval development, positive regulation of growth, 

post-embryonic development, and body morphogenesis.  
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Grove et al  [56] also used protein binding microarray (PBMs) assays to identify the DNA 

binding sequence preferences of the bHLH dimers.  They found that HLH-25 and the other REF-

1 family proteins can bind to DNA as homodimers, and that HLH-25 recognizes five different 

consensus sequences.  Interestingly, the REF-1 family member HLH-29 shared two of the five 

HLH-25 recognition sequences (table 1) [55].  

 

Table 1 DNA Consensus Sequences 

Protein CACGCG CATGCG CATACG CACACG CACGCT 

HLH-25 X X X X X 

HLH-27 X X X   

HLH-29 X X    

 

We compared the target genes identified by the gene expression microarray studies from 

our lab with those identified by PBM.  A number of targets were on both lists.  One target gene 

found on both lists was daf-18, the C. elegans ortholog of PTEN. In humans, PTEN is a tumor 

suppressor in human cancers [26].  Mutations to PTEN have resulted in the development of 

glioblastoma, colon cancer, breast cancer, and prostate cancer [57-60].  PTEN is a phosphatase 

protein involved in the regulation of the cell cycle and prevents cells from growing too rapidly 

by preventing phosphorylation of the Akt/PKB signaling pathway which is responsible for cell 

growth regulation [61-63].  In C. elegans, DAF-18, like PTEN, is a phosphatase protein involved 

in cell regulation.  DAF-18 also prevents phosphorylation of the AKT-1/AKT-2 complex in the 

insulin pathway [64] which plays a role in, development, metabolism, and longevity [65-68]. 
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1.5  Caenorhabditis elegans 

Caenorhabditis elegans (C. elegans) are transparent free-living, non-parasitic 

microscopic nematodes measuring about 1 mm in length as adults.  These round worms live in 

soil environments and feed on bacteria [69-72].   In 

laboratories, C. elegans grow in Petri-dish plates and 

feed on E. coli.  There are two sexes, a self-fertilizing 

hermaphrodite and male.  C. elegans have a short life 

span of roughly one month.  

The C. elegans life cycle is divided into the 

following stages: embryos, four larvae stages: L1, L2, 

L3, L4, and adults (Figure 2).   When these animals 

encounter a hostile environment such as high 

temperatures, little or no food, or crowdedness, they 

can go to an alternate stage called the dauer stage.  During the dauer stage, C. elegans do not age, 

eat or reproduce and their locomotion is reduced.  Surprisingly, worms that encounter this stage 

can live up to four months, four times longer than non-dauer animals.  Morphologically they are 

long, thin, and covered in a thick cuticle.  When dauer-stage animals find a suitable environment 

they resume their normal life cycle and molt directly to an L4 within a few hours [73].  

C. elegans hermaphrodites have a “U” shape gonad. The gonad consists of two ovaries, 

oviducts, spermatheca, and one uterus.  There is a distal end (DTC) of the germline on each side 

of the gonad where the somatic cells are situated (Figure 3).   As these cells move through the 

gonad they go through a series of phases.  Once they reach the loop (bend of the gonad) they are 

surrounded by plasma membrane in preparation for compartmentalization to form oocytes.  Once 

Figure 2 C. elegans Life Cycle at 25°C. 

<http://avery.rutgers.edu/WSSP/StudentS

cholars/project/introduction/worms.html> 
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fertilized, the oocytes undergo meiosis and are pushed to in the uterus, and the eggs are laid after 

approximately thirty divisions.  The fertilized 

egg forms an eggshell that protects it from the 

external environment [69, 72]. If plenty of 

food is present, hermaphrodites who run out 

of sperms may lay an average of 31 

unfertilized eggs per worm [74].  

 

 

1.6 Objective  

Since previous studies suggest that HLH-25 may be critical for embryonic and larval 

development, my objective is to further characterize HLH-25 and to precisely define its role 

during embryonic and larval development.  In order to achieve this objective, the following aims 

were developed: to determine the temporal and spatial expression profile of HLH-25, to identify 

phenotypes of hlh-25 mutants, to define the hlh-25 transcriptional network, and to determine if 

HLH-25 is required for embryonic cell division.  The key challenge in this genetic research is to 

understand how the HLH-25 transcription factor affects the performances of its target genes by 

examining phenotypes caused by hlh-25 mutations.  

  

Figure 3 C. elegans Hermaphrodites 
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2     EXPERIMENTAL METHODS 

 

2.1 Nematodes Strains and Maintenance 

The wild-type strain used in this work was Bristol N2. VC1220 [hlh-25 (ok1710) II.] and 

RB712 (daf-18(ok480) IV.), was received from the Caenorhabditis Genetics Center (CGC).  The 

daf-18 transgenic reporter strain used was FS84 (daf-2(e1370) ; daf-18(mg198); fsEx84(daf-18 

promoter::daf-18 cDNA::unc-54 3’UTR 20ng/ul + daf-18 promoter::GFP::unc-54 3’UTR 

20ng/ul (in pPD95.75) + pRF4 100ng/ul) kindly provided by Dr. Florence Solari  from Claude 

Bernard University Lyon from the European Molecular Biology Laboratory. IC748, quIS18 

[daf-18 genomic(+)] was provided by Dr. Ian D. Chin-Sang from Queen’s University, Kingston, 

ON Canada. GR1673 (akt-2::GFP; pRF4 (rol-6)) was provided by Dr. Gary Ruvkun from 

Harvard Medical School. 

The hlh-25 transgenic reporter strain used was CMJ3001 (Phlh-25::GFP(A); pRF4 (rol-

6).   Other strains used were CMJ4001 (daf-18 promoter::daf-18 cDNA::unc-54 3’UTR 20ng/ul 

+ daf-18 promoter::GFP::unc-54 3’UTR 20ng/ul (in pPD95.75) + pRF4 100ng/ul; hlh-25 

(ok1710) II.),hlh-25(VC1220); CMJ4004 (Phlh-25::GFP); Pmyo-2::mCherry::unc-54utr), and 

CMJ4003(α-tubulin::GFP; hlh-25 (ok1710) II.) 

Animals were maintained on nematode growth medium (NGM) with OP50 as a food 

source, previously described  [75].   For synchronization, embryos were collected by treatment 

with sodium hypochlorite, as previously described, [76, 77], with the following exceptions.   

Only 500µL of 5M KOH and 1mL of household bleach were added and the worms were shaken 

vigorously for no more than six minutes. 
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2.2 Constructs and Transgenic Lines 

To generate Phlh-25::GFP, 1570 bp upstream of the first ATG of hlh-25 in the coding 

sequence was amplified by PCR (see appendix A for primers) using Phusion
®
 High-Fidelity PCR 

Master Mix.  For the HLH-25 target genes daf-18, vha-1, akt-2, pqn-95, ima-1, imp-2, ntl-4, 

thoc-2, and ran-1, 2,000 bp upstream of the first ATG in the coding sequence was amplified 

using Phusion
®
 High-Fidelity PCR Master Mix.   All PCR was done using the DNA Engine 

Dyand Peltier Thermal Cycler and the products purified using the Qiagen QIAquick PCR 

Purification Kit.  The transgenes were cloned using standard techniques (Figure 4) [78, 79].    

 

 

 

 

 

 

 

 

 

 

Figure 4 Transcription Reporter 

Schematic image of a transgenic DNA construct were the (GFP) gene is under the control 

of the selected genes promoter producing a green fluorescent protein when translated into 

the region were the gene is expressed. Plasmid 1490: pPD95.67 (Fire Vector) 
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2.3 Nematode Transformation 

Microinjection has been previously described [80, 81] .  The Phlh-25::GFP DNA 

construct was microinjected as  a“simple” array and was co-injected with rol-6(su1006) as a 

marker which induces a dominant "roller" phenotype [82] in a 1:1 ratio.  The HLH-25 target in a 

DNA constructs were microinjected directly into the syncytial gonad as “complex” arrays in low 

copy number to prevent transgene silencing [81, 83].   The DNA solution consisted of the 

following components: 100 ng/µL of genomic DNA cut with PvuII, 1ng/µL of linearized 

construct, and 1ng/µL of marker rol-6(su1006).  A PCR product of genomic DNA from 1541bp 

upstream to 770 bp downstream of the hlh-25 coding sequence was co-injected with Pmyo-

2::mCherry. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Microinjection. 

 A) Site for microinjection of the DNA in the cytoplasm of the syncytial gonad. B) 

Sample needle used for microinjection. 
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2.4 Microscopy  

The transgenic worms were exposed to ultra-violet (UV) to analyze their expression and 

position by comparing GFP (green fluorescent protein) and DIC (differential interference 

contrast) images.  Animals were anesthetized with 0.2% levamisole [84], mounted on 2.0% 

agarose pads and imaged using a Nikon Eclipse 90i microscope equipped with a Nikon Coolsnap 

CCD camera.  

2.5 Embryonic Lethality and Unfertilized Oocytes Assay 

Twenty virgin L4 stage animals of each strain were singled out and placed on fresh plates 

every 24 hours.   Embryonic lethality was determined by counting the number of non-hatched 

embryos divided by the total progeny (non-hatched and hatched) and subtracting the number  

from 100% to obtain the lethality percentage.  Embryos that did not hatch after 24 hours were 

scored as dead.   The p-value of lethality was calculated using two-way ANOVA.   The 

unfertilized oocytes average was determined by moving another twenty L4 to a new plate daily 

and counting the unfertilized eggs until death or nineteen days after egg lying was reached, 

whichever ocurred first.   The percentage and p-value was calculated using the Graphpad 

Software Package. 

 

2.6 Life Span Assay 

Assays were conducted at 20°C.   During the egg laying period, these worms were 

transferred every two days to a new fresh NGM plates.   The numbers of surviving, dead and 

missing worms were counted each day.   Animals were scored as dead when they no longer 

responded to the touch of the platinum wire or were censored if missing [85, 86]. The Graphpad 



15 

Software Package was used for statistical analysis and to calculate p-value, means and 

percentiles.  

  

2.7 Dauer Recovery Assay 

In order to promote dauer formation more than 200 embryos were placed on each plate 

containing very little food (10µL OP50) at 27° C for a minimum of 96 hours.  Three day old 

dauers were singled out to a plate with plenty of food (OP50, 75 uL) and moved to 20° C.  Dauer 

recovery was examined by monitoring five characteristics: fat accumulation, pharyngeal 

pumping, visibility of crescent in vulvae, visibility of embryos, and visibility of eggs laid (Figure 

26) [70, 87].  

 

2.8 Mobility Assays 

2.8.1 Locomotion and Thrashing Assay 

Dauer and L4s were used to examine movement.  The locomotion rate on solid media was 

quantitated by counting body bends for one minute in a plate with no food [88].  The thrashing 

rate was obtained by counting each lateral movement made by the worms when swimming in M9 

buffer over a period of one minute [89]. 

 

2.9 Total RNA Isolation 

Embryos, L4, and dauer animals were frozen at −80°C for a minimum of twenty- four 

hours.   Each pellet was resuspended in 100 µL of freshly made lysis buffer containing 0.5% 

SDS, 5% 2-mercaptoethanol, 10 mM EDTA, 10 mM TrisHCl (pH 7.5), and 10 µL of  Proteinase 
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K [(Thermo E0Ø491) (19.2mg/mL)].  The samples were incubated at 55°C shaking at 900 rpm 

for 1 hour.   RNA was extracted using a Quiagen RNeasy Plus Kit and with following the 

protocol from the RNeasy Microhandbook for animal tissue. 

  

2.10 RTqPCR 

 cDNA was synthesized using the high capacity cDNA Reverse Transcription Kit 

(Applied Biosciences catalog #43674966), and following the instructions from the manufacturer. 

cDNA synthesis reactions were performed in 20 µL reaction volumes containing 0.5 µg of total 

RNA.  Reverse transcriptase  PCR assays were performed with Taqman Gene Expression Assays 

(Applied Biosystems) for detection of amplicon, specific for each target gene, using relative 

quantitation against the endogenous control gene pmp-3  [90].  For primer sequences see 

appendix B. 

 

2.11 Strain Crossing  

Fifty hlh-25 young adult hermaphrodites were heat shocked at 35° C for 3 hours and 

singled out in plates to screen for males [91].  Transgenic strains akt-2::GFP, daf-18::GFP, and  

α-tubuline were crossed with hlh-25 animals.  Each plate contained six males and one adult 

hermaphrodite.   To select progeny with the transgene and homozygous deletion of hlh-25, PCR 

was used to amplify the hlh-25 gene using internal primers: Left 5’ 

ACCAAACCGGAGTTCTCAAA 3’; Right 5’ AGAATGGGACATCCCACAAA 3’.   Deletion 

was confirmed by agarose gel electrophoresis. The internal wild-type amplicon is 2,113 bp and 

the deletion size is 1,550 bp. 
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2.12 Live Embryo Imaging 

Gravid adult worms were placed in a drop of M9 

buffer over a glass slide. An incision was made with a 

scalpel (or razor blade) at the vulva to release the eggs, 

(Figure 6).  Vaseline® Petroleum Jelly was applied on the 

edges of a cover slip that was then placed over the glass 

slide containing the embryos to lock moisture in.  Less than 

ten eggs were placed per slide to prevent hypoxia.  A time-lapse recording of epifluorescence 

pictures at time intervals of three minutes was taken to track the first divisions of the embryo 

with 40X or 60X objective [92]. 

 

 

  

Figure 6 Release of embryos 
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3   RESULTS 

 

3.1 Temporal and Spatial expression profile of HLH-25 

Even though it was previously shown that HLH-25 is expressed in response to Notch 

signaling during embryogenesis, its full expression profile was unknown.  As a first step to 

understanding HLH-25 and to determine the full expression of hlh-25 in live animals, we 

generated a transcriptional reporter.  This reporter consisted of the gene encoding the green 

fluorescent protein (GFP) under the control of the hlh-25 promoter. Using DIC imaging and 

epifluorescent microscopy, I observed the transcriptional reporter expression in embryos, larvae, 

including dauer larvae, and adult animals.  According to our microarray analysis, HLH-25 

regulates many important genes needed for development. Thus, I expected to observe expression 

not only in embryos, but also in the larvae stages.  

 

3.1.1 HLH-25 is expressed in embryos 

I examined eggs in utero, immediately after fertilization, or after manual extraction from 

adult hermaphrodites.   I first detected expression of Phlh-25::GFP after the ten-cell stage (Figure 

7).  This result is consistent with previous reported expression after the first embryonic Notch 

signaling event in C. elegans [45].  As the cells continued to divide mitotically, the expression 

expanded to all cells on the outer surface of the embryo.  During normal gastrulation, which 

initiates at the  26-cell stage, wild-type animals progress from the bean stage to the tadpole stage, 

and  precursor cells of the gut, germline, pharynx and body wall muscles and mesoderm migrate 

from the outer surface towards the interior of the embryo through the entry zone. I found that 

hlh-25 expression correlated with migrating cells.   Expression of Phlh-25::GFP during the bean 
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stage was located only on the outer surface of the embryo (figure 7 -8 ); however, during the 

comma stage the expression expanded. When the embryos reached the tadpole stage, I observed 

expression in the entry zone along the ventral side, in part of the anterior where the future buccal 

opening, or mouth, will form, and in the posterior region of the animal, where the future tail will 

form. Interestingly, I detected no embryonic expression immediately prior to hatching, a result 

which suggests that hlh-25 is actively silenced at some stage during embryogenesis.   

 

 

3.1.2 HLH-25 is expressed in larval stages and in adults 

After hatching, if food is available, C. elegans go through four larval stages before 

reaching adulthood.  During the first larval stage, L1, somatic gonad precursors start dividing.  

At the end of L1 stage, five of the eight types of motor neurons are made, one of which is the 

ventral nerve cord (VNC). The second larval stage is L2.  During this stage, the somatic gonad 

precursors continue dividing and give rise to the distal tip cells that are required for gonad 

elongation.  At the third larval stage, L3, the arms of the somatic gonad elongate, the 

spermathecae are formed, and sperm production begins.  In the fourth and final larval stage, L4, 

sperm production stops and meiosis in the germline begins.  Animals enter adulthood after 

exiting the L4 stage.   During adulthood, the reproductive system is complete; oocytes are made 

and reproduction commences.  I examined synchronized cultures of C. elegans hermaphrodites 

through all of the larval stages, and in adults, to characterize hlh-25 expression.  I did not detect 

expression from the Phlh-25::GFP reporter in L1 stage animals.  However, during the L2, L3, 

and L4 stages, I observed expression in unidentified head and tail neurons, and in head and body-

wall muscles (figure 9).   I also detected expression in the midbody mechanosensory PDE 

neuron.  In adults, I continued to detect expression in the head and tail neurons, but not in the 
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head or body-wall muscles (figure 10).  I also detected weak expression in the ventral nerve cord 

of some adults.  

 

3.1.3 HLH-25 is expressed in the dauer stage 

The dauer stage is an alternative stage that promotes survival when C. elegans encounter 

a hostile environment.  During this stage, animals grow a thicker cuticle that seals the buccal 

cavity, slows metabolism and inhibits reproduction.  To complete the expression profile of HLH-

25, I also examined Phlh-25::GFP expression during the dauer stage.  I detected strong Phlh-

25::GFP expression in the head neurons and VNC of every dauer animal, and occasionally, in 

the  synaptic branches between VNC and the dorsal nerve cord (Figure 11-12).   Because the 

transgene expression was mosaic and highly variable, I was unable to identify which cell bodies 

of the VNC were expressing the reporter.   

 

3.2 Phenotypes of hlh-25 animals 

To further characterize HLH-25, I sought to identify phenotypes of hlh-25 animals. 

Because hlh-25 is expressed in embryos, neurons and muscles, I believe these results are 

indicative of a possible role for HLH-25 in directing embryogenesis and body movement. Thus, I 

examined C. elegans embryonic lethality, quantity of eggs laid, and movement. 

 

3.2.1 HLH-25 affects embryogenesis 

Embryos take approximately ten hours to develop following fertilization, going through a 

series of division and folding before hatching.  hlh-25 is expressed in the embryos in response to 

Notch signaling, and expression continues throughout embryogenesis but ceases just before 
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hatching.  As a measure of the requirement for HLH-25 during embryogenesis, I examined 

embryonic viability in mutant and wild-type animals.   

Homozygous deletion of hlh-25 gave rise to embryonic lethality.  I observed 54% 

lethality in hlh-25 mutant embryos versus 14% embryo lethality in wild types embryos (Figure 

13a), representing a 3.79 fold increase (P-value = 6.32E-14).  These results correlate with a 

previous genome-wide RNAi study which showed a 40% embryonic lethality for animals 

subjected to hlh-25 RNAi.   Deletion of hlh-25 also resulted in a reduced quantity of eggs laid. 

hlh-25 animals laid a total average of 208 eggs, while wild-type animals laid an average of  249 

(P-value = 0.0565) (Figure 13b).  

 

3.2.2 hlh-25 animals have an increased unfertilized egg laying behavior 

Wild-type C. elegans hermaphrodites produce approximately 300 sperm between L3 and 

L4 stages.   As the animals progress through L4, they cease sperm production and switch to 

producing oocytes at late L4/early adulthood.  As adults, fertilization is initiated when mature 

oocytes are fertilized by sperm that reside in the spermatheca.  Normally at 20°C, the onset of 

fertilization and egg production begins at approximately 65 hours after hatching (~ 3days) and 

continues until approximately 128 hours after hatching (~5.5 days) [93, 94].   Since oocyte 

production is not the limiting factor, wild-type hermaphrodites that run out of sperm lay some 

unfertilized oocytes, usually at day six.  If plenty of food is present hermaphrodites may lay an 

average of 31 unfertilized eggs per worm
.
  

I found that hlh-25 animals lay more unfertilized oocytes than wild-type animals, and that 

the production of unfertilized oocytes extended much further than in wild-type animals.   As 

shown in figure 14, both wild-type and hlh-25 animals begin to lay unfertilized oocytes as early 
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as the second day of egg laying; however, hlh-25 animals lay significantly more unfertilized 

oocytes each day.   hlh-25 animals  laid an average of 133unfertilized oocytes  from egg laying 

day 2 (4 days after hatching) to egg laying day 13 (15 days after hatching), while wild-type 

animals laid an average of 27 unfertilized oocytes and stopped laying unfertilized eggs 

completely by egg laying day 8 (10 days after hatching).  

 

3.2.3 hlh-25 animals have a slower movement rate 

Because the HLH-25 expression pattern is seen in both neurons and in muscles, and 

because a number of the genes predicted to be HLH-25 targets are associated with GO term 

locomotion, I hypothesized that that HLH-25 could be required for normal body movement.  

hlh-25 animals have a normal sinusoidal movement, and their forward and reversal 

movement on solid media appears normal [95].   Although I did not assay reversal frequency, 

hlh-25 animals appear to have the same backing up phenotype as wild-type animals.  Therefore, I 

used two different assays to detect more subtle movement defects in hlh-25 animals at dauer and 

L4 stages: locomotion on solid media and thrashing in M9 solution. In the locomotion assay, I 

counted the number of body bends per minute, and in the thrashing assay, I counted each lateral 

movement over a period of one minute. The results for both assays were generally the same: hlh-

25 animals moved slower than wild type animals at both developmental stages.   Specifically, the 

hlh-25 L4 stage and dauer stage animals moved with an average of 28 and 21 fewer body bends-

per-minute than wild-type animals, respectively.  Likewise, hlh-25 animals thrashed with an 

average of 23 and 31 fewer bends per minute than wild-type animals at the L4 stage and the 

dauer stage, respectively (Figure 15-16).  
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3.2.4 HLH-25 affects organization and formation of the germline  

The hermaphroditic reproductive system consists of two, U-shaped gonad arms 

connected to a uterus and one spermatheca on each side (figure 3).  In wild type animals, oocyte 

production starts in the distal tip of the gonad arm and continues throughout the syncytial 

section, where the multinucleated mass of cytoplasm has not separated into individual cells.  In 

the syncytial section, the germline nuclei go through mitosis and meiosis while being surrounded 

by the cytoplasmic membrane. Oocytes start to compartmentalize when they reach the loop of 

the gonad, and achieve full compartmentalization as they move closer to the spermatheca.  In 

wild type animals, fully cellularized (i.e. separated into distinct cells) oocytes have the 

appearance of squared compartments with a narrow gap.   

A number of the HLH-25 target genes are known to affect either mitotic or meiotic cell 

division, including ran-1, mex-5, mex-6, and pos-1.   Often animals with mutations in these genes 

show germline abnormalities that include abnormally shaped or endomitotic oocytes.   I 

examined the gonad arms of young adult hermaphrodites and found that in approximately 75% 

of hlh-25 animal; at least one gonad arm contained irregularly shaped oocytes.  After 

compartmentalization, the oocytes were more round or tear-drop in shape, and were not tightly 

packed (Figure 17).  

 

3.2.5 HLH-25 has a role in Early Embryonic Cell Division 

The C. elegans lineage in early embryonic development begins with P0 which divides in 

AB and P1.   AB further divides into Aba and ABp; P1 further divides into EMS and P2.  These 

first divisions during embryogenesis require the presence of some of the HLH-25 targets like 

ran-1, mex-5, mex-6, and pos-1.  However, hlh-25 is not expressed until ABp and EMS 
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granddaughters in response to the Notch signaling [45].  Since C. elegans germline cells have the 

ability to silence transgene arrays [96], I wondered if HLH-25 is needed for early cell divisions 

even though I did not observe expression at early stages.   

To determine whether HLH-25 is required for early cell division, I compared the first five 

embryonic cleavages from wild type and hlh-25 animals using α-tubulin::GFP. Images were 

taken every three minutes to create a time lapse video. In vivo time-lapse imaging of seven 

different embryos reveals that hlh-25 animals have similar first embryonic cleavages to wild 

types (Figure 18).  

 

3.3 HLH-25 transcriptional network 

I used two different approaches to validate the HLH-25 transcriptional network:  reverse 

transcriptase quantitative polymerase chain reaction (RT-qPCR) and transcriptional reporters. 

RT-qPCR allows quantification of mRNA levels in whole animals. Transcriptional reporters 

allow temporal and spatial measurement of the promoter activity in live animals. 

 

3.3.1 Confirmation of HLH-25 target genes by RT-qPCR 

Our previous microarray analysis shows that HLH-25 regulates 634 genes of which 510 

were up-regulated and 124 were down-regulated.  Two of the GO term annotations assigned to 

these genes were “embryonic development ending in birth or egg hatching” and “post-embryonic 

development”.  These results suggest that HLH-25 plays an important role in embryonic and 

nematode larval development. 
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The microarray analysis was done using young adult worms, which may have contained 

developing embryos in their uterus.  Since the microarray analysis included genes necessary for 

embryonic and larval development, I wondered if HLH-25 regulated genes in both embryos and 

in larval/adult animals.  To address this, I monitored the change in RNA levels in embryos and 

L4 stage larvae.  The L4 stage was used to validate the microarray results, while the other stages 

were selected to correlate with the hlh-25 gene expression profile.  For some genes, I also 

measured expression in dauer larvae. I selected 12 genes to validate, and for all 10 of them, in 

the L4 stage expression, they were up-regulated or down-regulated to the same extend as 

indicated by the microarray analysis (Figure 19, table 2).  As described below, the selected genes 

are important during embryogenesis and at other stages in the life cycle. 

The gene ran-1 encodes the C. elegans Ran GTPase ortholog [97] which, among other 

proteins, comprises the Ran GTPase system. The GTPase cycle is known to regulate transport of 

proteins across the nuclear envelope [98, 99], chromosome positioning and nuclear envelope 

assembly [100].  Previous studies have shown that during embryogenesis ran-1 knock-out causes 

improper mitotic spindle formation, irregular chromatin structures, and fission of the pronucleus 

during meiosis [97].  This gene was up-regulated in L4-stage animals, but was down-regulated in 

embryos.  

Genes mex-5, mex-6, and pos-1 encode two CCH-finger proteins that are important for 

the establishment of embryonic polarity [101].  These three genes are maternally transcribed. 

MEX-5 and MEX-6 establish soma/germline asymmetry in the early embryo.  POS-1 is needed 

for fate specification of germ cells, pharynx, and intestine during embryogenesis [102].  These 

three proteins are needed for the first two cell divisions to occur properly [103]. Mutation to any 
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of these genes results in embryonic lethality [77, 103-108].  These three genes were up-regulated 

in L4 stage animals and down-regulated during the embryonic stage. 

The genes spn-4, cpg-2, emb-9, fat-2, sca-1, lin-37, lin-54 are necessary for 

embryogenesis.  Mutations to all of these genes results in embryonic lethality. EMB-9 is 

essential for embryonic morphogenesis, gonad elongation, and for larval development; [109].   

These genes were up-regulated at the L4 stage. spn-4, cpg-2, emb-9, fat-2, sca-1 were down-

regulated during the embryo stage. 

The genes acs-2, mtl-1, and daf-18 are necessary for homeostasis and stress adaptation 

[64, 110, 111].  Mutations to either acs-2 or mtl-1 results in reduced brood size [112, 113].  acs-2 

and mtl-1, were down-regulated in the microarray, but up-regulated  in my RT-qPCR results at 

the L4 stage.  daf-18 was up-regulated at all stages tested. 

 

3.3.2 Confirmation of HLH-25 target genes by Transcriptional Reporters 

As a second step to validate hlh-25 transcriptional network, I generated transcriptional 

reporters for five randomly selected HLH-25 target genes with the goal of establishing their 

expression pattern in the presence and absence of hlh-25.  I used the green fluorescent protein 

gene fused to the promoters of these selected genes to analyze hlh-25 dependent expression in 

live animals.  The genes chosen were selected because they were strongly up-regulated or down-

regulated in hlh-25 animals, according to the gene expression microarray, and because they had 

potential roles in development.   Genes imp-2, ima-1, pqn-95, when mutated, result in embryonic 

lethality [106, 107].   In addition to acting within the insulin signaling pathway, the genes akt-2 

and daf-18 have antagonistic affects on life span [114-116]. 
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Although, I successfully cloned the transgenes Pimp-2::GFP, Pdaf-18::GFP, Pima-

1::GFP, Ppqn-95::GFP, and Pakt-2::GFP, I did not obtain stably transgenic lines. The constructs 

were linearized, blunt ended, and injected as a low copy number to prevent transgene silencing 

[83].   I learned, practiced and successfully injected the constructs into the animals.  As a result, I 

obtained F1 progeny that carried the injection marker and displayed the “roller” phenotype; 

however the injection marker was never transmitted to F2 progeny.  Therefore, I obtained strains 

containing akt2::GFP and daf-18::GFP (fsEx84) through other sources.  Transgenic lines 

carrying akt2::GFP and daf-18::GFP (fsEx84) were kindly provided Dr. Gary Ruvkun from 

Harvard Medical School and Dr. Solari Florence from Claude Bernard University Lyon. 

 To analyze hlh-25 dependent expression of akt-2 and daf-18, I mated hlh-25 males with 

hermaphrodites carrying these constructs.  Homozygous deletion of hlh-25 was verified by PCR.  

I compared the transgene expression in these newly made strains in expression to transgenic 

wild-type animals at larval and adult stages. 

 

3.3.2.1 Validation of akt-2 as a target of HLH-25akt-2::GFP 

As shown in figure 20, akt-2::GFP is expressed in wild-type animals in head and tail 

neurons, the ventral nerve cord, muscles, spermatheca, and in the head posterior bulb.  I did not 

detect expression in the embryos of adult hermaphrodites. In hlh-25 animals, the spatial akt-

2::GFP expression was indistinguishable from the pattern in wild-type animals.  We were not 

able to reliably quantify the GFP levels to determine if there was a detectable difference in the 

level of expression. 

 



28 

3.3.2.2 daf-18 expression increases in the absence of HLH-25 

In wild-type animals, daf-18::GFP expression was first detected at the pretzel stage and 

continued after hatching, throughout adulthood.   The post-embryonic expression was localized 

only to the head neurons (Figure 22).  In hlh-25 animals, both the spatial distribution and the 

level of daf-18::GFP expression increased significantly, and correlated with cells or tissues that 

were found to express the Phlh-25: GFP in the head and tail neurons, muscles throughout the 

body, pharyngeal muscles, spermatheca and ventral nerve cord (Figure 21) .  

 

3.3.3 Genetic validation that daf-18 is a target of HLH-25 

The results presented thus far suggest that HLH-25 transcriptionally represses daf-18.    

Based on these data, I hypothesized that hlh-25 animals would have phenotypes that are similar 

to animals that overexpress daf-18.   Animals with loss of function alleles of daf-18 have shorter 

lifespans and are defective in dauer formation [114, 115].   Likewise, animals that overexpress 

daf-18 have longer lifespans, are more prone to form dauers, and have difficulty exiting the 

dauer stage [65, 117].   Therefore, I tested the lifespan and dauer exit phenotypes of hlh-25 

animals. 

 

 

3.3.4 HLH-25 animals have a longer life span  

I measured the mean life span of wild-type and hlh-25 animals at 20 °C.  As indicated 

in figure 23, hlh-25 animals have a median life span of 19 days, while wild-type animals have a 

life span of 16 days (table 3).  The extended lifespan of hlh-25 animals is similar to the 
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previously reported median lifespan of 17.4 days for daf-18;daf-2 animals expressing an 

extrachromosomal copy of daf-18 [117]  . 

 

3.3.5 HLH-25 is necessary for proper dauer exit timing 

When starvation-induced dauer larvae are placed into favorable growth conditions, they 

take approximately 60 minutes to commit to exit the dauer state at 25° C and about ten hours to 

molt into the L4 stage [87, 118-120].  Within 60 minutes, the first biological sign of dauer exit is 

the increase in fat accumulation or lipophilicity, and pharyngeal pumping starts after 

approximately 3 hours [121].   Between nine and twelve hours after the decision to exit dauer, 

vulva formation commences and is visible as the vulval crescent. Finally, between 12 and 24 

hours, recovering dauers begin to create oocytes and fertilization commences. 

In order to determine if dauer recovery depends on HLH-25 regulation of daf-18- 

expression, I compared the dauer recovery phenotypes of wild type animals with: daf-18 

mutants, animals over-expressing daf-18 (daf-18
GOF

) or hlh-25 animals.   Because deletion of 

hlh-25 increases daf-18 expression, I expected hlh-25 animals and daf-18
GOF

 animals to recover 

similarly.  

Because the time that it takes for dauer to recover varies and depends on their age and the 

environmental factor that caused them to become dauers [87, 118-120],  I induced dauer 

formation under the same conditions for all strains simultaneously, and used three day old dauers 

for the assays. 

In my dauer recovery assay, wild-type animals took an average of 12 hours (80%) to 

reach L4.  As expected, dauer recovery was similar in daf-18 animals but was longer in daf-

18
GOF

 animals.  At 12 hours, 65% of the daf-18 mutants, but only 10% of the daf-18
GOF

 animals, 
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had reached L4.  Interestingly, the dauer recovery timing of the hlh-25 mutant animals was very 

similar to the daf-18
GOF

.  After 12 hours of recovery only 35% of the hlh-25 mutant animals 

reached L4. To rescue the wild type phenotype, I reintroduced hlh-25 into hlh-25 animals (hlh-

25R).  Animals carrying hlh-25 as an extrachromosomal array were able to recover similarly to 

the wild type animals.  They took an average of 12 hours to reach L4 (Figure 24, 26).  

 

3.3.6 DAF-18 does not affect movement 

Although a role for daf-18 in locomotion and movement has not been previously 

described, I wondered if the locomotion defect of hlh-25 animals is dependent on daf-18.  

Therefore, I compared the locomotion and thrashing of daf-18 mutants to wild-type animals as 

described above in section 3.2.3.  Our results showed that daf-18 animals move at a similar rate 

as wild-type animals, and thrash slightly, but not significantly, more than wild-type with an 

average of fifteen more lateral movements than wild type  per minute (Figure 25). 
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B 

Figure 7  Embryonic Expression of Phlh-25::GFP. 

The embryo developmental stage is named on the left.  The entry zone is marked with 

an arrow. The plane of the embryo is marked as A: anterior, P: posterior, D: dorsal, V: 

ventral  
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Figure 8 Embryonic Expression of Phlh-25::GFP. 

This figure represents stills from a time lapse video of Phlh-25::GFP 

expression during progression from bean to comma  stage while still in the 

uterus. 
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  Figure 9 Larvae  Expression of Phlh-25::GFP.. 

Expression of Phlh-25::GFP  is seen (A)in tail neuron, (B-D) head muscles and (D) body muscles 

Larvae stages are specified at the right bottom of each image. Bar marks 20 µm.  

 

D 



34 

Figure 10 Adult  Expression of Phlh-25::GFP. 

HLH-25 expression observed in unidentified head neurons and embryos inside the adult 

hermaphrodite. Bar marks 25 µm.  
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Figure 11 Phlh-25::GFP expression in dauer. 

Expression is seen in the VNC and DNC. This image contains two focal plains of GFP 

expression in the same animal. (B) and F show the dorsal nerve cord; (C and G) show the 

ventral nerve cord. Arrows indicate the synaptic branches between VNC and the dorsal nerve 

cord. 
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Figure 12  Phlh-25::GFP  expression in the dauer head. 
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Figure 13  HLH-25 affects embryogenesis. 

(A) hlh-25 mutants have a 64% embryonic lethality versus a 14% embryo lethality in wild type 

embryos (P-value = 6.32E-14). (B) Deletion of hlh-25 also resulted in a reduced quantity of eggs laid. 

hlh-25 animals laid a total average of 208 eggs, while wild-type animals laid an average of  249 (P-

value = 0.0565). Error bars represent SEM.  
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Figure 14 Unfertilized Egg Laying Behavior of hlh-25 compared to wild-type. 

Day “1” was assigned for when the egg-laying period started. hlh-25 animals  laid an average of  133 

unfertilized oocytes while wild-type animals lay laid an average of 27 unfertilized oocytes. Error bars 

represent SEM 
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  Locomotion Thrashing 

Strain mean stdev P-value mean stdev P-value 

wild-type 71 5.77 - 104 6.55 - 

hlh-25 50 3.90 
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Figure 15 Dauer Mobility Assay 

 Error bars represent SEM. (C) The band near the middle of the box represents the median. 

Outliers are indicated with an asterisk.  
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Locomotion Thrashing 

Strain n mean stdev mean stdev 

wild-type 90 70 8.5 110 5.4 

hlh-25 90 42 13.8 88 11.7 

hlh-25R 90 44 24.2 90 14.0 
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Figure 16  L4 Locomotion and Thrashing  

Error bars represent SEM . (C-D)The band near the middle of the box represents the median. 

Outliers are indicated with an asterisk. 
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Figure 17 hlh-25 depletion causes irregular shape of oocytes 

HLH-25 affects organization and formation of the germline. hlh-25 animals contained fewere 

and irregularly shaped oocytes. The oocyte adjacent to the spermatheca is numbered-1 and 

the one farther away are -2, -3. Scale Bar:100µm 
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Figure 18 Early Embryonic Cell Division Time-lapse video.  

In vivo time-lapse still image of α-tubulin::GFP  (which expresses spindle formation) in wild-

type and hlh-25 embryos. 
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Figure 19 HLH-25 targets expression during L4 stage. 

Graph represents relative gene expression levels. Transcript levels were quantified by RT-

qPCR. Data are expressed as log2 of fold change.  
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Table 2 RTqPCR  Log 2 Comparison of hlh-25 with wild-type 

  Log2 

gene embryo L4 dauers 

mex-5 -0.140859213 0.574520826 - 

mex-6 -0.731609333 0.079969371 - 

mtl-1 -1.438593174 0.56487424 - 

spn-4 -0.755692286 0.947934039 - 

lin-54 - 0.425533103 - 

lin-37 - 1.48913987 - 

ran-1 -0.284879656 0.989225894 -0.558373223 

cpg-2 -1.768954799 2.277367657 -1.591294232 

pos-1 -0.772183582 1.017858268 0.070098511 

emb-9  -0.355788189 0.336756657 0.143902443 

fat-2 -0.087547834 1.718457624 -1.883574631 

sca-1 -0.244550149 1.270412924 -0.167984707 

acs-2 -2.427682984 1.107159331 -1.373822577 

daf-18 1.389777859 1.181618478 0.081026597 
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Figure 20 akt-2::GFP expression. 

akt-2::GFP is expressed in wild-type animals in (A-C) the head and (D-F) the tail 

neurons, the (G-I ) the ventral nerve cord, muscles, spermatheca, and in the (A-C) 

the head posterior bulb.  In hlh-25 animals, the spatial akt-2::GFP expression was 

indistinguishable from the pattern in wild-type animals (pictures not shown).  
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Figure 21 daf-18 expression changes 

In wild-type animals, daf-18::GFP expression was first detected at (A-C) the pretzel 

stage, but in a larvae, the expression was only seen in the head (figure 22 a-c). In the 

absence of HLH-25, not only the expression in embryos increased significantly (D-F), 

but also expression in the the head and tail neuron, muscles throughout the body, 

pharyngeal muscles, spermatheca and ventral nerve cord (G-I).  
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Figure 22 daf-18 head expression changes 

Expression was localized only to the head neurons (A-C), but 

in the absence of HLH-25, the expression increased in the 

head, (D-F). 
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Table 3 Life Span Measurements 

Strain 

  Total # of Animals Median Life Span 

P-value Log-

Rank 

Biological  to Die/or  of All Animals Test compared 

Replicate to be Censored (days) to N2 animals 

wild-type 1 88/13 15   

 

2 90/10 17 

   3 86/12 15   

 
all 264/35 16 

 
     hlh-25 1 93/7 20 < 0.0001 

 

2 93/7 19 0.0046 

  3 96/4 19 < 0.0001 

  all 282/18 19 < 0.0001 

Figure 23 Life span curve of wild-type versus hlh-25. 

Measurement and comparison of life span between the wild type and hlh-25 on solid NGM 

(nematode growth medium) with OP50 E. coli. 

 

wild-type 

hlh-25 
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Table 4 Dauer Recovery 

 
 

wild-

type 
hlh-25 hlh-25R daf18- daf-18

GOF
 

hlh-25 vs 

daf-18
GOF

 

pumping 
median 3 12 3 3 6 12 

p-value 
 

< 0.0001 0.1174 0.3586 < 0.0001 0.0004 

crescent 
median 12 24 12 12 24 24 

p-value 
 

< 0.0001 0.1745 0.9619 < 0.0001 0.0386 
  

Figure 24 Dauer Recovery. 

 Visibility of A) pharyngeal pumping and B) crescent formation during 

dauer recovery was observed and recorded for twenty-four hours. 0 hrs 

marks the time dauers were placed under favorable conditions. 
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Table 5 Mobility Assay   L4 stage   

    Locomotion Thrashing   

Strain n mean stdev P-value mean stdev P-value 

Wild-type 90 70 8.5   110 5.4   

hlh-25 90 42 13.8 <.0001 88 11.7 <.0001  

daf-18- 90 71 18.1  <.0001  125 13.8  <.0001  

hlh-25R 90 44 24.2  <.0001  90 14  <.0001  
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Figure 25 Locomotion Assay 

Error bars represent SEM . (C , D) The band near the middle of the box represents the 

median. Outliers are indicated with an asterisk. 
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Figure 26 Characteristics of Dauer Recovery 

 Representative pictures of dauer recovery characteristics on NGM plates. (A) at “0” hour 

dauers are long, thin and transparent. The first sign of recovery is (B) fat acuumulation in 

the intestines and pharyngeal pumping  [1]  followed  by  (C , D) the crescent formation. 

Once the dauers reach the adult stage (F) embryos are made and laid.  
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4 DISCUSSION 

 

4.1 HLH-25 Functions During Embryogenesis 

The experiments in this research lay a foundation for understanding the role of HLH-25 in 

C. elegans during embryonic and larval development. The key challenge in this genetic research 

was to understand how the HLH-25 transcription factor affects the performances of its target 

genes by examining phenotypes caused by hlh-25 mutations. HLH-25 is actively expressed in 

embryos, larvae and adults. In the absence of hlh-25, animals show a 54% embryonic lethality, a 

reduced brood size, an increased number of unfertilized eggs, a slower movement rate, a longer 

life span, and a longer dauer recovery. The results presented offer excellent starting points to 

further characterize HLH-25, and  raised some questions that can be further examined. 

4.1.1 Is hlh-25 a maternal effect gene? 

Maternal effects genes play important roles in the early processes of embryonic 

development of different organisms, such as sea urchins, nematodes, fruit flies, zebrafish, frogs 

and mice.  Maternally synthesized proteins or mRNAs are placed in the oocytes and sometime 

after fertilization, those mRNAs are expressed in the developing embryo, or zygote.  This event 

is known as the maternal to zygotic transition (MZT) [122].   During this period, maternal 

transcripts are eliminated and the zygotic genome becomes transcriptionally activate [123].  The 

timing of MZTs differs from cell to cell, which reflects the development of distinct cell types and 

causes the maternal transcripts  to overlap with some of the early zygotic transcripts [123].   

During Drosophila embryogenesis, maternal mRNAs, such as  hunchback, bicoid, and 

nanos are required for early patterning of the embryo [9, 124-126].  Firstly, maternal hunchback 

is distributed evenly throughout the egg.  Maternal nanos mRNAs and bicoid mRNAs are 
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localized to the posterior and anterior pole of the mature oocyte, respectively [127].  The nanos 

protein inactivates hunchback, preventing its translation in the posterior.  Bicoid activates 

transcription of the hunchback gene which creates a concentration gradient of the hunchback 

expression along the embryo.  Hunchback activates or represses several genes depending on its 

concentration.  For instance, hunchback activates and represses kruppel [127, 128] .  Kruppel is 

necessary for differentiation, growth, and development of the embryo.  At high concentrations, 

hunchback represses kruppel, and at lower concentrations hunchback activates kruppel [128].   

The maternal effect hunchback, along with other maternal effect genes, initiates the 

embryo pattern.  Zygotic hunchback transcription creates a gradient of the hunchback protein 

which regulates genes necessary for embryo development [122]. Hunchback is necessary for 

proper morphology [122, 129-132]. Drosophila with hunchback mutations lack mouthparts and 

thorax structures [122, 129-132]. 

Different methods have been utilized to identify maternal genes in Drosophila, one of 

which is to isolate pole cells, progenitors of the germ-line stem cells, from blastodermal embryos 

by fluorescence-activated cell sorting (FACS) and then use these isolated cells in a microarray 

analysis [133, 134].  Another method is to use flow cytometry to sort GFP-labeled pole cells then 

use multidimensional protein identification technology (MuDPIT) [134-137] to identify proteins 

in both the GFP-positive and GFP-negative cells. Moreover, another method is to observe  

mRNA molecule localization by using  fluorescent labeled probes [138]. 

In C. elegans, oocytes are loaded with a number of maternally synthesized proteins and 

mRNAs that are necessary for directing the first mitotic divisions.   These include mex-5, mex-6, 

and pos-1 mRNA, all of which are required to establish the overall polarity of the embryo, and 

ran-1 mRNA, which is necessary for the first embryonic division.  Mutation of ran-1 disrupts 
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formation of the mitotic spindle and causes aberrant chromatin localization [97].  This raises the 

question about whether hlh-25 is also a maternal effect gene.  

Three observations from our experiments lead us to suggest that HLH-25 is not a 

maternal effect gene.  First, movies show that the early embryonic divisions of hlh-25 animals 

appear normal.  Second, hlh-25 is expressed in early embryos in response to Notch signaling in 

the Abp granddaughters (beginning after the eight-cell stage) and in four of the EMS 

granddaughters (MSaa, MSap, MSpa,Mspp).  The maternal-to-zygotic transition (MZT) begins 

after the second cleavage (4 Cells) [123, 139], so HLH-25 is likely just becoming active after the 

Notch-dependent induction of transcription.  Third, hlh-25 expression has not been detected in 

the somatic gonad, the intestine, or the germline of adult animals, though it is possible that our 

transgene does not reflect the full expression pattern of the gene.  In future studies to test more 

directly whether hlh-25 is or not a maternal effect gene, methods described above should be 

used. 

 

4.2 Why is the morphology of  oocytes irregular in hlh-25 animals? Why do hlh-25 animals 

have a high embryonic lethality, increased quantity of unfertilized eggs and reduced 

brood size? 

We have established that different HLH-25 target genes play different roles during 

embryogenesis.  Some of these genes, such as cpg-2 and H02I12.5, are necessary during oocyte 

formation [139], while others  are necessary after fertilization, such as ran-1. When these 

important genes are mutated or down-regulated (as they are in hlh-25 animals), embryos 

encounter different problems such as irregular oocyte formation and/or embryonic lethality.  This 

may explain why hlh-25 animals have irregular shaped oocytes, high embryonic lethality, an 

increased in unfertilized oocytes and reduced brood size.  
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hlh-25 embryos that die do so prior to the  tadpole stage; however, it is unknown exactly 

at what cell stage embryos stop dividing and die.  Using Hoechst dye blue fluorescent stain 

(DAPI) to stain DNA in the nucleus of the embryos could be a method for future studies to 

confirm at which cell stage embryos arrest.  Also, since overexpression of PTEN/daf-18 causes 

apoptosis of cells [140], future studies should use the TUNEL (Terminal deoxynucleotidyl 

transferase  dUTP nick end labeling) assay to detect DNA fragmentation from apoptotic cells in 

hlh-25 unhatched embryos. Furthermore, strains co-expressing fluorescent markers that target the 

plasma membrane (GFP fusion that binds PI4, 5P2) and the chromosomes (mCherry-histone 

H2B) to observe plasma membrane and chromosome, respectively, should be used as a method to 

further study the gonad architecture in hlh-25 animals. 

 

4.3 HLH-25 Function in Movement 

4.3.1 Are hlh-25 animals UNC variants? 

C. elegans move in a wave-like motion that is described as sinusoidal movement [141].  

This movement pattern is determined by antagonist movement of the ventral and dorsal body 

muscles, and it is controlled by distinct classes of motorneurons [142].  Some of these neurons 

form neuromuscular junctions with the ventral and dorsal body muscles, one of which is the 

ventral nerve cord (VNC) [142].  The expression of hlh-25 in the ventral nerve cord led us to 

examine hlh-25 animals for locomotion defects. 

Even though hlh-25 animals appear to have a sinusoidal movement, they move at a 

slower rate than wild-types.  However, this phenotype could not be rescued. The failure to rescue 

the phenotype by re-introducing the transgene suggests that HLH-25 does not function in 
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locomotion.  There are two other alternative possibilities.  First, the hlh-25 deletion was created 

using EMS (Ethyl methanesulfonate), which produces random mutations in the genetic material. 

Although, hlh-25 animals were extensively outcrossed in order to reduce genetic abnormalities, 

there could be a mutation in a gene located close to hlh-25 and on the same chromosome that is 

necessary for movement. Second,  it is possible that the transgene is not expressed at high 

enough levels in the cells to rescue movement.  Future studies can address these possibilities, by 

testing additional transgenic lines, which may express hlh-25 in different cells,  for the ability to 

rescue the movement phenotype. 

 

4.4 Stage Dependent Regulation by HLH-25 

4.4.1 Does HLH-25 act as both, a transcriptional activator and a transcriptional repressor? 

Generally, transcription factors are characterized by their mechanism of transcriptional 

regulation.  Transcription factors typically act to either repress or activate transcription: many 

may activate one group of genes while and to repress a different group of genes [143, 144] .  

Importantly, only a few transcription factors are known to act both as an activator and as a 

repressor of the same gene.  For instance, Mcml, a yeast transcription factor, affects both 

activation and repression of α-specific genes [145]  in yeast mating-type switching.  In 

Arabidopsis, the homeodomain-leucine zipper ATHB2 and the basic helix–loop–helix (bHLH) 

PIL1 transcription factor, activate genes implicated in the elongation response provoked by 

neighbor shade, and repress the same genes when neighbor shade  is no longer detected [146, 

147].   

Our results show that in C. elegans a number of the genes that are activated by HLH-25 

during embryogenesis are repressed by HLH-25 in during L4 stage.  In order to attempt to 
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explain why hlh-25 activates and represses some of its target genes but only represses  daf-18, I 

looked for the hlh-25 binding sites within 2000 base pairs upstream of the ATG start codon of 

the target genes previously validated by RTqPCR.  As explained in section 1.3, HLH-25 

recognizes five different consensus sequences.  Genes cpg-2 and ima-1, have three of the five 

HLH-25 consensus sequence binding site [55].  Genes ran-1, pos-1, imp-2, pqn-95, acs-2 and 

daf-18 only have one of the five HLH-25 consensus sequence binding sites (Table 5) [55].  Even 

though HLH-25 both activates and represses acs-2 and only represses daf-18, these genes  share 

the same HLH-25 consensus sequence binding site, “CACACG”.   This result raises the question 

of whether HLH-25 regulates gene expression in a stage-dependent manner. To examine this, 

future studies should prepare microarrays comparing wild-types with hlh-25 mutants at all 

stages.      

 Table 5 Location of the HLH-25 binding sites 

Gene 
Consensus 

Sequence 

Location 

Upstream of the 

ATG 

Gene 
Consensus 

Sequence 

Location 

Upstream of the 

ATG 

cpg-2 

CATACG -129 daf-18 CACACG -468 

CACACG -608 
lin-34 

CATGCG -1694 

CATGCG -1614 CACGCT -1533 

ima-1 

CACGCG -264 mtl-1 CACACG -398 

CATGCG -311 pqn-95 CATGCG -537 

CATACG -991 imp-2 CATACG -1512 

pos-1 CACGCT -636 mex-5 none - 

ran-1 CACGCT -1948 mex-6 none - 

sca-1 none - spn-4 CACGCT -415 

emb-9 none - acs-2 CACACG -281 
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4.5 HLH-25 links Notch signaling to the PTEN pathway. 

  

DAF-18, in C. elegans, is the ortholog of the human tumor suppressor PTEN (phosphatase 

and tensin homolog), and HLH-25 is an ortholog of Hairy/Enhancer of Split (HES).  Both of 

them are important for development.  PTEN, helps regulate the cell cycle and cell division 

through the  PI3-kinase pathway [26, 148, 149] by dephosphorylating PIP3 

(phosphatidylinositol-3,4,5-trisphosphate) [150].  Either PTEN gain of function or loss of 

function causes irregularities in development.   For instance, mutations to PTEN have been 

associated with the autosomal-dominant disorder Cowdens-Disease and with different types of 

cancer such as prostate cancer and malignant glioma.  Overexpression of PTEN induces 

apoptosis and cell cycle arrest. For instance, overexpression of PTEN in MCF-7 breast cancer 

cells, causes G1 cell arrest and cell death [140].  Furthermore, HES proteins are important 

regulators of a variety of genes that influence cell proliferation and differentiation in embryo 

development [38].  HES mutations have been associated with lung and breast cancer in mammals 

[43, 44]  and with oocyte death [29]. 

HES and HLH-25 are direct targets of Notch signaling [34-36, 45].  Our findings show that 

daf-18 expression is regulated by HLH-25, providing a link between Notch signaling and PTEN 

mediated control of cell proliferation.  Future studies in the lab can further exploit the 

relationship between HLH-25 and daf-18 by analyzing the expression of daf-18::GFP in animals 

lacking the Notch signaling, LIN-12/Notch. 
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Figure 27 Role comparisons between humans and C. elegans. 

This diagram is based on previous experiments and the one presented here. In humans, HES 

is activated by Notch signaling. HES represses PTEN. PTEN prevents AKT complex 

phosphorylation allowing mTOR to enter the nucleus to control cell cycle. Similarly, in C. 

elegans, HLH-25 is activated by Notch signaling. HLH-25 represses daf-18/PTEN. daf-

18/PTEN prevents AKT complex phosphorylation allowing DAF-16 to enter the nucleus.  
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Appendix B  

 

 

 Table 7 RTqPCR Probes 

Gene Probe Gene Probe Gene Probe 

cpg-2 Ce02448570_gl acs-2 Ce024861991_gl lin-37 Ce02448521 

pos-1 Ce02478511_g1 mex-6 Ce02437281 lin-54 Ce02466796 

ran-1 Ce02452473_gl daf-18 Ce024851888_ml spn-4 Ce024716594gl 

pmp-3 Ce02485188_ml mex-5 Ce02466891 fat-2 Ce02466860_ml 

sca-1 Ce02452547_gl mtl-1 Ce0255141si   
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