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GENERALIZED CONFIDENCE INTERVALS FOR PARTIAL YOUDEN INDEX AND

ITS CORRESPONDING OPTIMAL CUT-OFF POINT

by

CHENXUE LI

Under the Direction of Gengsheng Qin

ABSTRACT

In the field of diagnostic test studies, the accuracy of a diagnostic test is essential

in evaluating the performance of the test. The receiver operating characteristic (ROC )

curve and the area under the curve (AUC ) are widely used in such evaluation procedures.

Meanwhile, the Youden index is also introduced into practice to measure the accuracy of the

diagnostic test from another aspect. The Youden index maximizes the sum of sensitivity and

specificity, assuring decent true positive and negative rates. It draws one’s attention due to

its merit of finding the optimal cut-off points of biomarkers. Similar to Partial ROC, a new

index, called “Partial Youden index” can be defined as an extension of Youden’s Index. It

is more meaningful than regular Youden index since the regular one is just a special case of

the Partial Youden Index. In this thesis, we focus on construction of generalized confidence

intervals for the Partial Youden Index and its corresponding optimal cut-off points. Extensive

simulation studies are conducted to evaluate the finite sample performances of the new

intervals.

INDEX WORDS: Diagnostic test, Sensitivity, Specificity, Partial-ROC, Youden Index,
Partial Youden index, Optimal cut-off point, Generalized Pivotal Quan-
tities, Generalized confidence interval
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PART 1

INTRODUCTION

1.1 Diagnostic tests

Diagnosis is one of the most essential procedures in medical services. When physicians

assign proper treatments or write prescriptions to patients, they rely on the diagnostic test

results.

Accordingly, the accuracy of the diagnosis of diseases is important. Undoubtedly, biopsy

is one of the most reliable diagnostic methods, and therefore is known as a “gold standar”.

However the costs are significant, for instance, extreme pain, tissue removal, neuro dam-

age, operational costs and so on. As a result, physicians or biological scientists often use

biomarkers or body symptoms as the indicators of a person’s health status. For diagnos-

tic tests with binary outcomes, the person will be classified into either a healthy group or

diseased group based on a screening test method. Screening test methods are widely used

to discriminate diseased people from non-diseased people. Only when a diagnostic process

can truly distinguish between the diseased and the healthy individuals, can it be viewed as

perfectly accurate.

As we all know, the “perfection” is hard to achieve given that the ”gold standard” cost

too much. A compromise is to make diagnosis according to biomarkers or body symptoms.

Since diagnostic error is unavoidable, it is statisticians’ role to evaluate the accuracy of

diagnostic tests. False negative (FN ) errors and false positive (FP) errors are the two types

of errors derived from diagnostic test with binary outcomes. An false negative error refers

to classifying a diseased individual as non-diseased; a false positive error refers to classifying

a non-diseased individual as diseased.

In this thesis, we will consider the circumstances where diagnostic test results are binary

and the biomarker test results are continuous, which is the majority in reality.
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So far, some well-known measurements of diagnostic accuracy include sensitivity, speci-

ficity [1], the Receiver Operating Characteristic (ROC ) curve, the area under the ROC curve

(AUC ) and Youden Index (YI ). Without loss of generality, we assume that higher test values

indicate higher probability of the disease. Otherwise, we take the opposite of the results.

Usually, there is a given criterion value “c” (we also call it threshold or cut-off point), and

any individual who has a test result higher than “c” belongs to diseased group. Otherwise,

they belong to non-diseased group.

Sensitivity refers to the probability that a truly diseased subject is correctly classified

into the diseased group. In other words, the sensitivity is the probability that the diseased

subject’s test result is larger than c. Hence, we also call it the true positive rate (TPR).

The complement of true positive rate error rate is false negative rate (FNR). It is defined as

1-TPR. Similarly, the specificity, refers to the probability that a truly non-diseased subject

is correctly grouped into the non-diseased group. In other words, the probability that a truly

healthy subject has a test result less than c. We also call it true negative rate (TNR), and

the relative error is the false positive rate (FPR), which equals 1-TNR.

It is obvious that sensitivity and specificity can only evaluate the test’s accuracy at a

certain threshold. They are “local” measurements for biomarker or diagnostic tests.ROC

curves are defined as an extension of these measurements.

ROC curves, which are constructed by plotting “1-specificity” against “sensitivity”

at all possible cut-off points, have been commonly used for evaluating the performance of

diagnostic tests at a “global” scale. A perfect diagnostic test has an ROC curve starting from

the origin, going straight to (0, 1), then turning right at ninety degrees and ending at (1,

1). However that is the ideal case. The curve clearly demonstrates the trade-off relationship

between TPR and FPR, and it also shows the importance of the choice of cut-off points.

As a summary index of the ROC curve, the area under the ROC curve (AUC ) has been

widely used. It evaluates the overall discriminating ability of the biomarker as a quantitative

measurement ([2], [3], [4]). In the ideal situation, AUC has a value of 1.

Although the ROC curve has many advantages in summarizing the accuracy of a di-
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agnostic test, it also has limitations. In some circumstances, ROC curve might be used to

represent test performance on a truncated range of clinically relevant values of FPR, or if

one wished to exclude those parts of the ROC space where study data are sparse [5]. The

ROC curve extends beyond the clinically relevant area of potential clinical interpretation.

Hence, the concept of partial AUC (PAUC ) were proposed. McClish (1989 [6]), Thomp-

son and Zucchini (1989 [7]), and Jiang et al (1996 [8]), focused on partial AUC statistical

inferences and gained popularity (Bakera and Pinsky, 2001 [9]). The value of partial AUC

analysis has been recognized and several methods have been developed. With proper binor-

mal model checking, McClish ([6], [10]) provided a method for comparing portion of ROC

curves. Based on McClish’s work, Jiang et al. ([8]) proposed a partial area index for highly

sensitive diagnostic tests (Dong D. Zhang et al. [11]). Also, Lori E. Dodd, and Margaret

S. Pepe (2003 [12]) interpreted partial AUC from probabilistic perspective in terms of a

nonparametric estimator. All these papers show the significance of PAUC, which motivates

us to focus on partial case.

However, neither the AUC nor the PAUC can provide any information about the cut-off

point with desired sensitivity/specificity, which also should be considered in evaluating the

test accuracy.

1.2 Youden Index and Partial Youden Index

A wise choice of the cut-off point is an important implementation for a test. As a result,

several methods have been proposed for the statisticians to choose the optimal cut-off points.

E.g. “CB” (cost-benefit method); “MinValueSp” (a minimum value set for Specificity);

“MinValueSe” (a minimum value set for Sensitivity); “RangeSp” (a range of values set for

Specificity); “RangeSe” (a range of values set for Sensitivity) and so on. Details could be

found in R program, package ’Optimal Cutpoints’ (Miller and Siegmund, 1982 [13], Altman,

et al., 1994 [14]).

Here we focus on Youden Index method. The Youden index (J ) was first introduced

by Youden [15] in 1950. Clearly, since both greater sensitivity and specificity are desired,
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Schisterman and Perkins [16] pointed out that the optimal threshold for the positive test

result of a disease should be the threshold leading to the maximum of the sum of TPR and

TNR. At the same time, this optimal cut-off point also guarantees minimization of the sum

of FPR and FNR, and Youden’s Index illustrates this simply and clearly. It is defined as

follows:

J = max
c
{sensitivity(c) + specificity(c)− 1} (1.1)

= sensitivity(c0) + specificity(c0)− 1 (1.2)

where c0 is the optimal cut-point of the test results.

J is a biomarker’s maximum differentiating ability when equal weight is given to sen-

sitivity and specificity, with J ranging from 0 to 1 where 0 indicates the test has no dis-

criminating ability and 1 indicates the test is perfect (Fluss et al., 2005 [17]). It not only

supplies a method to find an optimal cut-off point, but it also provides a numerical summary

of the classification likelihood of the test. From a graphical perspective, Youden’s Index is

the maximum vertical distance between the ROC curve and the diagonal chance line, which

is in accord with the differentiating capacity of the diagnosis. This index posses several re-

markable features, such as it is independent of the relative/absolute sizes of the diseased and

non-diseased groups, and all tests that share the same index make the same total number of

misclassifications per hundred patients (Youden 1950 [15]).

As Youden’s Index has such good features, we expand it into a more general case in

which the partial ROC curve is considered, and we name it “Partial Youden’s Index”.

As mentioned above, the ROC curve is constructed by plotting “1-specificity” against

“sensitivity” at all possible cut-off points. Let X denote the test result from a non-diseased

population and Xi (i = 1, 2, 3, . . . , n) i.i.d. where Xi’s are observations for X with distribu-

tion F (x). Let Y denote the test result from diseased population and Yj’s (j = 1, 2, 3, . . . ,m)

are i.i.d. observations for Y with distribution G(y). c is the cut-off point, then, according to
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the definition,we have

sensitivity(c) = P (Y ≥ c) = 1−G(c) (1.3)

specifity(c) = P (X ≤ c) = F (c) (1.4)

Since Youden Index is related to sensitivity and specificity (see eq.1.1,1.2),so it also can be

written as follows:

J = max
c
{1−G(c) + F (c)− 1} (1.5)

= max
c
{F (c)−G(c)} (1.6)

= F (c0)−G(c0) (1.7)

where c0 is the optimal cut-point of the test results. We find this optimal c0 on a scale of all

possible cut-off points,i.e. the full ROC curve is considered in this case.

Here in the PROC case, high specificity or high sensitivity are desired. Dating back to

2003, Partial Area under the ROC curve was first proposed by Lori E. Dodd et. al(2003). He

pointed out that the partial AUC was an alternative measure to the full AUC. When using

the partial AUC, one considers only those regions of the ROC space where data have been

observed, or which correspond to clinically relevant values of test sensitivity or specificity

[12].

Similarly, our motivation is to consider the Youden Index under the case when a min-

imum FPR(1-specificity) is guaranteed by given FPR ≥ p1, while a high TPR (sensitivity)

is wanted by given FPR ≤ p2.

The limitation is given by 1− p2 ≤ specificity(c) ≤ 1− p1 (where p1 ≤ p2 are FPRs).

Since specificity(c) is actually a cumulative distribution function (c.d.f) F (c), so we can
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use inverse function to find the limitation for cut-off points,

c1 = F−1(1− p1) (1.8)

c2 = F−1(1− p2) (1.9)

c2 ≤ c ≤ c1 (1.10)

Now, the definition of partial Youden Index can be given by

Jp1,p2 = max
c2≤c≤c1

{sensitivity(c) + specificity(c)− 1} (1.11)

= sensitivity(cpo) + specificity(cpo)− 1 (1.12)

= F (cpo)−G(cpo) (1.13)

where cpo is the optimal cut-off point for partial Youden Index. When p1 = 0, p2 = 1, then

c1 =∞, c2 = 0.

1.3 Existing estimations for Youden Index

We can easily tell from the expressions above, both Youden Index and Partial Youden

Index are functions of sensitivity and specificity depending on the underlying distribution of

diseased and non-diseased populations F (x) and G(y). Myriad methods have been applied to

Youden Index estimation, including parametric and non-parametric techiques. Most of them

have an assumption about their underlying distributions, such as binormal distributions.

Fluss et al. [17] proposed a parametric point estimate for Youden’s index. Schisterman and

Perkins [16] provided parametric confidence interval estimates for the index based on the

Delta method (Shao [18]) for the index and offered nonparametric approaches.

Hsieh and Turnbull [19] studied the nonparametric point estimates for the index based

on the empirical and kernel estimates for the underlying distributions without parametric

assumptions for the underlying distributions. They provided asymptotic properties of the

two estimates; however, the asymptotic variances for the empirical estimate of Youden’s
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index is still unclear, thus confidence intervals for the Youden index cannot be constructed

directly. Some studies (e.g., Faraggi [20]) considered constructing non-parametric confidence

intervals for the Youden’s index and the corresponding cutoff points. Zhou and Qin [21]

focused on construction of non-parametric confidence intervals for the Youden index and

provided two new non-parametric intervals for the index based on Agresti and Coull’s [22]

adjusted estimate (AC adjustment) for a binomial proportion.

1.4 Purpose of this thesis

In this thesis, we focus on construction of generalized confidence intervals for the Partial

Youden Index and its corresponding cut-off points. First of all, we will introduce some basic

knowledge about diagnostic tests, Youden Index and Partial Youden Index. In the second

section, we construct the exact confidence interval (ECI ) for Partial Youden’s index and

correspongding cut-off pionts based on normal assumptions for test result with Generalized

Pivotal Quantitives (GPQs, see Weerahandi [23]). The third section will show extensive

simulation studies results to evaluate the finite sample performances of the new intervals.

At last, our proposed method will be applied on a real example.
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PART 2

METHODOLOGY

2.1 Preliminaries

In the following, we will briefly review the basic concept of the generalized confidence

interval proposed by Weerahandi (1993 [23]).

Suppose that Y is a random variable whose distribution depends on (θ, δ), where θ is a

parameter of interest and δ is a nuisance parameter. Let y be the observed value of Y . A

generalized pivotal quantity R(Y ; y, θ, δ), a function of Y, y, θ, and δ, for interval estimation,

defined in Weerahandi (1993), satisfies the following two conditions:

(1) R(Y ; y, θ, δ) has a distribution free of all unknown parameters.

(2) The value of R(Y ; y, θ, δ) at Y = y is θ, the parameter of interest

Generalized Pivotal Quantities method is based on normal assumptions, which means

we assume the underlying distributions of non-diseased and diseased populations F (x) and

G(y) are N(µx, σ
2
x), N(µy, σ

2
y), respectively. X and Y are independent.

Without loss of generality, we assume that µx < µy; otherwise take the negative of the

biomarker value. First of all, point estimates for the cut-off point and Youden’s Index are

given in Schisterman and Perkins (2007) [16] paper, the optimal cut-off point maximizes the

expression

h(c) = F (c)−G(c)

Then we make

h′(c) = f(c)− g(c) = 0

and solve for the optimal cut-off point, where f(c) and g(c) are density functions of normal
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distributions N(µx, σ
2
x), N(µy, σ

2
y).

c0 =
µx(b

2 − 1)− a+ b
√
a2 + (b2 − 1)σ2

x ln b2

b2 − 1
(2.1)

and

J = Φ

(
µy − c0

σy

)
+ Φ

(
c0 − µx
σx

)
(2.2)

where a = µy − µx, b = σy
σx

, and Φ(·) denotes the standard normal cumulative distribution

function.

When variances are equal, c0 is undefined and it can be replaced by

c0 =
µx + µy

2
(2.3)

which is the limit of (2.1) as b→ 1.

2.1.1 Some useful Generalized Pivotal Quantities

X̄, Ȳ are the sample means and S2
x, S

2
y are sample variances of the non-diseased and dis-

eased populations. Let x̄, ȳ and s2
x, s

2
y be the observed values of X̄, Ȳ and S2

x, S
2
y respectively.

The generalized pivotal quantities for estimating µx, µy are

Rµx = x̄−
(
X̄ − µx
σx/
√
n

)
σx
Sx

sx√
n

= x̄− Zx√
Vx/(n− 1)

sx√
n

= x̄− tx
sx√
n

(2.4)

Rµy = ȳ −
(
Ȳ − µy
σy/
√
m

)
σy
Sy

sy√
m

= ȳ − Zy√
Vy/(m− 1)

sy√
m

= ȳ − ty
sy√
m

(2.5)

where Zx =
√
n(X̄−µx)
σx

∼ N(0, 1), Zy =
√
m(Ȳ−µy)

σy
∼ N(0, 1), Vx = (n−1)S2

x

σ2
x
∼ χ2

n−1, Vy =

(m−1)S2
y

σ2
y

∼ χ2
m−1 and tx = Zx√

Vx/(n−1)
, ty = Zy√

Vy/(m−1)
follow Student’s t-distribution with

degrees of freedom n− 1,m− 1, respectively.
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The generalized pivotal quantities for σ2
x, σ

2
y are given by

Rσ2
x

=
σ2
x

(n− 1)S2
x

(n− 1)s2
x =

(n− 1)s2
x

Vx
, (2.6)

Rσ2
y

=
σ2
y

(m− 1)S2
y

(m− 1)s2
y =

(m− 1)s2
y

Vy
, (2.7)

respectively.

The generalized pivotal quantities for σx, σy are defined as:Rσx =
√
Rσ2

x
, Rσy =

√
Rσ2

y
.

Let

Ra = Rµy −Rµx , Rb =
Rσy

Rσx

be the GPQs for a, b.

Then by plugging in Ra, Rb, Rµx , Rσ2
x
, we can get RJ , Rc0 , which are the GPQs for c0

and J .

Rc0 =
Rµx(R2

b − 1)−Ra +Rb

√
R2
a + (R2

b − 1)Rσ2
x

lnR2
b

R2
b − 1

. (2.8)

When the variances are equal,

Rc0 =
Rµx +Rµy

2
(2.9)

Then, by substitution,

RJ = Φ

(
Rµy −Rc0

Rσy

)
+ Φ

(
Rc0 −Rµx

Rσx

)
− 1. (2.10)

(Lai et al. [24]).
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2.2 GPQ method for Partial YI and its optimal cut-off point

To start with, “diagnostic curve” will be introduced as a tool to find the optimal cut-off

point for partial Youden Index (Zhou, 2011 [21]).

2.2.1 Diagnostic curve

Diagnostic curve (DC ) is highly related to Youden’s Index. Youden’s Index is the

maximized value of {sensitiviy(c)+specificity(c)-1}, and {sensitiviy(c)+specificity(c)-1} itself

is defined as the Diagnostic curve (DC ). DC measures the diagnostic accuracy of the test at

any given cut-off value c. Hence, h(c) is the expression of DC in this thesis.

It is significant for us to find the optimal cut-off point for partial Youden’s Index. Once

p1 and p2 are given, c1 and c2 are determined.

Since we usually assume the non-diseased group follows a standard normal distribution,

we only consider when X ∼ N(0, 1). Let’s see some examples of DC when F (x) is standard

normal distribution (figure 2.1, 2.2), and G(y) is any other regular normal distribution with

stochastic order F (x) < G(y).

Then, we have 3 situations concerned:

1. The regular c0 is located between the given cut-off point limit (c2, c1), cpo = c0;

2. The regular c0 is located to the left side of the given cut-off point limit (c2, c1), cpo = c2;

3. The regular c0 is located to the right side of the given cut-off point limit (c2, c1), cpo = c1;

In conclusion: cpo=median(c0, c1, c2).

2.2.2 GPQ method for Partial Youden’s Index

Based on the GPQ, DC and generalized confidence interval for YI knowledge, we get

the generalized confidence interval for partial Youden’s Index.
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Figure (2.1) Example of Diagnostic Curves (1)

Figure (2.2) Example of Diagnostic Curves (2)

Estimation for c1 and c2, since we have the following expressions,

c1 = F−1(1− p1), c2 = F−1(1− p2). (2.11)

Here, F (x) is N(µx, σ
2
x) under normal assumption.

c1 = σxΦ
−1(1− p1) + µx, c2 = σxΦ

−1(1− p2) + µx. (2.12)
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Consequently, Rc1 = RσxΦ−1(1− p1) +Rµx , Rc2 = RσxΦ−1(1− p2) +Rµx .

Algorithm:

For a given data set including x1, . . . , xn, and y1, . . . , ym, the generalized confidence intervals

for partial Youden’s Index and its corresponding cut off points are based on the following

algorithm:

1. Compute the sample mean x̄, ȳ and sample variance s2
x, s

2
y.

2. For k = 1, . . . , K

• Generate tn−1 and tm−1;

• Generate Vx, Vy from χ2
n−1, χ

2
m−1;

• Compute Rµx , Rµy , Rσx , and Rσy according to equation (2.4-2.7);

• Compute Rc0 , Rc1 , andRc2 , assign Rcpo = median(Rc0 , Rc1 , Rc2), according to e-

quation (2.8-2.10);

• Compute RJp1,p2
via plugging in the Rcpo .

(end k loop)

3. Compute the 100α/2th percentile RJp1,p2 ,α/2
and the 100(1 − α/2)th percentile

RJp1,p2 ,(1−α)/2 ofRJp1,p2 ,1
, RJp1,p2 ,2

, RJp1,p2 ,3
, . . . , RJp1,p2 ,K

.Then,
(
RJp1,p2 ,α/2

, RJp1,p2 ,(1−α)/2

)
is a 100(1− α)%confidence interval of Jp1,p2 .

4. Compute the 100α/2th percentile Rcpo,α/2 and the 100(1−α/2)th percentile Rcpo,(1−α)/2

of Rcpo,1, Rcpo,2, Rcpo,3, . . . , Rcpo,K . Then,
(
Rcpo,α/2, Rcpo,(1−α)/2

)
is a 100(1 − α)% confi-

dence interval of cpo.
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PART 3

SIMULATION STUDY

To evaluate the performance of our method, extensive simulation studies are conducted.

Coverage probability and average length of the confidence intervals will be presented as

references.

We are interested in small to moderate sample sizes. By setting several scenarios, we

can determine how well the method works. Under the normality assumption, control groups

were normally distributed with mean µx = 0 and variance σ2
x = 1 and the case groups with

mean µy and variances σ2
y = 0.5. The values for µy were chosen to correspond to the true

Youden’s Index J = 0.4, 0.6, 0.8, 0.9. The R program was used to generate 2500 iterations

(K=2500) to form the distribution of partial Youden’s Index RJp1,p2
and its corresponding

cut off points Rcpo . Choose p1 = (0, 0.01, 0.05, 0.1), p2 = (0.1, 0.2, 0.3), and each possible

combination of (p1, p2) was considered, except for p1 = 0.1, p2 = 0.1. 1000 iterations were

made to compute the coverage probability and average length of the 90% ,95% confidence

intervals. We generated samples of sizes (n,m) = (15, 15), (30, 30), (30, 15), (50, 50) with

normal distributional assumptions. (30, 15) is set up to detect the unbalanced case.

The simulation results are shown in the Appendix A.

From the results, we can tell the generalized confidence interval for partial Youden’s

index method works excellent. With the increasing sample sizes, the average lengths of the

confidence interval are smaller, but the coverage probability are still excellent around 0.9,

and 0.95. As the true Youden index increases, no big difference among each scenarios of the

coverage probability and average length when other parameters remain the same. For partial

Youden Index Jp1,p2 , the results are stable even when p1 and p2 are close. The generalized

pivotal quantity method works great on Partial Youden’s Index, the coverage probability

appears to be good no matter what are the means for the diseased group. However, the
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method seems to be over-covered for the corresponding cut-off values, especially when the

true Youden’s Index is 0.8, and 0.9.

Generally speaking, the generalized confidence interval methods perform well both on

Jp1,p2 and cpo. The generalized confidence intervals for Jp1,p2 and cpo is an available method.

Since there is no other relative work have been done on Jp1,p2 and cpo before, our method is

an initiative and is top choice so far. More inferential methods are ready to be proposed.
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PART 4

A REAL EXAMPLE

4.1 Inferences for biomarkers “CA-125” and “CA-19-9”

Now, we apply our method on a real example. The pancreatic cancer data were discussed

by Wieand et al 1989 [25]. The data sets are the outcomes of two biomarkers “CA-125” and

“CA-19-9”, which include tests results from 51 “control” patients and 90 “case” patients.

Wieand et al. (1989) plotted the ROC curves of “CA-125” and “CA-19-9”, and demon-

strated that there were some differences between the two curves when the specificity falls in

(0.8, 1) [26]. This motivates us to focus on this interval to detect the diagnostic ability of

partial Youden Index.

Specificity falls in (0.8, 1) corresponds to p1 = 0, p2 = 0.2. Since the original data

are not normally distributed, so we use Box-Cox transformation with the power parameter

φ = −0.425 to the “CA-125” test results, and φ = −0.015 to the “CA-19-9” tests results.

Then the transformed data would follow normal distribution.

We use the same iteration settings for the real example, and get the 90%, 95% generalized

confidence interval for partial Youden Index J0,0.2 and its corresponding cut-off values. Based

on this results, we will recommend a better biomarker for diagnosing pancreatic cancer in

terms of partial Youden Index. Then we compare our conclusions with those previous results.

Our results show that: 90%, 95% confidence intervals of “CA-125” biomarker are

(0.13166, 0.38364)90%, (0.10971, 0.40081)95% for Jp1,p2 respectively, and (19.2118, 30.7676)90%,

(18.4289, 32.5049)95% for cpo respectively. The results of “CA-19-9” are much bet-

ter than “CA-125” which are (0.60737, 0.75765)90%, (0.58750, 0.76938)95% for Jp1,p2 and

(31.7701, 67.2277)90%, (30.1831, 74.0393)95% for cpo.

Apparently, the Jp1,p2 of “CA-19-9” shows “CA-19-9” has higher diagnostic accuracy

to test pancreatic cancer than biomarker “CA-125”. Therefore, we recommend “CA-19-9”,
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which coincide with the results in Huang et al’s paper[26]. Also, based on our proposed

method, we can get the confidence intervals for the optimal cut off points, and this “infor-

mation” can not be obtained by ROC methods.
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PART 5

SUMMARY AND DISCUSSION

In this thesis, we propose a new concept “Partial Youden’s Index” and provide the

procedure to find a generalized confidence interval for PYI and its corresponding cut-off

point. Our estimation method is derived from GPQ method. PYI maintains merits of

YI, which can be a useful tool for finding an optimal cut-off point. In addition, PYI can

assure a lower FPR and FNR by adjusting the values of the limits p1 and p2. It performs

excellent behaviours when the physicians are dealing with the test having requirements on

minimum sensitivity or specificity. Extensive simulation studies which concentrated on small

to moderate sample sizes show the efficiency of the method.

From the results, we can tell the generalized confidence interval for partial Youden’s

index method works excellent. With the increasing sample sizes, the average lengths of the

confidence interval are smaller, but the coverage probability are still excellent around 0.9

and 0.95 at level 90% and 95% confidence levels. As the true Youden index increases, no big

difference among each scenarios of the coverage probability and average length when other

parameters remain the same. For partial Youden Index Jp1,p2 , the results are stable even

when p1 and p2 are close.

Generally speaking, the generalized confidence interval methods perform well both on

Jp1,p2 and cpo. The generalized confidence interval for Jp1,p2 and cpo is an available and reliable

method. Since there is no other relative work have been done before on Jp1,p2 and cpo, our

method is an initiative and is top choice so far. More inferential methods are ready to be

proposed.

Actually, more inferential methods could be applied to the new concept “PYI”. We only

define the generalized confidence interval estimation, which is a parametric method under

normal assumption. More work can be done in future. Delta method is also an alternative
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parametric method for us. Non-parametric methods for “PYI” can be proposed for future

study, borrowing the methods in Zhou & Qin’s paper [21]. Mixed models can be generated

to see the robustness of the method. Also, so far we have only considered the case that the

test outcome is binary; 3-ordinal cases can also be researched.
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Appendix A

SIMULATION RESULTS TABLE

Table (A.1) The coverage probabilities and mean lengths of the 90% confidence interval for
the Partial Youden’s index Jp1,p2 .

σ J p1 p2 n m cp al n m cp al
0.5 0.4 0 0.1 15 15 0.910 0.5263 30 15 0.910 0.4911

0.2 0.908 0.5722 0.899 0.5445
0.3 0.919 0.5366 0.914 0.4991

0.01 0.1 0.910 0.5315 0.927 0.5077
0.2 0.916 0.5763 0.927 0.5412
0.3 0.918 0.5415 0.927 0.5001

0.05 0.1 0.919 0.5212 0.902 0.4935
0.2 0.901 0.5735 0.920 0.5401
0.3 0.925 0.5435 0.903 0.4991

0.1 0.2 0.923 0.5734 0.901 0.5423
0.3 0.922 0.5400 0.918 0.5002

0 0.1 30 30 0.904 0.3985 50 50 0.913 0.3210
0.2 0.925 0.4349 0.918 0.3468
0.3 0.900 0.3911 0.905 0.3047

0.01 0.1 0.921 0.3954 0.904 0.3205
0.2 0.890 0.4312 0.910 0.3462
0.3 0.904 0.3890 0.898 0.3018

0.05 0.1 0.918 0.3998 0.911 0.3211
0.2 0.924 0.4366 0.918 0.3470
0.3 0.896 0.3903 0.900 0.3032

0.1 0.2 0.913 0.4353 0.898 0.3444
0.3 0.917 0.3867 0.890 0.3045
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Table (A.2) The coverage probabilities and mean lengths of the 90% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.6 0 0.1 15 15 0.920 0.6156 30 15 0.910 0.5946

0.2 0.935 0.5165 0.917 0.4867
0.3 0.904 0.4429 0.922 0.4086

0.01 0.1 0.905 0.6141 0.914 0.5971
0.2 0.926 0.5174 0.917 0.4838
0.3 0.912 0.4478 0.925 0.3991

0.05 0.1 0.920 0.6217 0.890 0.5871
0.2 0.911 0.5212 0.918 0.4872
0.3 0.907 0.4457 0.914 0.4032

0.1 0.2 0.904 0.5107 0.911 0.4857
0.3 0.912 0.4401 0.921 0.4001

0 0.1 30 30 0.885 0.4706 50 50 0.901 0.3780
0.2 0.922 0.3602 0.902 0.2764
0.3 0.896 0.2994 0.917 0.2218

0.01 0.1 0.907 0.4716 0.894 0.3761
0.2 0.904 0.3601 0.904 0.2759
0.3 0.904 0.2963 0.890 0.2202

0.05 0.1 0.916 0.4751 0.911 0.3803
0.2 0.903 0.3569 0.915 0.2751
0.3 0.925 0.2953 0.887 0.2213

0.1 0.2 0.907 0.3630 0.906 0.2778
0.3 0.900 0.2932 0.896 0.2205
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Table (A.3) The coverage probabilities and mean lengths of the 90% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.8 0 0.1 15 15 0.918 0.4684 30 15 0.916 0.4334

0.2 0.914 0.3341 0.917 0.2987
0.3 0.915 0.2998 0.914 0.2661

0.01 0.1 0.915 0.4540 0.924 0.4339
0.2 0.922 0.3312 0.917 0.3001
0.3 0.935 0.3002 0.917 0.2648

0.05 0.1 0.924 0.4629 0.917 0.4317
0.2 0.921 0.3240 0.916 0.2900
0.3 0.913 0.2930 0.900 0.2622

0.1 0.2 0.903 0.3026 0.909 0.2663
0.3 0.922 0.2765 0.911 0.2387

0 0.1 30 30 0.899 0.3025 50 50 0.910 0.2199
0.2 0.904 0.2144 0.904 0.1572
0.3 0.909 0.2057 0.906 0.1564

0.01 0.1 0.953 0.4716 0.903 0.2176
0.2 0.902 0.2110 0.897 0.1593
0.3 0.898 0.2045 0.897 0.1567

0.05 0.1 0.911 0.3021 0.904 0.2214
0.2 0.904 0.2102 0.893 0.1584
0.3 0.920 0.2031 0.880 0.1559

0.1 0.2 0.899 0.1963 0.919 0.1497
0.3 0.892 0.1879 0.907 0.1474
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Table (A.4) The coverage probabilities and mean lengths of the 90% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.9 0 0.1 15 15 0.896 0.2767 30 15 0.910 0.2314

0.2 0.926 0.2187 0.915 0.1910
0.3 0.914 0.2097 0.913 0.1871

0.01 0.1 0.904 0.2703 0.895 0.1619
0.2 0.904 0.2139 0.913 0.1932
0.3 0.935 0.2081 0.904 0.1866

0.05 0.1 0.905 0.2535 0.891 0.2349
0.2 0.925 0.1954 0.916 0.1728
0.3 0.912 0.1896 0.911 0.1665

0.1 0.2 0.912 0.1485 0.916 0.1264
0.3 0.917 0.1507 0.920 0.1251

0 0.1 30 30 0.919 0.1599 50 50 0.900 0.1127
0.2 0.907 0.1411 0.905 0.1071
0.3 0.912 0.1423 0.909 0.1070

0.01 0.1 0.908 0.1318 0.895 0.1127
0.2 0.886 0.1387 0.888 0.1074
0.3 0.899 0.1425 0.897 0.1065

0.05 0.1 0.897 0.1457 0.895 0.1026
0.2 0.909 0.1307 0.899 0.0989
0.3 0.906 0.1278 0.889 0.0993

0.1 0.2 0.911 0.0895 0.896 0.0643
0.3 0.901 0.0920 0.900 0.0637
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Table (A.5) The coverage probabilities and mean lengths of the 90% confidence interval for
the optimal cut-off points cpo.

σ J p1 p2 n m cp al n m cp al
0.5 0.4 0 0.1 15 15 0.908 1.2799 30 15 0.908 1.2489

0.2 0.910 1.0785 0.911 1.0689
0.3 0.911 0.9346 0.919 0.8819

0.01 0.1 0.914 1.2708 0.926 1.2593
0.2 0.921 1.1499 0.941 1.0471
0.3 0.909 0.8901 0.914 0.8645

0.05 0.1 0.906 1.2509 0.905 1.2365
0.2 0.905 1.0445 0.922 1.0503
0.3 0.914 0.8987 0.911 0.8708

0.1 0.2 0.914 1.0393 0.910 1.0505
0.3 0.911 0.8791 0.905 0.8639

0 0.1 30 30 0.911 0.8510 50 50 0.918 0.6448
0.2 0.906 0.7260 0.896 0.5530
0.3 0.904 0.6216 0.904 0.4790

0.01 0.1 0.920 0.8480 0.889 0.6436
0.2 0.907 0.7167 0.900 0.5555
0.3 0.894 0.6120 0.890 0.4733

0.05 0.1 0.902 0.8408 0.895 0.6447
0.2 0.926 0.7277 0.914 0.5531
0.3 0.891 0.6089 0.898 0.4774

0.1 0.2 0.914 0.7220 0.897 0.5513
0.3 0.916 0.6092 0.886 0.4780
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Table (A.6) The coverage probabilities and mean lengths of the 90% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.6 0 0.1 15 15 0.910 1.2153 30 15 0.914 1.2397

0.2 0.930 0.9383 0.934 0.9267
0.3 0.882 0.7428 0.873 0.6931

0.01 0.1 0.915 1.2144 0.906 1.2499
0.2 0.930 0.9352 0.922 0.9199
0.3 0.876 0.7442 0.883 0.6721

0.05 0.1 0.924 0.1240 0.903 1.2280
0.2 0.909 0.9400 0.933 0.9256
0.3 0.890 0.7440 0.899 0.6731

0.1 0.2 0.918 0.9463 0.909 0.9491
0.3 0.898 0.7516 0.891 0.6898

0 0.1 30 30 0.890 0.8426 50 50 0.898 0.6449
0.2 0.933 0.6412 0.900 0.5038
0.3 0.876 0.4804 0.904 0.3478

0.01 0.1 0.913 0.8387 0.887 0.6389
0.2 0.924 0.6455 0.929 0.5049
0.3 0.888 0.4731 0.896 0.3470

0.05 0.1 0.907 0.8437 0.908 0.6462
0.2 0.908 0.6368 0.907 0.5009
0.3 0.869 0.4720 0.898 0.3476

0.1 0.2 0.917 0.6513 0.916 0.5036
0.3 0.874 0.4730 0.906 0.3458
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Table (A.7) The coverage probabilities and mean lengths of the 90% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.8 0 0.1 15 15 0.928 1.0933 30 15 0.932 1.1181

0.2 0.921 0.7815 0.948 0.6942
0.3 0.936 0.7052 0.932 0.5664

0.01 0.1 0.919 1.0978 0.942 1.0670
0.2 0.941 0.7884 0.949 0.6979
0.3 0.927 0.6980 0.928 0.5665

0.05 0.1 0.922 1.1342 0.931 1.1179
0.2 0.927 0.8127 0.941 0.7340
0.3 0.936 0.7316 0.930 0.6162

0.1 0.2 0.929 0.9054 0.921 0.8500
0.3 0.928 0.8052 0.912 0.7275

0 0.1 30 30 0.918 0.7385 50 50 0.922 0.5635
0.2 0.931 0.4929 0.925 0.3599
0.3 0.924 0.4592 0.920 0.3487

0.01 0.1 0.953 0.8418 0.915 0.5585
0.2 0.934 0.4890 0.928 0.3613
0.3 0.929 0.2963 0.909 0.3490

0.05 0.1 0.918 0.7525 0.919 0.5673
0.2 0.940 0.5006 0.932 0.3642
0.3 0.932 0.4676 0.933 0.3517

0.1 0.2 0.925 0.5725 0.936 0.4138
0.3 0.923 0.5327 0.941 0.4003
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Table (A.8) The coverage probabilities and mean lengths of the 90% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.9 0 0.1 15 15 0.910 0.9572 30 15 0.917 0.8524

0.2 0.926 0.7945 0.936 0.6535
0.3 0.933 0.7698 0.934 0.6307

0.01 0.1 0.926 0.9715 0.931 0.6052
0.2 0.905 0.8059 0.934 0.6712
0.3 0.912 0.7869 0.941 0.6484

0.05 0.1 0.927 1.1606 0.920 1.0663
0.2 0.920 0.9225 0.936 0.8460
0.3 0.917 0.9020 0.931 0.8236

0.1 0.2 0.921 1.0322 0.908 1.0188
0.3 0.928 1.0088 0.913 0.9906

0 0.1 30 30 0.930 0.5998 50 50 0.933 0.4328
0.2 0.929 0.5231 0.941 0.3998
0.3 0.927 0.5203 0.933 0.3990

0.01 0.1 0.953 0.4716 0.935 0.4333
0.2 0.935 0.5268 0.942 0.3986
0.3 0.954 0.5232 0.932 0.3895

0.05 0.1 0.928 0.6950 0.916 0.5066
0.2 0.927 0.6117 0.928 0.4700
0.3 0.911 0.6203 0.929 0.4684

0.1 0.2 0.916 0.7439 0.898 0.5891
0.3 0.883 0.7348 0.902 0.5883
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Table (A.9) The coverage probabilities and mean lengths of the 95% confidence interval for
the Partial Youden’s index Jp1,p2 .

σ J p1 p2 n m cp al n m cp al
0.5 0.4 0 0.1 15 15 0.953 0.6082 30 15 0.940 0.5737

0.2 0.965 0.6702 0.956 0.6299
0.3 0.959 0.6403 0.953 0.4866

0.01 0.1 0.958 0.6031 0.957 0.5814
0.2 0.957 0.6635 0.957 0.6296
0.3 0.967 0.6441 0.961 0.5970

0.05 0.1 0.948 0.6108 0.956 0.5747
0.2 0.967 0.6702 0.956 0.6332
0.3 0.952 0.6333 0.962 0.5964

0.1 0.2 0.961 0.6665 0.956 0.6271
0.3 0.967 0.6366 0.960 0.5968

0 0.1 30 30 0.944 0.4712 50 50 0.961 0.3787
0.2 0.944 0.5110 0.955 0.4101
0.3 0.958 0.4623 0.943 0.3621

0.01 0.1 0.960 0.4681 0.946 0.3781
0.2 0.943 0.5071 0.964 0.4100
0.3 0.965 0.4609 0.946 0.3584

0.05 0.1 0.952 0.4627 0.952 0.3786
0.2 0.940 0.5102 0.962 0.4107
0.3 0.954 0.4632 0.948 0.3603

0.1 0.2 0.958 0.5098 0.952 0.4074
0.3 0.950 0.4581 0.958 0.3619
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Table (A.10) The coverage probabilities and mean lengths of the 95% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.6 0 0.1 15 15 0.956 0.7163 30 15 0.959 0.6882

0.2 0.972 0.6179 0.957 0.5732
0.3 0.958 0.5297 0.947 0.5881

0.01 0.1 0.956 0.7119 0.946 0.6802
0.2 0.960 0.6129 0.961 0.5736
0.3 0.962 0.5330 0.953 0.4881

0.05 0.1 0.969 0.7196 0.958 0.6921
0.2 0.960 0.6154 0.954 0.5784
0.3 0.961 0.5298 0.967 0.4808

0.1 0.2 0.959 0.6106 0.950 0.5690
0.3 0.970 0.5282 0.965 0.4899

0 0.1 30 30 0.946 0.5537 50 50 0.946 0.4462
0.2 0.959 0.4303 0.951 0.3296
0.3 0.956 0.3547 0.968 0.2660

0.01 0.1 0.942 0.5539 0.946 0.4440
0.2 0.948 0.4295 0.955 0.3292
0.3 0.961 0.3579 0.937 0.2641

0.05 0.1 0.948 0.5555 0.957 0.4491
0.2 0.950 0.4309 0.958 0.3283
0.3 0.959 0.3556 0.942 0.2653

0.1 0.2 0.948 0.4313 0.950 0.3315
0.3 0.953 0.3562 0.946 0.2646
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Table (A.11) The coverage probabilities and mean lengths of the 95% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.8 0 0.1 15 15 0.958 0.5628 30 15 0.964 0.5563

0.2 0.957 0.4029 0.974 0.3661
0.3 0.958 0.3579

0.01 0.1 0.965 0.5613 0.960 0.3624
0.2 0.962 0.4040 0.957 0.3674
0.3 0.959 0.3633 0.953 0.3224

0.05 0.1 0.970 0.5443 0.965 0.5274
0.2 0.964 0.3979 0.968 0.3661
0.3 0.966 0.3547 0.953 0.3143

0.1 0.2 0.969 0.3519 0.955 0.3309
0.3 0.961 0.3220 0.967 0.2878

0 0.1 30 30 0.957 0.3701 50 50 0.949 0.2657
0.2 0.953 0.2525 0.943 0.1877
0.3 0.959 0.2426 0.948 0.1858

0.01 0.1 0. 0. 0.948 0.2628
0.2 0.956 0.2538 0.951 0.1905
0.3 0.952 0.2413 0.944 0.1865

0.05 0.1 0.964 0.3633 0.955 0.2648
0.2 0.960 0.2539 0.944 0.1891
0.3 0.962 0.2385 0.940 0.1852

0.1 0.2 0.965 0.2345 0.957 0.1774
0.3 0.965 0.2216 0.957 0.1734
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Table (A.12) The coverage probabilities and mean lengths of the 95% confidence interval for
the Partial Youden’s index Jp1,p2 .(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.9 0 0.1 15 15 0.960 0.3454 30 15 0.962 0.3177

0.2 0.977 0.2574 0.954 0.2291
0.3 0.958 0.2571 0.

0.01 0.1 0.973 0.3390 0.960 0.1934
0.2 0.963 0.2661 0.963 0.2252
0.3 0.969 0.2526 0.965 0.2223

0.05 0.1 0.970 0.3209 0.958 0.2951
0.2 0.953 0.2332 0.963 0.2067
0.3 0.959 0.2190 0.957 0.1992

0.1 0.2 0.967 0.1873 0.954 0.1664
0.3 0.964 0.1789 0.950 0.1525

0 0.1 30 30 0.963 0.4706 50 50 0.951 0.1366
0.2 0.964 0.3602 0.966 0.1274
0.3 0.953 0.2994 0.961 0.1275

0.01 0.1 0. 0. 0.953 0.1367
0.2 0.956 0.3601 0.939 0.1280
0.3 0.969 0.2963 0.946 0.1268

0.05 0.1 0.954 0.4751 0.950 0.1234
0.2 0.962 0.3569 0.955 0.1167
0.3 0.959 0.2953 0.949 0.1173

0.1 0.2 0. 0. 0.951 0.0782
0.3 0.955 0.1101 0.956 0.0774
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Table (A.13) The coverage probabilities and mean lengths of the 95% confidence interval for
the optimal cut-off points cpo.

σ J p1 p2 n m cp al n m cp al
0.5 0.4 0 0.1 15 15 0.961 1.6068 30 15 0.939 1.5352

0.2 0.957 1.3817 0.959 1.2972
0.3 0.941 1.1980 0.943 0.8269

0.01 0.1 0.961 1.5411 0.962 1.5253
0.2 0.957 1.2946 0.963 1.2750
0.3 0.949 1.1073 0.949 1.0614

0.05 0.1 0.960 1.5212 0.965 1.5213
0.2 0.973 1.2801 0.959 1.2601
0.3 0.955 1.0701 0.945 1.0561

0.1 0.2 0.958 1.2628 0.961 1.2576
0.3 0.956 1.0578 0.951 1.0520

0 0.1 30 30 0.942 1.0147 50 50 0.958 0.7719
0.2 0.954 0.8723 0.944 0.6620
0.3 0.948 0.7365 0.955 0.5715

0.01 0.1 0.959 1.0240 0.947 0.7702
0.2 0.952 0.8615 0.956 0.6642
0.3 0.948 0.7329 0.945 0.5645

0.05 0.1 0.942 1.0181 0.953 0.7718
0.2 0.948 0.8701 0.957 0.6620
0.3 0.952 0.7336 0.939 0.5693

0.1 0.2 0.949 0.8598 0.944 0.6594
0.3 0.949 0.7205 0.953 0.5702
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Table (A.14) The coverage probabilities and mean lengths of the 95% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.6 0 0.1 15 15 0.965 1.4985 30 15 0.955 1.5026

0.2 0.963 1.1326 0.972 1.1001
0.3 0.941 0.9025 0.944 1.0941

0.01 0.1 0.959 1.4953 0.948 1.4718
0.2 0.973 1.1275 0.967 1.1103
0.3 0.931 0.9051 0.946 0.8279

0.05 0.1 0.950 1.4930 0.951 1.5071
0.2 0.955 1.1445 0.958 1.1267
0.3 0.941 0.9019 0.949 1.0561

0.1 0.2 0.961 1.1548 0.958 1.1318
0.3 0.950 0.9122 0.943 0.8473

0 0.1 30 30 0.955 1.0133 50 50 0.945 0.7720
0.2 0.966 0.7692 0.952 0.6012
0.3 0.939 0.5689 0.948 0.4182

0.01 0.1 0.953 1.0159 0.947 0.7655
0.2 0.962 0.7675 0.972 0.6023
0.3 0.945 0.5779 0.936 0.4174

0.05 0.1 0.956 1.0125 0.951 0.7747
0.2 0.959 0.7726 0.961 0.5982
0.3 0.931 0.5744 0.947 0.4174

0.1 0.2 0.968 0.7782 0.964 0.6018
0.3 0.945 0.5782 0.952 0.4155



37

Table (A.15) The coverage probabilities and mean lengths of the 95% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.8 0 0.1 15 15 0.972 1.3376 30 15 0.965 1.3482

0.2 0.969 0.9571 0.972 0.8481
0.3 0.971 0.8446 0. 0.4086

0.01 0.1 0.971 1.3334 0.971 0.8806
0.2 0.980 0.9578 0.967 0.8559
0.3 0.971 0.8436 0.963 0.6967

0.05 0.1 0.968 1.3609 0.974 1.3684
0.2 0.972 1.0050 0.974 0.9109
0.3 0.966 0.8828 0.980 0.7429

0.1 0.2 0.970 1.0918 0.970 1.0502
0.3 0.968 0.9755 0.962 0.8958

0 0.1 30 30 0.962 0.8917 50 50 0.968 0.6754
0.2 0.974 0.5948 0.962 0.4317
0.3 0.965 0.5510 0.961 0.4161

0.01 0.1 0. 0. 0.953 0.6686
0.2 0.972 0.5936 0.962 0.4337
0.3 0.969 0.5470 0.961 0.4168

0.05 0.1 0.968 0.8996 0.964 0.6797
0.2 0.981 0.6072 0.965 0.4372
0.3 0.965 0.5614 0.965 0.4203

0.1 0.2 0.969 0.6816 0.965 0.4973
0.3 0.950 0.6402 0.973 0.4800
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Table (A.16) The coverage probabilities and mean lengths of the 95% confidence interval for
the optimal cut-off points cpo.(continued)

σ J p1 p2 n m cp al n m cp al
0.5 0.9 0 0.1 15 15 0.972 1.1752 30 15 0.970 1.0718

0.2 0.975 0.9507 0.970 0.7939
0.3 0.973 0.9242 0.9 0.

0.01 0.1 0.981 1.1809 0.982 0.7294
0.2 0.974 0.9673 0.978 0.8148
0.3 0.983 0.9448 0.969 0.7797

0.05 0.1 0.968 1.3517 0.960 1.3168
0.2 0.969 1.1207 0.969 1.0391
0.3 0.964 1.0916 0.972 0.9928

0.1 0.2 0.956 1.2410 0.968 1.2126
0.3 0.955 1.2034 0.957 1.1821

0 0.1 30 30 0.973 0.7214 50 50 0.974 0.5221
0.2 0.973 0.6246 0.978 0.4755
0.3 0.976 0.6254 0.971 0.4757

0.01 0.1 0. 0. 0.976 0.5228
0.2 0.983 0.6293 0.974 0.4759
0.3 0.974 0.6285 0.972 0.4756

0.05 0.1 0.955 0.8382 0.962 0.6106
0.2 0.969 0.7384 0.968 0.5614
0.3 0.966 0.7339 0.971 0.5598

0.1 0.2 0.9 0. 0.955 0.6991
0.3 0.949 0.8773 0.950 0.6987
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