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ABSTRACT 

The rubella virus (RUB) capsid protein (C) is a multifunctional phosphoprotein with roles 

beyond encapsidation.  It is able to rescue a large lethal deletion of the Q domain in the P150 

replicase gene at a step in replication before detectable viral RNA synthesis, indicating a com-

mon function shared by RUB C and the Q domain.  The goal of this dissertation was to use con-

structs containing the N-terminal 88 amino acids of RUB C, the region previously defined as the 

minimal region required for the rescue of Q domain mutants, to elucidate the function of RUB C 

in Q domain rescue and viral RNA synthesis.  In the first specific aim, the rescue function of 1-

88 RUB C and the importance of an arginine-rich cluster, R2, within 1-88 RUB C for rescue 

were confirmed.  Rescue was not correlated with intracellular localization or phosphorylation 



status of RUB C.  In the second specific aim, the involvement of RUB C in early events post-

transfection with RUB RNA was analyzed.  RUB C specifically protected RUB transcripts early 

post-transfection and protection required R2.  However, it was concluded the protection observed 

was due to the encapsidation function of RUB C and not related to Q domain rescue.  No differ-

ences in the translation of the RUB nonstructural proteins in the presence or absence of RUB C 

were observed.  Interactions of RUB C with host cell proteins were analyzed.  Although the in-

teraction of RUB C with cellular p32 required the R2 cluster, both wild type (does not require 

RUB C for replication) and RQQ (requires RUB C for replication) Q domain bound p32, indicat-

ing interaction with this binding partner is not the basis of rescue.  Using a human protein array 

phosphatidylinositol transfer protein alpha isoform (PITPα) was found to interact with RUB C 

but not its R2 mutant.  However, co-immunoprecipitation experiments revealed that this protein 

binds both forms of RUB C.  Although the mechanism behind the rescue of the RUB P150 Q 

domain by RUB C remains unknown, we propose a model that RUB C plays a role in generation 

of the virus replication complex in infected cells. 
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1 INTRODUCTION 

1.1 Disease  

Rubella virus (RUB) is the causative agent of the disease rubella.  This disease was first 

described in the 1750’s by the German physicians de Bergan and Orlow (143), thus its alternate 

name German measles.  RUB is a human pathogen with respiratory transmission causing a rela-

tively mild disease that can range from asymptomatic to symptoms beginning with lymphade-

nopathy and later including rash, fever, conjunctivitis, sore throat, and arthralgia.  From time of 

exposure to the appearance of a rash ranges from 14 to 22 days, with the rash normally lasting 3 

days.  Neutralizing antibodies can initially be found in the blood 2 to 3 days after the appearance 

of the rash and the exposed individual usually is then resistant to reinfection by RUB.  Complica-

tions that can arise include acute polyarthralgia and arthritis, particularly in women, thrombocy-

topenic purpura, post-acute infection encephalitis, and rarely progressive rubella panencephalitis.  

The complication that has garnered the most public health interest is congenital rubella syndrome 

(CRS) (21, 66).   

The connection between RUB and its nature as a teratogen was first made when Australi-

an ophthalmologist Norman Gregg linked maternal RUB infection to an epidemic of congenital 

cataracts (29).  Additional congenital defects were noted after a rubella epidemic in the United 

States in the 1960s in which it is estimated that upwards of 20,000 infants were born with CRS.  

Defects to the fetus are the most devastating when RUB infection occurs during the first tri-

mester of pregnancy and infection during this time period also carries an elevated incidence of 

spontaneous abortion or stillbirth (21).  Infants born with CRS may suffer from a host of defects 

including blindness, cataracts, deafness, mental retardation, and heart defects and are also at a 
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higher risk of infant mortality (21, 26).  These children can shed virus for the first year of life but 

also have persistent neutralizing antibodies during this time as well (21).  Currently there is no 

treatment for CRS. 

It is important to understand how RUB replicates not only to further understand how this 

virus causes a mild disease in children and adults, but also how it causes devastating birth defects 

in an infected fetus as well, potentially drawing parallels with other viral teratogens.  Discover-

ing the mechanism behind RUB’s ability to cause CRS has been of interest for decades.  The vi-

rus crosses the placenta, infecting the placenta and fetus, and establishes a persistent infection.  

The pathology of CRS is thought to be attributed to decreased cellular growth and necrosis of 

established structures when infected with RUB (21).  It was initially hypothesized that the patho-

genesis of CRS could be attributed to RUB induced apoptosis that was demonstrated in cultures 

of cells derived from adult tissues (22, 23, 46, 87, 113).  Later work in human embryonic fibro-

blasts (HEK) indicated this is likely not the case as RUB infection failed to induce apoptosis in 

this cell line and gene expression profiles in this cell line were anti-apoptotic when infected with 

RUB compared to adult cells (1, 2).  This however, suggests a mechanism for the persistent in-

fection in the fetal tissues.   

The only preventative treatment for CRS is through vaccination for RUB, with vaccina-

tion efforts concentrating on children.  RUB was isolated in 1962 (106, 142).  The first vaccine 

was prepared from the HPV-77 strain grown in African green monkey kidney cells.  Merck li-

censed the HPV-77/DE-5 rubella vaccine first in 1969.  The rubella vaccine was combined with 

mumps (MR), which was approved by the FDA in 1970, and the measles-mumps-rubella (MMR) 

formulation was approved one year later.  In 1979 Merck began using the RA27/3 strain attenu-

ated in human lung fibroblast WI-38 cells for vaccine production (105).  Since 1989, the MMR 
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vaccine strategy employed in the US is one dose at 12-15 months and a second dose at 5-10 

years.  In 2005, the MMRV (measles, mumps, rubella, varicella) was approved for use by the 

FDA in the United States (81).  Vaccination with the MMRV vaccine is associated with a higher 

incidence of fever and fever-related seizures than when the MMR and varicella vaccines are giv-

en in two separate shots on the same day, so the MMR vaccine is still commonly given.  Alt-

hough the vaccination program has successfully controlled CRS in developed countries, RUB 

epidemics and CRS still occur in developing countries (9).  In 2008, Global Alliance for Vac-

cines and Immunization (GAVI) identified rubella as a vaccine to include in their program that 

aids in the childhood vaccination efforts in underserved countries (98).  The addition of the ru-

bella vaccine to this program identifies rubella and its complication CRS as a major public health 

issues in developing countries.  Support of vaccination against rubella in these underserved areas 

will not only aid in the elimination of rubella in these areas, but also decrease the number of cas-

es imported to countries with vaccination programs in place.  Additionally, RUB has remained of 

interest for the development of a vaccine vector for other pathogens (114).  Therefore, it is im-

portant to further the understanding of RUB replication.   

 

1.2 Rubella virus classification and related viruses 

RUB is the sole member of the genus Rubivirus, which is in the family Togaviridae.  The 

family Togaviridae contains a second genus, Alphavirus, which contains several viruses of clini-

cal and economic significance for humans, mammals, and birds and its biology has been re-

viewed by Jose, Synder, and Kuhn (57).  Alphaviruses are classified geographically into Old 

World and New World viruses.  These arboviruses are maintained in a cycle between the arthro-

pod vector (usually a mosquito) and the vertebrate host in which disease occurs.  Disease symp-
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toms can range from rash and fever with Old World viruses to encephalitis with New World vi-

ruses.  Well studied alphaviruses include Sindbis virus (SINV), Semliki forest virus (SFV), 

Chikungunya virus (CHIKV), western equine encephalitis virus (WEEV), eastern equine en-

cephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), and Ross River virus 

(RRV).   

Alphaviruses enter the cell via receptor-mediated endocytosis and the nonstructural open 

reading frame (ORF) is translated from the genomic RNA into two polyproteins, P123 and 

P1234 (Figure 1).  These polyproteins are cleaved to yield nsP1, nsP2, nsP3, and nsP4, which 

complex with host factors to form the replication complex (RC), the site of viral RNA replica-

tion.  It is notable that the fully processed and intermediate nonstructural proteins play different 

roles in replication.  The incoming genomic RNA is used as a template to generate a full-length 

negative-sense RNA that in turn serves as the template to produce both full-length positive-sense 

genomic RNA and a shorter positive-sense subgenomic RNA.  The structural ORF is translated 

from the subgenomic RNA to give a polyprotein that is processed giving the capsid protein, gly-

coproteins E2 and E1, and 6K virion associated protein.  The structural proteins package the 

newly synthesized genomic RNA and the virus buds from the plasma membrane obtaining its 

envelope and glycoproteins on the way.  Due to the similarities in the coding strategies and viral 

life cycles between the two genera of Togaviridae, important parallels may be drawn between 

RUB and alphaviruses.  However, there are differences in the coding strategies between alpha-

viruses and RUB.  RUB P150 contains the viral protease while P90 contains the helicase and 

RNA dependent RNA polymerase (Figure 2) while in the alphaviruses nsP1 contains methyl-

transferase activity, nsp2 contains the helicase and protease domains, nsP3 contains the X do-

main, and nsP4 is the RNA dependent RNA polymerase.   
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1.3 Rubella virus life cycle and coding strategy 

The RUB single-stranded genomic RNA has a 5' cap (99) and 3' poly-A tail (26), which 

serves as positive polarity mRNA allowing for immediate translation upon entry into the cyto-

plasm.  The 9762 nucleotide genome contains two ORFs; the 5'-promimal ORF encodes for the 

nonstructural proteins while the 3'-proximal ORF encodes for the structural proteins (Figure 

2.A).  The genome also includes 5' and 3' cis-acting elements (CAEs) that are important for viral 

replication (12, 111).   

The virus enters the cell through receptor-mediated endocytosis via its receptor, the mye-

lin oligodendrocyte glycoprotein (19).  The virion membrane fuses with the endosomal mem-

brane and releases the genomic RNA into the cytoplasm after the lowering of the pH in the endo-

some.  The first of the two ORFs in the viral genome is translated.  The nonstructural ORF en-

codes the nonstructural protein precursor P200, which is cleaved into P150 and P90 (Figure 2.B) 

by the viral protease domain of P150, the only experimentally validated domain of P150 (83).  

The cysteine protease’s catalytic dyad is composed of residues C1151 and H1272, which cleave 

P200 between residues G1301 and G1302 (11).  Computer alignments of the RUB genome with 

sequences from other positive-sense RNA viruses predict that P150 also contains the following 

domains: methyl transferase, Y domain, proline hinge, and X domain (61).  P150 also contains a 

hypervariable region (112).  The function of the Y domain is unknown, but is also present in rep-

licase proteins of hepatitis E virus (HEV) and beet necrotic yellow vein virus (BNYVV).  The X 

domain, which is found in alphaviruses and coronaviruses in addition to HEV and BNYVV, 

shares homology with enzymes with ADP-ribose-1”-phosphatase activity.  In coronaviruses, this 

domain has been shown to bind ADP-ribose (115) and has confirmed phosphatase activity (122).  

P90 contains domains for the helicase and the RNA-dependent RNA polymerase (RDRP) (61).   
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RNA replication (Figure 3) occurs in RCs created from modified lysosomes, which are 

morphologically termed cytopathic vacuoles (CPVs) (80).  The processing of P200 into 

P150/P90 regulates the switch from the synthesis of negative-strand to positive-strand RNA (72).  

The minus-strand RNA is used as a template for the synthesis of two positive-strand RNA spe-

cies: a full-length genomic RNA and a subgenomic RNA.  The structural ORF is translated from 

the subgenomic RNA.  The structural ORF encodes a polyprotein, p110, that produces the capsid 

(C) and the glycoproteins (E2 and E1) once cleaved (99, 101).  p110 is targeted to the endoplas-

mic reticulum (ER) by signal peptides present in E2 and E1 (42, 45, 100) where it is cleaved by 

cellular signalase (82).  Virion assembly occurs in the Golgi (26) and the encapsidation of the 

RUB genome involves the interaction of the region between nucleotides 347 and 375 of the viral 

RNA with residues 28 to 56 of RUB C (75).   

 

1.4 Rubella replicons  

A reverse genetics system for RUB based on an infectious cDNA clone has been availa-

ble for nearly twenty years (140).  This system is based on a cDNA copy of the virus genome 

contained within a plasmid from which infectious RNA transcripts can be produced in vitro.  

This system allows for modification of the RUB genome carried by the plasmid using standard 

recombinant DNA technology and subsequent generation of virus containing the modifications.  

Using the infectious cDNA clone, RUB “replicons” were developed in which the structural pro-

tein ORF was replaced with a reporter gene, usually green fluorescent protein (GFP) (Figure 

2.A).  Replicons express the P150 and P90 replicase proteins and thus these RNAs can be repli-

cated following introduction into susceptible cells by transfection, but cannot spread from cell to 

cell because they lack the proteins necessary to form a virion.  Using the GFP-expressing RUB 



7 

replicon (RUBrep/GFP) (132), replication can be assessed by monitoring GFP expression by flu-

orescence microscopy or the GFP-positive cell population of a sample can be quantified by flow 

cytometry. 

 

1.5 Nonstructural functions of RUB C 

RUB C has roles in the virus life cycle beyond the encapsidation of the viral genome.  In 

addition to its localization to the Golgi for its role in virion assembly and budding (43, 44), RUB 

C is also associated with the mitochondria (67), P150 containing fibers (64), and CPVs (25), in-

dicating additional functions.  RUB C is a phosphoprotein and its phosphorylation negatively 

regulates RNA binding (65).  The major phosphorylation site is S46, and mutants of this site that 

are hypophosphorylated yield decreased viral titers and cytopathic effect compared to wild type 

RUB C (65) (Figure 2.C).  Another nonstructural function of RUB C is a role in modulating viral 

RNA synthesis.  RUB C increases the amount of genomic RNA produced compared to the 

amount of subgenomic RNA produced (135).  This enhancement was specific for RUB C and 

RUB RNAs and the region of RUB C required for this was mapped to the first 88 amino acids 

(135).  The RUB C gene must be provided in cis, on the same viral RNA, to modulate viral RNA 

synthesis (135).   

RUB C has also been implicated in modulating cell signaling pathways, including apop-

totic pathways.  It inhibits apoptosis by binding to Bax, which impairs the ability of Bax to form 

pores in the mitochondria.  The region within RUB C required for this inhibition was mapped to 

an arginine cluster at the C terminus of the protein (49).  This arginine cluster was also found to 

be important in a study of the growth kinetics of cell cultures harboring drug-selected RUB re-

plicons.  Drug-selected RUBrep/C-GFP/Neo-containing Vero cell cultures, in which the C pro-
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tein is expressed, exhibit similar growth as Vero cells, while drug-selected RUBrep/GFP/Neo 

containing Vero cell cultures, lacking RUB C, exhibit impaired growth (137).  The normal 

growth phenotype of RUBrep/C-GFP/Neo required this arginine cluster and it is thus thought 

that the inhibition of apoptosis is responsible for this increased cell survival, by allowing the time 

needed for the virus to replicate as RUB replicates relatively slowly. 

RUB C has multiple cellular binding partners.  The C-terminus of poly(A)-binding pro-

tein (PABP) interacts with the pool of RUB C associated with the mitochondria.  RUB C acts to 

sequester PABP, resulting in impaired translation (50).  Cellular binding partners that have been 

identified but not further investigated in the literature include Par-4 (6) and Y-box binding pro-

teins (91).  The most extensively studied RUB C cellular binding partner is p32, a multifunction-

al protein that has been identified as a component of the ASF/SF2 human splicing factor com-

plex (63) as well as a mitochondrial resident protein (95) that plays a role in the maintenance of 

oxidative phosphorylation and phosphate transport (30, 109).  Two yeast two-hybrid screens ini-

tially identified the interaction between p32 and RUB C, which was confirmed through both co-

immunoprecipitation and colocalization studies (6, 91).  This interaction occurs on the cytoplas-

mic side of the mitochondria (6).  In the initial studies that identified binding of RUB C and p32, 

the N-terminus of RUB C was mapped as the p32-binding region.  However, the minimal region 

required for this interaction was mapped to residues 46 to 89 of RUB C by one group (6) while 

another group mapped the minimal region for the interaction to the first 28 amino acids of RUB 

C (91).  In a subsequent paper, the first group mapped the p32 binding region to amino acids 30 

to 69, which contains two arginine clusters that are important for the binding of p32 (5).  The re-

gion of p32 required for this interaction is the C-terminal 69 amino acids.  
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The importance of the interaction between RUB C and p32 to the RUB life cycle has 

been investigated by several groups.  RUB infected p32-overexpressing Vero cell cultures had 

more cells that positively stained for RUB C than RUB infected Vero cultures (91), suggesting a 

positive role for p32 in the RUB replication cycle.  We and others have observed reduced RUB 

viral titers in cells treated with p32-specific small interfering RNA (siRNA) (16, 127), further 

supporting the importance of p32 in RUB infection.  Electroporation of in vitro transcribed RNA 

containing mutations of the two p32-binding arginine clusters in RUB C (to alanine) made in the 

RUB infectious clone resulted in no detectable virus released into culture medium, indicating the 

importance of the interaction between RUB C and p32 to RUB infection.  Mutation of either ar-

ginine cluster individually within the context of the RUB infectious clone resulted in a decrease 

in the titer of secreted virus.  Mutation of the first arginine cluster resulted in impaired produc-

tion of subgenomic RNA and subsequently the expression of the RUB structural proteins com-

pared to wild type virus.   

Additionally, RUB C impacts mitochondrial distribution and function.  RUB C reorgan-

izes the mitochondria into perinuclear clusters and this reorganization is independent of the mi-

tochondrial targeting sequence within p32 (5).  Mitochondrial import is inhibited by RUB C and 

this inhibition is also independent of p32.  Although RUB C with the first arginine cluster mutat-

ed associates with the mitochondria, mitochondrial import is not inhibited.  RUB C was also 

found to bind cardiolipin, but this interaction is not required for the inhibition of mitochondrial 

import (51).   
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1.6 Nonstructural roles of other virus capsid proteins 

1.6.1 Apoptosis and cell survival 

Viruses can modulate the cell cycle and several viral capsid proteins have been found to 

play a role in that modulation.  Often a role in apoptosis has been discovered when a pool of cap-

sid protein produced by a virus that replicates in the cytoplasm is found in the nucleus, although 

the presence of capsid proteins in the nucleus can result in functions other than apoptosis such as 

the modulation of host gene expression or the innate immune response.  Although West Nile vi-

rus (WNV; a member of the plus-strand RNA Flavivirus family) infection causes apoptosis in 

cell culture (107), this does not occur immediately and the role of the WNV capsid protein in this 

process is controversial.  The WNV capsid protein, which is the first protein translated from the 

genomic RNA following infection, blocks apoptosis via the phosphatidylinositol 3-kinase path-

way (138).  WNV capsid protein also has been reported to stabilize and sequester HDM2 in the 

nucleolus, which allows stabilization of p53, which in turn induces apoptosis (146).  The nucleo-

proteins of several coronaviruses (a family of plus-strand RNA viruses) (41, 144) and the capsid 

protein of human hepatitis B virus (HBV; a DNA virus in the family hepadnavirus) (97) also lo-

calize to the nucleolus where they are thought to impact the progression through the cell cycle, 

specifically by preventing cytokinesis.  A portion of the severe acute respiratory syndrome-

associated coronavirus (SARS-CoV) nucleocapsid protein localizes to the nucleus (131) and is 

able to induce apoptosis (129).  The nucleocapsid protein of SARS-CoV has also been implicat-

ed in blocking the progression through S phase through its inhibition of cyclin-cyclin dependent 

kinase complex activity (128).  Dengue virus (DENV; a flavivirus) capsid protein interacts with 

the nuclear pool of Daxx and this interaction is important for the induction of Fas-mediated 

apoptosis (96), although the exact pathway used has yet to be elucidated.  Puumala virus (PUUV; 
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a negative-strand RNA bunyavirus) nucleocapsid protein also interacts with Daxx (71), but it is 

not known if this interaction is with the nuclear or cytoplasmic pool of Daxx and therefore the 

impact of this interaction on apoptosis signaling is currently unknown.  Hepatitis C virus (HCV; 

a flavivirus) core protein does impact the cell cycle, although its exact role is controversial.  

There are examples in the literature that support its role in the induction of apoptosis (69, 92, 93, 

120) as well as in supporting cell survival (55, 79, 103, 123). 

 

1.6.2 Immune response 

Viral capsid proteins have been found to inhibit the host cell immune response, presuma-

bly to promote viral replication.  SARS-CoV nucleocapsid protein was found to be an interferon 

(IFN) antagonist through its inhibition of IRF3 and NF-ĸB (62).  Further examination revealed 

that the inhibition of IFNβ production is dependent upon the RNA binding region of the nucle-

ocapsid protein and occurs at an early stage of the induction pathway, suggesting the nucleocap-

sid protein may bind to the viral RNA, preventing its interaction with pattern recognition recep-

tors (77).  WEEV capsid protein is thought to play a role in cell survival and to promote viral 

replication though its suppression of pattern recognition receptor (PRR) signaling pathways at a 

step downstream of the activation of IRF3 in neuronal cell lines (108).  EEEV capsid protein also 

inhibits the IFN response (3).  The core protein of HCV blocks IFN signaling through its interac-

tion with STAT1, resulting in STAT1 degradation (73, 74).  The nucleoproteins of arenaviruses 

act as IFN antagonists by inhibiting the activation and nuclear translocation of IRF3 (85, 86).  

Closer examination of prototypical arenavirus lymphocytic choriomeningitis virus (LCMV) re-

vealed that its nucleoprotein binds the kinase domain of IKKε, interfering with its ability to 

phosphorylate and activate IRF3 (116).  The nucleoprotein of the arenavirus Lassa fever virus 
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(LAFV) contains a domain with 3'-5' exonuclease activity (36, 117).  Interestingly, the IFN an-

tagonist activity of this nucleoprotein has been mapped to this RNase domain (84, 117), which 

selectively cleaves pathogen-associated molecular pattern (PAMP) viral RNA ligands rather than 

cellular RNAs (117).  The nucleoprotein of LCMV binds RIG-I and MDA5 (153), suggesting 

that its ability to cleave PAMP viral RNA could quench the activation of the pathways down-

stream of RIG-I or MDA5 (117).  Alternatively, the binding of RIG-I and MDA5 by the LCMV 

nucleoprotein may serve to halt the signaling cascade initiated by the binding of viral RNA to 

these proteins (153).  Bunyavirus severe fever with thrombocytopenia virus (SFTSV) also inhib-

its the IFN response though inhibition of the production of IFNβ and NF-ĸB signaling (118).   

 

1.6.3 Roles in replication and viral events prior to packaging 

Capsid proteins fulfill roles in the virus life cycle beyond entry, uncoating, encapsidation, 

and egress.  It must be noted that viral proteins that form the capsid can associate with the ge-

nome differentially depending upon the structure of the capsid and this interaction with the pack-

aged genome could impact the role of that capsid protein in viral replication.  Helical capsids in-

terlock around the viral genome, and therefore the capsid proteins that make up the capsid are in 

close association with the entire genome.  An icosahedral capsid instead forms a shell around the 

genome.  Among the viruses discussed below, TGEV, HCoV-229E, SARS-CoV, VSV, arena-

viruses, SNV, CCHFV, and LAFV have helical capsids while BMV, HBV, HIV, HCV, WNV, 

and alphaviruses have icosahedral capsids.  Brome mosaic virus (BMV; a plus-strand RNA virus 

of the bromovirus family) coat protein levels impact gene expression.  Specifically, high coat 

protein levels result in decreased protein expression from viral RNA1 and RNA2, but not RNA3, 

and low coat protein levels increase protein expression from RNA1 and RNA2 (147).  This re-
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pression is due to the coat protein’s influence on viral RNA accumulation as the overexpression 

of coat protein also inhibited RNA accumulation from RNA1 and RNA2 (148).  The coat protein 

binds an RNA motif present in the 5'UTR of RNA1 and RNA2, the B Box (148).  Interestingly, 

RNA1 and RNA2 contain the ORFs encoding proteins needed for RNA replication, while RNA3 

contains the ORFs for the movement and coat proteins.  Therefore, the coat protein is able to 

control the level of the viral replicase proteins by binding to the RNAs encoding these proteins.  

The BMV coat protein binds another RNA element that is thought to play a role in the coat pro-

tein’s modulation of viral RNAs, a clamped adenine motif (CAM) (60).  This motif is required 

for replication and binds the BMV replicase.  It is hypothesized that high levels of coat protein 

out-compete the replicase and bind to this site to signal that RNA synthesis should end and en-

capsidation should begin.   

Another viral capsid protein thought to play a role in viral replication is the capsid protein 

of HBV.  This capsid protein was found to bind both RNA and DNA via one arginine-rich RNA 

binding repeat and three arginine-rich DNA binding repeats, respectively.  While the binding of 

RNA was expected as the viral RNA is the moiety encapsidated, its ability to bind DNA suggests 

a role in replication with the reverse transcription of the encapsidated RNA into double-stranded 

DNA (37). 

The nucleocapsid proteins of coronaviruses also play a role in viral replication (10, 18).  

Providing the nucleocapsid protein either in cis or in trans aids in efficient replication of trans-

missible gastroenteritis coronavirus (TGEV)-derived replicons (4).  Moreover, human corona-

virus 229E (HCoV-229E) vector RNAs that lack the nucleocapsid gene replicate less efficiently 

than ones that possess the gene (125).  This increased efficiency of replication in the presence of 

the nucleocapsid can be attributed to increased transcription levels, specifically by its template 
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switching activity that is important for the discontinuous transcription of coronavirus RNA 

(154).  The SARS-CoV nucleocapsid protein interacts with nsp3, a component of the viral repli-

case, and this interaction is important for the infectivity of the genomic RNA (48).  It is thought 

that the nucleocapsid protein-nsp3 complex may act as a means of tethering the genomic RNA to 

the newly translated replicase early prior to its engagement with the replicase complex. 

The nucleocapsid protein (NC) and capsid protein (CA) of human immunodeficiency vi-

rus type 1 (HIV-1; a retrovirus) have been implicated in several steps in the viral life cycle.  The 

NC enhances genome reverse transcription (130) and progenome integration (8, 130) through its 

zinc-finger motifs.  The CA binds the cyclophilin domain of Nup358/RanBP2, a component of 

the cell nuclear pore complex, and this interaction impacts the site of integration (124).   

Capsid proteins also play a role in the replication of negative-sense RNA viruses.  The 

nucleoprotein of arenaviruses is needed for RNA replication and transcription (35, 68, 76, 110).  

The nucleoprotein of vesicular stomatitis virus (VSV; a negative-strand RNA rhabdovirus) also 

plays a role in replication, specifically RNA synthesis.  The nucleoprotein complexed with the 

genomic RNA is required for full processivity by the viral polymerase during RNA synthesis 

(94).  The C-terminus of the nucleoprotein is important for RNA synthesis (38) and mutations in 

the C-terminal loop that impact the association of nucleoprotein monomers with one another re-

sult in increases in RNA replication but not in RNA transcription (34).  The hydrogen bonding 

between the nucleoprotein and the genomic RNA is important to give the genome the proper 

structure to engage the viral polymerase for transcription and replication (119).   

RNA chaperones are proteins that assist RNAs to achieve proper structures by either re-

solving or preventing unproductive misfolded states.  Once an RNA has obtained its optimal 

conformation, the RNA chaperone is no longer required to maintain the proper folding (39).  
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Several viral capsid proteins have RNA chaperone activities that play a role in replication includ-

ing the nucleocapsid proteins of TGEV and SARS-CoV (155),  the core protein of HCV (20), the 

core protein of WNV (54), the nucleocapsid protein of Sin Nombre hantavirus (SNV) (89), and 

NC of HIV-1 (40).  The TGEV nucleocapsid protein promotes the annealing of transcription 

regulating sequences (TRSs) within the genomic RNA, a step required for the transcription of the 

nested subgenomic RNAs that encode the viral proteins (155).  The dimerization of HCV 3'UTR 

RNA is enhanced in the presence of HCV core protein, which has been proposed to aid in transi-

tions in the viral replication cycle (20, 53).  The core protein of WNV enhances the interaction 

and annealing of the 5' and 3' ends of the genomic RNA (52), and this cyclization is important 

for RNA synthesis (151).  SNV nucleocapsid protein unwinds panhandles, double stranded RNA 

structures at the 5' and 3' ends of the viral genome, an activity important for the initiation of tran-

scription (89).  NC aids in the reverse transcription of the HIV-1 genome (70) through destabiliz-

ing secondary structures within the 5' UTR to prevent pausing or stalling of the reverse transcrip-

tion machinery (121).   

Some capsid proteins have unique alternative functions.  The capsid proteins of alpha-

viruses possess autoprotease activity and are important in the processing of the structural poly-

protein (32, 33).  Bunyavirus Crimean–Congo hemorrhagic fever virus (CCHFV) nucleoprotein 

was found to have endonuclease activity, although the role of this activity in the viral life cycle 

has yet to be defined (31).  The nucleoprotein of LAFV binds the m7GpppN cap structure of 

RNAs (117), suggesting that this nucleoprotein plays a role in the cap snatching characteristic of 

arenaviruses by binding the cap and then allowing the RNA to be digested either by the RNase 

activity of this nucleoprotein (117) or by cellular proteins.  The hantavirus nucleocapsid protein 

binds capped RNAs and is associated with P bodies, suggesting a role in cap snatching by se-
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questering capped RNAs needed for use in transcription initiation (88).  The hantavirus SNV nu-

cleocapsid protein has also been implicated in translation as it facilitates the translation of capped 

RNAs, both viral and cellular with a preference for viral sequences, with its translational initia-

tion activities.  The SNV nucleocapsid is able to bind capped RNAs, bind the 43S pre-initiation 

complex, and also can functionally replace the RNA helicase activity of eIF4A (90).  Although 

this enhanced translation occurs for cellular messages as well, it does promote viral replication 

through its preference for capped viral sequences.  The HCV core protein negatively regulates its 

HCV RNA synthesis by binding the viral RDRP (58).  This core protein also negatively regulates 

viral replication of HBV through its interactions with its polymerase and X proteins (14). 

 

1.6.4 Interaction with host cell proteins 

Viral capsid proteins also interact with host cell proteins to modulate different activities 

to benefit the life cycle of their respective virus.  DENV capsid protein binds histone proteins 

H2A, H2B, H3, and H4 to form heterodimers.  This interaction prevents histone dimerization and 

the formation of nucleosomes.  Additionally, DENV capsid protein can bind DNA (17).  The 

purpose of these interactions are unknown, but it is hypothesized that they may play a role in al-

tering host cell gene expression to create a favorable host environment for viral replication. 

SARS-CoV nucleocapsid protein binds several host cell proteins.  One binding partner is 

cellular B23 and the presence of the nucleocapsid protein inhibits the phosphorylation of B23 

(150).  This interaction may be of importance as B23 is involved in the duplication of the centro-

some and the nucleocapsid protein does cause cell cycle arrest (128).  Another binding partner is 

elongation factor 1-alpha, which the nucleocapsid protein aggregates, resulting in inhibition of 

translation and cytokinesis (152).  This nucleocapsid protein also interacts with heterogeneous 
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nuclear ribonucleoprotein A1 (hnRNP A1) (78), a cellular protein that has been found to be im-

portant for the RNA synthesis of another coronavirus, mouse hepatitis virus (MHV), through its 

association with viral RNA, nucleocapsid protein, and polymerase (126). 

WNV capsid protein also binds several cellular proteins.  WNV capsid protein binds 

I2
PP2A, an inhibitor of protein phosphatase 2A (PP2A), at the same area of the protein needed for 

its interaction with PP2A.  PP2A inhibits the transcription factor AP1.  Therefore, the binding of 

WNV capsid protein to I2
PP2A ultimately results in decreased transcription of AP1 controlled 

genes, perhaps to also create a favorable host environment for viral replication (47).  WNV cap-

sid protein sequesters human Sec3 exocyst protein (hSec3p) and inhibits its antiviral action pre-

sumably to enhance the host environment for viral replication (7).   

The HCV core protein interacts with various cellular proteins as well.  Discussion of the 

interaction of this protein with host cell proteins that modulate the cell cycle are numerous, but 

will not be addressed here as the role of the core protein in apoptosis is controversial.  The core 

protein interacts with Dicer, a component of the RNAi pathway, suppressing the antiviral re-

sponse activated by the HCV replication (15, 141).  DEAD box RNA helicase DDX3 interacts 

with HCV core protein (104), inhibiting the interaction between DDX3 and IPS-1 blocking the 

signaling for IFNβ production (102).   

Tula hantavirus (TULV) nucleocapsid protein has been found to bind small ubiquitin-

related modifier-1 (SUMO-1) (59).  Although the exact role of this interaction is unknown, mod-

ulating posttranslational modifications could allow the TULV nucleocapsid protein to impact 

many cellular processes. 
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1.6.5 Modulating gene expression 

Viral capsid proteins have been implicated in the modulation of host gene expression.  

SARS-CoV nucleocapsid protein upregulates proinflammatory protein COX-2 by binding to the 

NF-κB and C/EBP regulatory elements present at the COX-2 promoter (145).  The core protein 

of HCV modulates gene expression differentially in different cells by activating or inhibiting 

NF-κB.  In macrophages, the HCV core protein interacts with and suppresses of kinase activity 

of IKKβ, inhibiting NF-κB and ultimately down regulating COX-2 (56).  The exact impact of 

this is unknown, but it is thought to aid viral persistence through the evasion of the innate im-

mune response.  However, in HeLa cells the expression of HCV core protein leads to the activa-

tion of NF-κB (149), suggesting the proinflammatory response perhaps plays a role in the devel-

opment of hepatitis.  The capsid proteins of two New World alphaviruses, VEEV and EEEV, in-

hibit host cell transcription and also cause translational shutoff (28), although overexpression of 

these proteins alone would produce artifacts.  An additional study of the capsid protein of EEEV 

confirmed that it is a general inhibitor of host cell gene expression and can inhibit host cell trans-

lation, presumably as its expression also results in the phosphorylation of eukaryotic initiation 

factor 2 alpha (EIF2α) (3).  VEEV capsid protein colocalizes with nuclear pore proteins, suggest-

ing that the capsid protein may modulate host cell transcription by influencing the flow and ebb 

of transcription factors to the nucleus (27). SFV capsid protein expression results in the phos-

phorylation of protein kinase R (PKR), which in turn phosphorylates EIF2α, ultimately resulting 

in the inhibition of host cell translation (24).  The WNV capsid protein expressed in isolation in 

neurons and astrocytes results in increased mRNA levels of neuroinflammatory genes (139).   
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1.7 The rescue of the RUB P150 Q domain by RUB C 

In a study commenced in 2001 in our lab, serial deletions of the nonstructural ORF in the 

RUB replicon revealed that an in-frame deletion between two NotI sites (nt 1685-2192) in the 

P150 gene, which was lethal to the replicon (RUBrep/GFP-ΔNotI), could be rescued by wild 

type helper virus (132).  Rescue is at an early step in replicon replication as no replicon RNA is 

synthesized by RUBrep/GFP-ΔNotI (133).  When culture fluid from Vero cells transfected with 

RUBrep/GFP-ΔNotI and infected with RUB were passaged to fresh Vero cells, GFP positive 

cells were observed (132).  It was initially assumed that the ∆NotI replicon was being rescued by 

P150 produced in trans by the helper virus.  However, when the NotI deletion was introduced 

into the infectious cDNA clone (Robo402/ΔNotI), the resulting transcripts induced cytopathic 

effect (CPE) two to three days post transfection and produced virus (132).  This indicated that a 

viral gene other than P150 was able to rescue the lethal NotI deletion.  The difference between 

RUBrep/GFP-ΔNotI and Robo402/ΔNotI is the presence of the structural ORF in the virus; 

therefore, the structural proteins were examined to determine which RUB protein was responsi-

ble for the rescue of the NotI deletion.  Different portions of the structural ORF were fused to 

GFP in RUBrep/GFP-ΔNotI, surprisingly, revealing that RUB C was the gene responsible for the 

rescue of the NotI deletion.  Deletion mutants using this same replicon system mapped the region 

of RUB C required for rescue to amino acids 1-88 of RUB C as these residues were required for 

rescue when C was supplied in trans from an expression plasmid driven by the CMV promoter.  

The RUB C protein, rather than its RNA, was found to be responsible for rescue (133).  The re-

gion of P150 that RUB C can rescue extends past the NotI sites to between nt 1529-2449 of the 

genome; this domain has been termed the capsid rescue-able or Q domain of P150.  The Q do-
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main spans from amino acids 497 to 803 and includes the polyproline hinge and hypervariable 

region within P150 (134).  

In addition to its ability to rescue Q domain mutants, as shown using a cell line that con-

stitutively expresses RUB C, it was found that RUB C also rescues replicons with mutations in 

both the 5' and 3' CAEs of the viral genome (13, 136).  CAEs are necessary for virus replication, 

serving as recognition and control elements for translation, replication, and packaging.  The RUB 

C also enhanced RNA replication by wild type RUB replicons during the first two days post-

transfection, although RNA accumulation in the absence of RUB C was similar by three days 

post-transfection (136). 

The rescue of RUB P150 Q domain mutants by RUB C suggests that a common function 

is shared by the RUB C and RUB P150 Q domain, and in proof of this hypothesis it was shown 

that replicons in which the Q domain was replaced by the 1-277 of the RUB C gene replicated, 

confirming this hypothesis.  This portion of RUB C lacks the C terminal 23 amino acids that act 

as the E2 signal sequence, the presence of which resulted in a nonviable replicon when the com-

plete C gene was used to replace the Q domain (134).  When further mapped, it was found that 

the portion of RUB C that could be substituted for the Q domain and maintain viability was con-

tained within amino acids 51 to 277 (134).  Previously it had been shown that the first 88 amino 

acids of RUB C were required for complementation in trans (133), indicating that the region of 

RUB C required for rescue was between amino acids 51 and 88.  The second arginine cluster 

within RUB C (R2) was the motif responsible for the rescue as introduction of a mutation in R2 

into the replicon resulted in a loss of viability (134).  When 1-277 RUB C was supplied in trans, 

mutation of the R2 to alanine (R2A) was not able to rescue the replication of RUBrep/GFP-

ΔNotI (134), indicating the importance of the R2 in the complementation in trans.  The P150 Q 
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domain also contains an arginine cluster between amino acids 731 and 735 (RQ) that when mu-

tated to glutamine (RQQ), lysine (RQK), or alanine (RQA) did not generate viable virus (134).  

However, RUBrep-RQA/GFP regains viability when wild type and R1A 1-277 RUB C sequences 

are inserted between the NotI sites, but not when the R2 or both arginine clusters of 1-277 RUB 

C are changed to alanines (134), further confirming the importance of the R2 cluster in C-

mediated rescue of the Q domain. 

 

1.8 Goal of this dissertation 

The overarching goal of this dissertation is to identify the mechanism of RUB C rescue of 

the RUB P150 Q domain.  This overarching goal is addressed in the two specific aims described 

below. 

 

1.8.1 Specific Aim 1: Identify and characterize the region within the RUB C minimal region 

for rescue of the RUB P150 Q domain.   

The minimal region of RUB C required for the rescue of RUBrep/GFP-ΔNotI replication 

has been mapped to the first 88 amino acids.  This region includes two arginine clusters and the 

primary phosphorylation site and these were examined within the context of constructs contain-

ing amino acids 1-88 of C (1-88 RUB C) for their involvement in the rescue of P150 Q domain 

mutants.  Once identified, rescuing and non-rescuing forms of 1-88 RUB C were characterized to 

find obvious differences between them, such as localization or phosphorylation that could eluci-

date the rescue mechanism. 
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1.8.2 Specific Aim 2: Determine the step in early replication at which RUB C functions in 

rescue. 

 The rescue of RUBrep/GFP-ΔNotI by RUB C occurs at an early stage of replication, 

specifically before the accumulation of viral RNA is detectable.  Several early events in the rep-

lication of RUBrep/GFP-ΔNotI were studied to determine if they were enhanced by the presence 

of a rescuing form of RUB C.  First, rescuing and non-rescuing forms of 1-88 RUB C were as-

sayed for their ability to protect the incoming viral RNA from the host cell RNA decay machin-

ery.  Second, the translation of the nonstructural protein precursor, P200, from RUBrep/GFP-

ΔNotI in the presence or absence of RUB C was analyzed.  Finally, RUB C could also function 

in recruitment of cell proteins to the RC and/or in establishing the proper host environment for 

viral replication through its interactions with host proteins.  Host proteins that bind to 1-88 RUB 

C were identified and examined to determine if any of these binding partners differentially bind 

rescuing and non-rescuing forms of 1-88 RUB C.   
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Figure 1.  Alphavirus replication cycle 
The nonstructural ORF is translated from the genomic RNA into two polyproteins, P123 and 
P1234.  These polyproteins are cleaved to yield nsP1, nsP2, nsP3, and nsP4, which complex with 
host factors to form the RC.  The incoming genomic RNA is used as a template to generate nega-
tive-sense RNA that in turn serves as the template to produce both genomic RNA and subge-
nomic RNA.  The structural ORF is translated from the subgenomic RNA to give a polyprotein 
that is processed giving the capsid protein, glycoproteins E2 and E1, and 6K protein. 
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Figure 2.  Rubella virus genome, replicon, and features of P150, P90 and the capsid protein 
A) RUB genome (left) containing the nonstructural proteins P150 and P90 translated from the 
NS-ORF and the structural proteins C, E2, and E1 from the S-OFR and RUB replicon with GFP 
replacing the S-ORF (right).  B) Domain map of RUB P150 including methyl transferase (MT), 
Y, proline hinge (PH), X, protease (NSPro), and Q domain (Q) regions.  The NotI region is also 
highlighted.  Domain map of RUB P90 including helicase and RDRP.  C) Map of RUB C (300 
aa in length) showing the two arginine clusters (gray circles), S46 primary phosphorylation site 
(white circle), and C-terminal E2 signal sequence (gray box).   
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Figure 3.  Rubella virus replication cycle   
The nonstructural ORF is translated and processed from the genomic RNA into yield P150 and 
P90, which use the incoming genomic RNA is as a template to generate negative-sense RNA that 
in turn serves as the template to produce both genomic RNA and subgenomic RNA.  The struc-
tural ORF is translated and processed from the subgenomic RNA to give C, E2, and E1. 
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2 SPECIFIC AIM 1: IDENTIFY AND CHARACTERIZE THE REGION WITHIN 

THE RUB C MINIMAL REGION FOR RESCUE OF THE RUB P150 Q DOMAIN. 

2.1 Introduction 

RUB C contains several characterized landmarks, many of which fall within the first 88 

amino acids, the minimal region required for the rescue of the RUB P150 Q domain (Figure 4. 

A).  The primary phosphorylation site of RUB C is at serine 46.  Nonphosphorylated capsid has a 

higher affinity for genomic RNA, suggesting that the phosphorylation negatively regulates the 

RNA binding activity of this protein (4).  The negative charge of the phosphate group on serine 

46 in the RNA binding region may prevent nonspecific electrostatic interaction with RNA or the 

phosphate group may alter conformation in a manner to inhibit RNA binding.  It has also been 

postulated to serve as a regulatory phosphorylation site governing phosphorylation of several 

nearby serine and threonine residues (3).  There are also two arginine clusters; the first arginine 

cluster (R1) is located between amino acids 35 through 43 and the second arginine cluster (R2) is 

located between amino acids 54 through 68; the R2 cluster is required for RUB C binding of 

RNA (1).  A 2000 study by the Hobman lab mapped the p32 binding region of RUB C to amino 

acids 46-89 (2), a region that does not include the R1 cluster.  However, in a later 2005 study, the 

Hobman lab reported that the region of RUB C that binds p32 is found between amino acids 30-

69, a region that includes both R1 and R2, and found that both R1 and R2 were necessary for p32 

binding (2).  In Chapter 3, we provide evidence that R2, but not R1, is necessary for p32 binding, 

at least within the context of the 1-88 RUB C construct.  

This study sought to identify the specific landmarks within the first 88 amino acids of 

RUB C required for the rescue of the RUB P150 Q domain.  Previous studies indicated that the 

R2 cluster is required for the rescue of RUBrep/GFP-ΔNotI when 1-277 RUB C was provided in 
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trans from a plasmid vector (6).  However, we wanted to re-examine mutations in this cluster in 

the context of the 1-88 construct as we planned to use this truncated version of RUB C in cell 

protein binding experiments proposed in Specific Aim 2.  We began by examining the arginine 

clusters and primary phosphorylation site within the context of 1-88 RUB C provided in trans 

from a plasmid vector to determine if these regions were important for the rescue of RU-

Brep/GFP-ΔNotI.  After identification, rescuing and non-rescuing 1-88 RUB C mutants as well 

as wild type 1-88 RUB C were studied for differences in phosphorylation and intracellular local-

ization. 

 

2.2 Results 

2.2.1 Generation of 1-88 RUB C mutants  

 A series of mutations in the phosphorylation site and arginine clusters that had been 

previously reported in the literature were introduced into a FLAG-tagged 1-88 RUB C plasmid-

based expression construct (expressed from a CMV promoter), further referred to as 1-88 RUB 

C, to determine if any of these landmarks were important for the rescue of RUBrep/GFP-ΔNotI 

replication (Figure 4.A).  Arginines in the two arginine clusters were changed to alanines either 

in the individual clusters (R1A, R2A) or together (2RA).  The primary phosphorylation site, S46, 

was changed to aspartic acid (S46D) or glutamic acid (S46E) to mimic phosphorylation.  Expres-

sion of 1-88 RUB C and all of its mutants in transfected cells was detectable by Western blot 

(Figure 4.B). 
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2.2.2 Optimization of RUBrep/GFP-ΔNotI rescue assay 

 Prior to the examination of the 1-88 RUB C mutant panel, the RUBrep/GFP-ΔNotI res-

cue assay was optimized to determine the timeline of transfection of wild type 1-88 RUB C and 

RUBrep/GFP-ΔNotI RNA that would yield the most robust GFP signal.  The premise behind the 

rescue assay is to cotransfect a plasmid expressing RUB C and in vitro RUBrep/GFP-ΔNotI tran-

scripts into Vero cells and then observe whether or not the form of RUB C used was able to res-

cue the replication of the replicon through the detection of GFP positive cells (Figure 5).  On day 

1, 1-88 RUB C was transfected into Vero cells and in vitro RUBrep/GFP-ΔNotI RNA transcripts 

were transfected on day 1, day 2, or day 3.  GFP expression was observed in live cells using fluo-

rescence microscopy and scored for intensity on day 2, day 3, and day 4.  GFP was first observed 

in all cultures examined at day 3, but the highest GFP levels were observed on day 4 when RU-

Brep/GFP-ΔNotI RNA was transfected on day 2 (Figure 6.A).  The expression of 1-88 RUB C 

was evident in each cell lysate sample at day 4 (Figure 6.B).  Based on the results of this pilot 

experiment, 1-88 RUB C and its mutants were transfected on day 1, RUBrep/GFP-ΔNotI RNA 

was transfected on day 2, and GFP expression was examined on day 4 during subsequent exper-

imentation. 

 

2.2.3 Second arginine cluster of 1-88 RUB C is necessary for the rescue of RUBrep/GFP-

ΔNotI by 1-88 RUB C 

 The 1-88 RUB C mutant panel was next screened for the ability to rescue RU-

Brep/GFP-ΔNotI using the experimental timeline established for wild type 1-88 RUB C.  RU-

Brep/GFP-ΔNotI replication was rescued by wild type 1-88 RUB C as well as the S46D, S46E, 

and R1A mutants as evidenced by the presence of GFP positive cells observed using fluores-
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cence microscopy, while no GFP positive cells, and therefore no rescue, were observed with the 

1-88 RUB C R2A and 2RA mutants as well as in mock transfected cells (Figure 7).  These re-

sults are consistent with results previously found with a similar mutant panel in the context of 

FLAG-tagged 1-277 RUB C expressed from the same vector (6).   

 Quantification of the GFP positive cell population by FACS analysis confirmed the ob-

servations made by fluorescence microscopy.  The percentage of GFP positive cells was signifi-

cantly reduced following transfection with the 1-88 RUB C R2A and 2RA mutants compared 

with wild type 1-277 RUB C or wild type 1-88 RUB C (Figure 8).  Western blot analysis of the 

expression of the wild type 1-88 RUB C and mutant panel C proteins in an aliquot of the same 

cells used for cytometry quantification confirmed expression of the various constructs during this 

experiment.  Thus, lack of GFP positive cells could not be attributed to poor expression of the 

non-rescuing 1-88 RUB C mutants.  The data showed that the second arginine cluster of 1-88 

RUB C, which is mutated in both the R2A and 2RA mutants, is important for the rescue RU-

Brep/GFP-ΔNotI.   

 

2.2.4 Localization of 1-88 RUB C panel does not differ between rescuing and non-rescuing 

mutants 

 The localization of wild type 1-88 RUB C and its mutants was next examined to deter-

mine if rescuing and non-rescuing forms of 1-88 RUB C have different cellular locations.  RUB 

C localizes to the mitochondria and is known to associate with mitochondrial matrix protein p32 

(2).  A nuclear and perinuclear distribution can be seen for all forms of 1-88 RUB C.  The peri-

nuclear distribution of the 1-88 RUB C proteins overlaps with the mitochondria as seen with 

staining with anti-p32 antibodies.   Representative images for a rescuing (1-88 RUB C S46D) 
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and non-rescuing (1-88 RUB C R2A) 1-88 RUB C are shown (Figure 9).  This same pattern was 

observed when the mitochondria were stained using MitoTracker® (data not shown).  The dif-

ferential ability of the 1-88 RUB C proteins to rescue the NotI deletion in RUB P150 cannot be 

explained by differences in intracellular localization between rescuing and non-rescuing forms of 

1-88 RUB C proteins. 

 

2.2.5 Phosphorylation states of 1-88 RUB C and its mutants cannot explain rescue phenom-

enon 

 We next examined the phosphorylation status of wild type 1-88 RUB C and its mutants 

to determine if this modification regulates the ability of 1-88 RUB C to rescue RUBrep/GFP-

ΔNotI.  Treatment with calf intestinal phosphatase (CIP) resulted in a downward shift in the 

bands for wild type 1-88 RUB C, R2A, S46D, and S46E while there was no change in mobility 

for 1-88 RUB C R1A and 2RA (Figure 10).  This indicates that wild type RUB C 1-88, R2A, 

S46D, and S46E are phosphorylated, while RUB C 1-88 R1A and 2RA are not phosphorylated 

and thus the phosphorylation status of 1-88 RUB C cannot explain the rescue phenomenon.  This 

result also suggests that the R1 cluster is important in phosphorylation of RUB C. 

 

2.3 Methods 

2.3.1 Cells and replicons 

 African green monkey kidney cells (Vero) were maintained in DMEM containing 5% 

FBS and gentamycin (10 µg/ml) at 35ºC and 5% CO2.  The rubella replicon RUBrep/GFP-ΔNotI 

(5) was used in this study.  In vitro transcription of linearized replicon DNA templates was car-
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ried out in a 25 µl reaction containing 5 µl 5X transcription buffer (40 mM Tris-HCl (pH7.5), 6 

mM MgCl2, 2 mM spermidine) (Epicentre), 2.5 µl 100 mM DTT, 40U RNasin Ribonuclease In-

hibitors (Promega), 1 µl 25mM NTPs (Amersham), 5 µl 10mM cap analogue (m7G(5')ppp(5')G) 

(New England BioLabs), 50U SP6 DNA dependent RNA polymerase (Epicentre), and 2 µl 250 

ng/µl linearized template incubated at 37ºC for 1 hr.  The quality of the in vitro transcript was 

assayed by electrophoresing the product through a 1% agarose gel followed by staining with eth-

idium bromide. 

 

2.3.2 Antibodies 

 The following antibodies were used in this study:  monoclonal mouse M2 anti-FLAG 

(Sigma), rabbit anti-calnexin (Sigma), and polyclonal rabbit anti-32 (Santa Cruz).  Secondary 

antibodies were AP-conjugated goat or donkey anti-mouse IgG, AP-conjugated goat or donkey 

anti-rabbit IgG (Promega), and FITC- or TRITC-conjugated goat antibodies against mouse or 

rabbit IgG (Sigma). 

 

2.3.3 Generation of expression constructs 

 A series of RUB C mutants were generated such that the mutation of interest was in the 

context of the first 88 amino acids of a FLAG-tagged RUB C expressed from the vector pcDNA.  

The mutants in this region were S46D (GAC), S46E (GAA), R1A, R2A, and 2RA.  The 1-88 

RUB C sequence was amplified from the corresponding FLAG-tagged 1-277 RUB C mutant 

construct (6).  This was accomplished in a 50 µl reaction containing 25 µl 2X GC buffer 

(Takara), 8 µl 2.5mM dNTPs, 1 µl 200 ng/µl forward primer including a EcoRV restriction site 

and 2X FLAG tag in front of the 5' terminus of the RUB C gene (5' TAAGATATCCATGGACT 
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ATAAGGACGACGACGACAAGGACTATAAGGACGACGACGACAAGGCTTCTACTACC

CCCATCACCATGGAG 3'), 1 µl of 200 ng/µl of reverse primer including a XbaI restriction 

site, translation termination codon, and sequences complementary to the RUB C gene starting at 

codon 88 (5' GTACTCTAGACTAGCGAGTTTCTTGCCGC 3'), 5U Ex Taq DNA polymerase 

(Takara), and 0.5 µl the appropriate 1-277 RUB C template in pcDNA.  The PCR protocol used 

was 36 cycles of 98ºC for 30 sec, 55ºC for 20 sec, and 72ºC for 1 min followed by incubation at 

72ºC for 1 min.  pcDNA and purified PCR products underwent digestion using EcoRV and XbaI 

restriction enzymes (New England BioLabs), followed by gel purification using QIAquick gel 

extraction kit (QIAGEN) and these fragments were ligated together using T4 DNA ligase (New 

England BioLabs) for 1 hour at room temperature.  The ligation reactions were then transformed 

into competent DH5α E. coli.  Resulting colonies were picked for miniprep plasmid DNA isola-

tion that was then screened for the presence of both the insert and the vector using restriction di-

gestion on EcoRV and XbaI sites.  Positive colonies were then sequenced.  The resulting con-

structs were termed 1-88 RUB C wt, R1A, R2A, 2RA, S46D, or S46E. 

 

2.3.4 Optimization of RUBrep/GFP-ΔNotI rescue assay 

 Parameters for the assay of the rescue of RUBrep/GFP-ΔNotI replication by RUB C 

were optimized using wild type 1-88 RUB C.  Vero cells were plated in 60 mm plates and al-

lowed to grow overnight.  The plates were divided into the following groups: transfected with 

wild type 1-88 RUB C and RUBrep/GFP-ΔNotI 1 day after plating (day 1), transfected with wild 

type 1-88 RUB C on day 1 and RUBrep/GFP-ΔNotI 2 days after plating (day 2), and transfected 

with wild type 1-88 RUB C on day 1 and RUBrep/GFP-ΔNotI 3 days after plating (day 3).  The 

cells were transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s rec-
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ommendations with 10 µg of cDNA and/or 6 µl of in vitro transcribed RNA.  Transfection rea-

gents were incubated on cell cultures for at least 4 hours before removal and addition of growth 

medium.  Living cells on these plates were observed for expression of GFP using a Zeiss Axion-

plan 2 Imaging microscope beginning the day after the transfection of RUBrep/GFP-ΔNotI 

through day 4.  Following microscopy on day 4, the cells were lysed to assay the expression of 

wild type 1-88 RUB C levels using Western blot.     

 

2.3.5 Analysis of 1-88 RUB C mutant panel using RUBrep/GFP-ΔNotI rescue assay 

 Screening of the 1-88 RUB C mutant panel for RUBrep/GFP-ΔNotI GFP rescue was 

done as follows.  Vero cells were plated in 60 mm plates and allowed to grow overnight.  The 

cells were transfected with 1-88 RUB C wt or mutant panel DNA 1 day after plating and then 

transfected with in vitro transcribed RUBrep/GFP-ΔNotI RNA 2 days after plating.  The cells 

were transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommen-

dations with 10 µg of cDNA or 6 µl of in vitro transcribed RNA.  Transfection reagents were al-

lowed to incubate on cell cultures for at least 4 hours before removal and addition of growth me-

dium.  Plates were observed for expression of GFP using a Zeiss Axionplan 2 Imaging micro-

scope followed by cell lysis for analysis of 1-88 RUB C levels using Western blot on day 4.   

   

2.3.6 Flow cytometry of RUBrep/GFP-ΔNotI rescue by 1-88 RUB C mutant panel  

 Quantification of the number of GFP positive cells present during rescue was done as 

follows.  Vero cells were plated in 60 mm plates and allowed to grow overnight.  The cells were 

transfected with the 1-88 RUB C wt or mutant panel cDNA 1 day after plating and then trans-

fected with in vitro transcribed RUBrep/GFP-ΔNotI RNA 2 days after plating.  The cells were 
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transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommenda-

tions with 10 µg cDNA or 6 µl of in vitro transcribed RNA.  Transfection reagents were allowed 

to incubate on cell cultures for at least 4 hours before removal and addition of growth medium.  

Cell cultures were observed for expression of GFP using fluorescence microscopy and then cells 

were either quantified using FACS analysis or processed by cell lysis for analysis of 1-88 RUB C 

levels using Western blot 4 days after plating.   

 The plates were prepared for FACS analysis by decanting the media, adding 0.5 ml of 

trypsin solution, and allowing the plates to incubate at 35°C for 10 minutes until cell detachment 

occurred.  Next, 1.5 ml PBS was added to each plate to resuspend the cells; 1 ml of this suspen-

sion was used for FACS and 1 ml was lysed for Western blot analysis.   

 

2.3.7 Immunofluorescence assay 

 In order to observe the intracellular localization of 1-88 RUB C and its mutants, an 

immunofluorescence assay (IFA) was performed.  Vero cells were plated at a low density  (1.5 

ml of trypsinized cells in 25 ml media; in the usual plating 1 ml of trypsinized cells is mixed with 

9 ml of medium) in 35 mm plates containing coverslips and were allowed to grow overnight.  

The cells were transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s 

recommendations with 5 µg of 1-277 RUB C or 1-88 RUB C (wt, R1A, R2A, 2RA, S46D, and 

S46E) cDNA.  Transfection reagents were allowed to incubate on the cell cultures for at least 4 

hours before removal and addition of growth medium and coverslips were then processed for 

IFA 2 days post-transfection.  One set of cells was labeled for 30 minutes using MitoTracker® 

red (1:10,000) (Invitrogen) diluted in growth media prior to IFA using anti-FLAG antibodies. 
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 Coverslips were processed for IFA as follows.  Media was decanted and 1 ml of ice-

cold methanol was added to the plate for 5 minutes.  The plates were then washed 3 times with 

PBS, allowing the last wash to incubate for 15 minutes.  Next, 100 µl of prepared primary anti-

body (1:1000 anti-FLAG, 1:333 anti-p32, 1:1000 Hoechst 33342 (Invitrogen), in PBS/1% BSA) 

was added to each coverslip and incubated in the dark for 30 minutes.  After 3 washes with PBS, 

100 µl prepared secondary antibody anti-mouse FITC (1:100 (Sigma) PBS/1% BSA) or anti-

mouse FITC and anti-rabbit TRITC (1:100 (Sigma) (PBS/1% BSA) was added and incubated in 

the dark for 30 minutes.  The coverslips were washed 3 times with PBS and mounted on glass 

slides with Entellan® new rapid mounting medium for microscopy (EMD).  The coverslips were 

then observed using fluorescence microscopy using a Zeiss Axionplan 2 Imaging microscope.   

 

2.3.8 CIP analysis of phosphorylation status of 1-88 RUB C mutant panel 

 Vero cells were plated in 35mm plates and allowed to grow overnight.  The cells were 

transfected with the 1-88 RUB C wt or mutant panel cDNA 1 day after plating.  The cells were 

transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommenda-

tions with 5 µg of 1-88 RUB C (wt, R1A, R2A, 2RA, S46D, and S46E) DNA.  Transfection rea-

gents were allowed to incubate on cell cultures for at least 4 hours before removal and addition 

of growth medium.  Plates were harvested 2 days post-transfection.   

 Cells on the 35 mm plates were lysed in 400 µl PBS based lysis buffer (1.5mM NaCl, 

1% Triton X-100, 0.1% SDS, 0.5% DOC in PBS) with complete, mini, EDTA-free protease in-

hibitor cocktail tablet (1 tablet/10ml buffer) (Roche) and clarified by centrifugation.  Proteins 

were dephosphorylated using CIP according to manufacturer’s recommendations (New England 

BioLabs) with modifications.  Briefly, a 50 µl total reaction was done containing 1 µg/10 µl of 
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protein, two-fold excess CIP mixture and NEB buffer 2.  The reaction was incubated at 37ºC for 

30 minutes and then combined with 5X SDS PAGE loading buffer and boiled for 5 minutes prior 

to PAGE and Western blot analysis.  

 

2.3.9 Western blot 

Cells in 60 mm plates were lysed with 500 µl 1XRIP lysis buffer (10 mM Tris pH 8.0, 

150 mM NaCl, 3 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% DOC) with complete, mini, 

EDTA-free protease inhibitor cocktail tablet (1 tablet/10 ml buffer) (Roche) and lysates were 

clarified by centrifugation.  Clarified cell lysates (20 µl) were combined with 5X SDS-sample 

buffer (250 mM Tris-HCl pH 6.8, 20 mM DTT, 10% SDS, 0.2% bromophenol blue, 50% glyc-

erol) (5 µl), boiled for 5 minutes, and clarified by brief centrifugation.  The cell lysates were 

electrophoresed in a 10% or 15% SDS-PAGE gel and transferred to a nitrocellulose membrane 

(Whatman) using 1X transfer buffer (100 ml 10X transfer buffer (250 mM Tris, 192 M glycine), 

200 ml methanol, and 700 ml deionized water) and a mini-Protean II apparatus (BioRad) at 100V 

for 1 hour.  The membranes were blocked in 5% non-fat dry milk in TBS (20 mM Tris-HCl pH 

7.5 and 175 mM NaCl) and then probed with the appropriate primary and secondary antibody.  

Color development solution was added (10 ml alkaline phosphatase buffer (100 mM Tris, 100 

mM NaCl, 50 mM MgCl2-6H20, pH 9.8), 33 µl NBT (Roche), and 33 µl BCIP (Roche)) to detect 

bound antibodies. 
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Figure 4.  Expression of 1-88 RUB C and its mutants 
A) Schematic of RUB C showing the two arginine clusters (gray circles), S46 primary phosphor-
ylation site (white circle), and C-terminal E2 signal sequence (gray box).  Below are shown aa 35 
to 69 of RUB C with specific mutations introduced into 1-88 RUB C for this study in red.  These 
include mutation of the first arginine cluster (R1A), second arginine cluster (R2A), both arginine 
clusters (2RA), and the primary phosphorylation site (S46D/S46E). B) Vero cells were mock-
transfected (M) or transfected with 10 µg cDNA of 1-88 RUB C wt or one of the mutant panel 1 
day after plating.  Plates were lysed 2 days post-transfection and lysates were electrophoresed in 
a 15% SDS-PAGE gel and proteins were transferred to a nitrocellulose membrane.  The mem-
brane was then probed with primary antibody (anti-FLAG 1:400) and secondary antibody (anti-
mouse AP conjugated 1:5000).  
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Figure 5.  Diagram of RUBrep/GFP-ΔNotI rescue assay   
A) The RUB virus genome with nonstructural ORF including P150 and P90, which form the vi-
ral replicase, and structural ORF including C, E2, and E1, which form the virion.  B) RU-
Brep/GFP-ΔNotI rescue assay. The replicon contains an ~500 nt deletion between two in frame 
NotI restriction sites (*) and is replication deficient without RUB C.  Replication of the replicon 
is monitored by the expression of GFP, which replaces the structural ORF.  Mutant and wild type 
forms of RUB C were expressed in trans to determine if that form of RUB C rescued RU-
Brep/GFP-ΔNotI replication. 
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Figure 6.  Optimization of RUBrep/GFP-ΔNotI rescue assay	  
Vero cells were transfected with 10 µg of 1-88 RUB C cDNA at day 1 and transfected with 6 µl 
of RUBrep/GFP-ΔNotI RNA transcripts on either day 1, 2, or 3.  Plates that had been transfected 
with the replicon were examined for RUBrep/GFP-ΔNotI replication visualized as GFP expres-
sion using fluorescence microscopy at days 2, 3, and 4.  A) Cells were transfected with 1-88 
RUB C on day 1. In the table, “NotI day” is the day on which the cells were transfected with 
RUBrep/GFP- ΔNotI, “GFP day” is the day the plate was examined for GFP, and +/- represents 
the strength of the GFP signal.  B) Western blot analysis of 1-88 RUB C expression was done on 
cells lysed on day 4.  Lysates were electrophoresed in a 15% SDS-PAGE gel and proteins were 
transferred to a nitrocellulose membrane.  The membrane was then probed with primary antibody 
(anti-FLAG 1:400) and secondary antibody (anti-mouse AP conjugated 1:5000).  Cells were 
mock (M) or 1-88 RUB C (C)-transfected on day 1 and then transfected with RUBrep/GFP-ΔNot 
I RNA on day 1 (M1, C1), day 2 (M2,C2) or day 3 (M3,C3) followed by lysis on day 4 of the 
experiment. 
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Figure 7.  RUBrep/GFP-ΔNotI rescue by 1-88 RUB C and its mutants  
Vero cells were transfected with 10 µg of 1-88 RUB C wt or mutant cDNA 1 day after plating 
and transfected with 6 µl of RUBrep/GFP-ΔNotI RNA 2 days after plating.  All plates were ex-
amined for RUBrep/GFP-ΔNotI replication as visualized as GFP expression using fluorescence 
microscopy 4 days after plating at 10X magnification.  The version of 1-88 RUB C expressed is 
denoted below each image. 
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Figure 8.  Quantification of RUBrep/GFP-ΔNotI rescue by 1-277 RUB C wt (*) or  
1-88 RUB C and its mutants  
Vero cells were transfected with 10 µg of 1-88 RUB C wt or mutant panel cDNA 1 day after 
plating and transfected with 6 µl of RUBrep/GFP-ΔNotI RNA 2 days after plating.  Four 
days after plating, the cells were detached by trypsinization and divided into two aliquots.  A) 
The first aliquot was examined for RUBrep/GFP-ΔNotI replication as measured by % GFP 
positive cells using FACS analysis.  This experiment was repeated 3 times and the error bars 
represent the standard deviation.  A) Student’s t test was performed to determine significant 
differences.  The * denotes p < 0.05 when compared to either wild type 1-277 RUB C or wild 
type 1-88 RUB C. B) The second aliquot was lysed and lysates were electrophoresed in a 
10% (to probe for calnexin) or 15% (to probe for FLAG-tagged RUB C) SDS-PAGE gel and 
proteins were transferred to a nitrocellulose membrane.  The membranes were then probed 
with primary antibodies (anti-calnexin 1:5000 or anti-FLAG 1:400) and secondary antibody 
(anti-mouse AP conjugated 1:5000).  Arrows denote the migration of the 277 (wt*) and 88 
amino acid forms of RUB C.  The bands migrating higher than expected for the 1-88 RUB C 
samples could be dimers. 
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Figure 9.  Intracellular localization of 1-88 RUB C and its mutants 
Vero cells were transfected with 10 µg of 1-88 RUB C wt or mutant cDNA 1 day after plating.  
Two days after plating cells were examined by immunofluorescence staining of 1-88 RUB C 
with anti-FLAG (1:1000) and secondary anti-mouse FITC (1:100) and anti-p32 (1:333) and sec-
ondary anti-rabbit TRITC (1:100) and visualized.  Fluorescence microscopy was performed us-
ing a 40X objective.  Green corresponds to the FLAG-tagged 1-88 RUB C construct with denot-
ed mutation and red corresponds to cellular mitochondrial protein p32.  Representative images 
for a rescuing (S46D) and a non-rescuing form (R2A) of 1-88 RUB C are shown.   
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Figure 10.  CIP dephosphorylation of 1-88 RUB C and its mutants   
Vero cells were transfected with 5 µg of the 1-88 RUB C wt or mutant panel cDNA and lysed 
two days post-transfection.  CIP-mediated protein dephosphorylation was done as described by 
the manufacturer’s protocol (NEB) with the exception that a 30 minute incubation time was 
used.  CIP treated (+) and untreated (-) lysates were electrophoresed in a 15% SDS-PAGE gel 
and proteins were transferred to a nitrocellulose membrane.  The membrane was then probed 
with primary antibody (anti-FLAG 1:400) and secondary antibody (anti-mouse AP conjugated 
1:5000).  Differences in migration between untreated (-) and treated (+) lysates, indicative of 
phosphorylation, are indicated by arrows. 
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3 SPECIFIC AIM 2: DETERMINE THE STEP IN EARLY REPLICATION AT 

WHICH RUB C FUNCTIONS IN RESCUE. 

3.1 Introduction 

 The mechanism behind the rescue of the RUB P150 Q domain by RUB C has been in-

vestigated, but not elucidated.  RUB C is able to rescue the ∆NotI replicon at a step prior to the 

synthesis of detectable viral RNA (15).  Packaged RUBrep/GFP-ΔNotI can also be rescued by 

RUB C provided within the virion (4), further supporting the notion that rescue occurs at an early 

step.   

 The early steps post-transfection at which C-mediated rescue of ∆NotI replicons could 

occur are outlined as follows: 

1. Protection of the transfecting replicon RNA from the host cell RNA degradation machin-

ery 

2. Translation of the NS-ORF from the transfecting replicon RNA 

3. Recruitment of the viral RNA, the viral replicase, and host cell factors to the RC 

4. Establishment of the RC 

5. Setting up an intracellular environment conducive to replication 

We sought to investigate these early steps as follows: 

The first hypothetical early step is protection of the incoming RNA from degradation by 

the host degradation machinery.  Initially we hypothesized that the RNA binding activity of RUB 

C may be necessary for its rescue of the RUB P150 Q domain, but additional experimentation in 

our lab suggested that this was not the case.  Drs. Zhou and Tzeng showed that the ∆NotI repli-

con was rescued by 1-277 RUB C wild type, S46A, S46D, and S46E (unpublished data) and we 

confirmed that this replicon is rescued by 1-88 RUB C wild type, S46D, and S46E in the previ-



56 

ous aim.  It had been previously reported that wild type and S46A RUB C bind RNA, while 

S46D and S46E RUB C do not (9).  However, in the previous aim we found that the second argi-

nine cluster of RUB C is important for the rescue phenomenon and this arginine cluster is re-

quired for RUB C binding of RNA (1).  This suggests that the interaction between RUB C and 

the viral RNA, perhaps to prevent its degradation by the host cell machinery, could be the point 

in the life cycle critical for the rescue phenomenon.  Thus, we sought to determine if RUB C pro-

tects the incoming viral RNA from degradation and if so, does this ability and the ability to bind 

the incoming viral RNA differ between rescuing and non-rescuing forms of RUB C as well.	  

 The next step in the replication cycle of the RUB viral RNA upon introduction to the 

cytoplasm is the translation of the nonstructural ORF.  There were no differences in translation 

of P150 between wild type and ∆NotI replicons in the presence or absence of RUB C at 6 and 24 

hours post-transfection (17), suggesting that the rescue phenomenon occurs post translation.  In 

this study, we revisited this experiment by examining additional time points post-transfection to 

confirm that RUB C functions at a point after the translation of the nonstructural ORF. 

Finally, we tried to identify host proteins which interacted differentially with wt RUB C 

and its non-rescuing mutant, R2A.  RUB C binding of a host protein could serve to recruit it to 

the RC.  It is also possible that RUB C is needed to establish the proper host environment for 

replication via its interactions with host proteins.  This could involve inactivation of a host innate 

defense mechanism or activation of a cell signaling pathway.  In the previous aim we identified 

the R2 arginine cluster within RUB C to be required for the rescue of the RUB P150 Q domain.  

It has been reported that both arginine clusters are important for binding of cellular protein p32 

(2).  The identification of p32 as a RUB C binding partner was done using yeast two-hybrid 

screening of a cDNA library from CV1 cells, which are derived from African green monkey kid-
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ney (2).  As RUB virus is solely a human pathogen, the screening of a non-human library might 

be a pitfall of this study, although primates and humans have similar proteins.  Subsequent ef-

forts from this group identified p32 and poly(A)-binding protein (PABP) as RUB C binding 

partners by transfecting COS or HEK293T cells with a GST-tagged RUB C, performing GST 

pulldowns, and mass spectrometry (7).  COS and HEK293T cells are derived from monkey kid-

ney and human embryonic kidney cells respectively, so this screen was more relevant since hu-

man proteins were examined.  Our study sought to examine known RUB C protein binding part-

ners for differential interaction between rescuing and non-rescuing forms of RUB C, as well as to 

identify new host binding partners, including potentially more transient ones, by probing a hu-

man protein microarray. 

RUB C also associates with the viral replicase, suggesting a possible mechanism for its 

involvement in RNA synthesis, namely recruitment of the replicase to the RC, although RUB C 

may need to bind to the replicase to perform its rescue function.  Specifically, RUB C and RUB 

P150 have been shown to be associated by both co-immunoprecipitation (17) and colocalization 

(5, 8).  The regions of RUB P150 and RUB C that are required for this association have been 

mapped by Dr. Tzeng to the first 31 amino acids of RUB C and the N terminus of RUB P150 

(first 140 amino acids) (unpublished data).   

 

3.2 Results 

3.2.1 Analysis of 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP with RUBrep/GFP-ΔNotI 

rescue assay and generation of stable cell lines 

To study the RNA decay of RUB replicons, it was desirable to generate Vero cell lines 

that stably expressed the wt RUB C 1-88 or its R2A mutant.  To this end, plasmids expressing 1-
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88 RUB C wt and 1-88 RUB C R2A fused to RFP were constructed.  These constructs were test-

ed to ensure that the fusion to RFP did not disrupt ability the of these proteins to rescue or not 

rescue RUBrep/GFP-ΔNotI.  Vero cells were transfected with 1-88 RUB C-RFP or 1-88 RUB C 

R2A-RFP 1 day after plating, transfected with RUBrep/GFP-ΔNotI 2 days after plating, and ex-

amined for GFP expression by fluorescence microscopy 4 days after plating.  RUBrep/GFP-

ΔNotI was rescued by 1-88 RUB-RFP, but was not rescued by 1-88 RUB C R2A-RFP as ex-

pected (Figure 11).  Vero cells stably expressing 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP 

were then generated.  Robust expression of RFP was observed for both cell lines when assayed 

using both fluorescence microscopy and Western blot (Figure 12). 

 

3.2.2 Early differential RNA decay of RUB replicons in the presence of RUB C  

 To test if a difference in replicon RNA stability could be detected in the presence of 

RUB C, Vero and C-Vero cells were transfected with replicon RNA transcripts and at 1, 6, and 

12 hours post-transfection RNA was extracted and the amount of replicon RNA determined by 

qRT-PCR.  As seen in Figure 13.A, at 1 hour post-transfection C-Vero cells contained signifi-

cantly more RUBrep/GFP RNA than Vero cells, but there was no difference between the amount 

of replicon RNA in these two cell lines at 6 and 12 hours post-transfection.  This trend was spe-

cific for RUB replicon RNA as there was no difference in RNA levels at any time point in Vero 

versus C-Vero cells when a corresponding SIN replicon, SINrep/GFP, was similarly examined 

(Figure 13.B).  When cell lines stably expressing 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP 

were used in this assay, there was significantly more RUBrep/GFP in 1-88 RUB C-RFP cells as 

compared to 1-88 RUB C R2A-RFP cells (Figure 14.A).  This indicates that the second arginine 

cluster is important in this early protection of the RUB viral RNA.   
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 To rule out the possibility that the lack of differences in RNA levels at the later time 

points could be due to RNA replication of RUBrep/GFP, we examined a replication defective 

RUB replicon, RUBrep/GFP-GDD*.  The same trend of protection of the RUB viral RNA at the 

1 hour time point in C-Vero and 1-88 RUB C-RFP cells, but not in Vero and 1-88 RUB C R2A-

RFP cells seen with RUBrep/GFP was also seen with RUBrep/GFP-GDD* (Figure 13.C and 

Figure 14.B).  Therefore, the lack of difference in RNA levels seen at the later time points is 

measuring the incoming in vitro transcript, and not newly replicated RNA.  There was more 

RNA present in the experiment with RUBrep/GFP-GDD* (Figure 13.C) than RUBrep/GFP (Fig-

ure 13.A).  Experimentation with these two replicons was undertaken at separate times with the 

RUBrep/GFP-GDD* experiments later, and therefore improved proficiency with RNA isolation 

with additional experience with the technique could explain this discrepancy.   

 

3.2.3 Greater association of RUB replicon with 1-88 RUB C than 1-88 RUB C R2A 

To determine if the greater stability of the replicon RNA at early times post-transfection 

in cells expressing versions of the wild type RUB C protein was due to a direct interaction be-

tween RUB C and the replicon RNA, protein-RNA complexes were immunoprecipitated to de-

termine if there is a greater association of RUBrep/GFP RNA with 1-88 RUB C than 1-88 RUB 

C R2A.  The 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP stable cell lines were intended to be 

used for these experiments until it was discovered that anti-RFP could not immunoprecipitate the 

1-88 RUB C-RFP fusion proteins.  Instead, FLAG-tagged 1-88 RUB C and 1-88 RUB C R2A 

were transfected into Vero cells 1 day after plating and in vitro transcribed RUBrep/GFP tran-

scripts were transfected 2 days after plating.  One hour post-transfection, RNA protein complex-

es were crosslinked using formaldehyde, immunoprecipitated with anti-FLAG, and RNA was 
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isolated and quantified using qPCR.  There was significantly more RUBrep/GFP RNA co-

immunoprecipitated with 1-88 RUB C than 1-88 RUB C R2A (Figure 15).  This suggests that the 

protection of RUB replicon RNA early after transfection occurs through physical interaction of 

the RNA with RUB C and that the R2 arginine cluster is important for the interaction between 

RUB C and RUB replicon RNA. 

	  

3.2.4 No differences in the translation of RUB P150 in RUB replicon transfected Vero and 

C-Vero cells 

One of the initial events in both RUB virus and RUB replicon replication is the transla-

tion of the nonstructural proteins from the incoming RNA.  Therefore, we examined the transla-

tion of a RUB nonstructural protein, P150, in Vero and C-Vero cells transfected RUBrep/GFP 

and RUBrep/GFP-ΔNotI at 1, 6, 12, and 24 hours post-transfection.  There was no translation of 

P150 detected from either replicon in Vero or C-Vero cells at 1 hour post-transfection (Figure 

16.A).  There were no obvious differences between the translation of P150 from either replicon 

in Vero or C-Vero cells at 6, 12, or 24 hours post-transfection (Figure 16.B), indicating that 

translation is not the step early in replication enhanced by the presence of RUB C.  This result 

was also seen in another study when the time points 6 and 24 hours post-transfection were exam-

ined (17). 

 

3.2.5 RUB C and RUB P150 Q domain interact with cellular p32 

 We next explored if there was differential association of rescuing and non-rescuing 

forms of RUB C with cellular p32, a known binding partner of RUB C.  Wild type and rescuing 

mutants of 1-88 RUB C were able to immunoprecipitate cellular p32, while non-rescuing mu-
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tants, R2A and 2RA, of 1-88 RUB C were not able to immunoprecipitate cellular p32 (Figure 

17.A).  This finding contradicts the findings of Beatch et al. that both the R1 and R2 clusters are  

important for p32 binding (1).  Encouraged that this interaction might be the basis for the rescue 

phenomenon, we next examined the wild type and appropriate mutants of RUB P150 Q domain 

for their interaction with cellular p32.  Both wild type (does not require RUB C for replication) 

and its RQQ mutant (Figure 17.B) in which the arginines in a poly-arginine cluster are mutated to 

glutamines, (does require RUB C for replication) were co-immunoprecipitated with p32 (Figure 

17.C).  Further, the interaction between the RUB P150 Q domain and cellular p32 was found to 

rely upon the presence of both of the two PxxPxR motifs within the Q domain as wt P150 Q do-

main or the P150 Q domain with either PxxPxR motif mutated individually (Mut1 or Mut 2; Fig-

ure 17.B) were co-immunoprecipitated with p32 while a construct with both motifs mutated 

(Mut1+2) was not (Figure 17.D).  It is of note that the first two arginines in the poly-arginine 

cluster overlap the first PxxPxR motif and that RUBrep/GFP Mut1+2 does not require RUB C 

for replication (13).  Taken together, this indicates that the interaction between RUB C and cellu-

lar p32 is not the basis of the rescue phenomenon.   

 

3.2.6 All forms of 1-277 RUB C mutant panel co-immunoprecipitate with RUB P200* 

 The formation of the replication complex (RC) is another early event in RUB virus and 

replicon replication that occurs before the accumulation of newly synthesized viral RNAs.  We 

examined if rescuing and non-rescuing forms of RUB C differentially associated with the un-

cleaved NSP, P200.  This was done by cotransfecting RUB C and a plasmid expressing a form of 

the NSP that cannot cleave (P200*).  After many attempts it was determined that while 1-88 

RUB C could not be co-immunoprecipitated with P200*, 1-277 RUB C could be, so the remain-
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der of the experiments were done using the 1-227 RUB C mutant panel.  Dr. Tzeng previously 

demonstrated that CAT-tagged 1-88 RUB C interacted with FLAG-tagged P150 when expressed 

from two different replicons (unpublished data).  In addition to the mutant panel described and 

characterized in the previous aim of this dissertation, an additional 1-277 C mutant was con-

structed in which a predicted helix between residues 9 and 31 was disrupted (Figure 18), which 

was termed the helix mutant.  Since Dr. Tzeng mapped the P150-binding region of C to between 

aa 1-31, we hypothesized that this helix may be important for protein-protein interactions.  All 

forms of 1-277 RUB C could be co-immunoprecipitated with P200* (Figure 19), suggesting that 

the interaction between RUB C and P200 is not a factor in the ability of RUB C to rescue repli-

cation at an early step.  The immunoprecipitation results were further confirmed by an immuno-

fluorescence assay in cells cotransfected with GFP- tagged P200* and FLAG- tagged 1-277 

RUB C and its mutants in which all forms of 1-277 RUB C colocalized with P200* (Figure 20 

shows the colocalization between 1-277 RUB C wt and P200*). 

 

3.2.7 RUB C and RUB P150 Q domain do not interact with Amph1 or Bin1 

 Recently several alphaviruses were found to interact with Amph1 and Bin1 via their P1 

SH3 motif within nsP3.  Interestingly, an arginine was found to be the critical reside within this 

motif for these interactions and the abrogation of these interactions by mutagenesis of the critical 

arginine to glutamic acid resulted in decreased RNA replication and viral titers (12).  We there-

fore wanted to determine if RUB C or the RUB P150 Q domain interacted with either of these 

proteins and if so, if that interaction was mediated via the arginine clusters important for the res-

cue phenomenon.  C-myc-tagged Amph1 and C-myc-tagged Bin1 appeared to pull down both 

wild type and R2A forms of 1-277 RUB C, but this interaction was not genuine as the same 
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bands were present in control beads-only (no anti-C-myc antibody) immunoprecipitation samples 

(Figure 21.C).  Neither the wild type nor the RQQ forms of the RUB P150 Q domain were co-

immunoprecipitated with C-myc-tagged Amph1 (Figure 21.D left) or by C-myc-tagged Bin1 as 

bands present in the immunoprecipitation lanes were also present in the mock-transfected lane 

(Figure 21.D right).  Therefore, neither 1-277 RUB C nor the P150 Q domain could be demon-

strated to bind Amph1 or Bin1 and these cellular proteins are not implicated in the rescue phe-

nomenon.    

 

3.2.8 Purification of 1-88 RUB C and 1-88 RUB C R2A expressed from pFLAG-MAC using 

column chromatography 

 To determine if the C rescue phenomenon was mediated via its binding to a host pro-

tein, we sought to identify host protein binding partners for 1-88 RUB C that did not bind 1-88 

RUB C R2A.  Toward this aim, we induced expression of FLAG-tagged 1-88 RUB C and 1-88 

RUB C R2A cloned into the bacterial expression vector pFLAG-MAC in E. coli BL21(DE3).  

Column purification of 1-88 RUB C was carried out using anti-FLAG M2 affinity gel and elu-

tion with FLAG peptide.  This method successfully purified both 1-88 RUB C and 1-88 RUB C 

R2A (Figure 22.A and 22.B left panels).  However, a significant portion of 1-88 RUB C did not 

bind to the anti-FLAG M2 affinity gel as evidenced in the intense band present in the flow-

through lane of the Western blot (Figure 22.A right panel).  FLAG-tagged 1-88 RUB C R2A was 

also purified using a similar purification strategy as for FLAG-tagged 1-88 RUB C, with modifi-

cation.  An increased amount of anti-FLAG M2 agarose was used, resulting in less protein lost in 

the flow-through fraction (Figure 22.B right panel).  The protein was eluted with 0.1 M glycine 

pH 3.5 rather than FLAG peptide.  The yield in the combined elution fractions for 1-88 RUB C 



64 

was 8.62 µg/ml and the molarity of the combined elution fractions was calculated to be 0.673 

µM.  The protein yield in the combined elution fractions for 1-88 RUB C R2A was 3.79 µg/ml 

and the molarity of the combined elution fractions was 0.310 µM.  The amount of protein needed 

for the protein array experiment is 100 nM to 1 µM, so enough was eluted for each protein to 

continue to the protein array experiment.   

 

3.2.9 Identification of potential host protein binding partners for 1-88 RUB C and 1-88 RUB 

C R2A  

 ProtoArray Human Protein Microarrays were used to identify host protein binding 

partners for FLAG-tagged 1-88 RUB C and 1-88 RUB C R2A by probing the array with 10 nM 

of these purified proteins and then probing with primary anti-FLAG and secondary anti-mouse 

AlexaFluor 647 before scanning the array.  Complete ProtoArray analysis was completed twice 

for both 1-88 RUB C and 1-88 RUB C R2A and repeatable hits were considered for further anal-

ysis.  Notably, there were 35 common hits for both 1-88 RUB C and 1-88 RUB C R2A (Table 1), 

2 hits for 1-88 RUB R2A only, and a single hit for 1-88 RUB C only.  The hits for 1-88 RUB C 

R2A only were guanylate cyclase 1, soluble, beta 3 (GUCY1B3) and DENN/MADD domain 

containing 1C (DENND1C).  The hit for wild type 1-88 RUB C only was phosphatidylinositol 

transfer protein alpha isoform (PITPα). 

 

3.2.10 PITPα binds both 1-88 RUB C and 1-88 RUB C R2A 

To confirm that PITPα does bind 1-88 RUB C, but not 1-88 RUB C R2A, co-

immunoprecipitation experiments were carried out.  PITPα was not only co-immunoprecipitated 

with 1-88 RUB C, but also with 1-88 RUB C R2A (Figure 23.D).  PITPα was not pulled down in 
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immunoprecipitation reactions excluding anti-FLAG (Figure 23.D), indicating that PITPα indeed 

binds both 1-88 RUB C and 1-88 RUB C R2A, rather than 1-88 RUB C only as suggested by the 

results of the protein array. 

 

3.3 Methods 

3.3.1 Cells and replicons 

 African green monkey kidney cells (Vero) were maintained in DMEM containing 5% 

FBS and gentamycin (10 µg/ml) at 35ºC and 5% CO2.  C-Vero cells (17) were maintained in 

DMEM containing 5% FBS and G418 sulfate (1.2 mg/ml). 

 Rubella replicons used in this study include RUBrep/GFP, RUBrep/GFP-ΔNotI, RU-

Brep-HA/GFP, RUBrep-HA/GFP-ΔNotI, and RUBrep/GFP-GDD* (14, 17).  A Sindbis replicon, 

SINrep/GFP was also used in this study (6).  In vitro transcription of linearized replicon DNA 

templates was carried out in a 25 µl reaction containing 5 µl 5X transcription buffer (40 mM 

Tris-HCl (pH7.5), 6 mM MgCl2, 2 mM spermidine) (Epicentre), 2.5 µl 100 mM DTT, 40 U 

RNasin Ribonuclease Inhibitors (Promega), 1 µl 25 mM NTPs (Amersham), 5 µl 10 mM cap an-

alogue (m7G(5')ppp(5')G) (New England BioLabs), 50 U SP6 DNA dependent RNA polymerase 

(Epicentre), and 2 µl 250 ng/µl linearized template incubated at 37ºC for 1 hr.  The quality of the 

in vitro transcript was assayed by electrophoresing the product through a 1% agarose gel fol-

lowed by staining with ethidium bromide. 
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3.3.2 Antibodies 

 The following antibodies were used in this study:  monoclonal mouse anti-PITPα (Sig-

ma), monoclonal mouse M2 anti-FLAG (Sigma), mouse monoclonal anti-HA (Roche), rabbit 

anti-calnexin (Sigma), polyclonal rabbit anti-32 (Santa Cruz), rabbit Living colors® A.v. peptide 

anti-GFP (Clontech), monoclonal mouse anti-C-myc (Roche), monoclonal mouse Living col-

ors® anti-mCherry (Clontech).  Secondary antibodies were goat or donkey anti-mouse IgG, AP-

conjugated, and goat or donkey anti-rabbit IgG, AP-conjugated (Promega), and FITC- or 

TRITC-conjugated goat antibodies against mouse or rabbit (Sigma). 

 

3.3.3 Generation of expression constructs and site-directed mutagenesis 

To generate a 1-88 RUB C R2A construct fused to RFP, an asymmetric three round PCR 

strategy was employed as follows.  The first round was performed using a 25 µl reaction contain-

ing 2.5 µl 10X buffer (Takara), 3.5 µl 2.5 mM dNTPs, 1µl of 200 ng/µl of reverse primer (5' 

GTTATCCTCGCCCTTGCTCACCATAGTTTCTTGCCGCTCCTCCGGGGG 3'), 2.5 U Ex 

Taq DNA polymerase (Takara), and 0.5 µl 1-277 RUB C R2A as a template.  The PCR protocol 

used was 15 cycles of 98ºC for 30 sec, 55ºC for 20 sec, and 72ºC for 20 sec followed by incuba-

tion at 72ºC for 1 min.  The second round was done in a 25 µl reaction as before using 1µl of 200 

ng/µl of forward primer (5' GCGGGATATCATGGCTTCTACTACCCCCATCACCATGGA 3') 

and 2 µl of the first round product as template with the same PCR protocol as the first round.  

The third round was done in a 50 µl reaction containing 5 µl 10X buffer (Takara), 8 µl 2.5 mM 

dNTPs, 3 µl second round product as the forward primer, 1 µl of 200 ng/µl reverse primer (5' 

ACTAGAGGATCCCTAGTTTCCGGACTTGTACAGCTC 3'), 5U Ex Taq DNA polymerase 

(Takara), and 1 µl pCherry as a template for RFP.  The PCR protocol used was 36 cycles of 98ºC 
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for 30 sec, 55ºC for 20 sec, and 72ºC for 1 min followed by incubation at 72ºC for 1 min.  

VR1062 and purified third round PCR products underwent restriction digestion using BamHI and 

EcoRV restriction enzymes (New England BioLabs), followed by gel purification using QI-

Aquick gel extraction kit (QIAGEN) and these fragments were ligated together using T4 DNA 

ligase (New England BioLabs) for 1 hour at room temperature.  The ligation reactions were then 

transformed into competent E. coli DH5α.  Resulting colonies were picked for miniprep plasmid 

DNA isolation that was then screened for the presence of both the insert and the vector by Bam-

HI and EcoRV and agarose gel electrophoresis.  Apparent positive constructs were confirmed by 

sequencing.  The resulting construct was termed 1-88 RUB C R2A-RFP.  1-88 RUB C-RFP was 

previously constructed as described above by Dr. Jason Matthews (unpublished data). 

Prolines were inserted into a predicted helix between residues 9 and 31 of RUB C to dis-

turb the structure for 1-277 RUB.  Specifically three prolines were inserted after L16 and three 

additional prolines were inserted after L23 (see Figure 18).  This was accomplished using the 

same three step PCR strategy with the same experimental parameters employed in the creation of 

1-88 RUB C R2A-RFP as described above.  The first round used a forward primer (5' 

CTCCAGAAGGCCCTCCCGCCGCCGGAGGCACAATCCCGCGCCCTGCCGCCGCCGCG

CGCGG AACTCGCC 3') containing sequences with the desired mutations and 1-277 RUB C as 

a template.  The second round used a reverse primer (5' GTACTCTAGACTAGCGAGTTTC 

TTGCCGC 3') including a 3' XbaI restriction site, translation termination codon, and sequences 

complementary to the RUB C gene starting at codon 277 and the first round product as template.  

The third round used the second round product as the reverse primer, a forward primer including 

a 5' EcoRV restriction site followed by the 5' sequences of the RUB C gene (5' TAAGATATCC 

ATGGACTATAAGGACGACGACGACAAGGACTATAAGGACGACGACGACAAAGGCT
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TCTACTACCCCCATCACCATGGAG 3'), and 1-277 RUB C as a template.  pcDNA and puri-

fied third round PCR products underwent restriction digestion using EcoRV and XbaI restriction 

enzymes (New England BioLabs), followed by gel purification using QIAquick gel extraction kit 

(QIAGEN) and these fragments were ligated together using T4 DNA ligase (New England Bio-

Labs) for 1 hour at room temperature.  The ligation reactions were then transformed into compe-

tent E. coli DH5α.  Resulting colonies were picked for miniprep plasmid DNA isolation that was 

then screened for the presence of both the insert and the vector by restriction with EcoRV and 

XbaI followed by agarose gel electrophoresis.  Presumptive positive constructs were confirmed 

by sequencing.  The resulting construct was termed 1-277 RUB C helix mutant. 

The construction of the vectors expressing the Q domain of RUB P150 and its mutants 

have been previously described (13).  Briefly, these were PCR-amplified from the corresponding 

HA-tagged RUB infectious cDNA clone (11).  This was accomplished in a 50 µl reaction con-

taining 5 µl 10X buffer (Takara), 8 µl 2.5mM dNTPs, 1 µl 200 ng/µl forward primer including a 

EcoRV restriction site in front of the P150 Q domain 5' sequences (5' GCCGATATCATGGCTC 

CCCGCTGCGACGTCCCGCGC 3'), 1 µl of 200 ng/µl reverse primer including a BamHI re-

striction site in front of P150 Q domain 3' sequences (5' GGCGGATCCTCATGGGTCTGCCC 

TGGTTGACGTGGG 3'), 5U Ex Taq DNA polymerase (Takara), and 0.5 µl RUBrep-HA/GFP 

RQQ, Robo 502/930 (containing a HA-tag) Mut1, Mut2, or Mut 1+2 as template.  The PCR pro-

tocol used was 36 cycles of 98ºC for 30 sec, 55ºC for 20 sec, and 72ºC for 1 min followed by 

incubation at 72ºC for 1 min.  VR1062 and purified PCR products underwent restriction diges-

tion using EcoRV and BamHI restriction enzymes (New England BioLabs), followed by gel pu-

rification using QIAquick gel extraction kit (QIAGEN) and these fragments were ligated togeth-

er using T4 DNA ligase (New England BioLabs) for 1 hour at room temperature.  The ligation 
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reactions were then transformed into competent E. coli DH5α.  Resulting colonies were picked 

for miniprep plasmid DNA isolation that was then screened for the presence of both the insert 

and the vector by restriction with EcoRV and BamHI and agarose gel electrophoresis.  Presump-

tive positive constructs were confirmed by sequencing.  The resulting constructs were termed 

RUB P150 Q domain wt, RQQ, Mut 1, Mut 2, and Mut 1+2 Q domain. 

1-88 RUB C and 1-88 RUB C R2A were cloned into bacterial expression vector pFLAG-

MAC.  1-88 RUB C wt or R2A was PCR-amplified from 1-277 RUB C or 1-277 RUB C R2A 

(16) in a 50 µl reaction containing 5 µl 10X buffer (Takara), 8 µl 2.5 mM dNTPs, 1 µl 200 ng/µl 

forward primer which contained  a HindIII restriction site and 2X FLAG tag in front of the 5' 

RUB C sequences (5' GCCAAGCTTCATGGACTATAAGGACGACGACGACAAGGACTAT 

AAGGACGACGACGACAAGGCTTCTACTACCCCCATCACCATGGAG 3') or a forward 

primer including a HindIII restriction site in front of the 5' RUB C sequences (5' GCCAAGCTT 

GCTTCTACTACCCCCATCACCATGGAG 3'), 1 µl of 200 ng/µl  reverse primer containing a 

EcoRI restriction site in front of the complement of the RUB C sequences starting at aa 88 (5' G 

CCGAATTCGCGACTTTCTTGCCGCTCCTC 3'), and 5U Ex Taq DNA polymerase (Takara).  

pFLAG-MAC includes a stop codon after the multiple cloning site, so no stop codon was re-

quired in the reverse primer for PCR.  The PCR protocol used was 36 cycles of 98ºC for 30 sec, 

55ºC for 20 sec, and 72ºC for 1 min followed by incubation at 72ºC for 1 min.  pFLAG-MAC 

and purified PCR products underwent restriction digestion using HindIII and EcoRI restriction 

enzymes (New England BioLabs), followed by gel purification using QIAquick gel extraction kit 

(QIAGEN) and these fragments were ligated together using T4 DNA ligase (New England Bi-

oLabs) for 1 hour at room temperature.  The ligation reactions were then transformed into com-

petent E. coli DH5α.  Resulting colonies were picked for miniprep plasmid DNA isolation that 
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was then screened for the presence of both the insert and the vector by restriction digestion with 

HindIII and EcoRI and agarose gel electrophoresis, the presence of the desired sequences were 

confirmed by sequencing, and positive constructs were transformed into competent E. coli 

BL21(DE3). 

Constructs expressing C-myc-tagged Amph1 and Bin1 were kindly provided by Dr. Tero 

Ahola and have been described previously (12). 

 

3.3.4 Analysis of 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP using RUBrep/GFP-ΔNotI 

rescue assay  

 Screening of 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP for RUBrep/GFP-ΔNotI 

rescue was done as follows.  Vero cells were plated in 60 mm plates and allowed to grow over-

night.  The cells were transfected with 1-88 RUB C-RFP or 1-88 RUB C R2A-RFP 1 day after 

plating and were transfected with RUBrep/GFP-ΔNotI in vitro transcribed RNA 2 days after 

plating.  The cells were transfected using Lipofectamine 2000 (Invitrogen) according to manu-

facturer’s recommendations with 10 µg of DNA of each RUB C construct or 6 µl of in vitro tran-

scribed RNA.  Transfection reagents were allowed to incubate on cell cultures for at least 4 hours 

before removal and addition of growth medium.  Plates were observed for expression of GFP and 

RFP using fluorescence microscopy 4 days after plating.   

 

3.3.5 Generation and screening of 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP stable cell 

lines 

 Vero cells were plated in 100 mm plates and grown overnight.  The cells were trans-

fected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommendations 



71 

with 8 µl of miniprep cDNA of 1-88 RUB C-RFP or 1-88 RUB C R2A-RFP and 0.02 µg or 0.2 

µg of pHyg.  Transfection reagents were allowed to incubate on cell cultures for at least 4 hours 

before removal and addition of growth medium.  One day post-transfection normal growth media 

was replaced with H media (DMEM, 5% FBS, 125 mg Hyg).  H media was replaced on cells 

every three days until drug resistant colonies emerged, which were picked as follows.  Plates 

were washed with PBS and colonies were isolated using cloning cylinders.  The cylinders were 

filled with 100 µl of trypsin solution and allowed to incubate at room temperature for 10 

minutes.  The detached cells were then added to 2ml of H media in 35 mm plates.  Plates with 

cell growth were then screened for the expression of 1-88 RUB C-RFP or 1-88 RUB C R2A-RFP 

using fluorescence microscopy or Western blot analysis two days after plating.   

 

3.3.6 RNA degradation time course 

 Prior to RNA degradation time course experiments, in vitro transcribed RUBrep/GFP, 

SINrep/GFP, and RUBrep/GFP-GDD* RNAs were treated with 15 U of DNase I (Roche) per 25 

µl of RNA for 1 hour at 37ºC to degrade the template DNA.  Vero and C-Vero cells were plated 

in 60 mm plates and allowed to grow overnight.  Cells were transfected with Lipofectamine 2000 

(Invitrogen) according to manufacturer’s instructions.  Transfection reagent was combined with 

6 µl of each in vitro transcribed RNA and replaced with growth medium 4 hours post-

transfection.  Plates were harvested at 1 hour, 6 hours, and 12 hours post-transfection and RNA 

was isolated.   

 The time course was also done in the 1-88 RUB C-RFP wt- and R2A-stable cell lines 

using RUBrep/GFP transcripts as described above. 
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3.3.7 RNA immunoprecipitation 

  To examine the association of 1-88 RUB C and 1-88 RUB C R2A with RUBrep/GFP 

Vero cells were plated in 100 mm plates and allowed to grow overnight.  One day after plating 

cells were transfected with 1-88 RUB C or 1-88 RUB C R2A.  Cells were transfected with 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.  Transfection reagent 

was combined with 10 µg of DNA.  Two days after plating cells were transfected with DNase-

treated RUBrep/GFP RNA transcripts.  Cells were transfected with Lipofectamine 2000 (Invitro-

gen) according to manufacturer’s instructions.  Transfection reagent was combined with 10 µl of 

in vitro transcribed RNA.     

 Protein-RNA complexes were crosslinked with 1% formaldehyde for 30 minutes at 

room temperature at 1 hour post-transfection followed by lysis with 600 µl 1XRIP buffer (10mM 

Tris pH 8.0, 150mM NaCl, 3mM EDTA, 1% TritonX-100, 0.1% SDS, 0.5% DOC) with com-

plete, mini, EDTA-free protease inhibitor cocktail tablet (1 tablet/10 ml buffer) (Roche) and 

RNasin Ribonuclease Inhibitors (50 U/500 µl buffer) (Promega).  Lysates were flash frozen, 

thawed, and sonicated (30 seconds on, 30 seconds off, high for 10 minutes using a Bioruptor 

sonicator) three times, with vortex mixing and centrifugation between sonications.  Lysates were 

treated with DNase (400 U/500 µl) (Roche) for 10 minutes at 37ºC and this reaction was stopped 

by the addition of EDTA to 20 mM.  Four µl of anti-FLAG antibodies was added and lysates 

were incubated at 4ºC overnight with rotation.  Prewashed protein A-agarose (30 µl) (Roche) 

was added and incubated for 2 hours at 4°C with rotation.  The beads were then washed four 

times with 0.5 ml 1XRIP buffer containing RNasin Ribonuclease Inhibitors (50 U/500 µl buffer) 

(Promega) and washed four additional times with 0.5 ml 1XRIP buffer with RNasin Ribonucle-

ase Inhibitors (50 U/500 µl buffer) (Promega) and 1M urea to reverse the crosslinking between 
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the RNA-protein complexes.  The beads were then suspended in 1 ml of TRI reagent (Molecular 

Research Center, Inc) to isolate RNA from these samples according to manufacturer’s instruc-

tions. 

 

3.3.8 RNA isolation, reverse transcription, and qPCR 

 RNA was isolated using TRI reagent (Molecular Research Center, Inc).  Samples from 

RNA degradation time course experiments were resuspended in 150 µl of water while samples 

from RNA immunoprecipitation experiments were resuspended in 5 µl of water. 

 RNA samples were quantified using spectrometry for the RNA degradation time course 

experiments and 0.1 µg of RNA was diluted in 5 µl of water prior to reverse transcription.  In the 

RNA immunoprecipitation experiments, the entire sample was reverse transcribed.  Reverse 

transcription was done as follows.  RNA samples were boiled for 5 minutes and placed on ice for 

3 minutes.  The appropriate reverse primer (200 ng) (see Table 2 antisense primers), 3 µl water, 

and 4 µl 2.5 M dNTP mix (Takara) were added while the sample remained on ice, and then was 

incubated at 55ºC for 8 minutes.  The sample was returned to ice.  Four µl 5X First-Strand Buffer 

(Invitrogen), 2 µl 0.1M DTT, 200 units SuperScript III Reverse Transcriptase (Invitrogen), and 

40U RNasin Ribonuclease Inhibitors (Promega) were added and samples were incubated at 55ºC 

for 1 hour. 

 Real time quantitative PCR (qPCR) analysis of viral RNA levels were performed using 

a 20 µl reaction containing 2 µl of reverse transcription product or 2 µl of standard (serial dilu-

tions of a known concentration of RUBrep/GFP-∆NotI DNA), the appropriate primer pair (Table 

2) (200 ng of each), and 10 µl Fast SYBR Green Master Mix (Applied Biosystems).  Real time 

qPCR was done on a 7500 Fast Real-Time PCR System (Applied Biosystems) with the following 
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parameters: 95ºC for 20 sec (holding stage), 95ºC for 3 sec, and 60ºC for 30 sec (cycling stage) 

for 40 cycles.  The RNA concentration was calculated though the use of a standard curve of 

known concentrations of RUBrep/GFP-∆NotI DNA and normalized to levels of β actin.   

 

3.3.9 Replicon translation time course 

 Analysis of the translation of RUB P150 from replicons was done as follows.  Vero and 

C-Vero cells were plated in 35 mm plates and allowed to grow overnight.  The cells were trans-

fected with either RUBrep-HA/GFP or RUBrep-HA/ GFP-∆NotI (both expressing a HA-tagged 

P150) in vitro transcribed RNA.  The cells were transfected using Lipofectamine 2000 (Invitro-

gen) according to manufacturer’s recommendations with 3 µl of in vitro transcribed RNA.  

Transfection reagents were allowed to incubate on cell cultures for at least 4 hours before re-

moval and addition of growth medium.  Plates were harvested at 1, 6, 12, and 24 hours post-

transfection.  The cells were lysed with 0.3 ml of PBS based lysis buffer (1.5mM NaCl, 1% Tri-

ton X-100, 0.1% SDS, 0.5% DOC in PBS) and lysates were examined using Western blot analy-

sis probed with anti-HA antibody.   

 

3.3.10 Immunoprecipitation and Western blot analysis 

Vero cells were plated in 60 mm plates and allowed to grow overnight.  The cells were 

transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommenda-

tions with 10 µg of DNA.  Transfection reagents were allowed to incubate on cell cultures for at 

least 4 hours before removal and addition of growth medium.  Cells on the 60 mm plates were 

lysed with 600 µl PBS based lysis buffer (1.5 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% 

DOC in PBS) or 500 µl 1XRIP lysis buffer (10 mM Tris pH 8.0, 150 mM NaCl, 3 mM EDTA, 
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1% Triton X-100, 0.1% SDS, 0.5% DOC) with complete, mini, EDTA-free protease inhibitor 

cocktail tablet (1 tablet/10 ml buffer) (Roche) and lysates were clarified by centrifugation.  The 

appropriate antibody (1-2 µl, or no antibody for the beads-only control) was added to 500 µl of 

clarified cell lysate and incubated for 3 hours at room temperature with rotation.  Prewashed pro-

tein A-agarose (Roche) (30 µl) was added and incubated for 1.5 hours at room temperature with 

rotation.  This mixture was washed once with PBS based lysis buffer or 1XRIP lysis buffer, 

washed twice with PBS based wash buffer (1.5 mM NaCl, 1% Triton X-100 in PBS) or RIP 

wash buffer (10 mM Tris pH 8.0, 150 mM NaCl, 1% Triton X-100), resuspended in 2X SDS-

sample buffer (100 mM Tris-HCl pH 6.8, 20 mM DTT, 4% SDS, 0.2% bromophenol blue, 20% 

glycerol) (75 µl), boiled for 5 minutes, and clarified by brief centrifugation.  Clarified cell lysates 

(20 µl) were combined with 5X SDS-sample buffer (250 mM Tris-HCl pH 6.8, 20 mM DTT, 

10% SDS, 0.2% bromophenol blue, 50% glycerol) (5 µl), boiled for 5 minutes, and clarified by 

brief centrifugation. 

Supernatants from immunoprecipitations and cell lysates were electrophoresed in 8%, 

10%, or 15% SDS-PAGE gels and transferred to a nitrocellulose membrane (Whatman) using 1X 

transfer buffer (100 ml 10X transfer buffer (250 mM Tris and 192 M glycine), 200 ml methanol, 

and 700 ml deionized water) and a mini-Protean II apparatus (BioRad) at 100V for 1 hour.  The 

membranes were blocked in 5% non-fat dry milk in TBS (20 mM Tris-HCl pH 7.5 and 175 mM 

NaCl) and then probed with the appropriate primary and secondary antibody.  Color develop-

ment solution was added (10 ml alkaline phosphatase buffer (100 mM Tris, 100 mM NaCl, 50 

mM MgCl2-6H20, pH 9.8), 33 µl NBT (Roche), and 33 µl BCIP (Roche)) to detect bound anti-

bodies. 
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3.3.11 Immunofluorescence assay 

 The localization of FLAG-tagged 1-277 RUB C and its mutants with respect to RUB 

P200* (10) were examined by IFA.  Vero cells were plated at low density (1.5 ml cells in 25 ml 

media; in the usual plating1 ml of trypsinized cells is mixed with 9 ml of medium) in 35 mm 

plates containing coverslips and were allowed to grow overnight.  The cells were transfected us-

ing Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommendations with 10 µg 

of each 1-277 RUB C construct (wt, R1A, R2A, 2RA, S46D, and S46A) cDNA with or without 

10 µg RUB P200* cDNA.  Transfection reagents were allowed to incubate on cell cultures for at 

least 4 hours before removal and the addition of growth medium and coverslips were then pro-

cessed for IFA 1 day post-transfection. 

 Coverslips were processed for IFA as follows.  Media was decanted and 1 ml of ice-

cold methanol was added to the plate for 5 minutes.  The plates were then washed 3 times with 

PBS, allowing the last wash to incubate for 15 minutes.  Next, 100 µl of prepared primary anti-

body (1:1000 anti-FLAG, 1:1000 Hoechst 33342 (Invitrogen), in PBS/2% BSA) was added to 

each coverslip and incubated in the dark for 30 minutes.  After 3 washes with PBS, 100 µl pre-

pared secondary antibody (1:5000 AlexaFluor 594 (Molecular Probes) in PBS/2% BSA) was 

added and incubated in the dark for 30 minutes.  The coverslips were washed 3 times with PBS 

and mounted on glass slides with Entellan® new rapid mounting medium for microscopy 

(EMD).  The coverslips were then observed using a Zeiss Axionplan 2 Imaging microscope. 

 

3.3.12 Purification of 1-88 RUB C and 1-88 RUB C R2A from pFLAG-MAC  

 One colony of E. coli BL21(DE3) transformed with pFLAG-MAC 1-88 RUB C or 1-88 

RUB C R2A was picked for overnight growth at 37°C in 4 ml LB containing ampicillin (60 
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µg/ml).  The overnight sample was diluted into 400 ml of LB and grown for 2 hours and induced 

with 4 ml 100 mM IPTG for 2 hours.  The cells were collected by centrifugation, resuspended in 

20 ml PBS with complete, mini, EDTA-free protease inhibitor cocktail tablet (1 tablet/10 ml 

buffer) (Roche) and lysed by 4 cycles of freeze- thawing.  Lysates were clarified by centrifuga-

tion for 10 minutes and applied to a column prepared as follows. The empty column was rinsed 2 

times with 1 column volume TBS.  Anti-FLAG M2 affinity gel (200 µl) (Sigma) was applied to 

the column, rinsed with 3 column volumes 0.1 M glycine HCl pH 3.5, and washed with 5 col-

umn volumes of TBS.  The lysate was applied to and allowed to pass through the column 3 

times.  The column was then washed with 10 column volumes of TBS containing dissolved 

complete, mini, EDTA-free protease inhibitor cocktail tablet (1 tablet/10 ml buffer) (Roche).  1-

88 RUB C was eluted with 5 X 2 ml aliquots of TBS with 100 µg/ml 3X FLAG peptide (Sigma) 

and dissolved complete, mini, EDTA-free protease inhibitor cocktail tablet (1 tablet/10 ml buff-

er) (Roche).  1-88 RUB C R2A was eluted with 6 X 1 ml aliquots of 0.1 M glycine pH 3.5 and 1 

M Tris pH 8.0 was added to the elution fractions until the pH was 7.0.   

 Aliquots from the various stages of the purification process were prepared for analysis.  

Twenty µl of each sample was combined with 5 µl of 5X sample buffer (250 mM Tris-HCl pH 

6.8, 20 mM DTT, 10% SDS, 0.2% bromophenol blue, 50% glycerol) and boiled for 5 minutes.   

Once prepared, the samples were electrophoresed in a 15% SDS-PAGE gel and transferred to a 

nitrocellulose membrane (Whatman) for Western blot analysis or stained with GelCode Blue 

Stain Reagent (Pierce).  The protein was quantified using the Bio-Rad protein microassay ac-

cording to manufacturer’s instructions.   
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3.3.13 ProtoArray human protein microarray 

 ProtoArray Human Protein Microarrays (Invitrogen) were used to identify host protein 

binding partners for 1-88 RUB C and 1-88 RUB C R2A as follows.  Incubation trays and stock 

solutions were chilled overnight at 4°C.  The microarray was equilibrated at 4°C for 15 minutes 

and incubated with freshly prepared and chilled blocking buffer, pH 7.5 (50 mM HEPES 

(pH7.5), 200 mM NaCl, 0.08% Triton X-100, 25% glycerol, 1X synthetic block (Invitrogen), 1 

mM DTT) for 30 minutes under gentle circular agitation at 4°C.  The blocking buffer was re-

moved and the bottom and sides of the array were dried with a paper towel.  The array was then 

probed with 10 nM of either purified 1-88 RUB C or 1-88 RUB C R2A in 120 µl of freshly pre-

pared and chilled washing buffer (1X synthetic block (Invitrogen), 0.1% Tween 20, PBS) under 

a LifterSlip (Thermo Scientific) for 90 minutes at 4ºC.  The array was washed 5 times for 5 

minutes with washing buffer at 4ºC with gentle agitation, incubated for 1 hour and 15 minutes 

with anti-FLAG (1µg/ml final concentration) in 10 ml washing buffer at 4ºC with gentle agita-

tion, washed 5 times for 5 minutes with washing buffer at 4ºC with gentle agitation, incubated 

for 1 hour and 15 minutes with anti-mouse AlexaFluor 647 (Molecular Probes)(1µg/ml final 

concentration) in 10 ml washing buffer at 4ºC with gentle agitation, and washed 5 times for 5 

minutes with washing buffer (1X synthetic block (Invitrogen), 0.1% Tween 20, PBS) at 4ºC with 

gentle agitation.  The array was then dipped into room temperature deionized water 3 times and 

dried by centrifugation at 200xg for 1 minute.   

 The array was scanned by a GenePix 4000B Microarray Scanner (Molecular Devices) 

using GenePix Pro 6.1 (Molecular Devices) for acquisition and analysis using the following set-

tings: wavelength 635 nm, PMT gain 600, laser power 100%, pixel size 10 µm, lines to average 

1.0, and focus position 0 µm.  The data was further analyzed using ProtoArray Prospector 5.2.1 



79 

in protein-protein interaction (PPI) mode (Invitrogen).  A hit in the PPI mode is defined as any 

protein where the two replicates of the protein have an average Z-score of greater than 3 and the 

coefficient of variation of the replicates is less than 0.5.  Two ProtoArrays were probed for each 

protein and reproducible hits were considered for further analysis. 
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Figure 11.  Analysis of 1-88 RUB C-RFP and 1-88 RUB C R2A-RFP-mediated RU-
Brep/GFP-ΔNotI rescue 
Vero cells were transfected with 10 µg of 1-88 RUB C-RFP or 1-88 RUB C R2A-RFP cDNA 1 
day after plating and transfected with 6 µl of RUBrep/GFP-ΔNotI RNA 2 days after plating.  All 
plates were examined for GFP expression using fluorescence microscopy at (using a 10X objec-
tive) 4 days after plating. 
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Figure 12.  Expression of Vero cell lines stably expressing 1-88 RUB C-RFP and 1-88 RUB 
C R2A-RFP  
Two days after plating, Vero cells stably expressing 1-88 RUB C-RFP or 1-88 RUB C 2RA-RFP 
were observed for RFP expression by A) fluorescence microscopy  (40X objective) or B) West-
ern blot analysis.  In the Western blot analysis, after cell lysis and resolution of the proteins on a 
15% SDS-PAGE gels, the blots were probed with primary antibody (anti-RFP 1:1000) and sec-
ondary antibody (anti-mouse AP conjugated 1:5000). 
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Figure 13.  RNA decay of RUB and SIN replicons in the presence and absence of RUB C 
Vero and C-Vero cells were transfected with 6 µl of the appropriate replicon RNA, A) RU-
Brep/GFP, B) SINrep/GFP (a SIN replicon corresponding to RUBrep/GFP), and C) RU-
Brep/GFP-GDD*, a nonreplicating versions of RUBrep/GFP.  RNA was extracted at 1, 6, or 
12 hours post-transfection, reverse transcribed, and quantified using real time qPCR.  The 
data shown are the average of three replicates representative of one of three separate experi-
ments.  Error bars represent the standard deviation and Student’s t test was performed to de-
termine significant differences (* represents p value < 0.05). 
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Figure 14.  RNA decay of RUBrep/GFP and RUBrep/GFP-GDD* in 1-88 RUB C-RFP and 
1-88 RUB C R2A-RFP cell lines 
1-88 RUB C-RFP and 1-88 RUB C R2A-RFP Vero cells were transfected with 6 µl of the 
appropriate replicon RNA, either A) RUBrep/GFP or B) RUBrep/GFP-GDD*.  At 1, 6, or 12 
hours post-transfection RNA was isolated, reverse transcribed, and quantified using real time 
qPCR.  The data shown here are the average of three replicates representative of one of three 
separate experiments.  Error bars represent the standard deviation and Student’s t test was 
performed to determine significant differences (* represents p value < 0.05). 
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Figure 15.  RNA immunoprecipitation of RUBrep/GFP by 1-88 RUB C and 1-88 RUB R2A  
Vero cells were transfected with 10 µg of 1-88 RUB C or 1-88 RUB C R2A cDNA 1 day after 
plating and 10 µl of RUBrep/GFP 2 days after plating.  Protein-RNA complexes were cross-
linked with formaldehyde at 1 hour post-transfection followed by lysis.  Lysates were flash fro-
zen and thawed, sonicated, and treated with DNase.  Anti-FLAG antibody was added and pro-
tein-RNA complexes were immunoprecipitated and crosslinking was reversed.  RNA was isolat-
ed, reverse transcribed, and quantified using real time qPCR.  Each experiment was carried out 3 
times.  Error bars represent the standard deviation and Student’s t test was performed to deter-
mine significant differences (* represents p value < 0.05). 
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Figure 16.  Translation time course of RUBrep/GFP (wt) and RUBrep/GFP-ΔNotI (N) in 
Vero and C-Vero cells 
Vero or C-Vero cells were transfected with 6 µl of the appropriate HA-tagged-P150 replicon 
RNA, RUBrep/GFP or RUBrep/GFP-ΔNotI.  The cells were lysed at 1 (A), 6, 12, and 24 (B) 
hours post-transfection.  Lysates were electrophoresed in 8% (to resolve P150) and 15% (to re-
solve the calnexin loading control) SDS-PAGE gels and proteins were transferred to a nitrocellu-
lose membrane.  The membranes were then probed with primary antibody (anti-calnexin 1:5000 
or anti-HA 1:1000) and secondary antibody (anti-mouse AP conjugated 1:5000).  The wt and 
NotI forms of P150 are denoted; the NotI form is smaller because of the deletion.  M stands for 
mock.  
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Figure 17.  Co-immunoprecipitation of 1-88 RUB C and its mutants, the P150 Q domain 
and its mutants with cellular p32 
A) Vero cells were mock transfected (M) or transfected with 10 µg of the 1-88 RUB C wt or one 
of a mutant cDNA panel.  The plates were harvested at 2 days post-transfection, cells were lysed, 
and protein complexes were immunoprecipitated with anti-FLAG to pull down FLAG-tagged 1-
88 RUB C and its mutants.  Immunoprecipitated protein complexes were electrophoresed in a 
15% SDS-PAGE gel and proteins were transferred to a nitrocellulose membrane.  The mem-
branes were then probed with primary antibody (anti-p32 1:500) and secondary antibody (anti-
rabbit AP conjugated 1:5000).  The arrow points to cellular p32. B) Schematic of RUB P150 Q 
domain.  Below are shown aa residues 716 to 779 of RUB P150, with predicted SH3 motifs un-
derlined and arginine cluster highlighted in grey.  Mutations made to these motifs were as fol-
lows: Motif 1 (PPPRR to APPARR, termed Mut1), Motif 2 (PPAPAR to APAAAR, termed 
Mut2), and arginine cluster (RRARR to QQAQQ, termed RQQ).  C and D) Vero cells were trans-
fected with 5 µg of the RUB P150 Q domain cDNA or cDNA encoding a Q domain mutant in 
the arginine rich domain or one of the PxxPxR sarc-homology domains.  Plates were harvested at 
1 day post-transfection, cells were lysed, and protein complexes were immunoprecipitated with 
anti-p32 antibody.  Lysate aliquots and immunoprecipitated protein complexes were electro-
phoresed in a 10% SDS-PAGE gel and proteins were transferred to a nitrocellulose membrane.  
The membranes were then probed with primary antibody (anti-HA 1:1000) and secondary anti-
body (anti-mouse AP conjugated 1:5000).  The arrow points to HA-tagged RUB P150 Q domain.  
M stands for mock. 
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Figure 18.  Predicted RUB C alpha helix and mutant 
Schematic of RUB C showing the two arginine clusters (gray circles), S46 primary phosphoryla-
tion site (white circle), and C-terminal E2 signal sequence (gray box).  Below are shown the res-
idues of a predicted alpha helix, aa 9 to 31 of RUB C, with specific mutations introduced into 1-
277 RUB C for this study in red.  These inserted prolines were predicted to disrupt the predicted 
alpha helix in RUB C. 
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Figure 19.  Co-immunoprecipitation of 1-277 RUB C and its mutants with P200* 
Vero cells were transfected with 10 µg of the 1-277 RUB C wt or mutant cDNA and P200*.  
Plates were harvested at one day post-transfection, cells were lysed, and protein complexes were 
immunoprecipitated with anti-GFP antibody to pull down GFP-tagged P200*.  Aliquots of the 
cell lysates (A-B) and immunoprecipitated protein complexes (C) were electrophoresed in 8% or 
15% SDS-PAGE gels and proteins were transferred to a nitrocellulose membrane.  The mem-
branes were then probed with primary antibody (anti-GFP 1:2000; to detect GFP-tagged P150 or 
anti-FLAG 1:400; to detect FLAG-tagged RUB C or its mutants) and secondary antibody (anti-
mouse AP conjugated 1:5000).   
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Figure 20.  Co-localization of 1-277 RUB C and RUB P200* 
Vero cells were transfected with 5 µg of RUB P200* (which is GFP tagged) cDNA and 5 µg of 
RUB C 1-277 wt or mutant cDNA 1 day after plating.  Two days after plating cells were pro-
cessed for immunofluorescence by staining 1-277 RUB C with anti-FLAG (1:1000) and second-
ary anti-mouse AlexaFluor 594 conjugated (1:5000).  Coverslips were examined by fluorescence 
microscopy using a 40X objective.  Green corresponds to GFP-tagged P200* and red corre-
sponds to FLAG-tagged 1-277 RUB C.  Representative imagines of cells transfected with P200* 
and wt 1-277 RUB C are shown.  The results were similar for all of the 1-277 RUB C mutants. 
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Figure 21.  Co-immunoprecipitation of 1-277 RUB C and RUB P150 Q with Amph1 and 
Bin1 
Vero cells were transfected with 10 µg of 1-277 RUB C or R2A or RUB P150 Q domain wt or 
RQQ cDNA and 10 µg of either Amph1 or Bin1 cDNA.  Plates were harvested at one day post-
transfection, cells were lysed, and protein complexes were immunoprecipitated with anti-C-myc 
to pull down C-myc-tagged Amph1 or Bin1.  Lysates (A-B) and immunoprecipitated protein 
complexes (C-D) were electrophoresed in 8% or 10% SDS-PAGE gels and proteins were trans-
ferred to a nitrocellulose membrane.  The membranes were then probed with primary antibody 
(anti-C-myc 1:500, anti-HA 1:1000; to detect the Q domain, or anti-FLAG 1:400; to detect 1-277 
RUB C) and secondary antibody (anti-mouse AP conjugated 1:5000).  The * indicates a control 
sample in which the co-immunoprecipitation protocol was performed without antibody.  M 
stands for mock. 
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Figure 22.  Large scale purification of 1-88 RUB C wt and 1-88 RUB C R2A bacterially ex-
pressed from pFLAG-MAC 
A) E. coli BL21(DE3) cells transformed with RUB C 1-88 wt in pFLAG-MAC were grown 
overnight in 4 ml LB and ampicillin at 37°C. Four ml of each overnight culture was diluted in 
400 ml of LB and allowed to grow 2 hours (0).  The cultures were then induced with 4 ml of 100 
mM IPTG.  After 2 hours of growth, the cells were lysed (L), the lysate poured over a column of 
anti-FLAG M2 agarose.  After collecting the flow-through (F) the agarose was washed (W) and 
FLAG-tagged RUB C 1-88 was eluted with 3XFLAG peptide (E1-35).  Fractions were electro-
phoresed in a 15% SDS-PAGE gel and the gel was either stained with GelCode Blue (left) or 
subjected to Western blot analysis probed using anti-FLAG antibody (right). B) E. coli 
BL21(DE3) cells transformed with 1-88 RUB C R2A in pFLAG-MAC were grown overnight in 
4 ml LB and ampicillin at 37°C. Four ml of each overnight culture was diluted in 400 ml of LB 
and allowed to grow 2 hours (0).  The cultures were then induced with 4 ml of 100 mM IPTG.  
After 2 hours of growth, the cells were lysed (L), the lysate poured over a column of anti-FLAG 
M2 agarose.  After the flow-through (F) was collected, the agarose was washed (W), and FLAG-
tagged RUB C 1-88 R2A protein was eluted with 0.1 M glycine pH 3.5 (E1-5).  Samples were 
electrophoresed in a 15% SDS-PAGE gel and the gel was either stained with GelCode Blue (left) 
or subjected to Western blot analysis probed using anti-FLAG antibody (1:400) (right).  In both 
A and B, the fraction collected for use in probing the human protein array is marked with an ar-
row.  
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Table 1.  Common hits from ProtoArray human protein array for 1-88 RUB C and 1-88 
RUB C R2A 
A hit was defined as any protein on the array where the two replicates of the protein yielded an 
average Z-score of greater than 3 and the coefficient of variation of the replicates is less than 0.5.  
Two ProtoArrays were probed for each protein and reproducible hits were considered for further 
analysis. 
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Figure 23.  Co-immunoprecipitation of 1-88 RUB C and R2A with cellular PITPα  
Vero cells were transfected with 10 µg of 1-88 RUB C or R2A cDNA.  Plates were harvested at 
2 days post-transfection, cells were lysed, and protein complexes were immunoprecipitated with 
anti-FLAG to pull down FLAG-tagged 1-88 RUB C.  Lysates (A-B) and immunoprecipitated 
protein complexes (C-D) were electrophoresed in a 15% SDS-PAGE gel and proteins were trans-
ferred to a nitrocellulose membrane.  The membranes were then probed with primary antibody 
(anti-PITPα 1:1000 or anti-FLAG 1:400) and secondary antibody (anti-rabbit AP conjugated 
1:5000 or anti-mouse AP conjugated 1:5000).  The arrow points to cellular PITPα.  M denotes 
mock and * indicates a control in which the protocol was performed without antibody. 
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Table 2.  qPCR primer pairs   
Targets and the sense (s) and antisense (as) sequences are indicated.  RUB P150 s primer cor-
responds to nt 3178 to 3197 while RUB P150 as primer corresponds to nt 3247-3266 (3). 
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4 DISCUSSION 

As summarized in the Introduction, virus core or capsid proteins have been found to play 

roles in the virus replication cycle in addition to comprising a structural component of the virus 

particle.  The unique aspect of the role played by the RUB C is that it duplicates the role played 

by a domain within one of the virus nonstructural replicase proteins, namely the Q domain of 

P150.  Indeed, this role was not apparent until deletion studies of P150 revealed that the Q do-

main could be deleted and rescued by RUB C.  However, the function of the Q domain in RUB 

replication is unknown.  Thus, in this study we sought to further understand the nonstructural 

role played by RUB C in the RUB life cycle that allows it to compensate for the function of the 

Q domain.   

To this end, we first created a series of mutants that had been previously described in the 

literature within the context the first 88 amino acids of RUB C, the minimal region required for 

its rescue function, and screened them for their ability to rescue the replication of RUBrep/GFP-

ΔNotI.  We found that mutations to the primary phosphorylation site, S46, had no impact on the 

ability of 1-88 RUB C to rescue the ∆NotI replicon, indicating the phosphorylation status of 

RUB C did not control the rescue phenomenon.  Similarly, mutation of the first arginine cluster 

(R1A) did not affect the ability of 1-88 RUB C to rescue the ∆NotI replicon, but mutation of the 

second (R2A) or both (2RA) arginine clusters in 1-88 RUB C led to a loss of the ability of RUB 

C to rescue the ∆NotI replicon, indicating that the arginine residues in the R2 cluster confer the 

ability of RUB C to rescue the loss of the Q domain in RUB P150.  This finding was confirmed 

though the quantification of GFP-positive cells present in cells expressing the various 1-88 RUB 

C mutants and later transfected with RUBrep/GFP-ΔNotI as we found that the percentage of the 

population containing GFP-positive cells was significantly reduced in cells expressing 1-88 RUB 



97 

C harboring the R2A or 2RA mutations when compared to both wild type 1-277 and 1-88 RUB 

C. 

The first possible explanation for this loss of ability to rescue the ∆NotI replicon that we 

explored was a change in the localization of 1-88 RUB C R2A.  If this mutant localized to a dif-

ferent area of the cell, it could simply be unavailable to fulfill its compensatory function.  How-

ever, this was not the case as all wild type and mutant forms of 1-88 RUB C localized to both the 

mitochondria and nucleus.  We expected to observe 1-88 RUB C localized to the mitochondria as 

this localization has been previously noted in the literature (22), but the localization in the nucle-

us was unexpected because replication of RUB occurs in the cytoplasm.  However, the nuclear 

localization of C-terminally truncated constructs of RUB C had been observed previously (35) 

and it was shown that the first four of the arginine residues of R2 served as a nuclear localization 

signal.  When full length RUB C was expressed, nuclear localization was not observed and the 

ability of these arginine clusters to serve as nuclear localization signals thus appeared to be over-

ridden in the context of the entire RUB C protein.  Pools of capsid proteins of other RNA viruses 

that carry out their replication cycle completely in the cytoplasm have been observed to also lo-

calize to the nucleus and nucleolus and often this unexpected localization is associated with the 

ability of these capsid proteins to modulate the cell cycle, apoptosis, or host cell gene expression 

(13, 33, 45, 47, 48, 55, 57).  RUB has been reported to induce apoptosis in cell cultures derived 

from fully differentiated cells (9, 10, 14, 27, 36).  However, there is no evidence that this de-

pends on nuclear factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Another possible explanation for the differences in the ability of the various RUB C mu-

tants to rescue the ∆NotI replicon that we explored was differential phosphorylation.  RUB C is a 

phosphoprotein (21), so it is possible that the ability to compensate for the lesion in P150 could 
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be regulated through the phosphorylation of RUB C.  The phosphorylation status the mutant 

panel did not follow the demarcation of rescuing and non-rescuing forms of 1-88 RUB C as the 

wild type, R2A, S46D, and S46E mutants were phosphorylated while the R1A and 2RA mutants 

were not.  S46D and S46E serve as phosphorylation mimic mutations and it was found that wild 

type, S46D, and S46E RUB C were all phosphorylated in a previous study (20), which agrees 

with our findings.  This same lab showed that wild type, R1A, and R2A RUB C were phosphory-

lated but 2RA RUB C was not (1), while our analysis found that wild type and R2A RUB C were 

phosphorylated but R1A and 2RA were not.  There are differences between this group’s and our 

own experimental designs.  Our study examined the first 88 amino acids of RUB C, while Beatch 

et al. used the entire coding region of RUB C along with the E2 signal sequence.  Additionally, 

different techniques were used to determine phosphorylation status of the various forms of RUB 

C in the two studies (1).  However, our findings possibly indicate that the R1 cluster serves as a 

phosphorylation signal.   

We verified that the second arginine cluster in RUB C is important for the rescue phe-

nomenon, which agrees with a previous study in our lab (49).  That study also determined that an 

arginine-rich region of the P150 Q domain is required for viability and that mutations in this mo-

tif were rescued by RUB C.  Thus, an arginine cluster appears to be the basis of function of the 

P150 Q domain which is rescued by RUB C.  Arginine-rich motifs (ARMs) of other viral pro-

teins have been found to be important in the virus life cycle through their interactions with viral 

RNA and/or host proteins.  The P7a movement protein of beet black scorch virus (BBSV) con-

tains an arginine-rich motif that is important for its localization to the nucleus and nucleolus via 

its interaction with cellular importin α.  This motif is also required for the replication of viral 

RNA and productive infection (53).  The Rev protein of HIV-1 contains an ARM that both binds 
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viral RNA and is needed for oligomerization (59), and this interaction is needed for nuclear ex-

port of viral RNAs containing introns.  The ARM of the Flock House virus (FHV) coat protein is 

required for the targeting of this protein to RCs (52).  The E1^E4 protein of human papilloma-

virus type 1 (HPV1) contains an ARM important for the ability of E4 to block cell cycle progres-

sion and inhibit host DNA synthesis (39).   

Further analysis of the rescue of the P150 Q domain by RUB C could determine if this 

phenomenon could be regulated by arginine methylation.  Arginine-rich proteins are often regu-

lated through post-translational modification of the arginine residues.  The methylation of argi-

nine residues in the ARM of the nucleocapsid protein of HIV-1 inhibits its ability to anneal RNA 

primers and aid in reverse transcription (16).  The methylation of the ARM of the HIV-1 Tat pro-

tein decreases its ability to interact with Tat transaction region (TAR) of the viral RNA and form 

Tat-TAR-cyclin T1 complexes, which in turn results in decreased transcriptional activation (56).  

Methylation of arginine residues of the RGG-box of ICP27 of herpes simplex virus type-1 (HSV-

1) regulates its RNA binding, protein-protein interactions, and localization with hypomethylation 

resulting in inhibition of viral replication (58).  Methylation of arginines within the L4-100K 

protein of adenovirus is required for efficient viral replication by impacting protein-protein and 

protein-RNA interactions (17).  The arginine methylation of EBNA1 protein of Epstein-Barr vi-

rus (EBV) is required for proper localization (42).  The helicase domain of NS3 of HCV is meth-

ylated at a critical arginine residue and it is hypothesized that this methylation regulates the bind-

ing of NS3 to viral RNA (37). 

Throughout this study RUB replicon RNAs were employed rather than RUB infectious 

clone RNAs or virus.  RUB replicons provide a convenient means to study the replication of the 

viral RNA and translation of the ORFs in isolation.  However, replicons can be transfected into 
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cell lines that express the structural proteins of said virus, packaged into virus like particles 

(VLPs), and the VLP containing culture fluid can be passaged to fresh cells in order to introduce 

the replicon into the cells.  This allows for the flexibility to add back the presence of the structur-

al proteins and entry into the cell to the study if desired.  The use of the RUB replicon in our 

study was appropriate as we were interested in the early rescue of RNA synthesis by the RUB 

structural protein capsid.  The use of RUBrep/GFP allowed us to study early replication in the 

presence and absence of RUB C, which were provided in trans either stably expressed in the C-

Vero or 1-88 RUB C-RFP cell lines or expressed from a plasmid. 

In the second portion of our study we sought to determine which step in early replication 

RUB C acts to rescue the replication of RUBrep/GFP-ΔNotI using a Vero cell line, C-Vero, ge-

netically engineered to express RUB C.  The first step in the replication cycle studied was RNA 

transcript stability following transfection of Vero and C-Vero cells, which could reflect either 

RUB C stabilizing transcripts, possibly by protecting them from the cell’s RNA degradation ma-

chinery, and/or recruitment of the transcript RNA to the RC.  Indeed, more transcript RNA was 

present in cells harboring RUB C (C-Vero) than normal Vero cells one hour after RUBrep/GFP 

was transfected but both cell lines had similar levels of viral RNA at later time points, indicating 

that RUB C protects RUBrep/GFP at this early time point.  This effect was specific for RUB vi-

ral RNA as no differences were seen at any time point in Vero versus C-Vero cells transfected 

with Sindbis virus replicon RNA.  This specificity for RUB sequences may be conferred by the 

high GC content of the RUB genome or by specific secondary RNA structures.  The similarity of 

RNA levels seen at 6 and 12 hours post transfection between Vero and C-Vero cells could not be 

attributed to newly synthesized viral RNA as similar decay kinetics were observed with RU-

Brep/GFP-GDD*, a replication defective RUB replicon.  The same trend was seen when 1-88 
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RUB C was compared to its R2A mutant.  At the one hour time point, cells expressing wild type 

1-88 RUB C harbored significantly more RUBrep/GFP or RUBrep/GFP-GDD* than cells ex-

pressing the R2A mutant, but viral RNA levels were comparable at later time points.  Thus, RUB 

C protects the incoming RUB RNA from degradation at an early time point and the second argi-

nine cluster within RUB C is associated with this protective action.  However, it must be noted 

that the introduction of RUB replicon RNA into the cell via transfection bombards the cell with a 

large amount of RNA that is not associated with protein, which could be detected by pattern 

recognition receptors or the host cell RNA decay machinery to activate the immune response or 

RNA degradation pathways.  The introduction of the replicon RNA packaged into a virus like 

particle would more accurately mimic the introduction of RUB RNA into the cell during infec-

tion. 

We next wanted to know if the differences in this early protection of the viral RNA could 

be attributed to differential interaction of the 1-88 RUB C wild type and R2A variants with the 

viral RNA at this early time point.  RNA immunoprecipitation followed by qPCR one hour after 

transfection of RUB replicon RNA showed that significantly more replicon RNA associated with 

1-88 RUB C than 1-88 RUB R2A.  Another group reported that RUB C R2A expressed in the 

context of the complete protein bound RNA very weakly in comparison to RUB C wt or R1A as 

assayed by an in vitro RNA-binding assay (1), which is in line with our results.  The approach 

we took cross-linked the viral RNA with RUB C in the cell prior to lysis, which we used to give 

a more accurate picture of RNA-protein interactions in the transfected cell.  The association of 

RUB replicon RNA with RUB C via the second arginine cluster could either be a direct interac-

tion or the second arginine cluster could bind a host cell protein, such as a protein involved in 

RNA stabilization, that directly binds the RUB replicon RNA.  The formation of the protein-
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RNA complex could then mask the replicon RNA from detection by cellular pattern recognition 

receptors or evade the cellular mRNA degradation pathways, ultimately stabilizing the RUB 

RNA.  Alternatively, the early stabilization of RUB replicon RNA may involve the shutdown of 

the host RNA decay machinery via the second arginine cluster of RUB C. 

As reviewed by Narayanan and Makino, viruses evade the cellular mRNA degradation 

pathways by attempting to make their RNAs appear to be like cellular mRNAs through cap 

structures and poly(A)-tails, by possessing stabilization sequences or structures within the viral 

RNA, or through association of the viral RNA with cellular RNA stabilization machinery  (32).  

Additionally, virus proteins play a role in this process.  Human T-lymphotropic virus type 1 

(HTLV-1) protein Tax inhibits the nonsense-mediated mRNA decay (NMD) pathway, which in 

turn stabilizes the viral transcript (30).  Several viruses inhibit the RNase L pathway to protect 

viral RNAs during replication (28, 38, 40, 41, 61).  Some viruses prevent formation of stress 

granules or SGs (3, 11, 12, 31), which sequester RNA during times of cellular stress to be de-

graded or translated at a later point.  For example, the poliovirus 3C proteinase cleaves several 

cellular proteins involved in deadenylation and stress granule (SG) pathways (8, 19, 54) while 

WNV and DENV redistribute other cellular proteins involved in SG pathways (11).  The early 

protection provided by RUB C to the viral RNA suggests that RUB C may induce stress granule 

formation to protect the viral RNA early on.  However, previous work in our lab has found that 

RUB does not induce the formation of SGs, but rather directs the redistribution of G3BP, a major 

SG component, into other clusters distinct from SGs (23).  

Based on the differential RNA decay and association of wild type and R2A 1-88 RUB C 

with the viral RNA, we initially hypothesized that RUB C complexes with the incoming RUB 

viral RNA providing protection from the host cell RNA decay pathways.  Once translated, the Q 
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domain of RUB P150 would take over this role of providing protection against decay, allowing 

for replication of the viral RNA.  However, subsequent work suggests that this is not the case.  

As expected with this model, the P150 Q domain does bind transfected RUB replicon RNA when 

expressed in Vero cells, but the RQQ P150 Q domain mutant, which requires RUB C for replica-

tion, is also able to bind RUB replicon RNA (data not shown).  Additionally our model would 

predict that RUB C mutants that cannot rescue the replication of RUBrep/GFP-ΔNotI would not 

be able to prevent RUB RNA decay at the early time point or bind RUB RNA, and this is not the 

case.  The R2 arginine cluster in RUB C contains six arginines (RRRRGNRGR).  When the first 

of these arginines is changed to alanine (termed mutant 1811), RUB C loses its ability to rescue 

the ∆NotI replicon (Tzeng unpublished data).  However, the 1811 1-88 RUB C mutant is able to 

prevent the early decay of RUB RNA and bind RUB RNA (data not shown).  The R2 arginine 

cluster was previously shown to be important for RNA binding in an in vitro assay (1) and is 

thought to be important for genome encapsidation.  We, therefore, hypothesize that the binding 

of transfected RUB replicon RNA by wt RUB C, but not its R2A mutant, and protection from 

degradation at early times post-transfection, is due to the encapsidation function of RUB C and is 

not involved in the Q domain rescue phenomenon.  The encapsidation of the RUB genome does 

not depend upon an encapsidation signal, but rather long stretches of RUB RNA (5). 

The next step of the replication cycle upon entry of the genomic RNA into the cytoplasm 

is the translation of the nonstructural polyprotein from the nonstructural ORF.  Translation from 

RUBrep/GFP and RUBrep/GFP-ΔNotI containing an HA-tag within P150 did not differ at 1, 6, 

12, or 24 hours post-transfection in Vero or C-Vero cells, indicating that the presence or absence 

of RUB C has no impact on the translation from RUB replicons and therefore translation is not 

the stage of the viral life cycle at which RUB C acts to rescue the Q domain of P150.  This find-
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ing agrees with previous findings from our lab where there was no difference in the translation of 

P150 from various replicons at 6 and 24 hours post-transfection into Vero and C-Vero cells (50). 

Finally, we investigated the possibility that RUB C elicits its rescue function by binding 

to a cell protein, either to recruit the protein to the replication complex, to inhibit an innate cellu-

lar defense mechanism, or to otherwise mediate changes in the cellular environment to make it 

conducive to virus replication.  For example, both RUB C and RUB P150 bind cellular protein 

p32 (a cell protein with a long history in the RUB literature), making the hypothesis that the in-

teraction between this common binding partner is the duplicated function shared by these two 

viral proteins attractive.  Interestingly, p32 was not co-immunoprecipitated by 1-88 RUB C R2A 

and 2RA, the non-rescuing mutants, while all the rescuing mutants of 1-88 RUB C were able to 

pull down p32.  This result did not completely align with a previous study that found that wild 

type RUB C expressed in the context of the complete C protein but not the R1A, R2A, or 2RA 

mutants were co-immunoprecipitated with p32 (1).  The results of our study also differed from 

this study concerning the RUB C R1A mutant’s phosphorylation state as discussed above.  En-

couraged by this finding, we examined if variants of the P150 Q domain that either require RUB 

C for replication (the P150 RQQ Q domain mutant) or do not require RUB C for replication (the 

wild type P150 Q domain) differentially interact with p32.  Both wild type and RQQ P150 Q do-

main were co-immunoprecipitated with p32, suggesting that the interaction with cellular p32 is 

not the duplicated function behind the rescue phenomenon between RUB C and the Q domain of 

RUB P150.  Additional work done in our lab also supports the assertion that the interaction be-

tween cellular p32 and these viral proteins is not behind the rescue phenomenon as P150 ex-

pressed by a RUB replicon harboring two mutated PxxPxR motifs in the P150 Q domain does 

not bind p32 but does not require RUB C for its replication (44).  In this paper it was also 
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demonstrated that p32 primarily colocalizes with P150 that is not associated with replication 

complexes (44), indicating that this interaction is not important for viral RNA synthesis.  Virus 

and replicons with the two mutated PxxPxR motifs, which produce P150 that does not interact 

with p32, produced viral RNAs and GFP expressing cells to comparable levels as wild type se-

quences (44), providing further support that the interaction between p32 and RUB C does not 

underlie the rescue phenomenon as this rescue occurs at a stage prior to viral RNA accumulation.  

Additionally, as discussed above, the R2 arginine cluster in RUB C contains six arginines 

(RRRRGNRGR).  When the first of these arginines is changed to alanine (termed mutant 1811), 

RUB C loses its ability to rescue the ∆NotI replicon (Tzeng unpublished data), but we found it is 

still able to bind p32 (data not shown).  Taken together, this indicates that interactions between 

p32 and the RUB viral proteins P150 and RUB C are not the basis of the rescue phenomenon. 

Another set of host proteins that we wanted to explore as potential common binding part-

ners between RUB C and the Q domain of P150 were amphiphysins.  The SH3 binding domain 

within these proteins was found to be important for the viral RNA accumulation of alphaviruses 

through its interaction with nsP3.  We were further intrigued by these proteins as arginines were 

found to be the critical residues for this effect and interaction (34), since the critical residues as-

sociated with the common function of RUB C and the Q domain of P150 are also arginines.  

However, none of the wild type or arginine cluster mutant forms of 1-277 RUB C or the Q do-

main of RUB P150 examined bound either Amph1 or Bin1. 

Efforts to identify host protein binding partners with RUB C in the past have been done 

using yeast two-hybrid screening or GST pulldowns.  Although both approaches successfully 

identified RUB C host cell binding partners, there were pitfalls to these approaches.  The yeast 

two-hybrid screening used an African green monkey kidney cell derived cDNA library (2), 
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which was not as ideal as a human library since RUB is a strictly human pathogen.  The GST 

pulldowns were done in both monkey and human embryonic kidney derived cell lines (15), but 

more transient interactions may have been eliminated using this technique.  We, therefore, 

screened a human protein library with 1-88 RUB C and 1-88 RUB C R2A.  The human proteins 

spotted on this array were purified using a baculovirus expression system, meaning these pro-

teins were expressed in insect cells and so could obtain post-translational modifications.  A po-

tential pitfall of our study is that we purified these probes after expression in bacteria and there-

fore without potentially important post-translational modifications.  Perhaps more meaningful 

host protein binding partners would have been formed for these two forms of 1-88 RUB C had 

these proteins been expressed and purified from a mammalian system.  It is also possible that 

interactions between RUB C and host proteins could be dependent upon the environment provid-

ed in the host cell that cannot be duplicated on an array, such as pH, proper folding and modifi-

cation of the proteins, presence of lipids, or the requirement for multiple proteins and/or nucleic 

acids for the formation of a complex.  Additionally, the interactions between RUB C and host 

proteins may be dependent upon active replication or the presence of the RUB RNA and/or other 

RUB proteins.  Another limitation of this approach is that the human protein array selected for 

this study provided over 9000 potential cellular binding proteins to assay for potential interac-

tions, which does not include all possible human proteins.  However, this array did contain the 

most human proteins at the time of analysis and the number of protein spotted on this array has 

not changed since our analysis, therefore a more robust analysis using this methodology would 

not be possible using the currently available human protein microarrays.  Instead, the expression 

of the rescuing and non-rescuing forms of RUB C in mammalian cells, followed by the identifi-

cation of cellular binding partners using pull-down followed by mass spectrometry could over-
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come the limitations of the protein microarray.  More transient interactions could be captured 

with this method by crosslinking the protein-protein interactions prior to pull-down experiments. 

The sole protein found to interact with the wild type form of 1-88 RUB C but did not in-

teract with 1-88 RUB C R2A was phosphatidylinositol transfer protein alpha isoform (PITPα).  

However, PITPα was co-immunoprecipitated with both forms of 1-88 RUB C expressed in Vero 

cells and, therefore, was not the answer for the rescue phenomenon, but was still an intriguing 

newly identified RUB C binding partner as it fits into what is already known about RUB biology.  

PITPα binds, transfers, and exchanges phophatidylinositol (PI) or phosphatidylcholine (PC) to 

maintain proper lipid composition in cellular membranes.  PI molecules in the plasma membrane 

can be differentially phosphorylated to generate second messengers important in cell signaling 

cascades (6), one of which is the phosphoinositide 3-kinase (PI3K)-Akt survival pathway.  RUB 

infection results in the activation of the PI3K-Akt survival pathway and this activation is needed 

to decrease RUB-induced apoptosis and promote cell viability during RUB infection (7).  The 

activation of the PI3K-Akt pathway has also been implicated in cell survival during respiratory 

syncytial virus (RSV) and coxackievirus B3 (CVB3) infection (47, 60), and the nucleocapsid of 

SARS-CoV is thought to play a role in the establishment of virus persistence through its induc-

tion of the PI3K-Akt and other pathways (29).  Interestingly, PITPα can be regulated through 

phosphorylation by protein kinase C (51).  We identified protein kinase C, beta 1 (PRKCB1), 

transcript variant 1 as a host protein that binds both the wild type and R2A forms of 1-88 RUB C 

through our protein array analysis, and although this interaction has not been verified, it further 

suggests a role for RUB C in cell signaling pathways.  Previous studies in our lab have docu-

mented the association of all RUB NSPs with cellular membranes (26), so another potential role 
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for the interaction between RUB C and PITPα could be ensuring the proper cellular membrane 

composition required for RUB RCs. 

A final interaction that could impact the ability of RUB C to rescue the P150 Q domain is 

that between RUB C and the nonstructural proteins.  However, such an interaction could be nec-

essary to localize RUB C to exert its rescue function rather than compensate for the Q domain 

function per se.  RUB C and RUB P150 colocalize in RUB infected cells (18) and have been 

shown to co-immunoprecipitate when RUBrep/GFP containing an HA-tagged P150 was trans-

fected into C Vero cells (50).  We began this portion of the study with the intention of studying 

the interaction of the 1-88 RUB C mutant panel with RUB P200*, a form a P200 that is unable to 

cleave itself into P150 and P90, but we were unable to co-immunoprecipitate these two proteins.  

This was an unforeseen complication as previous work done in our lab showed that CAT-tagged 

1-88 RUB C expressed from one replicon interacted with FLAG-tagged P150 expressed from 

another replicon when cotransfected into Vero cells (Tzeng unpublished data).  One possible pit-

fall that could impact our study, but specifically could explain these differences is that our analy-

sis we were overexpressing RUB proteins from a CMV driven promoter, which could result in 

the formation of protein aggregates or improper stoichiometry of P200* and 1-88 RUB C com-

pared to when these proteins are expressed from RUB virus or RUB replicon.  Instead, we exam-

ined the interaction of the 1-277 RUB C mutant panel with RUB P200*, both expressed from 

plasmids.  All mutant forms of 1-277 RUB C were pulled down with RUB P200*, indicating that 

the residues affected by the mutations had no effect on the interaction between the nonstructural 

polyprotein and RUB C.  RUB C contains a long alpha helix from aa 9 through 31 at its N-

terminus and previous studies (Tzeng unpublished data) indicated that the binding of RUB C and 

P150 required aa 1 through 31 of RUB C, a region containing this alpha helix.  However, proline 
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insertion mutants in 1-277 RUB C, designed to disrupt the alpha helix, still interacted with the 

P200 precursor, indicating that the interaction between RUB C and the RUB nonstructural pro-

tein precursor cannot explain the rescue phenomenon.   

 

4.1 Conclusions and significance 

The overarching goal of this dissertation was to elucidate the mechanism behind the rescue 

of the P150 Q domain by RUB C.  RUB C and the Q domain of P150 share a similar function as 

RUB C can be substituted for the Q domain within P150.  In both, this function centers on a crit-

ical arginine-rich motif.  Both also share a similar structure, as the N-terminal third of RUB C, 

the region necessary for rescue, and the Q domain are both predicted to be highly disordered.  

This is a hallmark of proteins that act as RNA chaperones and the potential of RUB C to function 

as an RNA chaperone is attractive as it is able to rescue the replication 5' and 3' CAE mutants (4, 

50).  Recently, our lab also found that RUB C can rescue mutations in an N-terminal long alpha 

helix in P200 that is important for proteolytic cleavage of the nonstructural protein, proper sub-

cellular targeting of the nonstructural proteins, RNA synthesis, and the interaction between P150 

and P90 (24, 25).  Specifically, RUB C is able to rescue the genomic RNA synthesis and increase 

the number of double-stranded RNA (dsRNA) containing cells (a marker for RCs) for many of 

the P200 alpha helix mutants tested.  Taken together, these findings suggest to us a role for RUB 

C in the establishment of RCs.  Our model is that RUB C mediates the interaction of the genomic 

RNA with the newly translated P200, possibly serving as a chaperone, to achieve the proper con-

formation of the RUB genomic RNA and P200 necessary for establishment of the RC and viral 

RNA synthesis (Figure 24).  In this regard, it has been recently shown using a novel transcom-

plementation system developed for the alphavirus SFV that both the nonstructural replicase pro-
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teins and the genomic RNA, as well as functional RNA synthesis, are necessary for generation of 

observable RCs in transfected cells (43).  Our model is also proposed in conjunction with the 

studies in this dissertation, which found no differences in the early events post-transfection of 

RUB replicons that could explain RUB C-mediated rescue of P150 when RUB C was provided 

in trans.  In terms of the infection cycle, we hypothesize that RUB C in the incoming virus parti-

cle plays a chaperone role in the establishment of the initial RCs and appears to be more efficient 

in this role than is the Q domain, given that wt replicon RNA synthesis is detectable earlier in C-

Vero cells than in Vero cells.  However, in the expansion of the number of RCs in the infected 

cell, translation of the genomic RNA may become disconnected from available RUB C protein 

and when this occurs, the Q domain plays this chaperone role.  The question of evolutionary in-

terest is why RUB would have evolved duplicate functions shared by its C protein and one of its 

replicase proteins when this does not appear to have occurred among other positive-sense RNA 

viruses, even its closest relatives.  

The work described in this dissertation adds to the expanding breadth of knowledge con-

cerning the nonstructural roles of capsid proteins.  It is important to continue this work, as im-

portant parallels could be drawn between the function of RUB C and other viral capsid proteins 

in the RNA synthesis of their respective viruses.  Small RNA viruses must be able to efficiently 

replicate with a limited number of viral proteins, and therefore often these proteins must be mul-

tifuctional.  However, it is intriguing that in RUB, which produces only five mature proteins, that 

there would be the redundancy in function seen with RUB C and the P150 Q domain, suggesting 

the importance of this function in the RUB life cycle.  The importance of this common function 

to the life cycle of RUB is further suggested by how many different ways RUB C can be provid-

ed to rescue the P150 Q domain, specifically that RUB C can be provided in cis, in trans, or from 
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the virion.  Furthering the understanding of RUB replication is important because the mechanism 

behind CRS is still unknown.  Aspects of RUB replication that contribute to its teratogenicity 

could also draw important parallels to other viral teratogens.     

 

4.2 Future directions 

Although strides have been reported in this dissertation to understand the basis of the res-

cue phenomenon, more work needs to be done to address this problem.  We were able to identify 

an arginine cluster within RUB C that is critical for this protein’s ability to rescue the replication 

of RUBrep/GFP-ΔNotI.  This arginine cluster was also shown to be important for the early pro-

tection of the viral RNA against decay as well as for the binding of RUB C to the viral RNA.  

First, it could be determined if RUB C and/or the RUB P150 Q domain contain methylated ar-

ginines by immunoprecipitating RUB C or RUB P150 Q domain and probing the blot with anti-

bodies to detect methylated arginine.  If this proved to be the case, the next steps would be map-

ping the arginine residues within RUB C and/or the RUB P150 Q domain that are methylated as 

well as defining the protein arginine methyltransferase responsible for this post-translational 

modification.  Additionally, it could be determined if this modification regulates the rescue of the 

∆NotI replicon by RUB C.   

Further investigation of the role of PITPα in the RUB viral life cycle would be another ex-

tension of this study.  Particularly, it would be interesting to determine if RUB C does indeed 

play a role in the PI3K-Akt cell survival pathway that is induced by RUB infection.  First, PITPα 

could be knocked down in cells using a specific siRNA or a nonspecific siRNA (as a control), 

those cells could be subsequently infected, and viral titers measured to determine if the expres-

sion of this protein impacts virus production.  Knockdown of PITPα and infection with RUB fol-
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lowed by examination of the PI3K-Akt cell survival pathway for activation would indicate if 

PITPα is required for the activation of this pathway in RUB infected cells.  Next, similar experi-

ments could be done to determine if RUB RNA synthesis or RUB protein translation is impacted 

by the absence of PITPα.  The binding site for PITPα within the RUB C protein could be mapped 

and later mutated in the RUB infectious clone or replicon to determine if this interaction is im-

portant for the RUB life cycle.  

To provide additional support to our final model, we would first need to confirm that RUB 

C and the P150 Q domain are RNA chaperones.  Next, we could develop a transcomplementa-

tion system similar to the one developed for SFV (42) to determine the necessary components 

required for the establishment of RCs, including RUB RNA sequences and domains of the RUB 

C, P150, and P90.   
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Figure 24.  Model of RUB C enhancement and rescue of RNA synthesis 
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