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ABSTRACT 

Adenovirus Death Protein (ADP) expression during late stages of a lytic infection releases 

mature virions to promote viral spread, thus leading to death of the host cell. We sought to 

investigate ADP expression patterns in persistently infected human lymphocytes cells. We 

hypothesized that low expression of ADP allows the virus to persist while high expression would 

promote lytic infection in lymphocytes. Accordingly, we found ADP expressed in low amount in 

BJAB and KE37 cells, while lytically infected Jurkat cells demonstrated higher ADP expression 

in both protein and transcript levels. ADP overexpression in persistently infected lymphocytes 

did not alter the viability of these cells, or their level of ADP expression. In contrast, Jurkat cells 

infected with an ADP-deleted virus had increased survival and maintained viral DNA for greater 

than 1-month, suggesting conversion to a persistent infection. Also manipulating ADP 

expression had minimal impact on the total virus yield from infected lymphocytes.  
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CHAPTER 1: INTRODUCTION 

1.1 Adenovirus Species C 

 

Human species C Adenoviruses (Ad 1, 2, 5 and 6) are commonly associated with mild 

upper respiratory tract and gastrointestinal infections (acute infection) in children under 5 yrs of 

age and immunocompromised individuals (Avila et al., 1989). Most studies characterizing the 

virus life cycle have been evaluated and described in epithelial cells.  Infection of epithelial cells 

results in a lytic infection with release of newly synthesized virions, and death of infected cells 

within 72h (Hall et al., 1998). 

  Following primary infection, Species C adenoviruses are known to enter a persistent 

stage during which live virus can be intermittently detected in stool after virus detection in the 

nasopharyngeal cavity is lost (Fox et al 1969 and Fox et all 1977). 

Adenoviruses were first isolated and characterized by scientists exploring the etiological 

agent for acute respiratory infections (Rowe et al., 1953). In these studies investigators 

discovered a spontaneous degeneration of adenoid tissues, which they speculated was caused 

by viral replication in the adenoid tissues. A year later, Hilleman and his group isolated a similar 

agent amongst military recruits (Hilleman and Werner, 1954). Since, these agents were 

isolated from adenoid tissues, they were referred to as adenoid degeneration factors or acute 

respiratory disease agents only to be rechristened as Adenovirus (Ad) later (Enders et al., 

1956). Human Ad is now divided into 6 species, A-F. Presently, there are more than 100 

members in the adenovirus family, which infect a wide range of vertebrate hosts (Norrby et al., 

1976). Each member, or serotype, is defined based on the neutralization capability with specific 

antisera.  The different serotypes can cause a wide variety of common and sporadic infections.   
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Adenoviruses are non-enveloped, icosahedral shaped with a diameter of 70-90 nm (Figure 

1A)(Athappilly et al., 1994; Bewley et al., 1999; Durmort et al., 2001; Rux and Burnett, 2000, 

2004) Their make-up is comprised of DNA (13%) and protein (87%). The outer core of the virus 

is made of capsid proteins. The capsids are built of 252 smaller subunits called capsomeres 

(Ginsberg et al., 1966). The capsomeres are comprised of 240 hexons and 12 pentons, forming 

the vertex of the icosahedron. As the name suggests, 6 and 5 neighbors surround the hexons 

and pentons respectively (Figure 1A, 1D, 1E). Ad also encodes a fiber protein, which interacts 

with cellular receptors to gain entry.   

The Ad subgroup C has four distinct serotypes- Ad1, Ad2, Ad5 and Ad6, and the vast 

majority of studies on adenoviruses have been carried out using Ad2 and Ad5. Species C 

causes upper respiratory infections predominantly in infants and young children (Krilov, 2005). 

An acute infection might take 6-7 days to resolve, however, Ad is also known to be persistent 

with recurrent and sporadic shedding of the virus from feces observed for years following 

resolution of the acute infection (Fox et al., 1969). 

1.2 Gene Organization and Expression Patterns 

All known adenovirus genomes have the same genetic organization, i.e., all viral genes 

encoding specific functions are positioned at the same location on the viral genome (Larsson et 

al., 1986). The 35kbp (kilo-base pair) adenovirus genome is a linear, double stranded DNA 

molecule with inverted repeat sequences that play a crucial role in the viral DNA replication 

(Shenk, 1996). The adenoviral genome can be divided into the immediate early genes (E1A), 

early genes (E1B, E2, E3 and E4) and the late genes (L). Each region is transcribed to yield 

multiple mRNAs through differential splicing and polyadenylation (Shenk 2001). An unique 

feature of the Ad genome is the orientation of the genes. Certain genes such as the E2A DNA 

binding protein (DBP), and E4 run in the reverse direction when compared to the trans-
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activating genes E1A and E1B (Figure 2). These genes work together in a coordinated fashion 

to setup a productive lytic infection. In addition to a variety of specialized genes Ads also 

possess cis-packaging elements within a few hundred base pairs from the end of the 

chromosome, which facilitate the interaction of viral DNA with some encapsidating proteins 

(Grable and Hearing, 1992; Hammarskjold and Winberg, 1980; Hearing and Shenk, 1983). The 

expression patterns of early genes (E1A, E2A, E1B55k and E4) along with the E3 

11.6kDaAdenovirus Death Protein (ADP) are of particular interest to our study.  

The first viral gene to be transcribed is E1A (34-48kDa) that is processed by differential 

splicing (Nevins et al., 1979). This leads to 5 distinct messages 13S, 12S, 11S, 10S and 9S 

(Stephens and Harlow, 1987; Ulfendahl et al., 1987). 13S and 12S variants are found in 

abundance during the early stage of infection, whereas 9S is observed at a later stage 

(Stephens and Harlow, 1987; Ulfendahl et al., 1987). E1A genes also encode products that 

play a major role in the transcriptional regulation of several viral and cellular genes(Nevins, 

1995; Shenk and Flint, 1991). The multifunctioning E1A protein plays a role in transcriptional 

activation of other early genes, transcriptional repression of cellular proteins, and initiation of 

DNA synthesis.  E1A has the ability to immortalize primary cells in collaboration with E1B 

(Bayley and Mymryk, 1994). In the nucleus, the immediate early genes are expressed first 

(E1A) and they induce the delayed transcription of other early genes such as E2A, E1B, E3, 

&E4 (Thimmappaya et al., 1982). 

The products of the E1B region of the Ad genome are involved in a variety of functions 

such as viral DNA replication, host cell transformation, viral and cellular protein interactions and 

also inhibit apoptosis induced death of infected cells by inactivating the p53 tumor suppressor 

gene(Boyer and Ketner, 2000; Cathomen and Weitzman, 2000; Querido et al., 1997). The E1B 

products are also know to counter the cellular responses such as blocking transcriptional 
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activation of p53 in the absence of E4orf6 and induction of apoptosis by Cytotoxic T 

lymphocytes and macrophages (Teodoro and Branton, 1997b). The 19kDa product of E1B is a 

functional homolog of anti-apoptotic cellular protein family Bcl-2 that inhibits apoptosis and 

premature death of infected cells that would hamper virus production (Cuconati and White, 

2002). This product counter balances the effect of E1A, which induces apoptosis in infected 

cells. E1B55kDa cooperates with E1A and E4orf6/7 in the process of cellular transformation; 

the E1B55kDa-E4orf6 complex also degrades cellular proteins associated with DNA damage 

repair complex and hampers the DNA repair machinery (Teodoro and Branton, 1997b; White et 

al., 1992; Yew et al., 1994). 

The E2 gene has two distinct regions E2A and E2B (de Jong et al., 2003). The E2 gene 

runs in the reverse orientation and the various E2 products are made as a result of differential 

splicing.  The E2 proteins play a role in initiation of viral DNA replication and ensure the 

transcription of several late proteins by the activation of the late E2 promoter (Baker and Ziff, 

1981; Bhat et al., 1987). The E2A gene codes for a 72kDa DNA binding protein (DBP). This 

protein is critical for viral reproduction in a host cell, since it aids the virus in taking the first step 

in successfully propagating itself in host cells by replicating the viral genome. The E2B region 

encodes a 140kDa polymerase needed for DNA replication. The E2 region also encodes a 

precursor terminal protein, which serves as the primer from which the polymerase enzyme 

extends (de Jong et al., 2003). 

Ad2 and Ad5 encode 6 different proteins from the E3 transcription unit. Most products of 

the E3 region of adenovirus are specific for immune evasion (Horwitz, 2001). They are 

categorized based on their size as 6.7kDa (Wilson-Rawls et al., 1990), gp19kDa (Persson et al., 

1980), 11.6kDa (Wold et al., 1984), 10.4kDa (Teodoro and Branton, 1997a), 14.5kDa (Tollefson 

et al., 1990) and 14.7kDa (Tollefson and Wold, 1988).  The function of the 6.7kDa protein is not 

known however the other E3 products affect the proper functioning of cell surface receptors, 
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and a variety of proinflammatory signaling cascades. For example, E310.4kDa and E314.5kDa 

complex, referred to as receptor internalization and degradation complex (RID), protects the 

virus-infected cells from death by apoptosis by down regulating death receptors such as 

Fas/CD95, and tumor necrosis receptor apoptosis inducing ligand(TRAIL)(Tollefson et al., 1991). 

The E3 gp19K membrane proteins target systematic down regulation of MHC molecules from 

the cell surface thereby countering recognition by immune surveillance system. The E3/10.4-

14.5K product however, down-regulate apoptosis receptors by rerouting them into lysosomes. 

Interestingly, the 11.6kDa product of E3 transcription unit is synthesized in small quantities 

during the early stage of infection, but expressed in high amounts at a later stage from a major 

late promoter (MLP)(Zou et al., 2004). In contrast to the immune evading activities of the other 

E3 genes, Tollefson et al., investigated the release mechanism of newly synthesized virions 

after a productive adenovirus infection (Tollefson et al., 1996) and proposed that the 11.6K 

protein encoded by the E3 region (Wold et al., 1984) aids in the release of newly synthesized 

virions (Doronin et al., 2003; Tollefson et al., 1996). Expression of this glycoprotein increased 

the rate of cell death and is now referred to as Adenovirus Death Protein (ADP-E3 11.6kDa). 

ADP is an integral membrane glycoprotein with complex O and N-linked oligosaccharides 

(Scaria et al., 1992).  During the final stages of infection, ADP abrogates the activity of 

apoptosis inhibiting proteins, such as Bcl2 and E1B19k (Boyd et al., 1994). The exact 

mechanism involved in the induction of cell death of infected cells is not clearly understood.  A 

study by Zou et al., suggests both caspase dependent and independent mechanisms of cell 

killing when ADP is overexpressed(Zou et al., 2004). Several viruses that are known to 

persistently infect lymphocytes transcribe products that help in efficiently releasing newly 

synthesized virions during late stage of infection. Such proteins also act as a switch that turns 

on or off latency depending on cellular conditions. Epstein - Barr virus, which, like Adenovirus, 

establishes persistent infection of B-lymphocytes, encodes a gene BZLF1 (Wen et al., 2007).  
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This protein is expressed as an immediate early gene and functions to similar to ADP by aiding 

cell-to-cell spread of the virus. Similarly, Kaposi sarcoma associated Herpes virus encodes 

orf50, which acts as a switch to turn on or off viral latency and aid in efficient cell-to-cell spread 

of the virus. Expression of Rta/Orf50 is required and sufficient to reactivate the Kaposi Sarcoma 

associated herpes viruses from latency (Damania et al., 2004). ADP expression by adenovirus 

differs from the above-mentioned genes in the timing of gene expression. Even though ADP is 

predominantly an early gene, it is not expressed in abundance until final stages of infection. As 

it is widely known to aid the release of newly synthesized virions from an infected cell in a 

manner similar to the proteins that have been characterized to facilitate the latency shift in other 

persistent viruses, we were interested in determining if ADP has a similar biological role in 

adenoviral persistence. .   

The E4 region encodes multiple proteins through different open reading frames (orf) with 

varying functions. The E4 orf3 (11kDa) and orf6 (34kDa) are critical for DNA replication (Bridge 

and Ketner, 1989; Huang and Hearing, 1989). These products play a role in the efficient 

initiation of viral DNA replication, late Ad mRNA splicing and inhibition of viral DNA concatemer 

formation. The E4 product also associates with E1B55kDa protein to shut down cellular protein 

synthesis and down regulation of p53 tumor suppressor genes(Dobbelstein et al., 1997; Hobom 

and Dobbelstein, 2004). The highly conserved orf3 region and orf6 of E4 inhibits the double 

stranded break repair (DSBR) mechanisms by binding and inhibiting the activity of DNA protein 

kinase (Boyer et al., 1999). This mechanism of DSBR inhibition is independent of the E1B55k 

protein. The E4 region is also known to compensate for the loss of E1A functionality by 

promoting the expression of key proteins such as the E2A-DBP(O'Connor and Hearing, 2000). 

E4orf6/7 induces the binding of cellular transcription factor on the E2A promoter region driving 
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the E2A transcription.E4 products also govern the enhanced expression of late genes (Bridge 

and Ketner, 1989). 

After the DNA replication process has been initiated following early gene expression, the 

late phase of Ad infection begins. The proteins synthesized during the late stage are as a result 

of translation of late mRNAs.  In order to complete the lytic cycle, the L4 100kDa non-structural 

protein expressed during this phase oversees to the inhibition of cellular protein synthesis and 

selective translation from tripartite leader (TL)-containing viral late mRNAs like Adenovirus 

Death Protein. In addition, L4-100K has been implicated in the efficient production of virions. 

During this phase the expression of early genes is greatly reduced. Protein synthesis during the 

late stage of infection is dominated by a very high expression of structural capsid proteins 

including hexon and fiber. As a result, Hexon expression is also an indicator of a productive 

lytic infection. Several non-structural proteins are also synthesized during this phase like the 

delayed early region E3-ADP, which is expressed in high amounts late in infection. Late 

proteins such as L52/55kDa are essential for the assembly of new virions and packaging of 

DNA into them(Wohl and Hearing, 2008).  These proteins are localized in the nucleus distinct 

from viral DNA replication centers. (Wohl and Hearing, 2008) 

1.3 Lytic infection of Epithelial Cells 

Ad efficiently infects lung epithelial cells, such as A549 cells, and these cells serve as an 

ideal model to study the lytic infection cycle. A549 cells thoroughly support lytic infection and 

die 24-48hr-post infection (hpi). Within 24h post-infection, they express several key viral 

proteins. High expression of hexon by 18h post infection is an indicator of successful infection. 
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1.4 Adenovirus interaction with Human Lymphocytes 

Adenoviruses were first isolated from adenoid and tonsil tissues in a non-infectious form 

that appeared to be a latent type of infection (van der Veen and Lambriex, 1973) and persistent 

viral infections have been observed up to 24 months after primary infection. In 1973, Van der 

Ween and his group were the first to suggested that lymphocytes in tonsils and adenoids might 

be naturally infected with Ad (van der Veen and Lambriex, 1973). Ad was isolated in 62% of the 

tonsil and adenoid specimens after periods of cultivation that was not detected at the initiation 

of the cultures. Interestingly, the serotypes that were isolated were Species C Ad1, Ad2, Ad5 

and Ad6. The possibility of lymphocytes harboring the virus during latency was further 

investigated after traces of Ad DNA were detected in peripheral lymphocytes (Flomenberg et al., 

1996).  Ad DNA was detected even in the absence of significant viral production (Garnett et al., 

2002; van der Veen and Lambriex, 1973). The existence of latent adenovirus in tonsillar tissues 

was not experimentally confirmed until 2002 when a significant amount of adenoviral DNA was 

reported in tonsillar T-lymphocytes in 79% of patient sample tested (Garnett et al., 2002). 

However, no infectious virus was observed, even after several passages of the cells suggesting 

true viral latency (Garnett et al., 2009). Furthermore viral transcription was also absent unless 

the lymphocytes were stimulated with lymphocyte activation agents (Garnett 2009).   

Since these initial reports of latent adenovirus in lymphocytes, investigation into the 

dynamics of virally infected lymphocytes have been further evaluated in experimental models of 

infection (Zhang et al., 2010). These studies have demonstrated that while the infection of 

some lymphocytes (Jurkat) is lytic, Ad DNA persists in other lymphocyte cell lines (BJAB, KE37 

and Ramos) for as long as 365 days after infection (Figure 3A-C)(Zhang et al., 2010). The Ad 

DNA was shown to remain episomal inside the lymphocytes and not integrate with the host cell 
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genome.  Furthermore, infection of persistent cells does not result in the cell death observed in 

infected epithelial cells or Jurkat cells (Figure 4). 

In sharp contrast to the Ad gene expression patterns in A549 cells, the time course of 

protein expression is delayed in the lymphocyte cell lines. McNees et al., (2004) studied the 

kinetics of adenovirus protein expression in A549 cells and observed DBP and E1A expression 

as early as 6hpi and the late proteins detected at 12hpi. 90% of infected A549 cells expressed 

viral proteins 24hpi (McNees et al., 2004) (Figure 5). Adenovirus has also been shown to 

lytically infect Jurkat cell line derived from an individual with T cell leukemia (McNees et al., 

2004; Zhang et al., 2010). The gene expression in Jurkat cells is very similar to that seen in 

A549 cells, except that the gene expression is delayed taking one day for early gene 

expression and two days for late gene expression to be observed in this lymphocyte cell line 

(Figure 5B).  

McNees et al., 2004, comparing the protein expression patterns in A549 and T-lymphocyte cell 

lines and observed peak protein expression 72hpi with 80-90% cells showing positive results for 

viral protein expression. Of the several viral proteins observed, the E1A and DBP proteins are 

expressed as early as 6 hrs post infection. However during the late stage of infection (36hrs p.i.) 

in A549 cells the DBP appears to be expressed in abundance in comparison with the 

transactivating E1A (Figure 5).  In contrast the lymphocyte cells express the viral proteins 

several days later into infection highlighting a clear differential gene regulation pattern between 

the different cell types.(Figure 5)(McNees et al., 2004). 

1.5 Importance of the study 

Adenovirus is popularly used in gene therapies to treat other diseases and even some 

cancers (Choi et al., 2012; Yang et al., 2012). Now, that it has been shown that adenoviruses 
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can infect human lymphocytes and remain latent within them, there is a need to revisit and 

further understand this virus’s interaction with the host, and in particular to fully characterize its 

latency in lymphocytes.  Furthermore, a viral agent has long been suspected to play a role in 

the initiation of some types of cancer such as leukemia. However, no viral genes or gene 

products were detected from the leukemia cancer cells to support the hypothesis. Given 

adenoviruses unique interaction with lymphocytes, the ability of the E1A proteins to transform 

cells and the fact that the virus encodes proteins such as E4orf 6 that inhibit cellular DNA repair 

pathway perhaps it is time to revisit the old question of whether adenovirus are responsible for 

some leukemia’s. Hence, it is becoming increasingly more important to fully understand the 

dynamics of gene expression of adenovirus in lymphocytes. 
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Figure 1 Structure of the adenovirus virion 

A. Adenovirus model virion from computer reconstructed cry0-electron microscopy images. B-E. 
Space filling model of Ad5 hexon trimer, penton base & Ad2 fiber shaft. F. Current model of 
adenovirus virion. Picture courtesy: Fields Virology, 5th Edition. Copyright 2007. Lippincott 
Williams and Wilkins. 
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Figure 2 The gene organization in species C Adenovirus.  

The genes are arranged in the order of immediate early genes, early genes and late genes. The 
orientation of the Ad5 genes is bidirectional. Picture Courtesy: Fields Virology 5th Edition. 
Copyright 2007. Lippincott Williams and Wilkins. 
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Figure 3 The long-term maintenance of Ad genome in lymphocytes.  

A & B. B lymphocytes (BJAB and Ramos) support a productive infection at early stages of 
infection as indicated by high levels of hexon expression as early as day 7. C. T-cell line KE37 
has a robust infection during early stages of infection before the virus goes latent. A large 
amount of Ad genome is maintained throughout the course of infection. The genome levels 
were detected by QPCR for hexon DNA and hexon protein levels determined by Flow cytometry 
(Zhang et al., 2010). 

 
 
 
 
 
 
 



14	  
	  
 
 
 

 

	  
Figure 4 Viability of Lymphocytes infected with wild type Ad5 dl309 virus at different time 
points post infection.  

A, C & D:  Viability of persistently infected lymphocytes BJAB, Ramos and KE37 was 
determined by Trypan Blue Exclusion Assay and compared with mock-infected cells during the 
early stages of infection. Dark circles correspond to cells infected with dl309 and open circles 
correspond to uninfected cells. B. Comparing the viability of T-cell Jurkat infected with dl309 
and those that are uninfected. 
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Figure 5 Gene expression in lytically infected cell types	  	  

A. Early gene expression in lytically infected lung epithelial cells (A549). Almost all of the critical 
genes are expressed within 24hrs into infection. B. Early gene expression in a lytically infected 
T lymphocyte (Jurkat cells). The expression patter is similar to A549 but it is delayed. The data 
was acquired by flow cytometry (McNees et al., 2004).	  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Cell Lines  

Cell culture media, supplements and fetal bovine sera were obtained from Mediatech, 

Inc. (Manassas, VA). The lung carcinoma epithelial cells, A549 (ATCC CCL-185; American 

Type Culture Collection, Manassas, VA) were maintained as confluent monolayer cultures in 

Dulbecco-modified Eagle’s minimal essential medium (DMEM) supplemented with 10% Fetal 

Bovine Serum and 10mM Glutamine and incubated at 37C in a humidified atmosphere 

containing 8% CO2. The Burkitts Lymphoma B-cell line (BJAB), and Jurkat T-cell lines were also 

obtained from ATCC and maintained as suspension cultures in Roswell Park Memorial Institute 

1640 medium (RPMI) supplemented with 10% Fetal Bovine Serum and 10mM Glutamine. The 

KE37 cell line (immature T-cell ALL) was purchased from the German Collection of 

Microorganisms and Cell Cultures. These cells were maintained by incubating at 37 degrees C 

in a humidified atmosphere containing 5% CO2. 

2.2 Viruses 

The wild-type virus used in this study is the adenovirus type 5 strain wt300, which has all of its 

genes intact, was kindly provided by Ann E. Tollefson (St. Louis University). dl309 (kindly 

provided by David A. Ornelles, Wake Forest University), a phenotypically wild-type virus, lacks a  

portion of E3 region (10.4K, 14.5K and 14.7K) that has been shown to be dispensable for 

growth in tissue culture (Jones and Shenk, 1979). The ADP mutant virus pm534 was 

constructed by introducing two nonsense mutation on methionine codons and expresses no 

ADP protein (Doronin et al., 2003). The VRX-021 virus which over-expresses ADP, was 

constructed by using a shuttle plasmid encoding a version of the E3 region that is a hybrid 

between VRX-006 and VRX-007 as previously described by (Tollefson et al., 2007). Ann E. 
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Tollefson, St. Louis University, kindly provided these viruses.. Virus infectivity was determined 

for each of the cell lines (A549, BJAB, Jurkat and KE37) used in this study prior to infection. 

Epithelial cells were plated 24h before infection and then infected with 10 PFU per cell in serum-

free media.  After 2 hrs, complete media was added to the cells. For adenovirus infections of 

lymphocytes, cells were seeded at least 24 hrs before infection at a density of 1x106 cells/ml.  

Cells were infected with 100 plaque-forming units (pfu) per cell and incubated for 2h at 37 

degrees C. The non-absorbed virus was then washed from the infected cells twice with 

complete medium. The cells were incubated at 37 C for two to three hrs.  

2.3 RT-PCR analysis of ADP expression 

RNA was isolated and purified from the infected cells using RNA miniprep kits by Qiagen 

(Cat No.74104). 500ng of the isolated mRNAs were reverse transcribed using DyNAmo cDNA 

synthesis kit (Thermofisher) according to manufacturer’s instructions using Bio-Rad 

Thermocycler. PCR of the cDNA was then performed to amplify the ADP transcript.  For the 

qPCR, duplicate 25uL reaction mix was assembled containing the cDNA; 2X master mix 

(Thermofisher), 10mM each of forward and reverse primers and RNase free water. The primers 

designed for Ad5 ADP are placed on the 2nd and 3rd exon of the tripartite leader sequence and 

the 5’ non-translated exon ADP 5’ (TPL 2) GTACTCTTGGATCGGAAACCC (Ad5 genome 

7147-7167), ADP3’ (ADP non-translated exon) ACTCCGTCTGGGTTGAAAC (Ad 5 genome 

28316-28298), ADP probe (TPL 3) TCGAGAAAGGCGTCTAACCAGTCAC (Ad 5 genome 9700-

9724). CD44 or E1F1 mRNA was amplified to serve as an endogenous control for RNA input.  

The primers and probe used for CD44 are 5’-TTCAAATCTTCCACCAAACCT-3’, 5’-

TCTTCAACCCAATCTCACACC-3’and5’-/56-

FAM/ACGCTTCAG/ZEN/CCTACTGCAAATCCA/3IABkFQ/-3’. The primers  and probe used for 

E1F1 are 5’-/56-FAM/CTCCACTCT/ZEN/TTCGACCCCTTTGCT/3IABkFQ/-3’, 5’-
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GTATCGTATGTCCGCTATCCAG-3’, 5’-GATATAATCCTCAGTGCCAGCA-3’.  The threshold 

cycle (CT) values were calculated for each reaction using the ΔΔCT method for comparing 

relative values of gene expression(Livak and Schmittgen, 2001). 

2.4 Intracellular Staining and Flow Cytometry 

 Infected cells were harvested at different times post infections and washed with ice cold 

Phosphate Buffered Saline (PBS). The cells were then fixed in the dark with 1% Para 

formaldehyde obtained from Affymetrix Inc. (Cat. No. 19943 1 LT) and incubated at room 

temperature (RT) for 30 mins. The fixed cells were then resuspended in 0.2% Tween20 

(Permeabilize buffer) at a density of 106 cells/ml for 15 mins at RT. This was followed by 

centrifuging at 1500 rpm for 5 mins at 20 degrees C. The cells were then incubated at RT for 30 

mins with Blocking Buffer (PBS/2%BSA/2000ug/ml Rabbit IgG). The cells were centrifuged and 

resuspended in cell staining buffer obtained from BioLegend (Cat.No.420201). The antibodies 

specific to adenovirus hexon (Chemicon mAb 8051) was used at 1:100 dilution in cell staining 

buffer, monoclonal mAb to ADP was obtained from Ann E. Tollefson (St. Louis School of 

Medicine, Missouri) was used at 1:50 and an Isotype control (Purified Mouse IgG) was used at 

1:25 (BD Pharmigen, Cat. No.557273) dilution in cell staining buffer. After incubation with the 

primary antibody, cells were staining with a fluorescently labeled secondary antibody. An APC 

labeled secondary antibody (rabbit anti mouse) was used at a dilution of 1:50.  Cells were 

washed and resuspended in 600µL of cell staining buffer and acquired by flow cytometry on a 

BD Fortessa using FACSdiva software.  

2.5 Trypan Blue Exclusion Assay 

Trypan Blue Exclusion Assay was used to measure cell death of A549, BJAB, Jurkat 

and KE37 cells as described in (Tollefson et al., 1996). 10uL of cells were diluted 1:1 with 0.4% 
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Trypan blue dye and cell death was determined. These experiments were conducted three 

times, with similar results. The data shown is representative of one such experiment. 

2.6 Western Blotting and Antibodies 

At each time point, protein lysates were collected using Radioimmunoprecipitation assay 

(RIPA) buffer in the presence of protease and phosphatase inhibitors (PPI). The collected 

lysates were then suspended in 2x Sample buffer (20% SDS, 0.5M Tris, P.H 6.8, glycerol, H2O, 

bromophenol blue, β-Mercaptoethanol). The adherent cells and suspension cells were washed 

with ice cold PBS and the former was treated with 0.1% Trypsin (incubated at RT for 2 mins) in 

order to disrupt the adherent monolayer. The cells were then washed with complete cell culture 

medium and PBS-PPI and resuspended in one-tenth volume of PBS and inhibitors. The cell 

concentration was adjusted to 100ul/1x106 cells. Protein lysates to measure the expression 

levels of E1A, E2A-DBP and ADP were boiled at 95C for 5 mins, whereas protein lysates to 

measure E4orf6/7 levels were heated at 65C for 20 mins. The E1A and E2A-DBP antibodies 

were used at 1:50 dilution; ADP at 1:400 with polyclonal anti-rabbit Ab kindly provided by Ann E. 

Tollefson, St. Louis University and E4orf6/7 was used at 1:20 in Tris Buffer Saline 

supplemented with 0.1%Tween. 

Proteins from identical number of cells was resolved by SDS-PAGE and then transferred to 

0.2microM nitrocellulose membrane. The transferred membrane was blocked with TBS-Tween 

supplemented with 5% non-fat dry milk obtained from Bio-Rad (Cat.No.170-6404). β-Actin was 

used as loading control used at a dilution of 1:5000. The horseradish peroxidase- conjugated 

secondary antibodies were used at 1:5000-1:10000. The band signals were detected following 

minimal incubation with SuperSignal chemiluminiscent substrate from Pierce. 
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2.7 Virus Yield 

For assay of viral growth in the lymphocyte cell types (3x106 cells) were infected at 100PFU per 

cell in 500µl of serum-free RPMI 1640 1X. After 2 hrs of incubation at 37C, the cells were 

washed with RPMI 1640 (10%FBS), then the infected lymphocyte cells were cultured in 10ml of 

RPMI 1640 (10% FBS) at 37C. At a time indicated in the figures, 500µl of sterile PBS and 37.5µl 

of Tris-HCl (pH 7.8) was added to 1ml of cells and freeze thawed three times. The supernatant 

and pellets were assayed by plaque assay to determine the virus yield. 
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CHAPTER 3: RESULTS 

 

Adenovirus is known to persistently infect lymphocytes with very different kinetics than 

the well-studied lytic infections. Our study aims to investigate the adenoviral gene expression 

patterns in persistently infected human lymphocytes.  We analyzed the role of Adenoviral Death 

Protein (ADP) in maintaining persistent infections in lymphocytes.  Furthermore, we also 

analyzed the difference in the expression of several well studied viral genes including 

transactivating E1A, DNA binding protein E2A and DNA repair inhibiting E4orf6/7 between 

lytically infected lung epithelial cells and persistently infected human lymphocyte cell lines. 

3.1 ADP is down regulated in persistently infected lymphocytes 

Human species C adenoviruses are known to establish a lytic infection in human lung 

epithelial cells that results in virion production and death of the cells 48-72h-post infection (Hall 

et al., 1998). In contrast, persistent infections with the same viruses have been demonstrated in 

several human lymphocyte cell lines, including BJAB, Ramos and KE37 (Zhang 2010).  During 

such persistent infections, the lymphocytes exhibit continued cell proliferation and no 

subsequent overt cell death (Zhang 2010).  Interestingly, substantial loss of cell viability 

occurred in Jurkat cells by 3 days post infection (Zhang 2010) (Figure 4).  Thus, infection of 

Jurkat cells appears to result in a lytic infection that is similar to infection of epithelial cells 

resulting in cell death.   As ADP has been reported to facilitate the release of virus from infected 

cells resulting in cell lysis and death, we first compared the expression of ADP in persistently 

infected human lymphocytes  (BJAB and KE37 cells), with expression of ADP in lytically 

infected cells (Jurkat and A549 cells).  All cells were infected with wild-type Ad5 (dl309) and 

subsequently evaluated for expression of ADP by intracellular staining (Figure 6; black bars).  

A higher fraction of lytically infected A549 cells expressed ADP when compared with the 
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persistently infected lymphocyte cell lines BJAB and KE37.  While 82% of A549 cells infected 

with Ad5 dl309 expressed ADP 24hr post infection, only a small fraction of infected BJAB cells 

expressed ADP (<20%).  Similarly, less than 15% of infected KE37 cells expressed ADP.  

Surprisingly, while ADP levels were low in both BJAB and KE37 cells, expression of the 

structural protein hexon was much higher (Figure 6; gray bars).  Maximum expression of 

hexon protein observed in BJAB cells was 79% and 77% in KE37 cells. As expected, greater 

than 80% of infected A549 cells expressed hexon protein and this high level of expression was 

detected as early as 1 day after infection.  Evaluation of Jurkat cells, which are lytically infected 

with the virus, revealed much higher levels of ADP when compared to KE37 or BJAB cells 

(Figure 6).  Three days after infection, ADP protein could be detected in approximately 60% of 

Jurkat cells.  High hexon protein expression was consistently detected in most of the Jurkat 

cells 3, 5 and 7 days post-infection, while ADP expression declined after day 3.  However, 

Jurkat cells also begin to die as early as 3 days post infection (Figure 7). By day 3 post-

infection 40% of cells are dead and 60% are dead on day 5.  As a result, very few cells remain 

in culture for evaluation of protein expression at day 7 and beyond.  Thus, in our studies, low 

expression of ADP appears to correlate with lymphocytic cells reported to establish long-term 

persistent infections with Adenovirus.  

Given the difference in expression of ADP among the different lymphocyte cell lines we 

next wanted to investigate the levels of ADP mRNA transcripts in these cells.  mRNA was 

isolated from persistently infected cell types BJAB and KE37on day 1, 3, 5 and 7-post infection 

with wild-type virus and the relative amounts of ADP transcripts were quantified from cDNA. 

mRNA for ADP were detected in persistently infected cell types (Figure 8). One-day post-

infection BJAB cells contained the least amount of ADP mRNA.  We normalized this level of 

expression, compared to endogenous housekeeping gene (E1F1) expression, to one and 
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compared relative changes in expression across the infected cell types.  BJAB increased ADP 

transcript levels 130-fold-fold 3-days p.i., however there was no further increase in expression 

on day five or day seven.  KE37 cells expressed higher relative levels of ADP mRNA one-day 

p.i. however level of expression decreased five and seven days p.i. In contrast, Jurkat cells 

expressed 5-logs more ADP mRNA than BJAB cells one-day p.i.  This high level of expression 

was maintained the second day after infection (Figure 8).  Jurkat cells were not evaluated 

beyond three-days post infection due to considerable amounts of cell death in the cultures.  

Overall, Jurkat cells, which expressed the highest amount of ADP protein among the 

lymphocyte cell lines, also expressed the highest amounts of ADP mRNA compared to the other 

two lymphocytic cells.  These high levels of expression in Jurkat cells were detected as early as 

one-day post infection. Interestingly, though protein expression of ADP was low in both KE37 

and BJAB cells, ADP mRNA was not completely absent from KE37 and BJAB cells.  

3.2 Characterization of ADP mutant viruses 

 Our previous results suggested a potential link between ADP non-expression and long-

term cell survival and probable viral persistence. We hypothesized that over expressing ADP in 

persistently infected lymphocytes could reverse the latent infection cycle and allow the virus to 

productively infect them.  To test our hypothesis we utilized ADP mutant viruses, which either 

did not express ADP (pm534- deletion mutant virus) or overexpressed ADP (VRX021- ADP over 

expression virus) and compared these cells with cells infected with wild type dl309.  To 

characterize the expression of ADP, we infected lung epithelial cells with 20PFU of wt, pm534 

or VRX021 and determined the viability and ADP expression at 48hrs p.i. by acquiring them by 

flow cytometry (Figure 9). At 48h p.i. similar percent of A549 cells expressed hexon protein 

(94%).  As expected cells no ADP protein (4.6 %) could be detected in the cells infected with the 
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ADP deletion mutant virus pm534 (Figure 9). In contrast ADP expression was detected when 

epithelial cells were infected with wt ADP expressing virus (dl309) or over-expressing ADP virus 

(VRX021). Though hexon levels are comparable between these two infections (93% vs. 87%), 

there is more ADP expression in the cells infected with VRX021 (MFI of 230) when compared to 

ADP expression in cells infected with dl309 (MFI of 116).  These data demonstrate that pm534 

does not express ADP in infected cells, and that the VRX021 virus results in higher levels of 

ADP expression than that observed in cells infected with wt virus.  Levels of ADP peak earlier 

than late hexon protein levels in VRX021 infected cells. ADP levels remain absent 48h p.i. in 

pm534 infected cells.  

      As ADP has been reported to be responsible for cell death of infected cells, we next 

evaluated viability of epithelial cells infected with the different ADP-expressing viruses.  Pm534 

infected cells had minimal cell death and contained similar percent of viable cells as mock 

infected cells 48h p.i. In contrast, less than 10% of the cells infected with VRX021 

overexpressing virus were alive 48h p.i.  As expected, 48h p.i. less than 30% of the epithelial 

cells infected with the wt virus remained viable (Figure 7). 

3.3 ADP overexpression has no impact on the cell survival in persistently infected 

lymphocytes. 

We next evaluated the effect of over expressing ADP in persistently infected cell types. 

BJAB, KE37 were infected with wt and vrx021 viruses and the viability of cells determined by 

Trypan Blue exclusion assay. Cell viability was determined on day 1, 3, 7 and 10 post infection. 

Both BJAB cells and KE37 cells exhibited minimal differences in the amount of cell death 

between cells infected with wt ADP expressing viruses and cells infected with ADP over-

expressing viruses.  Some limited amount of cell death was observed in KE37 cells infected with 
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both wt and overexpressing viruses at day 7 and 10 p.i. In KE37 cells infected with wt dl309 and 

vrx021 the percentage of viable cells was considerably higher (90% and92% respectively) on 

day 3-post infection before the fraction of viable cells fell considerably to 55%and 45% 

respectively on day 5 before recovering on day 7 and at later time points (data not shown).  

There was minimal effect on the cell viability of BJAB cells even when infected with ADP 

overexpression virus with high fraction of viable cells (90-95%) (Figure 10 A). Interestingly 

infection with the ADP-deletion virus did not increase the percent viable fraction in either BJAB 

or KE37 cells. 

3.4 ADP is differentially regulated in persistently infected cells  

We saw no difference in cell death induced following infection of persistently infected 

lymphocytes with the over-expression virus so we next wanted to confirm if this was happening 

in spite of high expression of ADP in our cells. We were surprised to see ADP expression in 

BJAB and KE37 cells infected with a wt virus similar to ADP expression levels observed when 

infected with VRX021 virus (ADP over expression) (Figure 10 B). Again, the percentage of cells 

expressing ADP is much lower than the percentage of cells expressing hexon protein in both 

cells infected with wt or the ADP overexpressor.  We also looked the ADP transcripts in 

lymphocytes infected with ADP overexpressing virus (VRX021) (Figure 11) to compare with 

transcript levels detected in cells infected with wt dl309 (Figure 8). Again, both BJAB and KE37 

cells contained ADP mRNA; however, the levels remained logs below those observed in Jurkat 

cells infected with the same virus.  For example, one-day p.i. Jurkat cells contained two and five 

logs more ADP mRNA than KE37 cells and BJAB cells, respectively.  
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3.5 Loss of ADP can convert lytically infected lymphocytes to a persistent infection 

Jurkat cells were infected with the 3 viruses and cell viability was monitored 1, 3, 7 and 

10 days p.i.  As expected all Jurkat cells infected with wt or ADP overexpression viruses were 

dead by 10-day p.i. and both infections demonstrated higher expression of ADP protein than 

observed in either BJAB or KE37 cells (Figure 12A&B). In sharp contrast, the Jurkat cells 

infected with ADP deletion mutant (pm534) remained viable. The T cell line infected with pm534 

(ADP deletion mutant) had a remarkably high percentage of viable cells (70% on day 10) and 

continued to live well past day ten (data not shown).  Moreover, thirty-three days p.i. high levels 

of viral DNA were still detected in these cells (4.2 x 108 Ad genomes/ 107 cells) suggesting that 

the virus did indeed persist in these cells. Our findings suggest that in order for the virus to 

persistently infect host cells, ADP expression needs to be down regulated. Loss of ADP seems 

to have allowed the lytically infected cells to survive much longer than they are known to, and 

could potentially lead to viral persistence in them. This is interesting because Jurkat infected 

with Ad5 usually dies 6 to 7 days post infection due to abundant ADP expression in them.  

3.6 ADP expression has minimal impact on the total virus yield  

As the loss of ADP expression seems to correlate with persistent infections and lytically 

infected cells have higher expression of ADP we wanted to see if ADP expression had an 

impact on virus yield. To study the impact of ADP expression on the amount of virus produced, 

the three-lymphocyte cell types BJAB, KE37 and Jurkat cells were infected with 100PFU per cell 

of dl309, pm534 and VRX021. Cells and supernatant were harvested on day 3, 8 and 11 post 

infection and assayed for virus yield by plaque assays. Jurkat cells expectedly produced a 

higher titer of the viruses than the persistently infected KE37 cells at all times p.i., and higher 

than infected BJAB cells at 3 and 8 days p.i. Interestingly, BJAB cells infected with pm534 

produced more viruses than BJAB cells infected with WT or VRX021 (Figure 13).   We are 
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currently continuing this experiment by evaluating cell associated virus production versus virus 

in the supernatant. 

3.7 Differential early gene expression patterns in persistently infected lymphocytes 

In order to evaluate the difference in gene expression dynamics in lytic and latent 

infections, we evaluated the early gene expression patterns in BJABs. BJAB cells were infected 

with 100PFU per cell of dl309 and protein lysates were collected at different time post infection. 

We used western Blotting to detect the Ad5 early protein (E1A and E2A) levels during the early 

phase of lymphocyte (BJAB) infection and was compared with viral protein expression in lung 

epithelial cells (A549). The uninfected BJAB cells were used as the negative control and wt 

dl309 infected A549 cells were used as the positive control in this study. We examined the 

protein expression of E1A and E2A from one to seven days p.i. Our preliminary data shows 

that E1A is expressed beginning on day one post infection, but in very low amounts. The 

expression of E1A is however detected in higher levels as the infection proceeds into day 

seven (Figure 14).  

From previous studies and based on our preliminary data, it appears as if the 13S 

isoform (48kDa) is expressed first and the 12S isoform begins to be detected from day seven 

post infection. It is also noted that the E1A is expressed in abundance from 7 to 14 days post 

infection (data not shown). In contrast to E1A expression, E2A-DBP expression is less robust 

than E1A, with increasing expression moving onto day seven (Figure 14). Similar to the trend 

observed in trans-activating E1A, the DNA binding protein E2A also shows increased 

expression pattern as the infection moves into its second week (data not shown). In 

comparison to E1A and E2A expression in the lymphocytes, these genes are expressed in high 

levels within 20hrs post infection in permissive lung epithelial cells (Figure 5) (McNees et al., 

2004) indicating a delayed expression of Ad genes in a lymphocyte population.  
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3.8Transactivating E1A may not be required for the expression of DNA binding protein 

In order to study the role of E1A in the expression of other early Ad genes, we evaluated 

the expression pattern of DNA binding E2A in the absence of E1A using western blotting 

analysis. In order to validate the effect of the mutant virus we performed western blotting 

analysis on mutant’s infected A549 cells. Protein lysates were collected at 24 hrs and 48 hrs 

post infection. We then blotted for E1A and E2A. As expected there were no bands in lanes 

containing viral proteins, whereas those lanes containing lysates prepared from cells infected 

with wild type dl309 did contain bands at appropriate molecular weight. Surprisingly, we noticed 

E2A expression in the mutant lanes despite the absence of E1A (Figure 15).  This prompted us 

to evaluate E1A less E2A expression in persistent cell types. The uninfected A549s were used 

as the negative control and the Ad5 infected A549s were used as the positive control. We 

examined the expression of E2A in the absence of E1A (by replacing E1A with early promoter of 

CMV virus) on day one to seven-p.i. As shown in Figure 15, despite the lack of E1A region, 

E2A is detected at day one and three p.i., however, the proteins levels drastically decreased on 

day five post infection and only traces of E2A were observed on day seven p.i. E2A expression 

in the absence of E1A raises the possibility of an alternate gene expression pattern in the 

adenovirus (Figure 16). 
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Figure 6 Expression of ADP and the hexon gene differs among persistently and lytically 
infected cell.  

Flow Analysis of ADP vs. Hexon expression in different cell types. Monoclonal mAb specific for 
ADP was used at a dilution of 1:50 and intracellularly stained before acquiring the data in Flow 
Cytometry. Hexon is an indicator of a productive infection. Ab specific for hexon was used at a 
dilution of 1:100. FITC labeled secondary Ab was used at a dilution of 1:100. The data is 
representative of three identical repeat experiments. 
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Figure 7 Viability of Lymphocytes infected with wild type Ad5 dl309 virus at different time 
points post infection compared with viability of lytically infected A549 cells.  

Trypan Blue Exclusion Assay determined viability of persistently infected lymphocytes BJAB 
and KE37 in comparison to lytically infected T lymphocyte cell type Jurkat. Lung epithelial A549 
cells were used as a control. Cell viability was conducted by diluting the cells with 0.2% Trypan 
Blue at a ratio of 1:1 and viability obtained by automated cell counter.  
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Figure 8 ADP mRNA transcript levels in different cell types.  

The mRNA levels were quantified by RT-PCR with primers designed from Integrated DNA 
Technology software. The different cell types were infected with 100pfu/cell of wild type dl309. 
The cells were harvested for mRNA isolation at different time post infection. mRNA obtained 
were converted to cDNA by RT-RXN and then quantified using Real Time Q-PCR. The data 
was normalized to E1F1 and against BJAB day 1 post infection.  
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Figure 9 Validation of ADP mutant viruses. 

 Epithelial cells infected with Ad5 mutant viruses (pm534; ADP deleted, vrx021; ADP over-
expressor and wt dl309; wt ADP) at 24h and 48hpost infection were fixed in dark with 1% HCHO 
and then subjected to permeabilization. Monoclonal mAb specific to ADP were used at a dilution 
of 1:25 followed by APC labeled secondary Ab at a dilution of 1:50. Hexon was used as an 
indicator of productive infection used at 1:100 dilution. The cells were then acquired by flow 
cytometry and analyzed using FlowJo software. The Isotype IgG was used as a control. 
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Figure 10 A. Infection of BJAB and KE37 cells with ADP over-expressing virus (VRX021) 
have no overt impact on cell survival. 10 B. Differential regulation of ADP in persistent 
cell lines 

A.Trypan Blue Exclusion Assay on BJAB, KE37 cells infected with wt300, pm534 and VRX021. 
10 uL of infected sample was diluted in 10 uL of Trypan blue and the cells were counted using 
Countess-Automated Cell Counter. B. The suspension cells on day 10 post infection were fixed 
in dark with 1% HCHO and then subjected to permeabilization. Monoclonal mAb specific to ADP 
were used at a dilution of 1:25 followed by APC labeled secondary Ab at a dilution of 1:50. 
Hexon was used as an indicator of productive infection used at 1:100 dilutions. The cells were 
then acquired by flow cytometry and analyzed using FlowJo software. The Isotype IgG was 
used as a control. 
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Figure 11 ADP mRNA transcript levels in different cell types.  

The mRNA levels were quantified by RT-PCR with primers designed from Integrated DNA 
Technology software. The different cell types were infected with 100pfu/cell of ADP 
overexpressor VRX021. The cells were harvested for mRNA isolation at different time post 
infection. mRNA obtained was converted to cDNA by RT-RXN and then quantified using Real 
Time Q-PCR. The data was normalized to E1F1 and against BJAB day 1 post infection.  
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Figure 12 A. Cell viability of Jurkat cells infected with Ad5 mutants. B. Viral gene 
expression in Jurkat cells infected with ADP mutant and wt viruses 

A. Trypan Blue Exclusion Assay on BJAB, KE37 and Jurkat cells infected with wt300, pm534 
and VRX021. 10 uL of infected sample was diluted in 10 uL of Trypan blue and the cells were 
counted using Countess-Automated Cell Counter. B. The suspension cells on day 10 post 
infection were fixed in dark with 1% HCHO and then subjected to permeabilization. Monoclonal 
mAb specific to ADP were used at a dilution of 1:25 followed by APC labeled secondary Ab at a 
dilution of 1:50. Hexon was used as an indicator of productive infection used at 1:100 dilutions. 
The cells were then acquired by flow cytometry and analyzed using FlowJo software. The 
Isotype IgG was used as a control. 
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Figure 13 Infection of lymphocytes with ADP-overexpressing virus does not greatly 
impact virus titer.  

 Virus titer was determined by plaque assay at a time when the respective infections is at its 
peak measured by the peak hexon expression. The above figure shows the virus titer 
determined at day 3, 5 and 10-post infection.  
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Figure 14 Changes in the expression of viral proteins in E1A less mutant infected BJAB 
cells. 

 BJAB cells were infected with 100PFU/cell of dl309. Protein lysates were made at different time 
post infection by using RIPA buffer and prepared a lysate cocktail by diluting it in 2X SDS buffer. 
The samples were run on 12% Mini Protean Gel obtained from Bio-Rad at 100 V and 
transferred at 100 V for 1 hour. The transferred membrane was then blocked overnight with milk 
and primary antibodies used at a dilution of 1:20. Horseradish peroxidase labeled secondary 
antibody was then used at 1:5000 in addition to 1:1000 of anti-biotin. Images were developed at 
5 seconds, 30 seconds and 5 mins exposure to X-ray sensitive film in a dark room. 
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Figure 15 Changes in the expression of viral proteins in E1A less mutant infected A549 
cells.  

A549 cells were infected with 10PFU/cell of Ad-CMV-GFP, which replaced the E1A gene with a 
CMV promoter. Protein lysates were made at different time post infection by using RIPA buffer 
and prepared a lysate cocktail by diluting it in 2X SDS buffer. The samples were run on 12% 
Mini Protean Gel obtained from Bio-Rad at 100 V and transferred at 100 V for 1 hour. The 
transferred membrane was then blocked overnight with milk and primary antibodies used at a 
dilution of 1:20. Horseradish peroxidase labeled secondary antibody was then used at 1:5000 in 
addition to 1:1000 of anti-biotin. Images were developed at 5 seconds, 30 seconds and 5 mins 
exposure to X-ray sensitive film in a dark room. 
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Figure 16 Western Blotting for DBP in the absence of E1A in BJAB infected with dl309.  
The BJAB cells were infected with 100PFU/cell of Ad-CMV-GFP, which replaced the E1A gene 
with a CMV promoter. Protein lysates were made at different time post infection by using RIPA 
buffer and prepared a lysate cocktail by diluting it in 2X SDS buffer. The samples were run on 
12% Mini Protean Gel obtained from Bio-Rad at 100 V and transferred at 100 V for 1 hour. The 
transferred membrane was then blocked overnight with milk and primary antibodies used at a 
dilution of 1:20. Horseradish peroxidase labeled secondary antibody was then used at 1:5000 in 
addition to 1:1000 of anti-biotin. Images were developed at 5 seconds, 30 seconds and 5 mins 
exposure to X-ray sensitive film in a dark room. 
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CHAPTER 4: DISCUSSION 
	  

Adenovirus Death Protein is encoded presumably to aid the effective cell-to-cell spread 

of adenovirus during the final stages of infection. ADP is believed to achieve this by forcing the 

cell to lose its membrane integrity and lyse. The exact mechanism of ADP action in releasing 

the virions however is unclear. One of the differences between a lytic life cycle and persistent 

infections is the ability of the virus to encode gene products leading to death of its host cell and 

ability to make progeny virions. In order to understand the viral gene expression in persistently 

infected lymphocytes in comparison with well-studied lytic infection in epithelial cells, this study 

investigated the role of ADP in viral persistence by evaluating cell death associated with its 

expression, and the total virus yield. This study has also potentially discovered one of the most 

important functions of ADP in determining the fate of viral life cycle in cell types that is 

previously not known. 

We began evaluating ADP expression in lymphocytes (BJAB, KE37 & Jurkat cells) and 

compared the expression in lytically infected A549 cells. Expectedly, we observed low ADP 

expression in cell types harboring persistent infections (BJAB & KE37 cells) and in abundance 

in Jurkat cells (Figure 6). Interestingly, there exists a clear difference in the levels of ADP 

expression in A549 and the different lymphocytes. While Jurkat cells expressed ADP levels 

much higher than those seen in BJAB and KE37, the levels did not match those observed in 

A549 cells. Given the role ADP is known to play in infected cells, low expression in persistent 

cell types is understandable, as any ADP in these cell types would result in cell death and 

jeopardize long-term survival of the viral genome inside the host. These findings suggest that 

though the virus lytically infects the Jurkat cells, there exists a tighter regulation of this gene in 

lymphocyte cells than in epithelial cell types.  
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We also evaluated the viability of lymphocytes infected with wild type Adenovirus. While 

BJAB and KE37 cells had a higher fraction of viable cells throughout the time period under 

study, the percentage of viable Jurkat cells decreased drastically by day seven-post infection 

and eventually died. A549 cells typically die 48-72 hrs post infection (Figure 7). These findings 

supported our previous results, which relate the ADP expression and cell death.  

Since ADP expression is associated with death of the host cell, we further investigated 

to determine if overexpressing ADP in persistent cell types would alter the viral behavior in 

lymphocytes by reversing viral persistence to adopt a lytic cycle consequently killing the cell. We 

evaluated the ADP expression in all three lymphocytic cells infected with ADP over expression 

virus VRX021. Disappointingly, our attempt to overexpress ADP was unsuccessful as the ADP 

levels in BJAB and KE37 continued to be dismal, while Jurkat cells did not show much increase 

in ADP expression in comparison with the wild type levels. Since ADP were not expressed at 

expected levels the viability of persistent cells were high though Jurkat cells had higher 

percentage of dead cells at time points measured (Figure 10). 

Differential gene regulation is further illustrated when we evaluated the levels of ADP 

transcripts in these cell types. Jurkat cells with high ADP expression also expressed the highest 

levels of ADP mRNA at all-time points evaluated when compared to the other two lymphocytic 

cells. Since BJAB and KE37 cells did not express adequate ADP, we expected to see lower 

levels of ADP transcripts in them. To our surprise, we detected at least 130 fold increase in ADP 

transcripts in BJAB 3 days post infection and KE37 cells also expressed relatively high levels of 

ADP transcripts on day one before the expression is down regulated (Figure 8 & 11). 

Production of ADP transcripts without materializing into a protein product indicates a potential 

regulation of ADP at the level of mRNA transcripts. This is interesting given that other gene 

products in the E3 region are expressed while only ADP is consistently and intensely regulated 

in these cell types. The exact mechanism underlying this differential regulation is not clearly 
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understood. According to our study so far ADP is tightly regulated in certain lymphocytic cells 

that attempts to over express ADP in those cell types were unsuccessful. Future studies to 

determine if ADP does act as switch between lytic and persistent infections, ADP can be 

overexpressed artificially by introducing retrovirus based vectors carrying ADP gene with a 

promoter that is constitutively active.  

We also analyzed the effect of ADP knockout on lymphocytic cell types that support lytic 

infection like Jurkat cells. Our results confirmed our initial hypothesis that ADP knockout would 

allow the virus to persist in cell types that typically harbor lytic infection. Jurkat cells, which 

usually die 7-8 days post infection-survived up to indicative of viral persistence. This clearly 

demonstrates that ADP could potentially act as a switch between lytic and persistent infections 

(Figure 12). The fact that ADP belongs to early E3 region of adenoviral genome and that it is 

expressed in abundance during late stages of infection provides us a cue that the E3 11.6kDa 

product indeed has a specialized function.  

It is well known that ADP is expressed during late stages to facilitate release of new 

virions. However, it is unclear if ADP itself has any impact on the total amount of virus produced 

in a cell type. We explored this possibility by determining the virus yield in these cell types. It 

appears as though ADP has no impact on the total virus yield as Jurkat cells, which are robustly 

infected typically produced higher titers than persistently infected BJAB and KE37(Figure 13).  

Function of ADP seems limited to causing cell death by lysis, which could be utilized by the 

virus to turn on and off latency in a cell type.  

It is evident that ADP expression appears to be closely related to the corresponding late 

gene expression hexon in lytically infected cell types. In sharp contrast, persistently infected 

lymphocytic cells also yield a productive infection (measured by the levels of late gene hexon), 

but express ADP in low levels. We also showed that BJAB and KE37 cells yield far less titer of 

virus than the Jurkat cells. There is a possibility where even though late structural genes are 
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expressed in BJAB and KE37 cells, products necessary for the completion of  virus assembly is 

not made. Those products may impact the overall ADP expression. Another possible stimulus 

that may affect ADP expression could be the amount of virus made in a specific cell type. The 

stimulatory signals could be due to excessive crowding of the cell following the assembly of new 

virions.  

Also in our study, we evaluated the early viral gene expression in persistently infected 

BJAB to determine if other viral genes are also differentially regulated in these cell types. Our 

preliminary results did support our hypothesis, where transactivating E1A and DNA binding 

protein E2A had a delayed expression in comparison with lytically infected A549 cells (Figure 

14). It was necessary to evaluate the expression of E1A and E2A-DBP as they drive the viral 

gene replication helping maintain viral genome over a period of time. We detected higher levels 

of E2A than E1A from day 7-14 (data not shown). Since, it was previously shown that E1A loss 

can be compensated by E4orf6/7, we sought to investigate if E2A-DBP expression is 

independent of E1A expression. Our preliminary results suggest that E1A may not be required 

to drive the expression of E2A-DBP (Figure 15 & 16). This unique behavior might help maintain 

the Ad5 genome without full viral replication in latently infected cells. Future studies need to 

confirm our findings and characterize their gene expression pattern over longer period of time 

and analyze the change in gene expression pattern, when latently infected cells are reactivated. 

All studies characterizing adenovirus have been carried in lytically infected epithelial 

cells. Adenoviruses are also known to infect some lymphocytes and go latent in them. Not 

much is known about the mechanism of viral persistence. Given that adenovirus is used in 

gene therapy to treat several diseases, it is important to fully understand how adenovirus 

infection of lymphocytes could change its biology, and in particular to fully characterize its 

latency.  A viral agent has long been suspected to play a role in the initiation of cancer. 
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However, no viral genes or gene products were detected from the cancer cells to support the 

hypothesis. The natural history of leukemia in children evolves around the pre-natal initiation of 

pre-leukemic clones (more so by chromosomal translocation) followed by postnatal promotion 

and series of secondary mutation. The adenovirus possesses certain specialized oncogenes 

that can initiate the cellular transformation by a hit and run mechanism. The adenovirus can 

mediate cellular transformation through an initial hit and then maintain the transformed state 

even in the absence of the viral molecules (Nevels et al., 2001). The Ad5 protein E4orf6/7 and 

E4orf3 are known to inhibit double stranded DNA break repair mechanisms.  While this may not 

be an issue during acute lytic infections, inhibition of this process in cells persistently infected 

with adenovirus could have a potentially devastating impact on the host cell. This includes 

possibly promoting DNA translocations, which could initiate the first step in leukogenesis. 

Honkaniemi E. et al. reported the increased detection of adenoviral DNA in Guthrie cards of 

children who develop Acute Lymphoblastic Leukemia (ALL) when compared to non-leukemic 

controls (Gustafsson et al., 2007). Given adenoviruses unique interaction with lymphocytes, 

there is a growing belief that adenovirus could initiate leukogenesis in neonates and develop 

into ALL in children under 5 years of age. Hence, it is important to fully understand the 

dynamics of gene expression of adenovirus in lymphocytes. 
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