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Abstract. This work presents a comparison of decision making criteria
and optimization methods for active sensing in robotics. Active sensing
incorporates the following aspects: (i) where to position sensors, and
(ii) how to make decisions for next actions, in order to maximize infor-
mation gain and minimize costs. We concentrate on the second aspect:
“Where should the robot move at the next time step?”. Pros and cons of
the most often used statistical decision making strategies are discussed.
Simulation results from a new multisine approach for active sensing of a
nonholonomic mobile robot are given.

1 Introduction

One of the features of robot intelligence is to deal robustly with uncertainties.
This is only possible when the robot is equipped with sensors, e.g., contact sen-
sors, force sensors, distance sensors, cameras, encoders, gyroscopes. To perform
a task, the robot first needs to know: “Where am I now ?”. After that the robot
needs to decide “What to do next ?”, weighting future information gain and
costs. The latter decision making process is called active sensing. Distinction is
made sometimes between active sensing and active localization. “Active local-
ization” refers to robot motion decisions (e.g. velocity inputs), “active sensing”
to sensing decisions (e.g. when a robot is allowed to use only one sensor at a
time). In this paper we refer to both strategies as “active sensing”. Choosing
actions requires to trade off the immediate with the long-term effects: the robot
should take both actions to bring itself closer to its task completion (e.g. reach-
ing a goal position within a certain tolerance) and actions for the purpose of
gathering information, such as searching for a landmark, surrounding obstacles,
reading signs in a room, in order to keep the uncertainty small enough at each
time instant and assure a good task execution. Typical tasks where active sens-
ing is useful are performed in less structured environments. The uncertainties
are so important that they influence the task execution: industrial robot tasks in
which the robot is uncertain about the configuration (positions and orientation)
of its tool and work pieces [1]; mobile robot navigation in a known map (indoor
and outdoor) [2, 3] where starting from an uncertain initial configuration the
robot has to move to a desired goal configuration within a preset time; vision
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applications with active selection of camera parameters such as focal length and
viewing angle to improve the object recognition procedures [4, 5]; reinforcement
learning [6]: the robot needs to choose a balance between its localization (exploit-
ing) and the new information it can gather about the environment (exploring).

Estimation, control and active sensing. Next to an active sensing module,
intelligent robots should also include an estimator and a controller:

– Estimation. To overcome the uncertainty in the robot and environment mod-
els, as well as the sensor data, estimation techniques [7, 8] compute the
system state after fusing the data in an optimal way.

– Control. Knowing the desired task, the controller is charged with following
the task execution as closely as possible. Motion execution can be achieved
either by feedforward, feedback control or a combination of both [9].

– Active sensing is the process of determining the inputs by optimizing a
function of costs and utilities. These inputs are then sent to the controller.

Active sensing is challenging for various reasons: (i) The robot and sensor mod-
els are nonlinear. Some methods linearize these models, but many nonlinear
problems cannot be treated this way and impose the necessity to develop special
techniques for action generation. (ii) The task solution depends on an optimal-
ity criterion which is a multi-objective function weighting the information gain
and some costs. It is related to the computational load especially important for
on-line task execution. (iii) Uncertainties in the robot and environment models,
the sensor data need to be dealt with. (iv) Often measurements do not supply
information about all variables, i.e. the system is partially observable.
The remainder of the paper is organized as follows. In Section 2, the active

sensing problem is described. The most often used decision making criteria are
compared and results for active sensing of a nonholonomic mobile robot are
presented. Section 3 gives the main groups of optimization algorithms for active
sensing. Section 4 terminates with the conclusions.

2 Active sensing : problem formulation

Active sensing can be considered as a trajectory generation for a stochastic dy-
namic system described by the model

xk+1 = f(xk,uk,ηk) (1)

zk+1 = h(xk+1, sk+1, ξk+1) (2)

where x is the system state vector, f and h nonlinear system and measurement
functions, z is the measurement vector, η and ξ are respectively system and mea-
surement noises. u stands for the input vector of the state function, s stands for
a sensor parameter vector as input of the measurement function (an example is
the focal length of a camera). The subscript k denotes discrete time. The sys-
tem’s states and measurements are influenced by the inputs u and s. Further,
we make no distinction and denote both inputs to the system with a (actions).
Conventional systems consisting only of control and estimation components as-
sume that these inputs are given and known. Intelligent systems should be able
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to adapt the inputs in a way to get the “best” estimates and in the meanwhile
to perform the active sensing task “as good as possible”.
So, an appropriate multi-objective performance criterion (often called value

function) is needed to quantify for each sequence of actions a1, . . . ,aN (also
called policy) both the information gain and the gain in task execution:

J = min
a1,...,aN

{
∑

j

αjUj +
∑

l

βlCl} (3)

This criterion is composed by a weighted sum of rewards: (i) j terms Uj char-
acterizing the minimization of expected uncertainties (maximization of expected
information extraction) and (ii) l terms Cl specifying other expected costs and
utilities, e.g. travel distance, time, energy, distances to obstacles. Both Uj and
Ck are function of the policy a1, . . . ,aN . The weighting coefficients αj and βl

give different impact to the two parts, and are arbitrarily chosen by the designer.
When the state at the goal configuration fully determines the rewards, the terms
Uj and Cl are computed based on this state only. When attention is paid to both
the goal configuration and the intermediate time evolution, the terms Uj and Cl

are a function of the Uj,k and Cl,k at different time steps k. Criterion (3) is to
be minimized with respect to the sequence of actions under constraints

c(x1, . . . ,xN ,a1, . . . ,aN ) ≤ cthr. (4)

c is a vector of physical variables that can not exceed some threshold values cthr.
The thresholds express for instance maximal allowed velocities and acceleration,
maximal steering angle, minimum distance to obstacles, etc.

2.1 Action sequence

The description of the sequence of actions a1, . . . ,aN can be done in different
ways and has a major impact on the optimization problem that needs to be
solved afterwards (Section 3).

– The actions can be described as lying on a reference trajectory plus a parame-
terized deviation of it (e.g. by a finite sine/cosine series, or by an elastic band
or elastic strip formulation, [9, 10]). In this way, the optimization problem is
reduced to a finite-dimensional optimization problem on the parameters.

– The most general way to present the policy is a sequence of freely chosen
actions, not restricted to a certain form of trajectory. Constraints, such as
maximal acceleration and maximal velocity, can be added to produce exe-
cutable trajectories. This active sensing problem is called a Markov Decision
Process (MDP) for systems with fully observable states and Partially Observ-
able Markov Decision Process (POMDP) for systems where measurements
do not fully observe the states or for systems with measurement noise.

2.2 Performance criteria related to uncertainty

The terms Uj represent (i) the expected uncertainty of the system about its
state; or (ii) this uncertainty compared to the accuracy needed for the task
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completion. In a Bayesian framework, the characterization of the uncertainty of
the estimate is based on a scalar loss function of its probability density function.
Since no scalar function can capture all aspects of a matrix, no function suits
the needs of every experiment. Common used functions are:

– based on the covariance matrix : The covariance matrix P of the prob-
ability distribution of state x is a measure for the uncertainty on the es-
timate. Minimizing P corresponds to minimizing the uncertainty. Active
sensing is looking for actions which minimize the posterior covariance ma-
trix P = P post or the inverse of the Fisher information matrix I [11] which
describes the posterior covariance matrix of an efficient estimator P = I−1.
Several scalar functions of P can be applied [12] :
• D-optimal design: minimizes the matrix determinant, det(P ), or the log-
arithm of it, log(det(P )). The minimum is invariant to any transforma-
tion of the state vector x with a non-singular Jacobian such as scaling.
Unfortunately, this measure does not allow to verify task completion: the
determinant of the matrix being smaller than a certain value does not
impose any of the covariances of the state variables to be smaller than
their toleranced value.

• A-optimal design: minimizes the trace tr(P ). Unlike D-optimal design,
A-optimal design does not have the invariance property. The measure
does not even make sense physically if the target states have inconsistent
units. On the other hand, this measure allows to verify task completion.

• L-optimal design: minimizes the weighted trace tr(WP ). A proper choice
of the weighting matrix W can render the L-optimal design criterion
invariant to transformations of the variables x with a non-singular Ja-
cobian:W has units and is also transformed. A special case of L-optimal
design is the tolerance-weighted L-optimal design [1], which proposes a
natural choice of W depending on the desired standard deviations (tol-
erances) at task completion. The value of this scalar function has a direct
relation to the task completion.

• E-optimal design: minimizes the maximum eigenvalue λmax(P ). Like A-
optimal design, this is not invariant to transformations of x, nor does
the measure makes sense physically if the target states have inconsistent
units, but the measure allows to verify task completion.

– based on the probability density function : Entropy [13] is a measure of
the uncertainty of a state estimate containing more information about the
probability distribution than the covariance matrix, at the expense of more
computational costs. The entropy based performance criteria are:
• the entropy of the posterior distribution: E[− log ppost(x)]. E[.] indicates
the expected value.

• the change in entropy between two distributions p1(x) and p2(x):
E[− log p2(x)]−E[− log p1(x)]. For active sensing, p1(x) and p2(x) can
be the prior and posterior or the posterior and the goal distribution.

• the Kullback-Leibler distance or relative entropy [14] is a measure for

the goodness of fit or closeness of two distributions: E[log p2(x)
p1(x) ]. The
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expected value is calculated with respect to p2(x). The relative entropy
and the change in the entropy are different measures. The change in

entropy only quantifies how much the form of the probability distribu-
tions changes whereas the relative entropy also represents a measure of
how much the distribution has moved. If p1(x) and p2(x) are the same
distributions, translated by different mean values, the change in entropy
is zero, while the relative entropy is not.

Example. Distance and orientation sensing of a mobile robot to known bea-
cons is considered. The sequence of motions of a nonholonomic wheeled mobile
robot (WMR) [15], moving from a starting to a goal configuration, is restricted
to a parameterized trajectory. The optimal trajectory is searched in the class
Q = Q(p),p ∈ P, of harmonic functions, where p is a vector of parameters
obeying to preset physical constraints. With N the number of functions, the
new (modified) robot trajectory is generated on the basis of a reference one by
the lateral deviation lk (lateral is called the orthogonal robot motion deviation
from a straight line reference trajectory in y direction) as a linear superposition

lk =
N∑

i=1

Aisin(iπ
sr,k

sr,total

), (5)

of sinusoids, with constant amplitudes Ai, sr,k is the path length up to instant
k, sr,total is the total path length, and r refers to the reference trajectory. In this
formulation active sensing is a global optimization problem (on the whole robot
trajectory) with a criterion to be minimized

J = min
Ai,k

{α1U + α2C} (6)

under constraints (for the robot velocity, steering and orientation angles). α1

and α2 are dimensionless positive weighting coefficients. Here U is in the form

U = tr(WP ), (7)

where P is the covariance matrix of the estimated states (at the goal config-
uration), computed by an Unscented Kalman filter [16] and W is a weighting
matrix). The cost term C is assumed to be the relative time C = ttotal/tr,total,
where ttotal is the total time for reaching the goal configuration on the modified
trajectory, tr,total the respective time over the reference trajectory. The weighting
matrixW represents a product of a normalizing matrixN , and a scaling matrix
M , W = M N . The matrix N = diag{1/σ2

1 , 1/σ
2
2 , . . . , σ

2
n}. σi, i = 1, . . . , n,

are assumed here to be the standard deviations at the goal configuration on the
reference trajectory. Depending on the task, they could be chosen otherwise. The
scaling matrix M here is the identity matrix. Simulation results obtained both
with (7), and with the averaged criterion Ua =

1
kb−ka

∑kb

k=ka
tr(WkPk) with

optimization over the interval [ka, kb] = [30sec, 100sec] are given on Figs. 1, 2.
The modified trajectory, generated with different number of sinusoids N (in ac-
cordance with (5)), and the reference trajectory are plotted together with the
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Fig. 1. Trajectories, generated with : (a) U = tr(WP ) (b) the averaged criterion
Ua =

1

kb−ka

∑
kb
k=ka

tr(WkPk)

uncertainty ellipses Figs. 1,2. As it is seen from Figs. 1,2 the most accurate results
at the goal configuration for U and J are obtained with N = 5 sinusoids. Better
accuracy is provided with bigger N , at the cost of increased computational load.
Through active sensing the robot is approaching to the beacons (Fig. 1), that is
a distinction from a movement over a reference trajectory. Faster increase of the
information at the beginning of the modified trajectories and higher accuracy, is
obtained than those on the straight-line. From other side, trajectories generated
by the averaged criterion Ua are characterized with better general performance
then those generated with (7) (Fig. 2).
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Fig. 2. Performance criteria: (a) U = tr(WP ), (b) Ua =
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3 Optimization algorithms for active sensing

Active sensing corresponds to a constraint optimization of J with respect to
the policy a1, . . .aN . Depending on the robot task, sensors and uncertainties,
different constraint optimization problems arise:
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– If the sequence of actions a1, . . .aN is restricted to a parameterized tra-

jectory, the optimization can have different forms: linear programming, con-
strained nonlinear least squares methods, convex optimization [17]. Example
is the dynamical robot identification [18].

– If the sequence of actions a1, . . .aN is not restricted to a parameterized

trajectory, then the (PO)MDP optimization problem has a different struc-
ture. This could be a finite-horizon, i.e. over a fixed finite number of time
steps (N is finite), or an infinite-horizon problem (N =∞). For every state
it is rather straightforward to know the immediate reward being associated
to every action (1 step policy). The goal however is to find the policy that
maximizes the reward over a long term (N steps). Different optimization
procedures exist for this kind of problems, examples are:

• Value iteration: due to the sequential structure of the problem, the op-
timization can be performed as subsequent solution of problems with
only 1 (of the N) variables ai. The value iteration algorithm, a dynamic
programming algorithm, calculate recursively the optimal value function
and policy [19] for finite and infinite horizon problems.

• Policy iteration: an iterative technique similar to dynamic programming,
is introduced by Howard [20] for infinite horizon systems.

• Linear programming: an infinite horizon problem can be represented and
solved as a linear program [21].

• State based search methods represent the system as a graph whose nodes
correspond to states and can handle finite and infinite horizon problems
[22]. Tree search algorithms search for the optimal path in the graph.

Unfortunately, exact solutions can only be found for (PO)MDPs with a small
number of (discretized) states. For larger problems approximate solutions are
needed [22, 23].

4 Conclusions

This paper addresses the main issues of active sensing in robotics. Multi-objective
criteria are used to determine if the result of an action is better than the result
of another action. These criteria are composed of two terms: a term characteriz-
ing the uncertainty minimization (maximization of information extraction) and
a term representing other utilities or costs, such as traveled path or total time.
The features of the basic criteria for uncertainty minimization and the optimiza-
tion procedures are outlined. Simulation results for active sensing of a wheeled
mobile robot with a parameterized sequence of actions are presented.
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