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ABSTRACT 

Chronic exposure of heavy metals is highly correlated with the epidemic of degenerative 

disease, nephrotoxicity, cancers and aging, while the acute response of cells to the same heavy 

metals provides some nuanced insights into how cells are able to handle environmental insults, 

and perhaps characterize specific triggers of the process, itself. Some heavy metals, such as 

copper, trigger an immediate accumulation of reactive oxygen species (ROS), which impair vital 

cellular functions by oxidative stresses; which can lead to the onset of programmed cell death, or 

apoptosis, which becomes an inevitable fate once the damage is too disseminative to be 

recovered. Other heavy metals, such as cadmium, appear to trigger similar apoptotic responses in 

the cell –even before ROS increases to unmanageable levels. In either instance, however, before 

undergoing apoptosis, there are two cellular defensive mechanisms that are able to eliminate the 

metal-induced oxidative stresses: 1) the neutralization of anti-oxidants, and 2) the removal of the 



harmful substances through a series of self-cleaning mechanisms. We have used Saccharomyces 

cerevisiae, or baker’s yeast, as a model organism to demonstrate the response of cells to the 

presence of heavy metals. In so doing, we highlight pertinent aspects of the metabolic 

transcriptome response of these unicellular organisms to the presence of these metals, such as 

changes in expression of genes involved in the pentose phosphate pathway (PPP), which 

facilitates the reduction of oxidative glutathione, or induction of the genes most commonly 

associated with autophagy. These findings serve to indicate the protective mechanisms that are 

triggered upon metal exposures in yeast. Curiously, we also discovered that the autophagic 

response may be duplicitous, in that while the autophagic process can be cyto-protective it can 

also enhance the self-destructive mechanisms of the apoptotic response, indeed it is appears to be 

a requisite part of that response.  Whether or not the cells respond to the cellular stress by 

autophagy or apoptosis appears to be “decided” by whether or not a full-blown autophagic 

response to cellular stressors (which can be independently induced by the drug, rapamycin) is 

initiated before the same autophagic process is able to trigger activation of a caspase-induced 

apoptosis. In addition, in order to monitor the autophagic process more carefully, we have 

developed a cytometric methodology to assess the autophagy flow, that is less labor-intensive 

and more dynamic than the traditional Western blot-based method.  In so doing we have been 

able to decipher the factors of cell fate decision with heavy metal-induced oxidative stress in S. 

cerevisiae.  
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GENERAL INTRODUCTION 

 

Why study heavy metal toxicity? 

Heavy metals are widely utilized in society to sustain some of the living standards of the 

modern world. The mining and production of heavy metals and their derivatives are being 

increased annually to satisfy downstream electrochemistry industries (1). Unfortunately, 

inadequate regulation of the recycling programs have led to a number of accidental, heavy metal 

exposures that have given rise to major environmental issues that ultimately threaten public 

health (2, 3). The long-term exposure to heavy metals has been shown to be concordant with 

several cancers, nervous disorders and chronic affections (4-7). One metal in particular, 

Cadmium, has resulted in one of the most infamous pandemics, Itai-Itai (pain-pain) disease, in 

Japan back in 1945. The release of cadmium from the zinc mining activity to Jinzu River caused 

the epidemic for the people who consumed the water (8). The disease is named by the symptom 

of patients who suffered from the degeneration of bones and joints, and the kidney failure, or 

nephrotoxicity, is commonly found in the last phase of disease progress. Another heavy metal, 

copper, is an essential trace element in organisms. Several Cu-containing metalloproteins 

participate in vital functions such as hemocyanins, plastocyanin or ceruloplasmin, which carries 

oxygen in the blood of most molluscs, serves as an electron transporter in photosynthesis in 

plants, or facilitates the iron metabolism in humans. Chronic copper toxicity is rarely found since 

copper is metabolized by the liver and excreted via bile in healthy individuals. However, patients 

with Wilson’s Disease preserve recessive mutation of ATP7B, which gives rise to a defect in 

copper transportation from liver to the bloodstream. As a result, the excess copper is 

accumulated in the liver and causes the oxidative stress in hepatocytes (9). The reactive copper 
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leads to a disease state by attacking DNA and epigenetic molecules through ROS resulting from 

Fenton reaction (10). Moreover, the recent report has suggested that copper impairs the 

homeostasis of β-amyloid peptide (Aβ) in mice brain tissue (11). In aging mice, the presence of 

copper in brain capillary is associated with the down regulation of lipoprotein receptor-related 

protein 1 (LPR1), a β-amyloid peptide transporter. As a result, β-amyloid peptide is accumulated 

in brain tissue, and the progression of AD occurs. The conclusion is further confirmed by 

showing younger mice exhibit the same symptoms as elder ones by dietary copper exposure 

through drinking water. Therefore, any understanding of the mechanisms by which cells respond 

to presence of this heavy metal will hopefully highlight some of the specific dangers of this 

metal and provide some insight in to strategies for its remediation.  

 

Heavy metal-induced apoptosis results from ROS accumulation 

Build up of heavy metals in the cell results in the accumulation of reactive oxygen 

species (ROS), which causes severe damage to a number of cellular components such as lipids, 

proteins and genetic materials that are all susceptible to oxidative stresses. Redox-active heavy 

metals such as copper (Cu), chromium (Cr) and iron (Fe) directly generate hydroxyl radical (OH-

) form the less reactive species such as peroxide (H2O2) and superoxide (O2
-) through Fenton’s 

reaction (12), while redox-inactive heavy metals such as cadmium (Cd), lead (Pb) and mercury 

(Hg) accumulate ROS by either impairing cellular antioxidant defenses (13, 14) or by replacing 

the redox-active core in catalytic enzymes (15). As a result of ROS-causing damage, cells 

undergo the program cell death, so-called apoptosis, in order to restrain the damage which may 

threaten the health of hosts. Apoptosis, or programmed cell death (PCD), plays an important role 

in the clearance of unwanted cells.  This cellular suicide pathway can be triggered when cells 
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suffer several irreversible damaging responses, like viral infections (16), or genetic retardations 

(17). This process is beneficial for multicellular hosts in that it helps to prevent the spread of 

toxic agents and cellular signals that might trigger an increased dispersion of the cellular 

response to neigbouring cells, and thus limit the response to a localized area. Apoptosis is an 

irreversible and tightly-controlled mechanism with a set of proteins participating in this process, 

and the major part is known to be involved in the redox or energy generation pathways (18, 19). 

(Fig. 1)  

 

Heavy metal-induced response is acute (and lethal to a subset of cells in a population of S. 

cerevisiae 

No matter whether treated by redox-active or inactive metals, the effect of exposure is 

acute for S. cerevisiae. The consequence of heavy metal exposure is dichotomous. Overall, in the 

survival scenario, the oxidative-defendant pathway is promptly deployed: The transcriptome of 

pentose phosphate pathway instantly reacts to the heavy metal-induced oxidative stress by 

inducing the expression of Gnd1p and Zwf1p, two key enzymes reducing NADPH from NADP+ 

(Fig. 2A and B). NADPH is further utilized to regenerate reduced glutathione (GSH) from 

oxidized glutathione (GSSG), which is the most crucial antioxidant pool apart from the 

superoxide dismutase (SOD) system in cells (20). After one hour metal exposure, the 

incremental level of GSH indicates the acute response to against oxidative stress in S. cerevisiae 

(Fig. 2C). In contrast, the death scenario can be initiated within an hour: the alteration of cell 

death and apoptosis-associated transcriptome, YCA1 for instance, can be observed within 30 

minutes after treatment (Fig. 3), and the typical character of apoptosis, such as membrane  
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Figure 1: Stress-causing program cell death in yeast 

Various internal and external stresses result in the generation of ROS, following by the activation 
of Yca1, which leads to the increasing permeability of mitochondrial membrane. As a result, 
cytochrome c is released and apoptosis is triggered (20). 
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Figure 2: Biosynthesis of reduced glutathione (GSH) and its corresponding role in against 
oxidative stress. 
 
 (A) The pentose phosphate pathway (yellow shaded) is one of the major resources of NAPDH 
generation. Two key enzymes, Zwf1p and Gnd1p, contribute to the reduction of NADPH from 
NADP. (B) NADPH is further utilized to reduce glutathione from its oxidative form. (C) 
Reduced glutathione serves as a major anti-oxidant to against ROS stresses. Reduced glutathione 
(GSH) was induced upon Cd-induced oxidative stresses. S. cerevisiae wild-type 30 μM Cd for 
various time periods and assayed for cellular concentration of reduced (blue bar) and oxidative 
(red bar) glutathione. 
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(A)                                                 (B) 

 

 

 

(C) 

 

Figure 3: YCA1, a yeast caspase, is induced upon cadmium and chromium treatments.  

The RT-PCR result of YCA1 with 0.5mM chromium-exposed (A) and 30μM cadmium-exposed 
(B) yeast cell. β-actin was served as the internal control. The quantification results are shown in 
Panel C. 
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disintegrity, ROS accumulation, DNA fragmentation, mitochondria hyperpolarization and 

metacaspase activation, can be observed after one hour exposure following by three hours post-

incubation (21). Conclusively, yeast cells are endued with a responsive mechanism to adapt 

themselves to the metal-induced stress. Meanwhile, the alternative script has been setup for the 

fate that the adaption has failed. 

 

Apoptosis sustains the long-term survival in unicellular yeast 

The potential benefits of apoptosis in multicellular organisms are quite diverse, as cells 

which undergo this form of programmed cellular demise limit the spread of this somewhat 

absolute cellular response to those cells that have been triggered to respond. The benefits of the 

response, however, to cells within a population of single-celled organisms, such as S. cerevisiae, 

are less obvious; tempting researchers to speculate on the more abstract implications of 

“altruism” in the natural world (22). Even so, the beneficial consequences for the survival of a 

population of yeast when defined group of cells are able to induce an apoptotic response have 

been suggested.  By way of example, while the population is extending, the ammonia gradient is 

established with highest concentration in the center of colony where the oldest cells clustered. 

The elder cells undergo apoptosis and are lysed in order to provide the nutrients for the 

peripheral population, where younger cells stay, to survive (23). The dead-zone is more 

widespread in colonies with sok2Δ mutants, which are not able to generate ammonia gradients. 

(24). Another example has been shown by S. cerevisiae yca1Δ mutant with no caspase-3 like 

activity to trigger apoptosis. The yca1Δ population has longer life-span since it is non-apoptotic. 

However, the survivors lose the ability to proliferate, and eventually, the entire yca1Δ population 

becomes extinct. Moreover, through the long-term competition assay, the population size of 
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wild-type overwhelms that of the yca1Δ mutant, indicating that in the unicellular yeast 

preserving apoptotic potential provides an advantage in long-term for their population to revive 

(25). In an ironic twist, Yca1p has also been revealed as a positive survival factor that is able to 

regulate proteostasis in the cell by controlling the level of protein aggregation (26). S. cerevisiae 

yca1Δ expresses more stress-related proteins and apparatus such as Hsp70 family chaperone, 

Hsp12 and Hsp104 protein, as well as the enlargement of autophagic bodies even in the absence 

of any cellular stressors (27). Besides, yca1Δ mutants accumulate more protein aggregates, 

which indicate that protein “quality assurance” mechanisms within these cells has been 

compromised (27). Furthermore, apoptosis facilitates the sustainability of cells within a 

population by eliminating potentially defective organisms, which are unable to successfully 

mate, as mating negatively influences the onset of apoptosis (28). Apoptosis also serves as a 

passive tool in competition between strains. About one-quarter of S. cerevisiae strains harvest 

cytotoxin K1, K2 and K28 encoded by double strand RNA viruses (29), while they themselves 

are resistant to the effects of such toxins (30). During competition, these “killer yeast” release the 

cytotoxins in to the environment, which trigger apoptotic cascades in their “captives” and lead to 

their ultimate demise (31). Overall, apoptosis facilitates the maintenance of a population of cells 

at the expense of individual cells by providing a mechanism to eliminate defective or severely 

damaged cells from within the population (32), and effectively provides an intrinsic mechanism 

for  “the survival of fittest” in a unicellular world.  

 

Yeast as a model system to study cellular responses upon heavy metal exposure 

Saccharomyces cerevisiae, also known as the budding yeast, is chosen as a model 

organism in our study for the advantages of not only being easy to manipulate whereas the 
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isogenic mutant library is available, but also the conserved mechanisms with higher eukaryotes, 

such as humans. This unicellular eukaryote has been well-studied, resulting in the availability of 

whole genome and proteome annotations (33). Most importantly, with respect to this study, a 

number of similarities between the apoptotic responses of budding yeast and higher eukaryotes 

have been reported (18), with the caspase orthologues in yeast being able to contribute to an 

apoptotic response pathway that is similar to that found in higher organisms (18). As such, the 

yeast model has been utilized to dissect the role of mitochondrial quality control associated with 

neurodegenerative disorders caused by apoptosis, where human neurotoxins are expressed in 

yeast as a host (34). The neurotoxic yeast model has been applied to discover the molecular 

pathology of Alzheimer Disease (AD) (35, 36), Frontotemporad Lobar Degeneration (FTLD-tau) 

(37, 38), Parkinson Disease (PD) (39-42), Huntington Disease (HD) (43-45), and Amyotrophic 

Lateral Sclerosis (ALS) (46-49), which are all caused by the abnormal cell death in neurons. 

Furthermore, the relative simplicity of yeast apoptosis pathway provides the computational 

biologists the means to decipher the human apoptosis regulation in silico where humanized, yeast 

computational model successfully recognizes the pro- and anti-apoptotic role of proteins in Bcl-2 

family. Our research group has used S. cerevisiae as a model organism to elucidate the 

mechanisms of heavy metal toxicity from different aspects including the targeting of protein 

oxidation (19) and induction of Yca1p (caspase)-dependent apoptotic pathway (21). In this 

dissertation, we will expand our frontier to discuss the role of another essential cellular response, 

autophagy, in the response of Yca1p-dependent apoptosis under heavy metal exposure. Given 

that the autophagic pathway was first investigated in S. cerevisiae (50) and has been well studied 

since last decades, S. cerevisiae will be a decent tool to investigate the molecular mechanisms of 

apoptotic and autophagic responses, and the interconnection which would be achieved by a series 
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set of BH3-family proteins in mammalian cells (51), whereas yeast metacaspase, so-known as 

yeast caspase 1 (Yca1p), which lacks BH3-domain was found in our study to be an intermediate 

molecule between those two essential cellular events .  

 

Why study autophagy in heavy metal-induced apoptotic yeast cells? 

A singular, putative yeast caspase 1 (Yca1p),  which  preserves a number of features  

associated  with mammalian  caspase-3, has been found in yeast, and has been shown to 

initiate various apoptotic responses in yeast cells (52) . Subsequent studies in our laboratory, 

however, have shown that a yca1Δ mutant (in which the yeast caspase has been deleted), still 

appears to exhibit low levels of a caspase-like enzyme activity even though the cells  are  no  

longer  apoptotic  (53).  As a result, a number of cysteine proteases were analyzed, with one in 

particular, Atg4, being analyzed in- depth as to its potential for it being responsible for the 

additional caspase activity. Atg4 has already been well characterized, and shown to be 

involved in autophagy, a defense mechanism which helps t h e  cell to overcome a  n u m b e r  

o f  environmental  stresses (54-57). Even so, these preliminary analyses of Atg4 demonstrated 

that Yca1 is not cleaved either in an atg4Δ mutant background, (53) nor in a similarly 

constructed atg6Δ and atg8Δ mutants, which are collectively deficient in the preliminary steps 

of autophagic initialization. Cleavage of Yca1 is thought to be a critical step in the activation 

of the caspase. Moreover, like the yca1Δ mutant, the autophagic mutants are also non-

apoptotic (Nargund A., unpublished data). These findings indicated that Atg4 might play a 

series of pleiotropic roles, beyond tha t  of  its pr inciple role in autophagy, as a cysteine 

protease cleaving Atg8p in maturation process (58, 59), and may be a critical factor in the 

activation of Yca1p. It may even, provide  the  additional,  putative  caspase-like  activity  that  
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has been  found  in  the  yca1Δ mutant. 

 

Autophagic activity is augmented in metal-induced stress. 

Since Atg4 has been shown to be involved in the regulation of apoptosis and is itself 

an autophagy-associated enzyme, we are interested in the modulation of this enzyme’s 

activity by investigating the autophagic transcriptome upon metal-induced stress. Our 

preliminary data showed that autophagy-associated genes are remarkably induced in cells upon 

Cd treatment, as exemplified by the 2-fold and 27-fold increases in transcriptional activities 

of atg14 and atg7, respectively (Fig. 4). Similarly high autophagic activities and apoptotic 

population upon the increased exposure to Cd concentration have been reported in MES-13 

cells (60), which supported some definitive interaction between the two pathways. Even so, the 

specific role of autophagy in the apoptotic response remains elusive (61). Thus, the major 

contribution of this work will be to elucidate the role of autophagy upon metal-induced stress. 

 

Experimental Questions 

Previous studies have indicated that the cellular response in yeast to the presence of 

heavy metals, such as cadmium and copper, are heavily dependent upon a related, central 

metabolic pathways (62). Firstly, the pentose phosphate pathway (PPP) transcriptome is highly 

induced upon heavy metal treatments. Given that PPP is one of the major resources for NADPH 

reduction, which further provides the reducing power for glutathione reduction, we would like to 

address the importance of the PPP pathway in generating anti-oxidants upon ROS stresses. 

Secondly, glycolytic enzymes has been shown to be the oxidation targets upon heavy metal-

induced ROS stresses (62). Among those enzymes, Tdh3, a human Glyceraldehyde 3-
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Figure 4: The expression profile of autophagy transcriptome upon cadmium treatment.  

The fold change was normalized by the intensity obtained from the untreated sample.  
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phosphate dehydrogenase (GAPDH) orthologue, alters its conformation and trans-localizes to 

the nucleus upon heavy metal treatment (62). It implicates a pleomorphic nature of Tdh3 in 

cellular activities beyond those of its primary glycolytic metabolic role(s). Lastly, our initial 

findings that; (a) autophagy-associated genes are significantly induced upon treatment of cells 

, with cadmium, (b) Atg4 (the principal protease involved in autophagic initiation), is one of a 

few “cysteine proteases” that has been implicated in the activation of the yeast caspase 

(Yca1p), and (c)  that  Atg4-deficient yeast cells are not able to undergo metal  –

induced apoptosis, collectively indicate that there are significant areas of cross-talk between 

autophagy and apoptosis in yeast. Moreover, based on its role in maintaining homeostasis 

inside cells, the critical activity of autophagy is considered to be a major cyto-protective 

pathway. Accumulated evidence has shown that that autophagic, or Type-II cell death can 

further facilitates Type-I cell death (63), or can provide an alternative route for cellular 

response of apoptosis-compromised cells (64).  

 

Therefore, we would like to address those questions in the following chapters: 

1. Would PPP provide a major source of reduction pool generating anti-oxidants to against 

ROS stresses? 

2. What is the role of Tdh3 playing in heavy metal-induced oxidative stresses? Would it 

be a signal regulator rather than a glycolytic enzyme? 

3. How does autophagy mediate apoptosis (or vice versa) in yeast under heavy metal-

induced stresses? 
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Significance 

Chronic   neuron   degenerative   diseases   are   threatening   the   elder   society. 

Alzheimer’s Disease and Parkinson’s Disease, which result from the malfunction of memory 

and motor  neuronal cells,  mostly  impact  in  the  developed  countries  with  the  higher 

population of elders. In fact, about 160 billion dollars is being spent worldwide per year just for  

the  treatments  and  several  inestimable  costs (65).  Sadly, only few palliative treatments, but 

not radical cures, are available currently because the pathogenesis of the diseases remains 

opaque. In this  study,  we  will  focus  on  the  role  of  the  autophagic  pathway  as  an  

apoptotic “modulator“ in deciding whether cells are too badly damaged to survive. A 

clarification of the link between autophagy and apoptosis will potentially provide an 

alternative route to study the mechanisms that underlie cellular responses to heavy metal 

exposure in yeast, and by extrapolation in higher organism. 
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CHAPTER 1. 

THE PLEIOTROPIC ROLE OF GAPDH IN METAL-INDUCED APOPTOTIC 

RESPONSE OF YEAST CELLS 

 

Pei-Ju Chin  

 

Abstract 

Apoptosis, or programmed cell death (PCD), plays an important role in cellular 

destruction (1). This suicide pathway is triggered when cells suffer irreversible damage such as 

viral infection (2), genetic retardations (3) or as we will focus on in this chapter, cellular 

response to heavy metal-exposure. The process is beneficial for multi-cellular hosts to minimize 

the potentially toxic effects of aberrant cellular functions, but is initially difficult to rationalize 

for single celled organisms, such as yeast. In addition to the proteins directly involved in the 

apoptotic response, there are additional sets of proteins that participate in this process, some of 

which are known to be involved in fundamental metabolic processes such as the redox or energy 

generation pathways (4). Indeed, a number of glycolytic proteins are induced in response to 

heavy metal exposure that ultimately induces an apoptotic response in these cells. One of these 

proteins, glyceraldehyde-3-phosphate dehydrogenase or GAPDH, is notable -not only because of 

its pivotal role in regulating carbon flow through the glycolytic pathway, but also for its role as 

an apoptotic signaling protein. GAPDH, which is normally active in the cytoplasm or attached to 

the outside of the mitochondrial matrix, has a pleiotropic effect in that it functions as both a 

glycolytic enzyme in normal cells but can shuttle in to the nucleus in response to stressors and 

potentially give rise to an apoptotic response. 
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Our studies have previously demonstrated that the transcriptional levels of GAPDH are 

induced in yeast cells that are exposed to Cd, and that one of the three isoforms of the enzyme, 

Tdh3p is specifically damaged in response to exposure to this metal (4). As a result, Tdh3p was 

tagged with GFP in order to trace any cellular movement of the protein in response to the 

presence of heavy metals. Intriguingly, the presence of the TDH3-GFP tag in otherwise wild-

type cells appeared to block any and all apoptotic response to the presence of cadmium. To 

investigate this phenomenon further the physiological differences between wild-type cells and 

readily available mutant cell-lines encoding singular GFP gene fusions were analyzed by 

assaying their Tdh3p enzyme activity. The results of these analyses showed that there were fewer 

enzymatic differences between native and GFP-tagged Tdh3p than might have been expected 

from such a distinctive phenotype.  Indeed, the data further suggest that the glycolytic activities 

of Tdh3p need not provide the major contribution to the apoptotic responses and that the more 

important role for this ubiquitous enzyme in the apoptotic response of yeast cells is its nuclear 

translocation. We developed a quantification method to count the Tdh3p appearance inside the 

apoptotic yeast cell and found higher levels of Tdh3p inside the nucleus following exposure to 

cadmium. The role of nuclear translocalization of Tdh3p remains an intriguing aspect of a 

regulated apoptotic response to metal exposure and warrants further investigations. 

 

1.1 Introduction 

While apoptosis is a fundamentally important feature of normal cellular development in 

multi-cellular organisms (1) this programmed cellular response pathway is also initiated when 

cells respond to a variety of cellular stressors and when cells incur irreversible damage resulting 

from viral infections (2), and genetic retardation (3). This process is considered to be beneficial 
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for multi-cellular organisms to prevent the damaged cells from disseminating cellular signals 

neighboring cells in the body when the damaged cells have been irreversibly compromised. The 

arguments as to why single celled organisms, such as S. cerevisiae, exhibit a similar potential to 

commit programmed cell death are more difficult to discern, the pathways and mechanisms 

through which they are able to do so are shared among a variety of organisms. 

 

While there are a number of response pathways that effect the apoptotic process in yeast, 

a major stimulus for these responses involve, as they do in higher eukaryotes, the redox or 

energy generation pathways (5, 6). Indeed a number of the glycolytic enzymes are known to be 

induced in cells undergoing apoptosis, and it is thought that some of these enzymes play crucial 

signaling or regulatory roles in promoting the apoptotic response. One of these proteins, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is notable not only for of its pivotal role 

in glycolytic metabolism but also for its potentially regulatory roles in a variety of cellular 

activities. It has been shown to be involved in cell wall adhesion (7), regulation of mitochondria 

membrane permeability (8), transcriptional regulation (9), nuclear membrane fusion (10), 

telomere maintenance (11), DNA repair apparatus (12), homeostasis of metabolic oscillations 

(13), activation of tumor migration factors hTAFII68 and TEC (14) and the apoptotic response in 

neuronal cells (15-18). The enzyme was not known to be involved in the apoptotic response until 

its abnormal deposit in the brain tissue from patients with neural degenerative disorders was 

reported. GAPDH is over-expressed in the low potassium –induced apoptotic cerebellar granule 

cells (19). The possible function of the nuclear GAPDH in apoptotic neural cells was disclosed, 

in that its presence was shown to inhibit uracil-DNA glycosylase, a major component of the 

DNA repair apparatus. Indeed, both the survival rate of the cell and the nuclear GAPDH activity 
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can be restored by introducing GAPDH antisense oligonucleotides to neutralize the enzymes 

over-expression (20). The relationship between GAPDH nuclear translocalization and caspase-3 

activation was reported (21). By surveying the brain tissue in African-American patients with 

Parkinson’s disease, along with age-matched controls, Tatton and his co-workers found that the 

increased immunoreactivity of caspase-3 and the pro-apoptotic Bax are coincident with GAPDH 

nuclear shuttling. Subsequently, several studies have similarly claimed that GAPDH is a pro-

apoptotic protein and the presence of a nuclear form of GAPDH is a significant factor in 

facilitating apoptosis. Further, the Golgi apparatus, a place where protein sorting and secretion 

occurs, was found to contribute to the modification of GAPDH, enabling its passage into the 

nucleus and/or other organelles in order for it to achieve its pathological roles (22). For instance, 

Amyloid-β, which is abnormally precipitated in brain tissues and results in the formation of 

Lewy Bodies in patients with Alzheimer’s Disease and Parkinson’s Disease, is known to 

promote the formation of disulfide bonds in GAPDH and its subsequent accumulation in the 

nucleus (23-25). While a majority of findings have shown how GAPDH is able to facilitate the 

apoptotic process, some studies have also demonstrated that this enzyme can also have a 

negative role (26, 27). In these reports GAPDH was shown to inhibit caspase-dependent 

apoptosis by inducing ATG12 expression, which results in the augmentation of autophagic 

activities, resulting in damaged, cytochrome-c-releasing mitochondria being engulfed by 

autophagosomes, which effectively curtailed the apoptotic cascade. Nevertheless, the 

contribution of the nuclear translocation of GAPDH to the apoptotic process remains relatively 

unclear.  
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Perhaps as a consequence of its varied roles in mediating a number of cellular activities 

in many eukaryotes GAPDH exists in a number of different isoenzymatic forms, principally 

Tdh1p, Tdh2p and Tdh3p, each of which have different expression profiles and levels of 

glycolytic activities (28). In S. cerevisiae, the most abundant and most enzymatically active of 

these isoenzymes, Tdh3p, has also been shown to be preferentially targeted for oxidation by 

metal-induced stress (4, 6), which raises the probability that different isoforms of TDH may 

contribute differently to related aspects of nuclear induction of apoptosis than others. In yeast the 

presence of nuclear TDH has also been identified in potentially mediating multiple cellular 

responses, with the preferential translocation of one of the TDH isoenzymes, Tdh3p, into the 

nucleus being involved in metal-induced apoptosis (4). Shanmuganathan also found that TDH 

became associated with a series of different proteins upon cadmium-induced stress and 

concluded that these various protein complexes may be involved with TDH being able to 

facilitate the progression of the apoptotic response. Such selective translocation of discrete TDH 

isoforms would further indicate that either the specific affinity of nuclear membrane for these 

isoforms is modified by exposure to cadmium, or that the co-translocated proteins are perhaps 

able to modify the ability of specific isoforms of TDH to translocate into the nucleus.  

 

Preliminary studies reported in this chapter further indicate that the normally stable 

expression of TDH (TDH protein expression is commonly used as a normalized control in 

numerous publications) is increased in yeast cells that have been exposed to Cd, accompanying 

the nuclear translocalization. As a result we hypothesize that TDH in yeast is more complex than 

its clearly established metabolic role in the apoptotic response (29), perhaps as a signal factor to 

regulate the expression or activity of pro-apoptotic genes that might be important in the apoptotic 
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response of the cell to heavy metals. To test this hypothesis the transcriptional levels of GAPDH 

were monitored in a series of microarray experiments (Appendix A and B), which confirmed 

that TDH is induced in yeast cells exposed treated yeast cells (Appendix H). We first 

hypothesized that the apoptotic response of cells required extra energy, and consequently, the 

increased expression of TDH provided a necessary boost in glycolytic pathway activity to meet 

increased demand (30, 31). This hypothesis was further supported by increased expression of the 

analysis of other glycolytically associated genes –following exposure of yeast cells to Cd; with 

the cluster analysis clearly showing that the genes related to the glycolytic pathway are 

significantly induced in apoptotic yeast cells (Appendix H).  

 

As a result of these preliminary results and the findings of Anupama Shanmuganathan we 

would like to determine some of the physical parameters of the metal-induced nuclear trans-

localization of Tdh3p, and potentially elucidate the biological role of nuclear TDH in metal-

induced apoptotic yeast cells. In so doing we would also test whether the Tdh3p deletion strain, 

which lacked the major TDH isoenzyme in yeast, were unable to respond to the presence of 

cadmium.  

 

1.2 Materials and Methods 

Strain and Medium Preparation 

Saccharomyces cerevisiae BY4741 parental wild-type (MATα his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0), tdh3Δ isogenic mutant (Euroscarf) or TDH3-GFP fusion strain (Invitrogen) were 

cultured in 5mL YEPD broth [2 % (w/v) peptone (BD), 1 % (w/v) yeast extract (Difco) and 2 % 

(w/v) glucose (EM Industries)] overnight for making the start culture. The start culture then were 
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inoculated in YEPD broth and incubated at 30 oC under 225 rpm aerobic shaking. The cells mass 

was determined by OD600 reading. Unless specified, the harvested cells were exposed to 8 mM 

copper nitrate or 30 μM cadmium nitrate (Sigma-Aldrich) to trigger the apoptotic response for 1 

hour, followed by being washed by YEPD medium and post-incubated in YEPD medium for 

additional 3 hours. 

 

Assay of apoptotic population 

The harvested yeast cells were 20X-diluted in YEPD medium and stained by 

dihydrorhodamine 123 (DHR123; Sigma-Aldrich) for labeling the cells accumulating ROS 

residues, which represents the population undergoing oxidative stresses and apoptosis. The stained 

cells were subjected to FACs CANTOTM  cytometry with PE fluorophore filter. 

 

Total protein preparation 

The cells were grown from seeding culture for overnight to OD600 = 1.8~2.5, and treated 

by the stress agents mentioned above. The cells were harvested by centrifuging under 5,000 xg, 3 

minutes at 4 oC in JA-20 rotor (Beckman Coulter). The cells were washed by cold deionized 

water twice, then re-suspended in lysis cocktail containing 100 mM Tris-HCl; pH 7.4, 20 μg/mL 

leupeptin, 10 μg/mL pepstatin A, 0.264 mg/mL aprotinin, 1 mM PMSF and glycerol (10 % v/v). 

about 200 μL acid-washed glass beads were added to the mixture ,and the cells were disrupted 

for 30 seconds by mini beat beater-8 (BioSPEC Product) for 4 times with cooling on ice between 

each disruption. Total protein concentration was quantified by 2-D Quant Kit (GE Bioscience) 

by using the standard curve of serial-diluted BSA solution. 
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Confocal Microscopy of Nuclear trans-localization of Tdh3p 

S. cerevisiae TDH3-GFP fusion strain was treated with 120 μM cadmium nitrate (Sigma-

Aldrich) for 0 and 180 minutes. After exposure, the cells were immediately fixed by incubation 

in 70% ethanol for 5 minutes. The cells were washed with de-ionized water twice, and then 10 

μL cell re-suspension was mixed with 10 μL DAPI-antifade solution (Invitrogen). 5 μL of 

stained sample was laid on the slide which was cleaned and coated by 70 % ethanol and poly-

lysine solution (Sigma-Aldrich). The cell mixture was examined using a  Zeiss Axioimager 

fluorescence microscope to validate the appropriate staining before potential nuclear trans-

localization of Tdh3p was analyzed more thoroughly using a Zeiss LSM 510 confocal 

microscope.  

 

SDS PAGE and Western-blotting 

The protein extraction was mixed with sample loading buffer (10 % SDS, 0.1 M Tris; pH 

6.8, 50 % glycerol, 0.01 % Bromophenol) and 10 mM Tris-HCl (pH 6.8). The mixture was 

denatured by boiling for 5 minutes before subjecting to SDS-PAGE electrophoresis under 140 V 

for 1.5 to 2 hours. The polyacylamide gel containing the total protein fragment was washed by 

deionized water then blotted to Hybrid-ECL hybridization membrane (GE Bioscience) by 

electro-blotting under 20V for overnight. The blotted membrane was washed by de-ionized water 

briefly, following by 1 hour incubation in blocking buffer containing 5 % slim milk (EMD 

Chemicals) and PBS with 0.1 % Tween-20 (Sigma-Aldrich). Anti-GAPDH-C-ter produced by 

rabbit (1:5000 titration in PBS with Tween-20) and Anti-rabbit IgG conjugated with HRP 

(1:5000 titration in PBS-Tween 20 and 5% slim milk) were used for primary and secondary 

hybridization, 1 hour for each. The membrane was washed by PBS-Tween-20 3 times for 15 
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minutes between each hybridization. The signal was developed by Enhanced chemiluminescence 

(ECL) (Amersham Bioscience) then detected by the X-ray film exposure. 

 

Preparation of crude nuclei and cytosolic fractionation 

The sample was treated and harvested by the method described above. The cell pellet was 

washed twice by cold de-ionized water, and re-suspended in pretreatment buffer (50 mM Tris, 

pH 7.5 and 30 mM DTT) then incubated at 30 oC for 15 minutes. The cells were harvested by 

centrifuging at 5,000 xg for 10 minutes and the pellet was re-suspended in spheroplast buffer, 

containing 20 mM potassium phosphate; pH 7.4, 1.2 M sorbitol and 40 mg/mL 20T zymolyase. 

The re-suspension was incubated at 30 oC for at least 90 minutes to digest the cell wall. The 

digestion process was inspected by mixing the cell suspension with 10% SDS then checking 

under the microscope. The ghost cells represent the removal of cell wall. The spheroplasts were 

gently washed twice by spheroplast buffer and re-suspended in Buffer A containing 18 % Ficoll 

400 (GE Biosciences) , 10 mM Tris-HCl; pH 7.5, 20 mM potassium acetate, 5 mM magnesium 

acetate, 1 mM EDTA, 0.5 mM spermidine (Sigma-Aldrich) and 0.15 mM spermine (Sigma-

Aldrich). Spheroplasts were disintegrated by “pestling” for at least 100 cycles. The crude nuclei 

fractionation was discriminated from debris sediment by spinning the supernatant at 2,988 xg, 4 

oC for 5 minutes for four cycles. After the final (fourth) spin, the supernatant representing crude 

nucleus fraction was obtained by centrifuging at 20,199 xg, 4 oC for 30 minutes. The supernatant 

and pellet represents the crude cytosolic and nuclear fraction, respectively. For the sorting 

purpose, the crude nuclei extract was washed twice by ice-cold PBS and stained by 0.2 % (v/v) 

propidium iodide (PI) if necessary. The crude nuclei were assayed by FACS CANTOTM flow 

cytometer (BD Biosciences). The supernatant was further centrifuged under 88,760 xg at 4 oC for 
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1 hour to obtain the pure cytosolic fraction. For nuclear protein preparation, the crude nuclear 

pellet was washed twice in cold PBS then lysed by nuclear lysis buffer containing 20 mM 

HEPES; pH 7.9, 0.4 N NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 1 mM PMSF and 1 

μg/mL each of pepstatin, aprotitin and leupeptin following by agitating the suspension at 4 oC for 

30 minutes and spin at 11,800 xg for 15 minutes. The supernatant represents the nuclear 

fractionation. The protein concentration for these two fractions was determined by 2-D Quant Kit 

(GE Healthcare). 

 

Nuclear immunoprecipitation (Nuclear IP) 

The intact, crude nuclei fractions of S. cerevisiae BY4741 wild type were pulled down by 

DynalBeadTM (Invitrogen) coated with Nsp1 antibody, which recognizes the subunit of the porin 

complex on the yeast nuclear membrane. The linker and primary antibody were conjugated, 

according to the protocol provided. The beads and crude nuclei were co-incubated at 4 oC with 

rotating shaker for 2 hours or overnight, followed by generic washing procedure. 

 

Co-immunoprecipitation (Co-IP) 

The Co-IP followed the instructions provided by Invitrogen. Two procedures were 

performed: direct and indirect method. In direct method, 100 μL DynaBead was conjugated with 

20 μg of anti-GAPDH-IgG (Sigma-Aldrich), anti-TDH3Cter-IgG (GenScript) or anti-GFP-IgG 

(Invitrogen) at 4 oC for overnight. For the permanent crosslinking, BS3 crosslinker was used 

according to the instructions (Thermo-Scientific). The bead-antibody complex was washed three 

times by PBS, and then incubated with 200 μg protein lysate at 4 oC for 4 hours. The Co-IP 

product was harvested by the denaturation (boil up the beads for 5 minutes), acidic (100 mM 
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glycine, pH 2.8) or basic (100 mM glycine, pH 11) elution or high ionic strength (3 M KCl) 

elution. The pulled down product was further analyzed by SDS-PAGE and Western blot. 

 

Molecular cloning and expression of TDH3 gene 

To avoid the co-amplification of TDH1 and TDH2 isogenes, the fragment including 1 Kb 

up- and downstream of TDH3 was amplified in order to gain the highest heterogeneity by the 

primer set: Forward- CATCGTAGGTGTCTGGGTGAACAG and reverse- 

CATGATTTGATGGCTGTACCGATAG. This primary amplicon was served as the template to 

amplify the actual TDH3 gene and incorporated the BamHI/HindIII cutting sequence by the 

primer set: Forward- GCAGGATCCAACAAAATGGTT-AGAGTTGCTATTA and reverse- 

CAGAAGCTTTAAAGTAAATTCACTTAAGC-CTTGG. We then cloned the TDH3 gene into 

p416-GPD shuttling vector (Fig. 5) (32). The positive E. coli clones were selected by carrying 

ampicillin-resistant marker. The TDH3-bound vector was transformed to S. cerevisiae BY4741 

(wild-type), tdh3Δ isogenic mutant and GFP-fused TDH3 strain by following the methods 

described in pYES2 manual from Invitrogen. The positive candidates were screened by synthetic 

complete (SC) media with the uracil auxotrophy. The expression of cloned-TDH3 is controlled 

by the TDH3-specific promoter on p416-GPD vector. 

 

Quantitative RT-PCR 

Quantitative RT-PCR technique was applied for quantifying the transcription level of TDH3 in 

the metal-exposed yeast cells. Total RNA treated by DNaseI was mixed with TaqMan RNA-to-

CT 1-Step kitTM by following the manufacture’s instruction. (Applied Biosystems). The primers 

and TDH3-specific probe are shown: Forward primer- TCGGTAGATTGGTCATGAGAATTG, 
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Figure 5: p416GPD (ATCC 87360) Vector Map 

p416GPD is a shuttle vector harboring prokaryotic (pBR322 origin) and eukaryotic 
(CEN6_ARS4) replication origin. The low copy number, replication clones were selected by the 
ampicillin resistance, and uracil auxotroph in E. coli TOP10 and S. cerevisiae BY4741, 
respectively. The TDH3 amplicon with BamHI (5’) and HindIII (3’) sticky ends was inserted to 
the multiple cloning site, which is in the downstream of eukaryotic GAPDH promoter. 
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reverse primer-TGAATGGGTCG-TTCAAAGCA, TaqMan probe-FAM-

TGTCTAGACCAAACGTCGAA-NFQ. Amplification plots were performed by following 

standardized thermocycler protocols using the 7500 Fast Real-Time PCR System (Applied 

Biosystems): 48 oC, 30 minutes for reverse transcription, 95oC, 10 minutes for denature, 

followed by 40 cycles of 15 seconds at 95 oC and 1 minute at 55 oC. The signal was acquired at 

the last step. The instrument was set to the 9600 emulation mode to increase the sensitivity. 

 

Alcohol dehydrogenase (ADH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

enzymatic assay 

The yeast total protein, cytosolic and nuclear fractionation were assayed for ADH and 

GAPDH enzymatic activity. ADH activity was test by following the protocol provided by 

Bergmeyer et. al. (33). Briefly, the cell extract was mixed with the assay buffer containing 100 

mM Tris-HCl, pH 8.3 and 2mM NAD+. The reaction was started by adding 0.8 M ethanol. The 

GAPDH activity was measured by following the protocol provided by McAlister et. al. (28). The 

cell extract was mixed with the assay buffer containing 0.1M potassium phosphate; pH 7.4, 1 

mM NAD+, 10 mM EDTA and 0.1 mM DTT. Both ADH and GAPDH activity were measured 

by the increment of A340, which represents the absorbance wavelength of reduced NAD+, or 

NADH. 

 

1.3 Results 

TDH3-deficient yeast cells are non-apoptotic which may not be due to the depletion of 

glycolytic activity 
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There are three GAPDH isoenzymes in yeast cells; Tdh1p, Tdh2p and Tdh3p with Tdh3p 

being the predominant form of GAPDH. Nevertheless all of these isoenzymes exhibit ~95% 

similarity with each other and catalyze the same critical reaction in the glycolytic pathway 

accordingly. Previous work in the laboratory determined that Tdh3p was preferentially 

fragmented in yeast cells upon exposure to heavy metals such as cadmium and copper (4). As a 

consequence, we have focused on the molecular aspects of Tdh3p in metal-induced apoptotic 

response. Preliminary data shows that TDH3 mutant is non-apoptotic upon Cd treatment (Fig. 6). 

These findings were consistent with our hypothesis that a viable glycolytic pathway is critical to 

maintain cellular energy and reducing power that could mitigate any apoptotic potential. 

Moreover previous results in the laboratory (4) had also suggested that GAPDH movement in to 

the nucleus occurred upon exposure to heavy metals, indicating that this transference may be 

involved in the cellular response to the presence of heavy metals. Consequently, the movement 

of GAPDH in to the nucleus was also analyzed using green fluorescent protein (GFP)-tagged 

TDH3 (TDH3-GFP), which was constructed to trace the cellular movement of Tdh3p into the 

nucleus. Curiously, this strain was found to be non-apoptotic (Fig. 6).  

 

This finding reaffirmed the importance of GAPDH (or more specifically for this study, 

Tdh3p) in the cellular response of yeast to Cd. Not only is the presence of GAPDH critical for 

apoptosis to occur, but potentially an unmodified Tdh3p is also required for achieving the metal-

induced apoptotic response. In order to test whether the glycolytic activity itself is the major 

contributor in this pro-apoptotic role, we assayed the enzymatic activity between wild-type and 

TDH3-GFP fusion strain exposed to Cd treatment but no significant difference was discovered  
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Figure 6: S. cerevisiae TDH3-GFP strain, like TDH3 mutant, is non-apoptotic upon 
cadmium treatment. 
 
S. cerevisiae wild type and TDH3-GFP strain was treated with 30 μM Cd, and the effects of this 
exposure compared to cells that had not been exposed. The samples were stained with propidium 
iodine (PI) and DHR123 to label the cells with losing membrane integrity and ROS 
accumulation. The corresponding percentage of labeled cells are noted accordingly. 
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(Fig. 7). The cells carrying the TDH3-GFP fusion demonstrated either a negligible reduction or 

even higher activity which indicates that the GFP tag itself does not interfere with overall 

enzyme activity and that the tagged protein must contribute to apoptosis silencing in some other 

way.  In this aspect, Tdh3p could facilitate the apoptosis responses through other pleiotypic roles 

rather than its glycolytic activity.  

 

Nuclear translocalization of Tdh3p was found in Cd-treated yeast cells 

The nuclear translocalization of GAPDH of apoptotic yeast was found in the previous 

study showing Tdh3p to be present in the nuclear fraction. To confirm that, TDH3-GFP strain 

was used to trace this shuttling upon Cd treatment by epifluorescence or confocal microscopy 

(Fig. 8). The result shows that Tdh3p did indeed translocate in to nuclei of yeast cells exposed to 

cadmium.   

 

Nevertheless, the microscopy-based method is not quantifiable to confirm the degree of 

nuclear translocation of Tdh3p upon cellular exposure to cadmium, nor did it prove to be entirely 

conclusive as to whether the nuclear translocation was significantly different between cells 

treated with Cd or not. To overcome this concern we developed a cytometric method to count the 

appearance of nuclear Tdh3p obtained from crude nuclear extracts. Briefly, the co-localization of 

TDH3-GFP and nuclei is identified once both the green (GFP) and red (PI labeled inside the 

nuclei) fluorescence are detected by flow cytometry for each “event”, which would be the 

individual nuclei in this case. Along similar lines, nuclei without TDH3-GFP would only 

fluoresce red, and the TDH3-GFP without localization would not be detected as there would be 

no boundaries able to concentrate the GFP molecules enough that they would be able to emit a  
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Figure 7: The enzymatic activity of wild type and GFP-tagged Tdh3p. 

Using appropriate controls, S. cerevisiae wild type and TDH3-GFP strain were treated with 30 
μM Cd and GAPDH activity was measured. Neither Cd exposure nor GFP tagging substantially 
impacts its glycolytic activity.   
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Figure 8: Confocal fluorescence microscopy image of 
construct.  
 
S. cerevisiae TDH3-GFP strain was treated 
poly-lysine and imaged under assigned filters: 
staining and (C) GFP filter.  Arrow indicates the Tdh3
yeast cell where DAPI and GFP signal are overlapped
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Confocal fluorescence microscopy image of S. cerevisiae TDH3-GFP fusion 

GFP strain was treated with Cd. The sample was fixed on the slide coated by 
assigned filters: (A) Visible light, (B) DAPI filter for the nuclei 
rrow indicates the Tdh3p nuclear trans-localization in apoptotic 

where DAPI and GFP signal are overlapped.  
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GFP fusion 

. The sample was fixed on the slide coated by 
DAPI filter for the nuclei 

localization in apoptotic 
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viable signal. We first evaluated the performance of this method for being quantifiable: The 

crude nuclear fraction, harvested from S. cerevisiae wild type and TDH3-GFP fusion strains, 

were stained with propidium iodine (PI) to label the nuclei, and the mixtures with the various 

proportion of GFP-labeled and PI-labeled nuclei obtained from TDH3-GFP and wild type crude 

nuclei extracts were subjected to cytometric analysis. Given that the ratio between PI-GFP 

double labeled and GFP single labeled nuclei would be known for each test condition (RI), by 

comparing this value with the outcome of PI-GFP/GFP ratio assayed by flow cytometry (RM), a 

concordance between the input proportions and output populations could be observed (Fig. 9).  

 

The results of this preliminary experiment indicated that the method was quantifiable, 

and potentially suitable to study the Tdh3p nuclear translocation in a concentration- dependent 

manner. In this concentration-dependent analysis (Fig. 10), cells were exposed to increasing 

concentrations of cadmium and the co-localization of nuclei expressing both PI and GFP 

(Tdh3p-GFP) was seen to increase up to 2-fold as the concentration of cadmium increased, 

which indicated that there is an discernible increase in the concentration of nuclear-translocated 

Tdh3p, and that this increase is associated with increased exposure to Cd, showing a potential 

direct correlation between potential the increased presence of Tdh3p in the nucleus and the 

apoptotic response of the cells to an increased exposure to cadmium. 

 

GAPDH shows different enzymatic activities when present in either cytosolic or nuclear 

fractions. 

Since incremental Cd exposure tended to augment the observed nuclear translocation of 

Tdh3p, and building on previous findings that Tdh3 has already been shown to translocate into  
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Figure 9: The performance evaluation of the cytometer-based nuclei sorting. 

The nuclear fraction harvested from S. cerevisiae wild-type (WT) and TDH3-GFP fusion strains 
were stained with propidium iodine (PI). The various mixtures, along with their indicated 
titration of stained nuclei (RI) were then subjected to flow cytometry to differentiate among the 
various heterogeneous populations of nuclei obtained from TDH3-GFP and WT cells. The sub-
populations of each quadrant (from upper left to bottom left, in clockwise direction: PI only, PI 
and GFP, GFP only and unstained) were quantified. The measured ratio (RM) between PI+GFP 
and PI only was  normalized by the reading of mixture containing the identical proportion of 
TDH3-GFP (PI+GFP stained) and wild type (PI-stained only) nuclei (RI = 1:1). The normalized 
RM was comparable with the ratio of original input (RI), which indicates that this cytometric 
method is sensitive enough to differentiate among the various populations of dual and single and 
double-stained nuclei.  
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Figure 10: The cytometry-based assay of Tdh3p nuclear trans-localization 

The nuclear fractionation of S. cerevisiae TDH3-GFP fusion strain treated with incrementally 
increasing concentrations of  Cd were stained by propidium iodine (PI). The event number of 
green (upper-right) and red (upper-left) quadrant, which represents the co-staining of GFP and PI  
(Tdh3p nuclear localization) and PI-stained only (nuclei without Tdh3p), was used to evaluate 
the ratio of trans-localization (RTrans equals green divided by red), which indicates the degree of 
nuclei harvested Tdh3p. The RTrans of each treated sample was normalized against the ratio 
obtained from untreated samples.   
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the nucleus and alter its conformation as a result of heavy metal-induced stress (4), we intended 

to further investigate whether the glycolytic activity of Tdh3p can be altered by its relocation. 

Even though the enzymatic assay cannot specifically be excluded from the activities contributed 

by the other two isozymes (Tdh1p and Tdh2p), the crude nuclei fractionation showed less 

GAPDH activities than the cytosolic (Fig. 11). While such attenuated activity may be due to the 

conformational change, post-translational modification and/or co-factors/proteins binding during 

the nuclear translocation of Tdh3p from the cystosol, the decreased activity is consistent with 

some degree of conformational change in Tdh3p structure upon its translocation in to the 

nucleus. 

 

Nuclear IP is not accessible in this stage 

As concluded in the previous section, obtaining a high degree of purity of nuclear Tdh3p 

is helpful to evaluate some of the essential differences between the cytosolic and nuclear forms 

of the Tdh3p in metal-treated yeast cells. Such a determination would go a long way to answer 

some of the more fundamental questions as to the possible role of Tdh3p in metal-induced 

apoptotic yeast cells. The crude nuclear preparation protocol that has been used often in this 

study is unable to remove much of the cytosolic contamination of the nuclear fraction, which 

tends to blur any interpretation as to the role that nuclear Tdh3p may play as a result of its 

translocation, since Tdh3p is a highly expressed, crucial metabolic enzyme. Shanmuganathan 

previously shown that such cytosolic contamination is a major concern with the crude nuclei 

fraction extracted using Ficoll gradients (4). In an effort to determine the extent to which the 

nuclear fraction is contaminated with cytosolic proteins, the enzymatic activity of alcohol 

dehydrogenase (ADH) was used. ADH is often used in the literature as a cytosolic marker due to  
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Figure 11: The distinct enzymatic activity of GAPDH assayed from the crude nuclei and 
cytosolic fractionation. 
 
The crude nuclear and cytosolic fractionations of S. cerevisiae wild-type without Cd treatment 
were harvested for GAPDH enzymatic activity assay. The activity was adjusted by the protein 
concentration and represented by two independent tests.   
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its exclusive existence within the cytosol.  In all the nuclear fractions that were obtained, ADH 

was always present, demonstrating the limitations of the Ficoll-based method in that these 

fractionation steps merely remove a majority, but not all cytosolic components from nuclear 

extract (Fig. 12). Therefore, a better technique that further refines nuclei extraction is necessary 

to acquiring high levels of cytosolic free, nuclear Tdh3p. In an attempt to address this concern 

we took an alternative approach to separate nuclei by immunoprecipitation (Nuclear IP) with the 

magnetic beads conjugated by anti-Nsp1P-IgG instead of simply purifying pure nuclei from the 

heterogeneous cell lysate. Nsp1p is a porin subunit located on nuclear membranes and which 

commonly serves as a target for nuclei immunostaining. Crude nuclei were incubated with 

conjugated beads for 24 hours then lysed. Unfortunately, only heavy and light chains of anti-

mouse IgG were detected in nuclear IP product in the absence of 118 KDa Nsp1p fragment, 

where the crude nuclei fractionation showed the signal (Fig. 13). This indicated that the Nsp1p 

antibodies were successfully conjugated to the IP bead matrix and were able to recognize the 

Nsp1p in the crude nuclear fractionation. The attempted purification method ultimately proved to 

be unsuccessful, however, as it failed to pull down any nuclei from the lysate mixture.  

 

Presence of cloned Tdh3p was unable to restore apoptotic potential to tdh3Δ cells  

In an attempt to confirm the essential role of a fully functioning Tdh3p in the yeast cells’ ability 

to produce an apoptotic response to heavy metal exposure, it was decided to transform tdh3Δ 

cells with a vector containing a TDH3 gene with the expectation that the newly transformed cells 

would reacquire their native apoptotic potential. A TDH3-bound shuttle vector (p416-TDH3) 

was constructed (Materials and Methods) and introduced in to the tdh3Δ isogenic yeast mutant 

cells Transformation of the TDH3 mutant strain was validated using a combination (A) 
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Figure 12: The cytosolic contamination suggested by the presence of 
nuclear fraction preparation.  
 
The ADH enzymatic activity (A)
nuclear and cytosolic fractionation
indicates the cytosolic contamination of crude nuclei fractionation. Wt: wild type, TDH3
GFP-tagged TDH3 strain, Cd: cells were treated by Cd.
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Figure 13: Nsp1p Nuclear-IP is unable to pull down pure nuclei from crude fractionation. 

Nsp1p (MW=118KDa) was not present in Nuclear-IP product while no apparent cross-
contamination was detected by GAPDH-probed immunoblot. M: protein size marker. Crude 
nuclei: crude nuclear fractionation. Cytosol: cytosolic fractionation. Nuclear-IP: nuclear IP 
products diluted from 1 to 16-fold. The size of Nsp1P and GAPDH is shown. 
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of both quantitative RT-PCR using TDH3-specific primers, designed for this purpose (Fig. 14A)-

as well as by the detection of increased GAPDH (Fig. 14B and C). As the complementation 

assays demonstrate, full GAPDH enzyme capability was restored to tdh3Δ mutants that had been 

transformed with vectors bearing the TDH3 gene, but not with just the vector alone. Intriguingly, 

neither the tdh3Δ strain nor its TDH3 transformants demonstrated any significant sign of 

apoptosis -as defined by DHR123, an indicator of the presence of ROS (Fig. 15M and N), which 

has previously been shown to be equivalent to an apoptotic response in cells exposed to 

cadmium. While a relatively small ROS response was observed in a subset of the exposed 

population of tdh3Δ mutant cells that had been transformed with the TDH3-bound vector the 

levels were equivalent to cells transformed with vector alone (Fig. 15F and H). In an attempt to 

ensure that there was truly no recovery of apoptotic response the Cd exposure time and 

concentration were increased above the normal time and concentration  to 2 hours and 120 μM, 

respectively, but to no avail (Fig. 15). Curiously, all cells that had been transformed with the 

TDH3-GFP appeared to demonstrate excessive potential to promote ROS, regardless of their 

exposure to cadmium.  However, these results are considered to be artifacts of crosstalk in 

wavelength detection of the cytometers that were unable to distinguish between red (DHR123) 

and green (GFP) fluorophores. Aside from the result of these TDH3-GFP transformants, all other 

control experiments yielded expected results, with wild-type cells exhibiting appropriate levels 

of apoptosis upon Cd treatment, whether or not they had been transformed with vector or vector 

and TDH3 gene. These data indicate that, while the vector-borne TDH3 expression did not 

interfere with the normal cadmium-dependent apoptotic response of the wild-type cells (unlike 

the original transformation of the TDH3-GFP mutant shown in Fig. 6), the presence of the 

vector-encoded TDH3 failed to recover the ability to maintain an apoptotic response when the  
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Figure 14: The complementary test shows functional Tdh3p in tdh3Δ hosts. 

(A) Transcriptional expression of TDH3 in wild type, TDH3 isogenic mutant and GFP-fused 
TDH3 strain upon 120 μM Cd treatment for 2 hours plus 2 hours post-incubation. Wild type and 
TDH3 isogenic mutant without complementation serve as a positive and negative control, which 
shows the specificity of TDH3 TaqMan probe. Furthermore, the complementary TDH3 was able 
to express and function since tdh3Δ::p416-TDH3 exhibits higher GAPDH enzymatic activity 
than the untransformed host, independent of  whether the cells were untreated (B) or treated with 
cadmium (C). 
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Figure 15: Complementary TDH3 failed to recover tdh3Δ from being non-apoptotic after 
Cd treatment.  
 
The p416::TDH3 construct was transformed to tdh3Δ and TDH3-GFP strain to test whether these 
two complemented strains regained the apoptotic response upon prolonged and intensive Cd 
treatment. The apoptotic activity was monitored by DHR123, which detects the presence of 
ROS. The population above the threshold in GFP-TDH3 fusion strain is presumably not due to 
excessive apoptotic responses, but rather to detection overlap between green and red emission. 
Fluorescent emissions as the gating criteria had been fixed to determine threshold values for wild 
type and tdh3Δ mutants for consistency. Overall, the expression of cloned Tdh3p was unable 
restore the apoptotic potential in mutants. 
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cells were exposed to even excessive amounts of cadmium. In light of these and previous 

experiments these findings would suggest that chromosomally regulated and transcribed TDH3 

is necessary for the cell to mount an apoptotic response to heavy metals. As to what particular 

aspect of this chromosomal expression is pertinent to the apoptotic phenotype, additional 

experiments (beyond the scope of this dissertation) using yeast recombination genetics of the 

TDH3 gene will be necessary. 

 

1.4 Discussion 

Glyceraldehyde-3-phosphate dehydrogenase GAPDH (annotated as Tdhp in yeast) is a 

key enzyme in metabolic pathways. It has also been shown to play many other roles in a variety 

of organisms beyond that of its fundamental role in glycolysis (see Introduction in this chapter 

and General Discussion). In higher eukaryotes, the modification of GAPDH is highly associated 

with the pathogenesis of neurodegenerative disorders. The heparin-induced GAPDH aggregation 

and amyloid fibrillation acts as a scaffold to incorporate the unfolded α-synuclein into Lewy 

bodies and reduces the α-synuclein toxicity to neuronal tissues.(34). In contrast, S-nitrosylated 

GAPDH is responsible for the progression of Alzheimer’s Disease, presumably due to the 

impeded glycolytic activity resulted from the S-nitrosylated catalytic residues, or the cell death-

caused interaction with E3-ubiquitin ligase Siah1 (35).  In our previous study, Tdh3p, one of the 

Tdhp isozymes, is one of the metabolic enzymes which is susceptible to oxidative damage upon 

the metal-induced stress (4). With the observation that the aerobic respiration by using glucose as 

the carbon source was necessary for triggering apoptotic response after metal treatment (36), we 

hypothesized that glycolytic pathway is required for metal-induced apoptosis.  Curiously, we 

were able to demonstrate not only that the tdh3Δ, but also wild-type cells that contain a TDH3-
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GFP fusion effectively lose their potential to undergo apoptosis when exposed to various levels 

of heavy metals, indicating that Tdh3p plays beyond its glycolytic role in apoptotic response. To 

confirm that this decreased apoptotic response in cells containing the GFP-tagged Tdh3p was not 

solely due to a change in its principle, enzymatic role, we assayed the GAPDH activity in wild- 

type cells and in wild-type cells containing the GFP-tagged Tdh3p. Interestingly, the cells 

encoding the fusion enzyme showed remarkably similar enzymatic activity to their wild-type 

counterparts, indicating that the non-apoptotic characteristic in these GFP-tagged cells is unlikely 

to be due to the depletion in any glycolytic metabolic activities. By considering the pleiotropic 

role of eukaryotic GAPDH discussed previously, it is reasonable, therefore, to intimate that 

Tdh3p is potentially involved in some other more regulatory functions in the cell, possibly even 

as a contributor to signal transduction mechanisms of the apoptotic response -for which it is 

known in other cellular responses in other organisms. The inability of cells encoding the TDH3-

GFP fusion to establish an apoptotic response that was not apparently due to any loss in the 

specific activity of the enzyme suggested an additional pleiotropic role for Tdh3p, that it was 

apparently unable to undertake as a fused protein. If this role involved translocation of the Tdh3p 

in to and out of the nucleus, the acquisition of a bulky GFP tag to the C-terminus of the protein 

presumably affects a number of activities depending on how the Tdh3p is able to translocate 

across the nuclear membrane. The GFP tag could interfere with Tdh3p being able to interaction 

with other proteins in the cytosol that would abrogate translocation across the nuclear membrane, 

or, once inside the nucleus, the addition of the GFP may interfere with nuclear factor(s) which 

would disallow it to undertake its normal pro-apoptotic activities.   
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The nuclear fractionation Tdh3p was crucial for understanding the non-glycolytic role of 

Tdh3p as a regulator in nucleus. However, regarding its global expression in cellular 

compartments (28), the cytosolic contamination of Tdh3p leading to the ambiguous implication  

was inevitable. In an effort to determine the level of contamination obtained using the Ficoll 

protocol, the abundance of alcohol dehydrogenase (ADH) in the various extracts was monitored. 

ADH is known to be present only in the cytosolic compartment of yeast and, as such, is widely 

used as a cytosolic marker to evaluate the degree of cytosolic contamination of the nuclear 

preparations. Moreover, it is understood that the form in which Tdhp is able to enter the nucleus 

is not the same form in which it is able to catalyze the dehydrogenation of glyceraldehyde-3-

phosphate (37). As a result the relative enzymatic activity of nuclear Tdhp should reflect this 

change in structure and concomitant decrease in enzyme active. Hence, we assayed the kinetics 

for these two enzymes in both the cytosolic and nuclear fraction. Both enzymes showed lower 

activity in the nuclear fraction with little significant differences in their respective activities. As a 

result, we cannot yet confirm that the GAPDH activity is specific to either the cytosolic 

contaminant, or the nuclear fraction. In addition, the localization of ADH to the cytoplasm, alone 

has been challenged: In Alzheimer’s disease patients, nuclear ADH is found in abnormal 

neuronal cells under stress (23). While the localization of ADH is highly associated with the type 

of carbon sources, ADH also is present in different fractions along with the supplement of 

glucose or ethanol (38). In Candida tropicalis, for example, ADH has been shown to be present 

in the microsomal, mitochondrial and peroxisomal fractions, presumably to facilitate fatty acid 

metabolism (39). As a result, the localization of ADH appears to be highly dependent upon on 

the carbon source on which the cells were grown. To summarize our findings, therefore, 

notwithstanding the insufficiencies of the purification protocols used, both Adhp and Tdhp 
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potentially appear in both the cytosolic and nuclear fractions. To analyze further the importance 

of nuclear translocation of Tdh3p in response to heavy metal exposure either a greater degree of 

purity in obtaining nuclear fractions is required, or a more definitively cytosolic protein 

marker(s) needs to be found.  

 

To overcome the inevitable contamination of cytosolic Tdh3p following the protocol 

described above, the idea of “nuclei-sorting” was proposed by reviewing related studies (40). In 

so doing, any requirement for pure nuclear fraction was removed since cytosolic Tdh3p, or non-

nuclear, co-localized Tdh3p, is unable to form the compartment that is necessary to harbor the 

fluorescent dye and be detected through flow cytometry. Preliminary evaluation does show that 

this methodology would appear to be adequate to differentiate between the nuclear populations 

labeled with different fluorophore (Fig. 9). As a consequence, the sample obtained from the 

TDH3-GFP encoding cells was treated with incremental increases of Cd. Curiously, the relative 

number of Tdh3p-localized nuclei increased with increasing Cd concentration (Fig. 10). These 

findings do suggest that the addition of GFP tag on generic Tdh3p had no effect on its nuclear 

shuttling, and the nuclear Tdh3p is indeed an important factor in the Cd-induced response.  

Whether or not the level of translocation was sufficient to yield optimal cellular response, or the 

GFP tag affected the generic function of nuclear Tdh3p, however, has not yet been established 

and would require further, more quantitative analysis. Moreover, as discussed in the introduction, 

the intracellular translocation of GAPDH is determined by the metabolic or physiological 

response to external effects (41, 42). Thus, it is possible that the presence of GAPDH, or rather 

Tdhp, in the nucleus is potentially an artifact of the different cellular fractionation techniques 

that have been performed. Consequently, even though this uncertainty needs greater resolution in 
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the future work, and more sensitive and discriminating techniques can be brought to bear to 

detect and analyze trans-localized proteins. 

 

As of the uncertainties described above, we decided to ensure the role of Tdh3p in 

apoptotic response by complementary test. The transcription of TDH3 was found in tdh3Δ strain 

carrying wild type TDH3 fragment carried by p416 shuttling vector (Fig. 14A), but the apoptotic 

character was still not apparent in cells upon treatment with Cd (Fig. 15G and H). We cannot 

completely rule out the possibility that Tdh3p expression was impeded in translational level even 

though the TDH3-complemented stain showed higher GAPDH activity than uncomplemented 

one. However, there is currently no feasible way to unambiguously monitor the translational 

expression of Tdh3p by immunoblot since antibodies against GAPDH cannot differentiate 

between Tdh3p and any of the other two isoenzymic forms as they share ~98% peptide sequence 

identity with each other. We initially believed that we could circumvent this problem by tagging 

a recognizable marker on Tdh3p, but these efforts were stymied by finding that even wild-type 

yeast cells become non-apoptotic following the insertion of the carboxyl terminus of Tdh3p-

GFP.  While such addition of GFP tag does not appear to effect the enzymatic activity, it 

apparently does modulate the ability of Tdhp (and in particular Tdh3p) to allow for a typical 

apoptotic cellular response. With respect to the recovery of GAPDH activity after 

complementation, it could result from a changed expression of the other two Tdh isoenzymes 

(Tdh1p and Tdh2p) in being able to compensate for the absence of Tdh3p. At this stage, we can 

only be assured of the decreased transcriptional expression of the TDH3 gene, but not the 

enzymatic activity of GAPDH in the complementary tdh3Δ strain.    
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 In this chapter, we have been able to demonstrate conclusively that Tdh3p is involved in 

the heavy metal-induced response of S. cerevisiae to the presence of cadmium. The tdh3Δ and 

TDH3-GFP fusion strain were non-apoptotic indicating that the native form of Tdh3p, not simply 

the GAPDH activity, is required for the cells to undertake their normal metal-induced apoptotic 

response. In addition, while trying to quantify the translocation of Tdh3p into the nucleus we 

have been able to demonstrate that that the translocation of Tdh3p into the nucleus upon the Cd 

exposure is part of the cellular response to the heavy metal, cadmium, with Tdh3p potentially 

acting as a signal protein rather than a glycolytic enzyme. Even though the detailed pro-apoptotic 

role of Tdh3p still needs additional clarification, the association of Tdh3p and its translocation 

into the nucleus upon increased temporal exposure to Cd has been accomplished. 
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CHAPTER 2. 

A SIMPLE AND RAPID METHOD TO MONITOR AUTOPHAGY IN Saccharomyces 

cerevisiae USING FLOW CYTOMETRY 

 

Pei-Ju Chin 

 

Abstract 

Over the last few decades a number of methodologies have been developed to analyze the 

various parameters that modulate the autophagic process in yeast. Many of these methods, 

however, provide only a static evaluation of what is essentially a series of dynamic, cellular 

changes. Herein, we propose a quantitative, flow cytometry-based method to analyze the 

dynamic phases of autophagy in yeast cells, which assesses two of the major cellular 

characteristics of autophagy; an increase in cellular complexity and granularity within the cell. 

The method is relatively rapid and more direct than many of the methodologies employed to 

date. Moreover, while this cytometric method cannot always provide the specificity of some of 

the more commonly used techniques, our findings indicate that it is remarkably sensitive to the 

various changes in autophagic flow, and offers an inexpensive evaluation of autophagy, as well 

as a useful augmentation to many of the more expensive methodologies that are currently in use. 
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2.1 Introduction 

Cellular stress in Saccharomyces cerevisiae induces a variety of responses, which often 

include the recycling of used and damaged cellular components to provide the metabolic and 

structural building blocks for the generation and maintenance of viable cellular organelles. 

Predominant among the different mechanisms that promote the re-utilization of these cellular 

components is autophagy, a “self-eating”, self-regulating pathway designed to promote the 

organized movement of intracellular materials (marked for degradation) through a series of steps 

to promote their ultimate degradation in the lysosome (1). As such, autophagy has been shown to 

be an essential cellular response against a number of cellular stressors such as nitrogen depletion 

(2), starvation (3), and cellular damage resulting from mis-folded proteins (4), and has been 

found to play a critical role in counteracting the cellular mechanisms of apoptosis -a “self-

killing” programme (5).  

 

The autophagic pathway in S. cerevisiae has been well studied since it was first 

investigated in S. cerevisiae (6).  Stress induction of the pathway triggers the sequestration of 

cellular components from the cytoplasm to the vacuoles via the CVT (cytoplasm to vacuole 

targeting) pathway (7, 8). Briefly, this cascade involves the aggregation of precursor vacuolar 

hydrolases aminopeptidase I (prApe1), along with intracellular contents, which associate with 

the single membrane vesicle called pre-autophagosomal structure (PAS). PAS further engulfs the 

cellular components to form a double membrane autophagosome. The maturation of this 

structure from PAS to autophagosome involves the activity of a series of autophagic proteins 

(Fig. 16): Atg4p, a cysteine protease cleaves Atg8p to expose its C-terminal glycine residue (9), 

which promotes its conjugation with Atg7p, and further modification -the acquisition of a  
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Figure 16: Atg4, Atg6 and Atg8 are involved in the maturation of autophagosome 
biosynthesis (12). 
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phosphatidylethanolamine (PE) group- through the actions of Atg3p and the Atg5p-Atg12p 

complex. The lipidized Atg8-PE (corresponding to the LC3-II in mammalian cells) is 

subsequently anchored to the PAS phagophore. This structure, along with a dimer of the Atg5p-

Atg12p-Atg16p complex, is essential to enlarge the PAS and facilitate the maturation of the 

autophagosome (10, 11). The autophagic process is complete when the mature autophagosome 

fuses with the lysosome, and its contents are ultimately lysed by lysosomal enzyme and the 

mature prApe1p (mApe1p). Following the fusion of the autophagosome with the lysosome, the 

lipidized Atg8-PE is then recycled by the removal of the PE ligand, a task that is accomplished 

by the same protease that initiated the original activation of Atg8p, Atg4p. 

 

The autophagic process has been shown to be highly susceptible to a number of 

chemicals and drugs, many of which are known to target proteins that regulate protein kinase 

A/cAMP signaling pathways (13-15). In this regard, rapamycin (sirolimus), an 

immunosuppressant drug that is commonly used for patients who have undergone an organ 

transplant, has been used with considerable effect to study autophagy (5, 16).  Rapamycin is able 

to induce the autophagic response in yeast, and other systems, by inhibiting the kinase activity of 

the central signalling protein, Tor, which (among other things) modulates the inactivation of 

Atg13p. In so doing, rapamycin effectively maintains Atg13p in a hyper-phosphorylated state, 

allowing it to complex with Atg1p and Atg17p and trigger the vesicle nucleation of pre-

autophagic structures (PAS), and ultimately augment the maturation of resulting 

autophagosomes (Fig. 17A) (5).  
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(A)                                  (C) 

   

 

 

(B) 

 

Figure 17: Rapamycin induces autophagy.  

(A) A schematic showing the mechanism through which rapamycin is thought to induce 
autophagy in S. cerevisae. By inhibiting the action of the Tor1 subunit in the TORC1 complex 
rapamycin maintains Atg13 in a hypo-phosphorylated condition, which is able to recruit Atg1p 
and other downstream cofactors to initiate PAS organization, resulting in autophagy. (B) A series 
of plots showing the forward scatter (FSC) and side scatter (SSC) disposition of a population of 
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S. cerevisiae BY4741 wild type strain following with different concentrations of rapamycin and 
cytometric analysis on BD FortessaTM flow cytometer. Gating was set according to the gravity 
center of population. The quadrant is designated as Q1 (blue), Q2 (black), Q3 (orange) and Q4 
(green), which represent the population with high complexity, high cellular volume and 
complexity, low cellular volume and complexity, and high cellular volume, respectively. The 
quantitative analyses of these results are shown as histograms in Panel C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 

While an understanding of autophagy has proven to be an important aspect of 

characterizing various cellular responses to environmental insults, there remain only a few 

methods available that used to monitor the different aspects of the autophagic process. Among 

the most commonly used methods are image-based assays; transmission electron microscopy -

specifically designed to observe the formation of autophagosome or autophagic bodies directly 

(2), and fluorescence microscopy, in which fluorophores (such as monodansylcadaverine; 

MDC)(17)  and acridine orange (18)) are used to specifically label autophagosomes. While the 

EM images afford a detailed snap-shot of the autophagic activities within a cell, the set-up and 

image analysis protocols are not trivial. In contrast, the use of fluorescence is simpler.  However, 

a number of concerns have been raised as to the specificity of the fluorophores -with some 

indications that MDC and acridine orange, for example, have the potential to label other acidic 

organelles (mitochondria and lysosomes), resulting in a misrepresentation of the cellular 

events(16).  In addition to these image-based assays, molecular-probe assays have proven to give 

a more quantifiable determination of the different stages of the autophagic process. These 

techniques primarily serve to discern the levels of autophagic proteins, such as Atg8-PE and/or 

Atg8 (orthologs of LC3-I and LC3-II, respectively, in the autophagic pathway of mammalian 

cells). Higher ratios of Atg8-PE to Atg8 indicate that the autophagic flow has been induced since 

Atg8-PE is mainly found in cells harboring autophagosomes (19).  Even through the monitoring 

of critical autophagic proteins that have been immunolabelled has been commonly used, and is 

considered to be one of the more sensitive measures of autophagic flow, immuno- assays are 

time-consuming and highly labor-intensive since the crude forms of the tagged protein needs to 

be harvested from the treated cells. Moreover, the dynamic, temporal tracking of identical 
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populations of cells following different treatments is not feasible in these kinds of studies due to 

the requirement for the cells to be lysed. 

 

In this study, we propose a relatively rapid and convenient method for the quantification 

and dynamic assessment of autophagy using flow cytometry. We demonstrate that a sub 

population of yeast cells undergoes a marked increase in its cellular volume and complexity 

when exposed to minimal concentrations of rapamycin for only an hour or so. We further 

demonstrate, through cell sorting technology, that the heightened levels of cell volume and 

cellular complexity within this sub population are commensurate with increased autophagosome 

formation. Furthermore, in testing some of the limitations of this relatively simple assay we 

demonstrate its sensitivity and reliability for detecting the autophagic response in yeast cells, and 

that the method compares favourably to more standard assays for detecting autophagy; including 

the immuno-blot analysis of Atg8-PE / Atg8 ratios and fluorescent imaging. Accordingly, we 

propose that this flow cytometric-based assay for autophagy provides a rapid, yet sensitive 

alternative to many of the more labour intensive methods that are currently employed.  

 

2.2 Materials and Methods 

Cultures, Media, and Treatments 

Saccharomyces cerevisiae BY4741 parental wild type (MATα his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0) or isogenic autophagic mutants (atg4Δ, atg6Δ, and atg8Δ) were obtained from 

Euroscarf. The yeast cells were cultured in 5 mL YEPD broth [2 % (w/v) peptone (BD), 1 

% (w/v) yeast extract (BD) and 2 % (w/v) dextrose (Sigma-Aldrich)] overnight for seeding 

purpose, fol lowed by inoculating in 100 mL YEPD broth and incubated at 30 oC with 250 
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rpm shaking. The cells in early-log phase (OD600= 1.8 ~2) were harvested and exposed to 

various concentration (0.0~8.0 μg) of rapamycin (Sigma-Aldrich) to induce autophagy. When 

necessary, the cells were treated with 30 μM cadmium nitrate (Sigma-Aldrich) for 1 hour to 

induce apoptosis response, followed by a washing of the cells and a 3 hours post-incubation 

period to allow time for any subsequent apoptotic responses to unfold. 

 

Crude Protein Extraction 

20 mL of cell culture was harvested, washed and re-suspended in 200 μL lysis buffer 

containing 1 % (w/v) SDS, 8 M urea, 10 mM Tris-HCl, pH 6.8, 10 mM EDTA, and Protease 

Inhibitor Cocktail (Roche). The cells were lysed by mechanical disruption using 500 μm acid-

washed glass beads (Sigma-Aldrich). The cell debris was discarded, and the concentration of 

crude protein lysate was quantified by standardized, DC protein assays (BioRad) 

 

SDS-PAGE and Western Blot 

SDS-PAGE electrophoresis and Western blot techniques were applied to quantify the 

expression Atg8-PE / Atg8 ratio. 100 μg protein lysate dissolved in Laemmli buffer was 

denatured in boiled water, loaded on to a 15 % SDS-PAGE gel, and allowed to electrophoresis 

before being transferred to PVDF membrane (BioRad) by a routine electrical blotting protocol 

(20 volts for overnight). For primary probing, the customized Atg8 antiserum, harvested from 

rabbit (Abgent), was diluted 100 fold in PBS-0.1 % Tween-20 (PBS-T) with 5 % skim milk 

(EMD Biochemicals), followed by probing with anti-rabbit-IgG with HRP conjugation (Pierce) 

The image was developed by ECL Western Blot Substrate (Pierce) and detected by LAS-4000TM  
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chemiluminescence imager (GE Bioscience). The intensity was quantified by MultiGaugeTM  

version 2.3 software (FujiFilm). 

 

Flow Cytometry and Cell Sorting 

The untreated or treated cells were diluted 20-fold in YEPD medium. When necessary, 

the cells were stained with propidium iodine to quantify the population of cell death due to 

apoptosis or necrosis. The cell samples were then applied to a LSRFortessaTM cell analyzer (BD 

Biosciences) to quantify and differentiate the population percentage according to the cell volume 

and complexity, which are detected by forward and side scatter. When necessary, the non-

autophagic and autophagic populations were sorted and harvested by FACSAria IITM cell sorter 

(BD Biosciences) based on the gating of cell complexity. Approximately forty-million cells were 

harvested for each population analysis in order to obtain sufficient quantity of protein lysate for 

immunoblot analysis. 

 

2.3 Results 

Rapamycin treatment does not result in increased cytotoxicity 

In order to remove any concern that the levels of rapamycin used to induce autophagy 

could lead to cytotoxic events, such as apoptosis or necrosis, wild type S. cerevisiae were treated 

with varying concentrations of rapamycin (ranging from 0.0 ug to 8.0 μg) for up to 2 hours. After 

this time the cells were stained with propidium iodide (PI) to detect any apoptotic or necrotic 

effects of the drug (as per previous studies (20); Fig. 18). No anomalous increase in PI binding 

was detected, even following exposure to the highest concentration of rapamycin (8.0 μg).  These 

data indicate that rapamycin had no discernable cytotoxic effects over the range of  
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Figure 18: Rapamycin has no discernible cytotoxic effect on S. cerevisiae. 

S. cerevisiae BY4741 wild type strain were treated with different concentration of rapamycin as 
indicated. The samples were stained using propidium iodine and subjected to flow cytometry to 
count the percentage of apoptotic or necrotic population (P1) according to previous published 
procedures (20).  
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concentrations used under the experimental conditions that were being tested. These data also 

demonstrated that even the addition of 1.0 µg rapamycin caused a sub population of cells to 

exhibit significantly greater amounts of side scatter, which would be consistent with their 

undergoing an increase in autophagosomal activity (Fig. 17B and C).  

 

Increase in response to rapamycin associated with autophagy 

As rapamycin treatment has been shown to alter the cellular volume and complexity 

profiles of the wild-type cell population, we further tested whether or not rapamycin was also 

able to alter the Atg8-PE to Atg8 ratio in a similar way. The Atg8-PE/Atg8 increased in wild- 

type cells upon rapamycin treatment (Fig. 19A and B). To confirm that this change in Atg8-

PE/Atg8 was due to autophagic activity within the treated cells, the relative presence of Atg8-PE 

and Atg8 was also determined in two autophagic mutant strains, atg4Δ, atg6Δ, which had been 

treated in a similar way with rapamycin. The results depicted in Figure 19A and B show that the 

Atg8-PE to Atg8 ratio in these mutant background was significantly lower than their wild-type 

counterparts, indicating that the absence of either of these two, requisite autophagic genes 

abrogated the normal autophagic cellular response to the presence of rapamycin. 

 

The same cell samples, along with samples from the additional atg8Δ mutant strain 

(used as labelling controls in the previous experiment), were also assayed for changes in cellular 

complexity in an attempt to demonstrate changes in their population profiles upon rapamycin 

treatment. No changes were discerned (Fig. 20C and F).  Prior to treatment with rapamycin, the 

cytometric profile of cells demonstrated that the majority of cells in each strain were 

predominantly present in the lower left quadrant (Q3). 
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(A) 

 

(B) 

 

Figure 19: Atg8-PE to Atg-8 ratio was increased upon rapamycin treatment. 

(A) S. cerevisiae wild type and autophagic mutant atg4Δ, atg6Δ, and atg8Δ were untreated 
or treated by various concentration of rapamycin as indicated. Crude protein lysate was harvested 
and subjected to Western blot analysis by probing with anti-Atg8 serum. (B) Unlike wild-type 
cells, none of the autophagic mutants showed any significant increase in Atg8-PE / Atg8 upon 
treatment with rapamycin. The results were quantified, with the data being normalized to the 
Atg8-PE to Atg8 ratios of untreated cells. 
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Figure 20: Population heterogeneity was absent in autophagic mutants upon rapamycin 
treatment.  
 
S. cerevisiae autophagic mutant strains atg4Δ (Panel A), atg6Δ (Panel B) and atg8Δ 
(Panel C) were exposed to a series of different concentrations of rapamycin, as indicated. The 
samples were subjected to cytometric analysis using a BD FortessaTM flow cytometry to 
determine the degree of forward (FSC) and side (SSC) scatter. Gating was set according to the 
gravity center of population. The quadrant is designated as Q1 (blue), Q2 (black), Q3 (orange) 
and Q4 (green), which represent the population with high complexity, high cellular volume and 
complexity, low cellular volume and complexity, and high cellular volume, respectively. 
Rapamycin had only negligible sub-effects on all autophagic mutants atg4Δ, atg6Δ and 
atg8Δ (Panel D, E and F, respectively) in comparison to the comparing with wild type (Fig. 
17C).  
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Upon addition of rapamycin, however, a number of cells within a wild type population of cells 

shifted noticeably in to the upper and lower right quadrants (Q2 and Q4, respectively), 

presumably as a result of their higher cellular complexity and volume.  Moreover, in every 

instance the population of cells being analyzed for SSC (a measure of cell complexity) showed a 

distinctive “twin peak” profile, which appeared to be diagnostic for autophagic activity with the 

cell.  No additional peaks were apparent in similar studies undertaken on mutant cell populations 

where, for the most part, cells remained within the range of the normal, baseline cells (Q3) 

following rapamycin treatment (Fig. 20D, E, and F).  

 

As an important technical aside, the separation of the cells into the discernable peaks (as 

represented in histograms of FSC and SSC Fig. 17B and Fig. 19) varies from cytometer to 

cytometer and even when using different sources of rapamycin, even yet, different lot numbers 

of rapamycin from the same company (data not shown). What does not appear to change, 

however, are the different sub populations into which the cells begin to separate over time. The 

results shown here are derived from the LSRFortessaTM cell cytometer (BD Biosciences). 

 

Heterogeneity of rapamycin-treated cells correlates well with subpopulations undergoing 

autophagy 

If increased side scatter (SSC) is indeed an indication of increased cellular complexity, 

and rapamycin-induced autophagy results in the formation of a discernable sub population of 

cells that exhibits a significant increase in side scatter, it is reasonable to conclude that the sub 

population of cells with the greater complexity (SSC) should represent the population of cells 

experiencing autophagy. To test this argument directly, wild-type cells that had been treated with 
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4.0 µg rapamycin for 2 hours were sorted, using a FACSAria IITM cell sorter (BD Biosciences) 

as a function of their degree of side scatter, giving rise to two pools of cells that are essentially 

equivalent to Q1/Q3 and Q2/Q4 in Fig. 17C.  Each of these pools was then assayed for the 

presence of Atg8 and Atg8-PE. Fig. 21A depicts the immunoblot of these cells, along with those 

of the untreated and treated control samples, and shows that the preponderance of sorted cells 

exhibiting high levels of side scatter also possess correspondingly higher levels of Atg8-PE, 

while sorted cells that exhibited significantly lower levels of side scatter showed much lower 

levels of Atg8-PE and demonstrate ratios of Atg8 to Atg8-PE which approximate those of the 

untreated control samples (Fig. 21B). These results strongly support our contention that the 

degree of side scatter is an effective determinant of autophagic activity in S. cerevisiae. 

 

New cytometric-based method is dynamic, but cannot discriminate between autophagy and 

apoptosis 

To investigate whether the population shift in cellular volume/complexity and 

heterogeneity might prove to be a sensitive, potential marker for the dynamic evaluation of 

autophagic flow a time course study with 4.0 μg rapamycin exposure was set-up. The rapamycin-

treated sample was harvested at a series of time points and these cells applied to cytometric-

based analysis for quantification. With time processing, the Q3 quadrant representing the 

baseline was gradually decreased, whereas Q2, for high cellular complexity and volume, 

increased; meanwhile, Q1 and Q4 remained constantly (Fig. 22A). The gradual gain in cells 

within Q2 reflects a population shift from Q3. To demonstrate further that the cytometric-based 

method is able to differentiate autophagy from other cellular processes that also lead to enhanced 

cellular density, wild-type cells were exposed to varying levels of rapamycin as well as to the  
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Figure 21: Population with higher complexity upon rapamycin treatment represents 
autophagic population.  
 
Wild type yeast cells were treated with 4.0 μg rapamycin for 2 hours to induce autophagy. Cells 
were harvested and a portion of these cells were immediately sorted using a BD AriaTM cell 
sorter whereby the autophagic and non-autophagic populations of cells were separated as a 
function of SSC (cell complexity). The whole cells and sorted cells were lysed and subsequently 
analyzed for the Atg8-PE to Atg8 ratios. The immunoblot image is shown in the top panel, along 
with the same extracts treated with anti-TDH3 (GAPDH) as a blotting loading control. The 
results were quantified (lower panel), with the data being normalized to the Atg8-PE to Atg8 
ratios of untreated cells. 
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Figure 22: Comparison of the Cytometric-based technique with other method to determine 
temporal changes in autophagic activity as well as to discriminate between autophagy and 
metal-induced apoptosis.   
 
(A) S. cerevisiae BY4741 wild-type cells were treated with 4.0 μg rapamycin over time for up to 
180 min. Samples were harvested at 15 min intervals and subjected to cytometric-based analysis, 
as defined in Materials and Methods section. For each time point, the population of cells 
corresponding to the sub populations defined in Figure 17B were counted and shown. (B)  S. 
cerevisiae BY4741 wild-type cells were assayed for the ability to exhibit rapamycin-induced 
autophagy and heavy metal induced apoptosis following treatment with 4.0 μg rapamycin for 2 
hour. (rapa2), 30 μM Cd(NO3)2 for 1 hour followed by a 3 hours refractory period (as defined in 
Materials and Methods; Cd 1+3), and 30 μM Cd(NO3)2 for 1 hour, followed by a 3 hours 
refractory period, and then followed by treatment with 4.0 μg rapamycin for 2 hours [(Cd1+3) 
then (rapa2)].  All cells were harvested and assayed for autophagic activity by immunoblot 
(lightly shaded histograms) and flow cytometric-based method (shade squares). The 
corresponding apoptotic population (AP) were also assayed by addition of PI to the cells was 
indicated below x-axis as percentage.(20)  
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heavy metal, cadmium, which we have previously shown is able to induce apoptosis in S. 

cerevisiae within similar time constraints (20). Yeast cells were either left untreated, treated with 

rapamycin alone, or treated with 30 µM cadmium nitrate alone (Fig. 22B). In addition, wild-type 

cells were treated with cadmium followed by rapamycin (as described in Materials and Methods, 

Fig. 22B) to determine whether cells that had already triggered a metal-induced apoptotic 

response could also undergo autophagy, and if so, could the cytometric method be able to 

differentiate between the two.  Autophagic flow in all cells was assessed using both immuno-blot 

assays for the relative presence of Atg8-PE as well flow cytometry. Upon treatment with 

rapamycin alone the Atg8-PE /Atg8 was shown to increase approximately 5-fold when compared 

to that of untreated cells (Fig. 22 lightly shaded histograms). Upon treatment of cells with 

cadmium, however, it was apparent that the cytometric method was unable to differentiate 

between increased cellular complexity resulting from apoptotic and autophagic cellular 

responses, even though the  Atg8-PE  to Atg8 ratio clearly indicated that autophagy was not 

taking place at any time following heavy metal exposure.  

 

2.4 Discussion 

The autophagic process describes a series of complex events that otherwise occur (albeit 

at lower levels) as a function of regular, cellular activity; employing any number of enzymes and 

protein derivatives that are already part of the normal cellular function. It is the enhanced use of 

these enzymes in a coordinated increase in the formation of autophagosomes that defines the 

process, and which signals the autophagic cellular response to a variety of cellular insults. As 

such, there are few unique aspects to autophagy -other than perhaps the relative increase in the 

levels of Atg8-PE- that can definitively be used to characterize discernible changes in the 

autophagic process and thus used as specific markers. The cytometric approach that we have 
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tested and present in this report is one of the few methods that utilizes an effective detection of  

one of the more direct outcomes of the process itself, a responsive, temporal increase in cellular 

complexity and size. While the cytometric method could not adequately differentiate between 

cellular increases in complexity due to apoptosis or necrosis, for example, it is non-invasive, and 

these cellular responses (unlike autophagy) do have readily available, specific mechanisms to 

discriminate their activities. As such, a combination of simple cytometry can only augment the 

use of these specialized markers for the more specific determination of the different cellular 

responses. The method clearly comes into its own, however, when autophagy has already been 

shown to be the cellular response under scrutiny. The method provides a relatively rapid, non-

invasive and dynamic assessment of the autophagic process that can be used by itself, or in 

combination with other more invasive techniques, to determine (within 30 minutes of induction) 

the extent to which different cells are undergoing autophagy. It is for this reason that we have 

outlined some of the parameters by which this method can be used.  
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CHAPTER 3. 

RESCUE OR KILL? THE DUPLICITOUS ROLES OF AUTOPHAGY IN CADMIUM-

INDUCED APOPTOSIS IN Saccharomyces cerevisiae 

 

Pei-Ju Chin 

 

Abstract 

Autophagy is a conserved cellular mechanism to breakdown unwanted cytosolic 

materials. It starts with the formation of membrane vesicles, or preautophagosome structures 

(PAS), which engulf the cytosolic contents to be digested. The mature, double-membrane 

structures, so-called autophagosomes, then fuse with lysosomes to facilitate the degradation of 

engulfed contents; consequently, the lysed material is made available for recycling and the 

generation of new catabolites. Autophagy is induced in the cell under stressed conditions such as 

nutrient deprivation and the accumulation of dysfunctional proteins. As a result, it can be 

considered to be a protective mechanism. However, there is considerable debate as to the precise 

role of autophagy, especially when autophagic activity has been shown to correlate with 

programmed cell death, or apoptosis. Herein, we propose that the initial phase of autophagy is 

crucial in determining its duplicitous role to synergize or antagonize apoptosis. Induction of 

autophagy prior to cadmium-induced apoptosis, the apoptotic population was diminished. 

Induction of autophagy after apoptosis has already been initiated, however, serves only to 

facilitate apoptotic potential. Accordingly, we demonstrate that the timing of autophagic 

induction is a key factor to decide the role it plays.  
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3.1 Introduction 

Autophagy, also known as “self-eating” process, is necessary to keep the cellular 

homeostasis upon the unsustainable resources surrounding the environment. In the nutrient-

restrained condition, cells ensure their survival by degrading the redundant cellular substances 

such as exceed organelles or unwanted metabolites, following by recycling the essential blocks 

for the host to deal with such stringent environment like starvation (1), cellular damage resulting 

from mis-folded protein (2), or nitrogen depletion (3).     

 

Autophagy is initiated within the cytoplasm to vacuole targeting (CVT) pathway (4, 5). 

Firstly, the aggregation of precursor vacuolar hydrolases aminopeptidase I (prApe1) associated 

with the double-membrane, nucleation of pre-autophagosomal structure (PAS) was formed, 

following by the engulfment of redundant substances tended to be digested. The maturation of 

autophagosomes from PAS requires an ubiquitin-like conjugation system associated with a series 

of autophagic proteins to facilitate the conjugation of Atg8 and phosphatidylethanolamine (PE) 

(Chapter 2, Fig. 16).  Because Atg8-PE-anchored phagophore membranes are crucial for the 

maturation of autophagosome, this core machinery starts with the cleavage of the C-terminal 

glycine residue of Atg8p by Atg4p, a cysteine protease (6). The exposed glycine residue is 

conjugated by Atg7p in order to acquire the PE group through the activities of Atg3p and 

Atg12p-Atg5p complex (7). The lipidized Atg8-PE is subsequently anchored to the PAS 

phagophore. This apparatus, along with the dimerization of Atg5-Atg12-Atg16 complex, is 

essential to achieve the maturation of autophagosome and the docking with the lysosome 

machinery to form an autophagolysosome (8-10). Consequently, the intraphagosomal contents 

are lysed by the autophagolysosomal enzymes and matured prApe1 (mApe1) in order to 
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complete the autophagic cycle. The membrane-anchored Atg8-PE is dissociated from the 

phagophore, removed with PE ligand, and recycled by the same protease which accomplishes the 

activation of Atg8p in the initial step, Atg4p. 

 

Since autophagy is associated with the recycling of non-useful metabolites, as well as 

eliminating damaged proteins or organelles, it is commonly considered to be a survival response 

to overcome stresses and facilitate the cell-surviving mechanisms. By using mouse or fruit fly as 

model, autophagy has also been shown to remove aggregated huntingtin, causing the 

neurodegenerative effects (11). The cytoprotective role of autophagy can be achieved as well by 

limiting the mass of ROS-generating organelles such as mitochondria, and consequently, the 

apoptotic response is ceased upon its induction (12). The study even suggests that autophagy 

even works in genomic level to resolve DNA-damage foci, and helps to stabilize chromosomes 

(13). In the scenario that the unfolded protein response (UPR) pathway is abolished resulting 

from XBP-1 deficiency, the increased autophagy activity compensates for the clearance of 

mutant superoxide dismutase-1 (SOD1) and prevents the progress of amyotrophic lateral 

sclerosis in neuronal cells (14). Autophagy is also reported to be associated with the prolonged 

lifespan of certain organisms: rapamycin-induced autophagy has been shown to extend the 

chronological life span of yeast cells (15). Upon caloric restriction, orthologues of yeast protein 

Atg6p and Atg7p in Caenorhabditis elegans have also been shown to be highly associated with 

the longevity. Attenuation of the synthesis of these autophagic proteins significantly reduces the 

life span of C. elegans under otherwise restricted dietary conditions (16).  
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Even so, there are different cellular settings that, in different scenarios, can also lead to 

autophagy-associated cell death, or Type-II cell death. Autophagic proteins have been reported to 

facilitate the neural apoptosis response in the case of lysosome dysfunction (17).  In this mode, 

accumulation of autophagic vacuoles, resulting from the dysfunction of lysosome formation, 

augments caspase 3-like activity and the apoptotic response.  Type-II cell death can be inhibited 

by introducing Atg7 shRNA, but not Beclin-1 shRNA, which suggests that Atg7 plays a unique, 

pro-apoptotic role in the cell death caused by the deficiency of lysosome formation. Curiously, 

under various conditions of stress or starvation, Atg7, along with Beclin-1, have also been shown 

to be cytoprotective. As the same protein (Atg7) reacts differently under differing conditions of 

stress, which shows that the duplicitous role of autophagy would be determined by the different 

types of stimuli. In addition, while caspase activity and related cell death is inhibited by the 

substrate, autophagy is shown to take over and contribute to the demise of the cell by the 

selective degradation of catalase, which eventually leads to the accumulation of reactive oxygen 

species (ROS) and apoptosis (18).  

 

Crosstalk between autophagy and apoptosis has also been intensively investigated in 

higher eukaryotic cells. Among some of the proposed mediators of such pathways in higher 

eukaryotes are intercommunication of the apoptosis-regulatory proteins of Bcl-2 family of 

proteins, which is notably absent in yeast. Anti-apoptotic Bcl-2 or Bcl-XL (19), and pro-

apoptotic Bax (20) have been shown to inhibit autophagic activities in these higher eukaryotes by 

directly interacting with the Bcl-2 Homology 3 (BH3) domain of Beclin-1, a yeast Atg6p 

orthologue. Autophagic activity can be easily resumed following the dissociation of Bcl-2 from 

Beclin-1, resulting in the c-Jun N-terminal kinase (JNK) dependent phosphorylation of Bcl-2 
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(19). Alternatively, autophagic proteins harboring BH3 domain have also been shown to possess 

some anti- and/or pro-apoptotic roles: Atg12, beyond its role as a conjugation enzyme involved 

in the maturation of the autophagosome, also shows some pro-apoptotic potential by binding 

with Bcl-2 through its C-terminal BH3 domain. As a result, anti-apoptotic activity of Bcl-2 is 

decreased (21). Atg4D (22) and Atg6 (20), two other autophagosomal-initiating enzymes which 

encode BH3 domains in their C-termini, also exhibit pro-apoptotic potential by facilitating the 

release of cytochrome c from mitochondria. Intriguingly, in unicellular eukaryotes such as, 

Saccharomyces cerevisiae, which can undergo both autophagic and apoptotic responses, there is 

a notable absence of any Bcl-2 family of proteins and the BH-like domain within Atg6p is not 

apparent. As such, any crosstalk between autophagy and apoptosis in unicellular yeast must be 

mediated through some alternative protein activities and interactions. 

  

In this study, we demonstrate that the autophagic proteins in yeast are indeed required for 

the activation of Yeast Caspase 1 (Yca1p), which is the sole caspase-like protein and is 

responsible for initiating any caspase-dependent apoptotic programmed cell death in S. 

cerevisiae.  In addition, the role of autophagy as either a rescue or killing pathway in yeast is 

addressed. In particular we have found that the degree of heavy metal-induced apoptotic 

response in yeast is highly responsive to whether autophagy or apoptosis is initiated first. To this 

end, preliminary results in our laboratory suggest that cadmium-induced apoptotic response is 

found to be severely compromised under growth conditions in which the autophagic pathway 

had first been activated. Conversely, autophagy further augmented the Cd-induced apoptotic 

response once Cd had already initiated an apoptotic response. 
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3.2 Materials and Methods 

Cultures, Media, and Treatments  

Saccharomyces cerevisiae BY4741 parental Wild Type (MATα his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0) or isogenic autophagic mutants (yca1Δ, atg4Δ, atg6Δ and atg8Δ) were 

obtained from Euroscarf. The yeast cells were cultured in 5mL YEPD broth [2 % (w/v) 

peptone (BD), 1 % (w/v) yeast extract (BD) and 2 % (w/v) dextrose (Sigma-Aldrich)] overnight 

for seeding purpose, fo l lowed by inoculating in 100mL YEPD broth and incubated at 

30oC with 250 rpm shaking. The cells in early-log phase (OD600= 1.8 ~2.5) were harvested 

and exposed to 4 μg of rapamycin, 30 μM cadmium nitrate or 8 mM copper nitrate (Sigma-

Aldrich) to induce autophagy or  apoptosis, respectively.  

 

Total RNA Extraction 

Saccharomyces cerevisiae BY4741 strain at early log phase was untreated or treated by 

30 μM cadmium nitrate for 0, 30 and 60 minutes before being harvested. The cell pellet was 

stored at -80 oC before the mechanical disruption. The total RNA was obtained by Qiagen 

RNeasyTM Mini Kit according to the manufacturer’s protocol. The total RNA crude extract was 

digested by DNase I (Qiagen) at 37 oC for 30 minutes for genomic DNA removal, followed by 

the inactivation at 65 oC for 10 minutes and spin column cleanup. Absence of genomic DNA 

contamination was confirmed by performing regular PCR, with the Saccharomyces cerevisiae 

BY4741 genomic DNA served as the positive control. Briefly, 2 μL total RNA was added to the 

PCR mixture containing 2 μL 10x PCR buffer, 1 μL 10 mM dNTP, 1 μL 30 μM forward and 

reverse primer for Yeast Caspase 1 (YCA1), 0.5 μL Taq polymerase (Qiagen) and 12.5 μL 

nuclease-free water (Ambion), following by the thermocycling protocol: 94 oC, 30 seconds for 
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denature, 30 cycles of 30 seconds at 94 oC, 30 seconds at 55 oC and 1 minute at 72 oC. The 

reaction mixture was then incubated at 72 oC for 10 minutes and stored at 4 oC. The amplicon 

was applied to 2.5 % (w/v) agarose gel for electrophoresis.  

 

cDNA Microarray Analysis 

The Affymetrix Yeast Genome 2.0TM Array was applied for investigating the 

expressional profile of the unexposed (0 min exposure or control) and Cd-exposed (30 and 60 

minutes exposure) yeast cell. Briefly, the total RNA was synthesized for the first strand cDNA 

by SuperScriptTM RT (Life Technologies), and the second strand cDNA by E. coli DNA 

polymerase I (Life Technologies). The double strand cDNA was cleaned up by Phase Lock Gels 

(PLG)-phenol/chloroform extraction and precipitated by ethanol. The cDNA pellet was re-

suspended in RNase-free water (Ambion), following by being transcribed to biotin-labeled 

cRNA by RNA Transcript Labeling Kit (Affymetrix). The labeled-cRNA was cleaned up and 

precipitated by isopropanol, and the concentration was determined in order to adjust the starting 

concentration of the fragmentation. The proper amount of cRNA was fragmented by 5x RNA 

fragmentation buffer containing 200 mM; pH 8.1 Tris-acetate (Sigma-Aldrich), 500 mM 

potassium acetate (Sigma-Aldrich) and 150 mM magnesium acetate (Sigma-Aldrich). The 

fragmented cRNA was mixed with 20x GeneChipTM Eukaryotic Hybridization Controls Kit 

(bioB, bioC, bioD and cre) (Affymetrix). The mixture was hybridized with the Yeast Genome 

2.0 Array Chip (Affymetrix) for 16 hours. The chip was washed and stained automatically by the 

Fluidics Station (Affymetrix) with the fluidics program according to Yeast Genome 2.0 Array 

manual. The raw data was processed by GeneSpringTM GX 7.3 software (Agilent) and Office 

Excel 2007 (Microsoft) by using β-actin as the normalization anchor. 
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Crude Protein Extraction 

20mL of the cell culture was harvested and washed by ice-cold deionized water. The 

cells were re-suspended in different lysis buffers according to the purpose afterward: For 

Western Blot probed with Atg8 antisera, the cells were lysed with 200μl lysis buffer containing 

1% (w/v) SDS, 8M urea, 10mM Tris-HCl, pH6.8, 10mM EDTA, and   Complete Protease 

Inhibitor Cocktail (Roche), whereas Buffer M (0.5% NP-40, 20mM HEPES (pH 7.4), 84 mM 

KCl, 10 mM MgCl2, 0.2 mM EDTA, 0.2 mM EGTA, and 1mM DTT) (23) was used for the 

case of Yca1-probed Western Blot.  The cells were lysed by mechanical disruption with 500 μm 

acid-washed glass beads (Sigma-Aldrich) for four, 30 seconds beating and cooling cycles. The 

cell debris was discarded, and the concentration of crude protein lysate was quantified by DC 

protein assay (BioRad). 

 

SDS-PAGE and Western Blot 

100 μg protein lysate dissolved in Laemmli Buffer was denatured in boiled water, loaded 

to 15% SDS-PAGE gel, run under 20V/cm, and transferred to PVDF membrane (BioRad) by 

electrical blotting (20 volts for overnight). For primary probing, the customized Atg8 (Abgent) or 

Yca1 (Genescript) antiserum harvested from rabbit was dilute by 100 folds in PBS with 0.1% 

Tween-20 (PBS-T), or 2,500 folds in TBS with 0.1% Tween-20 (TBS-T) with 5% skim milk 

(EMD Biochemicals), followed by probing with anti-rabbit-IgG with HRP conjugation (Pierce) 

The image was developed by ECL Western Blot Substrate (Pierce) and acquired by LAS-4000TM 

chemiluminescence imager (GE Bioscience). The intensity was quantified by MultiGauge TM 

version 2.3 software (FujiFilm). 
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Crude Preparation of Crude Autophagic Vacuole 

The protocol is modified from Cabrera, M et. al. (24). 100 mL of yeast culture was 

harvested and washed by ice-cold deionized water twice. The cell pellet was re-suspended in 2 

mL pretreatment buffer (50 mM Tris, pH 7.5 and 30 mM DTT) and incubated at 30 oC for 15 

minutes. The cells were span down, re-suspended in spheroplast buffer (20 mM potassium 

phosphate; pH 7.4, 1.2 M sorbitol, 20 mg 20T zymolyase) and incubated at 30  oC for 2 hours. 

The cell wall breakdown was confirmed by mixing 4 µL of cells with 4 µL deionized water or 1 

% SDS on a glass slide. Ghost images under the microscope represent the progress of cell wall 

lysis. The spheroplasts were harvested by centrifuge at 4 oC and 5,380 xg for 3 minutes. The 

spheroplasts were gently re-suspended in PS buffer (10 mM PIPES/KOH; pH 6.8 and 200 mM 

sorbitol) containing 15 % Ficoll (w/v). And 200 µL PS buffer with 0.4 mg/mL DEAD-dextran 

was added to lyse the spheroplasts. The mixture was then incubated on ice for 5 minutes, 

followed by heat shock in 30 oC  water bath for 2 minutes with gentle mixing at least twice. A 

cold shock was applied by placing the tube back on ice for 5 minutes. The breakdown 

spheroplasts (≒5 mL) were transferred to SW 41 tube (Beckman Coulter), and the step gradient 

was formed by slowly adding 2.5 mL of 8 % Ficoll in PS buffer, following by 2.5 mL of 4% 

Ficoll in PS buffer. Finally, the top of the gradient was covered with 2.5 mL PS buffer without 

Ficoll. Bubbles should be avoided during the entire stacking process. The tubes were placed in 

SW41 swing buckets and centrifuged at 100,000 xg at 4 oC for 90 minutes. The white band 

stacked between 0 % to 4 % Ficoll layer represents crude autophagic vacuoles. The vacuoles 

were harvest by centrifuging the harvested fraction at 110,000 xg at 4 oC for 30 minutes. The 

pellet was re-suspended in SUTEB buffer (1% (w/v) SDS, 8M urea, 10 mM Tris; pH 6.8, 10 M 

EDTA and 0.01 % (w/v) bromophenol blue) and subjected to SDS-PAGE analysis. 
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Quantification of Apoptotic Population 

The harvested yeast cells were 20X-diluted in YEPD medium and stained by propidium 

iodine (ImmunoChemistry Technologies) for labeling the cells losing membrane integrity, which 

represents the population undergoing apoptosis. The plausible event of necrosis was ruled out 

under the control of exposure duration and concentration (25). The stained cells were subjected to 

BD Fortessa TM  cytometry with PE-Y/GA fluorophore filter. 

 

Monodansylcadaverine Staining for Autophagic Cells 

Autophagic staining of cells was performed according to the procedure previously 

described. Briefly, 200 μL treated culture was harvested and washed in PBS. The cells were re-

suspended in PBS with 0.1 mM monodansylcadaverine (MDC) and incubated for 10 minutes at 

25 °C in the dark. Stained cells were washed in PBS four times to remove exceeding dye residue, 

and immediately observed under Zeiss Axioimager M2 fluorescent microscope with DAPI filter. 

 

Expression and purification of yeast Yca1p and Atg4p in E. coli 

The Yca1 and Atg4 coding sequences were amplified and incorporated with BglII or 

HindIII cutting sequences by using following primers: BglIIYCA1-Forward: GCA-

AGATCTGCATGTATCCAGGTAGTGGA. HindIIIYCA1-Reverse: CAGAAGCTT-

CTACATAATAAATTGCAGATTTACG. BglIIATG4-Forward: GCAAGATCTGCAT-

GCAGAGGTGGCTAC. HindIIIATG4-Reverse: CAGAAGCTTCTAGCATTTTTCAT-

CAATAGGACTG. The amplified fragments were inserted into pBAD-HisA plasmid vector with 

E. coli TOP10 as a host (Invitrogen). The expression was induced by LB medium containing 

0.0002% L-arabinose (Sigma-Aldrich) by incubating at 16 °C for overnight. The induced E. coli 
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cells were washed and re-suspended in lysis buffer (25 mM Tris-HCl; pH 7.5, 20 % glycerol 

(v/v), 1 mM DTT, and CompleteTM protease inhibitors (Roche Applied Science)) and lyzed by 

French Press with 800 psi pressure under low speed. The His-tagged Yca1p and Atg4p were 

purified by passing the lysate through HisTALONTM Gravity Columns (Clontech Laboratories). 

The buffer exchange and desalting were done by AmiCONTM Ultra Centrifugal Filter (Millipore) 

with 50 KDa cutoff size. The presences of final product was confirmed by Western blot with 

Anti-Xpress (Invitrogen) or customized Yca1 (Genscript), Atg4 and Atg8 (Abgent) antibodies. 

 

Expression of Yeast Yca1p and Atg4p in Saccharomyces cerevisiae 

The Yca1p and Atg4p coding sequences were amplified and incorporated with EcoRI or 

XbaI cutting sequences by using following primers: EcoRIYCA1-Forward: GC-

AGAATTCTGATGTATCCAGGTAGTGGA. XbaIYCA1-Reverse: CAGTCTAGAC-

TACATAATAAATTGCAGATTTACG. EcoRIATG4-Forward: GCAGAATTCTGATG-

CAGAGGTGGCTAC. XbaIATG4-Reverse: CAGTCTAGACTAGCATTTTTCATCAA-

TAGGACTG. Amplified fragments were inserted into pYES2-NT.A plasmid vector with E. coli 

DH5α as the host (Invitrogen). Plasmid DNA from the clones containing inserts was purified and 

transformed into S. cerevisiae BY4741 wild-type, yca1Δ or atg4Δ mutant according to the 

purpose. Briefly, the yeast competent cells were prepared by harvesting the overnight-cultured 

yeast cells which were diluted by YEPD medium to OD 600 = 0.4 and incubated for additional 2-

4 hours in YEPD medium. The cells were washed by 40 mL of 1X TE buffer (10mM Tris; pH 

7.5, 1 mM EDTA), and re-suspended in 2 mL of 1X LiAc/0.5X TE buffer (100 mM LiAc; pH 

7.5, 5 mM Tris-HCl; pH7.5, 0.5 mM EDTA). The cells were incubated at room temperature for 

10 minutes. Each transformation reaction contains 50 μL of cell re-suspension from the previous 
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step, 350 μL of 1X LiAc/40% (v/v) PEG-3,350/1X TE, 500 ng of pYES2-NT.A plasmid vector 

and 50 μg of denatured sheared salmon sperm DNA (Sigma-Aldrich). The mixture was incubated 

at 30 oC for 30 minutes, and then 44 μL of DMSO was added. Heat-shock was performed by 

incubating the mixture at 42 oC for 7 minutes. The cell pellet was harvested, washed by 1 mL of 

1X TE buffer and re-suspended in 100 μL of 1X TE buffer. The cell re-suspension was poured 

on SC dextrose plate without uracil for selecting transformed cells compensated for uracil 

auxotroph. 

  

Expression and Purification of His-tagged Atg4 and Yca1 in Saccharomyces cerevisiae 

Following selection for uracil autotrophy, candidate clones were grown in SC Ura- 

dextrose medium for overnight. Cells were washed by 5 mL of SC Ura- galactose medium twice 

and diluted in SC Ura- galactose medium until OD 600 reaches 0.4. Cells were incubated at 30 

oC, 250 rpm shaking for 8 to 16 hours for the induction. The induced cells were washed twice by 

ice-cold de-ionized water and lysed by mechanical disruption with 500 μm acid-washed glass 

bead (Sigma-Aldrich) with lysis buffer (50 mM sodium phosphate; pH7.4, 1 mM EDTA, 5 % 

(v/v) glycerol and CompleteTM Protease Inhibitors without EDTA (Roche Applied Science)). The 

soluble lysate was harvested by 20,000 xg centrifuge at 4 oC for 10 minutes. The His-tagged 

Yca1 and Atg4 protein were purified by either passing the lysate through HisTALONTM Gravity 

Columns (Clontech) or performing batch purification by HisPurTM Ni-NTA Superflow Agarose 

(Thermo Scientific) according to the manufacture protocol. The buffer exchange and desalting 

were done by using AmiCON Ultra Centrifugal Filter with 50 KDa cutoff size (Millipore). The 

presences of final product was confirmed by Western blot with Anti-Xpress (Invitrogen) or 

customized Yca1 (Genscript) and Atg4 (Abgent) antibodies. 
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Caspase activity assay 

For each assay, 2 µL Protein lysate was added to caspase assay buffer containing 100 mM 

HEPES; pH 7.9, 100 mM NaCl, 0.1 % (w/v) CHAPS, 10 mM DTT; 10% (v/v) glycerol, 1 mM 

EDTA, 2 mM Ac-IETD-Amc (caspase-8 like) or Ac-DEVD-Amc (caspase-3,7 like) substrate 

(Enzo Life Sciences). The emission from cleaved substrate representing activated caspase was 

measured by VectorTM multicolor plate reader (Perkin Elmer) with 2 hours duration. The caspase 

activity was determined by the increasing slope of fluorochrome. 

 

3.3 Results 

E. coli-expressed Atg4p shows no caspase activities in vitro  

Our previous hypothesis claims that Atg4p, a cysteine protease, is an Yca1 activator since Yca1 

activity was abated in atg4Δ mutant. Accordingly, ATG4 and YCA1 was cloned and purified to 

assay the caspase-like activities. E. coli-expressed Atg4p and Yca1p was expressed and purified 

by the methods described above, and the expression was confirmed by Western blot with anti-

Xpress antibody (Fig. 23A).  E. coli-expressed Atg4 shows unexpected molecular weight (75 

KDa instead of 56KDa). Even so, the purified Atg4 was tested for IETD cleavage activity. 

Comparing with the empty vector and wild type yeast protein lysate harvested from Cd-induced 

cells as negative and positive control, respectively, E. coli-expressed Atg4 showed insignificant 

difference from negative control meaning that E. coli-expressed Atg4 has no IETD cleavage 

activity in vitro (Fig. 23B). Whether Atg4p is necessary to activate or cleave Yca1p was tested as 

well: By mixing the constant E. coli-expressed Yca1p with the E. coli-expressed Atg4 

concentration in vitro, there was no cleaved fragment of Yca1p, which indicates that E. coli-

expressed Atg4 does not cleave Yca1, or vice versa, in vitro (Fig. 23C). 
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Figure 23: Purified Atg4p and cloned His-tag Atg4p exhibit neither caspase 8-like activity 
nor protease activity to cleave Yca1p. 
 
(A) The E. coli expressed Yca1p and Atg4p were confirmed by XpressTM -probed immunoblot. 
The induction was done by a series titration of arabinose in order to find the optimal condition of 
induction.  E. coli host harboring empty vector was served as a negative control. The expected 
size of expressed protein along with His-tag is shown. (B) E. coli harboring ATG4 construct (β) 
along with empty vector (α) was induced by various concentration of arabinose and harvested for 
the protein lysate for caspase 8-like (IETD) enzymatic activity assay. A series of E. coli-expressed 
Atg4, as well as the empty construct, shows no caspase 8-like activities in vitro, comparing with 
the positive activity in wild type yeast cell treated by Cd for 1 hour plus 3 hour post-incubation 
(+). (C) A series concentration (0.625, 1.25, 2.5, 5, and 10 µg) of Atg4p (expressed from E. coli) 
was co-incubated with a constant concentration (10 µg) of E. coli-expressed Yca1p, in vitro. No 
tentative fragmentation of Yca1p were apparent, indicating that Atg4p (when expressed in E. coli) 
has no Yca1p cleavage activity, and vice versa. (D) The different yeast strains were treated, and 
the protein lysates harvested and co-incubated as indicated to elucidate whether the mixture of 
atg4Δ and yca1Δ (Sample #7 and #10) were able to compensate for the loss of caspase-like 
activities that were absent in both mutants. The caspase-3,7-like activity was assayed and 
normalized by the activity of untreated wild-type (WT0). Atg4p may not be directly involved in 
the activation of Yca1p in vivo since the caspase-like activity of complementary groups (Sample 
#7 and #10) were not significant different from the negative control (Sample #3)  
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Since the prokaryotic expression system used for expressing eukaryotic proteins raises 

some concerns as to the appropriate synthesis of Atg4p (such as unexpected Atg4 molecular 

weight), it may be more appropriate to validate the interactions of proteins derived in vivo from 

Atg4p and Yca1p in yeast (Fig. 23D). The wild type, yca1Δ, atg4Δ, atg8Δ mutants were treated 

or untreated with Cd and harvested for the protein lysate. The protein lysate from Cd-treated 

atg4Δ and yca1Δ was mixed and assayed for caspase 3 (DEVD)-like activity. The rationale, for 

the use of these strains is based upon the idea that if Atg4p is essential for the Yca1p activation, 

mixing these two protein lysates should be able to complement for the absence of either Yca1p or 

Atg4p in the other, and would, therefore, restore the Yca1p activity given that atg4Δ and yca1Δ 

strains show no caspase 3-like activity (Fig. 24). Unfortunately the Yca1 activity in each of the 

different mixtures was too statistically varied to yield any statistically interpretable data, 

although it is interesting that the Yca1 activities in all cells (even those of Yca1 mutants was 

always higher than un-induced cells. 

 

 Autophagy-associated genes are required for heavy metal-induced apoptosis response  

Since E. coli-expressed Atg4p revealed no caspase-3,7 like activity, and was not able to cleaved 

E. coli-expressed Yca1 in vitro (Fig. 23), an alternative hypothesis was addressed that not only 

Atg4p alone, but the whole autophagic activity is critical for Yca1p activation since autophagy is 

a protein degradation process and the specific targeting property has been found in many studies 

(1, 9, 26, 27). In order to test this hypothesis, two additional autophagic mutants, atg6Δ and 

atg8Δ, were included in the analysis. Like Atg4p, these two proteins are responsible for the early 

process of autophagy pathway involved in the maturation of autophagosome. By knocking out 

these three proteins, the autophagy-specific protein degradation is ceased. Yet, by  taking atg6Δ  



103 

(A) 
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(B) 

 

 

Figure 24: A number of autophagic proteins are required for apoptotic responses in yeast 
cells. 
 
Apoptotic population of wild-type (wt), yca1Δ, atg4Δ, atg6Δ, and atg8Δ upon 1 hour 30 μM 
cadmium nitrate or 8mM copper nitrate treatment followed by 3 hours post-incubation (Cd 1+3 
and Cu 1+3, respectively). Apoptotic cells with disrupted membrane integrity were stained by 
propidium iodine and subjected for FACS analysis (A). The percentage of apoptotic cells (top 
right corner of each figure) indicates the PI-positive, or apoptotic population. (B) The same cells 
were treated, harvested, lysed and assayed for the presence of cleaved-Yca1p. Immunoblot with 
anti-GAPDH-Cter (lower blot in each assay) is used as the internal concentration control. 
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and atg8Δ mutants into account, they showed equivalent apoptotic population as atg4Δ mutant 

upon cadmium treatment instead of behaving like wild type or yca1Δ mutant (Fig. 24A). 

Moreover, like atg4Δ mutant treated by Cd, the cleaved-Yca1p was presented in neither atg6Δ 

nor atg8Δ mutants (Fig. 24B). Overall, it suggests that not only Atg4p, but also the integrant 

autophagy activity is required for Yca1p cleavage and activation. 

 

Autophagy-associated genes are induced in cadmium-induced apoptotic yeast cells 

Since initiation of autophagic proteins is required for Yca1p activation, we further 

performed microarray analyses to investigate the expression of autophagy-associated genes 

upon Cd exposure. Our previous study has shown that apoptosis-associated genes such as Yca1, 

an executor caspase in yeast, were induced in transcriptional level upon cadmium treatment 

(25). Similarly, autophagy-associated genes are significantly induced in wild-type cells upon 

Cd treatment, as exemplified by the 2-fold and 27-fold increase in transcriptional levels of 

ATG14 and ATG7, respectively (Fig. 25).  These findings further indicate that there is a 

significant interconnection between apoptosis and autophagy in S. cerevisiae. Nevertheless, the 

specific role of autophagy in the apoptotic response remains inconclusive (28).  
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Figure 25: The expression profile of autophagy gene cluster upon Cd treatment.  

The yeast cells were treated with 30 μM cadmium nitrate (Cd) for 0, 30 and 60 minutes and 
subjected to cDNA microarray analysis. The fold change was normalized by the intensity of 
obtained from the 0 time point, or untreated sample. Significantly, the genes involved in 
autophagy initiation such as ATG4, ATG6, ATG7 and ATG8 were highly induced upon Cd-
induced stresses. 
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Yca1p is localized, then modified in autophagosome  

Given that the Atg4p, Atg6p and Atg8p, which contribute to the initiation of 

autophagosome formation, are necessary for Yca1p activation, we then further tested odds that 

Yca1p would be modified inside autophagosome. After 24 hours Cu exposure, the co-

localization of Yca1p-GFP with MDC-stained acidic vacuoles, such as autophagosomes, was 

found by observing the yellow puncta representing the overlapped green and red signal (Fig. 

26A). To further confirm this finding, S. cerevisiae harboring c-terminus-tagged GFP in Yca1p 

(Yca1-GFP) was untreated or treated by cadmium for 1 hour, followed by 3 hour post- 

incubation, and the crude autophagic vacuoles were purified and subjected to Western Blot 

analysis. 

 

Three Ficoll layers; one between Ficoll 0%~4% (0~4%), another between 4%~8% 

(4~8%) and the third including the cell sediment (SD) were used to harvest proteins expressed 

from the YCA1-GFP strain as well as from the TDH3-GFP stains. The successful separation of 

proteins into each layer was confirmed by immunoblot analysis against Atg8 protein, which is 

involved in the initiation of autophagosome formation is, therefore, expected to be enriched in 

the autophagosome fractionation. The Yca1-GFP presents in autophagosomal fraction no matter 

whether the cells were exposed to Cu-induced stress or not (Fig. 26B), and the Yca1p-GFP and 

autophagosome co-localization appears to be Yca1p-specific, since no GFP signal was found in 

the fractionation of Ficoll 0~4% layer from the same treatment of S. cerevisiae harboring TDH3 

with c-terminus-tagged GFP (Fig. 26C). Interestingly, after Cu-treatment, Yca1p-GFP tended to 

release from the sedimentation layer (Fig. 26C), which indicates the solubility of Yca1p-GFP 

was increased after Cu treatment.   
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(B) 

 

 

 

 

 

(C) 

 

Figure 26: Yca1-GFP is presented in crude autophagic fractionation.  

(A) YCA1-GFP tagged yeast strain was treated by Cu, stained by MDC and imaged by 
fluorescent microscopy. The white arrow indicates the colocalization of Yca1p-GFP and acidic 
vacuole, which is presumable to be autophagosomes.  (B) YCA1-GFP tagged yeast strain was 
treated or untreated by Cu and subjected to the Ficoll fractionation.  Four layers of Ficoll 
gradients as well as sedimentary debris (SD) were harvested as indicated, and the crude 
autophagic vacuoles are expected in 0~4% Ficoll fractionation. S. cerevisiae harboring TDH3 
with c-terminal-tagged GFP was served as a control to exclude the possibility that GFP results in 
the co-localization. The quantification result of the blot, which is normalized by the intensity of 
Ficoll 0-4% signal, is shown in (C). 
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The timing of autophagy induction is crucial in determining the role of autophagy/apoptosis 

in metal-stressed cells.  

We previously conclude that autophagic activity is responsible for the activation of Yca1p; as a 

result, autophagy may facilitate apoptotic response. However, the debate exists that whether 

autophagy rescues cells from being apoptotic, or as an executor to facilitate the kill response. By 

reviewing previous findings, the diverse conclusion may result from the various cell types, the 

agents of autophagy induction, or simply the occasion to introduce autophagy agents. Hence, 

rapamycin, an immunosuppressor commonly used to induce autophagy in mammalian cells and 

budding yeasts, was inset at given time frame of our cadmium treatment scheme (Table 1. and 

Fig. 27A). Surprisingly, in the setting of rapamycin prior to cadmium treatment, the apoptotic 

response was significantly depleted (Fig. 27C, Treatment 3). In contrast, apoptotic response 

was further enhanced if rapamycin was introduced after Cd-induced apoptosis had been ignited 

(Fig. 27C, Treatment 5). Since rapamycin per se, within the test concentration and exposure 

time, has no capability to induce apoptosis (unpublished data), the enhancement of apoptotic 

response is not due to rapamycin cytotoxicity. Conversely, rapamycin-induced autophagy 

protected the cells from being apoptotic once it was introduced prior to cadmium. Herein, 

rapamycin-induced autophagy demonstrates distinct effects depending on the juncture it was 

introduced.  
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(A) 

 

(B) 

 

(C) 

 

Figure 27: Quantitation of autophagic and apoptotic activities with various treatments of 
wild type yeast cells.  
 
The schema of treatment A, B, C and D is shown in (A). The samples were treated according to 
the scheme, subjected to Atg8-based Western Blot (B), and measured for the Atg8-PE to Atg8 
ratio (Panel C with open bar and Table 1). The same batch of samples was subjected to 
propidium iodide staining and FACS analysis in order to determine the percentage of apoptotic 
population (Panel C with closed bar). 
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Table 1: The treatment scheme and the corresponding autophagic flow determined by 
Atg8-PE to Atg8 ratio described in Figure 27. 
 

Sample  
ID  

Treatment  
Atg8-PE/Atg8 Ratio 
Determined by IB  

1  Untreated  0.054 ± 0.001  

2  (rapa 2)  0.290 ± 0.040  

3  (rapa 2) then (Cd 1+3)  0.229 ± 0.009  

4  (Cd 1+3)  0.065 ± 0.017  

5  (Cd 1+3) then (rapa 2)  0.067 ± 0.032  
6  Treatment A  0.328 ± 0.022  

7  Treatment B  0.246 ± 0.161  

8  Treatment C  0.224 ± 0.034  

9  Treatment D  0.092 ± 0.028  

(Cd 1+3): 30 µM cadmium nitrate treatment for 1 hour, followed by 3 hours post-incubation 
(rapa 2): 0.2µg/mL rapamycin treatment for 2 hours 
Treatment A, B, C and D: Shown in Figure 5a. 
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Co-incubation of cadmium and rapamycin rescues the wild-type yeast cells from apoptosis 

In previous studies, rapamycin, an autophagic inducer, has been shown to be involved in 

apoptosis response in two different manners: by being introduced prior to cadmium, it 

dramatically reduces the apoptotic population. On the other hand, it can further augment the 

apoptosis response after cadmium treatment (Fig. 27C). Thus, autophagy plays different roles to 

support, or suppress the yeast cells to survive based on the stage it is triggered. Since autophagy 

and apoptosis were introduced in separate time frames, it is curious to know the effect of 

introducing these two responses simultaneously. The exposure time scheme is shown in Figure 

27A. Interestingly, by exposing the cells with cadmium and rapamycin simultaneously 

(Treatment B), the apoptotic population is half of the treatment of cadmium-only (Treatment D). 

It suggests the antagonism of apoptosis and autophagy once they were triggered simultaneously. 

Similarly, introducing cadmium (Treatment C)/rapamycin (Treatment A) prior to each other with 

one hour overlap behaved as similar as when treated in separate time periods.  

 

Apoptosis and autophagy are antagonistic 

The stage of rapamycin introduction is crucial to determine whether the wild-type cell 

undergoes apoptosis. Therefore, it is interested to know the autophagy flux upon various 

inductions of apoptosis and autophagy. The treatments are described in Table 1, along with the 

immunoblot result probed by anti-Atg8 serum shown in Figure 27B.  By comparing with 

apoptosis population and autophagy flux (Fig. 27C), the antagonistic trend of apoptosis and 

autophagy is found. In general, higher autophagy flux can be found in the treatment with 

autophagy prior to apoptosis, no matter whether these two responses were temporally 

overlapped.    
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Autophagy activity is coincident with apoptosis response upon cadmium treatment 

Since Cd-induced apoptotic response was tremendously augmented by adding rapamycin, 

we further investigated the role of autophagy as a killer. The yeast parental wild-type, yca1Δ and 

atg8Δ were treated by Cd 1+3, harvested and co-stained with propidium iodine (PI) and 

monodansylcadaverine (MDC), which labels the membrane disintegration due to apoptosis and 

the presence of autophagolysosome, respectively. As shown in Figure 28, the wild-type showed 

most tremendous response to be apoptotic after Cd 1+3 according to PI staining. yca1Δ showed 

the moderate effect with cadmium resulting from the caspase-independent response. atg8Δ, as 

shown before, was less apoptotic due to the lack of activated Yca1p. Most importantly, no matter 

if parental wild-type or mutants were used, all of the cells stained by PI were co-stained with 

MDC as well. Since MDC labels the autophagolysosome formation, it reveals that not the few 

autophagic genes, but the entire autophagic pathway is necessary for triggering apoptosis 

response upon cadmium treatment in yeast. The crosstalk between PI and MDC can be excluded 

since not all MDC-stained cells were co-stained by PI.     
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Figure 28: Autophagy facilitates the cell death upon metal-induced apoptosis has triggered. 

The wild Type and indicated isogenic mutants were treated with cadmium for 1 hour plus 3 hours 
post-incubation, then double-stained with propidium iodide (PI) and monodansylcadaverine 
(MDC) to label apoptotic and autophagic cells. In wild-type, all propidium iodine-staining 
positive cells are coincident with MDC-staining positive, which reveals that autophagic activity 
is obligatory for the Cd-induced apoptotic response. Moreover, caspase-independent, autophagic 
cell death was exhibited by YCA1Δ (mca1, Yeast Meta Caspase 1) mutant. 
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3.4 Discussion 

We provided the first clue of an interconnection between apoptosis and autophagy in 

budding yeast by undertaking microarray analysis on cells that had been subjected to a limited 

exposure of cadmium, known to be sufficient to trigger an apoptotic response in yeast cells (25). 

Among the autophagic cluster of genes, those responsible for expressing Atg7p, an E1 

activating enzyme, and other autophagic activities (Atg12p and Atg8p) (29), were highly 

induced by 27-fold, 7-fold and 10-fold, respectively (Fig. 25). Considering the fact that along 

with atg4Δ, atg6Δ and atg8Δ (tested in this study), atg7Δ was also non-apoptotic (Fig. 31A). 

This would suggest strongly that the autophagic process is necessary for any metal-induced 

apoptosis to occur. Therefore, even though some reverse interconnection between apoptosis and 

autophagy has previously been reported in mammalian model (30), this interaction is 

unidirectional inhibition of autophagy by caspase cleavage of Atg proteins, and is not a 

requirement for proteins in one pathway providing a permissive condition for the other to 

continue. Moreover, it is less likely that such a caspase-specific proteolytic activity actually 

occurs in S. cerevisiae since the conserved caspase-cleavage sites are absent in yeast Atg4p and 

Atg6p primary sequences. In addition, in our hands, neither purified Atg4p nor Yca1p were able 

to cleave themselves or the other (Fig. 30C). As a consequence, the findings detailed in this 

chapter would indicate that there is not one discrete component of autophagy necessary to 

trigger for Yca1p activation, but it is the formation of the autophagosome itself and the 

preliminary steps in its maturation that are thought to contribute to the Yca1p activation. It may 

well be that Atg4p (the only other related cysteine-protease relevant to both autophagy and 

apoptosis, and which is though to provide some additional caspase-like activity in the absence  

of Yca1 (31), may still contribute a trigger, but this can only occur within the relatively defined 
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confines of an actively maturing autophagosome. Similar findings have been reported in 

mammalian cells that suggest high autophagic activities and apoptotic population occur upon 

t h e i r  increased exposure to Cd concentration (32), although under condition tested in this 

report Cd was unable to induce autophagy in S. cerevisiae.   

 

Studies on the interactive connections between autophagy and apoptosis have become an 

important focus, of late, as a result of the potential protective role of autophagy against 

programmed cell death. Researchers have come to realize that, beyond its role as the “cell waste-

disposal and recycling center”, where normal autophagosomal activities have been implicated as 

providing a  protective role (2, 12, 13, 33-35), autophagy can also be involved in cell death 

pathways -categorized as autophagy-dependent cell death (APC). Even so, the actual role of 

autophagy in these autophagy-dependent cell death pathways remains obscure. The different 

conclusions as to whether autophagy facilitates or acts to antagonize apoptosis, mainly results 

from a collection of studies that use different cell types and tissues as well as different 

mechanisms that are used to induce autophagy (such as starvation versus drugs). In this study, we 

demonstrate that there does appear to be clearly defined interaction between autophagy and 

apoptosis, and that it is the autophagic activity that is critical to whether or not it plays a 

protector or executioner role. Intriguingly, it is unlikely that yeast cells possess a cadmium-

dependent autophagic pathway, because under conditions tested minimal autophagic activity was 

detected in Cd treated cells (Table 1, and Fig. 27). However, rapamycin-induced autophagy has 

a dramatic effect upon the fate of these exposed cells, depending on the timing of its introduction 

(Fig. 27).  It appears that autophagy can be both protective (if initiated before triggering 

cadmium-induced apoptosis), or it can augment the apoptotic response, if initiated after apoptosis 
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has been triggered (Fig. 27C). The later scenario was further confirmed by the MDC-staining 

image (Fig. 28) showing that all of the PI-staining positive, or apoptotic yeast cells, were co-

stained by MDC, which is thought to specifically label the autophagolysosomal activities.  

  

Even though this apparent antagonism between autophagy and apoptosis was found in 

this study (Fig. 27C) it is possible that higher Atg8-PE to Atg8 ratio may not always be co-

related with higher autophagic activities. Such increases in Atg8p cleavage may also indicate a 

blockage of autolysosome formation (36), or enhanced recycling of Atg8 by Atg4p, a cysteine 

protease. To our knowledge, however, rapamycin has not been reported to have either of these 

two effects. 

 

Our previous study has shown that, even low amounts of Yca1p is not soluble in regular 

lysis buffer and requires the addition of non-ionized detergent, such us NP-40 or its derivatives. 

This would suggest that theYca1p protein may be sequestered in vacuoles, and may not be 

readily accessible for activation through cleavage. In order to investigate this characteristic of 

Yca1p further, and possibly to determine the cellular location of Yca1p in the cell, the Yca1-GFP 

fusion strain was treated with Cd and Cu and, thereafter, subjected to MDC staining, with the co-

localization of Yca1p with acidic vacuoles was found (Fig. 26A). However, this co-localization 

is only found following prolonged exposure to each of the metals, and is not so apparent in the 

shorter exposure that we have been, that is heavy metals for one hour followed by 3 hour post-

incubation. Given that Yca1-GFP strain is less sensitive to cadmium or copper-induced apoptosis 

according to our assay, it might be reasonable to suggest that the Yca1p takes a longer time to 

co-localize with these acidic vacuoles. In another expect, this co-localization may be due to the 
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starvation of cells, in that following a 24 hours incubation, the nutrients have been depleted and 

the autophagy has been induced to recycle unwanted proteins to basic metabolic bricks. As a 

result, the localization of Yca1 in acidic vacuoles may simply indicate the starving cells lysing 

Yca1p protein, although the degree to which these cells have been starved has not been 

ascertained. 

 

In order to further confirm the co-localization of Yca1p and autophagic vacuoles, the 

autophagosome fraction from copper-treated Yca1-GFP yeast cells was purified to test for the 

presence of Yca1. Yca1-GFP presented in the Ficoll 0~4% layer, which represents the crude 

autophagic fractionation (Fig. 26B and C). Intriguingly, less Yca1-GFP was found in the 

sedimentation layer of Cu-treated yeast cells than in untreated cells. These results agreed nicely 

with our previous finding that activated/cleaved Yca1p is more soluble.  Consequently, it is 

reasonable to conclude that the disappearance of Yca1-GFP from the sedimentation layer after 

heavy metals treatment may due to the increased solubility of Yca1-GFP, which is required for 

the Yca1 caspase activities. Such results serve to reinforce the argument that autophagic activity 

may play an essential role to increase Yca1p solubility.  

 

In this study, we have proposed the interconnection between heavy metal-induced 

apoptosis and rapamycin-induced autophagy in vivo. Such interplay provides an insight that the 

autophagic activity facilitates the activation of Yca1p, a mammalian caspase-3 ortholog, possibly 

through the modulation of solubility to make the activated Yca1 accessible to the downstream 

processing machinery.  The interaction of these two major cellular pathways, we would suggest, 

critically influences the cell fate in response to acute heavy metal toxicity.  
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ANALYSIS OF CELLULAR RESPONSES TO HEAVY METAL-INDUCED STRESS IN          

Saccharomyces cerevisiae 

 

GENERAL DISCUSSION 

The use of heavy metals in industry has become inevitable in modern society (1) and the 

accidental exposure, resulting from mining activities, improper disposal or halted recycling 

programs of expired products pose a major threat to public health. Indeed, a number of 

degenerative diseases and carcinomas have been epidemiologically associated with chronic 

heavy metal exposure (2-5). Thus, the conscientious regulation of heavy metal exposure along 

with the passive defense such as the medical prospection is constructive to diminish the potential 

pandemic associated with the liberal use of these heavy metals. S. cerevisiae provides a limpid 

and sophisticated platform to elucidate the different effects of different metal toxicities because 

of its simplicity and well-studied genetics and cellular metabolism. It has previously been shown 

that dysfunctional proteins, resulting from metal-induced damage, are a consequence of oxidative 

stress, which results from the accumulation of reactive oxygen species (ROS) (6). These harmful 

oxidative species attack and damage the organic components of the cell, and trigger multiple 

survival mechanisms that are able to neutralize some, if not all of their harmful effects. Such 

mechanisms include groups of genes whose expression and activities are coordinated as a 

network to establish a well-organized series of reactions, a so-called “reactome”, to overcome the 

undesirable effects of cellular stress such as; heat, cold, osmotic shock, nutrient depletion and 

oxidative stresses (7). We have previously determined some of the components of the 

transcriptional reactome in yeast that is initiated in response to heavy metal exposure (Appendix 

F, G, H and I). The genes associated with cell fate and glucose metabolism work together in 
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response to the heavy metal-induced reactive oxygen species (ROS) stress. Even so, the response 

to the presence of different heavy metals is not uniform, nor is the response of different cells 

within a population that has been similarly exposed to a single heavy metal. One such overtly 

variable response within population of cells to an acute exposure to various heavy metals, such as 

cadmium, copper and chromium is that a subset of the cells (5 - 20 %) is shown to undergo cell 

suicide, or apoptosis. As a consequence, we believe, more solid conclusions could be obtained as 

to the response mechanisms of cells to heavy metals by sorting the sub-population of cells that 

appear to behave differently from the others and subjecting these cells to transcriptome analysis, 

independently. In this way, the transcriptome of cell fate decisions upon heavy metal-induced 

stresses will be clarified. Investigating the translatome of cells exposed to these same heavy 

metals could further expand these studies. Our preliminary studies along these lines showed that 

when wild-type yeast are transiently exposed to heavy metals, the treated and untreated cells do 

exhibit quite different proteomic profiles (data not shown). We believe that it would be useful to 

determine the metabolic consequences of their different protein expression. Previous studies have 

also shown the retardation of protein synthesis resulting from stalled ribosomes on targeted 

mRNAs in response to various kinds of stress. The targeted mRNAs (along with their stalled 

ribosomes) are stored in P-bodies and provide an ample resource of stored proteins that become 

readily available for translation once the stress factors are removed from the immediate 

environment (8, 9). It would be interesting to know whether the heightened expression of certain 

proteins in the metal-stressed yeast relates to proteins that are eventually synthesized from these 

P-bodies. 

  

As the first-line defensive mechanism, the transcriptome of pentose phosphate pathway 
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(PPP) was induced to generate the reducing power for glutathione, which was demonstrated by 

discovering the prompt increase of GSH to GSSG ratio upon Cd treatment while lower reduced-

glutathione (GSH) level was discovered in gnd1Δ mutant with defective PPP. In contrast, Zwf1p 

deficiency had no effect to reduce oxidized glutathione (GSSG) (appendix). Given that Zwf1p 

and Gnd1p convert the identical molecule of NADPH from NADP, this distinction would be 

resulted from the enzymatic activity. Therefore, it would be curious to assay the activity of 

Gnd1p and Zwf1p from wild type yeast cells upon heavy metal treatments to elucidate the redox 

contribution between those two enzymes majorly contributing to the pool of reducing power. 

 

Even though the results of the research described in Chapter 1 are not entirely conclusive, 

the relationship between apoptotic and glycolytic pathway has been clearly shown. Previous 

studies in the laboratory have indicated that the apoptotic response of cells exposed to heavy 

metals is highly dependent on the carbon source and resulting type of respiration that the cells are 

undertaking. Importantly, cells growing in the absence of a fermentable sugar in the medium, 

such as glucose, demonstrated a marked reduction in their apoptotic response, which was 

diminished by the heavy metal treatments without the addition of glucose in the medium (10). 

Moreover, the glycolytic enzymes Tdh3p tended to be oxidized, fragmented and reduced its 

enzymatic activities upon exposure to these heavy metal stressors, and the tdh3Δ mutant is 

entirely non-apoptotic (11). Consequently, we inferred that glycolytic activity is required to 

facilitate the apoptotic response which would be energy-demanding. This assumption was 

supported by a study, which revealed that the pro-apoptotic BAD protein is de-phosphorylated 

upon glucose deprivation, and therefore, ceases the apoptotic response (12). In this scenario, the 

cellular dephosphorylation, resulting from low energy state, would also interfere in the 
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checkpoint enzymes within apoptotic cascade. However, this assumption was shown to be 

ambiguous when the strain expressing the C-terminally GFP-tagged Tdh3p preserved equivalent 

wild-type Tdh3p enzyme activity, but was found to be non-apoptotic (Chapter 1). We then 

focused on the potential, pleiotropic role of Tdh3 and its function as a signal factor, rather than 

simply as the glycolytic enzyme by attempting to show the nuclear localization of Tdh3p-GFP in 

apoptotic yeast cells. Several studies in higher eukaryotes, and some preliminary work in our 

laboratory by Anupama Shanmuganathan (11) have indicated a unique regulatory role for a 

nuclear form of GAPDH (see Introduction in Chapter 1). Even though our original hypothesis 

had been negated by the complementation test showing that the compensation of extrinsic TDH3 

in tdh3Δ mutant was unable to allow the cells to recover their apoptotic activities, the role of Tdh 

isozymes in heavy metal-induced apoptotic response is far from clear given that other two 

isoforms, Tdh1p and Tdh2p, may compensate the effect of Tdh3p deprivation. Moreover, unlike 

the dominant expression of Tdh3p in normal conditions, Tdh1p is dominantly expressed at 

stationary phase in the absence of glucose while the expression of Tdh2p was found to be 

repressed in cells undergoing heat shock stress (13). As a consequence, we cannot neglect the 

different GAPDH isozymes, and the role that Tdh1p and Tdh2p potentially play in metal-stressed 

yeast cells when the Tdh3p activities are defective. 

 

Beyond its glycolytic role, other researchers have proposed that GAPDH can also 

function as an epigenetic modulator to contribute to any apoptotic responses by interacting with 

several epigenetic components. By way of example, GAPDH may contribute to the apoptotic 

response by interacting directly with Su(var)3-9, Enhancer of zeste, Trithorax (SET) protein. 

SET, as an epigenetic modulator, methylates histone H3 lysine 27 (H3K27me) by its histone 
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methyltransferase (HMT) activity, and consequently result in the silencing of genes (Fig. 29 

Path A)(14). In other aspects, SET inhibits the caspase-independent apoptosis by sequestering 

Granzyme A (GzmA) activity, which cleavages procaspases or DNases to an active form (Fig. 

29 Path A) (15-17). This could suggest that the activity of GzmA would be indirectly controlled 

by GAPDH. Besides, SET regulates the cell cycle under the control of GAPDH: Cyclin B-cdk1 

binding with SET reduces its kinase activity and retards the cell cycle. As an antagonistic factor, 

GAPDH interacts with the carboxyl-terminal of SET and reduces its affinity with Cyclin B-cdk1 

molecules (Fig. 29 Path A; (18)).  

 

As an example, associated with epigenetic control, GAPDH regulates the transcription of 

histone H2B subunit: Histone complexes wrapping around the DNA strand influence the 

chromatin conformation either to be more compact (heterochromatin) or more loosely bound 

(euchromatin). Post-translational modifications imposed on histones, such as methylation and 

acetylation, crucially determine the resulting conformation of the resulting chromatin structure. It 

is through these histone modifications that genes with identical genetic content and arrangements 

can be expressed differently under differing conditions. Epigenetically-regulated gene expression 

is crucial to any number of critical cellular functions; in spermigenesis (19), embryogenesis (20), 

tumorigenesis (21) and, more pertinently to this writing, certain kinds of apoptotic responses. 

Among the various kinds of epigenetic modifications, Histone subunit H2B is known to facilitate 

chromatin condensation, which is one of the typical characteristics associated with an apoptotic 

response (22, 23). It is known, for example, that in yeast, phosphorylation of H2B serine 10  
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(H2BS10Ph) is essential for triggering chromatin condensation and apoptosis. Permanent and 

irreversible H2BS10 phosphorylation induces apoptosis, even without any additional stimuli, 

while dephosphorylation H2BS10 due to apoptosis is shown to inhibit the apoptotic response 

(24). H2B transcription is specifically activated by the gene, OCA-1 and an unknown factor 

called “OCA-S” which was first found in HeLa cells during S-phase, and was eventually 

identified as being GAPDH by MALDI-TOF peptide sequencing (25). The crucial role of 

GAPDH in regulating the H2B transcription machinery was confirmed by showing the physical 

interaction between OCA-S and the H2B promoter (Fig. 29 Path A) (25). GAPDH is also known 

to induce the expression of H2B in in vitro transcription assay in a dose-dependent manner. 

Interestingly, the GAPDH binding affinity with H2B transcription apparatus is influenced by the 

redox status, that is, the ratio between NAD+ and NADH influences H2B expression (25). In 

another case, GAPDH has been shown to compete with NAD+ for binding to the Sir2 protein, 

which is a histone H4 deacetyltransferase (H4 HDAC), and which potentially participates in the 

apoptotic response  by using NAD+ as a cofactor (26). NAD+ is also a cofactor of glycolytic 

GAPDH activity and the apoptotic cells have been shown to preserve higher levels of oxidative 

stress (10). It provides a potential trigger mechanism, suggesting that GAPDH plays both a redox 

sensory role, as well as a trigger for the apoptotic response to heavy metals, possibly by inducing 

the H2B expression.   

 

Thus, nuclear GAPDH has been reported to mediate multiple cellular responses as 

described above. Even though Tdh3p is only one of three isozymes of GAPDH in budding yeast, 

it is a specific target for oxidation and is altered in its conformation and in the proteins it 

associates with upon metal-induced stress. As a result, it would be interesting to determine some 
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of the physical parameters of the metal-induced nuclear trans-localization of Tdh3p, and 

potentially, the biological role of nuclear GAPDH in metal-induced apoptotic yeast cells. 

Until recently, autophagy has been considered to serve merely a protective mechanism, 

effectively maintaining cellular homeostasis by the organized, non-specifically removal of 

unwanted components such as cellular wastes or redundant (or damaged) organelles. Evidence is 

mounting, however, which suggests that autophagy is not only specific for its targeting activity 

(31, 32), but is also related to the cell death mechanisms (33-36). This laboratory has been 

focusing on the relationship between autophagy and heavy metal-induced apoptosis in yeast cells 

because of the residual caspase-like activity that were found in yca1 Δ mutant. We further 

inferred that Yca1p might not be the only cysteine protease harboring caspase activities in S. 

cerevisiae. In patterning the putative peptide sequences conservation of the catalytic dyad, Atg4p 

was considered as one of the few caspase-like candidates in the cell. This character was 

confirmed by showing further decreased pan-caspase-like activity in yca1Δatg4Δ double mutant, 

and the absence of any cleaved Yca1p in atg4Δ mutant (37). These findings implicated the 

pleiotropic role of Atg4p in functioning beyond that of its defined cysteine proteolytic activity 

facilitating solely in the initial step of autophagy. Atg4p may act as another caspase, and even 

more, it potentiates the cleavage of Yca1p. Even so, cloned Atg4p, when expressed from either 

E. coli or S. cerevisiae exhibited neither caspase-like activity nor Yca1p cleavage potential 

(Chapter 3). Moreover, other two autophagy initiation proteins, Atg6p and Atg8p, were also 

shown to be necessary for any cleavage of Yca1to occur. While neither Atg6p nor Atg8p exhibit 

any detectable protease activities per se, we would suggest that they are critically involved in the 

process, perhaps providing a suitable environment for the Atg4p to switch between its autophagic 

role in cleaving Atg8 and its involvement in activation of Yca1. It was firstly inspired by  
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recognizing the insolubility of Yca1p, that is, S. cerevisiae expressed His-Yca1p was present in 

cell debris instead of soluble supernatant (Fig. 30A). The possibility of hexahistidine tag 

resulting in the insolubility was excluded since the native Yca1p in S. cerevisiae is insoluble as 

well (data not shown). Yca1p molecule was absent until DTT and Tween-20 were introduced. 

Since Yca1p presented dramatically by introducing these two additional factors, it is interesting 

to know either NP-40 or DTT contribute to the Yca1 solubility. By adding NP-40 alone, Yca1 

was able to be released from cell lysate (Fig. 30B.). Furthermore, Yca1p, no matter if pro- or 

cleaved form, showed different solubility upon different concentration of NP-40 in lysis buffer.  

This phenomenon indicates that the Yca1p solubility may be a secondary mechanism in 

regulating Yca1p activities. Thus, until it is converted into a soluble form, cleaved-Yca1p cannot 

play its role as an executor caspase. These findings also hint that the process of Yca1p cleavage 

may be occurring in cell vacuoles, an insoluble cell fraction. This would explain why the mild 

buffers that were used, such as lysis-buffer without detergent (NP-40), were unable to dissolve 

Yca1p from the lysate. It also further solidifies our newly defined hypothesis that autophagic 

activity is required for Yca1p activation, in other words, Yca1p may be processed by other, 

unknown proteases in autophagosomes.  

 

In this study, we have established the pleiotropic role that autophagy plays in cell fate 

decision, which is mainly determined by the temporal initiation of autophagic and apoptotic 

events (Chapter 3). The more delicate classification can be clearly understood by referencing 

potential levels of crosstalk between autophagy and apoptosis that pertain to yeast, according to  
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Figure 30: The insoluble character of Yca1p. 

(A) Yeast-expressed His-Yca1 is insoluble. pYES2-NT.A::YCA1 was transform to wild type (wt) 
or yca1∆ host, induced by 2% galactose for 16 hours, and lysed by lysis buffer containing 2% 
Triton X-100. The soluble (sol) and insoluble (ins) fraction were harvested, and Western blot 
probed by anti-Xpress antibody was performed. (B) Wild type and yca1Δ cells were treated by 
30 μM cadmium for 1 hour, following by 3 hours post-incubation. The cells were lysed by lysis 
buffer containing DTT, NP-40 or both.  
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the various potential interactive scenarios proposed by (34) and shown in Figure 31. In the 

simplest case, the cellular triggers for apoptosis, autophagy and necrosis are entirely exclusive of  

each other (Fig. 31A). Alternatively, as outlined in Fig. 31B, autophagy facilitates caspase-

independent cell death (or Type-II cell death) by selectively degrading catalase (31), which  

results in diminished ROS removal from the cell, or depletion of the ATP pool as a result of 

DNA double strand break (38). A binary fate, without triggering environmental stress response 

(ESR), which is caused by exposing the cells to high dosage of stress factors, cells adapt to the 

environmental stress by autophagy as a homeostasis keeper while autophagic deficiencies are 

unfavorable to cell survival.  In the more complicated scenario (Fig. 31C), autophagy and 

apoptosis can be triggered simultaneously and a number of levels cross-talk potentially exist 

between each other to decide the ultimate fate of the cell (Fig. 31D). For instance, human Beclin-

1, which is a yeast Atg6p ortholog participating at the initiation step of autophagy, harbors pro-

apoptotic BH3 domain. The caspase-mediated cleavage of Beclin-1 results in the exposure of 

BH3 domain and is favorable to trigger mitochondria-dependent apoptotic response rather than 

its original role to facilitate autophagy (39-41). In the opposite case, a synergistic example 

commonly happens in embryogenesis, where autophagic activities help to keep high level of 

ATP pool to ensure the sufficient removal of apoptotic cells (42). 
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extent, the heterogeneity of the apoptotic response within the population 

 
 
Figure 31: The cell fate decision mediated by the interconnection between apoptosis and 
autophagy (34). 
 
(A) Apoptosis, autophagy or necrosis happens independently upon the stimulation of stressor. 
(B) Autophagy facilitates Type-II Cell Death, whereas other stimuli impede this death 
mechanism and promote the cell survival. (C) The classical role of autophagy helping cells to 
adapt to the environmental stress such as nutrient deprivation, and the depletion of this adaption 
consequently leads to apoptosis. (D) The complicated event which apoptosis and autophagy 
happen simultaneously, and the cell fate is decided by the pleiotypic role of autophagy. (E) 
Autophagy facilitates the clearance of apoptotic cells via the presentation of 
lysophosphatidylcholine (LPC) or phosphatidylserine) , which recruits the phagocytotic cells in 
situ.     
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Lastly, autophagy facilitates the presentation of lipopolysaccharide (LPS) and 

phosphatidylserine (PS) on the surface of cells, which are inclined to be eliminated through 

macrophagy (Fig. 31E). Upon the classification described above, yeast cells exposed to low 

levels of Cd behave in a similar fashion to the generic cells in the scenario presented in Fig 31C, 

which explains, to some of cells as only a small proportion of cells commit suicide, while the 

majority adapt to the Cd-induced stress. The cellular responses defined by Fig. 31D provide an 

additional explanation as to how cells are able to toward either autophagy (due to rapamycin) or 

possible apoptosis (due to their concomitant exposure to heavy metal stressors). In general, the 

role of autophagy as a “life saver” or “killer” is highly dependent on several factors, including 

the cell type, stressors, and the sequence of induction, which is introduced in this study (Fig. 32). 

No matter its duplicitous role, our study has shown reaffirmed our preliminary findings that 

autophagy is essential for any apoptotic response in metal-induced stress in yeast cells. 

    

A more in-depth determination as to the mechanism(s) involved in the apparent crosstalk 

between apoptosis and autophagy would be the next stage of investigation.  Moreover, given the 

nature of the two response pathways and how they are triggered what is the role do mitochondria 

play in such cross-talk. At the nucleation step, human Atg5, followed by LC3 (a yeast Atg8p 

orthologue) deposited on the outer mitochondrial membrane significantly suggests the 

involvement of mitochondria in the biogenesis of the autophagosomes (43).  Mitochondria are 

also the nexus, which centralizes many of the apoptotic responses (General Introduction, Fig. 

1) in a number of cells. In the most fundamental of responses, accumulation of ROS triggers the 

membrane depolarization, release of cytochrome c and initiation of the apoptotic cascade. 

Further, during the stress, impaired or hyperpermeable mitochondria are removed by mitophagy,  
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Figure 32: Proposed model of the autophagy-associated cell fate decision in heavy metal-
induced apoptotic yeast cells.  
 
The fate of metal-stressed cells is decided by the occurrence order of autophagy and apoptosis. In 
the scenario where apoptosis happens prior to autophagy (left), Yca1p is modified inside 
autophagosome, and the soluble Yca1p is able to be accessed and cleaved by other proteases. In 
the scenario where autophagy happens prior to apoptosis (right), autophagy plays its classical 
role as a adaption and survival mechanism. Augmented autophagy activity indicated by high 
Atg8-PE to Atg8 ratio facilitates the homeostasis in metal-stressed yeast cells, and the 
consequence of destruction is prevented.  
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a mitochondrion-specific autophagy (44-47). Given the importance of mitochondrial 

disintegration in apoptosis, it is possible that the mitophagic activity is d i rec t l y associated 

with the response of cells to metal-induced apoptosis as part of a  recovery mechanisms that 

minimizes mitochondrial damage caused by stresses. Any integral relationship between these 

two pathways could potentially focus on Uth1p, a mitochondrial membrane protein, which is 

considered to be necessary for the mitophagic response (32) and the removal of damaged 

mitochondria, which is abolished in uth1Δ mutant. These findings would indicate that a uth1Δ 

mutant would be a prime candidate for further study. Since the clearance of damaged 

mitochondria would be defective in these mutants, and the resulting increase in cytoplasmic 

cytochrome c would more likely to trigger an apoptotic cascade, this mutant strain would 

presumable be more prone to a concomitant apoptotic cellular response. Alternatively, 

mitophagy might further augment apoptotic response by disrupting the membrane integrity of 

mitochondria, which would promote the release of cytochrome c. In this scenario, the cytosolic 

cytochrome c would be reduced in uth1Δ mutant, possibly resulting in a decreased propensity for 

these cells to undergo apoptosis. Consequently, it would be interesting to test the difference of 

cytosolic cytochrome c concentrations between wild-type cells  and uth1Δ mutants exposed to 

heavy metals, if only to confirm the likelihood of higher or lower concentrations of cytosolic 

cytochrome c  resulting from the uth1Δ mutation and the role(s) such concentration variables 

might play in promoting different cellular responses. 

 

In addition to the determination of a number of significant cellular responses within cells 

undergoing autophagy and metal-induced stress response, this report also includes the practical 

development of a technique that proved to be highly useful in detecting the progression of 
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autophagy in cell populations. Until now, the ratio between lipidized Atg8 (Atg8-PE) to Atg8, 

performed by immunoblot, presented the “gold standard” to monitor any progression in 

autophagic flux (48, 49).  As indicated in a preceding chapter, the simpler and faster assays based 

on staining techniques have dubious levels of specificity (50, 51) and while the EM-based 

imaging assay might provide the most direct evidence of the appearance of autophagosome, the 

use of this technique is sufficiently constrained by the high degree of difficulty required to carry 

it out. We have been able to circumvent the failings of both techniques in measuring the ongoing 

process of autophagic flux by employing simple cytometric profiles to characterize some of the 

specific heterogenous attributes of cellular responses to the developing autophagosomes. This 

inherent cytometric heterogeneity of cells undergoing autophagy has been shown to relate well to 

cellular changes in cells undergoing an autophagic response. As such, in analyzing this process, 

we were able to reference this cytometry-based technique with the traditional Atg8p-probed 

immunoblot along with the samples that utilize other, different treatments (Chapter 2), and were 

able to promote its use over these techniques for certain experimental endeavours. Even so, as 

with many new protocols, the importance of using positive/negative controls was obviated to 

avoid making any false interpretations.  

 

In summary, this study has been able to identify and analyze some of the cellular events 

that occur within budding yeast in response to the presence of heavy metals, including; an 

enhanced contribution made by Tdh3p and a more complex interplay between two of the major 

cellular response pathways in S. cerevisiae -namely, Autophagy and Apoptosis. The study has 

also outlined the development of a simple method to measure the autophagic flux in yeast cells 

using flow cytometry, which has proven to be highly reliable in the routine analysis of cellular 
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activities. In conclusion, the results put forward in this dissertation have proven to be significant 

in studies of some of the mechanisms that underlie metal-induced toxicity in yeast. As such, they 

may also prove to be important in our more general understanding of the harmful effects of 

heavy metal exposure in humans, associated with several chronic diseases, and as a result, 

costing enormous social resource for medical treatments (52). 
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APPENDICES 

Appendix A: Total RNA Preparation, Reverse Transcriptase (RT) PCR and expressional 

microarray analysis 

The 30 μM Cd(NO3)2 or 0.5 mM Cr(NO3)2 treated or untreated cells were harvested and 

stored at -80 oC prior to the mechanical disruption. Around 5 x 107 cells along with 500 μM acid-

washed glass beads (Sigma-Aldrich)  and lysis buffer (see the instruction manual in kit) were 

mixed, followed by being bead-disrupted for 30 seconds by mini beat beater-8 (BioSPEC 

Product) for 4 times with cooling on ice between each disruption. The cell lysate was applied for 

the total RNA purification by Qiagen RNeasyTM Mini Kit followed by the manufacturer’s 

protocol. The prepared total RNA was treated by DNase I (Qiagen) at 37 oC for 30 minutes to 

remove the genomic DNA contamination then inactivated by incubated at 65 oC for 10 minutes. 

The total RNA extract was checked by PCR technique for excluding the DNA contamination. 

Briefly, 2 μL total RNA was added to the PCR mixture containing 2 μL 10x PCR buffer, 1 μL 10 

mM dNTP, 1 μL 30 μM forward and reverse primer for metacaspase 1 (YCA1), 0.5 μL Taq 

polymerase (Qiagen) and 12.5 μL nuclease free water (Ambion) and followed by the 

thermocycling protocol: 94 oC for 30 seconds for denature, followed by 30 cycles of 30 seconds 

at 94 oC, 30 seconds at 55 oC and 1 minute at 72 oC. The reaction mixture was then incubated at 

72 oC for 10 minutes, and stored at 4oC. The amplicon was applied to 2.5 % (w/v) agarose gel. 

The Saccharomyces cerevisiae BY4741 genomic DNA was served as the positive control in PCR 

reaction. 

 

The transcriptional level of metacaspase 1 (Yca1) was investigated by RT-PCR technique 

using β-actin as the internal control. The normalized quantity of total RNA was added to the 
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mixture containing forward and reverse primer for MCA1 and β-actin, nuclease free water 

(Ambion) and Illustra Ready-To-GoTM RT-PCR beads (GE Amersham) then subjected to the 

following thermocycling protocol: 42 oC for 30 minutes for reverse transcription, 95 oC for 5 

minutes for denature, following by 27 cycles of 1 minute at 95 oC, 1 minute at 55 oC and 3 

minutes at 72 oC. The reaction mixture was then incubated at 72 oC for 10 minutes and stored at 

4oC. The amplicon was applied to 2.5% (w/v) agarose gel and the band intensity was quantified 

by MultiGaugeTM Version 2.3 software (Fujifilm). 

 

The Affymetrix Yeast GenomeTM 2.0 Array was used to investigate the expression profile 

of genes in cells that were exposed to heavy metals for different amounts of time (0, 30 and 60 

minutes). The procedure was undertaken according to the protocol outlined in the manual 

provided by Affymetrix. Briefly, the total RNA that meets the minimal requirement of the 

amount for target preparation was performed using the first strand cDNA synthesis by 

SuperScriptTM RT (Life Technologies), followed by the second strand cDNA synthesis using E. 

coli DNA polymerase I (Life Technologies). The double stranded cDNA was “cleaned up” using 

Phase Lock Gels (PLG)-phenol/chloroform extraction and precipitated by ethanol before being 

re-suspended in RNase-free water (Ambion). The re-suspended cDNA was then transcribed to 

biotin-labeled cRNA using the RNA Transcript Labeling Kit (Affymetrix). The labeled-cRNA 

was purified further by 2-propanol, and upon re-suspension in RNase-free water (Ambion).  The 

concentration was adjusted according to the manual to equate to the starting concentration of the 

fragmentation. The adjusted-cRNA was fragmented by 5x RNA fragmentation buffer containing 

200 mM pH 8.1 Tris-acetate (Sigma-Aldrich), 500 mM potassium acetate (Sigma-Aldrich) and 

150 mM magnesium acetate (Sigma-Aldrich). The cRNA fragment and 20x GeneChipTM 
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Eukaryotic Hybridization Controls Kit (bioB, bioC, bioD and cre) (Affymetrix) was mixed and 

hybridized with the Yeast Genome 2.0TM Array (Affymetrix) for 16 hours. The chip was washed 

and stained automatically by the Fluidics Station (Affymetrix), with the fluidics program 

provided by Yeast Genome 2.0TM Array Manual. Finally, the chip was scanned then the raw data 

was processed either by GeneSpringTM GX 7.3 software (Agilent) or Office ExcelTM 2007 

(Microsoft) using β-actin signal intensity as the normalization baseline. 
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Appendix B: Data Acquisition and Comparison of cDNA Microarray Data 

Two versions of yeast microarray chips with different “entries” were analyzed in this 

study. Some of the previous data were acquired by Amrita Nargund, Mara Maroney and Ranjith 

Reddy with the S98TM Yeast chip, along with data acquired in this study using the Yeast 2.0TM 

chip. Data acquired from the two versions of chips were made compatible through referenced to 

the AffymetrixTM product support website and the best matches (100%) of the probes, 

corresponding to various genes were chosen in order to present the most consistent results among 

all the data sets. The transcriptional profiles were then compared for different genes clustered in 

to several groups according to the gene ontology (GO). Ultimately the data were merged using 

Microsoft AccessTM 2007 (Microsoft) using the systematic names as the primary key.  
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Appendix C: Quantification of GSH/GSSG 

The cells were harvested in each particular time point by centrifuge at 12,000 xg, -10 oC 

for 2 minutes. The cell palette was washed twice by cold de-ionized water and re-suspended in 1 

mL, 50 g/L metaphosphoric acid (Sigma-Aldrich). The cells were bead-disrupted for 30 seconds 

by mini beat beater-8 (BioSPEC Product) for 4 times with cooling on ice between each 

disruption. The supernatant was harvested by centrifuge at 20,000 xg, -10 oC for 5 minutes. The 

analytic cocktail was made by premixing 40 μL supernatant with 160 μL de-ionized water, and 

then subjected to P/ACE MDQTM Capillary Electrophoresis System (Beckman Coulter) for 

quantifying GSH/GSSG. In each assay, the capillary was filled up with Capillary Performance 

Sample Run Buffer A (Beckman Coulter) by 20 psi air pressure for 60 minutes, and the sample 

was injected into capillary by 0.5 psi pressure for 10 seconds. The sample was migrated inside 

the capillary under 25KV (with current around 25~29 μA) for 7 minutes. The capillary was 

“flushed” with 0.1N NaOH ay 10 psi pressure for 60 seconds to clean the capillary between each 

run. Concentrations of GSH/GSSG were determined according to the serial-diluted, GSH/GSSG 

standard (Sigma-Aldrich) and subsequently normalized against total protein concentrations as 

determined by OD280 readings. 
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Appendix D: 

 

 

 

 

Figure 33: The probe identities between the Yeast GeneChip S98 and Version 2.0.  
 
The identity of probe sequences between two versions of chips was compared and categorized 
for ensuring the compatibility between various datasets undertaken by different members of the 
laboratory.   
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Figure 34: The conceptual data model (CDM) of the microarray database. 
 

The conceptual data model was used for the data storage, acq
comparison between two different versions of the yeast chip.

 
 

 

 

 

 

 

 

 

: The conceptual data model (CDM) of the microarray database.  

The conceptual data model was used for the data storage, acquisition, combination and 
comparison between two different versions of the yeast chip. 
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Appendix F: 

(A) 

   Cd  

 
(B) 

   Cd  

Figure 35: The fold-changes in the transcriptional expression of apoptosis and death
associated genes upon Cd and Cr exposures. 
 
Transcriptional profiles of apoptosis 
according to the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes) 
 
 
 
 

0.1

1

10

B
M

H
1

B
M

H
2

C
D

C
2

5

D
N

M
1

ER
F2

FIS1

H
X

T1
7

LTE1

P
H

B
1

Fo
ld

 c
h

an
ge

s

Amrita Fold

Peiju Fold

Amrita Fold

Peiju Fold

0.1

1

10

A
SF1

B
IR

1
C

D
C

4
8

FU
N

3
4

H
X

T1
7

IFM
1

K
A

P
1

2
0

M
C

A
1

O
A

F1
R

SM
2

3
R

TT1
0

7
SN

L1
STM

1
SV

F1

Fo
ld

 c
h

an
ge

s

Amrita Fold
Peiju Fold
Amrita Fold

Peiju Fold

     Cr 

 

     Cr 

 

changes in the transcriptional expression of apoptosis and death
pon Cd and Cr exposures.  

Transcriptional profiles of apoptosis (A) and cell death (B)-associated genes were displayed 
according to the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes) 
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changes in the transcriptional expression of apoptosis and death-

associated genes were displayed 
according to the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes)  
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Appendix G: 

(A) 

(B) 

Figure 36: The transcriptional fold
exposures. 
  
The transcriptional profiles of the cadmium 
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Appendix H:  

(A) 

(B) 

Figure 37: The transcriptional fold
upon Cd and Cr exposures.  
 
The transcriptional profiles of the cadmium 
according to the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes)
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: The transcriptional fold-change of glycolysis gluconeogenesis-associated genes 

The transcriptional profiles of the cadmium (A) or chromium (B) exposure were displayed 
o the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes)

C
D

C
1

9

C
TF1

9

EN
O

1

EN
O

1

EN
O

2

FB
A

1

FB
P

1

G
A

L1
0

G
LK

1

G
P

M
1

G
P

M
2

G
P

M
3

H
X

K
1

H
X

K
2

LA
T1

LP
D

1

P
D

A
1

P
D

B
1

P
D

C
1

P
D

C
5

P
D

C
6

P
D

I1

P
FK

1

P
FK

2

P
G

I1

P
G

K
1

P
G

M
1

P
G

M
2

P
YK

2

SFA
1

C
D

C
1

9

C
TF1

9

EN
O

1

EN
O

1

EN
O

2

FB
A

1

FB
P

1

G
A

L1
0

G
LK

1

G
P

M
1

G
P

M
2

G
P

M
3

H
X

K
1

H
X

K
2

LA
T1

LP
D

1

P
D

A
1

P
D

B
1

P
D

C
1

P
D

C
5

P
D

C
6

P
D

I1

P
FK

1

P
FK

2

P
G

I1

P
G

K
1

P
G

M
1

P
G

M
2

P
YK

2

Mara_fold
30

Peiju_Fold
30

153 

 

 

associated genes 

exposure were displayed 
o the data source (Amrita, Mara or Peiju) and the time of exposure (30 or 60 minutes) 

SFA
1

SN
O

4

TD
H

1

TD
H

1

TD
H

3

TH
I3

TP
I1

Amrita Fold-30

Peiju Fold-30

Amrita Fold-60

Peiju Fold-60

SFA
1

SN
O

4

TD
H

1

TD
H

1

TD
H

3

TH
I3

TP
I1

Mara_fold-
30

Peiju_Fold-
30



Appendix I: 

(A) 

(B) 

Figure 38: The transcriptional fold
exposures.  
 
The transcriptional profiles of the cadmium 
according to the data source (Mara or Peiju) and the time of exposure (30 or 60 minutes)
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: The transcriptional fold-change of PPP-associated genes upon Cd and Cr 

The transcriptional profiles of the cadmium (A) or chromium (B) exposure were displayed 
according to the data source (Mara or Peiju) and the time of exposure (30 or 60 minutes)
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