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HETEROJUNCTION STRUCTURES FOR PHOTON DETECTOR APPLICATIONS

by

P. K. D. DULEEPA P. PITIGALA

Under the Direction of Prof. A. G. Unil Perera

ABSTRACT

The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs
heterojunctions, (2) J and H aggregate sensitized heterojunctions for solar cell and photon detection ap-
plications, (3) heterojunctions sensitized with quantum dots as low cost solar energy conversion devices
and near infrared photodetectors.

(1)A GaAs/AlGaAs based structure with a graded AlGaAs barrier is found to demonstrate a pho-
tovoltaic responsivity of ~ 30puA/W (~ 450mV/W) at the wavelength of 1.8 um at 300K. Additionally the
graded barrier has enhanced the photoconductive response at 78 K, showing a responsivity of ~ 80uA/W
with a D*=1.4x10® Jones under 1V bias at 2.7 pm wavelength. This is an approximately 25 times im-

provement compared to the flat barrier detector structure, probably due to the improved carrier



transport, and low recapture rate in the graded barrier structure. However, these graded barrier devices
did not indicate a photoresponse with photoconductive mode at 300K due to high shot noise. Addition-
ally, two generation-recombination noise components and a 1/f noise component were identified.

A series of GaAs/AlGaAs multilayer hetero-junction structures were tested as thermal detectors.
A superlattice structure containing 57% Al fraction in the barrier and 3 x 10" cm™ p-doped GaAs emitter
showed the highest responsivity as a thermal detector with a TCR of ~ 4% K, at 300K.

(2)The photovoltaic properties of heterojunctions with J-/ H- aggregated dye films sandwiched
between n— and p-type semiconductors were investigated for potential application as solar cells and IR
detectors. Films of cationic dye Rhodamine-B-thiocyanate adsorbed on Cu,0 substrate are found to
form organized dye layers by self-assembled J- aggregation, resulting in large red-shifts in the photo -
response. Additionally, cells sensitized with a pentamethine cyanine dye exhibited a broad spectral re-
sponse originating from J- and H-aggregates. The photocurrent is produced by exciton transport over
relatively long distances with significant hole-mobility as well as direct sensitized injection at the first
interface.

(3) A ZnO/PbS-QD/Dye heterostructure had enhanced efficiency compared to ZnO/Dye
heterostructure as a solar cell. Furthermore, a ZnO/PbS-QD structure has demonstrated UV and NIR re-

sponses with 4x10°V/W (390 nm) and 5.5x10° V/W (750 nm) under 1V bias at 300K.

INDEX WORDS: Photodetector, Graded barrier, GaAs/AlGaAs, Infra-red, Noise, Band-gap narrowing, Dye
sensitized, Heterojunction, J-aggregates, Solar cells.
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1. INTRODUCTION

1.1 Motivation

There are numerous types of electronic devices based on interaction of electromagnetic (EM)
radiation with semiconductor materials, which are called optoelectronic devices. Optoelectronics is fas-
cinating field with variety of applications. One type of these optoelectronic devices is the photon detec-
tors with responses in different regions in EM spectrum varying from ultraviolet (UV) to Terahertz (THz).
Photon detectors enable humans to observe the EM radiation that are not sensitive to the human vision
due to limitation of the sensitivity to frequency/wavelength, or due to low intensity in the visible radia-
tion to be sensed by optical nerves. Another application of the optoelectronic devices is to use as a solar
energy to electrical energy converter (solar cell). Even though the solar cells’ main application is conver-
sion of solar energy in to electrical energy, it can also be considered as a photon detector. For example,
if the response spectrum of the solar cell is broaden beyond the visible spectrum and generate photo-
current or photovoltage through absorption of ultraviolet or infrared radiation. It can be used as ultravi-
olet or infrared detector with suitable cut on or band pass filters. In the field of solar cells, the dye sensi-
tized solar cells are an emerging technology. It is mainly developed as a low cost solar energy converter
to be used as an alternative to solar cells based on silicon and other toxic and expensive inorganic mate-
rials. These vast varieties of applications in optoelectronic devices have motivated me in this study.

Work presented in this thesis deals with three different studies in the area of photon detection
in the IR region and also topics relevant to photovoltaic solar energy conversion. (1) Chapters 2 to 6 de-
scribe infrared detectors based on GaAs/AlGaAs heterojunctions. Chapter 2 describes the photovoltaic
response in a device with an AlGaAs graded barrier. Chapter 3 discusses the photoconductive mode re-
sponse enhancements in graded barrier structures structure and compares their behavior with a well-
studied flat barrier structure. Chapter 4 deals with the device noise, which affects the response of the

graded barrier devices under photoconductive mode operation at 300 K. Chapter 5 presents a study of



the temperature coefficient of resistance (TCR) in GaAs/AlGaAs heterojunction structures, and its appli-
cation as an uncooled thermal detector. Chapter 6 discusses the Burstein-Moss and band gap narrowing
effect in GaAs and AlGaAs, and their effects on barriers created at the GaAs/AlGaAs hetero-junction un-
der illumination. (2) Chapters 7 and 8 are based on a study with dye sensitized heterojunction devices,
sensitized with J-aggregating dyes, which can be developed as low cost solar energy conversion device
or a near infrared photodetector. (3) Chapter 9 is a study of a UV-IR dual band system, adopting

interband transitions in high band gap semiconductor material ZnO, and PbS quantum dots.

1.2 Electromagnetic radiation

The wavelength range of the electromagnetic spectrum extending from few picometers (pm) to
kilometers (km) [1] is divided into seven sub spectral regions named as Gama-ray, X-ray, Ultra-Violet
(UV), Visible, Infrared (IR), Microwave, and Radio wave. Out of these, the IR radiation region is further
divided in to sub regions known as short wavelength (SWIR), mid-wavelength (MWIR), and long wave-
length-IR (LWIR), depending on the wavelength ranging from ~ 0.8 =5 um, 5 — 30 um and 30pum -1 mm
respectively. Furthermore, the FIR region from ~ 30 um to 3 mm is also known as the terahertz (THz)

region [2].

1.3 UV and IR photodetectors

The human eye is only sensitive to the visible spectrum; therefore, humans are blind to the other
regions of the EM spectrum. However, all objects with temperature above absolute zero (0 K) emit radi-
ation with an emission peak determined by the temperature. Unless the temperature of an object is ap-
proximately over 900-1000 K it will not emit visible radiation at sufficient intensity to be detected by

human eyes. On the other hand, objects with temperature over 4000 K will emit a large amount of UV



radiation, as the maximum emission peak shift towards the UV spectrum. Unlike IR radiation, even
though the human eye is not sensitive to UV radiation, exposure to UV radiation can damage the optical
nerve in the eye. Detectors sensitive to UV and IR are naturally needed, because useful information can
be acquired by analyzing UV and IR emissions/absorptions from objects and different materials.

IR detectors used in diverse variety of civilian and military activities, i.e., estimating heat losses in
buildings, quality control of various food items and precision imaging and identification of heat emitting
objects. Firefighters use IR detectors to identify the origins of fires and in security and defense sector
use them for night vision, and security screening in airports. Additionally IR detectors are used in tech-
nological fields such as communication and integrated circuit manufacturing and identifying faulty elec-
trical connections. Furthermore, UV and IR detectors are invaluable in study of astronomical objects to

gain information, generally inaccessible through other regions of the electromagnetic spectrum.

1.4 Different types of detectors

Photo detectors are generally categorized on basis of the response spectrum of the device (eg.
UV, IR, or THz detectors), or the detection mechanism (photons or thermal). Alternative ways of catego-
rization are based on the type of the junction at the material interface (eg. Homo-junction or Hetero-
junction), or the band alignment at the material interface (Type-l, Type-ll, or Type-lll). Since the work
presented in this dissertation is based on photon and thermal detection by hetero-junction systems, on-
ly those topics are discussed in the following sections.

Homo-junction devices [3] have an interface of semiconductor materials with the same bad gap,
but with two different doping (eg. p-type or n-type), or doping concentrations to create a barrier at the
interface. HgCdTe and InSb are two important materials that have been studied as homo-junction IR de-
tectors [4, 5]. In contrast, the hetero-junction devices [6] use two materials of different band-gap to

generate a barrier at the interface (eg. GaAs/AlGaAs, InAs/GaSb).



1.4.1 Photon detectors

Photon detectors are based on carrier excitation in semiconductor materials due to absorption
from incident radiation causing a net carrier flow, which can be measured as a current or a voltage in
the device [7-9]. Photon detectors have much higher sensitivity and fast response time compared to
thermal detectors [10].

Photon detectors are divided into two categories known as photovoltaic and photoconductive
type based on biasing used in its operation. Photovoltaic devices generate a current or a voltage upon
illumination and usually contain p-n or p-i-n type semiconductor junctions, where the notations are rep-
resenting p — p doped, i - intrinsic, and n — n doped semiconductors. Photovoltaic devices do not require
additional bias voltage, although very small applied bias voltages (< 100 mV) are sometimes invoked as a
means of amplification.

IR- photoconductive devices respond as changes in net current flow when photo-excited carri-
ers are generated by absorption of IR irradiation. The IR signal strength is generally measured as voltage
across a load resistor connected in series with the detector. Photoconductive devices have a dark cur-
rent due to the applied electric field, and the performance of the device is dependent on the magnitude
of this current, as the photoresponse is measured as the difference of the total current under IR expo-
sure and dark current. The dark current is a major source of noise in many optoelectronic devices includ-
ing IR detectors. Different types of electronic noises and their implication on photon detection are dis-

cussed in Section 1.5.

1.4.2 Thermal detectors
Thermal detectors [11] utilizing temperature dependent phenomenon of the detector material.
Many temperature dependent properties of materials have been used for detection of infrared radia-

tion. The temperature dependence of electrical resistivity , thermal expansion are familiar temperature



dependent properties of materials, that have used in detecting IR radiation [12] [13]. Pyroelectric detec-
tors utilize the temperature dependent charge separation in the material, known as the pyroelectric ef-
fect. Thermal detectors have slower response times compared to photovoltaic and photoconductive

photon detectors.

1.5 GaAs/AlGaAs heterojunction photon detectors

Hetero-junction interfacial work function internal photoemission (HEIWIP) detectors typically use
the inter-band transition of the carriers over the barrier, created due to the difference in the relevant
energy bands of the two materials at the junction interface. GaAs/AlGaAs is one of the commonly used
material combinations in hetero-junction type detectors [14]. Alternations of the aluminum fraction in
the AlGaAs layer modulate the band gap of the AlGaAs material; hence we can adjust the barrier height

of the designed device to match the required IR photon energy to be detected.

1.5.1 Uncooled heterojunction IR photon detectors: Split-off band detectors.

Uncooled detection of infrared radiation is becoming important owing to the necessity of such
detection techniques in a wide range of applications in the civilian, industrial, medical, astronomy, and
military sectors; as bulky liquid nitrogen tanks or thermo electric coolers (TECs) are not practical for such
applications.

Impurity-to-band detectors require very low temperatures for efficient operation. Inter sub-
band transition based detectors [10] were introduced In order to overcome the need for very low tem-
perature cooling. On the other hand, Quantum well detectors are based on inter sub-band transitions,

but the absorption of normal incident radiation is restricted due to the selection rules [15] and require



45° grating coupled with the device for best performance; therefore, the quantum efficiency of quan-
tum well based devices is low .

HEIWIP detectors [6], based on intra-valence band transitions (light-hole (L-H) to heavy-hole(H-
H) transitions or heavy-hole transitions to split-off (SO) band) were introduced to overcome the selec-
tion rule limitations. The split-off band infrared detector is a newly developed, emerging device based
on the p-doped GaAs/AlGaAs system [16] that utilize hole transition in the H-H / L-H band to SO band as
the detection mechanism [16, 17]. The SO band detectors have shown promising results to be devel-

oped as an uncooled IR detector [18].

CB

B b b
»
o
I
m m

_ZI__If ______ k\ EB-L/H

Band L-HBand
E-SO

“““““““““““““ Es.so

SO Band

Figure 1-1: Band diagram for the emitter region of split-off band detector, illustrating the different IR
detection threshold mechanisms. The horizontal dashed lines EB-L/H and EB-SO indicate the L-H/H-H
and split-off band maximum (k=0) positions in the barrier. The horizontal dotted lines EF and EE-SO in-
dicate the Fermi energy and the split-off energy in the emitter at k=0. The arrows indicate the possible
threshold transition mechanisms (1) direct transition from L-H band to SO band followed by scatter
back to L-H band (2) indirect transition followed by scatter back to L-H band.



A band diagram (E-k) of the emitter region of a SO band detector is shown in Figure 1-1. The de-
tection mechanism is based on the carrier transitions in the three valence bands as shown in Figure 1-1,
the L-H and H-H bands which are degenerate at k = 0, and the split-off band s separated from them by
an energy Egso. At equilibrium the p-doped region will have the Fermi level in the L-H and H-H bands,
and above the split-off band maximum. Arrows in the Figure 1-1 illustrates the possible threshold transi-
tion mechanisms. These could be direct or indirect transitions. When the carrier is in the split-off band,
it can escape directly or scatter back into the L-H/H-H bands before escape. In case of a direct transition
(solid arrow 1), no phonons are involved; therefore momentum (k) is conserved. Then the excited carrier
must scatter back to the L-H band (or the H-H band) to escape as shown by the dashed arrows. A pho-
non involved indirect transition (arrow 2) is also possible and high energy is required for these transi-
tions. The indirect absorption has two thresholds. (1) The difference of the Fermi energy and the split-
off band at k=0 in the emitter (Agso) if escape with a scattering. (2) For escape without scattering, the
difference between the Fermi energy and the split-off band at k=0 in the barrier (Aso). The horizontal
dashed lines Eg 4 and Ep.so indicate the L-H/H-H and split-off band maximum level (at k=0) in the Al,Ga;.
«As barrier. The horizontal dotted lines Erand Eg.so are the Fermi energy and the split-off energy at k=0 in
emitter region. Even though A is constant for a given material system, Ay can be adjusted by varying

Al fraction and the doping concentration of the emitter layer[6].

1.6 Noise in optoelectronic devices
Noise is a limiting factor of the performance of optoelectronic devices. 1/f noise, generation-
recombination (G-R) noise, Johnson noise, and Shot noise are the main components that can be found in

a noise spectrum of a device [19].



1/f noise gets its name due to the proportionality of the amplitude to the inverse of frequency.
1/f noise is further characterized as 1/f* where o varies from ~ 0.5 to 2 depending on the gradient in the
amplitude vs. frequency [20]. As the o gets larger, the noise decays faster as the frequency increases.
Hence, the effect on the device performance is less significant with high oo compared to 1/f noise with
low a. Furthermore, 1/f noise is one of the common types of noise found in many electronic devices.

Generation-recombination noise, well known as GR noise is a result of a carrier being trapped
and released by impurity or defect states in the material in the device [21]. The amplitude of the GR
noise is proportional to the trap state density of the material and depends on the growth method of the
device.

Johnson noise is caused by the thermal and resistance fluctuations in the device [22]. The Shot
noise, also known as quantum noise, depends on the current flow in the device [23]. The Shot noise and
the Johnson noise, also known as the white noise, are an important factor for performance of
photodetectors as the specific detectivity (D*) is determined by the Jonson noise and Shot noise level
using the Eq. 1-1 [1], where, R- is responsivity, Ap — is the electrical aria of the device in cm?, Af —is the

band width, and Noise- is the white noise density.

D’ = R \/_ ———F——(Jones) Eq. 1-1
Nozse/\/_

1.7 Dye sensitized heterojunction nanostructures

Photoexcited dye molecules which are anchored to a semiconductor surface can inject electrons
and holes to the conduction band (CB) and to the valence band (VB), respectively, with proper band
alignment [24, 25]. This process is known as dye-sensitization, and it affords a way of transferring ener-

getic carriers (either electrons or holes) to a semiconductor. The electronic coupling of the dye molecule



to the semiconductor surface causes a fast electron injection [26] and effectively circumvents the dissi-
pative processes that generally occur when an electron transits across a surface.

The main difference between the dye sensitized solar cells (DSSC) and p-n homo-junction junc-
tion solar cells is the photon energy absorber. In p-n junction solar cells the photon energy is absorbed
directly by the carriers in the semiconductor by band gap excitations, but in DSSCs the photon energy is
absorbed by the dye chromophores (the part of the molecule defining the color of the dye) and the elec-
tron-hole pair is generated in the dye molecule. These electrons and holes are transferred on to the rel-
evant semiconductor material through their chemical bonding.

The DSSCs can be divided in to two groups as photoelectrochemical (PEC) solar cells and dye
sensitized solid-state solar cells (DSSSC). The electron transfer processes in both the types are almost
same; the difference in these two types is the interface. The PEC cell has an n-type or p-type semicon-
ductor/dye/electrolyte structure and the solid state cells have n-type semiconductor/dye/p-type semi-
conductor structure. Usually, the material used as n-type semiconductor is TiO,, and Cul or CuSCN is

used as the p-type semiconductor.

1.7.1  Electron transport in DS Solid-State solar cell

An energy band diagram of a DSSSC is illustrated in Fig. 1-2. Briefly the electron transport pro-
cess is as follows; when the cell is illuminated, the photon energy is absorbed by the dye molecules. The
internal energy of the dye molecule arises from ground state (G.S) energy to the exited state (E.S) ener-
gy due to the absorbed energy of the photon (the excited dye molecule is denoted as D*). The dye mole-
cules inject electrons to the conduction band (CB) of the n-type semiconductor. Meanwhile, a hole will
be created at the valence band of the p-type semiconductor by donating an electron to dye cation (D)

(the energy of the dye cation should lie below the valence band of the p-type semiconductor to allow
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this transition). Electrons collected in the CB of the n-type material will recombine with the holes in p-

type material by traveling through the external path connected across a load resistor.

CB CB

/’ e/D+/D*
*Te E.S

D/D*—
VB G.S | vs
Dye
n-type p-type
semiconductor semiconductor

Figure 1-2: An energy band diagram of the DSS Solar Cell. G.S:-Ground state, E.S:- Excited stare,
VB:- Valence band, CB:- Conduction band, e- electron, h- hole D- dye with ground state energy,
D*- dye with excited state energy, D+ - ionized dye molecules.
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1.7.2 HandJaggregates

H-, or J- aggregates of the dye is referred to a self-association of dyes in solution or in a sol-
id/liquid interface owing to strong intermolecular Van Der Waals like attractive forces between the mol-
ecules. The aggregates in solution exhibit red or blue shifts in the absorption spectrum as compared to
the monomeric molecules. From the spectral shifts, two main aggregation patterns of the dyes in differ-
ent media have been proposed. The bathrochromically shifts (long-wavelength or red shift) in the ab-
sorption spectrum known as J-bands named after E.E. Jelly [27], one of the first workers who investigat-
ed these shifts. The other is the hypsochromically shift (short-wavelength or red shift), or the H-bands (H
for hypsochromic) of the aggregates. The transition moment coupling of the dye molecules are the
main cause of these shifts. Using H- or J- aggregates of dyes the response spectrum of the dye sensitized

device can be broadened or shifted to long or short wavelengths in the photon spectrum.
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2 UNCOOLED GRADED BARRIER HETEROSTRUCTURES FOR PHOTOVOLTAIC MODE OPERATION

2.1  Introduction

Group IlI-V semiconductor materials are extremely important for the development of infrared
(IR) detectors operating over a wide wavelength range [17, 18, 28, 29]. Most photovoltaic devices are
based on p-n junction structures. Use of superlattice structures for infrared photovoltaic devices has
gained increasing interest in recent years [30-32]. Photovoltaic response has been demonstrated in mul-
ti-quantum-well structures, which generate a photovoltage owing to the Schottky junction characteris-
tics [33]. Furthermore, photovoltaic multi-quantum-well IR detectors with GaAs/AlGaAs superlattice
structures, consisting of n-doped GaAs and undoped AlGaAs layers with a graded barrier at one contact
end, have also been reported for use at low temperatures [34][35]. This chapter demonstrates p-doped
GaAs/Al,Ga;As, emitter/graded barrier structures with different aluminum fractions (x), operating as a
photovoltaic detector under uncooled conditions. The zero bias reduces the Joule heating in the device,

and also will reduce low frequency noise and dark current.

2.2 Experimental procedure and device structures

Six devices were tested, each consisting of a barrier/emitter/barrier structure between two con-
tact layers; a schematic of the valence band structure is shown in Fig.2- 1(a). Of these six wafers, five
had the barriers graded with a decreasing Al fraction (X2) from the emitter end and to (X1) towards the
bottom contact end of the structure. The sixth sample had a flat barrier instead of the graded barrier as
the control sample. All structures had a constant barrier (X3) between the emitter and the top contact.
Device parameters are given in Table 2-1, where X1, X2 and X3 represent the aluminum fractions of the
barriers at the bottom contact end and the emitter end of the graded barrier, and in the flat barrier, re-

spectively. Out of the five wafers, three of the graded barriers were grown using continuous alloy frac-
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tion variation (SP1005, SP1006, SP1007), whilst the other two (V0727, V0728) were formed by digital

alloying as described elsewhere [36].

(a)

. 80nm . 400 nm
Bottom 1T WIS | Top
Contact Graded Constant Barrier Contact
Barrier =
1 L5
X,
(b) 20 nm
80 nm 400 nm
Bottom [€ B > | Top
Contact E Constant Barrier Contact
w
X
Constant 3
Barrier

X=X,

Figure 2-1: Schematic diagram of the valence band structure of the devices: (a) the graded barrier
structures and (b) the constant barrier structure. The barrier thicknesses are 80 nm and 400 nm,
and the emitter thicknesses (W) and Al fractions (X;; j=1..3) are tabulated in Table 2-1. The top con-
tact, bottom contact and the emitter are highly p-doped (10*° cm™)
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The sample has a constant barrier (Aly75Gag2sAs) on the bottom contact side (instead of the
graded barrier) and a small constant barrier (Alys;Gag43As) at the top contact side, separated by a single
GaAs emitter layer. The emitters were p-doped to 1x10™°cm™ in all six wafers. All wafers studied were
grown by molecular beam epitaxy, and processed into mesas by wet etching followed by deposition of

metal contacts.

Table 2-1: Sample parameter and aluminum fractions at barrier heights of the detector structures
(band diagram shown in Fig.2-1.). All samples have contacts and emitters doped to 1 x 10"° cm™>,
80 nm wide graded barrier, and 400 nm wide constant barrier.

Sample Emitter Graded Barrier Constant
Width Barrier
(nm) Contact End | Emitter End Aluminum
Aluminum Aluminum Fraction (Xs)
Fraction (X;) | Fraction (X,)
V0727 20 0.55 1.0 0.55
V0728 80 0.55 1.0 0.55
SP1005 20 0.45 0.75 0.55
SP1006 50 0.45 0.75 0.55
SP1007 80 0.45 0.75 0.55
SP1001 80 0.45 0.75 0.55

2.3 Results and Discussion

Four dominant photoexcitation and carrier transport mechanisms under photovoltaic mode are
summarized in Fig 2-2, using the valence band diagram for the graded barrier structures. In the first
path, named h1, the exited carriers (holes) in the bottom contact region scatter from the graded barrier
and fall back into the bottom contact layer. In the second path (h2), exited carriers have sufficient ener-

gy to overcome the higher end of the graded barrier, and are collected at the bottom contact layer even
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after scattering off the graded barrier. Therefore, a net charge will be accumulated at the bottom con-

tact. This carrier accumulation generates a shift in the energy levels between the two layers (bottom

contact and emitter).

Bottom GaAs Top
Contact Emitter Contact

AlGaAs ‘$ AlGaAs
Graded Barrier Const.ant
Barrier

X3 X3

Barrie Height

Barrier Dgark condition
Offset

Under illumination

Figure 2-2: Schematic diagram of the valence band alignment in the graded barrier structure before
(upper) and after (lower) illumination. X1, X2, and X3 represent the aluminum fractions at the two
edges of the graded barrier, and in the flat barrier (see Table 2-1). Carrier transport processes in
the structure are illustrated by arrows. When the device is illuminated, exited carriers (holes) will
diffuse over the barriers as represented by arrow paths h1, h2, h3 and h4. The transitions h1 and
h2 will result in carrier accumulation at the bottom contact. This generates a shift in the Fermi en-
ergy between the two contacts, resulting in a photovoltage (V).
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In the third and fourth paths, h3 and h4 respectively, excited carriers from the emitter (top con-
tact) will pass over the constant barrier and transport to the top contact (emitter) region. The net carrier
accumulation at either emitter or top contact will be zero. Therefore, there will be no energy band shift
between the top contact and emitter region due to carrier transport between them. Owing to the
asymmetry of these carrier transport mechanisms, a photovoltage (V) will be generated between the
bottom and top contact. For example, a photovoltage of 0.6 mV was observed in V0728, when illumi-
nated with the full spectrum of the IR source (1 um to 5 um) of an FTIR spectrometer. This response was

linearly proportional to the light intensity.

2.3.1 |-V characteristics

I-V characteristics for V0728 and SP1007 at 300 K at low bias are shown in the Fig. 2-3. The
V0728 has the higher resistance (15 kQ at zero Bias) and lower dark current compared to SP1007 (2.1
kQ at Zero Bias) throughout the voltage domain. The asymmetry in the |-V diagram is due to the asym-
metry in the device structure. The differences in the barrier heights are causing the differences in re-
sistance for the two devices. At negative bias (top contact negative) the slope of the graded barrier be-
comes less steep; hence the effective barrier height is reduced allowing an increased dark current to
flow through the device. Due to the higher resistance, the carrier accumulation in the V0728 will be

higher allowing a larger photovoltage buildup compared to the SP1007.
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Figure 2-3: IV characteristic curve of the devices V0728 and SP1007 at 300 K. Positive or nega-
tive bias indicate, positive or negative voltage applied at the top contact with respect to the
bottom contact, respectively.
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Figure 2-4: (a) The photovoltaic response of V0728 at 280 K and 300 K; the photovoltaic re-
sponse shows a peak at a wavelength of 1.8 um and a threshold at 2.6 um. The photovoltaic
responsivity increases with the decreasing temperature. Inset: Responsivity of wafer V0727 at
300K. The responsivity of V0727 is lower owing to the smaller emitter, 20 nm compared to 80
nm in V0728. (b) The photovoltaic response of SP1007, SP1006 and SP1005 at 300 K. The pho-
tovoltaic response decreased with decreasing emitter thicknesses (80 nm, 50 nm & 20 nm re-
spectively). A peak response was seen at a wavelength of 1.8 um, and a threshold was observed
at 3.5um. Inset: The peak responsivity (at 1.8 um) extracted from response curves of the three
devices, which shows an exponential increase in the responsivity with increasing emitter thick-
ness.
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2.3.2 Photovoltaic responsivity at room temperature

A photovoltaic response was observed for all the tested devices with a graded barrier (V0727,
V0728, SP1005, SP1006 and SP1007) when measurements were conducted at room temperature. As the
spectral responsivity measurements and open circuit voltage of the device was measured by a voltage
amplifier coupled with the Perkin EImer system 2000 FTIR. The data was calibrated using responsivity of
a bolometer. Out of the tested devices, the highest signal was observed for the device based on the wa-
fer V0728, as expected through the analysis of |-V data. The open circuit voltage responsivity spectra of
a device from this wafer at 280K and 300K are shown in Fig. 2-4(a). At 300K, a peak responsivity of 460
mV/W was observed at the wavelength of 1.8 um and the estimated photocurrent is ~ 30 uA/W. The
responsivity has increased as the temperature decreases due to increased charge accumulation with
increasing device resistance. The temperature variant responsivity are later shown in section 2.3.6.

The Johnson noise limited specific detectivity value for the device is calculated as ~1.5x10° Jones

using the Eq.2-1.
- A
D =R |——, (Eq. 2-1)
4kTR,

Here, R, is the responsivity in volts per Watt, R, is the resistance at zero bias, A is the area of the device,
k is the Boltzmann constant and T is the temperature. When the temperature of the device was re-
duced, an increase in the responsivity and D* to 1.28 V/W and 2.8x10° Jones was observed, respectively.
The peak responsivity and D* values at 300K, at 1.8 um, are summarizeded in Table 2-2. The quantum
efficiency (QE) of the devices is calculated to be 0.03% at the peak response.

The responsivity spectra of SP1005, SP1006, and SP1007 at room temperature are shown in
Fig.2-4(b). SP1007, having a thicker emitter of 80 nm, shows a higher responsivity compared to the other

two wafers (SP1006 and SP1005) which have thinner emitters of 50 nm and 20 nm, respectively. A simi-
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lar behavior was observed for V0728 and V0727 (responsivity shown in inset of Fig. 2-4 (a)); the re-
sponse is higher in V0728 with an 80 nm emitter. Since each wafer has the same doping density in the
emitter, the device with a thicker emitter is thus likely to have an increased charge accumulation. The
higher photovoltage is a result of a higher number of carriers accumulated in the contact region. Wafer
SP1001, which did not have a graded barrier, did not show a photovoltaic response when operated close
to room temperatures. Without the graded barrier, there will be no net carrier transport in either direc-

tion, and hence no photovoltage should be observed.

2.3.3 Effects of emitter thickness

The ratio of the peak responsivity (1.8 um) for V0728 to V0727 is ~ 26, whilst for SP1007 to SP
1005 it is ~19. This responsivity increment is much greater than the ratio in emitter thickness. The
responsivity increase in the SP devices with emitter thickness is shown in the inset of Fig. 2-4(b), and
shows an exponential behavior. This phenomenon has not as yet been fully understood. The difference
in the responsivity ratios between V07 and SP samples may, however, be a result of the differences in
the rate of scattering at the barriers, owing both to the two different methods used in growth, and also
to the difference in the aluminum fractions in the graded barriers (the gradient in the barrier). In addi-
tion to the differences in the device resistance, the accumulated carriers may discharge quickly in the SP

series devices compared to the V07 series.

2.3.4 Effects of barrier heights
Devices V0728 and V0727 show a photoresponse threshold at ~2.6+0.2um, while SP1005,
SP1006 and SP1007 show a broader response region with a threshold around 3.5+0.2pum. The Arrhenius

plot of dark current verses temperature gives the barrier height as ~490+15meV (2.55+0.1um) and
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Figure 2-5: The dark current variation with temperature and Arrhenius plot for V0728
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~360+10meV (3.4410.1um) in agreement with the photovoltaic response threshold. The |-V data and
Arrhenius plot for V0728 at three different bias voltages are shown in Fig. 2-5. The barrier height calcu-
lated using the Anderson rule, conduction band to valance band ratio (CB:VB) of 60:40 gives a VB barrier
height ~610 meV for AlAs/GaAs interface in VO7 series (barrier due to difference in aluminum fractions
x=1 and x=0) and a barrier height of ~430 meV for the Aly;5Gag,sAs/GaAs interface (x=0.75 and x=0) in
the SP series. The constant barrier height is ~300 meV (x=0.57 and x=0) for both the sets of devices.
Therefore, the barrier offset for VO7 and SP samples are ~310 meV (x=0.57 and x=1) and ~130 meV
(x=0.57 and x=0.75), respectively. None of the barrier heights calculated by the Arrhenius data are
equivalent to any of the barriers or barrier offsets calculated by the 60:40 ratio of the CB:CV alignment
at GaAs/AlgaAs interface. The difference in the values obtained by Arrhenius data and Anderson rule can
be due to the tunneling effects through the thinner region of the graded barrier. Another reason can be
the 60:40 ratio may not reflect the correct band offset for the aluminum fraction, x, > 0.45, as the X- val-
ley becomes lower than the I'—valley for AlGaAs under this condition and the band gap becomes indirect
and lower than the energy difference between VB and I'-valley [37]. Additionally, different CB:VB ratios
ranging from 50:50 to 85:15 can be found in literature [14, 38-40] for GaAs/AlGaAs interface, and the
67:32 (66:34) ratio gives a band offset of 488 meV (365 meV) for V07 (SP) devices agreeing with the val-

ues calculated by Arrhenius data (490 + 15meV and ~360 + 10meV).

2.3.5 Noise and detectivity

The variation in D* for V0728 with wavelength in both the photoconductive mode (with a bias of
-0.1V) and photovoltaic mode (0 V bias) are shown in the Fig. 2-6. The noise generated by the measuring
instruments is negligible compared to the device noise. The inset of Fig. 2-6 shows the noise current
density (S(f)) of V0728 at a -0.1V bias voltage, and at 0 V bias. At high frequency (f > 10 kHz) the meas-

ured noise density is closer to the Johnson noise limit. D* calculated with the measured noise at 10 kHz,
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is 1.2 x 10° Jones. As a comparison between the photovoltaic and photoconductive modes of operation,
sample V0728 was then operated in photoconductive mode under the negative bias (bottom contact
positive) for which it was designed. The D* value of 1.5 x 10° Jones for photovoltaic operation was sig-
nificantly higher than the photoconductive value of 3.5 x 10* Jones. This indicates the potential for bet-
ter performances of devices, in the photovoltaic mode of operation using graded barriers at room tem-

perature.

Table 2-2: The responsivity in mV/W and pA/W and specific detectivity (D*) of the devices at 300K and
a wavelength of 1.8 um.

Device No. Peak Responsivity D*
mV/W LA/ W (Jones)
V0727 ~17.1 ~2.1 6.0x10*
V0728 ~450 ~30 1.2 x10°
SP1001 - -
SP1005 ~1.1 ~1.0 9.9 x10°
SP1006 ~3.9 ~4.1 3.3x10*
SP1007 ~20.8 ~10.4 1.4 x10°

However, the D* obtained for this device is comparatively low compared to other infrared direc-
tors working at room temperature and responding in shorter wavelength (< 2um), such as the p-i-n
InGaAs detector with D* of the order of 10™ Jones. In contrast, the results shown in this chapter are not
from a device designed for optimal photovoltaic mode operation. However, unlike those detectors,
graded barrier detectors are intra-band devices, providing wavelength tunability by adjusting the barrier

height. Therefore, implementation of the design can lead to uncooled IR detectors for long wavelength
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detection. Further improvements of D* are possible by modifying the structure parameters of the grad-
ed barrier device, such as having thicker emitters, adjusting the barrier thicknesses, the aluminum com-
position in the barriers, multiple layers, emitter doping, and substituting the emitter layer with different

materials with higher absorption coefficient.
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Figure 2-6: Detectivity of V0728 as a function of wavelength in a photoconductive mode (with a
bias of -0.1V) and photovoltaic mode (0 V bias) at 300 K. The photovoltaic mode has a higher
detectivity due to low noise. Inset: The noise current density (S(f)) of V0728 at -0.1V bias volt-
age, and 0 V bias, shows a low noise level in the device with OV bias due to absence of shot
noise caused by dark current in the biased device.
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2.3.6 The photovoltaic response at low temperatures.

The variation of photovoltaic responsivity and D* at 1.8 um wavelength for V0728 as a function of
temperatures 80 K to 300 K are shown in Fig. 2-7. The response increases as the temperature decreases,
and at 80 K the responsivity is ~ 28 V/W. The change of detectivity (D*) at different temperatures are
also shown in Fig. 2-7. The D* reaches ~ 1.8 x 10’ Jones at 80 K. Even though a linear fit is shown in the
Fig. 2-6, agrees better with the low temperature responsivity, the response in the temperature region
300 K to 250 K shows a rapid increase with decreasing temperature.

Response spectra of V0728 at 120 K and 170 K are shown in Fig. 2-8. As can be seen in the figure,
the response threshold shifts towards the long-wavelength region as the device temperature reduces to
120K in V0728. This trend was observed for temperatures below 120 K, and it diminishes as temperature
increases, and completely disappears in temperatures greater than 150 K. This red shift in the threshold
wave length is only observed in V0727 and V0728 where the aluminum fraction in the graded barrier is
higher than other graded barrier devices.

The cause of the red shift in spectrum can be the effect of indirect carrier transitions from the
light hole band to split-off band which was observed by Jayaweera et. al. [18] in split-off band detectors.
But the cause of temperature dependence is yet to be clearly identified. Additionally, the SP10 series
devices with low aluminum fraction in the barrier do not show this red shift in the response because of

their long wavelength threshold compared to the V07 devices.
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Figure 2-8: The response spectra of V0728 at 120 K and 170K. As the temperature decreases a
second response peak arises in the device.
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Figure 2-9: The photovoltaic response observed for the constant barrier device (SP1001) at 80K.
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Another interesting observation was the photovoltaic response observed in the devices without
graded barrier (SP1001) at low temperatures (T < 200 K). The photovoltaic response observed in the
SP1001 at 80 K, is shown in Fig. 2-8. A cause for this PV response in SP1001 was not fully understood,

but few possible causes are stated below.

(b) |

[ V —=====">

X3 (Flat) barrier region

Figure 2-10: (a) The carrier transition mechanism involved in the response threshold red shift in
V0728 and (b) the carrier transition mechanism involved in the photovoltaic response in the
constant barrier structure (SP1001)
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One possible reason for the observation is the thermo-electric effect in the device. As one end of
the device is cooled and the other end is illuminated with infrared radiation (heating), there is a possibil-
ity of small temperature difference present between the two ends of the device causing a net carrier
flow in to one direction. A similar effect was observed by Schneider et. al. [41] for a AlGaAs/
GaAs/AlGaAs single well structure. A possible carrier transition mechanism responsible for the photovol-
taic response in the SP1001 at low temperature is shown in Fig. 2-10. Due to the temperature differ-
ence at the two ends an energy gradient will emerge in the flat barrier (the X3 barrier) region. The tem-
perature difference causes the band gap of AlGaAs barrier to vary causing a slight gradient in the barrier
region. This will disrupt the equilibrium between the carrier transition process h3 and h4 shown in the
Fig. 2-2, and there will be a net carrier flow towards the top contact region until the carriers accumulate
and shift the valence band energy in the top contact region so that equilibrium is reestablished. This
temperature gradient can cause a negative effect on the graded barrier structures’ photoresponse as
the temperature gradient causes carrier flow in the opposite direction (carriers accumulate at top con-
tact, instead of the bottom contact as shown in Fig. 2-2). But as can be seen in Fig. 2-9 the
photoresponse due to this thermal effect is very small (~ 40 mV/W @ 80 K) compared to ~28 V/W
responsivity observed in the V0729 at 80 K.

Another possible cause for the low temperature photo-voltaic response in SP1001 is the growth
defects. During MBE growth a non-uniform barrier with a slight slant may have been generated. Fur-
thermore, dopant migration can also cause band bending to generate a gradient in the flat barrier re-
gion [42]. Additionally experimental and theoretical studies by Larkins et. al. [43] show a photovoltaic

response can be generated due to asymmetric interface roughness in the structure.
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The photovoltaic response generated in SP1001 due to an energy gradient associated with tem-
perature differences, defects generated during growth or doping migrations is very weak even at low

temperature. So, at room temperature this response can resulted in a low signal to noise ratio.

2.3.7 Future Work: Possible improvements in responsivity and detectivity for room temperature op-
eration

Possible modifications and expected improvement factors are summarized in Table 2-4 and are
briefly discussed in this section. Based on the results and calculations published elsewhere [44], increas-
ing the emitter doping from 1x10"° cm?® up to 3x10" cm?, will result in an improvement factor of ~3 is
expected by increasing the number of excited carriers. Similarly, from an analysis of the improvement in
the responsivity with increasing gradient in the barrier, shown in Fig 2-2 (a) and (b), an improvement by
factor of ~3 is expected by lowering the aluminum fractions from X1 = 0.55 to 0.05 at the lower end of
the barrier. Lowering the aluminum fraction at the lower end of the graded barrier will allow the VB in
the bottom contact to shift further, generating a higher response voltage. With the addition of 30 emit-
ter/barrier layers will improve the photon absorption hence an improvement factor of 25 is expected.
Multilayer structure will increase the photon absorption in the device; and more carriers will be excited
and accumulated in the contact region. Additionally, multilayer device can act as a series connection of
individual units; therefore, increase the response voltage.

Furthermore, keeping the resistance of the device to an optimum value by adjusting the barrier
thicknesses to maintain the low noise as well as a high responsivity, will improve the D* by an additional
factor of 3 or more making the D* > 10° Jones, what would make this device competitive with the re-
ported photovoltaic devices operates under low applied bias voltage [45]. Additionally, as theoretical
models have predictions of around 20 times enhancement of absorption via plasmon effects [46, 47] an

improvement factor of ~20 can be expected via enhancing the absorption using surface plasmon effects.
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The result is a total enhancement of a factor of 10*. Furthermore, by adopting different materials with
higher absorption coefficient (o; at A ~1 pm, T ~295 K and p-doped ) than GaAs (o ~20 cm™) [48] such as
InN (oe ~10° cm™) [49] and InP (~200 cm™) [50] shall enhance the absorption resulting the performance
of the device increase by a factor of 10 or more. This offers the prospect of the detectivity to be greater
than 10" Jones which is a competitive with commercially available detectors, such as the p-i-n InGaAs

detector with D* of the order of 10* Jones.

Table 2-3: Summary of expected enhancement factors due to modifications proposed for the present

structure.
E. ]
Description Present Value Proposed Value xpected m;')rov’f ment

Factor in D
Increase doping 1x10" cm™ 3x10" cm™ 3
Gradient in the barrier (X1-X2) 0.55 0.05 3
Increase Number of layers 1 30 25
Impedance (Johnson Noise) 15 kQ 2 kQ 3
Plasmon effect - 15 15
GaAs(a. ~20cm™) | InN(o. ~10* cm™) 50

High absorbing material
InP(cL ~200 cm™) 10

2.4 Conclusion

In conclusion, single emitter barrier structures with p-doped GaAs emitters and undoped AlGaAs
graded barriers were tested for their photovoltaic (without applied bias) response. We found that struc-
tures with a graded barrier had a photovoltaic response at room temperature and without any applied
bias voltage. A device with a higher aluminum fraction in the graded barrier (x=1 to 0.55) and with an

emitter thickness of 80 nm, showed the highest responsivity of ~ 450 mV/W at 300 K. This responsivity
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was shown to increase as temperature is decreased. Furthermore, increasing the emitter region thick-
ness by a factor of four led to an increase in the peak responsivity by a factor of ~ 26. Devices also
showed better D* values when operated in a photovoltaic mode rather than in a photoconductive
mode. Possibilities of further enhancing the responsivity and detectivity are discussed. Additionally, the
concepts presented in this paper can be extended to long wavelength IR radiation in the 8 — 14 um
range, as well as the terahertz frequency range, using phosphide and nitride based materials. Use of a
photovoltaic mode of operation thus offers considerable potential advantages for long wavelength de-

tection.
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3 PERFORMANCE IMPROVEMENTS OF A SPLIT-OFF BAND DETECTOR WITH A DIGITAL-ALLOYING

GRADED BARRIER UNDER PHOTOCONDUCTIVE MODE OPERATION

3.1 Introduction

The development of infrared (IR) detectors operating at or around room temperature would be
of great benefit for many practical applications. The reduction or elimination of weight and power re-
quirements for cooling systems will greatly enhance the attractiveness of these detectors. A number of
different approaches to improve the operating temperature of IR detectors have been studied, includ-
ing: bulk HgCdTe operating up to 200 K [51], quantum well [52, 53], quantum dot [54], and type-ll
strained superlattice [55] detectors. The split-off band detectors were successfully tested recently [18]
showing a ~4 um threshold detector operating up to room temperature. However, the performance of
these split-off band detectors was low owing to excessive recapture of excited carriers in the emitters. A
model for the response of the split-off band detectors was proposed, suggesting possible improvements
in the device design [44].

Split-off band detectors consist of highly p-doped emitters between undoped barriers. The ab-
sorption in the emitter excites carriers from the light/heavy hole bands into the split-off band. The ex-
cited carriers then escape into the barrier, typically after scattering back into the light/heavy hole band
at the emitter-barrier interface, and are collected by an applied electric field. One possible approach to
improve the performance of the detectors is to use a graded barrier. The extra kinetic energy of carriers
entering over the high-sided barrier should reduce the excess trapping leading to photoconductive gain
by a mechanism similar to that in QWIPs [56].

Furthermore, as projected by Matsik et. al [44] a graded barrier with the injection side higher
than that the escape side will artificially heat the carriers entering the emitter. Providing a sufficiently

large height difference between the two edges of the barrier will allow excited carriers to escape after
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scattering, and the trapping rate will be reduced. Additionally, grading will allow the thermal escape
from the contact and the emitter to be balanced reducing space charge buildup [44].

There are different approaches to grow graded barriers in GaAs/AlGaAs based devices. One ap-
proach is to gradually change the aluminum available in the growth chamber, and the other method is
to use GaAs and AlAs layers in alternate order, as in a superlattice structure, with varying thicknesses
this arrangement is like a binary number system hence it has been dubbed as digital alloying [57]. Two
different digital alloying formulas used in the growth of the graded barriers are described later in section

3.2.2and 3.2.3.

3.2 Device structures and growth procedure

Five different devices (parameters of these structures are given in Table 3-1) with single emitter
sandwiched between two barriers were tested to study the effects of a graded barrier on device per-
formance. The valence band diagram of the devices is similar to that shown in Fig. 2-1 in Chapter 2. Out
of five devices, the device 1001 consists of a constant barrier as in Fig. 2-1 (b), and it is used as the con-
trol to compare the performance of graded barrier versus the constant barrier. The other four structures
consist of graded barriers and can be categorized into three groups depending on the method used in
growing the graded barrier. For the device 1007 the graded barrier was fabricated by gradually increas-
ing the aluminum fraction during the growth. In the structures 0905, 0906, 0912 “digital alloying” was
used to grow the graded barrier. Two different digital alloying approaches were used have identified as
‘averaging’ and ‘subminiband’. These two digital alloying approaches are briefly described below. The
expected aluminum fraction at each barrier and expected barrier heights are shown in Table 3-1, and

Table 3-2, respectively.



Table 3-1: Sample parameter and aluminum fractions in the barriers of the detector structures (band
diagram shown in Fig.2-1.). All samples have contacts and emitters doped to 1 x 10" cm, 80 nm wide
graded barrier, and 400 nm wide constant barrier. Acronyms used for the alloying method used in
graded barrier: Dig.-MB: Digital alloying with “subminiband” approach; Dig.-Av: Digital alloying with
“averaging” approach; and Non-Dig.: non-digital alloying approach.

Sample Alloying Emitter Graded Barrier Constant
Method Width Barrier
(nm) Contact End | Emitter End Aluminum
Aluminum Aluminum Fraction (Xs)

Fraction (X;) | Fraction (X,)

0905 Dig.-Av 50 0.45 0.75 0.55
0906 Dig.-Av 80 0.45 0.75 0.55
0912 Dig.-MB 50 0.45 0.75 0.55
1007 Non-Dig. 80 0.45 0.75 0.55
1001 Non-Dig. 80 0.45 0.75 0.55

Table 3-2: Expected barrier heights of the detector structures

Sample Graded Barrier Heights Constant
Barrier height
Contact End | Emitter End (E3) meV
(E1) meVv (E;) meV

0905 240 380 240
0906 240 380 240
0912 230 390 240
1007 240 380 240
1001 240 380 240
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3.2.1 Non-digital alloying approach
The device 1007 is grown with non-digital alloying (n-DA) approach. In n-DA the aluminum frac-
tion is continuously changed by gradually adjusting the aluminum concentration and temperature in the

growth chamber to grow the graded barrier.

3.2.2 “Averaging” approach

The digital alloying “averaging” (DA-A) approach was used for devices 0905 and 0906. In this
barrier the carriers will only see an average aluminum fraction for several adjacent layers [57], i.e., one
monolayer of GaAs and two monolayers of AlAs would affect the carrier like a Alg,Gag33As layer. Rough
and partial AlAs/GaAs interfaces will break up any miniband formation, and hence improve the averag-
ing behavior. The formulas used in growth of the DA-A graded barrier structures are as follows. The
graded barrier was effectively grown as 31 periods of GaAs and AlAs with thicknesses (0.45+0.01N)L/31
and (0.55-0.01N)L/31 respectively, where N is the number of the period and L is the total thickness of
the graded barrier. The final five periods were grown by dividing the layers into four sub periods using
the remaining barrier thickness according to the above formula. The original formula has to be disrupted
because if the above formula is used continually the thickness of GaAs layers will become thicker than
the AlAs layer. Fig. 3-1 shows a schematic of the layer arrangement in the graded barrier with a graph-

ical representation of GaAs and AlAs layer thickness variation using a histogram.

3.2.3 “subminiband” approach
The digital alloying “subminiband” (DA-S) approach, used in the graded barrier growth of 0912,
has quantum well energy levels creating a miniband forming a graded barrier. The GaAs/AlAs layer quali-

ty needs to be high with good interfaces, so that the carrier wave functions are not localized in a single
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well. In DA-S approach 11.3 A AlAs barriers were used throughout with 12 periods each of 7.5, 5.5, 4.6
and 3.7 A GaAs wells. In the structure 0912, the highest miniband energy level is calculated to be closer
to the barrier height energy of Aly75Gag2sAs. A schematic of the layer structure, change of quantum well

widths and carrier transport through the miniband are illustrated in Fig. 3-2.
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Figure 3-1 Graphical representation of GaAs and AlAs layer thicknesses in “averaging” ap-
proach and a schematic of layout in the barrier region.
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AlAs GaAs

Figure 3-2 Approximate quantum well / barrier arrangement created by the “subminiband” approach with
the ground state miniband in the superlattice structure and carrier transported through the ground state
miniband and a schematic of the layer arrangement.
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3.3 Results

3.3.1 Analysis of digital alloyed graded barrier: “averaging” vs. “subminiband” approaches

This section compares the performance of the two devices grown with the two digital alloying
approaches, the 0905 grown by DA-A approach and 0912 grown by DA-S approach. These two structures
have same device parameters with a 50 nm emitter.

A tunneling electron microscopy (TEM) image of the graded barrier region for a wafer grown
with the DA-A approach is shown in Fig. 3-3(a). A clear layer separation between GaAs and AlAs layers in
most of the area in first 26 layers can be seen in the TEM image, but in some sectors we can also ob-
serve GaAs layers that breach into the AlAs layers making the layer thicknesses uneven. Furthermore,
the final five periods having the thinner layers of the subperiods cannot be seen owing to the resolution
limits of the image. The TEM image in Fig. 3-3(b) shows the layer structure at the graded barrier region,
where the DA-S approach was used in growth of the graded barrier. A layer separation, between GaAs
and AlAs layers is observed in some area in the barrier region, however; the layers appear to almost dis-
appear in some regions and are inconsistent across the entire sample as seen in this TEM.

The IV characteristics of the two devices are shown in Fig.3-4 (a). A higher dark current in 0905 is
observed in -1 V bias, and the dark currents in the two devices are very similar to each other at low neg-
ative bias (V> -0. 4V) to + 1V bias, even though the dark current in 0912 is high in this range. At higher
positive bias 0912 has a lower dark current compared to 0905. The activation energies for the 0905 and
0912 are 270, 320 meV, respectively (Table 3-3). These activation energies are lower than expected from
the theoretical values.

The response spectra of 0905 and 0912 are shown in the Fig. 3-4(b), and responsivity values at
the peak wavelength of 2.8 um are given in Table 3-4. The responsivity spectrum of both the devices
shows a similar profile with two peaks under negative bias and the one response peak under positive

bias. The device 0905 has ~ 2 times higher responsivity compared to the 0912 at both the negative and
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positive bias, indicating that the digital alloying DA-A approach is a better method than the DA-S ap-

proach.

10 nm

10 nm

Figure 3-3 : (a) TEM image of the graded barrier showing layer separation in the “av-
eraging” approach. (b) TEM image of the graded barrier showing layer separation in
“subminiband” approach.
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Figure 3-4: (a) The responsivity and IV characteristics of two graded barrier structures
grown by “averaging” (0905) and “subminiband” (0912) approaches. (b) The response pro-
file is similar in both structures under positive and negative bias, although the structure
0905 has the highest response.
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Table 3-3: The activation energy calculated by Arrhenius plot where
the expected value is ~ 390+5 meV for 0905 and 460+10 meV for 0912

Sample Activation Energy
meV
0905 270+ 10
0912 310+ 10

The Shot noise powers (S(f)) of the devices at 78 K are calculated by Eq.3-1, where, the q and |

are electron charge and dark current respectively.
S(f)=4q/ (Eq. 3-1)

The shot noise limited detectivity (D*) is calculated by Eq.3-2, where, the R and A are

responsivity, and electrical area of the device respectively.

o R A
VS(f)

(Eq.3-2)

Due to the high dark current in the device 0912 under -1V bias, the D* of the two devices are al-
tered with the polarity as shown in Table 3-3. The higher activation energy observed for 0912 compared

0905 is the result of low dark current in 0912.
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Table 3-4: The shot noise power, responsivity, and D* of the devices 0905 and 0912, grown with two digital
alloying approaches, at 78 K under + 1V and -1V bias.

Device Shot noise (A?/Hz) Responsivity (A/W) Detectivity (D*) (Jones)
i\ -1V i\, -1V i\ -1V

0905 7.7x10%  1.2x10%° | 4.4x10%  7.4x10% | 1.3x10"®  1.8x10"”

0912 8.8x10%°  9.4x107%® | 1.8x10%  2.7x10% | 4.9x10"”  2.3x10"’

Due to the layer unevenness, observed in the TEM image (Fig. 3-3 (b)), of the DA-S approach
graded barrier the device 0912 may not have performed as well as expected. Therefore, this result does
not provide a clear conclusion of whether the DA-A approach or the DA-S approach is better in graded
barrier growth. But, in next two sections the performance of the flat barrier device and graded barrier
devices with n-DA approach and DA-A approach are presented, showing improvements in responsivity

and D* with the implementation of the graded barrier.

3.3.2 Analysis of flat barrier vs. graded barrier (non-digital alloying approach)

This section presents a comparison of the current-voltage (IV), responsivity and detectivity (D*)
of graded barrier structure 1007 and the flat barrier structure 1001 at 78 K. Both these devices do not
have digital-alloyed barriers, but both have similar dimensions including the emitter thickness at 80 nm.
Therefore the only difference between the two structures is that one consists of a graded barrier and

the other has a flat barrier.



Figure 3-5: IV characteristics of the devices 1001, 1007 and 0906 at 78 K. The asymmetry in the IV
curves is due to the asymmetry in the structure. 1001 have the lowest dark current at high negative
bias (V < -1V). The device 0906 shows the highest dark current of all three devices.
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The |-V characteristics of the two devices at 78 K are shown in Fig. 3-5. The bottom contact is
used as the electrical ground. The asymmetry seen at the |-V measurements is due to the asymmetric
barriers in the structures. This plot shows increasing dark current in 1007, at large negative and positive
bias voltages, compared to 1001. When a large electric field is applied, the effective barrier gradient at
the graded barrier will increase, and at the same time the effective barrier width will decrease causing a
barrier breakdown. As a result, the 1007 device has its breakdown voltage at a lower bias compared to
the 1001. Furthermore, the shoulder like feature in the observed in |-V curve around +10 V bias for 1007
indicates carrier tunneling in the graded barrier device. Carrier tunneling can be prominent in the grad-

ed barrier due to the reduced barrier height and the thickness with increasing electric field.

Table 3-5: The activation energy calculated by an Arrhenius plot
where the expected value is ~ 3905 meV for all the devices.

Sample Activation Energy
meV
0906 27010
1007 380+ 10
1001 470+ 10




S 1074
S ;
<
E
2
S 107
7)) ]
c
(o]
o
(]
£ 1% 78 K

] +1V

2 3 4 5
Wavelength (um)

l(b) —— 1001
_ _ — 1007,
S |
< 1071
\E/ ]
>
>
(/2]
C
(@]
2 10°
i 78 K

-1V

2 3 4 5 6 7
Wavelength (um)

Figure 3-6: The responsivity comparison between two graded barrier structures 1007 and the con-
stant barrier structure 1001 under positive bias (a), and negative bias (b). At positive bias both the
devices show a peak response around 2.7 um, while under negative bias both devices have addi-
tional response peaks around 4.9 um.
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The activation energies calculated by an Arrhenius plot are shown in the Table 3-5. The activa-
tion energies are approximately 470 and 380 meV for 1001 and 1007, respectively. The n-DA graded bar-
rier structure (1007) has activation energy close to the expected value. The constant barrier structure
(1001) has higher activation energy than expected. The reason for the high activation energy observed
for 1001 is not fully understood, but it can be due to carrier tunneling in the structure.

The responsivity of 1001 and 1007 at 78 K with +1 V and -1 V bias is shown in Fig.3-6 (a) and
Fig.3-6 (b), respectively, and the responsivity values, at the wavelength 2.8 um, are listed in Table 3-6.
Even though activation energies are different in the 1001 and 1007 structures, the response thresholds
do not show a significant shift in the two devices except for the ~0.1 um red shift in the 1007 at positive
bias. At negative bias, the threshold wavelengths are similar in both the devices. The 1007 device has a
high responsivity of 2x10° A/W and 4.2x10” A/W under 1V and -1 V bias, respectively, compared to the
1001, with 1.9x10° A/W and 6.2x10° A/W under 1V and -1 V bias, respectively. The device 1007 has a
high responsivity compared to the device 1001 under both the negative and positive bias. Comparison of
responsivity of 1001 and 1007 indicates that the integration of graded barrier has enhanced the device
response.

Under higher applied bias, even though the 1007 device has a high dark current causing the
shot-noise to be higher, considering the dark current of 1001 and 1007 in the range from -1 V to + 1V
are in the same order of magnitude with 1001 having a slightly lower dark current compare to 1007.
Hence, the shot noise level of 1001 and 1007 are approximately of the same order of magnitude as can
be seen in Table 3-6. Since the 1007 device has a high responsivity compared to the 1001, the D* is

higher in 1007, as shown in Table 3-6.



Table 3-6: The shot noise power calculated by Eq. 3-1, responsivity, and the D* of the devices at 78 K

under + 1V and -1V bias.

Shot noise (A’/Hz) Responsivity (A/W) Detectivity (D*) (Jones)
1V -1V 1V -1V 1V -1V
1001 9.3x10% | 9.3x10%° | 1.9x10% | 6.2x10% | 5.2x10"° | 1.7x10""’
1007 9.6x10% | 9.6x10% | 2.0x10% | 4.2x10% | 5.2x10"" | 1.1x10"®
0906 9.0x10% | 2.0x10%® | 4.8x10% | 7.8x10% | 1.3x10"® | 1.4x10"®
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3.3.3 Analysis of digital alloyed “averaging” vs. non-digital alloying approaches

Even though the analysis in section 3.3.1 shows some defects in the graded barrier growth by
the DA-A approach, the device 0906 with the DA-A graded barrier has shown an improved responsivity
compared to 1007. Therefore, this section will present a comparison of the performance of the DA-A
approach device (0906) and the n-DA approach device (1007), where the only difference in the structure
is in the graded barrier growth approach.

As can be seen in |-V characteristics of the 1007 and 0906 in Fig. 3-5, the dark current at 78K is
similar in the two devices in the range -0.5 V to 1.4 V. But as the bias increases, the dark current rapidly
increases in 0906 compared to 1007. Hence the shot noise in 0906 is higher with a larger negative posi-
tive bias in 0906 compared to the 1007 as shown in Table 3-6. The lower breakdown voltages for 0906
indicate higher carrier conductivity in the structure compared to the 1007. The 0906 device also shows
tunneling effects in the |-V curve and the tunneling feature occurs at lower voltage compared to the
1007. Additionally, the activation energy calculated for 0906 is ~ 280 meV which is smaller than ex-

pected value for the device (390 meV), which may be due to tunneling effects.
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Figure 3-7: (a) Responsivity and (b) detectivity specter of 0906 at 78K, The 0906 gave the highest
responsivity among the graded barrier structures.
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The responsivity curves of 0906 under -1 V and +1 V bias are shown in Fig. 3-7(a), and the
responsivity at 2.8 um is shown in Table 3-6. The 0906 device has a higher responsivity compared to
1007. In contrast, the 0906 device has the highest responsivity out of all the devices with 7.8x10° A/W
and 4.9x10° A/W at -1 V and 1V biases, respectively. This is approximately two times improvement
compared to 1007 and around ~25 and ~10 times improvement compared to 1001 at the two bias volt-
ages.

The D* of 0906 remains the highest out of all the devices with the values been 1.4x10° Jones
and 1.3x10° Jones at -1 V and 1V biases respectively. The D* variation with the wavelength at +1 V and -

1V bias for 0906 are shown in Fig. 3-7(b).

3.3.4 Room temperature performance of the graded barrier devices.

10-3 E\. P - ’.'.—"
-4: /'/.’
10 E ,
—~ 10°-
< ]
0% 4 [ 1001
] — - -1007
10'7_g seeseese 0906
10°- | .
0.5 0.5 1.0

Figure 3-8: IV characteristics of the devices 1001, 1007 and 0906 at 300 K.
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Figure 3-9 (a) The responsivity and (b) detectivity (D*) variation with the wavelength of
the 1007 and 1001 at 300 K with +0.4 V bias. The clear response peaks observed at the low
temperature has been dilated at 300 K. Additionally the 1001 shows a lower D* compared
to 1007.
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I-V curves of 0906, 1007 and 1001 at room temperature (300 K) shown in the Fig. 3-8 confirm a
very large dark current in 0906 compared to 1007 and 1001, both under positive and negative bias. The
asymmetry observed in the I-V curves at 78K (Fig. 3-5) is small at 300K, indicates depletion in thin grad-
ed or flat barrier in the device, providing similar current flow in the device under positive and negative
bias as only the 400 nm flat barrier is active in each device.

Depletion in the barriers and emitters causes the reduction in photon assisted response in the
graded barrier structures. At 300K, the photo response was very weak in 0906 due to very high dark cur-
rent and the responses of 1007 and 1001 shows a non-zero constant response in spectrum, indicating
they have a thermal response. Comparatively low dark current in 1001 and 1007, with respect to the
0906, have resulted in better SNR and show a small photoresponse in wavelengths < 3.5 um, in addition
to the thermal response in the response range. The thermal response observed in GaAs/AlGaAs
heteojunction structures are discussed later in Chapter 5. The plot of D* variation with the wavelength

for 1001 and 1007 under 0.4 V bias are also shown in Fig. 3-9(b).

3.4 Discussion

3.4.1 Effects on carrier transport in the graded barrier structures

The device response is caused by the split-off and heavy hole/light hole (hh/Ih) transitions in p-
doped GaAs [17]. The extended wavelength response beyond the barrier height (activation energy) is
result of the hh/lh transitions [17]. The two peaks observed in the response spectrum are due to the
split-off transitions (wavelength < 3.5 um) and hh/lh transitions enable the long wavelength response.
The response thresholds are shifted due to differences in effective barrier heights encountered by the

carriers.
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The high photoresponse and long wavelength response threshold observed in the devices at
negative bias compared to positive bias can be explained by analyzing the possible carrier transport
paths of the devices are shown in Fig. 3-10. As shown in Fig. 3-10(a), under negative bias, carriers will be
excited from both the bottom contact (BC) layer and the emitter. Some portion of the carriers excited
from the BC will be able to jump over the emitter region without trapping and a second stream of carri-
ers will excite from the emitter resulting high photocurrent at negative bias. And the carriers excited

from the emitter only encounters the low barrier resulting in the long wavelength response threshold.

— Negative Bias
(a)
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Figure 3-10: Carrier transition process in the graded barrier structures (a) under negative bias shows
two excited carrier streams originated from the top contact and emitter, resulting two response peaks.
(b) Under positive bias without emitter fully depleted, carriers excited from the emitter will contribute
to the device response but the carriers excited from the top contact will be trapped at the emitter. (c)
Under positive bias emitter can be fully depleted at high temperatures, hence carriers tunnel through
the graded barrier.
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Under positive bias, carriers excited from the top contact (TC) will be trapped at the emitter,
and only the carriers excited from the emitter will contribute to the photocurrent, hence the photocur-
rent is low under positive bias compared to the negative bias as seen in the response spectra of all de-
vices. Additionally, these carriers have to overcome the highest barrier edge, resulting in a shorter wave-
length response threshold compared to negative bias response.

Depending on the applied bias and temperature, there can be relatively high depletion at the
emitters of the graded barrier devices (1007 and 0906) compared to 1001. So the carrier transport
across the graded barrier can be affected by tunneling depending on the extent of the depletion as
shown in Fig. 3-10(b) and 3-10(c), As a result of the depletion, there can be tunneling through the grad-
ed barrier, causing the response to be weak. The response of the devices diminishes at 300K and is ef-
fectively observed in the graded barrier structures, implies that at high temperature the emitter is fully
depleted specially in 0906. Hence the responsivity of 0906 is very low compared to 1007 at 300 K and
cannot be observed. Even at 78 K, the emitter of the 0906 may have been partially depleted but, mat
have been not to a significant level to reduce the response to be lower than 1007. This implies the pos-
sibility of archiving much higher responsivity via DA_A approach with modifications to reduce the deple-

tion.

3.4.2 Effects of the graded barrier on performance of the devices.

Since the dark current is of the same order for 1001 and 1007 at -1V and 1 V at 78 K, the carrier
transport rate should be same in the two devices. This indicates the low recapture of the excited carriers
in graded barrier structure have been resulted in the response enhancement. Image charge forces will
force the barrier bending and form a peak in barrier height at a distance x,, from the barrier edge given

by Eg.3-2, where parameters q - charge, € - permittivity and E- the electric filed.
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X, = 1/ 9 Eq.3-2
167eE

The value for x,, is ~ 44 nm for 1001, and it is reduced to ~ 24 nm for the graded barriers due to
the additional energy gradient in the graded barrier. Therefore, carriers in 1001 have a higher probabil-
ity of recapture compared to the carriers in graded barrier structures as can be illustrated as in the Fig.
3-11(a) and 3-11 (b). The low recapture due to the graded barrier enables high collection rate, as more
carriers will travel to the bottom contact. Furthermore, unlike in the 1007 the quantum wells like for-
mation in the 0906 due to the alternating GaAs/AlAs thin layers in digital alloyed approach can trap
photoexcited carriers in the recapture path. And the uneven layer layout of the barrier in the device
0906 can provide escape paths to these trapped carriers towards the contact layer with the assistance of
an external electric field (Fig. 3-11 (c)). This can be the cause of the additional improvement achieved in
0906. This implies the digital alloying approach applied in 0906 a good method for graded barrier growth
in the devices.

Since the response was enhanced with both the negative and positive bias the suppression of
recapture may not be the sole cause of the result. One other possibility is the distribution of the electric
fields in the structures. Even though the barrier widths are same in each structure, the 1001 has high
effective barrier with 75% aluminum compared to an average 60% aluminum in the graded barriers
(both 1007 and 0906). Therefore, the electric field across the h3 barrier can be smaller in 1001 com-
pared to the graded barrier structures. As a result, under positive bias the combined effect of low recap-
ture rate and high refilling of emitter produced a ~ 10 (25) times enhancement in response and in con-
trast to only ~ 6 (12) times improvement that is observed under negative bias when recapture is not
suppressed and only the collection efficiency at top contact is better in the in 1007 (0906) compared to

1001.
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The major difficulty in demonstrating the room temperature operation of the present graded
barrier device is the high dark current in the structures. The 1007 has demonstrated a low dark current
with compared to the 0906 at 300K. This implies a novel approach based on integrating both the “digital
alloying” and “non-digital alloying” approach may result in further improvement in the performance of
the split-off band inferred detectors operating at room temperature. One possible implementation is to
have a low number of periods in the graded barrier DA-A approach, i.e. use a lower number of periods
instead of 31 used in present structure, will assist lowering the dark current as AlAs layer thickness in-

creases.

(a)

!

(b) (c) i

o —

Figure 3-11 The excitation (solid arrow) and recapture (dash arrow) path of carriers in (a) flat barrier
structure, (b) graded barriers structure, and (c) digital alloyed graded barriers structure. Due to the
high gradient in the graded barrier structure the recapture probability is lower compared to the flat
barrier structure, and is further suppressed in the digital alloyed barrier. The dash lines indicate the
barrier lowering and barrier bending due to electric field.
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3.5 Future work

Further improvements in the device performance can be expected by improving the layer sepa-
ration in the digital alloying approach which can result in low dark current in the device. In contrast, the
tunneling paths can support the responsivity enhancements by improving the collection efficiency as
suggested for 0906. Therefore, improved layer quality can reduce the photoexcited carrier collection.
So, further studies will need to identify possibilities to compensate each effect to archive optimum en-
hancement in photocurrent, and D* of the device by improved layer quality in digital alloying.

Additionally having multiple emitter/barrier periods in the structure instead of the single period
demonstrated in this chapter will increase the photon absorption causing a increase in the response;
furthermore, a multi-period structure can also assist in reducing the dark current and improve the

detectivity.

3.6 Conclusion

The graded barrier structures have improved responsivity compared to the structure with con-
stant barrier. Results indicates that response enhancement in the devices with the graded barrier grown
by “averaging” approach and is only suited for operation under unidirectional bias to the device. The
main effect on compromising bidirectional biased performance is the high Shot noise due to high dark
current. Additionally, when the operation temperature is increased the SNR of the graded barrier struc-
tures degrade due to increase dark current caused by barrier depletion; therefore, at 300 K the response
spectrum of the graded barrier structures with low barriers do not show clear response peaks. Results
also indicate introduction of high resistive barriers can retain to improve the SNR of the devices at high
temperature operations. Moreover, the single emitter in the tested structures resulted in the low
responsivity in the devices under test; hence, implementing multilayer structure will result in increasing
the responsivity, and also can result in lowering the dark current, causing a low Shot noise power and

will lead to high D* in the devices.
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4. NOISE SPECTRA OF UNCOOLED SPLIT-OFF BAND DETECTORS WITH A GRADED BARRIER

4.1 Introduction

Noise in a device resulted due to both internal and external sources have been observed in
many optoelectronic devices. External noise is generated by outside sources such as power supply units,
amplifiers and antenna effects in connecting wires and leads of the device. Internal noise can be gener-
ated by the device’s material properties [58] and structure [59-62] . Noise is the primary limitation to,
and often significantly degrading the performance of optoelectronic devices. Low noise is thus one of
the principal requirements for obtaining a higher detectivity (D*) in infrared photodetectors, making it
essential to study and identify the origins of all noise source.

Internal noise is mainly generated by dark currents, temperature fluctuations, and trap states in
the structures. Material quality and the device structure could also play a role. When an electrical cur-
rent passes through a material, fluctuation in the current give rise to Shot noise. Fluctuations in thermal
motion of charged particles due to temperature and resistance result in Johnson noise. Scattering and
trapping of carriers leads to generation-recombination (G-R) noise in devices, and are mostly observed
in photoconductors. G-R noise can increase with the trap density in the material. 1/f noise is the least
understood noise source but assumed to be caused by generation-recombination at near band edge
traps.

High noise has been reported for AlGaAs based bipolar transistors [63, 64]. This has been at-
tributed to a high volume resistance, combined with a large space charge region, which leads to trapping
of carriers, and hence an increase in the G-R noise density. Highly doped emitters can also lead to excess
noise owing to traps formed by clustering of impurities [65]. Such effects decrease the gain of optoelec-
tronic devices. On contrast, a study by Williams et. al. [66]shows GaAs/AlGaAs based graded band gap

avalanche photodiode to have low noise.
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Split-off band detectors based on GaAs/AlGaAs heterostructures are recently demonstrated as
an uncooled infrared detector [66]. Implementation of graded barriers have been proposed for p-type
split-off band infrared detectors [44] to improve their responsivity and detectivity. However, the noise
generated in these devices plays a major role in enhancement of the performance. Therefore, the ef-
fects on the devices’ noise with implementing of the graded barrier on split-off band detector structures

is investigated in this chapter.

4.2 Device structures and Experimental procedure

Two structures, 1001, and 1007 (which were introduced in the chapter 3, and device parameters
are shown in the Table 3-1) are used in this chapter to study the noise contributions by graded barrier.
In brief, the 1007 has the graded barrier, and the structure 1001 has the flat barrier in the place of the
graded barrier. Except for the difference in barriers, these two devices have same structural parameters.

Noise current densities were measured using the Stanford Research System (SR785) dynamic
signal analyzer connected through the SR-570 low noise current amplifier on to the sample. Devices are
biased using the internal biasing in the SR-570. The capacitance-voltage measurements of the devices
were measured using an HP 4284A LCR meter; devices are mounted on the cold finger in the closed cy-

cle refrigerator for temperature variant C-V measurements.

The modeling data was calculated from Eq. 4-1 [64],

2 AT
S(f):AI +y +2ql+4KBT
/S5 R

1+
/i (Eq. 4-1)
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where A, and A; are constants, / is the dark current at the given bias voltage, f is the frequency, and f; is
the cutoff frequency of each generation-recombination (G-R) noise component. The first term in the
equation represent the 1/f noise in the device, and the second term represents the G-R noise compo-
nents. The last two terms are the shot and Johnson noise of the device, due to the dark current and
thermal resistivity fluctuations, respectively. In Eq. 4-1, q is the charge of an electron, kg is the Boltz-

mann constant, T is the temperature, and R is the resistance of the device.

The trap energy level was calculated from Eq. 4-2 [64]:

E, = K,T Ln(22N

)
(Eq. 4-2)

where E; is the hole trap level energy (measured to the valence band), o the capture cross section, v the

thermal velocity, N the density of states in the majority carrier band, and t the time constant.

4.2.1 Decomposition of noise components

The measured noise current density, are decomposed to the different noise components as
stated by different terms in Eq. 4-1 as illustrated in Fig. 4-1. The calculated curve (Th. Total) is the sum of
all four noise components and the constants A, and A; were selected to match the amplitude of the cal-
culated curve to the measured noise spectrum. The value of f; is chosen so that the inflection in the
measured spectrum is replicated in the calculated curve. It clearly shows that the calculated spectrum

lies well within the uncertainty in the experimental results.
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4.3 Results

The IV characteristics of the devices at 300 K are shown in Fig. 3-9, in chapter 3. The device 1001
(which has the constant barrier) has the lowest dark current compared to the graded barrier devices.
The tunneling and barrier depletion discussed in Chapter 3 have caused the high dark current in graded
barrier structures.

The noise power S(f) under -50 mV for the devices 1001 and 1007 are shown in Fig. 4-1(a) and 4-
1(b) respectively. The dotted and dashed lines represent the 1/f component and the G-R noise compo-
nent in each device. The dash-dot and dash-double dot line represents Johnson noise and Shot noise
levels respectively. The solid thick curve represents the sum of all noise components as represented by
Eqg. 4-1. The dip seen at high frequencies in the Fig. 4-1(a) is due to limitation in the signal amplifier at
high sensitivity settings, required due to low noise power observed in 1001 compared to 1007. The low-
ering sensitivity setting in the amplifier makes it difficult to identify the G-R noise component in the

1001 device.

Table 4-1: The Shot and Johnson noise current density levels, and the current den-
sity at the plateau of the G-R noise, for 1001 and 1007 at -50 mV bias. The Shot and
Johnson noise were calculated using the dark current and device resistance.

Shot Noise | Johnson Noise | G-R (1) Plateau
Device

A’/Hz A*/Hz A*/Hz

1001 5.7x10°% 3.6x107% 2.5x107%

1007 8.0x10™* 2.2x10% 7.9x10%
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Figure 4-1: The noise power (Sf) of the devices (a) 1001 and (b) 1007 under constant bias of -50mV
(Under the negative bias the hole current is from top contact to bottom contact). The dotted and
dashed lines represent the 1/f component and the G-R noise component in each device. The dash-
dot and dash-double dot line represents Johnson noise and Shot noise levels respectively. The total
noise of the in each device (solid curve) decomposed according to Eq. 4-1.
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Figure 4-2: The noise power (S;) of the devices under constant current flow of 0.1 mA and 0.5 mA for
the devices 1001 and 1007. The difference in Johnson noise in the two devices is the cause of the
shift observed at high frequencies, and this difference increase with the dark current, due to differ-
ence in change of dynamic resistance at different biases.
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When a same bias voltage is applied across each device, they have different dark current flows
due to the differences in device resistance. Hence, a noise measurement with equal dark current in the
two devices will remain the shot noise in the two device same, hence allow a comparison of the Johnson
noise variation at high frequencies. The noise power, S(f), under same current flow of 0.1 mA and 0.5
mA in 1001 and 1007 are shown in Fig. 4-2. As seen in the figure, the noise levels at high frequency are
different in two devices due to the Johnson noise caused by the difference in the dynamic resistance at
different bias voltages applied to archive constant current. It would have been interesting to observe
the noise spectra with both the dark current and dynamic resistance are same in two devices, but unfor-

tunately such a intersection point was not identified in the 1V data.

4.3.1 Trap level energies in the structures

The capacitance-voltage (C-V) trace of devices shows a hysteresis in the capacitance, confirming
the existence of a trap level in all structures. The C-V scan for 1001 is shown in Fig. 4-3. Four hysteresis
loops (A, B, C, and D) were observed, and the hysteresis can be explained by the following mechanism.
At zero bias the trap states will be empty and the Fermi level will lie below the traps. When sweeping
the bias voltage, the Fermi level will sweep above the trap states and the trap states will be filled, hence
changing the capacitance. When sweeping the bias voltage down, the Fermi level will fall below the trap
state but, to empty the filled traps, a much higher voltage difference is required. Therefore, the step in
the capacitance will occur at a different voltage, resulting is hysteresis in the C-V sweep.

An Arrhenius plot of the time constant from the C-V sweeps, shown in the inset of Fig. 4-3, re-
veals trap energy levels at 0.53 + 0.01 eV and 0.39 + 0.02 eV, confirming the trap levels observed in the
noise spectra. Additional trap levels were also observed for other devices at 0.5 £ 0.02 eV, 0.22 £ 0.04
eV, 0.18 £ 0.03 eV and 0.14 £ 0.02 eV. The trap levels at 0.14 eV and 0.18 eV are likely to be the levels

reported as H1 traps [67, 68] (0.14 eV) for AlGaAs films. The trap level at 0.5 eV could be either the trap



level in GaAs at 0.54 eV, the H4 trap level [67] in AlGaAs at 0.46 eV, or a collective effect of these two
states. Similarly, two reported trap states can be assigned to the observed trap at 0.22 eV — these are
two hole traps: the H1 trap level (0.14 eV), and the H3 trap level [69]at 0.3 eV of beryllium doped
AlGaAs. These observed trap levels, and the corresponding trap levels reported in the literature with

possible cause for the traps according to literature are summarized in Table 4-2.

Table 4-2 : List of observed trap energy levels, associated trap energy levels and the probable ori-
gins of the trap states as reported in literature.

Traps reported in Literature (close to observed traps)
Trap Energy
Energy Origin of the Trap according
(V) Material Level (eV) to literature
AlGaAs 0.55 Cu[69]
0.53 GaAs 0.54 Unknown [65]
GaAs 0.52 Fe[70]
AlGaAs 0.46 Unknown [67]
0> GaAs 0.44 Cu[70]
0.39 AlGaAs 0.4 Unknown [67, 68]
AlGaAs 0.3 Unknown [69]
0.22
GaAs 0.29 Ga vacancy [69]
0.14 GaAs 0.14 Unknown [67]
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Figure 4-3: The C-V scan for SP1001. All the devices show a similar hysteresis in the capacitance, due
to the existence of a trap in the materials. Four hysteresis loops (A, B, C, and D) were observed, and as-
sumed to be result of different trap levels. Inset: The Arrhenius plot of time constant vs 1/T for a selec-
tion of devices. The Arrhenius plot reveals trap energy levels at 0.53 £ 0.01 eV, 0.36 + 0.02 eV, 0.22
0.04 eV and 0.14 £ 0.02 eV.

4.4 Discussion

4.4.1 1/fnoise,
In 1001, 1/f noise dominates in low frequency range up to ~20 Hz, but in the 1007 1/f noise
domination extends up to ~ 30 Hz. The o factor in 1/f* laid around 1+0.1 for both the devices at -50 mV

bias. As the applied bias increase, a varies from 0.8 to 1.5 under both negative and positive bias. The a
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increases rapidly in 1001 compared to the 1007 imply the 1/f noise is more susceptible in graded barrier

devices.

4.4.2 G-Rnoise

The G-R noise component (G-R (1)) is vaguely appearing in the range from ~ 30 Hz to ~500 Hz. G-
R noise component lays below the Shot and Johnson noise levels in 1001. Even for the 1007 the G-R
component does not dominate the Shot noise level; therefore, the G-R component is not clearly visible
in the noise spectra. But with identifying the Lorentzian components in the S(f) data[59], a G-R noise
peak with characteristic frequency at 50 + 10 Hz have been identified, which gives a time constant of ~
3.2 £ 0.7 ms. This frequency corresponds to a trap level at 0.54 + 0.01eV above the valence band (VB),
which is in the range of the reported hole trap levels at 0.54 eV, for both beryllium doped and undoped
films of GaAs [71, 72].

A weak, second G-R component (G-R (2)) have been identified in SP1007, with a characteristic
frequency of 16.5 = 1.5 kHz, corresponding to a trap level at 0.390 + 0.005 eV above the valence band
(VB). A clear cutoff frequency is not clearly visible in the measured noise spectrum or through the
Lorentzian components, but a second G-R noise component has to be added to the calculated noise
spectrum to have a good agreement with the experimental spectrum. The energy correspond to the G-R
(2) agrees with the hole trap level reported in the literature at 0.4 eV for beryllium doped AlGaAs films
[67, 68]. This implies possible dopants migration into the barrier layers from the highly doped emitters.
The reason for the G-R (2) component to be very weak can be the low doping migration in the device.
The C-V data confirms the existence of traps at 0.39 eV and 0.53 eV which closely agrees with the G-R

noise observed in the devices.
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4.4.3 Shot noise and Johnson noise

As expected by the observed high dark current and the change of the device dynamic resistance
the Shot and Johnson noise in the flat barrier structure is lower than the respective noise levels in the
graded barrier structures. The S(f) measured under the same dark current flowing in each device shows
a difference in the S(f) level at high frequencies, where Johnson noise is different as the device re-
sistances are different at each bias voltage applied across each device to generate 0.1 mA and 0.5 mA

dark current.

4.4.4 Effects from the device structure

The average aluminum percentage in the X;-X; barrier, 1001 has a larger percentage of alumi-
num compared to the 1007, which have graded barrier (average Al% ~ 60%); this give higher resistance
in 1001 supporting the experimental observation of low shot and Johnson noise levels. The low average
aluminum fraction SP08 series in compared to the SP1001 caused the higher dark current; therefore, the
Shot and Johnson noise levels are lower in the SP1001.

Considering the plateau level of G-R (1) noise components, lowest G-R noise level is present in
the structure with the constant barrier (1001) compared to the graded barrier device (1007). There are
few possible reasons for this observation, a higher density of traps may be generated at the graded bar-
rier in 1007 due to higher doping migration into the graded barriers with the material properties at the
low barrier edge in graded barrier devices are much closer to the neighboring GaAs layer compared to
the barrier with high aluminum fraction in flat barrier device. Another factor is, there can be a large var-
iation in trap states in beryllium doped GaAs layer as a variation in hole trap densities from 8x10* cm
to 1.6x10" cm™ have been observed in beryllium doped GaAs [73] . Furthermore, there can be defects

generating in the barrier during the growth as the aluminum fraction and the chamber temperature is

continuously changing in the graded barrier growth.
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4.5 Conclusion

The noise levels in AlGaAs/GaAs/AlGaAs structures with a one barrier been graded were tested
for noise. Under constant bias voltage applied across devices, or under constant current flow in the de-
vices the lowest noise density spectrum is seen by the flat barriers device. It can be conclude that the
main cause of the noise in the device is the shot noise and the Johnson noise due to the dark current
and temperature variations respectively.

All the devices displayed two G-R noise components, caused trap states in the GaAs emitter and
AlGaAs barrier. And more than one trap level identified in the devices through C-V measurements. In
addition to the shot noise and Johnson noise, 1/f noise dominates in the low frequency domain. And the
as the bias increases the 1/f noise becomes 1/f* noise. The lowest noise levels in all devices are at fre-

guencies higher than 500 Hz.
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5. p-DOPED GaAs/AlGaAs HETEROJUNCTION SUPPERLATTICE STRUCTURE WITH HIGH

TEMPERATURE COEFFICIENT OF RESISTANCE (TCR) AS A THERMAL DETECTOR

5.1 Introduction

A wide variety of thermal and photon techniques have been tested to detect IR radiation.
Among them thermal detectors utilize the temperature-dependent properties of the detector material
[10]. As an example, devices such as thermocouples and thermopiles use the thermoelectric effect; bo-
lometers and microbolometers [74] response to changes in resistance; Golay cells [13] use the thermal
expansion; and pyroelectric detectors [75] utilize the temperature dependent spontaneous electric po-
larization that generates electric charges upon incidence IR irradiation (known as pyroelectric effect).
Bolometers utilize changes in the absorber temperature when irradiated with electromagnetic radiation.
Change in temperature is usually measured as a resistance change in the semiconducting material. The
change in the relative resistance per one degree of Kelvin (K) is defined as the temperature coefficient of
resistance (TCR, B), and is the key parameter in determining the performance of the material.

The TCR (B) is defined as follows, where R denotes the resistance and T denotes the tempera-
ture. Additionally, R is proportional to the carrier concentration (N) hence; TCR is also proportional to

carrier concentration.

gt ()L (2)
~RrRlor) wl\or (Eq. 5-1)

The maximum change in resistance for each degree of temperature difference and low noise
characteristics are desirable to obtain the highest sensitivity in a thermal detector. Materials such as
vanadium oxide (VO,) or amorphous silicon (a-Si) were utilized in presently established bolometers. The
main drawbacks of thermal detectors (bolometers) compared to other photon detectors are slow re-

sponse time and high noise (such as 1/f noise, Johnson noise, thermal and background fluctuation
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noise[76]) and low TCR values. With the advancement in micro-machining techniques, miniature micro-
bolometer structures have been developed and often used in uncooled thermal cameras. Although VO,
has a good bolometer performance with TCR ~2% K™, this exotic material is not well suited for large-
scale CMOS production, due to the high temperature process used in fabricating VOx for post-CMQOS
processes. On the other hand, amorphous Silicon (a.-Si) exhibits better TCR (~2.8% K') compared to VO,
and, Germanium Silicon alloy micro-bolometers have the best TCR around 5% K™. This paper presents a
GaAs/AlGaAs heterostructure with TCR values higher compared to existing VO, or a-Si bolometers and
close to micro-bolometers of Ge/Si alloy. A properly optimized GaAs/AlGaAs heterostructure would be a
competitive candidate, as a micro-bolometer with high detectivity due to the high TCR, especially com-
pared to existing bolometers fabricated using VOx or Si. Results presented in this chapter show a com-

petitive TCR value of 4% K™ with detectivity (D*) 1.7x10° Jones for a 400 x 400 pum? pixel.

Table 5-1: List of detector structures used in TCR calculations and brief description
of their parameters

Sample | Al% | Doping Density (p/n) | No. of layers in super lattice
HE0204 | 12 1x 10" (p) 12
HE0205 | 12 3x 10" (p) 12
HE0206 | 12 1x 10" (p) 12
1329 12 4x 10" (n) 12
SP001 | 28 3x 10" (p) 30
SP002 | 37 3x 10" (p) 30
SP003 | 57 3x 10" (p) 30
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5.2 Experimental procedure

Samples considered in this study are multilayer heterojunction (HEJ) structures based on doped
GaAs emitters and undoped AlGaAs barriers. The dependency of the TCR on several different detector
parameters such as doping density and Al fraction are investigated. A summary of parameters of these
device structures are shown in Table 5-1. These detector structures were measured for their current-
voltage-temperature (IVT) characteristics with the variation of temperature and voltage in small steps.

Although there are thin layers of emitter/barrier regions sandwiched in these HEJ superlattice
structures they will not form any discrete quantum states inside the barrier/emitter/barrier layers due
to their thickness. These emitters are doped high enough to have a scattering length similar to the emit-
ter thickness. The result is a bound 3D carrier distribution in the emitter region. The structures were
grown on semi-insulating GaAs substrates and were processed by wet etching to form square pixels with
400 X 400 um? in area. Ti/Pt/Au was evaporated on to the top and bottom contact layers. All the sample
structures are prepared by the same procedure.

A sample pixel from the structure SPO03 was suspended in midair at the center of a regular
sample holder using gold wire was measured for the bolometric response. Two of such samples were
measured, and both of them have shown a similar response.

The IVT characteristics of each structure were measured using a KEITHLEY 2400 source meter,
after mounting them on a cold finger of a closed cycle refrigerator. The temperature was controlled by a
Lake Shore 300 temperature controller system. The noise current density of the device was measured
using a Stanford Research SR785 Fourier Transform dynamic signal analyzer coupled with a low noise
current amplifier, Stanford Research SR570. The IR response of the device was measured using a Perkin-

Elmer 2000 FTIR system.
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5.3 Results and Discussion

Initially, three structures (HE0206, HE0205 and HE0204) were used to study the dependence of
TCR on the doping density. These three HEJ samples have identical structures except for the emitter
doping densities, which are 1x10", 3x10", and 10x10" cm™ respectively. The results show a decreas-
ing trend in the TCR with increasing doping density. The TCR of these three detectors (summarized in
Table 5-1) were calculated at 50K. At higher temperatures the resistance of these devices becomes very
small; hence, the safe current limit is reached upon applying few millivolts. Therefore, an accurate calcu-
lation of TCR is difficult at higher temperatures for those three detectors. The dependency of TCR with
the emitter doping density, at 1V bias voltage across the top and the bottom contact, is illustrated in
Figure 5-1. A maximum TCR of 33.4+0.3 % K was observed for 1x10"" cm™ doped sample (HE0206) at
50 K. The work published by Wissmar et.al. [77] shows a similar behavior in TCR with the doping density
for quantum well structures.

A further study using an n-doped structure (Sample # 1329) with similar parameters as above
structures except for the emitter doping density of 4x10" cm™, shows a TCR value of 18.7+0.2 % K™ at
50 K, with 1V bias applied across the detector (shown by the filled circle in Fig. 6-1). The p-doped struc-
ture having a doping density closest to 1329 is the HE0205 (3x10* cm™ (p)), and it shows a TCR around
31.5+0.2 % K™ at 50 K. A TCR value of ~31% K™ was estimated for a 4x10" cm™ p-doped device by in-
terpolating the data in Figure 5-1 (TCR vs Doping). This observation predicts that the TCR of p-doped
structures are higher compared to n-doped structures. A study by Sun et.al.[78]shows a low carrier den-
sity (N) and a steeper gradient in carrier density with temperature (dN/dT) for p-doped structures com-
pared to the n-doped structure from temperatures around 300K down to 80K. This implies a higher vari-
ation in the resistance in p-doped structures compared to n-doped structures with variation of tempera-

ture. As a result, a better TCR is possible in p-doped structures compared to n-doped structures.
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Table 5-2: The TCR of the devices at specified temperatures

Sample TCR % (Temperature (K))
HE0204 30.6 £0.2 (50K)
HE0205 31.5+0.2 (50K)
HE0206 33.4 +0.3 (50K)
1329 18.7 +0.2 (50K)
SP001 5.5 +0.4 (140K)
SP002 6.6 £0.3 (140K)

8.1 +0.4 (140K)
SP003
4.0 +0.5 (300K)

The inset to Fig. 5-1 shows a TCR variation with the Al fraction, in the barrier layer, of p-doped
GaAs/AlGaAs structures SPO01, SP002 and SP003. All three sample structures contain 30 periods of
undoped AlGaAs barriers and 3x10%¥ cm™® p-doped GaAs emitters. The Al fraction (x) in Al,Ga;.,As barrier
layers are 28%, 37% and 57% respectively in these three devices respectively. For comparison of TCR
values of these three samples, the measurements were carried at 140 K (maximum operating tempera-
ture of SP001). Above this temperature SP001 also shows very low resistance; hence exceeding the safe
current limit. The sample with 57% Al fraction (SP003) shows the highest TCR value of 8.1+0.4 % K at
140K. Additionally, the SP003 sample also shows a TCR of ~ 4 +0.5 % K™ at around room temperature.
This value is 2 times of the TCR value of VOx bolometers (~2% K™)[79]. This behavior (TCR vs Al%) implies
a better TCR for samples with 100% Al (i.e. AlAs), but further studies are needed to confirm this conclu-

sion. The TCR variation in SP003 near room temperature are shown in Fig. 5-2.



TCR % (1/K)

35

30+

25

20+

B p- doped 8
@ n-doped| | |€
Al% =12 : § ] m TCR @ 140K
: Doping = 3x10" (p)

40 50 60

Al fraction %

10

2 4 6 8
Doping Density (x 10'"cm™)

Figure 5-1 : Variation of TCR with doping density of a multilayer heterojunction structure. The struc-

ture consists with 12 layers of GaAs/AlGaAs emitter barrier regions (squire p- doped & circle n-doped).

TCR values are calculated at the temperature 50K with 1V bias across the structure. The dotted lines
(horizontal & vertical) show the intercept point of the TCR interpolated curve for a 4x10"7cm’ p-
doped structure. Inset: Variation of TCR with Al fraction of a multilayer heterojunction structure. The
structure consists of 30 layers of GaAs/AlGaAs emitter/barrier regions with 3x10%cm™ p-doped emit-
ter regions. TCR values are calculated at the temperature 140K with 1V bias across the structure.
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Figure 5-2: The temperature variation of TCR for SP003 near 300 k temperatures.

The specially mounted sample has the same structure as SP003 (the sample with 57% Al frac-
tion). The noise current density of this device structure at two different bias voltages at 300K are shown
in Fig.5-2. The device shows flat white noise with a noise current density < 102 A?/Hz (~5x10™" V?/Hz) at
higher frequencies (f > 1000 Hz). The theoretical limit in the Johnson noise for a device with similar re-
sistance is 1.4x10% A?/Hz (2x10™ V*/Hz) calculated by Nyquist equation, where kg is the Boltzmann

constant, T is temperature (300K) and R is the device resistance (~1.2 kQ).
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(Eq. 5-2)
L) _ [4k,T
Jy VR (Eq. 5-3)

The noise power density is around 5x10% A%*/Hz (~8x10™" V?/Hz) at the 10 Hz with 1V bias
(~0.7mA) for the GaAs/AlGaAs (SP003) bolometer. This noise spectral density is very low compared to
noise values reported for different materials including Si (~4x10™"? V?/Hz at 1Hz), VO, (~10™** V*/Hz at
0.1Hz) and Ge/Si (~7x10™ V?/Hz at 250 Hz) alloy [77, 80]. Inset to Fig. 5-3 shows the noise spectra after
baseline correction. It shows 1/f noise dominating over the Johnson noise at low frequencies in the de-
vice.

The measured response spectrum of the specially mounted sample is given in Fig.5-4. It shows a
wavelength independent (flat) response as expected for a bolometer. With a 2.25 V bias across the top
and bottom contacts, the device shows a detectivity (D*) of ~ 1.7x 10° Jones, with a responsively of ~
3.7 mA/W at 10 um, operating at room temperature. The 2.25 V is the maximum safe bias voltage that
can be applied to the device. The IV characteristic curve shows a drastic increase in the dark current in
the device, due to Joule heating, just above this voltage. The response peak appearing in the range 2 um
to 6 um are believed to be cause by inter band transitions (heavy hole, light hole and split-off hole
bands)[81, 82] due to photonic excitations of carriers. The response of the second structure is also

showing a similar response, and the values lies within the uncertainty of measurements.
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Figure 5-3: Noise current density (S(f)) and fitted data (for 1V and 2V bias) of the sample illustrated in
the inset. Inset: The noise spectra after baseline correction. Dotted lines indicate the 1/f fitted curves
for 1V and 2V biases.
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Figure 5-4: Responsivity of the sample consisting of 30 layers of GaAs/AlGaAs junctions with 3x10'®

cm? p-doped GaAs regions and Al fraction of 57% (SP003), at different bias voltages.
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5.4 Present available bolometer

The Table 5-3 summarizes performance of few of presently available bolometer.

Table 5-3 Performance of few of presently available bolometer

Type Temperature Responsivity | Noise power (W/Hz'?)

Golay cell Room temperature 10° - 10° V/W 100
Ge 300 K 8.7x 10’ V/W 107
o-Si Room temperature 10° V/W 7x107"
Si/Bi 100 mK 2.4 x10° V/W 7.5x 10"
Transition Edge (Mo-Cu) 220 mK 5x 10° V/W 15x 107"

(Ti-Al-Ti) 260 mK 5 x 10° V/W 1.1x 10"
Superconducting bolometer 300 mK -- 3 x10%

5.5 Future work

Based on the results observed above, the higher aluminum fractions and low doping in the
GaAs/AlGaAs interface are leading to higher TCR. It will be interesting to have further studies with an
undoped GaAs/AlAs superlattice structure. Additionally other material combinations where the band
offset at the interface is greater than the band offset of GaAs/AlAs or the InAs/GaSb superlattice struc-
ture which have a broken gap band alignment (Type lll) at the heterojunction will be interesting to study
to understand and achieve possible improvements to TCR and responsivity of a heterojunction

supperlattice thermal detector.
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5.6 Conclusion

GaAs/AlGaAs multilayer heterojunction structures with different Al fractions and doping densi-
ties were tested for TCR values. Structures containing the p-doped GaAs emitter layers showed a better
TCR compared to a similar heterojunction structure with n-doped emitters. Furthermore, a
GaAs/AlGaAs multilayer structure with 57% Al fraction in the barrier layers showed a TCR value around
4% K™, at room temperature. This is a higher TCR value compared to that of VO, or a-Si which is 2% and
2.8% respectively. Therefore with further research p-doped GaAs/AlGaAs heterostructures have the po-
tential to be a competitive candidate in the future production of bolometers or microbolometers work-
ing at room temperature. Additionally, the device demonstrates a low noise spectral density, which is a

requirement for good performance in a bolometer type detector.
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6. EFFECTS OF INCIDENT PHOTON INTENSITY ON THE RESPONSE THRESHOLD OF p-DOPED

Al,Ga; As/GaAs SUPERLATTICE DEVICES

6.1 Introduction

The motivation of this work is to understand the effects of varying intensity of incident photons
on p-doped superlattice type devices. Excited carriers alter the occupied energy band levels in conduc-
tion or valence bands of a semiconductor material. These alterations in the energy bands will affect the
spectral response of type | or type Il band alignment. For example, in highly doped semiconductors elec-
trons are present in the lower levels of the conduction band (CB) prevent carriers from further transiting
to those occupied energy states; As a result, carriers have to occupy higher energy states. Anincrease in
the material’s band gap is resembled when the band gap is extracted by optical methods such as absorp-
tion and photoluminescence (PL) spectra. This phenomenon is known as the Burstein-Moss (B-M) Shift
[83, 84]. Furthermore, during carrier excitations in a p-doped semiconductor, an electron from a filled
state in the valence band (VB) is injected in to an empty state in CB, while generating a hole in the VB as
well as an electron occupying a state in the CB. As a result, a phenomenon similar to B-M effect can be
observed as the energies of the highest occupied energy level and the lowest unoccupied energy level of
the CB and VB will be at further apart from where they were under dark conditions. Optoelectronic de-
vices, based on band gap excitations and CB offset is affected by B-M effect.

Many-body interactions caused by carrier occupancy in the CB and the holes generated in the
VB result in band gap narrowing (BGN). Additionally, ionized dopants in doped materials also contribute
to the BGN. As the occupancy of carriers in CB and VB are differ under different incident photon intensi-
ties, the BGN also rely on the incident photon intensity. This implies the occupied and unoccupied levels
in CB and VB respectively will be shifted further apart or closer to each other, depending on the magni-
tudes of each shift (difference between B-M and BGN) and incident photon intensities. As a result, the

effective band gap will either increase or decrease, resulting in a blue or red shift in spectral measure-
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ments for inter-band transitions. BGN is affecting the response of optoelectronic devices based on band
gap excitations and VB offset.

Studies have revealed energy shifts causing a red shift in the response spectra due to BGN on p-
doped GaAs/AlGaAs quantum well structures [85]and other types of optoelectronic devices [86].The
consideration of the B-M effect and BGN effect is critical when designing detector structures for far in-
frared (FIR) and terahertz (THz) detection, as the detection mechanism in these devices are based on
inter band or intra band transitions of carries across small band offsets (barriers) or energy gaps. And B-
M effect and BGN effect can cause a significantly larger shift in the detectors’ response range from its
intended response range. In the case of large shift in a FIR/THz detector, the device may be not func-

tional by making the barrier extremely small and have increasing the thermal excitations.

6.2 Experimental procedure

Thin films were grown by molecular beam epitaxy on a semi-insulating GaAs substrate. Sample
parameters are summarized in Table 6-1. Two GaAs thins films were p-doped with Beryllium to 5x10"
cm™ and 8x10"cm™ and are labeled as GA517 and GA818 respectively and the sample GA116 is an
undoped GaAs thin film. The two AlGaAs thin films, labeled as AGA1 and AGA20, consist of aluminum
fractions 1% and 20% respectively, and are p-doped to 3x10'® cm™ with Beryllium.

The band gap of GaAs and AlGaAs thin film samples were calculated using photoluminescence
(PL) spectra. These thin films were grown by molecular beam epitaxy on a semi-insulating GaAs sub-
strate. Two GaAs thins films were p-doped with Beryllium to 5x10"” cm™ and 8x10'¥cm™ and are labeled
as GA517 and GA818 respectively and the sample GA116 is an undoped GaAs thin film. The two AlGaAs
thin films, labeled as AGA1 and AGA20, consist of aluminum fractions 1% and 20% respectively, and are
p-doped to 3x10™ cm™ with Beryllium. The PL spectra of the thin film samples were measured under

varying temperatures and incident photon intensities after mounting on the cold finger of a closed cycle
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refrigerator and excited with an argon-ion laser (488 nm) with different output photon flux intensities
calibrated by a silicon photo detector. The 5% of the PL peak maxima were used to calculate the band
gap in the material, and the low energy edge of the PL spectra give the lowest energy difference be-
tween CB and VB energy, while the higher energy edge gives the energy difference between the highest

occupied level in CB and lowest unoccupied level in VB [87].

Table 6-1 Summary of thin film sample parameters

Sample Material | Aluminum fraction Doping density (cm™)
GAll6 GaAs - Undoped
GA517 GaAs - 5x10"

GA818 GaAs - 8x10"

AGA1 AlGaAs 1% 3x10"
AGA20 AlGaAs 20% 3x10"

The theoretical band gap of the thin film samples under different temperatures were calculated

using the Eq. 6-1. [88].

. 2
E¢=E —E, —Epy :Eg(0)+LT_EBGN
(B+T1) (Eq. 6-1)
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Where E,is the total energy gap and EC, EV, EBGN, are the CB, VB, and band narrowing energies
respectively. Eg(0) is the band gap energy at 0 K, and EF is the Fermi energy level in electron volts (eV)
for AlxGal-xAs. The two coefficients, o = -5.41x10™ eVK™, and B = 204 K for GaAs [89)]. Eg(0) is the direct

band gap of Al,Gai,As, and is calculated using the equation 6-2. [89, 90]

_ 2
E,(0)=1.519+1.155x+0.37x (Eq. 6-2)

The temperature dependent Fermi Energy level is calculated by[14, 90]

E,—E, = kT(ln [i) 127 [in
NV NV
(Eq. 6-3)

Where, Ey, E, k, p, and Ny are the valence band energy, Fermi energy, Boltzmann constant, dop-
ing density and the density of states in the valence band respectively. The temperature dependency of

Ny, for Al,Gai,As was calculated by the equation 6-4 [89],

_ 15 % y
N, =4.82x10°T72(0.51+0.25x) 2 (Eq. 6-4)

The band gap narrowing of a material primarily depends on four different parameters [91, 92].
The exchange interactions and carrier-impurity interactions affect the majority carrier band, and carrier-
carrier or electron-hole interactions and carrier impurity interactions affect the minority carrier band.
The band gap narrowing of p-doped AlxGal-xAs is calculated by the following equation [91, 93], which

gives Eggy Of 20.7 meV for GaAs with the doping density (p) of 5x10"” cm™ at room temperature.
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p ) p ) p )
Eggy =9711+0.00x)| <7 | +12.19(1+0420)| o [ +3.88(1-0230)| —

(Eg. 6-5)

The differences between the band gaps calculated using Eq. 6-1 and PL data were used to esti-
mate the variations in B-M effects, and BGN narrowing effects due to changing intensity of incident pho-
ton intensities. Additionally, PL data was also used to analyses the band offsets at GaAs/AlGaAs interfac-
es and band offset variations due to incident photon intensities. Even though various ratios, from 10:90
up to 50:50 can be found in literature as the VB:CB energy offset ratio in GaAs/AlGaAs heterostructures
[14] the 40:60 ratio is use in the calculations because the VB offset calculated by any other ratio will

give a lower value for VB offset compared to the value given by a 40:60 ratio.

6.3 Results and Discussion

6.3.1 Burstein-Moss (B-M) and band gap narrowing (BGN) effects on GaAs

It is important to understand the B-M and BGN effects of doped GaAs, as in majority of
GaAs/AlGaAs hetero-junction devices GaAs is used as the carrier emitter; therefore, the changes in the
band gap of GaAs is directly affecting the device response. Band gaps calculated for GA517 using Eq. 6-1,
and PL under different temperatures are shown in Fig. 6-1. The PL W) and PLign) correspond to the band
gap calculated by low and high energy slopes in PL spectra respectively. The E(T) and E(T)-BGN are the
band gap calculated by Eq. 6-1, omitting and considering the BGN (Eggy term in Eq. 6-1) respectively. As
shown in the inset of Fig. 6-1, the low energy slope in the PL spectra correspond to the lowest band gap

and the high energy slope defines the energy difference between the highest occupied and lowest unoc-
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cupied energy levels in the CB and VB respectively. Therefore, PL spectra can be used to determine both
the BGN and B-M effects in the material. As expected, due to B-M and BGN effects band gap calculated
using the low energy slope of PL spectra shows the lower values, and high energy slope shows highest
band gap compared to the band gap calculated by Eqg. 6-1 without considering BGN (E(T) in Fig. 6-1).

The band gap shown in PL) is smaller than the predicted value by Eq. 6-1 (the data set E(T)-
BGN in Fig. 6-1), due to enhanced BGN caused by incident photon intensity during the PL measurement.
The BGN will be affected by increasing the number of carries in the excited states of CB and reduction of
carried in the VB, creating a greater coulomb attraction forces between the CB and VB states due to the
intensity in illumination. The variation in the band gap calculated by low energy slope of PL spectra at
25K under illumination intensities of ~ 60 and ~250 mWcm™ are shown in Table 6-2. A reduction in the
band gap with increasing incident photon intensity can be observed from the data in Table 6-1, especial-
ly under high temperature (T 2100 K), which implies a temperature dependence in the BGN under illu-
mination intensity. At low temperatures the intensity dependence is not prominent due to carrier freez-
ing, as the number of excitations will be inadequate at low temperature to illustrate the intensity de-
pendence.

But compared to dark, illumination have carriers in the excited states resulting the difference in
PL(low) and E(T)-BGN data in Fig. 6-1. On the other hand, in Eq. 6-1 the temperature dependence of the
BGN is not considered, this factor will also affect the large difference seen between the PLoy) and E(T)-
BGN data. As observed by the PL data BGN will decrease at low temperatures. Additionally, The PLjigh)
data shows an increase in the energy with increasing temperature, i.e. increase the energy difference
between Pl and PLygn data, caused by carriers in the CB occupying higher energy states due to

thermal excitations.
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Figure 6-1: The comparison of the calculated and experimental band gaps at different tempera-
tures for p-doped GaAs thin film with doping 5x10"" cm™. E(T) is the band gap calculated with-
out considering band gap narrowing (BGN) in Eq.6-1. PL (low) and PL (high) are the band gap
calculated using low and high energy slope of photoluminescence respectively E(T)-BGN is cal-
culated band gap using Eq.6-1. Inset: lllustrate the calculated energies representations in a
band diagram.When the sample is illuminated, carriers will be excited to the conduction band.

An accumulation of charges in the CB and deprivation of carries in VB will results in
hence PL should have high energy emission. Similarly interactions of carriers in CB

a B-M shift,
and VB will

result in the BGN, hence also produce low energy photons correspond to lowest band gap in

the material.
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Table 6-2: The band gap calculated by PL for GA818, GA116, AGA20 and AGA1lat 25 K under the illu-
mination if 60 and 250 mWcm™ and by Eq.6-1 with (E(T)-BGN) and without (E(T)) bang gap narrowing

effects.
Sample Band gap at 25 K (eV)
60 mWcm? | 250 mWcm? E(T) E(T)-BGN
GA818 1.456+0.001 | 1.451+0.001 1.517+0.0005 1.466+0.0005
GA116 1.483+0.001 | 1.486+0.001 1.517+0.0005 1.496+0.0005
AGA 20 1.670+£0.001 | 1.670+0.001 1.763+0.0005 1.752+0.0005
AGA1 1.47240.001 | 1.468+0.001 1.529+0.0005 1.492+0.0005

The band gap calculated for GA818, GA116, AGA1 and AGA20 at 25 K by PL subjected to 60 and
250 mWem™ illumination and calculated using Eq. 6-1 with and without considering BGN are presented
in the Table 6-2. For all samples the band gap calculated by PL are lower than the band gap calculated
mathematically. The GA818 has a lower band gap compared to the low doped samples, GA116 and
GA517, where the difference is ~27 meV and ~25 meV at 25 K resulted by BGN due to high number of
dopants and the band gap further decrease by ~ 5 meV with high intensity illumination. GA517 and
GA116 shows increasing band gap as the dopants density reduces respectively. On contrast, the band
gaps of the two doped samples only differ by ~ 2 meV. Interesting observation on the band gap of low
doped samples is that both samples shows an increase (blue shift) in the band gap by ~ 2 - 3 meV under
expose to 250 mWcem? intensity illumination compared to the 60 mWcm™, which is different from what

is observed for the high doped GaAs thin film (GA818).These results shows BGN effects due to incident
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intensity variation are dependent of doping density, and higher doped GaAs are more susceptible to
BGN and effects of incident light intensity on BGN.

Furthermore, out of the two AlGaAs thin films the AGA1 with 1% aluminum fraction do show a
decrease in the band gap by ~ 4 meV with illumination intensity of 250 mWcm™ compared with 60
mWcm™. And the band gap of AGA1 is smaller than the band gap of AG116 and AG 517 by ~ 11 meV and
9 meV respectively due to BGN caused by higher doping. On contrast, the band gap of AGA20 was not
changed with the light intensity due to the high band gap in the AGA20, the band separation is too large

and hence the coulomb interaction effects are too weak to alter the band gap.

6.4 Effects of light Intensity on valence band offset of optoelectronic device (p-GaAs/ AlGaAs)

Above results shows band gap alternations in materials under varying incident photon intensity
resulting in barrier heights to differ from what is intended for optoelectronic devices, and hence a
change in the response. Further examining the effects, the VB offsets was estimated for two p-doped
AlGaAs/GaAs heretojunctions with, (a) 20 % aluminum and (b) 1% aluminum in respective barriers using
the band gaps extracted from Eq. 6-1 and PL spectra, for the three thin film samples GA517, AGA20 and
AGALl.

For the structure with 20 % aluminum barrier (i.e., assuming that the junction made with
GA517/AGA20), the valence band offset calculated by PL is 76.4+1 meV and the band offsets calculated
by Eq. 6-1 is 91.3 meV for the device at 25 K, rendering a difference of ~15 meV in the barrier offset es-
timated using PL and Eq. 6-1 as expected by earlier observations. This indicates that the devices will
have a long wavelength threshold while operating at low temperatures. In the high barrier device, the

tolerance may be in an acceptable range depending on the required operational accuracy.
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But the predicament arises in the structure with 1% aluminum in the barrier (i.e., junction made
with GA517/AGA1), as can be seen in the Fig. 6-2, the theoretical data by Eq. 6-1 shows a band offset of
-1.8 meV (negative barrier height indicate the higher energy at the GaAs layer, caused by higher p-
doping in the Aly91GaggsAs thin film compared to GaAs) and the band offset calculated by PLis 2.4 + 1
and 2.8 £ 1 meV for the temperatures 50 K and 25 K respectively. But, at higher temperatures the struc-
ture do not show a significant band offset (VB offset < 0.5 meV). Hence the device will not have ex-
pected photo response, and can only function as a resistor under bias. This illustrates the importance of
considering the effects of photon flux intensities on band alignments in the device. This result clearly

indicates of devices with small band offsets are required to operate at low temperature.

Table 6-3: The variation in the band gap for GA517, at 25K, 50 K and 100 K calculated by low en-
ergy slope of PL spectra under illumination intensities of ~ 60 and 250 mWcm >

Incident Intensity Band gap (eV)
25K 50K 100K
60 mWcm™> 1.481+0.001 1.472+0.001 1.469+0.002

250 mWem™ 1.483+0.001 | 1.471+0.001 | 1.461+0.002
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Figure 6-2: The variation of valence band offset for p-doped AlGaAs/GaAsheretojunctions assum-
ing 60:40 band alignment at AlGaAs:GaAs interface and band gap extracted by PL spectra with
250 mWem incident photon intensity. Dotted line represent the band offset 1.8 meV, extracted
from Eq. 6-1. Negative band offset indicated GaAs layer have the higher energy.
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6.5 Comparison of valence band offset on optoelectronic device with low barrier (GaAs/p-AlGaAs)

On comparison of the band offset calculated by PL and in a device with very small barrier, a te-
rahertz (THz) detector consists of undoped GaAs barriers and p-doped Algo1GaggsAs emitters operating
at 4.2 K is successfully demonstrated by Matsik et. al. [94]. The expected band offset obtained by re-
sponse threshold for the device is 15+0.1 meV as reported by Matsik et. al. The band off set at the
GaAs/Aly01Gag geAs interface in the device is ~ 5.3 meV (x*530 meV) and the deficit of ~ 9 meV is result-
ed by the residual doping in the GaAs barrier [94]. The band gap calculated by PL(Low) for p-
Al 01GagesAs and undoped GaAs thin films at 25 K shown in Table 6-2 gives the VB band offset for a p-
Al 01GaggeAs - undoped GaAs interface as ~5.8+0.2 meV (PL spectra at 4.2 K is not available due to in-
strument limitations). The residual doping effect observed in the undoped GaAs barrier of the device
reported by Matsik et. al. can be the cause of observed band gap increasing for GA116 and GA517 in the
PL measurement under increased intensity. This implies that the materials used for FIR and THz detec-
tors should be with low doping densities. Furthermore, the data shown in Fig. 6-2 indicates an increase
in band offset with the decreasing temperature from 50K to 25K. This trend can also be expected for the
p-Alg01GaggsAs/undoped GaAs interface; hence the VB offset will be greater than 5.8 meV (at 25 K) when
the temperature decreases to 4.2 K.

Additionally, the band gap of both the undoped GaAs (GA116) and p-doped Al ;GaggsAs (AGA1)
shows an increase approximately by similar amount, i.e., by ~ 3t1 meV and 4+1 meV respectively under
illumination of 250 mWcm™ compared to 60 mWem™. This implies BGN under varying incident photon
intensity is similar for both GA116 and AGA1, hence the barrier offsets at the undoped GaAs / p-doped
Aly01GaggeAs interface should not have a significant difference under varying illumination intensities.
Since the effects on BGN due to carrier excitations by photon flux intensity is similar for both the mate-
rials it can be conclude that the material combination p-Aly1Gagg9As and undoped GaAs using as emit-

ter and barrier will be more reluctant to the barrier height alternations caused by photon intensities at
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low temperatures. Therefore, a sustainable band offset can be present in the device at low temperature.
And this low sensitivity to the incident photon intensity may be the cause of successful operation of the
device presented by Matsik et. al., in addition to the effective barrier height increase due to residual
doping in GaAs barrier can be high as 13 meV, as described by Rinzan et. al. [95]. The residual doping

effect in the structure will also defy the decreasing of effective band offset under illumination.

6.6 Conclusion

The effects caused by alternations in highest occupied and lowest unoccupied energy levels in
CB and VB due to carrier excitations of p-doped GaAs/AlGaAssuperlattice structures are demonstrated
using response threshold of the device. Superlattice structures with multiple periods of
GaAs/Aly5,Gag43As emitter/barrier regions have demonstrated a red shift in the infrared response due
to the band renormalization effect. The response threshold shift was caused by illumination intensity;
due to carrier confinements in narrow layered structure. The B-M effect in p-doped materials was fur-
ther confirmed by absorption and PL measurements on a p-doped GaAs thin film. The GaAs thin film has
shown a red shift in the band gap calculated theoretically and using optical methods, such as absorption
and PL. The VB offsets and causes on the offsets due to illumination intensities are also demonstrated
using hypothetical hetero junctions. Due to the presence of threshold shifts in the visible and infrared
response of the superlattice structure, it is important that the B-M effects and band renormalization
effects to be taken into account when designing narrow band detector structures, especially for long
wavelength response such as terahertz and far infrared detectors when operating at temperatures >
50K. Results also show possibility of using the combination of undoped GaAs as barrier and p-doped

AlGaAs as the emitter to inhibit the illumination intensity effects.
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7. EXCITON TRANSPORT AND ELECTRON MOBILITY OF ORGANIZED AGGREGATES OF CATIONIC

DYE THIOCYANATES

7.1 Introduction

Light absorbed by organic solids creates Frenkel excitons diffusively transported until they decay
via recombination or decompose into free carriers at an interface [96, 97]. Transport of excitons is
greatly facilitated in organized molecular assemblies, notably J- aggregates where the transition dipole
moments are strongly coupled [98-102]. The properties of J-aggregates of organic molecules, especially
those of dyes have been extensively investigated, both experimentally and theoretically, opening up
novel optoelectronic device concepts. The possibilities of adopting J-aggregates in solar cells [103-105],
photon detectors[106], electroluminescent devices [107, 108], excitonic transistors [100, 109] and
switches [110], lasing systems and microcavity devices [108] continue to attract much attention. Familiar
photovoltaic and photoconductive photon detectors are based on inorganic semiconductors. Versatile
low noise low cost devices sensitive even to a single low energy photon may be deviced adopting dyes
and other organic compounds via molecular assembly-solid interface engineering [106, 111, 112].

Thin films of organized aggregates of small molecules, exhibiting fast exciton transport and mo-
bility of one type of carrier (electron or hole) receive much attention as promising materials for devel-
opment of excitonic solar cells and photon detectors [102, 113, 114]. The basic operation mechanism of
these devices is diffusion of photogenerated excitons, their decomposition at the boundary of another
material with mobile carriers of the opposite sign (hole or electron). Most J-aggregates have large
exciton diffusion coefficients but low carrier mobilities while the H-aggregates exhibit the opposite be-
havior [115]. The reason for low carrier mobility in J-aggregates seems to be the tendency for accumula-
tion disorder in the film casting process than a fundamental constraint. Chromopore molecular assem-
blies with large exciton diffusion lengths and a high mobility for one type of carrier are desirable sys-

tems for many optoelectronic device applications.
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In most studies, J-aggregated thin films of long range order are formed by Langmuir Blodgett
technique, spin casting in a polymer matrix or via layer-by-layer deposition [116-119]. In this note we
describe a simple technique for deposition of highly organized J-aggregated thin films of cationic dye
thiocyanates exhibiting large exciton diffusion lengths and enhanced electron mobilities on copper
based substrates, CuSCN, Cul and Cu,0. Mechanism involved is explained as strong S-bonding of the
SCN- ions to the copper substrate and templated self-assembling of dye cations and thiocyanate anions
to form a repetitive organized structure. Construction of a model solar cell of the configuration n-

Cu20/J-aggregated Rhodamine B /p-Cul is described.

7.2 Experimental procedure

Commercial (Aldrich) Rhodamine B in the chloride form (RhBCI) was converted to the
thiocyanate (RhBSCN) by boiling the dye powder in a saturated aqueous solution of KSCN. The large ex-
cess of KSCN ensures that the reaction RhBCl + KSCN - RhBSCN + KCl proceeds in the forward direction.
RhBSCN insoluble in cold aqueous KSCN, is separated, dissolved in ethanol and recrystallized. Recrystal-
lized samples are subjected to the previous process few times to purify the dye and eliminate all chlo-
ride. p-CuSCN was coated on copper plates (1 x 1.5 cm?) electrolytically from an aqueous solution of
KSCN containing propan-2-ol (~ 1 v %) [120]. n-Cu,0 was coated on copper plates (1 x 1.5 cm?) by boil-
ing the plates in a 10 M solution of CuSO, for several hours[121]. Fluorine doped conducting tin oxide
(FTO) glass plates were coated with TiO, by spraying a solution of titanium isopropoxide in propan-2-ol
and sintering at 450°C.

RhBSCN was deposited on p-CuSCN and n-Cu,O coated copper plates by keeping the plates sus-
pended in 0.05 M solution of RhBSCN containing 5% (volume) ethanol at 25°C. A large volume of dye
solution (100 ml) was kept magnetically stirred so that the effect of dilution due to dye adsorption is

negligible. The amount of dye adsorbed was determined by extraction of the dye into ethanol and spec-
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trophotometric estimation. (As the linear dimension of the RhB molecule is ~ 1.7 nm, 1 monolayer in 1
cm? = 5x10™ moles. The spectrophotometric detection limit of RhB ~ 10°® mol/litre, enables detection of
~ 1 monolayer in 1 cm? extracted into 1 cm? of ethanol. Optical microscopic examination of the film indi-
cated that the film is uniform and aggregated dye grains embedded on the surface are absent. )

The white light (tungsten filament lamp at 250 Wm™) photoresponse of the RhBCSCN dye films
deposited on different substrates were recorded by measuring the short-circuit photocurrent (Isc) in
photoelectrochemical cells (PECs) in 3-electrode configuration with a Pt counterelectrode and SCE

standard, in an iodide/tri-iodide electrolyte.

FSCN-X™ -SCN-X*-SCN-X* -SCN-X*-SCN-X*-SCN-X*
-SCN-X* FSCNX*F-SCNXY FSCN-XH-SCN-X*-SCN-X*
FSCNX*T = [ESCN-X*-SCNX* = [FSCN-X*-SCN-X*-SCNX* —>
-SCN-X* FSCN-XF-SCN-X* -SCN-X*-SCN-X*-SCNX*
-SCN-X* -SCN-X*-SCN-X* FSCN-X*-SCN-X*-SCN-X*

Figure 7-1: Schematic representation indicating growth organized self-assembled thin film of the cationic dye
XSCN (X+ = chromopore cation) on a copper based substrate

Heterojunctions of the configuration n-Cu,0/J-aggregated RhBSCN/p-Cul were fabricated as fol-
lows. A film of RhBSCN was deposited on n-Cu,0 coated copper plates by the method described above.
Counterelectrode was prepared by coating ~ 4um layer of Cul from a 0.3 M solution of acetonitrile con-
taining ~ 10 M guanidinium thiocyanate acting as a Cul crystal growth inhibitor. The cell was formed by
pressing and clamping the counterelectrode against the dye coated surface painted with Cul to establish

contact. Heterojunctions n-TiO,/J-aggregated RhBSCN /p-Cul were fabricated by growing a RhBSCN film
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on Cul deposited on FTO glass and pressing the TiO, coated FTO glass plate against the dye surface. The
IV characteristics and the photocurrent action spectra were measured using a source meter and a

monochromator set-up.

(b)

T;T

dx: X

0 20 40 60
Monolayers

Figure 7-2: (a) Variation of the short-circuit photocurrent (ls.) of RhBSCN coated p-CuSCN photocathode
in iodide/tri-iodide electrolyte (lllumination 250 Wm™, Tungsten filament lamp). (b) Sketch explaining
the dye film geometry used in derivation of eqn.(1). Photon flux ®P is incident on dye film/electrolyte in-
terface (x = 0), other interface (x = L) is CuSCN/dye

D.C electrical conductivities of solid RhBCI, RhBSCN were determined by two probe measure-
ments using compacted pellets. The conductivity of the RhBSCN film deposited on copper based sub-
strates was estimated by measuring resistance of the plates before and after deposition of the dye film.
Electron mobilities of RhBCl, RhBSCN, RhBSCN films deposited on Cu substrates were estimated by
measuring space charge saturated current using the Mott-Gurney equation. Organic materials have very
low mobilities in general. Grain boundaries also play an important role and purity is even more im-

portant. Additionally, the Mott -Gruney measurement can be effected by moisture and thermoelectric
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injection; hence it is not a refined measurement. But, the Mott -Gruney measurement are frequently

used in estimating mobilities of organic semiconductor materials.

73 Results and Discussion

A peculiar phenomenon observed in adsorption of RhBSCN and many other thiocyanates of cat-
ionic dyes (XSCN) on copper based substrate (Cu, CuSCN, Cul, Cu,0) plane surfaces is continuous in-
crease of the thickness of the dye layer provided the dye solution is constantly homogenized maintain-
ing a constant concentration . For a given solvent composition (vol. % ethanol) and temperature, the
film continues to grow if the dye concentration in the solution exceeds a critical value. The process of
film growth can be understood as follows. Thiocyanate ions are strongly adsorbed on the surface via S-
bonding to the Cu sites [122, 123]. Subsequently, the dye cation X* bonds electrostatically to adsorbed
SCN- forming an organized monolayer of SCN'X’. The monolayer with X" lying at the surface exposed to
the solvent acts as a template, the dipolar forces attach SCN- ion to SCN'X" to form SCN'X'SCN™ and an
electrostatic bond with X" built two layers SCN'X'SCN'X" and the processes continues indefinitely as rep-
resented schematically in Fig. 7-1. The initial strong bonding of SCN™ ions onto the Cu based surface fol-
lowed by electrostatic bonding of the dye cation is the crucial condition that leads to formation of an
organized J-aggregate of the dye, spread over a large area. In most familiar situations of J-aggregate
formation of dye films on a surface, all the dye molecules are not identically oriented to form the first
monolayer which acts as an template for the progressive growth of the dye film. The monolayer thick-
ness of the film is estimated on basis of linear dimension of the dye molecule (RhBSCN ~ 1.7 nm).

Variation of the short-circuit photocurrent (ls.) of a RhBSCN coated p-CuSCN photocathode with
the monolayer thickness of the dye film similar to shown in Fig. 7-2 was previously observed and pub-
lished in a studies on dye sensitization, although the mechanism involved was not elaborated and ex-

plained [124]. According to Fig. 7-2, photocurrent sharply increases, reaching a maximum at a dye cov-
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erage corresponding to a monolayer, then declines and gradually increases reaching a much higher se-
cond maximum at dye coverage of approximately 46 monolayers, corresponding to a film thickness of ~
78 nm. On further increase of the film thickness, photocurrent decreases and beyond ~ 75 monolayers,
it is too small for resolution against noise. The similar variation of I, with monolayer film thickness was
seen in RhBSCN films deposited by the same procedure on Cul and Cu,0 surfaces but not on TiO,. The
absence of this behavior in RhBSCN deposited on TiO,, clearly indicate that the template effect of SCN-
bonding to Cu based substrate has been the essential initial condition for the growth of an organized

molecular assembly in this dye.

Y

hv

C| ¢<ht

Figure 7-3: Mechanism of photocurrent generation by in p-CuSCN (or p-Cul ) photocathode depos-
ited with RhBSCN J-aggregate (A) exciton creation by an absorbed photon (B) exciton diffusing to
the CuSCN /RhBSCN boundary (C) hole and electron release to CuSCN and RhBSCN respectively
(white rectangle — CuSCN, dark grey rectangle-RhBSCN, grey rectangle — aqueous electrolyte). The
extent marked as A is the exciton diffusion length.
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In familiar dye-sensitization, only the monolayer of molecules attached to the semiconductor
surface inject carriers to a band. Generally, the excess dye molecules randomly agglomerated over the
surface has a deleterious effect because of concentration quenching, while J-aggregation sometimes
contribute favorably to the sensitized quantum efficiency [125, 126] The unusual effect of enhanced
sensitization by the significantly thick dye layer can be understood as follows: The absorption spectrum
of an aqueous solution RhBSCN is peaked at ~ 543 nm and the peak of the photocurrent action spectrum
of a RhBSCN monolayer coated p-CuSCN photocathode which corresponds to the first peak of Fig.7-2,
occurs at ~ 554 nm. A red-shift of ~ 11 nm is a consequence of bonding the dye to the substrate surface.
However, the peak of the action spectrum of the photocathode of the optimally thick film (46 monolay-
ers) appears at ~ 632 nm. The large red shift (78 nm) indicates J-aggregation and such structures have
large exciton diffusion coefficients. The mean free path of light (A in the dye film calculated using the
extinction coefficient of Rhodamine B (1.06x10° mol cm™) is ~ 30 nm. At monolayer coverage, injection
of holes from the excited dye molecules anchored to the CuSCN surface generates photocurrent. When
the thickness of the dye film exceeds mean free path of light (L), light cannot reach the CuSCN/dye in-
terface and the photocurrent is generated by the following process (Fig. 7-3). Photons absorbed by the
bulk of the dye create excitons which diffuse and decompose at the CuSCN/dye interface releasing holes
to p-CuSCN and electrons to the dye. The positioning of HOMO of Rhodamine B and the valence band
edge of CuSCN permits the above process. Rhodamine B being an electron mobile (n-type) material
[127] transports the electron to the electrolyte interface where it is accepted by tri-iodide.

The variation of photocurrent with the dye film thickness (as shown in Fig. 7-1) can be under-
stood as follows. As dye coverage increases from zero, excited dye molecules anchored to surfaces, in-
ject electrons increasing the photocurrent until a monolayer thickness is reached. When next 1-2 mono-
layer begin to form, light cut-off from first monolayer reduces the photocurrent, as thickness further

increase exciton process takes over until limited by the exciton diffusion length. A simple one-
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dimensional model presented below explains the variation of the excitonic photocurrent with the film
thickness.

If ®p = photon flux incident on film surface [Fig. 7-2(b)], the flux at a distance x in the film is @,
exp(- /A ) (A = mean free path of light) and light absorbed in an element of the film the of thickness dx
= (®p /A )exp(- x/A )dx . In a one-dimensional model a half of excitons created in the element will trav-
el forward and other half in the backward direction and getting reflected at the front (dye/electrolyte)
interface. Thus photocurrent element d/ generated from the excitons created in the dye and incident on

the dye/p-CuSCN interface can be stated by,

_ e® IT,IT,(1+7r) PRl

—(L+x)/A
+re Eqg. 7-1
Y ] (Eq.7-1)

dl

Where, A = exciton diffusion length, I, = probability of exciton creation by light absorbed, I1p
= exciton decomposition probability at the CuSCN/dye interface, r = exciton reflection fraction at the

dye/electrolyte interface. Integrating Eq.7-1, for A > A.

~ e® 11,11, o LA

> [1—e ] (Eq. 7-2)

1

The Eq. 7-2 is maximum when L= Aln2 and giving A = 112.6 nm. Thus the existence of a second
maximum in the curve of Fig. 7-2 (a) is explained enabling estimation of the exciton diffusion length. As
the photocurrent reaches a negligibly small value when the film is ~ 75 monolayers, corresponding to a
film thickness of ~ 128 nm, the value of A estimated from the model agrees reasonably well with the

photocurrent measurement.
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The D.C electrical conductivities and electron mobilities of RhCl, RhBSCN and a J-aggregated film
of RhBSCN measured at 25°C are given in Table 7-1. Conductivity and electron mobility are nearly three
orders of magnitude higher in the organized film. Molecular arrangement as in Fig. 7-1, greatly enhance

the exciton diffusion length as well as the electron mobility.

Table 7-1: D.C electrical conductivities and electron mobilities of Rhodamine B Chloride (RhBCI),
Rhodamine B Thiocyanate (RhBSCN), and a J-aggregated film of Rhodamine B thiocyanate grown
over a CuSCN surface.

o /Scm™ te /cm?V's?
RhBCI ~ 10°® ~10°
RhBSCN 3x107 ~10°
RhBSCN(J-aggregate) 7x 10" 8 x 107

The photocurrent action spectrum of the heterojunction n-Cu,0/J-aggregated RhSCN /p-Cul ob-
tained by transmitting light through Cul is shown in Fig. 7-4. The narrow profile of the photocurrent ac-
tion spectrum peaked at 632 nm and red-shifted 89 nm from the absorption peak of the dye solution,
indicate J-aggregation. The curve C of Fig. 7-4 is action spectrum of n-Cu20/p-Cul. It is interesting to
note that the photocurrent arising from Cu,0 band gap excitation (the broad profile peaked at 480 nm
in the curve A of Fig. 7-4) is greatly enhanced in presence of the dye. This can be understood as suppres-
sion of surface recombination by the absorbed dye which passivates the Cu,0 surface. In dye-sensitized

solar cells, the dye plays a key role in suppressing recombination via passivation of the surface[128].



Table 7-2: IV characteristics of different heterojunctions

Heterojunction Isc Voc FF n %
(mA cm?) (mvV)
n-Cu,0/p-Cul 2.1 370 0.41 0.32
n-Cu,0/RhBSCN (monolayer) /p-Cul 3.2 390 0.50 0.62
n-Cu,0/RhBSCN (J-aggregate) /p-Cul 3.8 423 0.56 0.90
n-TiO,/RhBSCN(J-aggregate)/p-Cul 0.4 486 0.43 0.08
RhBSCN
/.
R
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Figure 7-4: A- Photocurrent action spectrum of a n-Cu,0/J-aggregated RhBSCN/p-Cul heterojunction shined with
light as indicated in the inset (for clarity contacts to cell are not shown). The narrow peak to left in the curve A
originate from light absorption by the dye and the broad peak is Cu,0 band gap excitation. B - Absorption spec-

Wavelength (nm)

trum of aqueous RhBSCN. C - Photocurrent action spectrum of n-Cu,0/p-Cul.
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Current-Voltage characteristics of different heterojunctions examined are summarized in Table
7-2. The highest Ic and 1 are obtained for the cell n-Cu,0/J-aggregated RhBSCN/p-Cul with a RhBSCN
film approximately ~ 29 monolayers thick. The monolayer thickness here is less than the optimum film
thickness in the PECs with J-aggregated RhBSCN coated CuSCN photocathode. The reason for this behav-
iour appears to be the difference in the interfaces where exciton decomposition and reflection take
place. However, quantitative analysis of problem has not been successful. In the n-Cu,0/J-aggregated
RhBSCN/p-Cul system excitons decomposing at the RhBSCN/p-Cul interface contribute to the photocur-
rent injecting electrons to RhBSCN and holes p-Cul and excitons decomposing at n-Cu,0 /RhBSCN inter-
face cannot contribute to the photocurrent as RhBSCN is n-type . The low Voc of all the heterojunctions
based on n-Cu,0 is due to interference of the Cu/n-Cu,0 contact as n-Cu,0 is deposited on metallic cop-
per. The cell n-TiO,/J-aggregated/RhBSCN/p-Cul delivers a higher Voc, but the I is low due to poor con-
tact at the interface n-TiO,/RhBSCN formed by pressing a TiO, coated FTO glass plate onto to the dye
film.

Thiocyanate of Methyl Violet and several other cationic dyes demonstrated the same behavior
in forming highly organized J-aggregated films on copper based substrates[129]. A notable exception is
Acridine Orange thiocyanate (ACSCN) deposited on CuSCN surface by the same procedure as RhBSCN.
The absorption spectrum of an aqueous solution (~10° M) of ACSCN peaks at ~ 490 nm. However, the
photocurrent of an ACSCN coated CuSCN phtocathode reaches the maximum at 460 nm, indicating this
dye forms H —aggregates when adsorbed on CuSCN. Again when the variation of the short-circuit photo-
current with monolayer thickness was examined, the optimum occurred at monolayer coverage, there-
after decreasing very rapidly with the increase of the monolayer thickness [124]. The variation of the
short-circuit photocurrent with ACSCN film thickness (i.e. the equivalent of Fig. 7-2 for the dye ACSCN) is
shown in Fig. 7-5. Generally H-aggregates do not facilitate exciton transport[130] and the cathode with a

thick ACSCN film cannot deliver photocurrent via the exciton mechanism
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Figure 7-5: Variation of the short-circuit photocurrent (Isc) of ACSCN coated p-CuSCN photo-
cathode in iodide/tri-iodide electrolyte (Illumination 250 Wm, Tungsten filament lamp)

7.4 Conclusion

The above study demonstrates that highly organized films of thiocynates of cationic dyes can be
deposited on copper based substrates by controlled absorption from a solution. The mechanism in-
volved is strong S-bonding of SCN- ion to Cu sites and repetitive attachment of dye cations and SCN- ions
alternatively to yield a thick film of organized structure. Thiocyanates of Rhodamine B, Methyl Violet and

several other dyes deposited in this manner exhibited J-aggregation behaviour with widely red-shifted
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narrow absorption bands. Large exciton diffusion lengths of the order of 100 nm were evident from
photoelectrochemical measurements and molecular organization has also enhanced the electron mobil-
ity. The purity of the dye and absence of imperfections in the molecular architecture are important to
achieve large exciton diffusion lengths and high mobilities. These parameters may be further increased
by improving the purification technique and carrying out the deposition at a lower temperature. Dyes
used in this study are not the best, much higher efficiencies are expected when alternative dyes of high
carrier mobilities are used. Efficient exciton and carrier transport depend on dye molecular structure
and organization of molecules in the film, alternative dyes and optimized film deposition techniques are
expected to yield higher photocurrent quantum efficiencies. Heterojunction structures constructed in-
dicated the potential of dye films in solar cell application as both exciton diffusion length and electron
mobility are enhanced by molecular organization. Probably the system is effectively one-dimensional
and such structures could exhibit directional exciton transport [131]. The above strategy of growing or-
ganized molecular films may be extended other organic cationic (anionic) dyes by appropriate choice
anionic (cationic) moieties to render strong bonding to the surface of a selected material. Thiocyanate
bonded to Cu sites readily act as an electron conduit. The problem establishing electronic coupling to
the counterelectrode could be achieved by adhering polymer brush[132] terminated with a ligand that
binds to moiety in the dye or by other similar strategies. Solar cells, NIR and IR detectors and sensors are
potential applications. Chromopores absorbing in different regions of the spectrum could be organized
by the same procedure to achieve panchromatic photoresponse. If the absorption and emission spectra
of adjacent molecular layer overlaps, excition transport through structure is possible via Forster energy

transfer.
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8. CYANINE DYE-INORGANIC SEMICONDUCTOR EXCITONIC HETEROJUNCTION SOLAR CELL:

SPECTRAL BROADENING VIA SIMULTANIUS H- AND J- AGGERGATES.

8.1 Introduction

Organic- inorganic hybrid nanostructures have been studied extensively as potential systems for
solar cell and other opto-electronic device applications. The prototype examples of photovoltaic devices
of this category are: dye-sensitized solid-state solar cells[133, 134] (DSSSCs), extremely thin absorber
(ETA) cells[135] and organic-inorganic hybrid (OIH) heterostructures[89, 136]. In a DSSSC, the excited
molecules in a dye monolayer sandwiched between high band-gap n- and p-type semiconductors inject
electrons and holes to respective regions, generating a photocurrent. In the analogous ETA cell, where
the dye monolayer is replaced by a thin film of a low band-gap semiconductor, electrons and holes cre-
ated in the thin film are efficiently transferred to n- and p-type regions, provided film thickness does not
exceed the carrier diffusion length [113, 137]. Organic-inorganic hybrid solar cell is basically a
heterojunction of these two types of materials, where light absorbed by the organic component creates
excitons that decompose at the interface, separating the charges [138]. In a thin film heterojunction,
thickness of the organic film is limited by the exciton diffusion length. As the limitation of the thickness
of light harvesting component restricts the overall light absorption cross-section, the performance of all
the above systems are greatly improved by making the inorganic semiconductor, nanostructured to ac-
quire a large surface area. Dye-sensitized and bulk heterojunction solar cells resorts to this strategy op-
timally[139]. Furthermore in excitonic solar cells, the exciton diffusion length increases greatly if the or-
ganic film has an organized molecular arrangement. Generally, an organized molecular structure in the
organic film will also enhance its carrier mobility, imperative for proper functioning of the cell. An ad-

vantage of organic-inorganic thin film systems is that, they more readily afford organized molecular as-
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sembly in the exciton transporting material compared to bulk heterojunction solar cells. Obviously, it is
easier to build an organized molecular arrangement on a preset solid substrate (inorganic semiconduc-
tor) than to achieve such structure in a blend of two materials. This note describe an organic-inorganic
hybrid solar cell of configuration n-TiO,-[DDD----D]-p-CuSCN, where [DDD----D] is a molecularly orga-
nized thick film of a hole conducting cyanine dye electronically coupled to both TiO, and CuSCN. The cell
exhibits photocurrents originating from exciton dissociation as well as direct dye-sensitized injection at
TiO,/dye, and dye/CuSCN interfaces. The dye assembly [DDD-----D] is found transport excitons over long

distances of the order of 30 nm.

8.2 Experimental procedure
Films TiO, (1x1 cm? ) were deposited on fluorine conducting tin oxide (FTO) glass plates (1x 1.5
cm? ) by the method described previously for fabrication of DSSSCs [133]. Briefly, the procedure is hy-
drolysis of titanium isopropoxide (5 ml) in 75% propan-2-ol (15 ml) and acetic acid (5 ml) mixture to
form a colloidal TiO, suspension. The hydrolyzed product is mixed with Degussa P25 TiO, powder and
the viscous slurry spread over the FTO plate. The plate is heated to 120°C for 10 min and after blowing
off the loose crust of TiO, particles not adhered to the FTO surface, film is sintered at 425°C for 10 min.
By repetition of the process, TiO, film can be grown to a desired thickness. Such films are largely devoid
of interconnected void channels leading the FTO surface, preventing short-circuiting at the FTO interface
when a heterojunction is formed. The roughness of an 8 um thick film estimated by adsorption of a
standard dye is of the order of 500.
The cationic cyanine dye named E-65 (shown in Fig. 8-1a) was synthesized by Dr. Henary’s group
(Georgia State University, Department of Chemistry). The scheme shown in Fig. 8-1(a), illustrate the E-
65 synthesis procedure, which admits ready variation of the auxiliary ligands[140, 141]. The polymethine

precursor 1 is synthesized by reacting mucobromic acid with aniline in warm ethanol. In parallel, the
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heterocyclic moiety is prepared by alkylation of 2,3,3-trimethylindolenine using bromoethanol to gener-
ate the cationic intermediate 2. The condensation reaction between 1 and 2 proceeds effectively in the
presence of acetic anhydride and sodium acetate which also affords the acylation of hydroxyl groups to

yield the final compound 3 (E-65).

Figure 8-1: (a) The synthesis scheme of the dye E-65 and (b) its bidentate bonding to TiO2.
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The dye in the bromide form is converted to the thiocyanate by boiling the dye powder in satu-
rated solution of KSCN and separation of the dye thiocyante precipitating on cooling the solution. Dye
was coated over the TiO, film by the following procedure. The TiO, film is thoroughly cleaned with alka-
line 50% propan-2-ol followed by water and 99% propan-2-ol and plate dried at 120°C. Dried plate is
positioned vertically at the bottom of a glass tube (diameter ~ 1. 3 cm) and the dye solution (M in 90%
ethanol) is poured over the plate to a height of about 4 cm. The vessel was left in a constant tempera-
ture (15 °C) environment for several days to adsorb the dye.

The monolayer thickness of the dye film was estimated by extracting dye from sample films and
spectrophotometric estimation of the dye content. The film is dried in air at ambient temperature and
p-CuSCN deposited over its surface from a solution in n-propyl sulfide. The back electrode is formed by
pressing a FTO glass plate to secure the contact. Painting graphite over the CuSCN surface improves the
back contact. However, for comparison of the cell performance in front-wall (light incident on TiO;) and
back-wall (light incident on CuSCN) modes of illumination, graphite painting was avoided. Photocurrent
action spectra and |-V characteristics of the cells were recorded using a source meter and a
monochromator set-up.

The carrier mobility of the dye was determined by measuring the space-charge limited current.
For this measurement, vacuum dried dye is pressed into a thin pellet between two stainless steel elec-
trodes in a glass tube and connected to a d.c voltage, sufficient to obtain a measurable current avoiding

degradation of the material due to heating. Mobility is calculated from the Mott-Gurney equation,

Jo eul?

<L (Eq. 8-1)

where J = current density, 1L = mobility , € = dielectric constant, V = applied voltage , L = pellet length.
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The sign of the charge carrier was ascertained by field-assisted thermoelectric tests using the
same experimental set-up. Alternative heating of two electrodes and noticing direction of biasing which
yields a higher current in the circuit enables determination of the sign of carrier. Method does not re-
quire heating of the electrodes to an excessive temperature as in direct thermoelectric tests. FTIR spec-
tra of dye lightly coated to TiO, and the non-adsorbing substrate GaAS were recorded to ascertain the

mode bonding the dye to TiO,.

8.3 Results and Discussion
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Figure 8-2: The FTIR spectrum of the dye deposited on GaAS wafer, nanocrystalline TiO2 film are
shown in the Fig.4 below. The annihilation of absortion peaks in the range 1000 cm-1 to 1250 cm-1
with E-65 adsorbed on TiO2 implies bidentate bonding of E-65 on to TiO2.



113

When the TiO, film is exposed to a relatively dilute (~ 10°M) solution of the dye for 30-45 min,
the dye coverage approximates to a monolayer formed by chelation of dye molecules to the TiO, sur-
face. The two functional groups in the dye anchor bidentately to TiO, as shown in Fig. 8-1(b). Compari-
son of the FTIR spectra of the dye adsorbed TiO,, bare dye and bare TiO, shows changes in the charac-
teristic C-O-H bending and C-O-H stretching vibrations[142] in the region suggestive of dye binding to
TiO, in this manner. The absence of the C-O-H bending band at ~ 1100 cm™ and drastic reduction in the
C-O-H stretching band at 1738 cm™ in the dye adsorbed onto TiO,, as can be seen in Fig. 8-2, indicate
bidentate bonding of the dye.

In more concentrated solutions (> 0.05M), the first monolayer forms almost instantly by surface
chelation of dye cations and electrostatic bonding of the SCN anions (Fig. 8-3(a)). The subsequent slower
growth of dye film proceeds as consecutive bonding of dye cations and SCN anions via dipole-ion and
electrostatic forces respectively (Fig. 8-3(b)). An initial fast absorption to form a monolayer and subse-
guent slow assembly has also been observed in J-aggregate formation on metallic[143] and other semi-
conductor substrates[139].

The firm anchorage of the first monolayer serves as a template for growth of an organized film.
Slow evaporation of the solvent during storage (determined by ambient temperature and height of the
air column and diameter of the tube) assist maintenance of dye concentration at a sufficient level to

continue the film growth via forward progress of dye adsorption, i.e.

X" + SCN™ « [XSCN]a

where X' denote the dye cation and [XSCN],, dye molecules adsorbed onto the substrate. Obviously in-
corporation of SCN ™ into the solution by addition of KSCN, accelerates the film growth via common ion

effect. Highly organized J or H aggregated films of ionic dyes can be deposited by the above technique.
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Nature of the dye and substrate and deposition conditions determines the type of the aggregation (i.e. J,

H or a mixture of J and H) and extent of disorder.

(a)
-X*-SCN-
-X*-SCN-
-X*-SCN-
-X*-SCN-
-X"-SCN-

(b)
EXF-SCN- | EX*-SCN=X*-SCN- | EX*-SCN=X*-SCN=X*-SCN-
FX*-SCN- -X*-SCN=X*-SCN- -XF-SCN=X"-SCN=-X"-SCN-
EXF-SCN-—> [ FX*-SCN=X*-SCN™ —{ EX*-SCN=X*-SCN=X*-SCN- ~
EXF-SCN- | EX*-SCN=X*-SCN"~ | EX*-SCN=X*-SCN=X*-SCN-"
LFX*-SCN- [FX*-SCN=X*-SCN-  [-X*-SCN=X*-SCN=-X*-SCN-

Figure 8-3: (a) Formation of the first monolayer of dye on TiO2 by surface chelation of the dye cation X+ and
electrostatic bonding of SCN- (b) subsequent growth of the film via bonding of dye cations and SCN anions
by ion-dipole and electrostatic forces.

A schematic diagram illustrating construction of the cell and an element of the heterojunction
interface are shown in Fig. 8-4. Bonding of the functional groups of the dye, anchors it firmly to TiO,,
facilitating the necessary electronic coupling. As sulfur in SCN readily binds to Cu sites in solid copper
compounds [122, 123, 139], the electronic coupling of the organized dye film to the hole collecting

CuSCN is also secured.
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Figure 8-4: Schematic diagram indicating (a) construction of the cell and (b) an ele-
ment of the TiO2/dye/CuSCN interfaces schematically depicting coupling of the orga-
nized dye aggregate to TiO2 and CuSCN.

The short-circuit photocurrent density (J;.) depended on the thickness of the dye film and in
both front and back wall modes of illumination, J;. was found to be optimum in films much thicker than
one monolayer, contrary to familiar dye-sensitized solar cells where the best photo-response is general-
ly seen at monolayer coverage of the dye. The observed effect in the thick film can be understood as a

result of a significant excitonic contribution to the photocurrent.
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Figure 8-5: J-V characteristic curve and Fitted line of Mott-Gurney Eqn. Mobility is calculated
from measurement the space charge limited current using solid dye pressed between stainless
steel electrodes (pellet length L = 1.1 mm, diameter = 1 mm). The dye powder used for this ex-
periment was dried in vacuum at ~100 °C for 24 hours. The plot of current density J vs applied
bias V

Like most cyanine dyes solid E-65 exhibits hole conduction[127], with a carrier mobility significantly high
compared to familiar dyes. Possibly, the Br atom in methane chain acts as an electron acceptor realizing
holes. The measurement of the variation of the space charge limited current with voltage bias is in good
agreement with eq. 8-1, as shown in Fig. 8-5, giving a mobility p=(7.2 + 1.4) x 102 cm? Vst Mott -

Gruney measurement is highly sensitive to moisture and thermoelectric injection, hence they can ob-
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scure the measurement. The errors can be greater at higher voltages, and at low voltages the parabolic
curve looks like linear. The Mott-Gruney measurement is not a refined measurement, but very frequent-
ly used in organic electronics for estimating mobilities. The chi-square value with a quadratic fit is 0.99;
while a linear fit gives 0.96 implies quadratic fit (Mott-Gurnay Equation fit) is more accurate.

When the cell is illuminated, HOMOs of dye molecules bonded directly to TiO, excite electrons
to LUMOs and transfer them to conduction band of TiO, as in a normal DSSSC. As the dye is a p-type
conductor, the hole released is transported along the thick dye layer to CuSCN. Again the excitons gen-
erated in the bulk decompose at the TiO,/dye interface separating electrons and holes to TiO, and dye
respectively and holes are transported across the dye layer to CuSCN. The photocurrent action spectra
of a cell with thick (~ 11 monolayers) dye film, in front and back wall modes of illumination are present-
ed in Fig. 8-6. Both spectra have profiles extending from 500-775 nm with distinct differences. The front
wall spectrum has a peak at 681 nm red-shifted from the absorption spectrum of the dye solution by ~
31 nm. The cause of this peak is more intense direct sensitization at the TiO,/dye interface combined
with the excitonic contribution from light adsorbed in the bulk of the film. Whereas the back-wall spec-
trum displays a peak at ~706 nm with a narrow profile red-shifted by 56 nm and a largely broadened
blue-shifted peak structure at ~ 579 nm. It is interesting note that the back wall spectrum also displays a
peak at ~ 635 nm corresponding to direct sensitization at the dye/CuSCN interface. The back-wall mode
spectrum could be understood as an effect originating from presence of J and H aggregated domains in
the dye film. J-aggregates have narrow and red-shifted absorption peaks compared to the mono-
mer[144]. H-aggregates display the opposite behavior with broadened and blue-shifted absorption
peaks[144]. In the front-wall mode, this effect is partly masked by the contribution to the photocurrent
from direct sensitization by the monomer anchored to the TiO, surface. In the back wall mode, light in-
cident on TiO,/dye interface is not sufficiently intense to mask the photocurrent generated by excitons

produced in the bulk of the thick film and decomposing at the TiO,/dye interface and injecting electrons
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to TiO, and conducting holes to CuSCN. A cell with a monolayer thick dye film shows no distinction in
front and back wall action spectra, both have peaks at ~ 650 nm , almost same as the peak absorption
of dye in solution (Fig. 8-7). Again if the thick dye film of similar thickness is deposited by drop coating
of the dye over the warmed TiO, film instead of slow growth as in the previous experiment, the photo-
current action spectra in front and back wall modes do not demonstrate conspicuous distinction and the
observed photo-response is weaker. Clearly the organized molecular assembly of the dye has been
cause of the observed distinction in front and back wall action spectra and the enhanced photo-
response. Fig. 8-8 shows the I-V curves of cells with organized and disorganized thick dye layers and a
monolayer. |-V parameters and peak wavelengths of the action spectra of different cells are summarized

in Table 8-1.

Table 8-1: |-V parameters and peak photoresponse wavelengths of different cells (Front—wall
illumination). Grown organized- TiO, film soaked in the dye allowing the dye layers to grow
slowly by interaction forces in the molecules. Drop coated- Thick dye layer is spared on the
TiO, film (dye layers will be disorganized). n-efficiency.

Dye Film I \Y n% Amax
(mAcm™) (mV) (nm)

Organized Dye 2.3 374 0.4 687
Drop coated (disorganized) 1.1 331 <0.15 675
Monolayer 0.3 350 <0.05 658

A severe problem in conventional DSSSCs is recombination at the points where inorganic n- and
p-type semiconductors are in direct contact. Imperfections in the dye monolayer frequently lead to this

situation lowering the efficiency. In the present system, the thick dye layer naturally resolves this prob-
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lem. It is important to note that distinction in the charge transfer processes originating from light ab-
sorbed by the first monolayer anchored to TiO, and those in the bulk of the thick film. The bonding of
the dye to TiO, creates a charge transfer complex and kinetics of electron transfer from a dye molecule
in the monolayer is a characteristic of the entirety of dye molecule and the charge transfer complex.
Whereas light absorbed by dye molecules in the bulk emit exctions which decompose at the TiO,
/monolayer interface. There is evidence that such interfaces involving charge transfer couplings effi-

ciently decompose excitons and the mobility of the hole in the J-aggregate suppresses back electron

transfer[145].
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Figure 8-6: Normalized photocurrent action spectrum of the cell with a thick dye film (a) front-
wall illumination (b) back-wall illumination and (c) absorption spectrum of 0.001M solution of the
dye.
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Figure 8-7: Normalized photocurrent action spectrum of a cell with a dye-monolayer in front and back wall
modes. Front: Device illuminated from TiO, side. Back: Device illuminated from CuSCN side.
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Figure 8-8: I-V curves of the cells with (a) organized thick dye layer (b) disorganized thick dye layer (c)
dye monolayer (Front wall illumination)

We have not yet succeeded in elucidating the morphological arrangement of J and H domains in
the dye film. The simultaneous occurrence J- and H-aggregates has been reported in solid films with
other dyes[146]. Two possibilities exist, i.e. regions composed entirely of either J or H aggregates con-
necting the two surfaces (TiO, and CuSCN) or separated distributions across the thickness of the film.
The latter morphology is somewhat detrimental to cell performance, for the following reason. During J-
aggregation HOMO is moved upwards and LMUO downwards relative to their positions in the monomer,

agreeing with observed red-shift in absorption spectrum [105, 147]. The opposite would happen in an H-
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aggregate, as this form molecular assembly leads to a blue-shift in absorption [105, 147]. Consequently,
electron or hole transfer from an H to a J-region is permitted, but not the reverse. Thus an H-aggregated
region in the middle of J-aggregate connecting TiO, and CuSCN would impede carrier transport. The dye
E-65 deposited on TiO, is predominantly J-aggregated. The Br atom in the methine chain seems to en-
hance J-aggregation by facilitation of appropriate molecular stacking. A cyanine analogous to E65 with-
out a halogen atom in the methine chain was found to prefer H-aggregation when deposited on TiO, by
the same procedure. The fact the action spectrum display greatly blue shifted broad peak confirms that
excitons generated in the H-aggregated regions also participate in photocurrent generation, implying
the presence of H-aggregated domains connecting TiO, and CuSCN interfaces.

The film thickness dependence of the photocurrent can be understood as: If, ®, = photon flux
incident on TiO,/dye interface (front-wall mode), flux at a distance x from the interface is ®p
exp(— &/A), where A = mean free path of light. The exciton flux emanating from light absorbed in this
element is A" 'TI,®p exp(- x/A )dx, where IT, = probability that an excited dye molecule will emit an
exciton (Fig. 8-9).

If a one dimensional model is assumed[138], half of excitons generated will travel in the back-
ward direction and strike TiO,/dye interface. The other half of excitons travelling in the forward direc-
tion will get reflected at dye/CuSCN and the strike back on the dye/TiO, interface. In contrast, instead of
reflection, excitons could also decompose at this interface injecting holes to CuSCN. Therefore, the pho-

tocurrent dl generated by the light absorbed in the element dx can be written as,

_ Pl

dI 2 exp{_%} [exp{~%/ }+ R.exp{~2L/ }]edx (Eq. 8-2)
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Where A = exciton diffusion length, L = thickness of the dye film, e = electronic charge, I1; =

probability of an exciton created by absorbed light, and I = probability of an exciton decomposing and

injecting electrons to TiO, and holes to CuSCN, R= excition reflection coefficient at the dye/CuSCN inter-

face.
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Figure 8-9: Geometry of the (a) front and (b) back wall illumination

However, as the dye is not conducting electrons, holes will recombine with electrons residing in

the dye at the interface. Integrating (8-2), the photocurrent (/) is calculated as,
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@ 11,11
I~ %[1 + R.exp{—z%}[l —exp{™ %\}]e (Eq. 8-3)

In the approximation A > A. Total photocurrent is obtained by adding the contribution from di-
rect sensitization by dye monolayer anchored to TiO,, which is independent of L. Similarly, the back wall

mode photocurrent (Fig. 8-9b) can be expressed as,

@ 11,11
7= %(1 + R))[exp{—%}[l —exp{~ %\}]e (Eq. 8-4)

Here, the photocurrent decrease more rapidly after film thickness reaches a maximum when L
~ A[ln (A/M)]. Knowledge of the extinction coefficient dye yield A ~16.6 nm and as the photocurrent
is found to be optimum when the film is 11 monolayers corresponding to film thickness of ~11 nm ,

we obtain A ~32 nm.

8.4 Other dyes tested for J-/H- aggregations.

During the study 15 additional dyes were tested for their |-V characteristics and response to test
the J- or H- aggregation effects. Figures 8-10 to 8-13 show absorption spectrums, response spectrums,
and |-V characteristics of few of the dyes with promising results leading to further studies. A clear
broadening and red shift in the response spectrum compared to the dye absorption spectrum can be
seen in the results. Further experiments with the mobility calculations and study with varying multi-
layers are needed to study the performance variations with J and H aggregates of the compounds, and it
will lead to understand possible modifications needed in the dye molecules for further improvements to
utilize them as a feasible photon detector or a solar cell. Furthermore, a study on improving the stability

of the device is also important.
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Figure 8-10: Absorption spectrum (solid line), response spectrum (dashed line) and |-V
curves (inset) of the dye QBN-1
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Figure 8-11: Absorption spectrum (solid line), response spectrum (dashed line) and I-
V curves (inset) of the dye E11
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Figure 8-12: Absorption spectrum (solid line), response spectrum (dashed line) and I-V
curves (inset) of the dye SP.2.36
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Figure 8-13: Absorption spectrum (solid line), response spectrum (dashed line) and I-V
curves (inset) of the dye E69.
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8.5 Future work
As can be seen in the Fig. 8-14, the difference in the structure E-11 (IV, response and absorption
data shown in Fig. 8-11) and E-65 is the —[CBr=C]- group in the center of the molecule. This difference in
the two compounds has resulted in lower photocurrent in the DSSC sensitized with E-11, ~ 80 uAcm'z,
compared to ~ 300 uAcm'2 observed with E-65. It will be interesting to study the mobility and effects of

the extra —[CBr=C]- group on the performance of a photon detector.

>/ /) E-11 \<

E-65

Figure 8-14: The molecule structure of the dye E-11 and E-65.
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Additionally, new set of compounds, named as PTN-11, PTN-12 and PTN-13, shown in Fig. 8-15,
with the modified heterocyclic units compared to E-11 and E-65, expect to increase the hydrophobicity
of the dye hence expected to change the aggregation properties. Additionally, the extra rings in the
compounds red-shifts the maximum absorption wavelength by approximately 20 nm. Comparison of
the DSSC performance with these compounds will provide further information on effects of the halogen

group in the dye molecule, on the DSSC performance and excitonic transport in the compounds.

PTN-11

Figure 8-15: The molecule structure of the dyes PTN-11, PTN-12 and PTN-13.
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8.6 Conclusion

A pentamethine cationic cyanine dye with two functional moieties binding to TiO, and a Br atom
in the methine chain is synthesized. The functional moities surface chelate bidentately to n-TiO, estab-
lishing strong electronic coupling to the conduction band states. Bonding of dye to p-CuSCN is facilitated
by replacement halide anion by thiocyanate. Nanocrystalline TiO, films exposed to a solution of dye un-
der ambient conditions by mere control of solvent evaporation rate, admits deposition of predominantly
J-aggregated thick films exhibiting fast exciton diffusion and detectable hole mobility. Model solar cell of
the configuration n-TiO,-[DDD---D]-p-CuSCN with the thick organized dye film [DDD----D] demonstrate
contributions to the photocurrent originating from excitons generated in bulk of the thick film and direct
sensitized injection at the TiO,/Dye interface. Low efficiency of the cell is attributed to insufficient hole
mobility of the dye and/or exciton recombination at the interface. More stringent purification of the dye
and improvement of film deposition technique to eliminate H — aggregated domains will improve the
efficiency. However, in order to attain orders of magnitude enhancement of the mobility, understand-
ing of the mechanism of hole conduction and how it relates to the dye structure would be necessary to

aim synthesis of more prospective dyes.
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9. PbS QUANTUM DOT EMBEDED NANOSTRUCTUR WITH UV-IR RESPONSE

9.1 Introduction

Possible strategies to broaden the spectral response of a DSSC would be to use a mixture of dyes
with different chromospheres covering the required spectral range [148, 149] or use J- or/and H aggre-
gate of dyes with organized accumulation (as shown in Chapters 7 and 8). However, all dyes do not have
the organized accumulation properties required for application in above methods, hence will lead to
thick layer of disorganized aggregations resulting insulation or concentration quenching. Use of semi-
conductor material quantum dot particles to absorb photons is another method can be used in broaden-
ing the spectral response of DSSCs. Nanocrystalline films of wide-band-gap oxide semiconductors, for
example TiO,, ZnO and Sn0,, can be sensitized by quantum sized semiconductor particles such as PbS,
CdS, Ag,S, Sb,Ss, Bi,S3[150]. The electron transport mechanism involved in this structure is analogous to
the sensitization of wide band gap semiconductors with dyes. Size quantized band-gap modulation of
QDs of low effective carrier mass enable the sensitization of wide band-gap materials from UV to far IR
region [151]. Furthermore, a carrier injected in dye-sensitization can travel some distance ballistically
[152] or can travel by tunneling across a thin layer of insulators or semiconductors [153-155]. Further-
more, literature states the electrons released in photo excitation of dye molecules coated on a 10-50 nm
gold film, move ballistically across and enter the CB of the n-type semiconductor [156]. It also has been
shown that photo-excitation of dye molecules anchored to an ultra-thin (thickness <1 nm) outer shells
of insulators or semiconductors on a semiconductor crystallites results electron transfer to the inner
core material [154, 155].

Photoconductivity of TiO, sensitized with PbS-QDs was reported by Hoyer et. al. [157] and ZnO is
also an appealing wide-band gap semiconductor, which can be grown by MOCVD[158] or low cost sol-
gel techniques[159], or spray-pyrolysis to form nanoporous films. This chapter presents two studies, (1)

a ZnO film sensitized by to PbS Quantum Dots (PbS-QDs) and a dye to use as a dye sensitized solar cell
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(DSSC) and (2) use of interband transitions in the PbS-quantum dot (PbS-QD) embedded ZnO as a UV-IR

dual band detector.

9.2 Experimental procedure: Material Preparations

The ZnO films were prepared as briefly described below. Approximately 5g of Zinc oxide powder
is ground with 0.05g of Zinc Acetate while adding few drops of acetic acid and adding sufficient ethanol
to form a paste. A surfactant Triton X-100 (few drops) was added during the vigorous grinding in to the
paste. More ethanol is added upto 50mL and the mixture was put in a sonicator bath for 20mins. The
suspension was spread on to a preheated (150 °C) fluorine doped conducting tin oxide glass plates (1.5 x
1 cm?, sheet resistance 12 ohm/sq) by spray pyrolisis. The film was dried at 150 °C and thereafter sinter-
ing in air at 450 °C for 30min, and allowed cool down to room temperature. For dye coating the ZnO
films were soaked in a solutions of Acriflavine (AC, i.e., 1,6 diamino-10-methylacridinium chloride, struc-
tural formula shown in Figure 9-1) in ethanol (1M) for 24 hours.

The ZnO/PbS-Dye electrodes were made by growing a thin film of PbS quantum partials using
following criteria before immersing in the dye bath. The ZnO film is wetted using a drop of (50 pl) lead
() acetate (Pb(CH3C0O0),:3H,0) in aqueous ethanol solution and the film was exposed to H,S gas for 30
minutes at room temperature. The film acquires a brownish-black tint due to the formation of PbS QDs.
Concentration of the lead acetate and the flow rates of H,S were adjusted to control the density and size
of the PbS quantum dots. Photoelectrochemical cells (PECs) were made by clamping the dye coated (or
PbS-QD embedded) film against a platinized counter electrode and filling the capillary space between
the two electrodes with the I/I7; electrolyte (0.6M dimethyl-propyl-imidazolium iodide + 0.5M t-butyl
pyridine in methoxy-acetonitrile). Figure 9-1 shows a schematic diagram of the cross section of the de-

vice.
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Figure 9-1: Schematic diagram of Acriflavine (AC, i.e., 1,6 diamino 10
methylacridinium chloride). And a schematic diagram of the cross section of
the Dye Sensitized Solar Cell fabricated on a ZnO film and sensitized by a thin
film of PbS quantum dots and Acriflavin dye.
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SEM images of FTO glass plates coated with ZnO and ZnO/PbS-QDs were obtained using a Hita-

chi S-4800 SEM at 2 kV. The IV characteristics of the samples were measured using a KEITHLEY 2400
source meter. A UV-VIS-NIR monochromator, lock-in amplifier and a chopper system with higher order
cutoff filters were used to obtain the spectral response. The intensity of the monochromatic light was
determined using a calibrated Si and an InGaAs photodiodes

A custom-designed Kratos Axis Ultra X-ray photoelectron spectroscopy system [160] was used to ob-
tain the X-ray photoelectron spectroscope (XPS) spectra of the PbS-QD embedded ZnO film. All XPS
spectra were calibrated using the adventitious Carbon (C) 1s peak, at 285.0 eV. A Shirley-type back-
ground was subtracted from each spectrum to account for inelastic scattered electrons that contribute

to the broad background. The CasaXPS software was used to process the XPS data[161].

9.3 Results and Discussion

SEM image of a ZnO film is shown in Figure 9-2(a) and the Figure 9-2(b) shows the ZnO films
with PbS-QDs on it. The average diameter of the QDs in Fig. 9-2(b) is estimated to be 14 + 2 nm. The re-
sults are in agreement with the absorption spectra of PbS-QDs in polymer films, reported by Wang et al
[42], and band gap energy of PbS-QDs calculated using the finite depth potential model[162].

XPS spectra do not show any shift in binding energies Zinc-2p and Oxygen-1s upon deposition of
PbS-QDs on ZnO, indicating that PbS-QDs are not chemically attached to the ZnO surface. Therefore, it is
assumed that PbS-QDs are anchor on to ZnO surface via Van der Waals forces. In ZnO/PbS-QD samples,
two XPS peaks appear at 161.5 and 160.3 eV that corresponds to S 2p region (Fig. 9-3(a)). These peaks
assigns to the Sulpur-2py;, and Sulpur-2ps/, transitions respectively[163]. The low binding energies of
these two peaks suggest that Sulpur exists as sufide, i.e. as PbS but not as either sulfate or sulfite, i.e.

PbSO, or PbSOs, which routinely have Sulpur-2p binding energies above 167.0 eV. XPS spectra taken at
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the beginning (Fig. 9-3(a)) and after one week (Fig. 9-3(b)) indicated oxidation of PbS into PbSO, and

PbSO; Response degradation with time is observed due to this oxidation process of PbS.

54800 2.0kV x100k SE(M)

Figure 9-2: SEM images of (a) CTO plate coated with ZnO and (b) CTO plates
coated with PbS-QDs. Average QD size was estimated as 14+2 nm.
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Figure 9-3: The XPS spectra of the ZnO/PbS-QD sample (i) Freshly prepared sample (ii) After
expo-sure of sample plate to ambient atmospheric conditions for one week.

The XPS spectra, not showing any evidence of having Pb(OH), or Pb(CH3COOH),. Since we are us-
ing Pb(CH3;COOH), and H,S to make PbS-QDs, it is highly unlikely to form Pb(OH),, but it is possible to
form when exposed to humid conditions for a long time. It is theoretically possible to have some unre-
acted Pb(CH3COOH), on the surface too, however in our experimental conditions a very dilute
Pb(CH3COOH), solution is used and the surface was expose to H,S gas for a fairly long time, to make sure
that almost all the Pb(CH;COOH), are converted to PbS. Hence it is unlikely to contain unreacted
Pb(CH5COOH), on the surface or Pb(OH),. The XRD Spectra did not show any significant difference be-

tween the ZnO powder and the PbS-QD embedded ZnO powder. There were literature reporting that,
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the XRD peaks of nanocrystalline PbS particles are week and broad[164], therefore we were unable to

observe any evidence of PbS via XPS spectra. However, the appearance of light brownish color on the

ZnO film confirms the formation of PbS on the ZnO film.

9.3.1.

ZnO/PbS-QD composite as a dye sensitized Solar cell
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Figure 9-4: The action spectra of the three DSSC device structures (i.e., ZnO/Dye, and ZnO/PbS-
Dye). Inset: The dark IV characteristics of the device structures made with combinations of PbS and
Acriflavin., (i.e., ZnO/Dye and ZnO/PbS-Dye).
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Inset in the Figure 9-4 shows the dark IV characteristics of the two device structures, (i.e.,
Zn0/Dye, and ZnO/PbS-Dye). It can be clearly seen, an improvement in the rectification factor of the
device ZnO/ PbS-Dye, compared to the device with only the dye layer (ZnO/Dye). The higher dark cur-
rent in the system indicates a faster combination of electrons at the interface in the ZnO/Dye structure
compared to the ZnO/PbS-Dye structure. The ZnO/PbS structure showed very high leakage current in
the dark IV characteristics, which may be due to the lack of uniform coverage of PbS on the ZnO film
which allows short circuit paths in the junctions enabling a larger leakage current.

The action spectra of the DSSC with configurations ZnO/Dye, ZnO/PbS, and ZnO/PbS-Dye are
shown in Figure 9-4. The response spectrum of device configuration ZnO/PbS-Dye, has increased in the
region around 500 nm to 800 nm due to the photoexcited carriers injected by the PbS-QDs. The re-
sponse of the ZnO/PbS configuration is weak as a result of ZnO been opaque to NIR; hence, the amount
of NIR radiation falling onto the PbS-QDs is blocked by the ZnO film. Furthermore, the enhancement in
the response in the ZnO/PbS-Dye configuration in 400- 500 nm region (compared to ZnO/Dye configura-
tion) with the presence of PbS quantum dots is a result of the suppression of recombination of excited
carriers of dye due to PbS layer acting as a barrier, and r providing a fast carrier injection path onto the
ZnO film. Due to this suppression of recombination, the enhancement in photocurrent in the device con-
figuration ZnO/PbS-Dye is larger than the total of individual photocurrents of each ZnO/Dye and
Zn0O/PbS configurations.

The 1-V characteristics of the DSSCs under illumination with ~100mW/cm? Halogen light source
are shown in Figure 9-5. The device with ZnO/PbS-Dye shows the maximum short circuit current of 3.2
mA/cm? with an open circuit voltage of ~410 mV. In the comparison, the device with only Dye and only
PbS, as the absorbent, showed 2.6 mA/cm? and 0.32 mA/cm? short circuit currents and 340 mV and 380
mV open circuit voltages respectively. Table 9-1 gives a summary of the results obtained from IV charac-

teristics.
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Figure 9-5: The IV characteristics of the three device structures (i.e., ZnO/Dye, ZnO/PbS, and

Zn0O/PbS-Dye) under illuminated with ~100mW/cm?2 light source.

Table 9-1: Open circuit voltage (Voc), Short circuit current (Isc) fill factor (FF%) and
the efficiency (Eff%) of the dye sensitized solar cell configurations with Dye and PbS

guantum dots.

Description Vo (MV) | Isc (MACM™) FF% Eff %
Zn0O/Dye 340 2.59 41.1 0.05
ZnO/PbS 380 0.32 41.6 0.36
ZnO/PbS-Dye | 410 3.14 45.3 0.57
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Figure 9-6: Schematic diagram of the energy bands of the device with
the configuration ZnO/PbS-Dye, showing possible electron transfer
mechanism through the layers.

A schematic diagram of the energy band alignment with possible electron transfer processes of
the device is shown in Figure 9-6. The photons absorbed by Dye will inject an electron ballistically
through the thin PbS quantum dot layer to the conduction band (CB) of the ZnO and photoexited elec-

trons of the PbS will be injected directly to the CB of the ZnO. The hole generated at the PbS and the Dye

will be filled by electrons donated by the electrolyte.
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The photoresponse can be further red shifted by using larger PbS-QDs, as larger QD particles
have a smaller band gap hence the absorption peak should be red shift. Larger diameter PbS quantum
particles can be embedded on ZnO film by using a higher concentration of lead Acetate and by increas-
ing the H,S exposed time. However, with the lower band gap the band alignment will not support the
electron transfer from PbS to ZnO; Therefore, arise a limitation to the maximum broadening in the re-
sponse spectrum.

One drawback in the system is the fast degradation in response caused by iodide ion in the elec-
trolyte been reacting with the PbS. Also the dye do not have proper ligands (ex. OH or COOH groups) to
proper anchor on to the ZnO surface or PbS by a ionic or covalent bond, so the bonding between PbS

and AC must be via Van der Waals forces.

9.3.2. ZnO/PbS Composite as a UV-IR detector

PbS QDs Zn0O

Glass Substrate

|

~30 um

Figure 9-7 A schematic diagram illustrating sample geometry used
for the dual band detector. The electrical connectivity of the FTO
glass sheet was broken by engraving a scribe and a layer of colloidal
Zn0O embedded with PbS quantum dots were formed on top
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Using the inter band transitions in the ZnO and PbS, this material combination can be used as
the UV-NIR detector. The UV response will be originated from the band gap excitation of ZnO, while the
NIR response will be originated by the band gap excitations of PbS-QD particles, and using an applied
bias these excited carriers can be collected. A schematic of the device is shown in Figure 9-7. The device
is made using fine diamond point to engrave a ~30 um thick scribe on the surface of a FTO glass plate.

The ZnO film and PbS-QDs are grown on the FTO glass as described earlier.

— 0.5V ZnO/PbS-QD
— 1V Zn0O/PbS-QD
= === 0.5V ZnQ
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Figure 9-8 Responsivity of the PbS QD embedded ZnO dual band detector under applied biases of 0.5 V,
and 1V at room temperature. Bottom two curves (dotted lines) show the responsivity of the ZnO detector
before introducing PbS QDs. As expected ZnO shows response is noticeable only in the UV region with
threshold wavelength at ~380 nm, which is matched with the band gap energy of ZnO, 3.3 eV. A bias resis-
tor of 2 MQ was used in all measurements.
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The response spectra of the device, with and without PbS-QDs, are shown in Fig. 9-8 under two
different bias voltages. The bare ZnO films gave a response in the range from 200 to 400 nm with a
sharp edge at 380 nm, corresponding to band-gap absorption in ZnO. For comparison, the same ZnO
sample was used to embed PbS-QDs. The spectral responsivity of the PbS-QD embedded sample shows
the extended response from 400 nm to 1400 nm same bias voltages. Additionally, the presence of PbS-
QDs had enhanced the UV responsivity by a factor of ~ 4. The visible to near-IR (VIS-NIR) response from
500 — 1400 nm with a peak at ~700 nm clearly indicates that the VIS-NIR response is due to the PbS QDs.
Since the detector is biased, larger PbS-QD partials can also transfer carries that can be collected at the
contacts; therefore, the response due to PbS-QDs are further red shifted compared to the earlier DSSC.
Also, presence of PbS enhance the carrier transport properties resulting enhancement in the UV photo
response. All the measurements were carried out under ambient conditions. Additionally, the VIS-NIR
response peak is much stronger in this structure compared to the DSSC (response in Fig. 9-4) due to the

illumination from top exposing PbS-QDs to radiation, avoiding the screening from ZnO film.

E-Field

O"""

/n0O

Figure 9-9 Schematic showing the carrier transport path in PbS-QD em-
bedded ZnO. The external electric field will transport the carriers after
excitation by photon absorption.
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Schematic showing the carrier transport path is shown in Fig. 9-9. The excited electrons in ZnO
and PbS-QDs will be transported through material length by the electric field and collected at positive
electrode, while the holes will be collected at the negative electrode.

The observed response degradation with time is a result of oxidation process of PbS with expo-
sure to air and moisture at ambient. The UV-N IR photoresponse reduced to 10% of its initial value when
the sample was stored for one week under ambient conditions. Keeping the sample in vacuum can elim-
inate this decaying process. Therefore, for practical applications, detector should be in an airtight sealed

package, which can easily achieve with a polymer sealant.

9.4 Conclusion

The investigation on DSSC shows the possibility of enhancing the performance, (by increasing
photocurrent and broadening the spectral response) of dye sensitized solar cell e by adopting a thin lay-
er of PbS quantum dots sandwiched in the DSSC structure. It also demonstrate the possibility of using
the device as a multiband photodetector, as the ZnO film shows a photoresponse in the UV region in
addition to the photoresponse of the PbS quantum dots. The low cost, multi-band response and easy
wavelength tailorability are advantages of the device with PbS-QD embedded ZnO. SEM images confirm
the different sized PbS-QDs formation on ZnO film. XPS measurements confirm the PbS formation, and
oxidation stability of PbS particles. In principle, further improvement in the responsivity is possible by
establishing an electronic coupling between the PbS-QDs, dye, and ZnO instead of a Van der Waals con-

tact as in the present case.
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10. CONCLUSIONS

AlGaAs structures with a graded barrier made with varying aluminum fraction demonstrated at
room temperature photovoltaic response, when the Al fraction is varying from 100% to 55% a maximum
photovoltaic responsivity of 450 mV/W was obtained with a detectivity (D*) of 1.2 x 10° Jones at a peak
wavelength 1.8 um. Responsivity and D* increased to ~1.2 V/W and 2.8 x 10° Jones respectively at 280
K. A non-linear improvement in responsivity was observed with increased emitter thickness.

In addition, the graded barrier has also resulted in a clear response enhancement under photo-
conductive mode of operation at 77 K. Of three different methods used to grow the graded barrier
named as “non-digital alloying”, “digital alloying averaging” and “digital alloying miniband” approaches,
the “digital alloying averaging” approach showed around 25 times improvement in responsivity com-
pared to a device without a graded barrier. Improved carrier transportation and suppression of recap-
ture is believed to be the cause of the improvement.

Due to high noise in the device at 300K, the measurements not show a clear response spectrum
in the photoconductive mode. The study on noise in graded barrier structure revealed that the main
contribution is the shot noise originated from the dark current in the device. In addition to the shot
noise, two components of generation-recombination noise were also identified. The cause of the gener-
ation-recombination noise has been attributed to trap states in the GaAs emitter and AlGaAs barrier.
The G-R noise components had time constants of 3.2 ms and 9.6 ps, corresponding to trap energy levels
of ~0.54 eV and ~0.39 eV above the valence band. Several other trap states were identified in these
structures in addition to the above. However the noise spectra did not show a significant G-R noise
components resulting from carrier trapping. In addition to the shot noise and the GR noise, observed in
high frequencies > 500 Hz, 1/f noise dominated in the low frequency domain. And the as the bias in-

creases the 1/f noise becomes 1/f* noise.
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A 3x10"® cm>p-doped GaAs/AlGaAs multilayer hetero-junction structures with 57% Al fraction in
the barrier layers were observed to have high temperature coefficients of resistance (TCR) with a value
of around 4% K, at room temperature. This is a significantly higher TCR value compared to that of VO,
or a-Si which is 2% and 2.8% respectively. Higher Al fractions and lower doping densities contribute to
higher TCR. Additionally, n-doped structure has a low TCR compared to p-doped structure. The device
demonstrates a bolometer like infrared (IR) response up to 20 pm with a D* of 1.7x10° Jones
with a low noise power, which is a requirement for good performance in a bolometer type detector.

The Burstein-Moss effect and the band gap narrowing effects were found alter the barrier
height at the hetero-junction interface in GaAs/AlGaAs structures. Again it observed that the energy
level alternation in the valence band due to incident light intensity, caused almost complete failure of
the hetero-junction performance for small band gaps (i.e. ¥~ 50 meV or less), intended for long-
wavelength or THz detectors especially at high temperatures.

A solar cell of configuration N-[DDD-----D]-P with a molecularly organized dye J-aggregate [DDD--
-D] electronically coupled to N- and P-type semiconductors is illustrated by fabricating a model device
with TiO2 and CuSCN as the N- and P-type semiconductors and thiocyanate of a cationic pentamethine
cyanine dye as D. The pentamethine cationic cyanine dye have two functional moieties and a Br atom in
the methine chain .Two functional moieties in D anchors to TiO, establishing electronic coupling and
serving as a template for assembly of a J-aggregated film. Bonding of sulfur in thiocyanate anion to
CuSCN facilitates transfer of holes into CuSCN. The cell exhibits spectrally broad photoresponse originat-
ing from excitons generated in the bulk of the thick dye film as well as direct sensitized injection at the
first interface. The dye molecular assembly is found to admit exciton transport over relatively long dis-
tances and significant hole mobility. More stringent purification of the dye and improvement of film
deposition technique to eliminate H — aggregated domains will improve the efficiency. However, in or-

der to attain orders of magnitude enhancement of the mobility, understanding of the mechanism of
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hole conduction and how it relates to the dye structure would be necessary to aim synthesis of more
prospective dyes.

Additionally, films of cationic dye thiocyanates adsorbed on copper based substrates form orga-
nized structures by a process of templated self-assembly. The growth process is initiated by strong S-
bonding of thiocyanate ions to Cu sites, followed by repetitive and alternate bonding of dye cations and
thiocyanate anions by electrostatic and dipolar forces. Rhodamine B thiocyanate and several other cati-
onic dye thiocyanates solid films deposited this way exhibit J- aggregation behavior with large red-shifts
in the absorption spectrum. Photoelectrochemical experiments with Rhodamine B thiocyanate deposit-
ed CuSCN cathodes indicated exciton diffusion lengths of order of 100 nm and space charge saturation
current measurements suggested nearly three orders of magnitude enhancement of the electron mobil-
ity in the J-aggregated film. The photovoltaic properties of heterojunctions sandwiching J-aggregated
dye films between n — and p-type semiconductor surfaces are investigated for potential application as

solar cells and photon detectors.
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APPENDICES

Appendix A: Schematics of instrumentation setups used in measurements

Spectral Measurements
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For the spectral measurements of the IR detectors, the device is mounted on a Dewar and illu-

minated using the infrared source in the Furrier Transform Infrared Spectrophotometer (FTIR). The de-

vice is biased using an external DC power supply. And a temperature is controlled by the attached tem-

perature controller to the Dewar.



IVT and CVT measurements
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For the current-voltage-Temperature measurements, the device is mounted on a closed cycle

refrigerator, connected with the temperature controller. The source meter is used to apply a bias and

measure the current and a switching system is used to switch between different mesas in the sample.

For capacitance — voltage measurements the source meter is replaced by the LCR meter.



Noise measurements

COMPUTOR

162

DYNAMIC SIGNAL
ANALYSER

Faraday Cage

TEMPERATURE
CONTROLER

Device
in the
Dewar

PREAMPLIFIRE
& BIAS
CONTROLE

For noise measurements, the device is mounted in the Dewar and pleased inside a Faraday cage

to isolate from outside background noise. Temperature controller is used for temperature dependent

noise measurements. A bias voltage is applied through an alkaline battery pack or the internal DC power

source in the preamplifier. The output signal is feed in to the dynamic signal analyzer.
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Photoluminescence (PL) measurements
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For photoluminescence measurements, the film samples were mounted in a closed cycle refrig-
erator attached with a temperature controller for temperature variant measurements. The 488nm Ar-
gon-lon laser is used as the excitation beam and the emission is detected using a photodiode array sys-
tem (Ocean Optics USB4000) sensitive in the 200 nm to 1000 nm wavelength region. For detecting the IR
emission the FTIR is used as the detector, by feeding the emission radiation in the FTIR’s external source

port.
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Appendix B: Preparation steps for dye sensitized solid state solar cells

Preparation of TiO2 colloid for compact TiO2 Films

TiO, colloid was prepared as described below. The chemical ingredients are,

1. Titanium isopropoxide 5.0 ml
2. acetic acid 5.5 ml
3. Propan-2-ol 20.0 ml

These chemicals are added into a flask in the above order then mixed and stirred vigorously. Af-
ter about 30 min stirring, adding 5 ml of H,O drop vice (~ ImL in every 5 minutes for duration of ~ 30
min).

After ~ 2 Hours stirring add 4 g of TiO2 (Degussa P25) and stirred them for overnight.

The colloidal TiO, prepared by this method was used to grow the nanoporous compact TiO, Film
on the FTO glass as describe below,

e Painting the colloidal TiO, solution on the preheated FTO glass surface on a hot plate
heated to ~150 C.

e TiO, painted glass plate is sintering at 450°C for 10 minutes in an oven.

e These baked glass plates were taken out from the oven and let them cool for few
minutes, and then rube off the loose crust with cotton wool.

e This process is repeated for about 15-20 times until a film of ~8-10um is formed. Finally

the film is sintered at 450°C for an half an hour.
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Selecting good quality TiO, Films for testing DSSCs

e Examine the TiO, film with a lamp illuminated from the back side.

O

You should only see a fade scattered light.

If no scattered light coming through the TiO, film, the thickness can be too high.
If direct light is observed, it implies the film thickness is low. You can try with
several additional repetitions of the film growth procedure.

The TiO, film should be uniform everywhere: this can also be observed by scat-
tered light coming through the TiO, film. Partially filled films are difficult to re-
pair by additional rounds of growth procedure, these films cannot be used.

If there are scratches on the film they cannot be used.

Coating a layer of dye on the semiconductor surface

e Immerse the TiO, films in an alcoholic (Ethanol or Methanol) solution of the dye with a

suitable molar concentration for desired time.

o Then the dye adsorbed films is rinsed with the alcohol to remove the excess dye mole-

cules that were not properly chelated to TiO, surface.

o If testing for multilayer dye films, do not wash the film instead wipe of the glass to re-

move and dye molecules attached with the glass surface. If you need to wash find a sol-

vent that will not detach the dye layers.

Some occasions a layer of dye can be painted on the semiconductor surface to fabricate thick

dye layers (to fabricate more than a monolayer of dye).



Preparation and deposition of Cul and CuSCN for the DSSC

Deposition of CuSCN Films

A solution of CuSCN in propylsulfide was used in fabricating the p-type layer of the DSSSC.

Dissolve ~ 50mg of the CuSCN powder in 8ml of propyl sulfide.

Deposite CuSCN on the dye coated TiO, film by evenly spreading the CuSCN solution,
while heating the Dye coated TiO, plate to ~90°C on a hot plate

Film is then dried in a warm air current to expel excess propyl sulfide.

Test the photovoltage as you grow thin layers of CuSCN and stop depositing on more
CuSCN when you reach maximum voltage.

Carefully apply a graphite layer on the CuSCN

Deposition of Cul Films

1.2g of Cul powder was dissolved in 50ml of acetonitrile (methylcyanide).

166

Cul was deposited on the dye coated TiO, film by evenly spreading the solution on dye

coated TiO, plate placed on a hot plate at ~90°C.
Film is then dried in a warm air current to expel excess acetonitrile.
Check the photocurrent and photovoltage as you grow thin layers of Cul; stop Cul de

sition when you reach maximum performance.

po-
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Appendix C: Solar cell related basic measurements

I-V characteristics

The most important characteristic measurement in a solar cell is the I-V characteristics curve. |-
V curve data are used to get a basic idea about the performance of the solar cell by the characteristic

factors such as open circuit voltage (V,.), short circuit current (ls), Fill Factor (FF %) and the efficiency

(n%).
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Figure C1: Illustration of a typical I-V curve with maximum power point marked on it.

Following equation is used to calculate the fill factor (FF)

Vs N )

FF% - {—}
(V()C )(]SC)
Where | and V., are the current and voltage values at the maximum power point (Pmax). Voc

and Iy is the open circuit photovoltage and short circuit photocurrent of the solar cell (Figure C1).
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Efficiency (M%) of a solar cell is calculated by,

(Vo XL NFF%) }

Incident Light Intensity

n% =

The Incident Light Intensity is 1000Wm™ (or 1000mWcm™).

Photocurrent action spectrum and IPCE

Another informative characterization of a solar cell is photocurrent action spectrum (response
spectrum) and the incident photon to photocurrent conversion efficiency (IPCE). With the action spec-
trum we can observe the current variation with the wavelength (1) of the incident light spectrum. And
the IPCE gives the number of electrons pass through in the external circuit per 100 photons incident on

the solar cell at a specific wavelength.

No. of electronrs per second

IPCE%:( j*lOO%

No. of Incident Photons per second



Appendix D: LIST OF ABBREVIATIONS
AC: Acriflavine (3,6-Diamino-10-methylacridinium chloride)
CB : conduction band
€QD : colloidal quantum dot
CTO : conducting tin oxide
Cul : Copper lodide
Cu,0 : Copper () Oxide
CUSCN : Copper Thiocyanate
DS: dye-sensitized
DSSCs: dye-sensitized solar cells
eV: electron volts
FDN: frequency dependent noise
FIR: far-infrared
FT-IR: Fourier-transform infrared
FTO: Fluorine doped tin oxide

G-R: generation-recombination

HEIWIP: heterojunction interfacial workfunction internal photoemission

HH or hh: heavy hole

HIWIP: homojunction interfacial workfunction internal photoemission

HOMO : highest occupied molecular orbital
IR: Infrared

LH or Ih: light hole

LUMO : lowest unoccupied molecular orbital

MC: mercurochrome
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MBE: moleculer beam epitaxy

NEP: Noise Equivalent Power

NIR : near-infrared

PbS: Lead Sulfide

QDs: Quantum dots

RhB: Rhodamine B ([9-(2-carboxyphenyl)-6-diethylamino-3-xanthenylidene]-diethylammonium chloride)
RhBSCN: Rhodamine B- Thiocyanate
THz : Terahertz

TiO, : Titanium dioxide

UV : ultraviolet

VB : valence band

ZnO0 : Zinc Oxide



	Georgia State University
	ScholarWorks @ Georgia State University
	12-18-2013

	Heterojunction Structures for Photon Detector Applications
	Don Duleepa P. Pitigala Kankanakage
	Recommended Citation


	Microsoft Word - PitigalaKankanamage_DonDuleepa_P_201312_PhD

