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ABSTRACT	  

	  

	  

PREDICTING	  PURCHASE	  TIMING,	  BRAND	  CHOICE	  AND	  PURCHASE	  AMOUNT	  OF	  FIRM	  ADOPTION	  OF	  RADICALLY	  

INNOVATIVE	  INFORMATION	  TECHNOLOGY:	  A	  BUSINESS	  TO	  BUSINESS	  EMPIRICAL	  ANALYSIS	  	  

	  

BY	  

	  

TIMOTHY	  RICHARD	  BOHLING	  

	  

APRIL	  26,	  2012	  

	  

	  

Committee	  Chair:	   V.	  Kumar	  

	  

Major	  Academic	  Unit:	   Robinson	  College	  of	  Business	  

	  

Knowing	  what	  to	  sell,	  when	  to	  sell,	  and	  to	  whom	  to	  sell	  is	  essential	  buyer	  behavior	  insight	  to	  allocate	  scarce	  

marketing	  resources	  efficiently	  and	  effectively.	  	  Applying	  the	  theory	  of	  relationship	  marketing	  (Morgan	  and	  Hunt	  
1994),	  this	  study	  seeks	  to	  investigate	  the	  link	  between	  commitment	  and	  trust	  and	  firm	  adoption	  of	  radically	  

innovative	  information	  technology	  (IT).	  	  The	  construct	  of	  radical	  innovation	  is	  operationalized	  through	  the	  use	  of	  
cloud	  computing.	  	  A	  review	  of	  the	  vast	  scholarly	  literature	  on	  radical	  innovation	  diffusion	  and	  adoption,	  and	  

modeling	  techniques	  used	  to	  analyze	  buyer	  behavior	  is	  followed	  by	  empirical	  estimation	  of	  each	  of	  the	  radical	  
innovation	  adoption	  questions	  of	  purchase	  timing,	  brand	  choice,	  and	  purchase	  amount.	  	  	  Then,	  the	  inefficiencies	  in	  

the	  independent	  model	  process	  are	  highlighted,	  suggesting	  the	  need	  for	  an	  integrated	  model.	  	  Next,	  an	  integrated	  
model	  is	  developed	  to	  link	  the	  purchase	  timing,	  brand	  choice,	  and	  purchase	  amount	  decisions.	  	  The	  essay	  

concludes	  with	  insight	  for	  marketing	  practitioners	  on	  the	  strength	  of	  the	  factors	  of	  commitment	  and	  trust	  on	  
adoption	  of	  radical	  innovation,	  an	  improved	  methodology	  for	  the	  business-‐to-‐business	  marketing	  literature,	  and	  

potential	  further	  research	  paths.	  	  	  	  	  
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CHAPTER I: INTRODUCTION 

 This section will center the thesis topic of predicting purchase timing, brand choice, and 

purchase amount of firm adoption of radically innovative IT within the business context and 

scholarly research field. 

 

I.I BUSINESS DOMAIN 

 Marketing managers continuously seek to deliver increased return on investment from 

constrained operating budgets.  Investment decisions include trade-offs between initiatives to 

acquire new clients and initiatives to drive deeper relationships from existing clients.  A key 

ingredient to improve decision making performance for marketing managers is knowledge of 

both current and anticipated buyer behavior.  The tenets of relationship marketing, based on the 

foundations of commitment and trust (Morgan and Hunt 1994), drive both the framework chosen 

in this study and the choice of the drivers that will predict firm adoption of radically innovative 

IT from a specific cloud provider through purchase timing, brand choice, and purchase amount 

models.  The marketing practitioner questions that this study answers include the following: 

which commitment and trust factors are associated with firm adoption of radically innovative IT?  

When is this adoption likely to happen? And, how much annual revenue are these firms 

anticipated to spend on the adoption of radically innovative IT? 

With the adoption of cloud computing, firm IT consumption buyer behavior changes 

dramatically.  The National Institute of Standards and Technology (2011) defines cloud 

computing as “a model for enabling ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction.” Conceptually, cloud computing is a paradigm shift in IT delivery 
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and computing consumption whereby computing resources and underlying technical 

infrastructure are abstracted away from the user.    

Marketing practitioners who aim to attract buyers of this new IT consumption model will 

benefit greatly from knowing the importance of commitment and trust factors on adoption of 

radical innovation, as well as which analytic modeling technique can predict purchase timing, 

brand choice and purchase amount for firm adoption of radically innovative IT. 

 

I.II SCHOLARLY RESEARCH 

Radical innovation is defined as innovation that incorporates a substantially different core 

technology and provides substantially greater customer benefits than previous products in the 

industry (Chandy and Tellis 1998).  For this study, cloud computing proximates radical 

innovation as guided by Armbrust, et. al. (2009), claiming that cloud computing has the potential 

to transform both a large part of the information technology industry and the long-held dream of 

computing utility.  The literature on radical innovation is vast and covers multiple conventional 

disciplinary boundaries. Researchers have studied radical innovation from both a provider of 

innovation and an adopter of innovation, as well as from an individual and firm perspective (see 

Figure 1).  	  

A comprehensive body of research on an organization’s ability to innovate includes 

theories on radical innovation diffusion and the benefits which accrue to the provider of 

innovation. Schumpeter (1942) suggested that firm size is the key predictor of radical product 

innovation and is credited with initiating the theory that small, entrepreneurial firms are most 

likely to be the greatest source of innovation. Subsequent research in this field has been 

inconclusive on this point. Schumpeter (1950) later claimed that large, established firms that 
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possess some degree of monopoly power are the stronger agents of technical progress given their 

superior access to capital and skilled labor and their ability to appropriate innovations from the 

smaller start-ups. Clayton Christensen (2000) posits that industry leading companies never 

introduce, or cope well with, disruptive innovations.  Chandy and Tellis’s (2000) research 

concluded that large firms and incumbents have introduced the majority of radical product 

innovations after World War II. 

A deep stream of research focused on individual level adoption of radical innovation 

provides the following theories and innovativeness adoption measurement scales.  Rogers (1995) 

suggests the innovation characteristics of relative advantage, compatibility, complexity, and 

observability, as perceived by individuals, help explain the individual rate of adoption and 

conclude that technological innovations are adopted at different times and at different 

rates.  Additionally, Davis’ (1989) well known Technology Acceptance Model (TAM) theorizes 

how perceived ease of use and perceived usefulness are key drivers of innovation adoption.  

Hauser, Tellis, and Griffin (2006) provide a taxonomy for innovation measurements including 

life innovativeness scales such as Kirston’s (1976, 1989) innovators-adaptors inventory and 

various adoptive innovativeness scales (Raju 1980, Goldsmith and Hofacker 1991, and 

Baumgartner and Steenkamp 1996).    

The research streams on firms as providers of innovation, and on individuals as adopters 

of innovation are robust and deep. The literature on firm-level adoption of radical innovation is 

much narrower. Srinivasan, Lillien, and Rangawamy (2002) provide the theory termed 

technological opportunism, positing that the differences in adoption of radical technologies 

among firms can be attributed to a sense-and-respond capability.  	  

While these established theories provide knowledge on radical innovation diffusion and 

provider benefits, there are fewer scholarly papers focused on key drivers and techniques to 
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predict firm-level adoption of innovation.  This dissertation research, as shown in Figure 1, is 

designed to fill a gap in the literature and develop knowledge focused on identifying firms most 

likely to adopt radical innovation.   

 

Figure 1: Radical Innovation Adoption Theory Matrix 

 

 
 
 

From an analytic modeling perspective, there is extensive research in the field of 

marketing to deeply understand current and future buyer behaviors including purchase timing, 

brand choice, and purchase amount decisions in a variety of industries and business settings 

(Kumar and Man Luo 2008).  

Within the purchase timing models, research has adopted the approach of whether to buy 

or when to buy, depending on the researcher’s point of view. Additionally, research has studied 

cross-category dependence that captures a consumer’s tendency to buy multiple products from 

certain categories. Therefore, depending on interest and modeling assumptions, a researcher can 
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model timing through one of these approaches and decide whether or not to address multi-

category dependence. 

Academics and practitioners are interested in learning how a consumer’s previous brand 

choice affects his or her future brand choice behavior. Research has addressed this issue through 

measurements of brand loyalty and lagged choice, among other techniques. A stream of research 

has also been dedicated exclusively to the investigation of state dependence. 

Modeling purchase amount relies largely on the researcher’s view of the dependence 

between choice and amount decisions. Multiple approaches employed include correcting for 

selection bias in the amount decision through a Heckman procedure, or using a bivariate logit 

model to jointly estimate amount and choice decisions.   

Depending on the assumptions of the interdependence of the three decisions (purchase 

timing, brand choice, and purchase amount), analytic models are built either individually or 

jointly.  Modeling the three decisions individually cannot account for the selection bias in 

purchase amount and brand choice, as the three decisions may not be independent given the same 

mechanism such as income, marketing response elasticity, or consumption pattern may drive 

these three decisions simultaneously.  The jointly estimated model allows a firm to maximize 

utility over a period of time and therefore reflects dynamically changing firm purchase behavior. 
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CHAPTER II: LITERATURE REVIEW 

This section provides a review of two major streams of scholarly literature.  First, the vast 

body of knowledge on the introduction and adoption of radical innovation is presented.  Next, 

the deep field of buyer behavior analytic modeling is reviewed.  Major theories and contributions 

from the radical innovation literature, as well as the purchase timing, brand choice and purchase 

amount modeling literature are included.   

 

II.I RADICAL INNOVATION 

SUPPLY-SIDE PERSPECTIVE 

The recent introduction of cloud computing has the potential to transform the delivery 

and consumption models in the IT industry (Armbrust, et. al 2009). Cloud computing represents 

substantially greater customer benefits, including easy access to best-in-class IT functions at 

lower cost points with flexible pricing structures, enhanced security and reliability, and rapid 

provisioning. Cloud computing conforms to Chandy and Tellis’ (1998) definition of radical 

innovation, as cloud computing can provide a substantially different core technology model and 

substantially greater customer benefits than previous products in the IT industry.   

Given the recent introduction of cloud computing into the marketplace, there are limited 

scholarly publications to date which focus specifically on cloud computing.  However, mapping 

cloud computing to radical innovation opens up a plethora of scholarly publications.  Several 

studies provide valuable insight into the provider-side factors related to the introduction of 

radical innovation into the marketplace.  Theoretical constructs highlighted in the literature 

center on a firm’s ability and willingness to introduce radical innovation. 

Following Schumpeter (1942), many researchers have suggested that firm size is the key 

predictor of radical product innovation.  Authors such as Galbraith (1952) and Ali (1994) have 
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built on Schumpeter’s arguments and suggest that large firms have many advantages over small 

firms in their ability to produce radical innovation. Large firms enjoy economies of scale in 

research and development, can spread risks widely, and have greater access to financial 

resources.  

An additional factor is the greater degree to which incumbent firms are associated with 

radical innovations than non-incumbent firms. Chandy and Tellis (2000) challenged the common 

perception that large, incumbent firms rarely introduce radical product innovations, given such 

firms focus on solidifying their market positions with relatively incremental innovations. 

Moreover, Christensen (1997) posits that large companies, no matter what the source of their 

capabilities, are successful with evolutionary changes, although find serious trouble in handling 

disruptive innovation.  Subsequent research by Chandy and Tellis (2000) concludes that since 

World War II, large firms and incumbents have introduced the majority of radical product 

innovations. 

Supplementing the knowledge base focused on an organization’s ability to introduce 

innovation are studies on organizational willingness to introduce innovation into the marketplace.  

Management’s willingness to cannibalize (Chandy and Tellis 1998) can be a powerful driver of 

radical innovation.  For example, when managers believe new technology is likely to make the 

existing products less competitive or even obsolete, they exhibit energetically innovative 

behavior.   

The effect of introducing radical innovation on a firm’s profits can be large, positive, and 

long-lasting (Geroski, Machin, and Van Reenen 1993).   Insight from research in the 

pharmaceutical industry (Sorescu, Chandy, et. al. 2003) indicates that a large majority of radical 

innovation comes from a minority of firms, and the financial rewards of innovation are closely 

tied to a firm’s resource base.  Firms that have a greater depth and breadth in their product 
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portfolio also gain from their radical innovations.  Using data on more than 20,000 new products 

from the consumer packaged goods industry, Sorescu and Spanjol (2008) find that radical 

innovation is associated with increases in both normal profits and economic rents. Radical 

innovation is also associated with increases in the risk of the innovating firm, but this risk is 

offset by above-normal stock returns.   In contrast, incremental innovation is associated with 

increases in normal profits only and has no impact on economic rents or firm risk. 

 

In summary, the following theories provide valuable knowledge regarding radical 

innovation diffusion and provider benefits of introducing radical innovation into the marketplace.   

• Large firms and incumbents have introduced the majority of radical product innovations 

since World War II (Chandy & Tellis 2000) 

• Managerial expectations and willingness to cannibalize are factors that can be powerful 

drivers to providing radical innovation (Chandy and Tellis 1998) 

• The effects of providing radical innovation on a firm’s profits can be large, positive, and 

long-lasting (Geroski, Machin, and Van Reenen 1993)   

• Radical innovation increases the financial risk of the innovating firm, but this risk is 

offset by above-normal stock returns  (Sorescu and Spanjol 2008) 

 

DEMAND-SIDE PERSPECTIVE 

An additional body of scholarly research focuses on the individual level adoption of 

innovation.  Davis’ (1985) technology acceptance model (TAM) examined the mediating role of 

perceived ease of use and perceived usefulness in relation to information systems characteristics 

(external variables) and the probability of system use (an indicator of system success).  More 

recently, Davis proposed a new version of his model (TAM2) which includes subjective norms 
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and tested with longitudinal research designs. Legis, Ingham and Collerette (2001) posit that 

TAM is a useful model and should be integrated into a broader model that includes variables 

related to both human and social change processes.  

 For decades, researchers have developed and proposed innovation adoption measurement 

scales that differ in theoretical premise, internal structure, and purpose.  Roehrich (2004) 

reviewed and classified the different scales into either life innovativeness scales or adoptive 

innovativeness scales.  The life innovativeness scales focus on the propensity to innovate at a 

general behavioral level and describe attraction to any kind of newness and not to the adoption of 

specific products.  Kirton’s (1976, 1989) innovators-adaptor inventory (KAI) is the most popular 

of this set of scales.  However, because it measures innovativeness in general, its predictive 

validity tends to be low (Roehrich 2004).  

 The adoptive innovativeness scales focus specifically on the adoption of new products.  

Examples of these scales are Raju (1980), Goldsmith and Hofacker (1991), and Baumgartner and 

Steenkamp 1996).  Raju’s (1980) scale has good internal consistency, but Baumgartner and 

Steenkamp (1996) criticize its structure.  Goldsmith’s and Hofacker’s scale (1991) measures 

domain specific innovativeness, but Roehirch (2004) questions its discriminant validity. Despite 

extensive research, progress in this area has been hindered by a lack of consensus about the most 

appropriate scale. 

 Few scholarly research papers have been published on firm-level drivers of adoption of 

radical innovation.  Most studies of firm-level adoption of innovation are performed to 

understand why some firms are more innovative than others, and therefore analyze 

characteristics of the firm’s leader, the environment in which the firm operates, and structural 

factors such as firm decision making being centralized (Fichman 2001).  Srinivasan, Lilien and 

Rangaswamy (2002) posit that differences in adoption levels of innovation among organizations 
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can be attributed to the sense-and-respond capability of a firm, a difference they refer to as 

technological opportunism.  A firm’s future focus, top management’s advocacy of new 

technologies and organizational culture, along with the external technological turbulence the firm 

is facing are the components of the conceptual model of technological opportunism. 

While these theories provide valuable knowledge regarding radical innovation diffusion, 

provider benefits, and individual level adoption, there are fewer scholarly papers focused on firm 

behaviors or factors to predict firm-level adoption of radical innovation.  This dissertation 

research is designed to investigate the utility of applying Morgan and Hunt’s (1994) 

commitment-trust theory of relationship marketing to develop knowledge on predicting firm-

level adoption of radical innovation.  Armed with this understanding, practitioners can build and 

execute targeted marketing strategies to attract new clients and strengthen existing client 

relationships.  With knowledge of a customer’s behavior in terms of purchase timing, brand 

choice, and purchase amount, a firm can decide what to sell, when to sell, and to whom to sell in 

order to maximize profitability (Kumar, Venkatesan, and Reinartz 2006).   

 

II.II MODELING PURCHASE TIMING, BRAND CHOICE AND PURCHASE AMOUNT 

For decades, research has been published in the marketing literature focused on the key 

drivers of purchase behavior, including purchase timing, brand choice, and purchase amount.  A 

firm’s decision to purchase in a category often depends on the timing of the firm’s previous 

purchase in that category, the decision to buy in a related category, marketing variables, and 

consumer heterogeneity. Similarly, the choice of brand is often determined by a firm’s previous 

choice of brand through state dependence, the relative utilities of brands in the consideration set, 

marketing activities, and the firm’s heterogeneous brand preference. Additionally, a firm’s 
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heterogeneous response to marketing variables and inventory level affects the purchase amount 

decision. 

Robust literature exists (see Table 1) analyzing purchase timing, brand choice, and 

purchase amount decisions (Kumar and Man Luo’s 2008).  Most of the studies focus on 

business-to-consumer applications, while fewer studies model purchase decisions in a business-

to-business application. 

Table 1: Select Purchase Timing, Brand Choice, and Purchase Amount Models 

Studies Timing/ 
Incidence Choice Amount Business Type 

Neslin, Henderson, and Quelch (1985) Yes  Yes B-C 

Krishnamurthi and Raj (1988)  Yes Yes B-C 

Chiang (1991) Yes Yes Yes B-C 

Bucklin and Gupta (1992) Yes Yes  B-C 

Chintagunta (1993) Yes Yes Yes B-C 

Tellis and Zufryden (1995)  Yes Yes B-C 

Ainslie and Rossi (1998) Yes Yes  B-C 

Arora, Allenby and Ginter (1998) Yes Yes Yes B-C 

Boatwright, Borle, and Kadane (2003) Yes  Yes B-C 

Zhang and Krishnamurthi (2004) Yes Yes Yes B-C 

Kumar, Venkatesan, and Reinartz (2006) Yes Yes  B-B 

Borle, Singh and Jain (2008) Yes  Yes B-C 

Jen, Chou, Allenby (2009) Yes  Yes B-C 

Andrews and Currim (2009) Yes Yes  B-C 

Youngsoo, Telang, Vogt, Krishnana (2010) Yes  Yes B-C 

Mehta, Chen, Narsimhan (2010) Yes Yes Yes B-C 

 

The following paragraphs summarize the vast research providing insight into modeling purchase 

timing, brand choice, and purchase amount independently, and into analyzing these three 

decisions in an integrated model.   

Purchase Timing 

In order to model purchase timing, the researcher often decides between modeling a 

firm’s decision of whether to buy or when to buy. As Table 2 shows, the general approaches to 

model whether to buy are either through a logit function for purchase timing decisions alone or a 
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single utility function. To estimate when to buy, one can propose a parametric distribution for the 

elapsed time or capture such phenomena within the framework of a Hazard Function. 

Table 2: Review of Purchase Timing Models 

Research Interest Specification Representative Studies 

Whether to buy Logit Bucklin and Gupta (1992) 

  Zhang and Krishnamurthi (2004) 

 Single utility function Chiang (1991) 

  Chintagunta (1993) 

  Arora, Allenby and Ginter (1998) 

  Andrews and Currim (2009) 

  Jen, Chou, Allenby (2008) 

  Mehta, Chen, Narsimhan (2010) 

When to buy Distribution of Elapse Time Boatwright, Borle, and Kadane (2003) - CM 
Poisson 

 Hazard function Jain and Vilcassim (1991) 

  Seetharaman and Chintagunta (2003) 

  Kumar, Venkatesan, and Reinartz (2006) 

  Ainsle and Rossi (1998) 

  Borie, Singh, Jain (2008) 

Overview of cross - 
category dependence  Manchanda, Ansari, and Gupta (1999) 

 
 

Brand Choice 

Lilien, Kotler, and Moorthy (2003) propose that most brand choice models differ in how 

they handle population heterogeneity, purchase-event feedback, and exogenous market factors. 

The authors define this difference by specifying which marketing factors should be included in 

the model and whether such effects cause structural shift. There are three different types of 

models that incorporate purchase-event feedback: the zero-order model, the Markov model, and 

the learning model. Difference among the three types of models depends on how great of an 

effect previous purchase history has on brand choice probability. As shown in Table 3, purchase-

event feedback is captured through brand loyalty measurements based on choice history, lagged 

choice, and lagged marketing variables. 
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Table 3: Review of Brand Choice Models 

Research Interest Specification Representative Studies 

Purchase Event Feedback Exponentially weighted averages of 
past purchases Krishnamurthi and Raj (1988) 

  Chiang (1991) 
  Kannan and Wright (1991) 
  Chintagunta (1993) 
  Andrews and Currim (2009) 
 Lagged Choice Zhang and Krishnamurthi (2004) 
  Bucklin and Gupta (1992) 
 Lagged marketing variable Zhang and Krishnamurthi (2004) 

  Kumar, Venkatesan, and Reinartz 
(2006) 

  Silva - Risso and Ionova (2008) 
Overview of State Dependence  Seetharaman (2003) 
  Roy, Chintagunta, and Haldar (1996) 
  Seetharaman (2004) 
  Mehta, Chen, Narasimhan (2010) 

 

Purchase Amount 

Differences in modeling purchase amount rely on the researcher’s views of the 

dependence between choice and amount decisions. As shown in Table 4, the approaches for 

modeling purchase amount include the following: correcting for selection bias in the amount 

decision through a Heckman procedure, using a single utility function, or a bivariate logit model 

to jointly estimate purchase amount and choice decisions. 

Table 4: Review of Purchase Amount Models 

Research Interest Specification Representative Studies 

 
Heckman procedure Krishnamurthu and Raj (1988) 

 
Single utility function Chiang (1991) 

Dependence between amount 
and choice (brand/category) 

 Borle, Singh, Jain (2008) 

 
 Mehta, Chen, Narasimhan (2010) 

 
 Chintagunta (1993) 

 Arora, Allenby and Ginter (1998) 

 Andrews and Currim (2009)  

Bivariate logit model Zhang and Krishnamurthi (2004) 

 
 Jen, Chou, Allenby (2009) 
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Modeling multiple decisions 

The following general approaches (see Table 5) are employed when a researcher is 

interested in modeling at least two of the three decisions. As shown in Table 5, there are various 

combinations of modeling approaches for estimating at least two of these decisions. For example, 

purchase timing and brand choice can be modeled through a nested logit, hierarchical latent 

regression, hazard model, or a probit model. Purchase amount can be estimated using a 

regression model with selection bias corrected, and purchase timing can be modeled with a logit 

model or a probit model. If purchase amount is incorporated in the utility function, all three 

decisions can be captured using a single direct utility function.  Chintagunta (1993) posits that 

the decisions of purchase timing, brand choice, and purchase amount should be modeled jointly 

to ensure the observed choices provide the highest utility to a consumer.  Chintagunta research 

includes a direct utility function with all three decisions incorporated, thereby assuming that 

consumers will make the optimal decision of whether to buy, which brand to buy, and how much 

to buy, given the price of each brand, quality attributes of each brand, and budget constraint.   

Table 5: Review of Integrated Purchase Decision Models 

Decisions Studied Model Specification(s) Representative Studies 
 Nested logit Bucklin and Gupta (1992) 
  Silva-Risso and Ionova (2008) 

Hierarchical latent 
regression Ainslie and Rossi (1998) Timing/incidence and 

brand choice Hazard (timing) Kumar, Venkatesan, and Reinartz (2006) 
 Probit (choice) Kumar, Venkatesan, and Reinartz (2008) 
  Li, Sun, Montgomery (forthcoming) 

Probit/logit (choice) Krishnamurthi and Raj (1988) Brand choice and 
purchase amount Regression (elapse time) Neslin, Henderson, and Quelch (1985) 
 Regression (amount)  
 CM-Poisson/logit (timing) Boatwright, Borle, and Kadane (2003) 

Hazard function (timing) Borle, Singh, Jain (2008) Timing/incidence and 
purchase amount  Chiang (1991) 

Timing/incidence and 
purchase amount and 
brand choice 

Single direct utility function 
subject to budget constraint Chintagunta (1993) 

  Arora, Allenby, and Ginter (1998) 
  Mehta, Chen and Narasimhan (2010) 
  Andrews and Currim (2009) 
 Bivariate logit Zhang and Krishnamurthi (2004) 
  Jen, Chou, Allenby (2009)  
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As noted earlier (see Table 1), the preponderance of research on purchase timing, brand 

choice, and purchase amount models has been conducted within the business-to-consumer 

context. This dissertation research tests both the single models of purchase timing, brand choice, 

and purchase amount, as well as the simultaneous estimation of purchase timing, brand choice, 

and purchase amount decisions within the business-to-business context of firm-level adoption of 

radically innovative IT.  

Typically, products/services’ needs drive the purchase timing, brand choice and purchase 

amount decisions. Timing of purchase can vary depending on what is bought and how much of it 

is bought (Mehta and Ma 2012). For example, in the case of a high tech firm, the timing of the 

purchase of a printer cartridge may depend on the type of printer cartridge and the purchase 

amount of the printer cartridges. Alternatively, the amount being purchased can also depend on 

the timing of the purchase and the type of printer cartridges being purchased. Thus, the decisions 

could be inter-related and therefore highlights the need to model the three decisions (purchase 

timing, brand choice and purchase amount) jointly. 
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CHAPTER III: MODELING FRAMEWORK 

This section describes the conceptual framework, hypotheses tested, modeling approach 

and specifications for this dissertation research.  Firm’s decisions to purchase products or 

services are more likely to happen when there are unmet needs present (V. Kumar & Shah 2004).  

The foundation of the purchase timing, brand choice, and purchase amount models can be 

attributed to the theory of relationship marketing, a theory based on commitment and trust 

(Morgan and Hunt 1994).  Moorman, Zaltman, and Deshpande (1992) define relationship 

commitment as an enduring desire to maintain a valued relationship, and trust as a willingness to 

rely on an exchange partner in whom one has confidence.    

 

III.I. CONCEPTUAL FRAMEWORK & HYPOTHESES  

Building on the theory of relationship marketing and the main tenants of commitment and 

trust proposed by Morgan and Hunt (1994), coupled with existing literature regarding behavior 

based determinants of purchase decisions (see Tables 1 – 5), this research seeks to investigate the 

link between need, commitment, and trust with firm adoption of radically innovative IT (See 

Table 6). 
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Table 6: Radical Innovation Adoption Matrix 

Construct Definition Sample of Measures 

Need The extent to which a firm has a 
lack of something deemed 
necessary 

Degree to which a firm has 
recently purchased products to 
fulfill what is deemed necessary 

Commitment The extent to which a firm desires 
to maintain a relationship with a 
particular vendor 

Behavior brand loyalty as 
measured by the annual 
purchases 

Trust The extent to which a firm is 
confident in an exchange 
partner’s reliability 

Experience an organization has 
with a supplier 

 
 

Need: 

In this dissertation study, the level of firm need is anticipated to be associated with the 

adoption of radical innovation.  Firm need is defined in the literature as the extent to which an 

organization has a lack of something deemed necessary, and can be measured by the purchase 

behavior of products that satisfy what is deemed necessary within a certain time period (V. 

Kumar & Shah 2004).  To investigate the relationship of firm need with adoption of radically 

innovative IT, the latent construct of purchasing alternative products (see Table 7) is tested. 

 

Table 7: Construct and Measurement of Need 

Latent Construct Measured Variable 
Purchase of Alternative Products Purchase behavior of non-cloud 

alternative products from 2008-2009 
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Commitment: 

In this dissertation study, the level of firm commitment is anticipated to be associated 

with the adoption of radical innovation.  Relationship commitment is defined in the literature as 

an enduring desire to maintain a valued relationship, and can be measured by annual purchases 

within a certain time period (Morgan and Hunt 1994).  To investigate the relationship of firm 

commitment with adoption of radically innovative IT, the latent construct of annual purchases 

(see Table 8) is tested. 

 

Table 8: Construct and Measurement of Commitment 

Latent Construct Measured Variable 

Annual Purchases Purchase of annual based non-cloud 
products from 2008-2009 

 
 

Trust: 

In this study, the level of firm trust is anticipated to be associated with the adoption of 

radical innovation.  Exchange participants are more willing to commit to a relationship if trust is 

present (Morgan and Hunt 1994).  Doney and Cannon (1997) argue that the more experience an 

organization has with a supplier, the more likely they are to trust that supplier.  To operationalize 

the trust component of the conceptual framework, the constructs of having long-term contracts 

and purchasing across multiple brands from the same vendor are tested (see Table 9).   
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Table 9: Constructs and Measures of Trust 

Latent Construct Measured Variable 

Long-Term Contract 
Relationship Presence of long-term contracts during 2008-2009 

Cross Category 
Purchases Total purchase number of distinct non-cloud products during 

the window of 2008-2009 

 

Independent models for each of the purchase decisions of timing, brand choice and 

amount, and an integrated modeling approach (see Figure 2) were employed to explicate the role 

of need, commitment, and trust in the adoption of radically innovative IT.   
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Purchase Timing of Adoption of Radical Innovation: 

Drawing from existing literature in commitment and trust, cross-category purchases, and 

customer lifetime value (Morgan and Hunt 1994, Berry and Parasuraman 1991, Doney and 

Cannon 1997 and Reinartz and Kumar 2003), the variables that influence the decision of 

purchase timing were selected.  The description, operationalization of the variables, and the 

expected effects are contained in Table 10. 

 

Table 10: Purchase Timing Model Variables and Operationalization 

Dependent Variable: Projected timing of adoption of radical innovation 

 

 

 

 

Purchase of Alternatives: 

 Firms that have recently purchased alternative products typically extend the time period 

for which they will purchase again in the same product category.  Contrary to consumer 

packaged goods, for high-tech products, firms typically use the product before purchasing more 

of the product.  Therefore, the longer the time since last purchase in a product category, the more 
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likely the firm is to purchase in that category (Kumar et al, 2008). The following hypothesis tests 

the relationship between growth in purchases of alternative products and the adoption of 

radically innovative IT. 

Hypothesis 1a:  Firms with higher growth in purchases of alternative products in the past 

will adopt radical innovation in the future later.   

 

Annual purchases:   

Firms which purchase annually from the same vendor exhibit behaviors consistent with 

desiring to maintain an enduring relationship.  Morgan and Hunt (1994) posit that higher levels 

of annual purchases indicate higher levels of commitment; therefore, commitment is 

operationalized through measurement of firm annual purchase behavior.  The following 

hypothesis tests the relationship between annual purchases and the adoption of radically 

innovative IT.   

Hypothesis 2a:  Firms with higher frequency of annual purchases in the past will adopt 

radical innovation in the future sooner.   

 

Long-term contract relationship:   

Trust is identified in the services marketing literature as important in creating successful 

exchanges (Berry and Parasuraman 1991).  Trust is one of the key antecedents of signing a 

multi-year agreement with a vendor to outsource a firm’s IT.  The following hypothesis tests the 

relationship between signing a long-term contract with a vendor and the adoption of radically 

innovative IT.   

Hypothesis 3a:  Firms with long-term contracts in the past will adopt radical innovation 

in the future sooner.    



22	  
	  

	  
	  

 

Cross-category purchases: 

Doney and Cannon (1997) posit that higher levels of experience with a vendor leads to 

increasing levels of trust.  Purchasing multiple products from different categories from the same 

vendor increases the level of experience a firm has with the vendor.  Additionally, customers 

who purchase across several product categories have higher switching costs and recurrent needs 

(Reinartz and Kumar 2003).  The following hypothesis tests the relationship between the levels 

of cross-category purchases with a vendor and the adoption of radically innovative IT.   

Hypothesis 4a:  Firms with higher cross-category purchases in the past will adopt 

radical innovation in the future sooner.  

 

Brand Choice Adoption of Radical Innovation: 

Drawing from existing literature in commitment and trust, cross-category purchases and 

customer lifetime value (Morgan and Hunt 1994, Berry and Parasuraman 1991, Doney and 

Cannon 1997 and Reinartz and Kumar 2003), the variables which influence the purchase 

decisions of brand choice were selected.  The description, operationalization of the variables, and 

the expected effects are contained in Table 11. 
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Table 11: Brand Choice Model Variables and Operationalization    
Dependent Variable:  Propensity to Adopt Radical Innovation 

 

 

Purchase of Alternatives: 

 Firms that have recently purchased alternative products typically extend the time period 

for which they will purchase again in the same product category.  Contrary to consumer 

packaged goods, for high-tech products, firms typically use the product before purchasing more 

of the product.  Therefore, recent purchases in a product category, decreases the likelihood of a 

firm to purchase again that category (Kumar et al, 2008). The following hypothesis tests the 

relationship between growth in purchases of alternative products and the adoption of radically 

innovative IT. 

Hypothesis 1b:  Firms with higher growth in purchases of alternative products in the past 

will have lower likelihood to adopt radical innovation in the future.   

 

Annual purchases:   

Firms that purchase annually from the same vendor exhibit behaviors consistent with 

desiring to maintain an enduring relationship.  Morgan and Hunt (1994) posit that higher level of 

annual purchase frequency indicates higher levels of commitment; therefore, commitment is 
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operationalized through measurement of annual purchase behavior.  The following hypothesis 

tests the relationship between annual repeat purchases and the adoption of radically innovative 

IT.   

Hypothesis 2b:  Firms with higher frequency of annual purchases in the past will have 

higher likelihood to adopt radical innovation in the future.   

 

Long-term contract relationship:   

Trust is identified in the services marketing literature as important in creating successful 

exchanges (Berry and Parasuraman 1991).  Trust is one of the key antecedents of signing a 

multi-year agreement with a vendor to outsource a firm’s IT.  The following hypothesis tests the 

relationship between signing a long-term contract with a vendor and the adoption of radically 

innovative IT.   

Hypothesis 3b:  Firms with long-term contracts in the past will have a higher likelihood 

to adopt radical innovation in the future.   

 

Cross-category purchases: 

Doney and Cannon (1997) posit that higher levels of experience with a vendor leads to 

increased levels of trust.  Purchasing multiple products from different categories from the same 

vendor increases the level of experience a firm has with that vendor.  The following hypothesis 

tests the relationship between the levels of cross-category purchases with a vendor and the 

adoption of radically innovative IT.   

Hypothesis 4b:  Firms with higher cross-category purchases in the past will have higher 

likelihood to adopt radical innovation in the future. 
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Purchase Amount of Adoption of Radical Innovation: 

Drawing from existing literature in commitment and trust, cross-category purchases, and 

customer lifetime value (Morgan and Hunt 1994, Berry and Parasuraman 1991, Doney and 

Cannon 1997 and Reinartz and Kumar 2003), the variables that influence the decisions of 

purchase amount were selected.  The description, operationalization of the variables, and the 

expected effects are contained in Table 12. 

 

Table 12: Purchase Amount Model Variables and Operationalization 

Dependent Variable: Purchase Amount of Adoption of Radical Innovation 

 

 

 

Growth in Purchase of Alternatives: 

 Firms that have recently purchased alternative products typically extend the time period 

for which they will purchase again in the same product category.  Contrary to consumer 

packaged goods, for high-tech products, firms typically use the product before purchasing more 

of the product.  Therefore, the longer the time since last purchase in a product category, the more 
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likely the firm is to purchase in that category (Kumar et al, 2008). The following hypothesis tests 

the relationship between growth in purchases of alternative products and the adoption of 

radically innovative IT. 

Hypothesis 1c:  Firms with higher growth in purchases of alternative products in the past 

will have lower purchase amount of radical innovation in the future.   

 

Annual purchases:   

Firms that purchase annually from the same vendor exhibit behaviors consistent with 

desiring to maintain an enduring relationship.  Morgan and Hunt (1994) posit that higher levels 

of purchase frequency indicate higher levels of commitment; therefore, commitment is 

operationalized through measurement of annual purchase behavior.  The following hypothesis 

tests the relationship between annual purchases and the adoption of radically innovative IT.   

Hypothesis 2c:  Firms with higher frequency of annual purchases in the past will have 

higher purchase amount of radical innovation in the future.   

 

Long-term contract relationship:   

Trust is identified in the services marketing literature as important in creating successful 

exchanges (Berry and Parasuraman 1991).  Trust is one of the key antecedents of signing a 

multi-year agreement with a vendor to outsource a firm’s IT.  The following hypothesis tests the 

relationship between signing a long-term contract with a vendor and the adoption of radically 

innovative IT.   

Hypothesis 3c:  Firms with long-term contracts in the past will have higher purchase 

amount of radical innovation in the future.    
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Cross-category purchases: 

Doney and Cannon (1997) posit that higher levels of experience with a vendor leads to 

increasing levels of trust.  Purchasing multiple products from different categories from the same 

vendor increases the level of experience a firm has with that vendor.  The following hypothesis 

tests the relationship between the levels of cross-category purchases with a vendor and the 

adoption of radically innovative IT.   

Hypothesis 4c:  Firms with higher cross-category purchases in the past will have higher 

purchase amount of radical innovation in the future.   

 

III.II. DATA DESCRIPTION 

The data leveraged for this study was provided by a large global IT firm serving business 

clients within the observation period of 2008 to 2010.  This firm sells a broad range of IT 

offerings, including software, hardware, and services.  Firms included in the study sample are 

medium to large size companies that have been customers of the global IT firm for many years.  

Firms selected were those that made a minimum number of purchases so that variation in 

purchase behavior could be observed over time.   

The information about each firm includes the purchase history (in terms of what was 

purchased, how much was purchased, and when the firm made the purchase), and profile data 

including industry and employee size.  Such data provide enough information to derive firm 

level parameters that capture observed and unobserved heterogeneity.  In addition to the 

variables provided in the original data set leveraged for this analysis, the following variables 

were imputed to enrich the final model building data set.   
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• Cross buy behavior = the total number of purchases of distinct non-cloud products during the window 

of 2008-2009 

• Average inter-purchase time of non-cloud product during the window of 2008-2009  

• Total purchase frequency of non-cloud product for customer during the window of 2008-09 

• Total $ value of non-cloud product for customer during the window of 2008-2009 

• $ value per transaction of non-cloud product for customer during the window of 2008-2009, 

calculated  by  within the two years across all products 

• $ value per product of non-cloud product for customer, calculated as  

within two years across all products 

• Growth of $ value of non-cloud product, calculated by total purchase value in 2009 – total 

purchase value in 2008 

• Growth of purchase frequency of non-cloud product, calculated by the total purchase 

frequency in 2009 – total purchase frequency in 2008 

• Growth of $ value per transaction of non-cloud product, calculated by 

 

• Growth of $ value per product of non-cloud product, calculated by 

 

• Product ownership of non-cloud product XX 

• Purchase frequency of non-cloud product XX 

• Purchase $ value of non-cloud product XX 

• Growth of purchase frequency of non-cloud product XX, calculated by the total purchase 

frequency in 2009 - total purchase frequency in 2008 for non-cloud product XX 
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• Growth of $ value for non-cloud product XX, calculated by the total $ value in 2009 - total 

$ value in 2008 for non-cloud product XX. 

Note:  "XX" represents the non-cloud product name  

 

III.III. INDEPENDENT MODEL FOR PURCHASE TIMING - ESTIMATION & 

RESULTS 

The independent purchase timing modeling process tests two different survival analytic 

methods and two different dependent variables.  Both LIFEREG and PHREG survival models 

were built and tested.  Additionally, the dependent variables of time since last purchase, and time 

since first purchase were estimated. 

Description of two modeling approaches:  Proc LIFEREG and Proc PHREG 

Both approaches (LIFEREG and PHREG) are widely used survival analysis methods in 

statistics and marketing applications.   

LIFEREG is a parametric regression model known as the "accelerated failure time" 

(AFT) model, which estimates the survival function by assuming that the shape of the survival 

distribution is known.  The LIFEREG model is set up as:  

 

Where  is the event time for ith individual,  are k-dimensional covariates,  is the random 

disturbance term, and  are the parameters to be estimated.   
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PHREG is a semi-parametric regression model known as the proportional hazard model 

which, unlike LIFEREG, does not require a selection of distribution to represent the survival 

times.  The PHREG model is set up as: 	  

 

where  is the hazard for ith individual,  is the baseline hazard denoting the hazard of 

the ith individual when all covariates are equal to zero, and s are the parameters to be 

estimated.   

A major difference between LIFEREG and PHREG is that LIFEREG requires the 

survival time to follow an existing, known distribution regulated by the  terms to be 

estimated.  Conversely, PHREG relaxes this distribution assumption by replacing the estimation 

of  with a baseline hazard  that is decided by the data.   

The pros and cons of LIFEREG and PHREG models are highlighted in Table 13. In this 

study, both modeling approaches are employed in order to select the most suitable model to 

predict the timing of firm adoption of radically innovative IT.   
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Table 13: Pros and Cons between two Survival Model Approaches 

 Proc LIFEREG Proc PHREG 
Pros • Estimation is more efficient when 

the distribution fits the data  
• Accommodates left censoring and 

interval censoring  
• Results are easier for 

interpretation 
• Can generate predicted event time 

at a given survival probability for 
any specified set of covariate 
values  

• Does not require the data to fit 
an existing distribution  

• Estimation results are more 
consistent with the data 
especially when existing 
distribution doesn't fit the data 

• Handles time-dependent 
covariates 

• Provides stepwise selection of 
covariates 

Cons • Estimation can be biased if the 
selected distribution doesn't fit the 
data 

• Does not handle time-dependent 
covariates 

• Cannot perform stepwise selection 
of covariates 

• Results are relatively harder for 
interpretation  

• Major limitation on prediction  
ability (described below) 

 

It is important to note that a major limitation of Proc PHREG is prediction ability.  The 

prediction generated by Proc PHREG is the predicted survival probability at each given event 

time in the sample for each firm.  Therefore, Proc PHREG cannot provide a prediction on the 

survival probability beyond the maximum observed event time in the data.  This limitation 

significantly constrains the application of PHREG in this study.   

Description of two dependent variables:  "Time since last purchase" vs. "Time since first 

purchase" 

Time since last purchase is the time period between the first purchase of a cloud-product 

in 2010 and the last purchase of a non-cloud-product during 2008-2009.  

Time since first purchase is the time period between the first purchase of a cloud-product 

in 2010 and the first purchase of a non-cloud-product during 2008-2009.  
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Final Model Approach and Dependent Variable 

Based on multiple analytical tests, including hit ratios, mean absolute deviation, and 

prediction ability, time since first purchase is used as the dependent variable, and LIFEREG is 

used as the modeling technique employed to build the final independent purchase timing model.   

Hold-out Sample Parameter Estimation and Validation 

A hold-out sample prediction is used in the purchase timing model.  The hold-out sample 

enables the testing of whether or not the model obtains consistent results between in-sample and 

hold-out samples.  The data is split into 70% vs. 30% for parameter estimation and prediction 

validation.  Both the 70% and 30% samples have the same proportion of cloud-buyers as the full 

sample.   

Results of Hypotheses H1a, H2a, H3a and H4a 

The results of the purchase timing hazard model (see Table 14) indicate that need,  

commitment, and trust variables are statistically significant in relation to the timing of firm 

adoption of radically innovative IT.  The results confirm the originally proposed hypotheses, 

suggesting that the extent to which a firm has purchased alternatives exhibits a positive 

relationship and therefore extends the firm’s purchase timing for adoption of radical innovation.  

Conversely, both commitment and trust variables exhibit negative relationships relative to a 

firm’s purchase timing for adoption of radical innovation.  These negative parameter estimates 

indicate the firm’s purchase timing of radical innovation adoption is significantly decreased 

when firms have higher levels of commitment and trust as measured by annual purchases and 

having long-term contracts established. These findings suggest need as a key antecedent of 

purchase decision, along with both commitment and trust factors, in regards to the purchase 

timing for firm adoption of radical innovation. 
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III.IV. INDEPENDENT MODEL FOR BRAND CHOICE – ESTIMATION & RESULTS 

Logistic regression is used extensively in marketing applications to predict a customer's 

propensity to purchase a product or service.  Like many forms of regression analysis, logistic 

regression can have several predictor variables that are either numerical or categorical.  Since the 

dependent variable (Y), “brand choice,” is a binary variable, purchase (Y=1) or non-purchase 

(Y=0) of cloud products, the logit model is used. The independent variables are presumed to 

affect the brand choice to adopt or not to adopt cloud computing.   The logit model used in this 

study is as follows: 

 

	  	  

	  	  	  	  	  	  

where,  
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In-Sample Parameter Estimation and Validation 

The data used for the above estimation was created by aggregating monthly purchase of 

non-cloud product data to the yearly level (2008 and 2009) and then aggregating it to create two-

year data (2008 & 2009 combined). This dataset was then merged with the cloud purchase data. 

The logit model was estimated on a merged dataset consisting of a random sample from the non-

cloud purchase group and the complete cloud purchase group.  

With the number of cloud-buyers and non-buyers in the data set being unbalanced (67 

buyers versus 228 non-buyers), the brand choice model was built using all cloud buyers and 134 

randomly selected non-buyers.  This was necessary because an unbalanced sample could lead to 

a visually optimal but expressively biased prediction outcome.  Given the sample size is 

relatively small, only in-sample parameter estimation and validation are provided.  The hold-out 

prediction is expected to be similar to the in-sample results.   

 

Results of Hypotheses H1b, H2b, H3b, and H4b  

The results of the brand choice logit model (see Table #15) indicate that both trust 

variables and the commitment variable are statistically significant in relation to the brand choice 

purchase decision of firm adoption of radically innovative IT.  These results suggest that both 

trust variables (long-term contract relationships and cross category purchase behavior), along 
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with the commitment variable of annual purchases exhibit positive relationships relative to a 

firm’s brand choice for adoption of radical innovation. The positive coefficients from the trust 

and commitment measures indicate the propensity of radical innovation adoption is significantly 

increased for firms with higher annual purchases, long-term contracts, and cross-category 

purchases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

III.V. INDEPENDENT MODEL FOR PURCHASE AMOUNT– ESTIMATION & 

RESULTS 

In addition to being able to predict purchase timing and brand choice with regard to firm 

adoption of radically innovative IT, it is important to understand how much money the firm is 

projected to spend on the adoption purchase. In modeling purchase amount, the following linear 

regression model is used: 
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where, 

 

 

 

In-Sample Parameter Estimation and Model Validation  

The data used for the above estimation was created by aggregating monthly purchase data 

to the yearly level (2008 and 2009) and then aggregating it to create two-year data (2008 & 2009 

combined). This dataset was then merged with the cloud purchase data (which contains the cloud 

purchase amount information). This was the final dataset used to model purchase amount for 

cloud products. After creating the independent variables (X) using the aforementioned dataset, 

the regression model was run. Several iterations of the model were estimated using various 

combinations of Xs (product-level and exchange characteristics). In order to maintain the 

model’s logical relevance, preference was given to the exchange variables in the estimation 

process.  

 

Results of Hypothesis H1c, H2c, H3c, and H4c 

The results of the purchase amount OLS regression model (see Table #16A) indicate that 

both trust and commitment variables are statistically significant in relation to purchase amount 

decision of firm adoption of radically innovative IT.  The results suggest that both trust variables 

(long-term contract relationships, cross category purchase behavior) along with the commitment 

variable of annual purchases exhibit positive relationships relative to the purchase amount for 

adoption of radical innovation.   The positive coefficients from the trust and commitment 
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measures indicate that the purchase value of radical innovation adoption is significantly 

increased for firms with growth in annual purchase frequency, long-term contracts and cross-

category purchases.   

 

 

 

 

 

 

 

 

 

 

 

 

Log-Transformed Purchase Amount Model Results 

Both commitment and trust variables are statistically significant. The trust variables 

(long-term contract relationships, cross-category purchase behavior) along with the commitment 

variable of annual purchases exhibit positive relationships relative to the purchase amount for 

adoption of radical innovation.   The positive coefficients from the trust and commitment 

measures indicate the purchase value of radical innovation adoption is significantly increased for 

firms with increased growth in annual purchases, long-term contracts and cross-category 

purchases.  
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Table 16B: Purchase Amount Model Parameter Estimates 

 Variable Parameter 
Estimate 

Standard 
Error t Value Pr>ItI 

N
ee

d 
M

ea
su

re
 Growth in purchases 

of Alternative 
Products 
Growth_ACB 

Not Sig. Not Sig. Not Sig. Not Sig. 

C
om

m
itm

en
t M

ea
su

re
 Growth in annual 

total purchase 
frequency 
gth_pfq_#A 

0.26697 0.07162 3.73 .0002 

Long-term contracts 
gth_pfq_#B 0.01001 0.0046 2.18 0.0304 

Tr
us

t 
M

ea
su

re
s 

Cross-category 
Purchases 
Yr_valueCB 

1.467E-07 5.699E-8 2.57 0.0107 
Significant at P = 0.05 

 

III.VI. BENEFITS OF AN INTEGRATED MODEL 

The following paragraphs highlight several reasons why building an integrated model for 

purchase timing, brand choice, and purchase amount will produce improved insight and model 

performance than the independent decision models, from both a statistical validity and 

practitioner perspective.   

1. From a modeling methodology perspective, the use of linear regression for estimating 

purchase amount is often not the theoretically correct method. Since the dataset consists 

of customers who did not make cloud purchases at all, their total cloud value is coded as 

zero. There are a total of 228 firms who have not purchased cloud coded as zeros (and 67 

cloud buyers coded as 1) in the dataset and the use of linear regression on these zero 

values can lead to biased results. The more theoretically correct method to use is a Type 

II Tobit regression model, which allows for a selection step wherein the model chooses 

the customers who actually make a purchase and estimates their slopes separately.  
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2. According to existing literature, timing models are centered on the estimation of when an 

existing customer will purchase again, instead of the time of adopting a new product.  

The focus of this dissertation research is estimating the adoption of a new product. 

3. The dependent variable selection for the purchase timing model is problematic.  Two 

purchase timing model dependent variable options were tested (time since last purchase 

and time since first purchase.)  

a. For time since last purchase, the time horizon is calculated as the time duration 

between first cloud purchase in 2010 and last purchase of any non-cloud product 

from 2008-2009.  This dependent variable is more likely to give prediction on 

when the customers will purchase in 2010 instead of when the customer will 

purchase cloud in 2010.   

b. For time since first purchase, the time horizon is calculated as the time duration 

between first cloud purchase in 2010 and first purchase of any non-cloud product 

from 2008-2009, which not only contains the same predictive constraint noted 

above in time since last purchase, but also introduces a left-censoring condition, 

(i.e. the first purchase between 2008 and 2009 wouldn’t be the customer’s actual 

acquisition time.)  Consequently, the data is both right and left censored.    

In conclusion, given the data available for this research, building an integrated model for 

purchase timing, brand choice, and purchase amount will produce improved theoretical rigor, 

model performance and practitioner relevance.  For example, building a choice-amount model 

(e.g. using Type II Tobit model approach) will provide a more reliable prediction on whether the 

firm will buy cloud within one transaction year and the revenue associated with the purchase.  

Moreover, marketing practitioners ideally would like to simultaneously understand the timing of 
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firm adoption of radically innovative IT, the specific type of anticipated adoption and the 

estimated expenditure on adoption to drive different marketing strategies to attract new and 

retain existing customers. Therefore, inserting time as a factor in a choice-amount model yields 

an integrated model for three decisions empirically.   

An important aspect of the three-decision joint model is to decide how to make the prediction 

results consistent between both the choice model and timing model. For example, the 

independent choice model suggests that firm A would buy cloud within one specific year while 

the independent timing model predicts purchase timing outside the year.  One way to address this 

is to only select those customers who are predicted to purchase cloud within one specific year by 

both choice model and timing model and to estimate their purchase quantities.  The underlying 

logic is that the confidence level of the predictions will increase if both the choice and timing 

models suggest the customer would purchase cloud within the year.   

III.VII. INTEGRATED MODEL FOR PURCHASE TIMING, BRAND CHOICE, AND 

PURCHASE AMOUNT - ESTIMATION & RESULTS 

This research study is designed to explain and predict purchase timing, brand choice, and 

purchase amount of radically innovative information technology.  Section 3.3-3.5 addresses each 

of the purchase decisions independently, by making the implicit assumption that each decision 

does not influence the next.  However, there is evidence in marketing literature that these 

decisions are not independent but, in fact, do influence each other. Chiang (1991) demonstrated 

that the influence of marketing variables on a customer’s purchase timing, brand choice, and 

purchase quantity decisions occur simultaneously.  To account for this, the purchase decisions 

are modeled jointly (see Figure 3) using the recommendations of Kumar and Luo (2008).
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Marketing literature has attempted to address the interrelationships between decisions for the 

following reasons (Kumar and Luo 2008):  

a) Independent models cannot account for selection bias in quantity and choice models. 

b) Marketing variables could affect each of the firm’s purchase decisions simultaneously. 

This cannot be captured accurately if the decisions are treated as independent.  

c) An independently estimated model can only capture the firm’s purchase behavior as a 

snapshot with regard to that specific decision. For example, independent models cannot 

uncover the effect of the firm’s timing decision on the quantity of cloud purchased.  

 

In order to overcome the challenges that independent models pose, the study also 

estimates the purchase decisions jointly using a Bayesian estimation framework.  

 

Timing Model: The first decision in terms of firm adoption of radical innovation is 

‘whether or not the firm will purchase a cloud product in the next year’.  To answer this, the 

‘timing’ model is built to estimate whether the firm will purchase a cloud product, and whether 

the purchase will be made in the coming year.  

Choice Model: Next, if the firm is projected to adopt cloud; it’s important to know 

whether the firm is going to adopt the current IT providers ‘Build-cloud’ offerings or any other 

cloud product. To answer this, a multivariate probit choice model is estimated. The brand choice 

model is developed by leveraging the utility maximization theory in economics, wherein the 

customer makes a ‘choice’ decision that would maximize their relative utility between the 

available choices.  is the latent utility term which indicates the “difference” of utility between 

purchasing “build” cloud and “Non-build” cloud. When , the firm is predicted to 
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purchase a Build-cloud product and when  the firm is predicted to purchase a Non-build 

cloud product.  

Build-Cloud Amount Equation: The Build-cloud amount equation indicates how much 

the firm is predicted to spend on the Build-cloud products if the firm makes a Build-cloud 

purchase. This equation is specified as a linear regression of the independent variables on the log 

of the total cloud purchase value for each firm.  

Non-Build Cloud Amount Equation: The Non-Build cloud amount equation is 

specified similar to the Build-cloud amount equation. The Non-Build cloud model indicates how 

much the firm is projected to spend on the Non-Build cloud product if the firm makes a Non-

Build cloud purchase.  

 

	  

	  

Where,	   	  

	  
	  	  

	  
	  

	  
	  

 

Error Structure: The final aspect of the equation is the error structure, , 

which captures the variances of each decision (Purchase Timing, Brand Choice, Build-cloud 

amount, and Non-Build cloud amount) that cannot be explained by the independent variables 

Timing	  Model	  

Choice	  Equation	  

Build-‐Cloud	  Quantity	  Equation	  

Non-‐Build	  cloud	  Quantity	  Equation	  
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( .  Since the decisions are assumed to affect one another, a multivariate 

probit specification is used. Given the underlying distribution for the Probit specification is a 

truncated normal distribution, a multivariate Probit specification works in the model estimation. 

The error terms are assumed to follow four-dimensional multivariate normal distribution with 

mean=0 and variance-covariance = . The components in  are allowed to vary freely in order 

to capture the inherent property that customers make all four purchasing decisions jointly. 

Model Estimation & Validation 

Choice of Estimation Method  

The Bayesian estimation method is applied to the model specification for the following reasons:  

1) Main objective is to estimate decisions jointly (Purchase Timing, Brand Choice, Build-

Cloud amount, Non-Build Cloud amount). Therefore, the likelihood function is based on 

a four-dimensional joint distribution. Estimating this multidimensional joint distribution 

iteratively using the conventional Maximum Likelihood Estimation (MLE) method 

would exponentially increase the computational burden.  

2) The MLE method to derive the full likelihood function for joint model becomes very 

complicated when modeling multiple decisions involving ‘latent’ dependent variables. 

3) Model specification involves estimation of a large number of parameters and the 

likelihood functions are not concave for most of the situation. In such cases, the MLE 

estimation will encounter difficulties to find the global optimum, a pitfall that Bayesian 

estimation can overcome.  
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Model Validation 

In order to measure the performance of the modeling framework, the Hit-Ratio and Mean 

Absolute Percentage Error (MAPE) are employed. Hit-Ratio metric measures the performance of 

the Purchase Timing model and the Brand Choice model.  Hit-Ratio is measured as the 

percentage of observations that have been correctly predicted by the model. With regard to 

continuous dependent variables (Purchase Amount equations), the Mean Absolute Percentage 

Error (MAPE) is used to evaluate the model.  MAPE is a statistic used to evaluate the model 

performance and is based on the "regression error" relative to "the actual value" of the dependent 

variables.  A smaller number of MAPE suggests a better model performance.   

 

 

Where,  

Q = Dependent Variable (Purchase Amount, in dollars) 

N= number of customers 

i = customer id 

 

Purchase Timing Model Results for Hypotheses H1a, H2a, H3a  

The results of the purchase timing hazard model (see Table 17) indicate that need,  

commitment, and trust variables are statistically significant in relation to the timing of firm 

adoption of radically innovative IT.  The results confirm the originally proposed hypotheses, 

suggesting that the extent to which a firm has purchased alternatives exhibits a positive 

relationship and therefore extends the firm’s purchase timing for adoption of radical innovation.  

Conversely, both commitment and trust variables exhibit negative relationships relative to a 
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firm’s purchase timing for adoption of radical innovation.  These negative parameter estimates 

indicate the firm’s purchase timing of radical innovation adoption is significantly decreased 

when firms have higher levels of commitment and trust as measured by annual purchase 

behavior and have long-term contracts established. These findings suggest need as a key 

antecedent of purchase decision, along with both commitment and trust factors, in regards to the 

purchase timing for firm adoption of radical innovation. 

 

 

 

 

 

 

 

 

 

Brand Choice Model Results for Hypotheses H1b, H2b and H4b  

The results of the brand choice model estimate the propensity of the firm to choose to 

purchase a Build cloud product over a Non-Build cloud product.  The multivariate probit choice 

model indicates that both commitment and trust variables are statistically significant in relation 

to the brand choice adoption of radically innovative IT.  The positive and negative signs 

associated with purchases of annual offerings and cross buy purchases, respectively, suggest that 

firm propensity to purchase Build cloud products over Non-Build cloud products is increased 

when firms have recently purchased annual offerings and do not have cross-category buy 

behavior.   
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Purchase Amount Models’ Results of Hypothesis H1c, H2c, H3c, and H4c  

In addition to being able to predict firm purchase timing and brand choice with regard to 

firm adoption of radically innovative IT, it is important to understand how much money the firm 

is projected to spend on the adoption purchase.   The results of the purchase amount OLS 

regression model (see Tables 19 and 20) indicate that trust variables are statistically significant in 

relation to purchase amount decision of firm adoption of radically innovative IT.   The positive 

parameter estimates associated with the trust variables indicate the firm’s purchase amount of 

radically innovative information technology is significantly higher with higher levels of trust.  

Conversely, the need and commitment variables are not estimated to be significant in regards to 

firm purchase amount of adopting radical innovation.   While not entirely conclusive relative to 

the originally proposed hypotheses, the results suggest that trust has a stronger relationship with 

regards to predicting the purchase amount for firm adoption of radically innovative IT.  These 
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results appear to be promising with respect to using trust to operationalize a firm’s purchase 

amount decision for adoption of radical innovation. 
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Variance-Covariance Estimation 

The variance-covariance estimation provides the quantification of whether the four 

decisions are correlated.  It is worth mentioning that, the variance-covariance term only captures 

the unobserved correlation between four decisions.   

Table 21: Variance-Covariance Estimation of the Joint Decision Model 

  Variance-Covariance Estimation 
  T C A1 A2 
T 0.149458 -0.01903 -0.14005 0.096778 
C   1 -0.22757 0.083508 
A1     14.74294 0 
A2       4.980139 
  Correlation Estimation 
  T C A1 A2 
T 1 -0.04922 -0.09435 0.112175 
C   1 -0.05927 0.03742 
A1     1 0 
A2       1 
  T-value of Correlation Estimation 
  T C A1 A2 
T  -0.42142 -0.80162 0.964515 
C    -0.22597 0.158998 
A1       
A2        

 

Table 21 shows the variance-covariance estimation of the four decisions:  Time (T), 

Choice (C), Build-cloud purchase amount (A1) and Non-Build cloud purchase amount (A2). For 

identification issue, the “Choice” variance is constrained to be 1 and the covariance between A1 

and A2 is constrained to be zero.  The “Choice” variance is constrained to be 1 because in choice 

model, the scale of the latent utility is arbitrary.   The covariance between A1 and A2 is 

constrained to be zero because there is no information on customers who bought both Build and 
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Non-Build cloud.  Thus, the covariance of purchase amount between Build and Non-Build cloud 

product is not identifiable.   

To show the insights of estimation more straightforward, the “correlation estimation” 

from the “variance-covariance estimation” are computed.  The correlation estimation results after 

controlling for other variables in the model show that:  

1) The correlation between “Time” and “Choice” decision is negative.  This suggests that, as the 

“time” since last purchase become longer, customers become less likely to make a cloud-

purchase.   

2) The correlation between “Time” and “A1” decision is negative.  This suggests that, as the 

“time” since last purchase becomes longer, customers tend to spend less on “Build” cloud 

product. 

3) The correlation between “Time” and “A2” decision is positive.  This suggests that, as the 

“time” since last purchase become longer, customers tend to spend more on “Non-Build” cloud 

product. 

4) The correlation between “Choice” and “A1” is negative.  This suggests that, customers could 

be more likely to purchase “Build” cloud product when their purchase amount is relatively low.   

5) The correlation between “Choice” and “A2” is positive.  This suggests that, customers could 

be more likely to purchase “Non-Build” cloud product when their purchase amount is relatively 

high.   

The “T-value of correlation” table shows the relative importance of the estimation results.  

The correlation t-values indicate not significant.    
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CHAPTER IV: CONTRIBUTIONS 

This section describes the contributions to both practice and theory through the 

application and extension of Morgan and Hunt’s (1994) Commitment-Trust Theory to firm level  

buyer behavior decisions of purchase timing, brand choice, and purchase amount for the 

adoption of radically innovative IT.   

 

IV.I. CONTRIBUTION TO PRACTICE 

Practitioner contributions include knowing when to sell, what to sell, and how much is 

likely to sell for radically innovative IT offerings.   Armed with an understanding of unique firm 

level factors more often associated with radical innovation adopters than non-adopters, 

marketing managers can improve the efficiency and effectiveness of allocating scarce marketing 

resources. Marketing managers can build and execute more targeted marketing strategies to 

attract new clients and strengthen existing client relationships, incorporate key learning into the 

message themes their firm advertises in the marketplace and emphasize the key drivers that are 

associated with radical innovation adoption into sales enablement materials. 

Marketing managers can build and execute more targeted marketing strategies to attract 

new clients and strengthen existing client relationships through the deployment of insight 

generated from this study.  For example, as marketing managers build and prioritize the 

prospecting list of clients to target for marketing tactics designed to drive trial sales of radically 

innovative IT offerings, this study suggests those clients that have an unmet need and strong 

commitment and trust associations with the existing firm will deliver higher adoption rates than 

those firms which have recently purchased alternative offerings and have lower levels of 

commitment and trust.  Alternatively, if the marketing execution objective is to drive high 
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volume of sales from radically innovative information technology offerings, this study suggests 

that those clients with higher levels of trust will deliver higher revenues than those clients with 

lower levels of trust in the firm. 

Advertising messages play an important role in conditioning the marketplace.  The 

findings from this research suggest that suppliers who seek to realize high volumes of usage 

should consider delivering a message of trust throughout their marketing mix.  Driving increased 

firm confidence in an exchange partner’s reliability and experience levels with a supplier will 

likely lead to improved sales generation from the introduction of radically innovative IT into the 

marketplace.   For example, highlighting that the firm is uniquely qualified to ensure clients can 

trust them as an IT provider, may help accelerate larger sales engagements for radically 

innovative information technology.   

In addition to leveraging the key factors that drive radically innovative information 

technology adoption for prioritizing business development prospecting lists and marketing mix 

theme consideration, this study’s findings can be helpful in the development of compelling sales 

enablement materials.  Arming a firm’s sales force with enablement materials which highlight 

firm need, commitment, and trust factors may help increase their client adoption rates for 

radically innovative information technology.   These important factors can be incorporated by 

thoughtfully creating client reference use cases.   

These are just a few examples of how the application of these findings can improve the 

performance associated with marketing decisions that seek to attract and deepen client 

relationships through the introduction of radically innovative information technology. 
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IV.II. CONTRIBUTION TO THEORY 

While vast and robust theories have been developed, tested, and proven over the years to 

provide knowledge on radical innovation diffusion and provider benefits, there are fewer 

scholarly papers focused on key drivers and techniques to predict firm-level adoption of 

innovation.  This dissertation research begins to fill the gap in the literature by providing 

knowledge focused on identifying the key firm level factors associated with the adoption of 

radical innovation as well as a methodology to jointly predict firm level purchase timing, brand 

choice, and purchase amount of radically innovative information technology.   

This research extends relationship theory to explain firm buyer behavior regarding 

adoption of radically innovative information technology.  Multiple hypotheses have been 

formulated regarding influences on adoption of radically innovative information technology, and 

evidence has been presented supporting most of the hypotheses.  Overall, the findings point to a 

conclusion that firms that exhibit an unmet need and have commitment and trust characteristics 

towards buying from a firm will have a higher likelihood to purchase radically innovative 

information technology from said firm.  These findings highlight the importance relationship 

marketing can play in accelerating the adoption of radically innovative information technology.  

From a methodological perspective, prior research has focused on purchase timing, brand 

choice, or purchase amount largely in business to consumer applications, and often as 

independent decisions. This study tests the relationship marketing theories of commitment and 

trust (Morgan and Hunt 1994) and is the first to jointly estimate purchase timing, brand choice, 

and purchase amount within a business to business application for the adoption of radical 

innovation.   
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CHAPTER V: FUTURE RESEARCH PATHS  

While this study provides advances in both scholarly theory and business application, 

there are limitations and future research paths to consider.   

As with any empirical study, there are limitations. Although the sample is comprehensive 

in regards to firm adoption of cloud computing, it is limited to a specific innovation (cloud 

computing) and to firm purchases in the United States. Additionally, the data source leveraged 

for this study is from a specific information technology provider. Other factors may be at work 

for other radical innovations, for purchases made in other countries and from other radical 

innovation providers. However, while this may limit the substantive findings regarding the effect 

of specific variables, it does not limit the main conclusion regarding the importance of 

commitment and trust factors on adoption of radically innovative information technology.  

Expanding future studies to leverage data sources which include additional types of radical 

innovation, countries beyond the United States and purchases from multiple providers could 

enhance the robustness of the implications. 

There are multiple future research paths to consider.  A few of the future research paths 

for consideration include an in-market field study, analyzing early adopters versus late adopters 

of radically innovative information technology, and testing the impact of the tenants of 

relationship marketing on the purchase behavior post adoption of radically innovative IT.    
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CHAPTER VI: REFERENCES 

VI.I APPENDIX: MODEL ESTIMATION OUTPUTS 

The reported values throughout this paper have been expressed as a multiple of the actual 

numbers to ensure confidentiality is maintained.   

 

SAS CODE AND OUTPUTS – INDEPENDENT MODELS 

The reported values throughout this paper have been expressed as a multiple of the actual 

numbers to ensure confidentiality is maintained.   

Independent Purchase Timing Model: 

The model selection process provides the results between two dependent variables (time 

since last purchase and time since first purchase) and two modeling approaches (LIFEREG and 

PHREG).  The following two statistics are used to evaluate the performance of each model: Hit-

Ratio of 2x2 table and mean absolute deviation (MAD) of predicted purchase timing.  The Hit-

Ratio table indicates the model prediction accuracy on whether or not the firm will purchase 

cloud by the end of 2010.   

The MAD denotes the accuracy of predicted purchase timing for cloud buyers and is 

calculated by:  

 

Where:  

N= number of customers 

i = customer id 
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Based on the above formulation, a higher Hit-Ratio and smaller MAD indicates better model 

performance.  Given the relatively small sample size, all prediction related results shown below 

are in-sample predictions.  Additionally, since LIFEREG models are unable to provide stepwise 

selection, to compare the performance between LIFEREG and PHREG, stepwise selection in 

PHREG was leveraged to select covariates for both modeling approaches.   

 

Model Testing LIFEREG vs. PHREG on DV = time since last purchase 

To determine whether or not the firm is predicted to survive (that is, remain a customer), 

the general rule is to detect whether that firm will have a survival probability (P) lower than 0.5 

at time (T).  If the predicted P < 0.5 at time T, it is concluded that the firm is more likely to not 

survive at or beyond time T.   

When selecting time since last purchase as the dependent variable, the maximum 

observed event time .   Therefore, PHREG can only predict the survival probability 

for each firm at each event time of .  In order to get comparable results between 

LIFEREG and PHREG, a cut-off point of T = 14 is also used for the LIFEREG model.   

PHREG procedure 

1. If the predicted P < 0.5, then the firm is predicted to purchase cloud, and the first (or the 

smallest) event time (T) when P is less than 0.5 is assigned as the predicted purchase 

time.  

2. If the predicted P never becomes less than 0.5 for all event times until , then 

the firm is predicted to not purchase cloud.   

 



57	  
	  

	  
	  

LIFEREG procedure 

1. If the first (or the smallest) event time is T 14 and predicted P < 0.5, then the firm is 

predicted to purchase cloud, and such event time is assigned as the predicted purchase 

time. 

2. If the predicted P never becomes less than 0.5 for all event time up to ; then the 

firm is predicted to not purchase cloud.   

The results (see Table 22) suggest that when using DV = time since last purchase, the model 

performance is very close between the two models.  First, the models’ hit-ratios of 88.9% and 

88.5% are essentially the same.  Second, the MAD is smaller in PHREG than in LIFEREG, 

although the SD of AD is smaller in LIFEREG than PHREG.   

Table 22: Comparison of Two Independent Model Approaches when DV = Time Since Last 
Purchase 

PHREG result 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 188 22 210 
1 7 43 50 

Total 195 65 260 
LIFEREG result 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 187 22 209 
1 8 43 51 

Total 195 65 260 
 

 

Analysis Variable : AD 
N MAD SD min max 

43 1.58 1.55 0 6 

Analysis Variable : AD 
N MAD SD min max 

43 1.78 1.34 0.05 5.23 

Hit-‐Ratio	  =	  88.85%	  

Hit-‐Ratio	  =	  88.46%	  
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Although the results suggest that the two models’ performances are almost equal, it is 

important to understand the implication of the limitation of Proc PHREG on prediction.  Because 

the prediction window is more limited (T 14) for Proc PHREG, with comparable model 

performance, Proc LIFEREG is selected as the better solution.   

Model Testing LIFEREG vs. PHREG on DV = time since first purchase 

The rule of determining whether or not the firm is predicted to purchase cloud computing 

is the same as that described above (e.g. using survival probability (P) = 0.5 as the cut-off point).   

When selecting time since first purchase as the dependent variable, the maximum 

observed event time .   Therefore, Proc PHREG can only predict the survival 

probability for each firm at each event time of .  In order to get comparable results 

between LIFEREG and PHREG, the cut-off point of T = 35 is also used for LIFEREG model.   

In PHREG 

1. If the predicted P < 0.5, then the firm is predicted to purchase cloud, and the first (or the 

smallest) event time (T) when P is less than 0.5 is assigned as the predicted purchase 

time.    

2. If the predicted P never becomes less than 0.5 for all event time up to , then 

the firm is predicted to not purchase cloud.   

In LIFEREG 

1. If the first (or the smallest) event time is T 35 and predicted P < 0.5, then the firm is 

predicted to purchase cloud, and such event time is assigned as the predicted purchase 

time.  
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2. If the predicted P never becomes less than 0.5 for all event times up to , then the 

firm is predicted to not purchase cloud.   

The results (see Table 23) suggest that when using DV = time since first purchase, the Hit-

Ratio between the two models of 88.9% and 89.2% is nearly identical.  Both the MAD and SD of 

MAD are smaller in PHREG than in LIFEREG.   

Similar to the time since last purchase models, the results suggest that the two model 

performances are almost equal.  However, considering that the prediction window is more 

limiting for PHREG, the LIFEREG model is selected as the better solution.   

Table 23: Comparison of Two Independent Model Approaches when DV = Time Since First 
Purchase 

PHREG result 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 190 24 214 
1 5 41 46 

Total 195 65 260 
LIFEREG result 

Table of pred_buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 187 20 207 
1 8 45 53 

Total 195 65 260 
 

As mentioned earlier, it may not be accurate to conclude that the firms predicted by the 

model to not purchase cloud are firms that will in fact never purchase cloud.  It is more 

Analysis Variable : AD 
N MAD SD min max 

41 1.73 2.18 0 13 

Analysis Variable : AD 
N MAD SD min max 

45 2.71 2.56 0.2 13.19 

Hit-‐Ratio	  =	  88.85%	  

Hit-‐Ratio	  =	  89.23%	  
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appropriate to interpret that given the models maximum observed window of , the 

firms are predicted to not purchase cloud products when T  35.   

Both of the above models suggest that LIFEREG would be the better model considering 

both model performance and prediction capability.  Next, the study will determine which DV 

provides better performance. 

 

 LIFEREG model:  DV = time since first purchase vs. DV = time since last purchase  

To select the better DV, the same two statistics described earlier are used:  Hit-Ratio table 

and MAD of purchase timing.  In the LIFEREG model, covariates and model estimation are 

exactly the same as noted above; however, the two statistical results differ because now there is 

no constraint of " ," therefore, the logic of computing the Hit-Ratio and MAD are 

different.   

Logic of computing Hit-Ratio and MAD:  

predict_buy = 0 vs. 1 is used to define whether the customer is predicted to make a 

purchase in 2010.  Therefore, the test looks for a condition where the smallest event time (T) for 

survival P < 0.5 is less than the time interval between last purchase (or first purchase) and Dec. 

2010.  If this condition is satisfied, then the customers are categorized as predicted to buy cloud 

in 2010.  The smallest event time (T) will be assigned as the predicted purchase time for 

calculating the model comparison statistics.   

MAPE is the statistic used to evaluate model performance and is based on the regression 

error relative to the actual value of the DV.   
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Where, N= number of customers, and i = customer id 

In this DV comparison, MAPE is more helpful than MAD in selecting the better 

performing DV because the absolute values of the two DVs are different.  Similar to MAD, a 

smaller number of MAPE suggests a better model performance.  As shown in Table 24, both the 

Hit-Ratio and MAPE indicate that DV = time since first purchase is the better option than DV = 

time since last purchase.  

Table 24:  Comparison of Two DVs Using LIFEREG 

 

Panel 1:  DV=time since last purchase 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 186 22 208 
1 9 43 52 

 Total 195 65 260 
 

 

Panel 2:  DV = time since first purchase 

 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 187 19 206 
1 8 46 54 

Total 195 65 260 

Analysis Variable : AD 
N MAD SD Minimum Maximum 

43 1.76/(4.85*) 1.34 0.05 5.23 
     

Analysis Variable : APE_Y1 
N MAPE (%) SD Minimum Maximum 

43 56.61 84.03 2.03 438.97 

Analysis Variable : AD 
N MAD SD Minimum Maximum 

46 2.68(25.96*) 2.21 0.2 9.93 
     

Analysis Variable : APE_Y1 
N MAPE (%) SD Minimum Maximum 

46 9.98 8.23 0. 69 39.73 

Hit-‐Ratio	  =	  89.61%	  

Hit-‐Ratio	  =	  88.08%	   These	  two	  MADs	  are	  not	  directly	  comparable	  	  
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Combining the results obtained from these tests, time since first purchase is the 

dependent variable and LIFEREG is the modeling technique employed to build the final 

purchase timing model.  Since a LIFEREG model is a parametric modeling approach that 

requires selection of a known distribution to fit the data, the Weibull distribution is used as 

Weibull is the most flexible distribution and also the distribution that the preliminary analysis 

results favored.   

The SAS code for LIFEREG model is shown below: 

proc lifereg data=timing_model; 
model Y_time2*choice(0)=CB int yr_focbuy pdt_#J pdt_#I pdt_#C pdt_#K  pdt_#D pdt_#L pvalue_#I 
pvalue_#B gth_pfq_#A gth_pfq_#F gth_pvalue_#F gth_pfq_#D /D=Weibull; run;quit;  

 

Table 25: Calibration Sample (70%) Parameter Estimation (N=180) for Year 2010 

Analysis of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
95% Confidence Limits Chi-

Square 
Pr > ChiSq 

Intercept 1 3.580 0.069 3.446 3.715 2720.88 <.0001 
CB 1 -0.022 0.006 -0.035 -0.010 13.08 0.0003 
Int 1 0.070 0.046 -0.019 0.160 2.38 0.1227 

yr_valueperT 1 2.517E-06 6.348E-07 1.273E-06 3.761E-06 15.72 <.0001 
Pdt_#J 1 -0.142 0.067 -0.273 -0.011 4.53 0.0332 
Pdt_#I 1 0.229 0.104 0.026 0.433 4.88 0.0272 
Pdt_#C 1 0.328 0.082 0.167 0.489 15.99 <.0001 
Pdt_#K 1 0.185 0.055 0.078 0.291 11.46 0.0007 
pdt_#D 1 0.105 0.049 0.009 0.202 4.6 0.032 
pdt_#L 1 -0.233 0.048 -0.327 -0.138 23.34 <.0001 

Pvalue_#I 1 -3.100E-08 8.172E-09 -4.702E-08 -1.498E-08 14.39 0.0001 
pvalue_#B 1 -1.630E-09 4.788E-10 -2.568E-09 -6.916E-10 11.59 0.0007 

gth_pfq_#A 1 -0.009 0.002 -0.014 -0.004 14.35 0.0002 
gth_pfq_#F 1 0.306 0.116 0.078 0.534 6.94 0.0084 

gth_pvalue_#F 1 -1.023E-05 2.759E-06 -1.564E-05 -4.823E-06 13.75 0.0002 
Gth_pfq_#D 1 0.007 0.002 0.004 0.010 21.38 <.0001 

Scale 1 0.106 0.014 0.082 0.137   
Weibull Shape 1 9.443 1.229 7.317 12.187   
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Table 26: Hold-out Sample (30%) Model Validation (N=80) for Year 2010 

 

 

 

 

 

 

 
 

Table of predicted buy by actual_buy 
Actual_buy predicted 

buy 0 1 Total 
0 55 8 63 
1 5 12 17 

Total 60 20 80 
 

 

Applying the purchase timing model to the hold-out sample yields a Hit Ratio = 83.75% and a 

MAD of 4.18. 

 

Independent Brand Choice Model:  

proc logistic data=choice_logistic_model out=parameters; 

model choice(event='1')=yr_valueperT  yr_valueCB  pdt_#M  pdt_#N    

pdt_#L pvalue_#A pvalue_#B Gth_ACB pfq_#O; output out=w1 p=predict; run; 

 
 
 
 
 
 
 
 

Analysis Variable : AD_Y1 
N MAD Std 

Dev 
Minimum Maximum 

12 4.18 3.35 0.89 11.73 
     

Analysis Variable : APE_Y1 
N MAPE 

(%) 
Std 
Dev 

Minimum Maximum 

12 15.70 12.86 3.43 45.12 

Hit-‐Ratio	  =	  83.75%	  
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Table 27: In-sample Independent Brand Choice Model Parameter Estimation (N=201) for Year 

2010 
 

Analysis of Maximum Likelihood Estimates 
Standard Wald 

Parameter DF Estimate Error Chi-Square Pr > ChiSq 
Intercept 1 -0.6953 0.4138 2.8236 0.0929 

yr_valueperT 1 -0.00009 0.000024 13.4755 0.0002 
yr_valueCB 1 3.47E-06 1.19E-06 8.4906 0.0036 

pdt_#M 1 -2.1935 1.1483 3.6487 0.0561 
Pdt_#N 1 2.3857 1.049 5.1726 0.0229 
Pdt_#L 1 3.3716 1.0355 10.6018 0.0011 

pvalue_#A 1 -3.09E-06 1.01E-06 9.4028 0.0022 
pvalue_#B 1 2.65E-07 1.17E-07 5.1134 0.0237 

Pfq_#O 1 0.0781 0.0252 9.6462 0.0019 
 
 
 

Table 28: In-sample Model Validation for Year 2010 
 

Hit-Ratio 
Frequency Predicted Choice 

Percent 0 1 

  
(Cloud No 

Buy) (Cloud Buy) 

Total 

132 2 134 
0 (Cloud No Buy) 65.67% 1.00% 66.67% 

12 55 67 
1 (Cloud Buy) 5.97% 27.36% 33.33% 

144 57 201 

Choice 

Total 71.64% 28.36% 100% 
 

Using the cloud buyer and non-buyer groups to predict their actual purchase, the model shown 

above has a Hit-Ratio of 93.03%. 
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Independent Purchase Amount Model:   

The SAS code that was used for the Purchase Amount Model is given below. 

proc reg data=amount_OLS_model; 

model tot_cloud_value= 

gth_pfq_#A gth_pfq_#B gth_pfq_#C gth_pfq_#D gth_pvalue_#E 

CB int tot_pfq yr_valueperT yr_valueCB Growth_ACB 

pdt_#F pfq_#G pvalue_#H pvalue_#I;run;quit; 
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The parameter estimation (see Table 29) is included below.   

Table 29: In-sample Parameter Estimation for Independent Purchase Amount Model for Year 
2010 

Analysis of Variance 
Sum of Mean Source DF 
Squares Square 

F 
Value 

Pr > F 

Model 14 8.12E+13 5.80E+12 128.25 <.0001 
Error 245 1.11E+13 4.52E+10     

Corrected 
Total 

259 9.22E+13       

 
Root MSE 212610 R-

Square 
0.8799 

Dependent 
Mean 

98946 Adj R-
Sq 

0.8731 

Coeff Var 214.87541     
 

Parameter Standard Variable 

Estimate Error 

t Value Pr > |t| 

Intercept 33725 27855 1.21 0.2272 
Gth_pfq_#A 14240 3673.2212 3.88 0.0001 
Gth_pfq_#B 712.32007 235.94453 3.02 0.0028 
Gth_pfq_#C 7645.0814 3871.0954 1.97 0.0494 
Gth_pfq_#D -

8126.1423 
1837.168 -4.42 <.0001 

Gth_pvalue_#E -0.09094 0.02503 -3.63 0.0003 
CB 1638.936 2577.9769 0.64 0.5255 
Int 3390.7504 5640.9253 0.6 0.5483 

tot_pfq -18.67404 10.38987 -1.8 0.0735 
yr_valueperT -0.20951 0.06412 -3.27 0.0012 
Yr_valueCB 0.00859 0.00292 2.94 0.0036 

pdt_#F 514368 107813 4.77 <.0001 
pfq_#G 14865 519.56965 28.61 <.0001 

pvalue_#H 0.02233 0.01411 1.58 0.1149 
pvalue_#I 0.02617 0.00928 2.82 0.0052 
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Table 30: In-sample Parameter Estimation for Log-Transformed Independent Purchase Amount 
Model for Year 2010 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 14 2098.98707 149.92765 8.73 <.0001 

Error 245 4209.83240 17.18299   

Corrected 
Total 259 6308.81948    

 

Root MSE 4.14524 
R-

Square 
0.3327 

Dependent 
Mean 

2.71504 
Adj R-

Sq 
0.2946 

Coeff Var 152.67666   

 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

t Value 

Intercept 1 1.55805 0.54309 2.87 

gth_pfq_#A 1 0.26697 0.07162 3.73 

gth_pfq_#B 1 0.01001 0.00460 2.18 

gth_pfq_#C 1 0.14122 0.07547 1.87 

gth_pfq_#D 1 -0.07442 0.03582 -2.08 

gth_pvalue_#E 1 -5.59936E-8 4.88062E-7 -0.11 

CB 1 0.16776 0.05026 3.34 

Int 1 -0.02495 0.10998 -0.23 

tot_pfq 1 -0.00000565 0.00020257 -0.03 

yr_valueperT 1 -0.00000423 0.00000125 -3.38 

yr_valueCB 1 1.466638E-7 5.699567E-8 2.57 

Pdt_#F 1 2.72040 2.10201 1.29 

pfq_#G 1 0.01134 0.01013 1.12 

Pvalue_#H 1 -4.90232E-8 2.751882E-7 -0.18 
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Table 31: Correlation between Commitment and Trust for Independent Choice Model 

Variables  
Total purchase 
frequency of  IT 

Services products 
Pfq_#0 

Long-term 
contracts 

Pvalue_#B 

Cross-category 
Purchases 

Yr_valueCB 

Total purchase 
frequency of  IT 

Services products 
Pfq_#0 

1 0.01421 0.32708 

Long-term contracts 
Pvalue_#B 

0.01421 1 0.30004 

Cross-category 
Purchases 

Yr_valueCB 
0.32708 0.30004 1 

 
Note:  Growth in Purchases of Alternative Products Gth_ACB is not significant 

 

Table 32: Correlation between Commitment and Trust for Independent Timing Model 

Variable  
Growth in purchase 

frequency of 
Software products 

gth_pfq_#A 

Long-term 
contracts 

Pvalue_#B 
Cross-category 
Purchases CB 

Growth in purchase 
frequency of Software 

products 
gth_pfq_#A 

1 -0.16954 -0.01698 

Long-term contracts 
Pvalue_#B -0.16954 1 0.34863 

Cross-category 
Purchases CB -0.01698 0.34863 1 

 
Note:  Growth in Purchases of Alternative Products Gth_ACB is not significant 
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Table 33: Correlation between Commitment and Trust for Independent Amount Model 

Variable  
Growth in total 

purchase frequency 
gth_pfq_#A 

Long-term 
contracts 

gth_pfq_#B 
Cross-category 

Purchases 
Yr_valueCB 

Growth in total 
purchase 
frequency 

gth_pfq_#A 
1 -0.55318 -0.17015 

Long-term 
contracts 

gth_pfq_#B 
-0.55318 1 0.02108 

Cross-category 
Purchases CB -0.01698 0.34863 1 

 
Note:  Growth in Purchases of Alternative Products Gth_ACB is not significant 

	  

Integrated	  Timing	  model	  to	  predict	  ‘purchase	  timing’	  	   

The timing model predicts whether the firm will purchase a cloud product and when the firm will 

make the cloud purchase. In order to evaluate the model performance, the Hit-Ratio and the 

Mean Absolute Percentage Error (MAPE) are analyzed.   
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Table 34:  Integrated Timing Model - Parameter Estimation (N=476) for Year 2010-2011 

Parameter Estimate Standard Error t statistic 

Intercept 3.561** 0.055 64.745 

CB 0.1 0.064 1.562 

Int 0.061 0.066 0.924 

gth_ACB 0.192** 0.076 2.526 

pdt #A 0.172* 0.1 1.72 

pdt #B -0.032 0.063 -0.508 

pdt #C 0.357** 0.062 5.758 

pdt #D 0.059 0.076 0.776 

pdt #E 0.186** 0.067 2.776 

pdt #F 0.101 0.081 1.247 

pdt #G -0.044** 0.009 -4.889 

pdt #H -0.024** 0.009 -2.667 

pvalue #I_1 -0.054 1.467 -0.037 

pvalue #J_1 -0.223 0.456 -0.489 

pvalue #K_1 -0.401 0.679 -0.590 

pvalue #L_1 0.623 2.223 0.280 

pvalue #M_1 -0.2 1.043 -0.192 

pvalue #N_1 0.607 1.073 0.566 

* - Significant at p=0.1 **- Significant at p=0.05 
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Table 35:  Integrated Timing Model - 
Validation 

 

 

 

 

 

 

A Hit-Ratio of 78% indicates that the model correctly predicts the purchase time with an 

accuracy of 78% within the stipulated time window. Additionally, the MAPE of 10% indicates 

that the model’s predicted time deviates from the true value by only 10%.  

Integrated Brand Choice Model to predict choices of ‘cloud’ product purchase  

The brand choice model estimates the propensity of the firm to choose to purchase a Build-cloud 

product over a Non-Build cloud product. The results of the model are reported in Table 36.    

 

 

 

 

 

Analysis Variable : APE_Time 

N MAPE 
(%) 

Std 
Dev 

Minimum Maximum 

79 10 7.96 0.57 41.65 

Table of predicted buy by actual_buy 

Actual_buy predicted 
buy 

0 1 Total 

0 296 90 386 

1 11 79 90 

Total 307 169 476 
Hit-‐Ratio	  =	  78%	  
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Table 36: Integrated Brand Choice Model -- Parameter Estimation (N=169) for Year 2010-2011 

Parameter Estimate Standard Error t statistic 

Intercept 0.296 0.283 1.046 

Int  -0.343 0.272 -1.261 

CB -0.611** 0.311 -1.964 

pdt #A -0.225 0.258 -0.872 

pdt #D -0.075 0.291 -0.258 

pdt #O -0.607** 0.264 -2.299 

pdt #G 0.331 0.223 1.484 

pdt #P 0.056** 0.026 2.154 

pdt #N -0.692** 0.17 -4.070 

gth_pvalue #Q_1 -0.014 0.044 -0.318 

* - Significant at p=0.1 **- Significant at p=0.05 

Table 37:  In-sample Model Validation for Integrated Choice Model 

Actual choice Predicted Choice 

Non-Build Build Total 

Non-Build 99 29 128 

Build 3 38 41 

Total 102 67 169 

 

A Hit-Ratio of 81% indicates that the model correctly predicts the cloud purchase choice, e.g. 

Build cloud versus Non-Build cloud with an accuracy of 81% within the stipulated time window.  

Hit-‐Ratio	  =	  81%	  
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Integrated Purchase Amount Models predict ‘how much’ the customer will spend on 

Build-Cloud and Non-Build cloud products  

The purchase amount models estimate the amount the firm will spend on the purchase of Build 

cloud and Non-Build cloud products. Tables 38 and 39 describe the parameter estimates for each 

of the purchase amount equations.  The models’ performance is validated using the Mean 

Absolute Percentage Error (MAPE) in Table 40.  MAPE for those cloud buyers whose purchase 

amount is greater than $1 is computed.  Of the 67 Build cloud buyers, there are 29 buyers whose 

purchase amount is greater than $1.  Therefore, the total sample size for calculating the purchase 

amount MAPE is 131 after adding the 29 ‘Build cloud’ buyers and the 102 ‘Non-Build’ cloud 

buyers.     

Table 38: Integrated Build Cloud Purchase Amount Model-Parameter Estimation (N=67) 

Parameter Estimate Standard Error T statistic 

Intercept 2.918** 1.364 2.139 

Int -2.844 2.244 -1.267 

CB 0.184** 0.079 2.329 

gth_ACB 0.046 0.211 0.218 

pdt #R -0.185 0.589 -0.314 

pfq #S_1 -0.262 0.871 -0.301 

yr_valueperT_1 1.73 2.442 0.708 

yr_valueCB_1 1.515 2.765 0.548 

gth_pfq #T_1 -0.34 0.368 -0.924 

gth_pvalue #Q_1 -0.401 0.819 -0.489 

 * - Significant at p=0.1 **- Significant at p=0.05 
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Table 39:  Integrated Non-Build Cloud Purchase Amount Model-Parameter Estimation (N=102)  

Parameter Estimate Standard Error t statistic 

Intercept 10.672** 0.492 21.691 

Int -0.368 2.654 -0.139 

CB 0.038 0.033 1.151 

gth_ACB 0.096 0.107 0.897 

pdt #R 0.066 0.155 0.426 

pfq #S_1 0.441 0.392 1.125 

yr_valueperT_1 3.06 2.485 1.231 

yr_valueCB_1 0.564 3.242 0.174 

gth_pfq #T_1 -0.022 0.058 -0.379 

gth_pvalue #Q_1 2.079** 0.889 2.3384 

* - Significant at p=0.1 **- Significant at p=0.05 

Table 40:  In-sample Model Validation for Integrated Purchase Amount Model 

 

 

 

 

 

 

A MAPE value of 28.25% indicates that the joint model predicts the purchase amount of a cloud 
product with an accuracy of 72%.  

 
	  

Analysis Variable : APE_Q 

N MAPE 
(%) 

Std 
Dev 

Minimum Maximum 

131 28 47 0.13 332.02 
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Model Estimation Process 
Parameters to be estimated:   

(Note:   is a matrix term including all the  in all four equations;   is the variance-covariance 
matrix for error terms, including 10 parameters) 

Step 1 – Generate  

 

Where  

 

Step 2 – Generate  

 

Where  

 

Step 3 – Generate  

 

Where  

 

Step 4 – Generate  

 

Where  

 

Step 5 – Generate  
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Define prior distribution for :   

 

 

 

 

 

Step 6 – Generate  

Define prior distribution for  

 

 

 

 

 

 

 

Repeat step 1 to step 6 until 	  converge.	  	  
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