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ABSTRACT 
 
 

DYNAMIC MODELS OF THE INSURANCE MARKETS 
 

BY 
 

Ning Wang 
 

August 2013 
 
 

Committee Chair: Dr. Martin Grace 
 
Major Academic Unit: Department of Risk Management and Insurance 

 
 
 
This is a multi-essay dissertation in the area of dynamic models of the insurance markets. I study issues 
in insurance markets by examining individual behavior and industry performance in dynamic settings. 
My first essay studies household life insurance demand and saving decisions by applying a 
heterogeneous-agent life cycle model with wage shocks and mortality shocks. This essay proposes the 
most important determinants of household life insurance demand, and shows the joint decision of life 
insurance purchase between couples. My second essay focuses on the property-liability insurance 
market, and aims to study the impact of one catastrophe event on an insurer’s underwritings and capital 
raising strategy. The two-period cash flow model is built to also explore what kind of insurers can 
benefit from catastrophic risk underwritings. My third essay extends the second essay by incorporating 
a dynamic cash flow model with a series of loss shocks. I find the dynamic interaction between the 
insurer’s balance sheet and its capital rationing resulting from loss shocks. The model generates a 
non-cyclical behavior of output changes in the insurance market, and this suggests the current 
asymmetric, unpredictable and random underwriting cycles are temporary responses to loss shocks.  
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Overview  

 

This dissertation aims to study issues in financial and insurance markets by examining 

individual behavior and industry performance in dynamic settings. In life insurance 

market, I focus on the household life insurance demand and saving decisions. I also 

explore catastrophic risk and underwriting cycles in the property-liability insurance 

industry.  

There is no consensus about the amount and the distribution of household life 

insurance holdings in empirical research due to the limited data of household life 

insurance purchases at the policy level (see Chambers, Schlagenhauf and Young, 2003; 

Grace and Lin 2007). I apply dynamic models with stochastic process to my research 

in exploring the relation of household life insurance purchases and household 

characteristics by a heterogeneous-agent life cycle model (see Chambers, 

Schlagenhauf and Young, 2009, 2011; Nishiyama, 2010). In my first essay, I construct 

a life cycle model of heterogeneous married households with wage shocks and 
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mortality shocks to quantitatively analyze household life insurance demand. Although 

the life insurance demand results in the model are higher than the observed data in 

Chamber, Schlagenhauf, and Young (2003), it is lower than their model results in 

2009 and 2011. I also discuss the reasons in this essay. My results suggest that the 

most important determinants of life insurance demand are financial vulnerability, the 

amount of financial support needed and life insurance premium. Moreover, this paper 

can contribute to the simulation of the joint decision of life insurance purchases 

between married couples, and analyze risk sharing between couples with wage shocks 

and mortality shocks. I find that if one receives a good wage shock, she/he will 

increase her/his labor time and life insurance coverage holding, while her/his spouse 

will decrease his/her labor time and life insurance coverage holding.  

In the property-liability insurance market, sharp price increases and large capacity 

swings follow catastrophic loss shocks, such as those caused by a catastrophic natural 

disaster or a significant macro economic event (see Winter 1988; Gron 1994; Grace 

and Hotchkiss, 1995; Gron and Winton 2001; Cummins and Nini, 2002; Doherty, 

Lamm-Tennant, and Stark, 2003; Grace and Klein, 2009). With the possibility of more 

frequent and severe catastrophe events, it is vital to understand how insurers and the 

insurance industry can respond in the post-catastrophe period.  

In my second essay, I extend a two-period risky debt model (see Cummins and 

Danzon, 1997) into a two-period cash flow model with one catastrophic risk for an 

insurer by involving both a reinsurance market and a costly external capital market. I 

focus on analyzing an insurer’s optimal strategy with capacity constraints or without 
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capacity constraints in an environment of catastrophic shocks. The model contributes 

to suggest that the insurer has an optimal capital structure in costly capital market, and 

the solvency ratio plays an important role in the interaction between its ability to sell 

new business and to raise external capital. I find that in the situation of a tight capital 

supply and high insurance demand, the positive relationship between catastrophic 

losses and insurance prices and the negative relationship between losses and insurance 

coverage capacity can be observed. The model also implies that one catastrophe event 

could act as an accelerated trigger, splitting insurers into high-quality ones and 

low-quality ones with respect to different underwriting efficiencies and capital raising 

abilities. The results indicate that the differences between good and bad insurers will 

be larger with more volatile catastrophes.  

Underwriting cycles in early studies are always described as smooth, symmetric 

and predictable curves (see Venezian, 1985; Cummins and Outreville, 1987; Chen, 

Wong, and Lee, 1999; Meier, 2006). In recent years, ups and downs of underwriting 

cycles are more likely to be asymmetric, unpredictable and random (See Boyer, 

Jacquier and Van Norden, 2012). In my third essay, I extend the model developed in 

the second essay by incorporating dynamic settings to explore an alternative source of 

“underwriting cycles”. I look at the “underwriting cycles” in output markets in the 

insurance industry by using a dynamic model inspired by the Real Business Cycle 

literature (see Winter, 1994; Kiyotaki and Moore, 1997). I claim the unpredictable 

“underwriting cycles” as temporary responses of the industrial coverage capacity to 

insured losses. I build a dynamic cash flow model of an insurer with a series of 
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catastrophe events in an environment of the costly external capital and insurance 

regulation to simulate the insurer’s optimal catastrophic risk intermediation strategy. 

The model contributes to show that the dynamic interaction between the insurer’s 

capital rationing and its balance sheet can generate the non-cyclical behavior of output 

changes if the insurer experiences a series of unexpected catastrophic shocks.  
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2 

	

The Life Insurance Demand in a 
Heterogeneous-Agent Life Cycle Economy 
 

Term life insurance can be purchased to mitigate financial problems resulting from 

premature death risk. By holding term life insurance, a household can hedge against 

the decline in total household income due to the death of a wage earner, and parents 

can provide financial security for dependents after their death.  

There is no consensus on the amount of household life insurance holdings in 

empirical research due to the limit of data sources. In this paper, I construct a 

heterogeneous-agent life cycle model of married households with wage shocks and 

mortality shocks to quantitatively analyze the life insurance demand by heterogeneous 

households. I focus on exploring the relation of household life insurance purchases 

and household characteristics. Moreover, this paper contributes to the understanding 

of the joint decision of life insurance purchases between married couples, and thus to 

the analysis of financial risk sharing between couples in a household with wage 
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shocks and mortality shocks. 

In my model, the peak of the household’s life insurance coverage holdings in the 

economy is on average $370,000 occurring at age 33. My results suggest that the most 

important determinants of life insurance demand are financial vulnerability, the 

amount of financial support needed and life insurance premium. I also find that the 

peak of life insurance demand for single-parent households is well before couple 

households. In addition, increasing the number of children attributes a large increase 

of life insurance demand in single-parent households, but has no significant effect on 

couple households. Moreover, I discuss the impact of wage shocks on the joint 

decision of life insurance purchases between couples: one’s good wage shock results 

in an increase of one’s working hours and life insurance demand, but a decrease of 

spouse’s working hours and life insurance demand.  

 

2.1 Introduction 

A household’s life insurance demand depends on the household characteristics and the 

economic situation. There is no consensus about the amount and the distribution of 

household life insurance holdings in empirical research since the data of household 

life insurance purchases is limited.  

Chambers, Schlagenhauf, and Young (2003) examine life insurance data from the 

SCF1 for 1995, 1998 and 2001, and find that the peak of life insurance holdings is on 

average $250,0002 in year 2001 dollars occurring around 50 years old. Grace and Lin 

                                                              
1  Survey of Consumer Finances 
2  $250,000 in 2001 can be adjusted to be $302,000 in 2009 by inflation rates. 
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(2007) examine SCF data for 1992, 1995, 1998, and 2001, and show the mean of the 

face value of household term life insurance in selected data is $366,2633 in year 2001 

dollars. They create a new financial vulnerability index, and find that the most 

significant relationship between life insurance holdings and financial vulnerability is 

among younger households from age 20 to 34. In addition, they find that older 

households from age 50 to 64 tend to use less life insurance to protect a certain level 

of financial vulnerability than middle-aged households from age 35 to 49. LIMRA 

International4 (2004) reports that the average life insurance coverage needed for a 

typical household is $459,0005 while the average life insurance owned is actually 

$126,000, which means the average underinsurance is more than $300,000.  

Chambers, Schlagenhauf, and Young (2009, 2011) construct an 

overlapping-generations (OLG) model to find an economic puzzle that life insurance 

holdings simulated in their model are much larger than their observed data in 

Chambers, Schlagenhauf, and Young (2003). The peak of life insurance holdings is 

twice as much as their empirical study in 2003, occurring at age 30 instead6. In this 

paper, I construct a dynamic model with household earnings simulated by stochastic 

process to quantitatively analyze life insurance holdings of heterogeneous households, 

and compare my results with the empirical study. As a result of my simulation, the 

peak of household life insurance holdings in the model economy is around $370,000 

                                                              
3  Their study shows the median, the mean, and the maximum of term life insurance holdings in their selected data 
are $56,700, $366,263 and $80,000,000 in year 2001 dollars, which can be respectively adjusted to be $68,700, 
$443,700 and $97,000,000 in year 2009 dollars. 
4  Life Insurance Marketing and Research Association International 
5  $459,000 in 2004 can be adjusted to be $ 521,300 in year 2009 dollars. Similarly, the following $126,000 and 
$300,000 in 2004 can be adjusted to be $143,100 and $ 340,700 in year 2009 dollars.   
6  They choose a small value of risk aversion (1.5) in their OLG model to provide a lower bound for estimation. 
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occurring at age 33. The simulated result is lower than the theoretical study from 

Chambers, Schlagenhauf, and Young (2009). I also discuss reasons why the life 

insurance holdings in my model turn out to be higher than the empirical study from 

Chambers, Schlagenhauf, and Young (2003).  

The SCF data contains information only on the total amount of life insurance held 

by each household, and not on the division of life insurance between couples. The 

dynamic model developed in this chapter can also be used to analyze the joint life 

insurance purchases decision of married couples.  

The literature on dynamic models with stochastic process shed light on my 

research. Hong and Rios-Rull (2007) build an OLG model to analyze the join decision 

of social security, life insurance and annuities for households. In their model, they 

assume that agents have a bequest motive and focus on the implications of social 

security under a variety of baseline economies that differ in the extent to which life 

insurance and annuities are available. Chambers, Schlagenhauf, and Young (2009) 

construct an OLG model to find the economic puzzle mentioned above, but they do 

not aim to explore the join decision of life insurance holdings in a household. 

Nishiyama (2010) develop an OLG model with uninsurable wage shocks to analyze 

the effect of spousal and survivors benefits on the labor supply of married couples. He 

extends a dynamic general-equilibrium OLG model with heterogeneous households 

and incomplete markets, calibrated to the 2009 U.S. economy, to study to what extent 

the spousal and survivors benefits possibly distort the joint labor supply decision of 

married households.  
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In this paper, I build on the model of Nishiyama (2010). Compared with his paper, 

I focus on studying life insurance demand of married couples with heterogeneous 

households and partial market equilibrium. To the best of my knowledge, few papers 

has analyzed the effect of wage shocks and mortality shocks on the join life insurance 

holding decision of married households by using a heterogeneous-agent life cycle 

model.   

Specifically, I construct a heterogeneous-agent life cycle model of married 

households with market wages and mortality shocks to quantitatively analyze the life 

insurance demand for heterogeneous households. In the model, parents are both 

altruistic towards each other as well as towards their children. They choose optimal 

consumption, working hours, and life insurance purchases to maximize their expected 

lifetime utility. Here I introduce the number of children by ages calibrated by USA 

data into household characteristics. The dynamic model in this paper can further help 

explore the relation of a household’s life insurance demand to its specific household 

characteristics and the economic situation. Household characteristics in this paper can 

include the marital status, the number of children, mortality risk, household wealth, 

household income, household age, household risk attitude and so on.  

My model is to explore the impact of some factors in benchmark economy in the 

model on life insurance demand. First, the life insurance demand by household ages 

suggests that the most important determinants of life insurance demand are financial 

vulnerability, the amount of financial support needed and life insurance premium. I 

find that financial vulnerability is the primary determinant of life insurance demand in 
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a household during its early ages when the household has low wage earning and 

saving wealth; while life insurance premium is the primary determinant during its late 

ages when the household faces highest mortality risk. Second, the results show that 

the peak of life insurance demand for single-parent households is well before couple 

households. In addition, an increasing birth rate can attribute a large increase of life 

insurance demand in single-parent households, but has no significant influence on 

couple households. Finally, I discuss the joint decision of life insurance purchases 

between couples in couple households: if one receives a good wage shock, she/he will 

increase her/his labor time and life insurance coverage holding, but her/his spouse 

will decrease his/her labor time and life insurance coverage holding.  

The rest of this chapter is structured as follows. Section 2.2 develops the 

heterogeneous-agent life cycle model in detail. Section 2.3 is the model calibration to 

U.S. data. In Section 2.4, I show the main numerical results, and analyze how 

household characteristics and economic factors can affect the life insurance demand in 

a household. Section 2.5 provides conclusions and discussions. Algorithm 

methodology and optimization solutions for this life cycle model are present in 

Appendix 2A and Appendix 2B.  

 

2.2 Heterogeneous-Agent Life Cycle Model  

In this section, I build a heterogeneous-agent life cycle model to quantitatively derive 

the optimal decisions of life insurance holdings, consumption expenditures and labor 

time in a household. The focus is the optimal decision-making for life insurance 
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purchases among heterogeneous households.  

 

2.2.1 Heterogeneous Households and Utility Functions 

The households in this model economy are heterogeneous with respect to several 

factors. One factor is household age, denoted by k = kmin, kmin+1…kmax. The 

household enters the economy when the husband’s age is over 20. For simplicity, I 

assume that the husband and the wife in a household are at the same age, and never 

get divorced.  

The number of children in each household is related to household age in the 

calibration. Note that the child in the model refers to an individual who is still 

younger than 20 years old. The wage rates per efficient unit of labor for each gender, 

w1 and w2, also vary at different household ages. In this model, the wage rate refers to 

the wage for one unit of labor hour and one unit of working ability. So one’s wage 

earning is the product of labor hours, wage rate per efficient unit of labor, and 

working ability.  

Two other heterogeneous factors are the husband’s and the wife’s working ability, 

denoted by e1 and e2 respectively, both of which are assumed to follow a Markov 

process and to be independent of each other. 

The parameter m has four values to specify four heterogeneous martial statuses 

among households: a married-couple household if m=0, a single-father household if 

m=1, a single-mother household if m=2, and a kids-only household if m=3. In this 

economy, I assume that all households are married couples at the very beginning. The 
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calibration of the marital status movement among heterogeneous households over the 

life cycle time is based on the mortality rate data.  

The beginning-of-period household wealth, a, is another heterogeneous factor. It 

changes according to the household optimal saving decision in last period, and the life 

insurance payment if the household marital status changes in last period. Here I 

should note that, compared with the beginning-of-period household wealth, 	 is the 

end-of-period wealth and denotes the optimal saving decision in the end of each 

period. In each period, it is determined by the net difference between household cash 

flow-in, including beginning-of-period household wealth, parents’ wage earnings if 

any, social security payment if any, and cash flow-out, including household 

consumption, and household life insurance purchasing cost if any.  

Therefore, we let s be the individual sate vector of a household in the model 

economy, s = (a, e1, e2, m, k).  

In this model economy, I assume the household’s utility function in each year to 

be a Cobb-Douglas and CRRA function, which depends on its current marital status m 

and the number of children n. I construct utility functions for heterogonous 

households by marital status as follows.  

First, utility functions of single-parent households (m=1 or m=2) are, 

U c,	ll,;	n,	m 1 	 	 	
	

/
	 		 	

,	

U c,	l2;	n,	m 2 	 	 	
	

/
	 		 	

,	

where c is household consumption at household age k; l1 is leisure time of the 
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husband, which is set to be 1 in the single-mother family; l2 is leisure time of the wife, 

which is set to be 1 in the single-father family; n is the number of children calibrated 

in this household year;		  is the index of the economy scale between 0 and 1, and it 

implies that two-adult household spends 2η times as much as a one-adult household 

for the same level of living standard since I assume that the couple can share 

consumption expenditures; the child-adult equivalency factor is 1/2; the relative risk 

aversion is ; α and (1-α) are elasticity of consumption and leisure time in the utility 

function. 

Then the following couple household’s utility function (m=0) is the sum of two 

utility functions above with a slight modification that the number of equivalent adults 

in a couple-household becomes (2+n/2), 

U c,	l1,	l2;	n,	m 0 	 	 	
	

/
	 		 	

	 	 	 				
	

/
	 		 	

.	

Finally, the utility function of children-only households (m=3) is,   

U c;	n,	m 3 	  n  
	

/
	 			

, 

where the number of equivalent adults in a kids-only household becomes n/2; leisure 

time for mother and father are both set to be 1; and all consumption commodities are 

going to the children. Here I set the economy scale  to be 1 since I assume that 

children do not share consumption commodities without parents’ custody. Then I sum 

up all equivalent adults’ utility to get total utility for the children-only household.  
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2.2.2 Household Optimization Problem of Expected Lifetime Utility 

In the model, household fund sources for each year are wags earnings, life insurance 

payments if any death and social security payments if any retirement, and funds are 

annually distributed into three categories: consumption expenditure, end-of-period 

wealth saved, and life insurance purchases. The household chooses the optimal 

decision path for each specific fund source and fund usage to maximize its expected 

utility over the lifetime. 

I assume that initial households are all married couples with some children at age 

20. In year k, each household receives working ability e1 for husband and e2 for wife, 

and faces mortality rates (1-φ1,k) for the husband and (1-φ2,k) for the wife. To 

maximize expected lifetime utility of a household, the adults will choose the 

following optimal decision rules together in each year: household consumption c, 

husband’s leisure time l1, wife’s leisure time l2, end-of-period saving wealth , 

husband’s life insurance coverage d1 and wife’s life insurance coverage d2. In this 

model, d1 and d2 are viewed as life insurance demand of the husband’s and the wife’s. 

Here I assume that life insurance can be purchased at the actuarially fair cost.  

If a household happens to become a single-father household, the amount of the 

wife’s life insurance payment d2 will be added into the household saving wealth. The 

single-father will then choose the optimal decision rules each year to maximize 

household utility in the following life cycle time: household consumption c, 

end-of-period saving wealth	 , his leisure time l2, and his life insurance coverage d1. 

The single-mother households in the model follow the same logic.  
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If a household becomes a kids-only household, the children will only choose the 

amount of household consumption and end-of-period saving wealth to maximize 

household utility.  

Let V(s) be value function of the household in individual state s. The optimization 

problem for the household in the life cycle model is as follows, 

Vk	 s 	 	 	 	 , , ; 	 , s 		 П , , | , , 	

(1) Control variables’ constraints, 

c	 	0;	

0	 	l1	 	1;	0	 	l2	 	1;	

d1	 	0;	d2	 	0;	

l1	 1,	d1	 0,	if	m	 2	or	3;	

l2	 1,	d2	 0,	if	m	 1	or	3.	

(2) The law of motion of household end-of-period wealth, 

 	 	 	 1 r 	a	 	w1,	k	e1	 1‐l1 	 	w2,	k	e2	 1‐l2 	 		 	 	

1 	ss	–	c	–	 1‐	φ1,k 	d1	–	 1‐φ2,k 	d2.	

(3) The law of motion of household beginning-of-period wealth,  

	 	 a 	 	d1,	if	m	 1	and	 3	or	m	 0	and	 2;	

	 a 	 	 	d2,	if	m	 2	and	 3	or	m	 0	and	 1;	

	 a 	 	 	d1 	d2,	if	m	 0	and	 3;	

	 	 a 	 ,	 otherwise.	

(4) The law of motion of household state variables, s 	 a , , ,	 ,	k 1 . 

Here, r is the interest rate; w1,k is husband’s wage rate per efficient unit of labor at 
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age k; w2,k is wife’s wage rate per efficient unit of labor at age k; 	,		  and 

	 	are all indicator functions; ss is social security payment per person above 65 

years old; φ1,k is survival rate for the husband at the end of age k; φ2,k is survival rate 

for the wife at the end of age k;		П ′ , ′ , ′ , ,  is the transition probability 

function in the optimization, which will be calibrated in Section 2.3.  

 

2.2.3 Population Distribution and Aggregation 

For population aggregation, I construct the population distribution function for 

heterogeneous households in different states. One household sate includes wealth 

amount, husband/wife’s working ability, marital status and household age.  

  Let x s 	be the household population probability density function at age k, and 

let X s 	 be the corresponding cumulative distribution function. The household 

population for each age is normalized to unity, 

∑
∗ 	 	1,	where	s = (a, e1, e2, m, k) 

The law of motion of the household population distribution is as follows,  

x s’ ds’	 	 ∑ 	 	 	 , ′∗ ∗ 	П , , | , , ;	

where s a ,	 , ,	 ,	k 1 .	

Then the aggregated values of the optimal wealth, consumption and life insurance 

demand by each household age for the whole population are as follows, 

Wk	 	 ∑ 	 	∗ 	

Ck	 	 ∑ 	 	∗
	 	

Dk	 	 ∑ 	 	∗ 	
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2.3 Model Calibrations 

In this section, I calibrate the model to match pertinent U.S. data. My calibration 

addresses preference parameters, household demographic distribution and household 

income distribution. Note that the consistency of the wealth distribution with U.S. 

data is essential to the model. 

 

2.3.1 Main Preference Parameters 

Table 2.1: Main Preference Parameters 

         Parameters  Notations Values 

Interest rate r 0.05 

Time discount factor β 0.94; 

Share of consumption in utility α 0.36; 

Index of household scale economies η 0.678 

Coefficient of relative risk aversion γ 4.00 

The number of wealth nodes imax 20 

The number of wage shock nodes jmax 5 

The number of marital status types mmax 4 

Initial household age kmin 1   (Real age 20) 

Retirement age kr 45  (Real age 65) 

Maximum household ages kmax 80  (Real age 99) 

Social security payment ss $16,500 
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Table 2.1 is a list of the main economic parameters in this model. These parameter 

values are all consistent with either the economic literature or U.S. historical data. 

In addition, I assume that all households have the same number of children for 

each age. I use the average number of children estimated by Nishiyama (2010), which 

is calibrated from the data of fertility rates at mothers’ ages. Figure 2.1 shows the 

estimated average number of children by household ages in this paper. 

 

 

 
Figure 2.1: The Number of Children by Household Ages 

 
 

2.3.2 Marital Status Transition and Calibration 

For simplicity, I assume that both the husband’s working ability and the wife’s 

working ability in this life cycle model are independent of his/her mortality rate. Thus 

the state transition function for households can be obtained by the following formula, 

П , , | , ,  = П ′ 	П ( 	| ) П	( | ) 

In this section, I focus on the marital status transition process and its calibration. 

All households are initially married couples. With certain probabilities and evolving 
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paths, initial couple-households turn to be heterogeneous with different marital 

statuses over the life cycle time.  

To simply specify probabilities of marital status movement, I assume that the 

husband’s mortality rate and the wife’s mortality rate are independent of each other. 

Here, survival rates by ages are cited from Table 4 of the 2010 Annual Statistical 

Supplement of the Social Security Administration. The household marital status 

transition probability matrix from state m at age k to state m’ at age (k+1) is 

П ′| . Then we have, 

	 	 	 	 	 φ1,k	φ2,k	 	 	 	 φ1,k	 1‐φ2,k 	 	 	 	 	 1‐	φ1,k 	φ2,k	 	 	 1‐	φ1,k 	 1‐φ2,k 	

П | 	 	 	 	 0	 	 	 	 	 	 	 	 	 φ1,k	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 1‐	φ1,k	 	

	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 φ2,k	 	 	 	 	 	 	 	 	 	 	 	 	 1‐φ2,k	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	

 

Figure 2.2: Population Distribution with Marital Status by Ages 

Figure 2.2 shows the population distribution with respect to marital status 
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calibrated in the model. 

 

2.3.3 Working Ability Transition and Wage Rate Calibration 

As I mentioned in Section 2.2.1, one’s wage earning is the product of working ability, 

wage rate, and labor hours. In this section, I build up the working ability transition 

process for both husbands and wives, and also calibrate the wage rate by ages for two 

genders by U.S. data.  

With idiosyncratic wage shocks for each household state, wage earners have 

access to different levels of working ability in the model. The motions of the 

husband’s working ability e1 and the wife’s working ability e2 are both assumed to 

follow Markov chains, and these two stochastic processes are independent of each 

other. The stochastic processes of e1 and e2 are as follows,  

ln	e1,j 1	 	ln	e1,j	 	 	z1,j 1	 	

ln	z1,j 1	 	 	 ρ	z1,j	 	 	ε1,j 1  where	ε1,j	~	N 0,	 	

ln	e2,j 1	 	 	 ln	e2,j	 	z2,j 1	

ln	z2,j 1	 	 	 ρ	z2,j	 	 ε2,j 1  where	ε2,j	~	N 0,	 	

               where z1 and	z2	 	 are persistent wage shocks of men and women. 

Nishiyama (2010) calibrates the income distribution for men and women by 

estimating these parameters above, which is consistent with the data from weekly 

earnings in CPS7. This numerical approximation yields the vector of persistent wage 

shock nodes and the Markov working-ability transition probability matrix for each 

                                                              
7  Current Population Survey  
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gender as follows, 

z1 = [0.3103, 0.5801, 1.0000, 1.7240, 3.2229] ; 

z2 = [0.3322, 0.5988, 1.0000, 1.6701, 3.0099] ; 

 

                       0.8979  0.1021  0.0000  0.0000  0.0000  

                       0.0308  0.8902  0.0790  0.0000  0.0000 

П 	| 	 	 П 	| 	 	 	  0.0000  0.0518  0.8964  0.0518  0.0000	

                       0.0000  0.0000  0.0790  0.8902  0.0308 

                       0.0000  0.0000  0.0000  0.1021  0.8979   

Using the data of 2009 weekly earnings in CPS, first of all, I calibrate median 

wage rates for both husband and wife from age 21 to 65. Here one is assumed to retire 

at age 65. The data shows that the median annual wage earning of a full-time 

employee for both genders is $739  52. Correspondingly in this model, median 

annual income is the product of benchmark wage rate per efficient unit of labor, 

median labor hours, and median working ability (1.0000). I assume that median labor 

time is 1/3 out of 1. So the benchmark wage rate in this economy should be w = 

$ (739  52)/ [(1/3)  1.0000] = $1.15284  105.  

Then I calculate the wage rate for each gender at each age by multiplying the 

benchmark wage rate w and the ratio of his/her median weekly wage at each age to 

the median full-time employee’s weekly wage ($739). Figure 2.3 shows original and 

OLS-adjusted wage rates for both husband and wife over the life cycle time. 
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Figure 2.3: Wage Rates by Ages and Genders 

Note that I cannot obtain the upper tail of the income distribution and wealth 

distribution in the model economy since the working ability transition probability 

function cannot produce a quite high income. Except the upper tail, both of the 

income distribution and the wealth distribution by ages calibrated in the model are 

consistent with U.S. data.  

 

2.4 Household Life Insurance Demand Results and Analysis  

In this section, I show the numerical results of the Heterogeneous-Agent Life Cycle 

model economy, and explore the determinants of life insurance holdings for 

heterogeneous households. I also analyze the impact of some factors in benchmark 

economy in the model on life insurance demand. 

Figure 2.4 shows the peak of life insurance demand in our model is around 

$370,000 occurring at age 33, and the demand begins decreasing rapidly after age 54 

by more than 10% per year.  



 

23 
 

The life insurance demand in the model is higher than observed data in Chamber, 

Schlagenhauf, and Young (2003). First, I assume that all households initially are 

married couples, which can increase overall life insurance holdings since a single 

household should have relatively less life insurance demand.  

 

Figure 2.4: Household Life Insurance Demand for Aggregate Population 

Second, the wage calibration is based on the income data of full-time employee in 

2009. This attributes a higher median value of wage earning than their data, and thus a 

higher amount of life insurance purchases. 

Third, savings in the model are smaller than their data, so households tend to 

purchase more life insurance to protect their financial security. I have the two 

following reasons. Considering that the wealth distribution in the real world is skewed, 

I calibrate the wealth distribution using the median value of household net worth in 

2007 from SCF instead of the mean value. The fact that the median value of net worth 

is less than the mean value leads to a smaller amount of saving wealth calibrated in 
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my model than the survey data. Additionally, the upper tail of the wealth distribution 

cannot be calibrated due to the limit of my model.  

Finally, the risk aversion coefficient is consistently equal to a high level of 4.0 

over the lifetime in my model, which may push life insurance demand up. If I change 

the coefficient of risk aversion to the same value (1.5) as Chambers, Schlagenhauf, 

and Young (2009), the peak of life insurance holding decreases to $320,000 occurring 

household age 37.  

 

Figure 2.5: Household Life Insurance Demand with Gamma being 1.5 

Figure 2.5 provides life insurance demand with a low risk aversion, 1.5. The 

results are smaller than the theoretical estimation in Chambers, Schlagenhauf, and 

Young (2009) and fit their observed data in 2003 better. However, in this way, there is 

no consistence of the calibrated wealth distribution in the model with the U.S. 

household net worth data in 2007.  
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2.4.1 Household Age 

Figure 2.4 shows the life insurance demand by household ages. During early ages 

from 20 to 30, households hold a relatively small amount of wealth and have 

relatively low earnings, and have an increasing number of children. They tend to save 

money and purchase a high level of life insurance holdings to provide financial 

security. On one hand, households continually increase life insurance purchases to 

satisfy their increasing financial support needed. On the other hand, wage earners of 

young households have the lowest mortality risk, so households choose to purchase 

high but not the highest life insurance coverage despite of quite a low life insurance 

premium.  

From age 31 to 40, households have the largest number of children and need a 

large amount of financial support from both saving wealth and life insurance 

purchases. Therefore, households keep purchasing high life insurance coverage to 

hedge mortality risk and wage shocks, and continue to save a lot to increase economic 

strength. The peak of life insurance holdings occurs at age 33. Since the number of 

children begins to decrease from age 37, life insurance holdings starts decreasing by 

less than 3% per year in the late of this period.  

From age 40 to 54, the number of children in a household continues to decrease 

and wealth is continuously accumulated. Households decrease life insurance 

purchases by between 3% and 10% per year. Figure 2.5 shows there is a much larger 

chance for people above 55 years old to die than those below 55, and mortality rates 

quickly increase after age 55. However, from age 55 to 65, households have almost no 
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children and possess the largest amount of wealth to provide financial security. 

Considering life insurance premium is much more expensive for them than before, 

they largely decrease life insurance purchases by above 10% per year as a result.  

The age distribution of life insurance holdings in the model suggests that the 

avoidance of financial vulnerability due to mortality shocks and wage shocks, the 

amount of financial support needed and the life insurance premium are the most 

important determinants of life insurance demand.  

 

2.4.2 Mortality Shock 

Figure 2.6 shows that life insurance demand greatly changes when I decline survival 

rates by 5%8 in the model. In this case, the household is not able to earn as much 

money as in the benchmark economy, and household consumption and welfare are 

both dropping considerably.  

 

Figure 2.6: Household Life Insurance Demand with Lower Survival Rates 

                                                              
8  Although it is unrealistic that the survival rate can be reduced by 5%, I test it to examine the impact of a 

mortality shock on life insurance demand. 
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In spite of a low income, households during early ages save much more money 

than in the benchmark economy, and purchase more life insurance coverage to 

provide financial security to protect households from the increased mortality risk. In 

contrast, households tend to have significantly less life insurance holdings than in the 

benchmark economy during late ages due to much higher life insurance premium. 

 

Figure 2.7: Life Insurance Demand by Genders with Lower Survival Rates 

Figure 2.7 further provides the changes in the life insurance demand for each 

gender. I notice that the wife’s life insurance holdings during early ages jump 

extraordinarily so as to hedge greater financial risk due to her higher death probability. 

I can also notice a large decrease of life insurance holdings for husbands among old 

households due to the much higher insurance premium.  

Based on the fact that survival rate for the wife is higher than for the husband in 

each household year, I can strengthen our inference that the avoidance of financial 

vulnerability is the dominating factor of life insurance purchases during household 

early ages and instead life insurance premiums are the dominating concern during 
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household late ages.  

 

2.4.3 Household Marital Status 

Figure 2.8 shows life insurance demands with respect to the different situations of 

marital status. Couple households follow the same tendency of life insurance demand 

movement as the whole population.  

My results show a slightly different situation for single-parent households. The 

single-parent household tends to save much more than couple households at the very 

early ages to avoid potentially high financial vulnerability due to the last adult’s death. 

However, the peak of life insurance purchases for single-parent households (around 

age 28) is well before couple households (at age 33) since the amount of financial 

support needed for single-parent households afterwards is smaller than that of couple 

households as the number of children decreases with household ages. 

 

Figure 2.8: Household Life Insurance Demand by Martial Status 
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2.4.4 The Number of Children  

Figure 2.9 shows the impact of the number of children in a household on life 

insurance demand. Compared to a slight increase in couple household’s life insurance 

purchases with the increasing number of children, there is a big jump of life insurance 

holdings for the single-parent households.  

The results show that raising the number of children in each household by 10% 

leads to 12.8% higher life insurance demand of single-father households and even 

15.6% higher life insurance demand of single-mother households. However, the life 

insurance demand of couple households increases only by 1.6% in this case. The 

results suggest that increasing the number of children attributes a high increase of life 

insurance demand in single-parent households, but has no significant influence on 

couple households. 

 

Figure 2.9: Household Life Insurance Demand with More Children 
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2.4.5 Household Income and Wealth 

Figure 2.10 shows the relationship between the husband’s life insurance demand and 

household wealth and his working ability at age 39. When the husband’s working 

ability becomes higher, his life insurance demand is increased which can provides 

stronger financial security in order to guarantee that remaining household members 

are able to keep the same level of living standard before and after his death.  

Figure 2.11 shows the husband’s life insurance demand is reduced when the wife’s 

working ability is higher. It is because of his prediction of less financial risk after his 

death. 

 
Figure 2.10: Husband’s Life Insurance Demand in Couple Households by 

             Household Wealth and His Working Ability at Age 39 
 

For the aggregate population, Figure 2.12 illustrates the simulation results of the 

joint decision of life insurance purchases between couples in couple-households. It 

implies that the more important wage earner holds higher life insurance coverage. It 

shows that with the wife’s working ability increasing by 5%, the husband’s life 
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insurance demand reduces on average by 4.7% and the wife’s life insurance demand 

grows up by 9.5%. Therefore, if one wage-earner receives a good wage shock, she/he 

will increase her/his working hours and life insurance coverage, and her/his spouse 

will decreases his/her working hours and life insurance coverage to maximize 

household utility. 

 
Figure 2.11: Husband’s Life Insurance Demand in Couple Households by        
          Household Wealth and His Wife’s Working Ability at Age 39 

 

 
Figure 2.12: Life Insurance Demand with a Higher Wife’s Working Ability 
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2.4.6 Household Welfare  

Figure 2.13 shows couple household’s welfare at age 39. It implies that household 

welfare is increasing with working ability increasing and wealth rising.  

 

Figure 2.13: Couple-Household Welfare by Wealth and Working Ability at 39 

 

2.5 Conclusions and Discussions 

In this paper, I construct a heterogeneous-agent life cycle model with market wage 

shocks and mortality shocks to explore the relation of a household’s life insurance 

demand to its specific household characteristics and the economic situation. The 

dynamic model and its calibration are discussed and the optimal decisions of saving 

wealth and life insurance purchases among heterogeneous households are found by 

numerical approximation.  

I discuss the impact of mortality shocks, marital status, the number of children, 

and wage shocks on life insurance holdings among heterogeneous households. The 

results suggest that the most important determinants of life insurance demand are 



 

33 
 

financial vulnerability, the amount of financial support needed and the level of life 

insurance premium. More importantly, this paper provides one way to simulate the 

join decision of life insurance purchases between married couples and show risk 

sharing within a household.  

The results in this chapter show us the same puzzle as Chambers, Schlagenhauf, 

and Young (2009) do, that the peak of that in the model economy is occurring much 

earlier than their observed data from SCF in 2003, and that the simulated amount is 

larger than their empirical study in 2003, although I obtain smaller results than them. 

This comes up with several interesting questions to explore: whether the U.S. 

households underinsured or not, whether people are rational or not towards household 

financial products, and what kind of factors can bridge the gap between empirical 

research and theoretical model in studying the life insurance demand.  

In future research, it is worth matching this heterogeneous household life cycle 

model economy more exactly with the recent SCF data economy, which can make the 

simulation result more convincing and the comparison result more useful. I will focus 

on examining the demographic distribution, income distribution, wealth holdings and 

life insurance holdings in data economy, and also improving the calibration to match 

the observed data. In addition, I will try to introduce funeral cost, annuities, divorce 

and remarriage into the model economy in order to find a way to perform the 

matching experiment. I also aim to conduct sensitivity analysis to explore the impact 

of some other factors on life insurance holdings, such as risk attitude, social security 
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payment, interest rate, annuities holdings, divorce rate and remarriage rate. It is also 

interesting to examine the change of household welfare by dismissing life insurance 

holdings in the model. 
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3	
	

A Two-Period Cash Flow Model with 
Catastrophic Risk  
 

In the property-liability insurance market, sharp price increases and large capacity 

swings follow catastrophic loss shocks. Taking Hurricane Katrina (2005) 9  for 

instance, some insurance companies stopped insuring homeowners in the disaster area 

because of the high costs from Hurricanes Katrina, or raised homeowners' insurance 

premiums to cover their risk.  

At the firm level, after a catastrophe event, insurers turn out to have different 

post-catastrophe performances. For example, eleven property/casualty insurers 10 

became insolvent resulting from Hurricane Andrew (1992). Some of the state’s largest 

homeowners insurers had to obtain resources from their parent companies and others 

had to use their surplus to pay Hurricane Andrew claims. Allstate, as an example, paid 

out $1.9 billion, $500 million more than it had made in profits from its Florida 

                                                              
9  Hurricane Katrina, the fourth catastrophe, is not only the most expensive natural disaster on record but also an 
event that intensified discussion nationwide about the way natural and man-made disasters are managed. 
10  Ten in Florida and one in Louisiana. 
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operations from all types of insurance and investment income on those funds over the 

53 years it had been in business.11  

With the possibility of more frequent and severe catastrophe events, it is important 

to understand how insurers and the insurance market respond. In this paper, I study an 

insurer’s optimal strategy in a two-period cash flow model with capacity constraints 

and without capacity constraints, given the possibility of catastrophic shocks. I further 

analyze how catastrophic shocks can affect the industrial organization of the 

property-liability insurance market by examining the insurers’ post-catastrophe 

performance.  

The model contributes by suggesting that the insurer has an optimal capital 

structure in a world where capital is costly. Further, the firm’s solvency ratio plays an 

important role in the interaction between its ability to sell new business and to raise 

external capital. I find that the insurer’s supply capacity is decreased and the external 

capital shrinks due to capacity constraints after catastrophic shocks.  

I also find that one catastrophic event could act as an accelerated trigger, splitting 

insurers into high-quality ones and low-quality ones with respect to different 

underwriting efficiencies and capital raising abilities. I claim that a well-capitalized 

insurer could have advantages in both the ability to sell new business and the ability 

to raise external capital. Such an insurer may even gain additional profit when it can 

take advantage of the insurance price increase and the insured’s loyalty after 

catastrophic shocks. 

                                                              
11  “Catastrophes: Insurance Issues”, Insurance Matters, May 2013. 
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3.1 Introduction 

Both the Capacity Constraint Theory (Winter, 1988; Gron, 1994) and the related Risk 

Over Hang Theory (Gron and Winton 2001) suggest that sharp price increases and 

large capacity swings will follow a capital shock, such as those caused by a large 

natural disaster or a significant macro economic event. This is, in part, due to 

relatively high capital adjustment costs (see Winter 1988, 1991; Gron, 1994). In the 

property-liability insurance market, the mismatch between an unexpected catastrophe 

loss and loss reserves could cause a capital shortfall and a premium increase for the 

entire insurance industry (see Gron 1994; Gron and Winton 2001; Cummins and Nini, 

2002; Doherty, Lamm-Tennant, and Stark, 2003).  

To examine the effect of catastrophe events on the insurance industry, it is 

essential to understand how insurers and the insurance market respond to catastrophic 

shocks in different environments.  

One can imagine that, once a catastrophe occurs, the demand expansion and the 

supply reduction turn out to cause premiums to grow sharply and then gradually 

moderate as the insurance industry becomes sufficiently recapitalized. During this 

process, insurers with a comparative advantage in intermediating catastrophic risks 

may take advantage of the market price increase and relatively low cost of external 

capital, while other insurers may encounter insolvency or significant financial stress 

resulting from capital insufficiency. Further, one catastrophic event could act as 

trigger, splitting insurers into high-quality ones and low-quality ones with respect to 

different underwriting efficiencies and capital raising capabilities. Meanwhile, new 
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investors, who would supply capital to incumbent insurers and new insurers, may 

enter the insurance market after the event. With incumbent insurers categorized by 

their ability to withstand serial catastrophes and new comers continually entering into 

the market, changes in the insurance industry are sequentially occurring.  

In this paper, I construct a two-period cash flow model with catastrophic risk for 

an insurer in order to find whether and how catastrophic shocks can influence 

insurance prices and the industrial organization in the property-liability insurance 

market. The focus of the model is to understand how a catastrophe event can affect 

the insurer’s underwriting decision and capital structure with capacity constraints.  

I find the profit-maximizing insurer has an optimal capital structure in an 

environment with costly capital. The model suggests that in the situation of a tight 

capital supply and high insurance demand, a positive relationship between 

catastrophic losses and insurance prices and the negative relationship between losses 

and insurance coverage capacity can be observed.  

The two-period model contributes by showing that the insurer’s solvency ratio 

plays an important role in the interaction between the insurer’s balance sheet and 

external capital rationing. I also find that the insurer with a good solvency position 

prior to the shock could obtain advantageous position in both the ability to sell new 

business and the ability to raise external capital. This indicates that the difference 

between good and bad insurers will be larger with more volatile catastrophes. In the 

future, I also quantitatively derive the condition in which the insurer can benefit from 

underwriting catastrophic risk.  
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This chapter is structured as follows. Section 3.2 is literature review. Section 3.3 

develops a two-period cash flow model with catastrophic risk for an insurer. In section 

3.4, I solve the model and also analyze the insurer’s optimal catastrophic risk 

intermediation strategy in two different cases: without capacity constraints and with 

capacity constraints. In section 3.5, I show some implications developed from this 

model for a potential empirical study. Section 3.6 provides conclusions and 

discussions.  

 

3.2 Literature Review 

By the Capacity Constraint Theory and the related Risk Over Hang Theory, the 

short-run insurance industry’s supply curve is upward sloping when a capacity 

constraint becomes binding, and that it is costly for insurers to raise new capital 

immediately following a negative capital shock because of agency and bankruptcy 

costs. Negative shocks to claims or industry capital can substantially reduce industry 

capacity, shifting the supply curve to the left to push up the price (see Winter, 1988, 

1991, 1994; Gron, 1994).  

In the literature, many papers provide support for some of the findings of the 

Capacity Constraint Theory in the property-liability insurance industry. Several 

studies have found that unanticipated decreases in the insurance industry capacity can 

cause higher profitability and prices (see Winter 1988, 1994; Gron, 1994; Doherty and 

Garven, 1995). Grace and Hotchkiss (1995) show the great effects of shocks to the 

general economic variables on the insurance underwriting performances measured by 
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profitability. Doherty, Lamm-Tennant, and Starks (2003) check the temporal and cross 

sectional variation in insurance company stock prices after 9/11, and find insurers 

suffering the lowest losses with less leverage were able to exploit the post-loss hard 

market. This implies that insurers could make profit if they can develop a successful 

catastrophic risk intermediation strategy. Grace and Klein (2009) indicate that insurers 

have substantially raised insurance rates and reduced their exposures after the intense 

hurricane seasons of 2004 and 2005, and that there has been substantial market 

restructuring in Florida but significantly less so in other states. This is really due to 

the fact that Florida’s market is subject to many more shocks than other markets. They 

also show the evidence that catastrophes can influence the insurance industrial 

organization. 

Researchers have also built models to study the relationship between shocks and 

capitalization. Froot, Scharfstein, and Stein (1993) develop a portfolio model of 

corporate risk management to show that capital-market imperfections can make 

risk-neutral insurers appear to be risk averse and to be more risk averse if there is a 

negative shock to internal capital. This portfolio model is extended to research shocks 

in the insurance industry. Gron and Winton (2001), for example, conclude that 

nonlife-insurers will reduce their willingness to engage in correlated business 

activities when past risks cannot be easily diversified or hedged. This kind of model 

suggests that negative shocks to capital can decrease the industry capacity.  

Cagle and Harrington (1995) and Cummins and Danzon (1997) both develop cash 

flow models to predict an ambiguous relationship between the insurance price and a 



 

41 
 

loss shock based on different assumptions about the effects of shocks on demand 

elasticity (also see Grace, Klein and Kleindorfer, 2004). Specifically, the model of 

Cagle and Harrington (1995) is a one-period cash flow model for the insurance 

market equilibrium with the costly capital market assumption. Cummins and Danzon 

(1997) build a two-period risky debt model for an insurer with new equity 

endogenously issued in the second period. In their model, the costly capital market 

and the capacity constraint are not emphasized.  

In this paper, I extend these two models into a two-period cash flow model with 

catastrophic risk for an insurer by involving both a reinsurance market and an external 

capital market. In this model, I aim to study the impact of catastrophic shocks on the 

insurer’s next-period optimal strategic choices of the underwriting capacity quantity 

and the capital structure under different environments of financial markets.  

 

3.3 Two-Period Cash Flow Model with Catastrophe Risk  

 

Figure 3.1: Time Line of the Two-Period Cash Flow Model for an Insurer 

In this section, I develop a two-period cash flow model with one catastrophic event 

for an insurer to explore the insurer’s optimal catastrophe risk intermediation strategy.  

In this two-period model, the insurer originally has retained earnings e0 as initial 
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endowment, and one catastrophe event occurs during the first period. Figure 3.1 

shows the time line in this model.  

At the beginning of each of these two periods, the insurer collects annual premium 

πQ from the insured, where π is the insurance premium per unit of coverage and Q is 

the total insurance coverage. I assume that the premium π is exogenously determined 

in the first period, and the insurer chooses its optimal post-catastrophe premium in the 

second period.  

The insurer also raises external capital. Here I treat external capital as one-period 

debt, which is issued by the insurer at an amount of e at the beginning of each period 

and is repaid with a total amount of external capital cost, R, at the end of the period. In 

the real world, the insurer can raise the capital both from debt holders with interest 

cost and equity holders with agency cost and adjustment cost. Here I use debt holders 

instead of equity holders because it is easy to calculate the cost of the capital in each 

period. 

Meanwhile, the insurer purchases reinsurance coverage of βQ, where β is the ratio 

of reinsurance coverage to the total coverage, and C denotes the reinsurance premium 

per unit of reinsurance coverage. Here β is between 0 and 1, and β = 0 means no 

reinsurance while β = 1 means full reinsurance.  

At the end of each period, the insurer indemnifies the insured for covered losses 

lQ and receives the reimbursement of βlQ from the reinsurer. Here l can be viewed as  

unit loss that is the loss incurred per dollar insured. We can denote L = lQ as the loss 

incurred. At the same time, the insurer repays the due debt R back to external capital 
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holders.  

In this model, the insured event occurring during the first period can cause 

different levels of losses: liQ with probability of , and li < lj, if i < j, where i, j = 1, 

2, … I. Here li is the loss incurred per dollar insured in case i. I assume that the 

expected value of loss incurred is equal to the total insurance coverage, ∑ Q = 

Q. Correspondingly, each economic variable in the second period would have different 

states with superscript “i”. Here we can also denote Li = liQ as the total loss incurred 

in case i. If we set  to be the threshold for the amount of catastrophic loss, a 

catastrophe event in this paper could refer to the event, whose loss, Li, is more than .  

In this model, b is defined as the ratio of assets to liabilities, and I also refer to it as 

the solvency ratio. If b is equal to or more than 1, the insurer is solvent. Here, b 

impacts the insurance coverage Q, the external capital cost R, and the reinsurance 

premium C. Let bi denote the same ratio for each state i in the second period. Similarly, 

Qi , Ri, Ci, ei, and βi all denote the same economic variables as previous ones for each 

state in the second period. Thus bi should have impact on Qi , Ri, Ci, ei, and βi in the 

second period. 

I also make assumptions with regards to the following functions. I assume that the 

insured will purchase more insurance with a lower premium  and a higher solvency 

ratio b. Therefore, the demand function for insurance coverage Q( ,  is a concave 

function with   0, 	 	0, 	 	 0, 		 	 	0, where subscripts are used to 

denote partial derivatives. The cost function of reinsurance per unit of coverage C(b) 

is a convex function with 	 0, 	 	 0. My basic assumption here is that the 
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reinsurance premium will increase as the insurer has a lower solvency ratio, and it 

increases at an increasing rate (see Froot, 2001). The cost function of external capital 

, 	 is a convex function with   0, 	 	0, 	 	 0, 	 	0 . 

Considering deadweight costs should be an increasing function of the amount of 

external capital, I assume that R will go up, at an increasing rate, as the insurer issues 

a larger amount of debt e. I also assume that issuing debt will be more costly when the 

insurer becomes more likely to be insolvent, and it changes at an increasing rate. 

Then the insurer’s expected cash flow in the first period should be expressed by 

{e0 + [π - C(b)β - (1-β)∑ rf
-1]Q(π,b) + e – R(b, e)rf

-1}, where rf is the risk-free 

rate. In the second period, the cash flow of state i in this model economy should be 

{[πi – Ci(bi) βi - (1-βi) rf
-1] Qi(πi, bi) + ei – Ri(bi, ei)rf

-1}. To maximize the profit within 

two periods, the insurer would choose the optimal amount of external capital {e, ei} 

and reinsurance ratio { β, βi} for each state i in both of these two periods, and set up 

the optimal premium {πi} for each state i in the second period. The optimization 

problem of the profit for the insurer in this model is as follows, 

   Max Profit  = e0 + [π - C(b)β - (1-β)∑ P l rf
-1]Q(π,b) + e – R(b, e)rf

-1 

{e, ei, β, βi,πi}   + rf
-1∑ P {[πi – Ci(bi) βi - (1-βi) rf

-1]Qi(πi, bi) + ei – Ri(bi, ei)rf
-1}                 

s.t.  

                b = 	
	 	

	 

                bi =   
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3.4 The Insurer’s Optimal Strategy Analysis 

In this section, I discuss the optimization solutions for the model in two different cases: 

we want to look at the insurer’s choices of catastrophic risk intermediation strategy in 

the costly external capital market, but let us look at the risk free capital market at first. 

 

3.4.1 Case One: Risk Free Capital Market 

In the first case I examine, the cost of capital is assumed to be equal to the risk free 

rate. Thus conditions (3.1) and (3.2) below will hold in risk free capital market for the 

marginal cost of reinsurance and external capital.  

C(b) = Ci (bi) =                                                  (3.1) 

R(b,e)= Ri (bi, ei) = rf                                                (3.2) 

These two conditions imply that the insurer can choose any reinsurance ratio βi 

between 0 and 1 and raise any feasible external capital ei from external capital owners 

without any extra charge. In other words, there is no need for the insurer to reserve 

funds to prepare for future loss payments. Based on the First Order Conditions (FOCs) 

and the comparative statics analysis of the optimization problem under these two 

conditions, the following results can be obtained: 

 = 0                                  (3.3)  

	 					                                                 (3.4) 

Equation (3.3) describes the fact that the solvency ratio of the insurer, b, has no 

impact on the insurance demand Q, the reinsurance cost C, or the external capital cost 

R, because the insurer can always raise revenues as high as it needs with no extra risk 
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charge.  

Equation (3.4) is the price elasticity of insurance demand in each state during the 

second period. It implies that the second-period premium of the insurer will be 

determined by its specific price elasticity in each state, and has nothing to do with the 

previous loss payment.  

All in all, in a risk free economy, the insurer’s solvency position does not matter 

and a catastrophic shock has no effect on the insurer’s underwriting and capital 

structure. In such a situation, neither the Capacity Constraint Theory nor the Risk 

Over Hang Theory has any effect at all.  

 

3.4.2 Case Two: Costly Capital Market 

The second case I examine assumes the capital is costly. When the marginal cost of 

capital is greater than the risk-free rate, the conditions (3.1) and (3.2) should be 

changed into inequities (3.5) and (3.6) such that,  

C(b), Ci (bi) >                                                    (3.5)  

R(b,e), Ri (bi, ei) > rf                                                 (3.6) 

In this case, the insurer tends to choose an optimal intermediation strategy to reserve 

funds to make preparations for expected future loss payments. From the FOCs and the 

Comparative Statics Analysis of the optimization problem, I can obtain the following 

results with regards to the optimal catastrophic risk intermediation strategy. Note that 

Ti = πi- Ciβi -(1- βi)rf
-1 and i < j for all the equations below.  

	 	

	
 = Ti  βiQi ;                            (3.7) 
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Equation (3.7) is the insurer’s marginal profit with respect to its solvency ratio in 

state i, denoted by . Note that this marginal profit will be increased if the insurer 

has a better solvency position in this model, and this is because, in this model, 

consumers are willing to purchase insurance from more secure insurers.  

 =  = 	;                            (3.8.1) 

Equation (3.8.1) shows the equilibrium of these three markets in such an economy: 

the primary insurance market, the reinsurance market and the external capital market. 

It implies that the insurer’s solvency position plays an important role in the interaction 

between the ability to sell new business and the ability to raise capital. I also claim 

that the insurer with a good solvency position could have relatively high marginal 

profit, , and thus obtain advantages in both the ability to sell new business and 

the ability to raise external capital.  

	 	 	 	;                                    (3.8.2) 

	 	 	 ;			                                   (3.8.3) 

	 	 	1;                                      (3.8.4) 

Equation (3.8.1) to (3.8.4) show that the insurer has an optimal capital structure in 

costly capital economy. Specifically, Equation (3.8.2) shows that the marginal profit 

with respect to the insurance premium, 	 , is equal to the marginal cost of setting 

up the premium πi in the second period, which is 	 . Equation (3.8.3) 

states that the optimal βi is the reinsurance ratio when the marginal cost of purchasing 

such reinsurance, , is equal to the marginal profit of reinsurance . 

In addition, Equation (3.8.4) implies that the optimal ei is the amount of external 
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capital when the marginal cost of raising such capital, 1, is equal to the 

marginal profit of external capital . 

| |∗	| |
	;                                     (3.9)  

Equation (3.9) describes the effect of losses in the last period on the next-period 

insurance price, the sign of which is determined by cross partial derivative  and 

the first derivative of the solvency ratio with respect to premium . Firstly, let us 

assume  = 0 in order to check the sign in a simple way. If the insurance demand 

becomes more price elastic in response to a lower solvency ratio, with	  and  

being both positive, the effect of losses on premium will be negative. This situation 

can be plausible when people turn to buy other available insurance products at the 

same cost from insurers with higher solvency prospects, or when people make use of 

other effective mechanisms to mitigate risks rather than purchase insurance.  

If  is negative, which means the insurance price elasticity of demand will be 

lower in response to a lower solvency ratio, the relationship between previous losses 

and future premiums can be positive. This situation can be valid when there is a 

supply shock in the insurance industry, and people cannot find any other effective risk 

management solutions. The insurer can increase its own premium and the insured will 

purchase higher priced insurance products from insurers with relatively higher 

solvency prospects. This positive effect can be stronger when  is also negative, 

where  denotes the relationship between premium and solvency ratio. Based on 

the definition of bi in the optimization problem above, this negative relationship 

should be induced by a large shortfall of insurance coverage Q. Therefore, in the 
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extreme case with tight capital supply and high insurance demand in the insurance 

industry, the positive relationship of shock losses and premium can be observed.  

Let us now check this effect in an economy with the reinsurance market. The 

positive relation between the loss payment and the premium would be greater when 

 is large and negative (costly) in the reinsurance market. This is consistent with 

the statement that price spikes after a shock would be larger when the reinsurance rate 

is more sensitive to the insurer’s solvency ratio during the period of a tight 

reinsurance market.  

Finally, I find that the positive effect of losses on the next-period premium can 

shrink when , which is recalled as the first derivative of coverage demand Q with 

respect to solvency ratio b, is larger. This means the effect will be smaller if the 

insured is more sensitive to the insurer’s solvency ratio. It tells us that the price spike 

is limited for the insurer with a relatively low solvency ratio after the shock since 

many customers tend to leave such an insurer. Therefore, it is more likely for these 

insurers to encounter insolvency after a catastrophic event. This also means the 

insurer’s solvency prospects matters as well-capitalized insurers have an advantage 

over less well-capitalized insurers. 

| |∗	| |
	 ;                                              (3.10) 

Equation (3.10) illustrates the effect of losses on the external capital, and the sign 

of the effect is determined by cross partial derivative  and first derivative of 

solvency ratio with respect to external capital . If  is negative, which means 

the external capital cost is more sensitive to the capital amount in response to a lower 
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solvency ratio, the relationship between losses and external capital can be negative. In 

this case, the external capital market is too tight, so the insurer tends to decrease its 

external capital, or makes its solvency ratio as high as possible to attract external 

capital. If  is positive, with the external capital cost being less sensitive in 

response to a lower solvency ratio, the external capital market is not tight yet and the 

insurer may directly access more external capital to cover higher losses.  

| |∗	| |
                                        (3.11)  

Equation (3.11) provides the effect of losses on the next-period reinsurance ratio. 

It shows that the effect will be small if the marginal cost of reinsurance 	is largely 

negative (costly). This implies that the insurer would avoid reinsurance solutions to 

transfer risks when the reinsurance market is tight.  

	
	

;                                            (3.12) 

Equation (3.12) is the price elasticity of coverage demand in the costly external 

capital market. It shows that the insurance premium in each state in the costly capital 

market is determined not only by its specific price elasticity but also by its overall 

marginal profit and its solvency position in each state. It means that changes in 

premium in the costly capital market can be induced by changes in the insurer’s 

solvency position. If we let  = 0, this equation will be the same as the equation 

(3.4) derived in the risk-free capital market, in which the insurer’s solvency ratio does 

not matter at all.  

Δ 	 1 .     (3.13) 

The difference between the insurer’s overall profits in two states i and j is shown 
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by Equation (3.13). From the previous analysis, I can conclude that there is a chance 

for the insurer with a high solvency ratio to have a larger expected profit when it pays 

larger losses in the first period, denoted by Δ 0.  

The first term in Equation (3.13), , can be interpreted as 

underwriting premium spiking after a loss; and the term  

is the extra external capital cost due to a loss. The term 1  is the loss 

payment difference between two states. This equation shows that the possibility of a 

positive profit difference between these two states can be increased when the highly 

solvent insurer can take advantage of price spikes and the insured’s loyalty in 

post-catastrophe insurance sales, thus reducing the effect of penalties of a costly 

reinsurance rate and high external capital costs after shocks. This is also the condition 

in which the insurer can benefit from catastrophic risk coverage across these two 

periods in this model economy.  

 

3.5 Implications for the Empirical Tests 

Implications for the empirical study are provided in this section to examine the results 

developed from the two-period cash flow model in costly capital market. The tests 

will be finished in future research.  

   In the two-period model, I focus on the effect of catastrophic shocks on the 

changes of premium and coverage capacity for a representative insurer. By examining 

the implication of heterogeneous firms’ post-catastrophe performance in the model, I 

also explore what kind of insurers with catastrophic risk exposures can obtain 
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advantageous position after a catastrophe event.  

 

3.5.1 Hypothesis I and Its Empirical Testing Strategy 

Recall that Equation 3.9 describes the effect of losses on the next-period insurance 

price. The sign of this effect is determined by  and . If  is negative, 

this means the insured would like to purchase higher priced insurance products from 

insurers with relatively higher solvency prospects when there is a capital shock due to 

a catastrophic event. This situation can go further when  is also negative, which 

implies a large shortfall of insurance coverage, Q. Further, an insurer with a low 

leverage ratio and a high solvency ratio can claim a relatively higher insurance price 

in the post-catastrophe market. Equation 3.9 also shows that the post-catastrophe 

insurance price will be larger when the reinsurance rate is more sensitive to the 

insurer’s solvency ratio, with  being large and negative. So the post-catastrophe 

insurance price spike can be strengthened in hard reinsurance market. Therefore, I can 

develop Hypothesis I as follows. 

Hypothesis I: With an internal capital shortage after a catastrophic shock, the 

relationship between the insurer’s losses and next-period insurance price in 

catastrophe prone lines will be positive.  

Note that the relationship can be influenced by the insurer’s underwriting portfolio, 

capital capacity, firm characteristics and the reinsurance market situation.  

To test this hypothesis, I would use the information from all property-casualty 

insurers with hurricane risk exposures from 1990-2012, and define the hurricane risk 
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prone line of business as the sum of direct premium written in homeowners, farm 

owners, auto physical damage, commercial multi-peril (non-liability), and inland 

marine. I assume that the price elasticity of the insured’s demand can be consistent 

within one kind of catastrophe events, the hurricanes. I use an OLS regression to test 

Hypothesis I. The empirical model for insurer i can be built as follows, 

Pricei,t = β0 + (Loss incurred/Total asset) i, t-1 + H_indexi, t-1  

       + 	Capacity i, t-1 + Dummy_hard t + New_equity i, t 

       + Leverage_ratio i, t-1 + Solvency_ratio i, t-1 + ROE i, t-1 

       + Log (asset) i, t + Dummy_single i, t + Dummy_public i, t 

       + Dummy_rating i, t + Reinsurance t + εi,t. 

In this regression, the dependent variable, Price, is the insurance price of 

hurricane risk prone line. Price is the ratio of (net premium written – underwriting 

expenses – dividends to policyholders) to the present value of accident year losses 

incurred (See Cummins and Danzon 1997). The explanatory variable is the ratio of 

losses incurred by hurricanes to total asset in the last period, denoted by (Loss 

incurred/Total asset).  

Many control variables will be chosen to describe the insurer’s underwriting 

diversity, capital capacity, financial quality, firm characteristics and the reinsurance 

market situation. The H_index is the Herfindahl index that indicated an insurer’s 

underwriting diversification in hurricane prone lines. For capital capacity, I develop 

three alternative proxy variables: Capacity is the ratio of equity capital amount Kt-1 to 

the average of Kt-1, Kt-2, and Kt-3 (See Winter 1994, Cummins and Danzon 1997); 
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Dummy_hard is one if the primary insurance market is hard, zero otherwise; 

New_equity is the amount of newly raised equity, including new equity issues and 

transfers from noninsurance parent corporations. Three proxy variables are 

incorporated to represent an insurer’s financial quality: Leverage_ratio is the ratio of 

liability to the policyholder’s surplus; Solvency_ratio is the total surplus to liabilities; 

ROE is the net income before dividend and tax divided by total equity capital. I also 

include the firm size as measured by Log (asset), a dummy for a single unaffiliated 

firm, and a dummy for a public firm to distinguish firm characteristics. 

Dummy_rating is one if the insurer’s A.M. Best rating is no lower than “A - -”, zero 

otherwise. Finally I add Reinsurance that is measured by the catastrophe reinsurance 

price index to represent to some extend the reinsurance market is hard.  

In addition, I develop the following two empirical tests for Hypothesis I by 

incorporating the previous OLS model into different subgroups of the original sample.  

First, I find in the two-period model that the positive effect of losses on the 

next-period premium can shrink if the insured is more sensitive to the insurer’s 

solvency ratio. Since the capital elasticity of demand for the commercial line is higher 

than the personal line, I can extend Hypothesis I that the positive effect between 

losses and next-period insurance price, indicated by the coefficient	 , can be larger 

for a commercial line insure than a personal line insurer. We can divide the sample 

into two subgroups, commercial line insurers and personal line insurers. Here I define 

an insurer as a commercial line insurer if the direct premiums written in 

catastrophe-related commercial lines of business are more than 50% of the insurer’s 
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total premiums written, while a personal line insurer is the insurer that concentrate 

more on personal lines of business. To test this extension hypothesis, the same 

regression as the one applied to Hypothesis I above can be conducted for both 

subgroups, and then the estimated coefficients can be compared with each other.  

Second, considering the price elasticity of demand for hurricane risk is higher in 

Florida than in New York (see Grace and Klein, 2004), the positive effect above can 

be predicted to be larger for insurers that underwrite hurricane risk mainly in Florida 

than those that underwrite hurricane risk mainly in New York. The sample can also be 

divided into two subgroups, insurers with more hurricane risk prone exposures in 

Florida and insurers with more exposures in New York. Another regression can be 

conducted to these two subgroups with the same methodology and proxy variables as 

those used to test Hypothesis I. Then the estimated coefficients, , can be compared.  

 

3.5.2 Hypothesis II and Its Empirical Testing Strategy 

The previous two-period cash flow model implies that high-quality insurers may 

benefit from catastrophe events by taking advantage of price spikes and the insured’ 

loyalty in post-catastrophe underwritings, and by enjoying a relatively low 

reinsurance rate and a relatively low capital cost (see Equation 3.13). Therefore, one 

catastrophe event could act as an accelerated trigger, splitting insurers into 

high-quality ones and low-quality ones with respect to different levels of underwriting 

efficiencies and capital raising abilities. Therefore, I develop the following 

Hypothesis II. 
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Hypothesis II: A higher-quality insurer defined by firm performance during a 

catastrophic event possesses better catastrophic risk underwriting technology and 

higher capital rising ability.  

Note that better catastrophe risk underwriting technology will be indicated by 

wider diversification, larger amount of assets, lower combined ratios, and a longer 

catastrophic risk underwriting history. Higher capital rising ability will be indicated 

by a higher solvency ratio, a lower-risk investment strategy, a lower leverage ratio, a 

higher rating rank.   

To test Hypothesis II, the sample of insures can be all property-casualty insurers 

with hurricane-prone line underwritings. We can focus on the data in five main 

hurricane seasons in U.S.: 1992 (Hurricane Andrew), 2004 (Hurricane Iva), 2005 

(Hurricane Katrina), 2008 (Hurricane Ike), and 2012 (Hurricane Sandy). The 

following OLS regression will be applied to test Hypothesis II, 

Qualityi = + Combined_ratioi + H_indexi + Risk_exposurei  

          + Underwriting_agei + Reinsu_ratioi  

          + Solvency_ ratioi + Leverage_ratioi + Liquidity_ratioi 

          + Capacityi + Invest_riski + Growth_opportunityi  

          + Log(asset)i + Dummy_singlei + Dummy_publici 

          + Dummy_ratingi + εi. 

Here, the quality of insures with hurricane risk underwritings is assessed based on 

the change of Return on Asset (ROA). In the regression, the dependent variable, 

Quality, is measured by the difference between an insurer’s post-catastrophe ROA 
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value and its prior-catastrophe ROA value. Therefore, insurers with high quality are 

defined as the ones with relatively great value of Quality, while low-quality insurers 

are the ones with low value of Quality.  

Multiple explanatory variables will be chosen to represent an insurer’s 

underwriting technology, financial quality, and firm characteristic. The 

Combined_ratio is the ratio of claims incurred to net premium earned; Risk_exposure 

is equal to the ratio of the premium written for hurricane-risk-exposure line to the 

total net premium written; Underwriting_age is defined as how many years the 

insurer has possessed hurricane risk exposures; Reinsu_ratio is obtained by ceded 

premium/gross premium; Liquidity_ratio is dividing the sum of cash investment and 

short-term investment by invested assets; Invest_risk is ratio of the sum of stock, real 

estate and junk bond to total invested assets; Growth_opportunity is the change of net 

premium written in one year. All other proxy variables have been defined in the same 

way as those developed to test Hypothesis I.  

 

3.5.3 Hypothesis III and Its Empirical Testing Strategy 

The two-period model also suggests the larger the losses incurred by a catastrophe 

event, the stronger the separation between the high-quality insurers and low-qualities 

ones can be observed. So Hypothesis III is as follows. 

Hypothesis III: The standard deviation of insurers’ quality during catastrophic 

events is positively related to losses of these catastrophic events.   

The insurers chosen to test Hypothesis III should satisfy the following two 
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conditions. First, each of them should go through hurricanes in all of five hurricane 

seasons as listed in Hypothesis II. Second, in each seasonal year, their quality 

distribution is consistent with the quality distribution of all the sample insurers in 

Hypothesis II. Hypothesis III can then be tested through the following OLS regression 

with the aggregated data of these selected insurers in different hurricane seasons. 

  s.d._qualityt= + (Loss incurred/Total asset)t+ Capacityt+ Reinsurancet+εt 

The dependent variable, s.d._quality, is the standard deviation of the insurers’ 

ROA change in the same hurricane season. The independent variable is the ratio of 

total loss incurred by hurricanes to the total asset for all chosen insurers in that season. 

The control variables are Capacity (see Hypothesis I) and Reinsurance (also see 

Hypothesis I). Considering the sample size is small (5 hurricane seasons are included), 

I may just show some descriptive statistics instead. 

 

3.6 Conclusions and Discussions 

In the property-liability insurance market, the demand expansion and the supply 

reduction due to a catastrophe can cause premiums to grow sharply and then gradually 

moderate until the insurance industry becomes sufficiently recapitalized. During this 

process, good insurers with a comparative advantage of intermediating catastrophic 

risks may make use of the price change and relatively low external capital cost, while 

others may encounter insolvency problems resulting from capital insufficiency. One 

catastrophic event could act as trigger, splitting insurers into high-quality ones and 

low-quality ones with respect to different underwriting efficiencies and capital raising 
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capabilities. Changes in the insurance industry are sequentially occurring with a series 

of catastrophic shocks.  

The model developed in this paper contributes to find the interaction between the 

insurer’s capital rationing and balance sheet, in which the solvency ratio plays an 

import role. I discuss to some extent what kind of insurer can benefit from the 

catastrophic risk underwriting. 

In addition, I also have outlined the empirical testing strategy for three hypotheses 

implied by the two-period model. This study also contributes to the empirical test of 

Capacity Constraint Theory to find more about the impact of catastrophic shocks on 

the insurance industrial organization and the relation between the capital market and 

the insurance industry. 

In this chapter, I have analyzed the static effect of one catastrophic shock on an 

insurer’ optimal underwriting strategy and capital raising strategy in a two-period 

model. Beyond this two-period model, I would like to analyze the dynamic effect of a 

series of catastrophic shocks on the insurer’s optimal output strategies through the 

infinite time line in the next chapter. This dynamic economy can provide us the 

possibility to examine the existence and the reason of the so-called “underwriting 

cycle” in the property-liability insurance market.  
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4	
	

A Dynamic Model of Financial Markets: 
Catastrophes, Cycles, and Capacity Constraints 
 

One can observe that sharp price changes and large capacity swings follow a series of 

catastrophic loss shocks in the property-liability insurance industry. When observed 

prices and converge quantities diverge from equilibrium prices and quantities, the 

hard or soft market is defined. In early studies, one period of “underwriting cycles” 

consists of one hard market and one soft market. In recent years, ups and downs of 

“underwriting cycles” are no longer observed as smooth and predictable curves, and 

they are more likely to be asymmetric and random. Under the background of more 

frequent and severe catastrophe events in the property-liability insurance market 

nowadays, it is vital to research how an insurer responses to a series of catastrophic 

shocks, and to explore the sources of the “underwriting cycles”. 

In this chapter, I look at the “underwriting cycles” in output markets in the 
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insurance industry by using a dynamic model inspired by the Real Business Cycle 

literature. I build a dynamic cash flow model of an insurer with a series of catastrophe 

events in an environment with costly external capital and insurance regulation to 

simulate the insurer’s optimal catastrophic risk intermediation strategy.  

The model contributes to show that the dynamic interaction between the insurer’s 

capital rationing and balance sheet can generate the non-cyclical behavior of output 

changes if the insurer experiences a series of unexpected catastrophic shocks. My 

results cast doubt on the existence of the “underwriting cycle” in the property-liability 

insurance market that is defined to be cyclical and predictable, and help to explain the 

unpredictable “underwriting cycles” as temporary responses of the industrial coverage 

capacity to insured losses. 

 

4.1 Introduction 

A rich Real Business Cycle literature has developed dynamic models to understand 

the credit cycle, financial bubbles, and macroeconomic output behaviors. The Real 

Business Cycle theory views recessions and periods of economic growth as the 

efficient response to exogenous changes in the real economic environment. In the real 

business cycle model, the source of a firm’s output dynamics can be the amplifying 

effect of shocks on the balance sheet (see Bernanke and Gertler, 1989) or the leverage 

(see Kiyotaki and Moore, 1997; Szemely, 2010).  

In the property-liability insurance market, negative shocks to claims or industry 

capital caused by a large natural disaster or a significant macro economic event can 
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substantially reduce the insurance industry capacity and push up the price (see Winter, 

1988, 1991, 1994; Gron, 1994; Cummins and Nini, 2002; Doherty, Lamm-Tennant, 

and Stark, 2003; Grace and Hotchkiss, 1995). Grace and Hotchkiss (1995) show the 

great effects of shocks to the general economic variables on the insurance 

underwriting performances measured by profitability. Grace and Klein (2009) indicate 

that insurers have substantially raised insurance rates and reduced their exposures 

after the intense hurricane seasons of 2004 and 2005, and they also show the evidence 

that catastrophes can influence the insurance industrial organization. 

Considering catastrophic shocks can have impact on the insurer’s balance sheet 

and capital raising, it is exposed to catastrophic shocks that can affect the insurer’s 

outputs in each period. Thus the property-liability insurance market is a perfect 

environment to study the impact of a series of catastrophic shocks. In other words, the 

Real Business Cycle theory and the related dynamic model can be one way to study 

how a series of catastrophic shocks affect the property-liability insurance market and 

also to explore the sources of the insurer’s output dynamics. 

In the property-liability insurance industry, variations of supply capacity in the 

insurance market have a significant, negative effect on movements in pricing and 

profitability, generating the market conditions associated with the so-called 

“underwriting cycles”. A “soft” period is a period in which premiums are low, capital 

base is high and competition is high. After large claims, less stable companies quit 

from the market and even some stable and large companies are left with less capital. 

Then the market hardens with rapidly rising premiums and stringent underwriting 
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standards. Underwriters are less likely to take on risk in such a “hard” period.  

In early studies, the period of “underwriting cycles” can be predictable by 

empirical testing. Although the existence of underwriting cycles in property and 

liability insurance market is well established in the insurance economic literature, 

there is little evidence that insurers are able to forecast these cycles to make a profit. 

In recent years, ups and downs of “underwriting cycles” seem to be less 

predictable. For example, significant destruction in the property-liability insurance 

market can be found from Hurricane Andrew (1992), the 9/11 Attacks (2001) and 

Hurricanes Katrina and Rita (2005). These catastrophic shocks tend to largely 

decrease the insurers’ coverage capacity in the property-liability insurance industry, 

and the impacts seem to be unpredictable and the effects can remain for several years.  

My study contributes to the insurance economics literature in the field of the 

dynamic interaction between the capital market and the insurance industry, by using 

the Real Business Cycle methodology to develop a dynamic model of financial 

markets with catastrophic shocks. In this paper, there is non cyclical “underwriting 

cycles” in the property-liability insurance industry any more, and instead, the 

non-cyclical behavior of output changes resulting from the insurer’s responses to 

catastrophic shocks in the model economy can be observed.  

The analysis focuses on how a series of catastrophic shocks affect the insurer’s 

underwriting strategy and capital structure in a dynamic model economy. I find that 

the effect of a one time catastrophic shock could spread and amplify over time by a 

dynamic interaction between the insurer’s balance sheet and capital rationing. The 
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simulation results show that this dynamic interaction can generate a non-cyclical 

behavior of output changes when the insurer experiences a series of unexpected 

catastrophic shocks, and thus I cast doubt on the existence of the so-called 

“underwriting cycle” which is cyclical and predictable. I suggest that such behavior 

cannot be forecasted, and unexpected shocks can change the direction of the behavior. 

I also claim that the ex-ante magnitude and the period of the changes can be jointly 

determined in the insurance market and the capital market. 

The simulation results also imply that the changes of output markets can be larger 

when the shock is more volatile, the external capital market is tighter, and the 

solvency regulation is more relaxed.  

This chapter is structured as follows. Section 4.2 is literature review. In Section 

4.3, I develop a dynamic cash flow model with a series of catastrophic shocks for an 

insurer, and I focus on the dynamic interaction analysis. A linear quadratic 

approximation for the dynamic cash model is provided in Section 4.4. Section 4.5 

simulates the insurer’s optimal catastrophic risk intermediation strategy in benchmark 

economy, and shows a non-cyclic behavior of output fluctuations. In addition, section 

4.6 compares results of the experimental economy with the benchmark economy, and 

analyzes the factors that affect the magnitude of the output fluctuations. I show the 

empirical study of impulse response analysis in Section 4.7. Section 4.8 provides 

conclusions and discussions.  

 

 



 

65 
 

4.2 Literature Review 

In the literature, there is no consensus on the existence and the origin of the 

property-liability underwriting cycles. A number of rationales behind underwriting 

cycles exist in early studies. The “lack of pricing restraint” theory implies that the 

cycle is caused by the lack of pricing discipline (Stewart, 1987). Companies may 

price below cost to keep market share, for example. However, many would agree that 

an insurer with good performance could demand a relatively high premium, and does 

not have to lower its rate to sell more insurance, thus invoking a price war.  

Cycles might arise from ratemaking methods and forecasting errors in accounting 

and regulation (Venezian, 1985). This scenario predicts that underwriting cycles in 

property-liability insurance should follow a cosine wave-like pattern. Venezian (1985) 

examines the cycle by a second-order auto-regression effect in underwriting profits. 

During the time of his study, the period of the cycle can even be predictable for single 

lines of coverage in some literature. However, some other tests for the causes of a 

cycle, such as those by Harrington (1984), fail to find the cycle’s sensitivity to several 

related possible reasons, such as future loss expectations, adjustment lags, risk 

attitudes, and forecast errors.  

Although autoregressive estimations (see Venezian, 1985) are then generally used 

to predict the cycle’s period in both the U.S. and the international insurance markets 

(see Cummins and Outreville, 1987; Chen, Wong, and Lee, 1999; Harrington and 

Niehaus, 2001; also see Meier, 2006), Boyer, Jacquier and Van Norden (2012) claim 

that naive inference on the existence and the period of a cycle based on the point 
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estimates of autoregressive models is biased. They cannot find any evidence of 

cyclicality any longer when correcting for such a bias. Actually, with more frequent 

and sever catastrophe events occurring nowadays, ups and downs of the underwriting 

cycles are more likely to be asymmetric and random. This phenomenon also 

challenges the analysis of the existence, the reason and the prediction of the 

underwriting cycles.   

To the best of my knowledge, a few papers have explored the property-liability 

insurance underwriting cycles by using a multi-period model. Lin (2005) applies a 

multi-period model of insurance market equilibrium to obtain a dynamic solution for 

equilibrium price and quantity. This model aims to explain the phenomena of market 

prices failing to achieve Pareto optimality for a single period, and provide the insights 

into the volatility of insurance prices related to the underwriting cycle.  

Here, I should address one paper studying dynamics of insurance markets. Winter 

(1994) develops a dynamic cash flow model to analyze the price dynamics in 

competitive insurance markets. In my paper, the dynamic model is also built based on 

the cash flow analysis for an insurer. I also have one basic assumption the same as his: 

the external equity is more costly for an insurer than internal equity.  

My paper is different from Winter (1994) in the following aspects. First, his paper 

focuses on the price dynamics due to losses, while I focus on the persistent 

fluctuations in the supply market of issued coverage. We have different assumptions 

on the pricing in the competitive insurance market. He does not assume the 

conventional economic theory that premiums equal the present value of expected 
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policy claims in competitive insurance markets, and argues that average claims cannot 

be predicted with certainty due to aggregate uncertainty or common factors. He 

concludes that the accumulation of losses can attribute to jumps in premiums. In this 

paper, I follow the conventional economic theory with premiums being exogenously 

determined by expected losses, and focus on the changes of insurance coverage 

supply. Therefore, both of us have the specific linear cash flow equations for an 

insurer, but I do not involve the analysis of non-linear demand function of the insured. 

Actually, it is hard to define the specific form of non-linear demand equations, and 

thus it is impossible to calibrate the model for simulations.  

Second, we have a different source of a dynamic mechanism. In Winter’s paper, 

the dynamic non-linearity of premiums is due to dependence among the sizes of 

losses, conditional upon the events of losses. While, in my paper, the output dynamics 

does not result from the loss itself. Instead, I find that the effect of a one time 

catastrophic shock could spread and amplify over time by a dynamic interaction 

between the insurer’s balance sheet and its capital rationing. This dynamic interaction 

can produce a non-cyclical fluctuation of output changes in insurance market.  

Third, Winter’s paper implies that insurers with limited liability must maintain 

enough net worth to make credible to their promises to pay claims. So equity in his 

paper becomes a measure of capacity in the market. However, I use the Kenny Ratio, 

which is defined as the ratio of total premiums to total surplus, to relate the debt 

capital market to the insurer’s underwritings strategy in an environment of costly 

capital and insurance regulation. Note that Kenny Ratio is generally used by insurance 
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regulators to indicate an insurer’s solvency ratio.  

In my paper, I contribute by finding that the dynamic interaction between the 

insurer’s balance sheet and its capital rationing due to catastrophic shocks can general 

an output dynamics in the model. No simulation is conducted in Winter’s paper since 

the insurance demand function is not linear by his assumption and is hard to define. 

However, my paper develops the calibration by a linear quadratic approximation and 

provides simulated results of a non-cyclical behavior of output changes in the 

property-liability insurance market. The simulation is to show that the dynamic 

interaction can generate a non-cyclical fluctuation of coverage supply when the 

insurer experiences a series of catastrophic shocks. The results imply that such an 

asymmetric, nontraditional “underwriting cycles” can be resulting from the insurers’ 

responses to a series of loss shocks.  

I refer to the Real Business Cycle literature to construct the dynamic model in this 

paper. Kydland and Prescott (1982) envision that technological shocks shift the 

constant output growth trend up or down. In the model of Kiyotaki and Moore (1997), 

collateral constraints amplify the effects of shocks to the real economy. They show 

that small and temporary shocks to technology or income distribution can generate 

large, persistent fluctuations in output and asset prices.  

In this paper, I focus on the insurer’s output responses to catastrophic shocks by 

analyzing the profit-maximizing insurer’s optimal catastrophic risk intermediation 

strategies with capacity constraints in a dynamic economy. I find that a one-time 

catastrophic shock plays an important role in the interaction of the insurer’s capital 
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rationing and balance sheet due to the incorporating of Kenny Ratio into capacity 

constraints. Actually this implication is consistent with the claim in Chapter 3 that the 

solvency ratio impacts the interaction between the ability to sell new business and to 

ability to raise external capital in each period. But, further, the dynamic model in this 

chapter shows that the interaction effect will amplify and spread out over time. 

According to such a dynamic interaction, we can observe movements of output, which 

is the result of responding to a series of catastrophic shocks: the insurer’s supply 

capacity is decreased and the external capital largely shrinks due to capacity 

constraints after catastrophic shocks.  

 

4.3 Dynamic Cash Flow Model with a Series of Catastrophic 

Shocks  

In this section, I construct a dynamic cash flow model in which catastrophic shocks 

affect both the underwriting profit for the insurer and the capital cost in the capital 

market. This model extends the previous two-period model in Chapter 3 into an 

infinite time line model, and emphasizes the dynamic effect of the insurer’s solvency 

position, changed with catastrophic events, on the insurer’s underwritings and capital 

structures in an environment of the costly external capital market and the insurance 

regulation.  

In this dynamic model, I assume that the insurance price is unchanged all through 

the time line, and the price-taking insurer has perfect information to make a forecast 

of the expected future losses. In the model economy, catastrophic shocks have a dual 
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impact on the insurer’s cash flows: not only are they factors of the insurer’s 

operational income in balance sheet, but they also affect the insurer’s capital raising 

capability. The dynamic interaction between the insurer’s balance sheet and capital 

rising rationing turns out to be an amplifying transmission mechanism, by which the 

effects of a one time catastrophic shock persistently spreads to the following cash 

flow distributions.  

 

4.3.1 Time Line 

To explain the model construction in detail, I take the cash flows during the period t 

as an example. Figure 4.1 below summarizes all the positive and negative cash flows 

for a representative insurer from period t to period t+1.  

 

Figure 4.1: Time Line of the Dynamic Cash Flow Model for an Insurer 

At the beginning of the period t, the insurer has retained earnings Kt accumulated 

from all previous operations, and the retained earnings continue to be accumulated at 

a return rate of rt until the end of the period t.  

At the end of the period t, the insurer collects the total premium of tQt+1 for 

one-period coverage policies in period t+1. t is the insurance price that is the gross 
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premium per unit of coverage. Meanwhile, the insurer needs to pay for the total losses 

of tQt claimed during the period t, where t denotes the loss ratio, which is the ratio 

of coverage that incurs losses.  

In this model, I assume that the insurer is efficient in estimating expected losses it 

underwrites, with the price t = (1+ø) Et (t+1), where ø is the loading rate of the 

insurance industry to allow for a profit. A series of t here follow the stochastic 

process, whose calibration will be discussed in section 4.4. In other words, the 

premium t in this model is exogenously determined by the insurance industry. 

However, the insurer cannot predict the frequency and the severity of loss shocks, 

which is expressed as a one time positive or negative change of t. Here a high 

positive change of t that is above a threshold of catastrophic loss ratio can be viewed 

as a catastrophic shock.  

At the end of period t, the insurer also needs to repay the one-period debt et with a 

total amount of Rt. The debt is raised from the external capital market by the end of 

period t-1. Meanwhile, the insurer would raise new debt et+1 with a promised 

repayment of Rt+1 in the next period. In the real world, the insurer can also raise the 

capital from equity holders with agency cost and adjustment cost due to asymmetric 

information. Here I use debt holders instead of equity holders because it is easy to 

calculate the cost of the capital in each period.  

I assume that R is a convex function with   0, 	 	0, 	 	 0, 	 	0. 

This assumption follows a basic principal in the capital market that investors would 

increase (decrease) the capital cost when observing the fact that the insurer incurs 
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larger (smaller) losses and thus has a relatively worse (better) financial position.  

After paying out the net dividend Dt to the insurer’s owners at the end of the 

period t, the insurer would gather Kt+1 to be the internal capital surplus at the 

beginning of the period t+1, which will be accumulated at a return rate of rt+1 during 

the period t+1.  

In the literature, the firm’s owners can be assumed to be risk averse towards 

investment or dividend payments (see Froot, Scharfstein, and Stein, 1993; Froot, 2001; 

Szemely, 2010). Here I assign a concave utility function of the dividend payments, 

U(Dt), for the insurer’s owners.  

 

4.3.2 Optimization Problem 

Then the cash flow at the end of the period t can be then derived as follows, 

Dt = tQt+1 + rtKt+ et+1 - tQt - Rt (et , t) - Kt+1
12                          (4.1) 

From Equation (4.1), one can find in this model that the insurer collects revenue 

from total premium written tQt+1, newly raised external capital et+1 and the 

beginning-of-period internal capital Kt; and the insurer distributes the revenue into 

three categories: claimed loss payment tQt, promised gross return Rt(t, et), and 

end-of-period internal capital surplus Kt+1. 

Note that the dividend payment in each period, Dt, can be interpreted as the net 

cash flow after all the operations of each period (See Footnote 13).  

                                                              
12  Note that in Winter (1994), et is assumed to be the equity issued in the beginning of the period t and it should be 
subtracted from the current dividend payout , denoted by dt in his paper, when calculating the net cash flow for an 
insurer in this period. So the maximization problem with Winter’s equity assumption is Max ∑
	 , and the constraint can be Kt+1 = tQt+1 + rtKt - tQt - dt + et+1. So one can find that the model 
construction with Winter’s equity assumptions is equivalent with the model with debt assumption in this paper if 
we set Dt = dt -Rt(et). Therefore, there is no issue of Ponzi schemes when treating equity as debt in this paper.  
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Next, let us look at the capacity constraints in this model. Here, I assume that the 

insurer is subject to a simple solvency regulation, expressed by the Kenny Ratio t 

that is the ratio of premiums written to policyholders’ surplus. Such a ratio provides a 

measure of an insurer’s financial stability and solvency position. The regulation turns 

out to be stricter when a lower Kenny Ratio is required.  

The following capital rising constraint can be derived, 

tQt+1 / (Kt + et+1)  t                                                                      (4.2)                       

Note that the constraint above is very important to help explain the dynamic 

interaction between the capital rationing and the balance sheet for an insurer, and is 

also a bridge to connect the insurance market and the capital market with capacity 

constraints.  

For the optimization problem in this dynamic model, the insurer’s owners will 

choose the optimal strategies of dividend payment Dt, underwriting insurance 

coverage Qt+1, newly raised external capital et+1, and saving internal capital Kt+1 in 

each period to maximize its expected utility of net dividend payments in the infinite 

timeline. So the optimization problem in this model can be built by (4.3) subject to 

(4.1) and (4.2), where  is the discount rate. 

Max E ∑                                                (4.3) 

where { Qt+1, et+1, Kt+1, Dt }  Arg { Max E ∑ } 

 

4.3.3 Dynamic Interaction Analysis 

To know the dynamic interaction mechanism in this model, let us check the steady 
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state solutions {Q*, e*, K*, D*} at first. There is no shock in the steady state, so the 

steady state loss ratio equals to E(). The insurer has an incentive to make the capital 

rising constraint (4.2) be binding into (4.4). Equation (4.5) is then derived from cash 

flow equation (4.1) with binding constraint (4.4).  

(K*+e*) = Q*                                                   (4.4)                

[R(e*, E() ) – (2- r) e*] = [( - E()) + (r-1)  / ] Q* -D*                 (4.5) 

Equation (4.5) shows that the insurer’s capital rising capabilities and underwriting 

profits are mutually dependent in the steady state. The insurer tends to raise external 

capital e* to expand its underwriting coverage Q* until the capital raising cost [R(e*, 

E()) – (2- r) e*] is covered by the difference between the underwriting expansion 

profits [( - E()) + (r-1)  / ] Q* and the steady state dividend payment D*.  

If there is a positive shock to the steady sate loss ratio E(), the available funds 

from underwriting profits to raise external capital is decreasing, and the decreasing 

external capital will then be reduced further with a higher external capital cost R along 

with the shock. In turn, the largely decreased external capital will reduce the future 

underwriting expansion and thus the future underwriting profits. This implies that 

small catastrophic shocks can generate large, persistent fluctuations in both 

underwriting profits and capital raising capabilities. This is to show the effect of a one 

time catastrophic shock on the cash flows in the current and the following periods. 

Note that, from Equation (4.5), the insurer will raise more external capital with a 

higher rate of return on invested assets r or a lower Kenny Ratio , illustrating that 

the insurer tends to raise more capital if it has higher investment returns or if it needs 
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to satisfy a stricter solvency regulation.  

From (4.1) and (4.2), we can also get the motion of external capital raised as 

follows, 

(rt-1) et+1 = 1 	  - Rt ( 	+ et+2        (4.6)                        

Similarly as the finding from Equation (4.5), a positive change of t can 

negatively impact underwriting profits, which will reduce the funds available to raise 

new capital et+1. Moreover, with the total capital cost Rt increased by t, et+1 shrinks 

more deeply, which in turn limits the future underwriting quantity Qt+1. Therefore, the 

insurer’s current catastrophic shock will affect its future cash flows according to 

mutual dependence between the insurer’s capital raising capabilities and underwriting 

profits.  

From Equation (4.6), a lower t (stricter solvency regulation) leads to more 

external capital raised during the period t since the insurer needs to keep a good 

solvency position to expand its underwriting capacity; while a lower t+1 (a future 

strict solvency regime) leads to less external capital raised during the period t in order 

to avoid a higher repayment in the next period. 

From (4.5) and (4.6), such a interaction between the insurer’s balance sheet and 

capital rising rationing turns out to be an amplifying transmission mechanism, by 

which the effects of a one time catastrophic shock persistently spread to the future 

cash flows in the dynamic economy. It implies that amplifying fluctuations of output 

due to a series of catastrophic shocks can be observed in the insurance market. Further, 

the amplifying effect will be larger (smaller) if the shock is more (less) volatile, and if 
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the capital regulation constraint is more relaxed (stricter), and if the capital market is 

more (less) sensitive to shocks, and if the insurer relies on external capital more (less) 

heavily.  

 

4.4 Linear Quadratic Approximation for the Dynamic Cash 

Flow Model 

In this section, I calibrate the dynamic model by a linear quadratic approximation in 

order to simulate the amplifying effect of a one time catastrophic shock due to the 

dynamic interaction discussed in section 4.3.  

 

4.4.1 Dividend Utility Function and Capital Cost Function 

Consistent with the Real Business Cycle literature (e.g., Szemely, 2010; Gertler and 

Kiyotaki, 2010), I assume that the utility function of net dividend payments for the 

insurer’s owners is a CRRA function as follows, 

U(D) =  

As mentioned before, I assume that the cost function of the external capital (i.e. 

debt repayment function) in capital market is a convex function as follow,  

R(e, ) =  

The parameter re is the cost of external capital, and parameters  and  are 

the elasticity of the catastrophic shock and the external capital amount in the cost 

function. Note that the calibration of these parameters should satisfy the consumption 

that the external capital is more expensive for an insurer to raise than the internal 
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capital. I also develop the experimental economy by changing the values of 

parameters  and . 

 

4.4.2 Stochastic Process of Loss Ratios 

The motions of the loss ratio  follow a stochastic process as follows, 

ln ln  where ~	 0,  

The parameter  is the autocorrelation of the loss ratios in the time line. The 

parameter  measures the uncertainty of loss ratio, thus  can be interpreted as 

catastrophic shocks.  

In this paper, I cite the parameters of stochastic technology shocks in the Real 

Business Cycle literature to be parameters  and  (see Szemely, 2010). Different 

from the technology shock, I choose a relatively low volatility of loss ratios, . This 

is because, by assumption, the insurer is efficient in estimating the regular loss it 

underwrites. 

 

4.4.3 Main Parameters 

Table 4.1 is a list of main economic parameters for the benchmark economy in the 

dynamic model.  
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Table 4.1: Main Parameters in the Benchmark Model Economy 

         Parameters  Notations Values 

Time discount factor β 0.95 

Kenny ratio η 2.00 

Coefficient of relative risk aversion γ 1.50 

Gross return rate of investment r 1.06 

Gross return rate of external capital re 1.2 r 

Catastrophic shock Elasticity  θ  1.05 

External Capital Elasticity  1.05 

Autocorrelation of ln	 α   0.80 

Standard deviation of   0.003 

Loading rate ø 0.10 

 

4.5 Catastrophic Risk Intermediation Strategies in 

Benchmark Economy 

I solve the insurer’s certainty-equivalent steady-state equilibrium by a linear quadratic 

approximation and then simulate its optimal decision path. Based on the results, we 

find a non-cyclical behavior of output changes in both coverage capacity and external 

capital with a series of catastrophic shocks. The results show that such the behavior 

cannot be forecasted, and the insurance market and the capital market can jointly 

determine its ex-ante magnitude.  

In the model economy, I also find that the insurer always keeps the volatilities of 
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dividend D and retained earnings K low enough in its optimal strategy. This can be 

explained by the dividend signaling theory that dividends can be used as a signal of 

firm quality (see Miller and Rock, 1985). Dividend decreases convey bad news of 

firm quality to both consumers and investors, and the impact can be amplified in the 

model economy. To reduce the bad signal effect of dividend decreases, the insurer 

would like to smooth the dividend payment. The fluctuations of the model economy 

are intensively expressed by changes of the coverage quantity Q and the capital e.  

 

4.5.1 Optimal Coverage Capacity Strategy and Catastrophic Shocks 

Figure 4.2 below shows us that the insurance coverage in the benchmark economy is 

negatively correlated with catastrophic risk.  

 

Figure 4.2: Optimal Underwriting Coverage With Catastrophic Shocks  
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In this figure, each peak of coverage quantity is always behind the peak of loss 

ratio , which means the insurer reacts after each catastrophic risk. It supports the 

statement that the effect of a one time catastrophic shock can spread to the following 

cash flows, and the insurer tends to decrease its underwriting coverage to avoid 

potential large losses when they observe an occurrence of catastrophic shocks. This is 

consistent with the analysis that the insurer with capacity constraints would decrease 

its underwriting coverage when there is a large loss ratio.  

Figure 4.2 also shows that fluctuations of underwriting capacity can be caused by 

catastrophic shocks, and more volatile than catastrophic shocks. This is resulting from 

the amplifying transmission mechanism by the insurer’s dynamic interaction of 

balance sheet and capital rationing.  

 

4.5.2 Optimal External Capital Strategy and Catastrophic shocks 

In the benchmark economy with costly external capital market, Figure 4.3 shows that 

the amount of external capital raised is negatively correlated with catastrophic risk. 

This is consistent with the analysis that the external capital will shrink due to higher 

external capital cost and less funds for debt repayment along with an occurrence of 

catastrophe events.  

In this figure, each peak of external capital is always behind the peak of alpha, 

which means the insurer’s strategy of raising external capital is a reaction to 

catastrophic shocks. Consistent with the previous analysis, the effect of a one time 

catastrophic shock can spread out, and the insurer will raise less external capital due 
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to larger loss payments and higher capital cost after shocks.  

This figure also shows that fluctuations of external capital can be caused by 

catastrophic shocks, and the fluctuations are more volatile than catastrophic shocks 

due to the dynamic interaction of underwriting profits and capital rationing.  

 

Figure 4.3: Optimal External Capital with Catastrophic Shocks  

From the simulated results in benchmark economy, future distributions of the 

choices of underwriting capacity and external capital can be affected by a one time 

catastrophic shock in current period. Moreover, due to the dynamic interaction 

between the capital market and the insurance industry, the amplifying fluctuation of 

output markets responding to catastrophic shocks can be observed in the insurance 

industry. 

Figure 4.2 and 4.3 support the capacity constraint theory that the supply capacity 
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is reduced in the insurance industry due to capital shortage after catastrophic risks. 

Further, according to the dynamic interaction discussed before, these two figures 

illustrate the non-cyclical behavior of output changes in both coverage capacity and 

external capital raised if the insurer experiences a series of unexpected catastrophic 

shocks. They also imply that such output changes cannot be predictable, and the 

unexpected catastrophic shocks can affect the direction of output changes. At this 

point, I doubt about the existence of cyclical and predictable “underwriting cycles”. 

 

4.6 Catastrophes and Output Fluctuations in Experimental 

Economy 

In this section, I analyze the relation of catastrophic shocks and output 

fluctuations in experimental economy to determine the factors that affect the 

amplitude of fluctuations in the model economy.  

 

4.6.1 Relaxed Capacity Constraints 

If I reduce the cost of external capital re in benchmark economy by 10%, and also 

reduce the elasticity  and  by 4% respectively, the external capital turns out to 

be positively correlated with catastrophic risk. It is shown in Figure 4.4.  

In this experimental economy, the model economy has a low capital cost and the 

external capital market is not sensitive to the loss ratio. In this case, the capital market 

is too soft in which capacity constraints cannot work, so the insurer is more likely to 

resort to the external capital to expand its underwritings and reserve for future losses. 
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In this figure, one can find that the fluctuations of external capital, in an environment 

of relaxed capacity constraints, become quite small due to the absence of the 

amplifying interaction mechanism. 

 

Figure 4.4: Optimal External Capital When Relaxing Capacity Constraints 

 

4.6.2 High Volatility of Catastrophic Shocks 

In the following three sub-sections, I report the amplitude of fluctuations in the 

insurer’s underwriting quantity, external capital and internal capital surplus due to 

catastrophic risks in experimental economy, in order to check the factors in the model 

economy that can influence the magnitude of the non-cyclical output changes.  

The left hand side of Table 4.2 reports the percentage standard deviations of 

fluctuations in the benchmark economy, while the right one reports the corresponding 
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amplitudes in the experimental economy with higher loss ratio volatility, , from 

0.003 to 0.005.  

 

Table 4.2: Standard Deviations of Fluctuations in Benchmark (left) and in 
Experimental Economy with 	=0.005 (right) 

 

From Table 4.2, one can find that fluctuations of coverage quantity Q and external 

capital e resulting from more volatile catastrophic shocks both become larger. This is 

consistent with the previous analysis that fluctuations of output caused by catastrophic 

shocks will be larger if the shock is more volatile. 

 

4.6.3 Tight External Capital Market 

Table 4.3 compares fluctuations of the benchmark economy (the left panel) with the 

corresponding amplitudes in an economy with the catastrophic shock elasticity, , 

increasing from 1.05 to 1.1(the right panel). 

Table 4.3: Standard Deviations of Fluctuations in Benchmark (left) and in 
Experimental Economy with  = 1.1 (right) 

 

It shows that fluctuations of outputs and external capital in the experimental 

economy are both larger than those in benchmark economy. This illustrates that the 

effect of catastrophic shocks is stronger in an economy with the capital market being 
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more sensitive towards catastrophic events.  

 

4.6.4 Relaxed Solvency Regulation 

Table 4.4 provides the corresponding amplitudes in an economy with a higher 

solvency ratio, , from 2.0 to 2.5 in the right panel, and it shows fluctuations of 

coverage quantity and external capital raised are also both larger than those in 

benchmark economy shown in the left panel.  

Table 4.4: Standard Deviations of Fluctuations in Benchmark (left) and 
Experimental Economy with  = 2.5 (right) 

 

   It supports the implication that the effect of catastrophic shocks in the model 

economy is greater if solvency regulation is more relaxed. The solvency ratio acts as a 

bridge between the capital market and the insurance market, offering an environment 

in which each catastrophic shock can have an amplifying impact on these two 

markets.  

From these three tables above, we can conclude that the ex-ante magnitude and 

the period of output changes in the model can be jointly determined in the insurance 

market and the capital market. Specifically, these results show that the changes in 

output markets can be larger if the shock is more volatile, if the external capital 

market is tighter, or if solvency regulation is more relaxed. 
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4.7 Impulse Response Function Analysis 

In this section, I aim to apply Impulse Response Function (IRF) to analyze the impact 

of shocks in losses and capital capacity on the Property-Casualty (P&C) insurance 

industry. An impulse response refers to the reaction of any dynamic system in 

response to the external change. Especially in economics, IRF can describe how the 

economy reacts over time to exogenous impulses that are usually called “shocks”.  

The focus of this IRF analysis is to examine the P&C insurers’ responses of 

insurance supply to impulses in loss payment, internal capital surplus, and reinsurance 

cost. I also check the causality relationship between insurance supply and the internal 

and external capital for insurers. The relationship between the insurance market and 

the reinsurance market is explored as well.  

In this analysis, five aggregated factors for the P&C Insurance Industry are chosen, 

including Loss Incurred (Loss), Direct Premium Written (DPW), Net Premium 

Written (NPW), Policyholders’ Surplus (Surplus) and Paragon Catastrophe 

Reinsurance Price Index (Rein). Correspondingly in the two-period model in Chapter 

3 and the dynamic model in this chapter, Q, Q and K can refer to the proxy of Loss, 

DPW and Surplus respectively. Note that DPW is the total insurance supply, which 

can be split into the insurance price part  and the coverage quantity supply part Q. I 

also define Loss Ratio (Lossratio) as the value of Incurred Losses/Net Premium 

Written by years, and it corresponds to, , in previous models. So we can test the 

hypothesis developed in previous models and further analyze the changes of insurance 

supply strategy under different economic situations.  
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4.7.1 Data Description and Transformation 

The yearly index data of Paragon Catastrophe Reinsurance Price (Rein) are obtained 

from Paragon Risk Management Services. The index13 (see Gron and Winton, 2001) 

shows changes in the price of catastrophe reinsurance relative to a base of one14. So 

they can describe the reinsurance cost for catastrophes by years. The other data 

employed in this analysis are yearly observation data in the industry level, the sources 

of which are either from Insurance Information Institution (Year 1990 - Year 1995) or 

the SNL database (Year 1996 - Year 2012). The time line for each variable is from 

Year1990 to Year 2012.  

 

Figure 4.5: Five Aggregated Factors for the P&C Insurance Industry 

I plot these five variables in Figure 4.5. Note that in order to show them in the 

same level of magnitude, I enlarge the Rein by 100 times, and meanwhile, shrink the 

                                                             
13  The index was also used in Congressional Budget Office. 
14 The catastrophe reinsurance price in1985 is set as the base of one.  
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other variables by 1000,000 times.  

 

Figure 4.6: Growth Rate Data for Loss, DPW and Surplus 

In order to remove the growth trend of Loss, DPW and Surplus in some following 

empirical regressions, I make the log transformation of these variables to get their 

growth rate data. For example, DPW_Growth, the growth rate of Direct Premium 

Written, is set to be equal to [100 * log (DPWt /DPWt-1)]. The growth rate data are 

shown in Figure 4.6. 

 

4.7.2 VAR Modeling and Main Results 

Impulse Response Function (IRF) can be often modeled in the context of Vector Auto 

Regression (VAR). VAR is an econometric model used to explore the correlations and 

interdependencies among multiple time series variables, based on its own lags and the 

lags of all the other variables in the model. In this subsection, I discuss two VAR 

model cases. In Case I, the multiple time series that I examine are Loss, DPW, Surplus 
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and Rein; while in Case II, I check Lossratio, DPW_Growth, Surplus_Growth, Rein. 

But the methodology of building VAR model for these two cases is the same.  

First, I apply the commonly used lag-order selection criteria to choose the lag, 

based on goodness of fit measures such as AICC, SBC, FPEC and HQC. Then I use 

OLS to estimate the VAR. Next, I examine how well each univariate equation fits the 

time series data. Finally, the Granger-Causality Wald Test is conducted to explore the 

causal relationship between the multiple time series. This test is characterized by 

examining for nonzero correlations between the error processes of the cause and the 

effect variables to determine whether one time series is useful in forecasting another. 

If there is a reaction of one variable to an impulse in another variable, we may call the 

latter causal for the former.  

Table 4.5 provides regression results for Model Case I and II. Column 2 provides 

the lag order chosen for each VAR model case. The third column lists all time series 

variables involved in the test for each case, which shows the main difference between 

model cases. Column 4 is the result of univariate residuals test. For example, in Case I, 

four OLS regressions are conducted in turn with each time series variable acting as 

the dependent variable while all time series with lags being independent variables. 

Then we can have four p-values for these four regressions. In the first row, for 

instance, the p-value is for the regression when the dependent variable is Losst and the 

independed variabls are Losst-1, Losst-2, DPWt-1, DPWt-2, Surplust-1, Surplust-2, Reint-1 

and Reint-2. The fifth column provides the result of Granger-Causality Wald Test. The 

null hypothesis of the first row in Case I, for example, is that Loss is influenced by 
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itself rather than the other three time series variables, such as DPW, Surplus and Rein.  

Table 4.5: VAR Results of Mode Case I and II 

Model 
Case # 

Lag Order 
Chosen 

Model Variables Univariate Residuals 
Test (p-value) 

Granger-Causality 
Wald Test (p-value)

 
I 

 
VAR (2) 

Loss 
DPW 
Surplus 
Rein 

<0.0001***15 
<0.0001*** 
<0.0001*** 
0.0074*** 

0.5072 
0.0001*** 
0.2725 
<0.0001*** 

 
II 

 
VAR(3) 

Lossratio 
DPW_Growth 
Surplus_Growth 
Rein 

0.1986 
0.0067*** 
0.2178 
0.0859* 

0.0095*** 
0.0010*** 
0.0051*** 
0.0013*** 

 

For Model Case I, one can find that each univariate model is significant.  This 

implies that each univiate regression fits the time series data and the correlations 

among the multiple time series are significant within the lag order. Further, both DPW 

and Rein have a Granger-causal relationship with the other three variables. Loss, 

Surplus and Rein can be viewed to Granger-cause DPW. This means that the loss 

incurred, the internal capital surplus and the reinsurance cost can provide statistically 

significant information about future values of directed premium written. This is 

consistent with the previous models that the insurance underwriting supply could be 

affected by the loss payment, and influenced by both of the external and the internal 

capital situations. Additionally, the direct premium written, loss incurred, and internal 

capital surplus in primary insurance market can also Granger-cause the pricing of 

reinsurance market from the test. Thus it means that the primary insurance market 

should be considered when forecasting the future reinsurance cost. This is consistent 

                                                              
15  *** denotes the 1% level statistical significance; ** denotes the 5% level statistical significance; * 
denotes the 10% level statistical significance.  
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with the assumption in the two-period model of Chapter 3 that the reinsurance price 

will be increased/decreased in the second period if the insurer incurs large/small 

losses and thus has bad/good solvency status in the first period.  

In Model Case II, all the involved time series variables are Lossratio, 

DPW_Growth, Surplus_Growth and Rein. Two univariate equations with DPW and 

Rein being dependent variable fit the time series data well. Although the results of the 

other two univariate equations are not significant, this model fits the selected data 

well since the value of Akaike information criterion is quite small, for instance AICC 

= 0.0063.  

In this case, the Granger-causality Wald test results imply that these four variables 

can be influenced by one another, and each variable can be a reasonable factor used to 

predict another. This is called feedback system. It shows that loss ratio can have 

impact not only on the change of underwriting premium (as measured by DPW) but 

also on changes in internal capital surplus (as measured by Surplus) and reinsurance 

price (as measured by Rein). This verifies an important assumption in previous 

models that the loss ratio can affect both underwriting profit and capital raising. 

Moreover, DPW can be Granger-caused by Surplus and Rein; Rein and Surplus can 

also be Granger-caused by DPW. This implies that there is an interaction between 

underwriting new business (indicated by DPW) and capital raising situation (indicated 

by Surplus and Rein). It is consistent with the dynamic model as the model implies an 

interactive effect between the underwriting balance sheet and capital rationing for an 

insurer. 
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In next subsection, I will show the impulse response analysis for each case so as to 

know more about how the insurers respond to the change of each aggregated variable. 

 

4.7.3 Impulse Response Analysis 

The impulse response function is to analyze the dynamic effects of the model 

economy when one factor receives an impulse. Based on the estimated matrix of VAR 

model coefficients, we can generate IRFs to identify the consequences of a unit 

increase in one variable’s innovation at time t for the value of another variable at time 

t+lag holding all other innovations at all dates constant.  

Figure 4.7 and Figure 4.8 are the responses to the impulse in Loss and Surplus for 

Model Case I. Recall that Case I involves the time series of DPW, Surplus, Loss and 

Rein.  

 

Figure 4.7: Response to Impulse in Loss Incurred for Model Case I 
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Figure 4.7 provides four graphs. In the top left hand corner we see the future 

response of loss incurred to a one standard deviation shock of losses incurred. The top 

right hand corner shows the response of DPW to a one standard deviation shock of 

losses incurred.  In the bottom corners we see the response from a one standard 

deviation shock to losses in terms of Surplus and REIN respectively.   

We can find that the response of DPW to a shock of loss incurred is positive, and 

the highest response is occurring in the third year. Similarly, the reinsurance price 

index has positive responses, but these responses are more intensive and faster than 

those of DPW. In the year t+1, the reinsurance price response is able to rise 

dramatically. This illustrates that price turns to be more sensitive to loss shocks. We 

may imply that the main reason for the increase in DPW after the loss impulse can be 

the increase of insurance price (premium per unit dollar of coverage). This verifies the 

hypothesis in Chapter 3 about the positive relationship between loss ratio and 

next-period insurance rate in an environment of loss shocks.  

In addition, the shock to surplus has an initial negative effect that wears off after 

about 4 periods as the response moves to zero. It implies that insurers who can make 

use of insurance price increase after shocks can avoid large loss of capital surplus, 

which is also consistent with the hypothesis developed in Chapter 3.  

Figure 4.8 shows the insurers’ response to impulse in internal capital surplus from 

Case I. In the top left hand corner, it shows the future response of loss incurred to a 

one standard deviation shock of internal capital surplus. In the top right hand corner 

we see the response of DPW to a one standard deviation shock of internal capital 
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surplus.  In the bottom corners we see the response from a one standard deviation 

shock to internal capital surplus in terms of Surplus and REIN respectively.   

From the top right hand corner in Figure 4.8, the positive response of insurance 

supply (as measured by DPW) to a shock in internal capital surplus can be observed. 

It implies that the ability to underwrite new business can be enlarged with a better 

solvency status, which is consistent with the previous models. 

 

Figure 4.8: Response to Impulse in Policyholders’ Surplus for Model Case I 

Meanwhile, the bottom of the right hand side in Figure 4.8 shows the slight 

negative response of reinsurance price index to a shock in internal capital surplus. 

This slight decrease of reinsurance price index in this case can be resulting from less 

demand for reinsurance capital with an impulse in internal capital surplus. This is 

consistent with the assumption in previous models that insurers prefer raising capital 

from the internal source to the external one. But overall, the effect of internal capital 

surplus shock on reinsurance price is small.  



 

95 
 

For the model case II, Figure 4.9 below shows the responses to a shock in terms of 

a one standard deviation increase in the Loss Ratio.16  Recall, CASE 2 is identified 

with the time series variables examined being Lossratio, DPW_Growth, 

Surplus_Growth and Rein. Starting with the top right hand corner, one can find that 

the response of the growth rate of DPW in the initial period is very high, and then 

decreased. The initial large response of DPW growth can be a result of high insurance 

price, and then its following decreasing can result from the shrinkage of insurance 

coverage supply when the growth-up of price turns slow. This is to support the finding 

in the dynamic model that the coverage quantity supply (as measured by Q) that 

insurers are willing to offer will be reduced with a shock of loss ratio.  In the next 

subsection, I will further test it.  

 

Figure 4.9: Response to Impulse to Loss Ratio for Model Case II 

                                                              
16  To keep the magnitude of loss ratio being in the same level as that of Growth Rate data, I multiple all 
the loss ratio data by 10 in this regression. The same methodology is applied for the Rein data. The aim 
is to show better and clearer figures of impulse response function.  
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When checking the response of Surplus growth rate to a shock in the Loss Ratio, 

one can find in the left bottom panel that the responses in the first two periods are 

negative, but these negative responses then tend towards zero. The growth rate of 

Surplus peaks at the end of the second year, which is behind the peak of the growth 

rate of DPW. This can imply that the gradually deceased negative response of internal 

capital surplus to a loss shock can result from the growth of the total insurance supply 

(as measured by DPW_Growth). 

 

 

Figure 4.10: Response to Impulse in Reinsurance Price Index for Model Case II 

Figure 4.10 above sheds light on how an insurer responses to a one standard 

deviation shock in reinsurance price index (REIN1).  The right top corner shows that 

the impact of a reinsurance price shock on the changes of underwriting supply (as 

measured by DPW) is negative. In the first period, because of possible responses of 
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the primary insurance price to an impulse in the reinsurance price, we can observe 

DPW is not changed. Then the peak of the following negative response of DPW is 

occurring in the end of third year. Based on the cash flow models discussed in both 

this chapter and Chapter 3, insurers tend to reduce the coverage quantity supply with a 

tight external capital market due to an interaction between the ability to underwriting 

new business and the ability to raise new capital.  

 

4.7.4 Extension Model Cases 

In this subsection, I try to find a way to split the total insurance supply (DPW) into 

two parts, the price part and the coverage quantity part. In the empirical research, it is 

currently impossible to know the primary insurance price since there is no easy way to 

access the data at the policy level.  

Actually, in actuarial practice, the insurance price always can be influenced by 

catastrophes and the hard/soft market situation. Here I assume that the catastrophe 

reinsurance price index contains significant information about the primary insurance 

price, and I apply the reinsurance price index (Rein) to denote the insurance price 

index in the P&C insurance industry. In this way, I can obtain the coverage quantity in 

the industry level, settled by Q = Direct Premium Written /Paragon Catastrophe 

Reinsurance Price Index.  

I have two VAR model cases in this subsection, Case III and Case IV. The 

methodology of developing and testing VAR model for these two cases is in the same 

way as Case I and II. However, in Case III, all the involved time series variables are 
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Loss, Q and Surplus, while Loss_Growth, Q_Growth and Surplus_Growth are 

examined instead in Case IV. The following Table 4.6 shows the VAR results of 

Model Case III and IV. Figure 4.11 and Figure 4.12 below provide the impulse 

response in these two cases.  

From Table 4.6, the lag orders chosen for both model cases to get the smallest 

information criteria are larger than the previous ones. That is because there is no price 

adjustment effect in the model, and the effect of variables in the economy can last 

longer than before. In Case III, the casual relationship can be found between variables, 

and each univariate model is significant. In Case IV, the results show that the growth 

rate of insurance coverage quantity (as measured by Q_Growth) is significantly 

influenced by the loss changes (as measured by Loss_Growth) and the growth rate of 

policyholders’ surplus (as measured by Surplus_Growth).   

Table 4.6: VAR Results of Model Case III and IV 

Model 
Case # 

Lag Order 
Chosen 

Model Variables Univariate Residuals 
Test (p-value) 

Granger-Causality 
Wald Test (p-value)

 
III 

 
VAR(5) 

Loss 
Q 
Surplus 

0.0160** 
0.0600* 
0.0052*** 

0.0018*** 
0.0021*** 
<0.0001*** 

 
IV 

 
VAR(4) 

Loss_Growth 
Q_Growth 
Surplus_Growth 

0.2006 
0.0190** 
0.1016 

0.0328** 
<0.0001*** 
<0.00001*** 

Figure 4.11 illustrates that the response of coverage quantity supply (as measured 

by Q) to a shock in Loss Incurred during the first two periods is mostly negative, and 

then it becomes positive in Period 3. The shape of such the response is consistent with 

the statement in the Capacity Constraint hypothesis that the insurance coverage 

quantity supply shrink sharply with loss shocks. The positive response during the 
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third period may be resulting in changes of the insurance demand part or the insurance 

price after loss shocks.  

 

Figure 4.11: Response to Impulse in Loss Incurred for Model Case III 

 

 

Figure 4.12: Response to Impulse in Surplus Growth Rate for Model Case IV 
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Figure 4.12 implies the relationship between the change of internal capital surplus 

and the change of insurance coverage quantity supplied. It shows that the insurer will 

expand the underwriting operation if there is an increase of policyholders’ surplus, 

and the expansion would stop when the impulse disappear. It verifies the interaction 

between the insurer’s capital rationing and underwriting balance sheet, as discussed in 

the previous models.  

In future research, it is better to access the coverage quantity data or to develop a 

more reliable proxy for the insurance supply part. 

 

4.7.5 Summary of Empirical Results 

In this section, Impulse Response Function (IRF) is used to analyze the P&C insurers’ 

responses to shocks of the loss payment and the internal and external capital. With 

loss shocks, we can observe a sharp decreasing in insurance coverage quantity supply 

(as measured by Q), and also the increase of total insurance supply (as measured by 

DPW) due to price spike, the increasing rate of which (as measured by DPW_Growth) 

becomes lower and lower as time goes by. They support the Capacity Constraint 

Theory (see Gron 1994; Gron and Winton 2001).  

The results also show the significant Granger-causality relationship between the 

insurance supply (as measured by DPW in Case I or Q_Growth in Case IV) and the 

internal capital status and the external reinsurance price (as measured by Surplus, 

Rein in Case I or Surplus_Growth in Case IV). It supports the statement in pervious 

theoretical models that there is an interaction for an insurer between its ability to 
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underwriting new business and its ability to raise capital.  

Finally, the results imply that the reinsurance price (as measured by Rein) can be 

affected by changes of internal capital surplus and losses incurred in primary 

insurance market. This is consistent with the assumptions in previous models.  

 

4.8 Conclusions and Discussions 

In this chapter, a dynamic cash flow model with capacity constraints is built to 

describe the insurer’s catastrophic intermediating process towards a series of loss 

shocks. I focus specifically on the insurer’s decision-making choices of underwriting 

quantity and capital structure in a dynamic economy with stochastic loss shocks, and 

find the dynamic interaction between the insurer’s capital rationing and balance sheet, 

in which capacity constraints play an import role.  

According to the simulation results, this paper contributes to find a non-cyclical 

behavior of output fluctuations in the model economy, and thus I view the 

unpredictable underwriting cycles as temporary responses of output markets to loss 

shocks. I also explore the determinants of the magnitude of output fluctuations by 

comparing the experimental economy with the benchmark economy.   

In future work, I can develop a Heterogeneous-Agent model with recursive 

computational simulations to analyze different optimal decision paths of underwriting 

and capital structures for heterogeneous insurers. This framework allows me to 

quantitatively study why different insurers perform differently after catastrophes, and 

to explore the impact of catastrophic shocks on the industrial organization of the 
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insurance markets in a dynamic setting. In addition, empirical testes in the firm level 

can be conducted to explore how insurers respond to large losses and what kind of 

insurers can perform well with catastrophic risk underwriting. 
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Appendix 2A: Algorithm Methodology for the Life Cycle Model 

 

The state space of heterogeneous households in this life cycle model is 

imax*jmax*jmax*mmax*kmax (20*5*5*4*80). I solve household’s optimization 

problem backward from age kmax with the assumption that the value function in the 

period after the last period, Vkmax+1(s’), is equal to 0.  

Based on fist-order conditions and the envelope condition, I construct 

Kuhn-Tucker conditions to figure out household’s optimal decision rules in state s, 

such as c(s), l1(s), l2(s), d1(s) and d2(s). Meanwhile, I update the new household value 

Vkmax(s) and marginal value Vkmax,a(s) for the s-sate household at corresponding time 

kmax. Then I use updated results for different household sates in period kmax to solve 

utility optimization problem at age (kmax-1). The optimal decision rules for each 

specific household state at each year can be dynamically solved in the same way.  
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Appendix 2B: Optimization Solutions for the Life Cycle Model 

	

If	m	 	0,	

V a	;m 0 	 	U c,	l1,	l2;	nk,	m 0 	 	β* 	φ1,k	*φ2,k	*	V	 a’;	m’ 0,m 0 	 	

φ1,k* 1‐φ2,k *	V	 a’ d2;	m’ 1,m 0 	 	φ2,k	* 1‐φ1,k *	V	 a’ d1;	

m’ 2,m 0 	 	 1‐φ1,k * 1‐φ2,k *	V	 a’ d1 d2;	m’ 3,m 0 	 	

s.t.	 	 	 	 	 	 	 	 1 r 	a	 	w1,k	e1 1‐l1 w2,ke2 1‐l2 		 	 1 	 ss	

–	c	–	 1‐	φ1,k 	d1	–	 1‐φ2,k 	d2;	

Uc c,	l1,	l2;	nk,	m 0 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	c	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

c,	l1,	l2;	nk,	m 0 	 	w1,k	e1*	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	l1	 	

c,	l1,	l2;	nk,	m 0 	 	w2,k	e2	*λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	l2	 	

β* φ1,k*	V	a a’;	m’ 0,m 0 	 	 1‐φ1,k *	V	a a’ d1;	m’ 2,m 0 	 λ	 	 	 	 	 	 	 	 	 	d1	 	 	

β* φ2,k	*	V	a a’;	m’ 0,m 0 	 1‐φ2,k	 *	V	a a’ d2;	m’ 1,m 0 	 λ	 	 	 	 	 	 	 	 	d2	 	

β* φ2,k*	V	a a’ d1	;	m’ 2,m 0 	 1‐φ2,k *	V	a a’ d1 d2;	m’ 3,m 0 	 	λ	 	 	a’ 	

where λ is the Lagrangian Parameter. 

	

If	m 1,	

V a;	m 1 	 	U c,	l1;	nk,	m 1 	 β* φ1,k*	V	 a’;m’ 1,	m 1 	 	 	

	 	 	 	 	 	 	 	 	 	 	 1‐φ1,k *	V	 a’ d1;	m’ 3,	m 1 	

s.t.	 	 	 1 r 	a	 	w1,k	e1h1 		 	ss–	c	‐	 1‐	φ1,k 	d1;	

Uc c,	l1;	nk,	m 1 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	c	 	

c,	l1;	nk,	m 1 	 	w1,k	e1*λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	l1	 	

β*	V	a a’ d1	;	m’ 3,m 1 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	d1	 	
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β*	V	a a’;	m’ 1,m 1 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	a’ 	

	

If	m 2,	 	

V a;	m 2 	 	U c,	l2;	nk,	m 2 	 β* φ2,k*	V	 a’;m’ 2,m 2 	 	 	

	 	 	 	 	 	 	 	 	 	 	 1‐φ2,k *	V	 a’ d2;	m’ 3,m 2 	

s.t.	 	 	 1 r 	a	 	w	e2h2	 		 	ss–	c	–	 1‐φ2,k 	d2	

Uc c,	l2;	nk,	m 2 	 λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	c	 	

c,	l2;	nk,	m 2 	 	w2,k	e2*λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	l2	 	

β*	V	a a’ d2	;	m’ 3,m 2 	 λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	d2	 	

β*	V	a a’;	m’ 2,	m 2 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	a’ 	 	

	

If	m 3	,	

V a;	m 3 	 	U c;	nk,	m 3 	 β	*	V	 a’;m’ 3,m 3 	 	

s.t.	 	 	 1 r 	a–	c	

Uc c	;	nk,	m 3 	 λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	c	 	

β*	V	a a’;	m’ 3,m 3 	 	λ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	a’ 	
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Appendix 3:	Optimization Solutions for the Two-Period Cash Flow Model 

 

FOCs with β, βi, e, ei, πi are as follows, 

(TQb βQCb Rb)bβ +( C)Q +rf
-1∑ P (Ti βiQi 	 =0 (i)          

(Ti  βiQi 	 0			                       (ii) 

(TQb βQCb Rb)be+(1 Re)+rf
-1∑ P (Ti βiQi 	 =0 (iii)        

(Ti  βiQi 	 1 0                        (iv)               

(Ti  βiQi 0                           (v)               

where T = π- Cβ -(1- β)rf
-1 and Ti = πi- Ciβi -(1- βi) rf

-1 

 

Case One: Risk Free Capital Market with C(b) = Ci (bi) = , R(b,e)= Ri (bi, ei) = rf                

(i), (ii), (iii), and (iv) can imply that: Qb = =0,  

            and TQb  βQCb Rb = Ti  βiQi  = 0; 

Then 0 according to (v), equivalently, it is 	 . 

 

Case Two: Costly Capital Market with C(b) = Ci (bi) = , R(b,e)= Ri (bi, ei) = rf   

(ii), (iv), and (v) can derive that:  

Ti  βiQi  =  =  = ; 

Then (v) can show that: 	
	

; 

Next, according to Comparative Statics Analysis, one can get  

      
| |

	, 
| |

	, and 
| |

	.        
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Appendix 4: Algorithm Methodology for the Dynamic Cash Flow Model 

 

I solve and simulate this dynamic model with linear quadratic approximation around 

the steady state. First, I start with a stochastic finite horizon optimization problem, 

and derive the Riccati equation for this dynamic model with stochastic growth. Next, I 

solve the steady-state conditions for Q*, K*, e*, λ* by FOCs to obtain a 

certainty-equivalent steady-state equilibrium. Then I calculate the Jacobian matrix and 

Hessian matrix by using the log difference. Based on all the pervious steps of 

calculation, I approximate the return function and the state transition function around 

the steady state for this model, and obtain its value function and policy function that 

are prepared for the following simulations. I set the initial state is the steady state and 

simulate this stochastic growth model. Here I get the deviations from trend by using 

the Hodrick-Prescott filter. Finally, the standard deviations and the cross correlations 

with output of variables can be shown by figures or tables.  
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