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Comparing Distribution Functions via
Empirical Likelihood

Ian W. McKeague and Yichuan Zhao

Abstract

This paper develops empirical likelihood based simultaneous confidence bands for differences
and ratios of two distribution functions from independent samples of right-censored survival data.
The proposed confidence bands provide a flexible way of comparing treatments in biomedical
settings, and bring empirical likelihood methods to bear on important target functions for which
only Wald-type confidence bands have been available in the literature. The approach is illustrated
with a real data example.
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1 Introduction

The purpose of this paper is to develop simultaneous confidence bands for the difference

and the ratio of two distribution functions using the empirical likelihood approach. The

proposed confidence bands provide an attractive graphical comparison of treatment and

control groups in biomedical studies on the basis of independent right-censored survival

time data from each group.

The graphical comparison of two survival distributions can be done in various ways.

Empirical likelihood (EL) techniques have been used to provide confidence bands for Q-

Q plots (Einmahl and McKeague, 1999), ratios of survival functions (McKeague and

Zhao, 2002), and P-P plots (Claeskens et al., 2003); references to the earlier literature

may be found in these papers. The simplest and most natural way to carry out such

a comparison, however, is to target the difference and the ratio of the two distribution

functions, which represent directly interpretable measures of treatment effect and relative

risk. The difference is suitable when an absolute measure (of treatment effect) is needed,

the ratio when a relative measure is needed. Parzen et al. (1997) constructed a Wald-

type simultaneous confidence band for a difference between two distribution functions,

but, as far as we know, there is no EL band available in the literature.

We develop our approach in terms of differences and ratios of linear functionals of

the cumulative hazard functions:

α(t) =

∫ t

0

g1(s) dA1(s) −
∫ t

0

g2(s) dA2(s)

and

β(t) =

∫ t

0

g1(s) dA1(s)

/∫ t

0

g2(s) dA2(s),

where Aj(t) is the cumulative hazard function for group j, and gj(t) = Sj(t) = 1−Fj(t) is

the survival function for group j. The difference between the two distribution functions is

then seen to be α(t) = F1(t)−F2(t) = S2(t)−S1(t), and the ratio of the two distribution

functions is β(t) = F1(t)/F2(t). The difference and the ratio of the cumulative hazard

functions are obtained by taking gj ≡ 1, and our approach extends essentially without

change to that case as well. These various ways of comparing the two distributions

provide greater flexibility than what is currently available.
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The unknown survival functions gj = Sj in the above representations of α(t) and

β(t) can be seen as nuisance parameters in the EL statistic, so we take the approach of

plugging-in the corresponding Kaplan–Meier estimates. Plug-in for unknown parameters

in estimating equations has been used extensively in conjunction with EL, and typically

perturbs the usual chi-squared limit distribution into a more complicated form, see,

e.g., Hjort et al. (2005). The present case is no exception: we find that the empirical

likelihood statistic with plug-in of the Kaplan–Meier estimates is not asymptotically

distribution free; a bootstrap procedure is thus needed to determine critical values for

the EL confidence bands.

An EL confidence interval for a linear functional
∫ ∞

0
g(s) dA(s) of a cumulative

hazard function A, where g is known, has been developed by Pan and Zhou (2002). Their

approach is based on a Poisson extension of the likelihood (cf. Murphy, 1995), but we

found that it is not easy to deal with the target functions α(t) and β(t) using a likelihood

of this form. Instead, our approach is based on the standard nonparametric likelihood for

(S1, S2), cf. McKeague and Zhao (2002). The EL function (or nonparametric likelihood

ratio) is constructed by substituting Aj(t) = − log Sj(t) in the estimating equation that

defines the target function of interest, and we find that this leads to a mathematically

tractable formulation.

The main results underlying our derivation of the proposed confidence bands are

presented in Section 2. In Section 3 we develop the bootstrap procedure needed to

construct the bands in practice. In Section 4 we give an illustrative example. Some

concluding remarks are given in Section 5. Proofs are contained in the Appendix.

2 Main results

2.1 Preliminaries

We consider the standard two-sample framework with independent right censoring. That

is, we have two independent samples of i.i.d. observations of the form (Zji, δji), where

j = 1, 2 indexes the sample, i = 1, . . . , nj indexes the observations within each sample,

and Zji = Xji ∧ Yji, δji = 1{Xji≤Yji}. The distribution functions of Xji and Yji are

2
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denoted Fj and Gj, respectively. The survival functions Sj = 1 − Fj are assumed to

be continuous. The total sample size is n = n1 + n2. We work with independent and

non-negative Xji and Yji. The nonparametric likelihood is given by

L(S̃1, S̃2) =
2∏

j=1

nj∏
i=1

{S̃j(Zji−) − S̃j(Zji)}δjiS̃j(Zji)
1−δji , (2.1)

where S̃j belongs to Γ, the space of all survival functions on [0,∞).

The target functions α(t) and β(t) may be written in the general form θ(t) =

θ(t, S1, S2, g1, g2) by substitution of the cumulative hazard functions Aj(t) = − log Sj(t).

The empirical likelihood ratio for θ(t), with plug-in of estimators ĝj for the gj, is then

given by

R(θ̃(t), t, ĝ1, ĝ2) =
sup{L(S̃1, S̃2) : θ(t, S̃1, S̃2, ĝ1, ĝ2) = θ̃(t), (S̃1, S̃2) ∈ Γ × Γ}

sup{L(S̃1, S̃2) : (S̃1, S̃2) ∈ Γ × Γ} ,

(2.2)

which can be expressed more explicitly in the case of θ(t) = α(t) as follows. The

ordered uncensored survival times, i.e., the Xji with corresponding δji = 1, are written

0 ≤ Tj1 ≤ · · · ≤ TjNj
< ∞, and rji =

∑nj

k=1 1{Zjk≥Tji} denotes the size of the risk set at

Tji−, dji =
∑nj

k=1 1{Zjk=Tji,δjk=1} denotes the number of “deaths” occurring at time Tji.

Define Kj(t) = #{i : Tji ≤ t} and Dj = maxi:Tji≤t((dji − rji)/ĝj(Tji)1{ĝj(Tji)>0}). Using

Lagrange’s method [cf. Thomas and Grunkemeier (1975) or Li (1995)], it can be shown

that

−2 log R(α(t), t, ĝ1, ĝ2)

= −2

K1(t)∑
i=1

(
(r1i − d1i) log

(
1 +

λnĝ1(T1i)

r1i − d1i

)
− r1i log

(
1 +

λnĝ1(T1i)

r1i

))

−2

K2(t)∑
i=1

(
(r2i − d2i) log

(
1 − λnĝ2(T2i)

r2i − d2i

)
− r2i log

(
1 − λnĝ2(T2i)

r2i

))
(2.3)

where the Lagrange multiplier D1 < λn < −D2 satisfies the equation

K1(t)∑
i=1

log

(
1 − d1i

r1i + λnĝ1(T1i)

)
ĝ1(T1i) −

K2(t)∑
i=1

log

(
1 − d2i

r2i − λnĝ2(T2i)

)
ĝ2(T2i)

= −α(t). (2.4)
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Here we are suppressing the dependence of the Lagrange multiplier on t. The equation

(2.4) has a unique solution λn provided Dj < 0, ĝj(Tji) > 0, i = 1, . . . , Nj, j = 1, 2,

because as a function of λn the l.h.s. of (2.4) is continuous, strictly increasing and tends

to ±∞ as λn ↑ −D2 or λn ↓ D1.

Similarly, in the case of θ(t) = β(t), we have

−2 log R(β(t), t, ĝ1, ĝ2) = −2
2∑

j=1

Kj(t)∑
i=1

{
(rji − dji) log

(
1 +

(−β(t))j−1λnĝj(Tji)

rji − dji

)

−rji log

(
1 +

(−β(t))j−1λnĝj(Tji)

rji

)}
, (2.5)

where the Lagrange multiplier D1 < λn < −D2/β(t) satisfies the equation

K1(t)∑
i=1

log

(
1 − d1i

r1i + λnĝ1(T1i)

)
ĝ1(T1i)

− β(t)

K2(t)∑
i=1

log

(
1 − d2i

r2iβ(t)λnĝ2(T2i)

)
ĝ2(T2i) = 0. (2.6)

If β(t) > 0, the equation (2.6) has a unique solution λn provided ĝj(Tji) > 0, i =

1, . . . , Kj(t), j = 1, 2, because, as a function of λn, the l.h.s. of (2.6) is continuous,

strictly increasing and tends to ±∞ as λn ↑ −D2/β(t) or λn ↓ D1.

We assume throughout that nj/n → pj > 0 as n → ∞. The plug-in estimate

of gj(t) = Sj(t) is specified by ĝj(t) = Sj,nj
(t−), where Sj,nj

(t) is the Kaplan–Meier

estimator of Sj(t). Define Hj(s) = Sj(s)(1 − Gj(s)), let τ1 be such that Sj(τ1) < 1, and

let τ2 ≥ τ1 be such that Hj(τ2) > 0, j = 1, 2. For future convenience, we define

γj(t) =

∫ t

0

dFj(s)

1 − Gj(s−)
, (2.7)

σ2
diff(t) = γ1(t)/p1 + γ2(t)/p2 and σ2

ratio(t) = γ1(t)/p1 + β(t)2γ2(t)/p2. These functions

appear in the limiting distributions of the likelihood ratio statistics and need to be

estimated. It can be shown (see Lemma A.3) that σ̂2
diff(t) = n[γ̂1(t)/n1 + γ̂2(t)/n2] and

σ̂2
ratio(t) = n[γ̂1(t)/n1 + β̂(t)2γ̂2(t)/n2] are uniformly consistent estimators of σ2

diff(t) and

σ2
ratio(t) over [τ1, τ2], where

γ̂j(t) =

∫ t

0

dFj,nj
(s)

1 − Gj,nj
(s−)

, (2.8)
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Fj,nj
and Gj,nj

are the Kaplan–Meier estimators of Fj and Gj, and β̂(t) =

F1,n1(t)/F2,n2(t).

2.2 Confidence bands

We now state our main results and explain how they can be used to construct the

proposed simultaneous confidence bands.

Theorem 2.1. The process −2 log R(α(t), t, ĝ1, ĝ2), t ∈ [τ1, τ2], converges in distribution

to U2
1 (t)/σ2

diff(t) in D[τ1, τ2], where U1(t) is a Gaussian process with mean zero and

covariance function cov(U1(s), U1(t)) = S1(s)S1(t)σ
2
1(s ∧ t)/p1 + S2(s)S2(t)σ

2
2(s ∧ t)/p2

and σ2
j (t) =

∫ t

0
dFj(s)/(Sj(s)Hj(s−)).

It follows that

sup
t∈[τ1,τ2]

−2 log R(α(t), t, ĝ1, ĝ2)
D−→ sup

t∈[τ1,τ2]

U2
1 (t)

σ2
diff(t)

by the continuous mapping theorem, and we obtain

Bdiff = {(t, α̃(t)) : −2 log R(α̃(t), t, ĝ1, ĝ2) ≤ cα[τ1, τ2], t ∈ [τ1, τ2]} (2.9)

as an asymptotic 100(1 − α)% confidence band for α(t) over [τ1, τ2], where the critical

value cα[τ1, τ2] is the upper α-quantile of the distribution of supt∈[τ1,τ2] U
2
1 (t)/σ2

diff(t). A

simulation method is developed in Section 3 to obtain this critical value.

Implementation. We now explain how to compute the confidence band Bdiff . For fixed

t, let φ(λn) denote the r.h.s. of (2.3). Its derivative is

φ′(λn) =

K1(t)∑
i=1

2λnĝ1(T1i)d1i

(r1i − d1i + λnĝ1(T1i))(r1i + λnĝ1(T1i))

+

K2(t)∑
i=1

2λnĝ2(T2i)d2i

(r2i − d2i − λnĝ2(T2i))(r2i − λnĝ2(T2i))

As in McKeague and Zhao (2002), there exist exactly two roots λL < 0 < λU for

φ(λL) = φ(λU) = cα[τ1, τ2] and {λn : φ(λn) ≤ cα[τ1, τ2]} = [λL, λU ].
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The confidence set for α(t) is a closed interval [α̃L, α̃U ],

where α̃L = −∑K1(t)
i=1 log (1 − d1i/(r1i + λLĝ1(T1i))) ĝ1(T1i) +∑K2(t)

i=1 log (1 − d2i/(r2i − λLĝ2(T2i))) ĝ2(T2i) and α̃U is the same as α̃L, but with

λL replaced by λU .

Next we state a parallel result for β(t).

Theorem 2.2. The process −2 log R(β(t), t, ĝ1, ĝ2), t ∈ [τ1, τ2], converges in distribution

to U2
2 (t)/σ2

ratio(t) in D[τ1, τ2], where U2(t) is a Gaussian process with mean zero and

covariance function cov(U2(s), U2(t)) = S1(s)S1(t)σ
2
1(s∧t)/p1+S2(s)S2(t)β(s)β(t)σ2

2(s∧
t)/p2.

It follows that an asymptotic 100(1 − α)% confidence band for β(t) is given by

Bratio = {(t, β̃(t)) : −2 log R(β̃(t), t, ĝ1, ĝ2) ≤ Kα[τ1, τ2], t ∈ [τ1, τ2]},

where Kα[τ1, τ2] is the upper α-quantile of the distribution of supt∈[τ1,τ2] U
2
2 (t)/σ2

ratio(t),

which can be obtained by simulation, see Section 3.

3 Bootstrap procedure

The limiting distributions of the EL statistics in Section 2 are complicated and include

unknown parameters, so we need to develop a Monte Carlo method to determine the

critical values. To that end we adapt the Gaussian multiplier bootstrap procedure of

Lin et al. (1993) for checking the adequacy of the Cox proportional hazards model.

First we define some (standard) counting process notation: Nji(t) = 1{Zji≤t,δji=1},

Yji(t) = 1{Zji≥t}, and Yj(t) =
∑nj

i=1 Yji(t) is the size of the risk set at t−. The processes

Mji(s) = Nji(s)−
∫ s

0
αj(s)Yji(s) ds are orthogonal locally square integrable martingales,

where αj(s) is hazard rate corresponding to Fj [see Andersen et al. (1993, II.4)].

From the proof of Theorem 2.1 in the Appendix, and using the martingale repre-

sentation of
√

nj(Sj,nj
(t)− Sj(t)), the process U1(t)/σdiff(t) is seen to be asymptotically

equivalent to

n1/2

σ̂diff(t)

(
S1,n1(t)

∫ t

0

∑n1

i=1 dM1i(s)

Y1(s)
+ S2,n2(t)

∫ t

0

∑n2

i=1 dM2i(s)

Y2(s)

)
.
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A version of this process that can be simulated is

U∗
1 (t) =

n1/2

σ̂diff(t)

(
S1,n1(t)

∫ t

0

∑n1

i=1 G1idN1i(s)

Y1(s)
+ S2,n2(t)

∫ t

0

∑n2

i=1 G2idN2i(s)

Y2(s)

)
,

where G11, . . . , G1n1 , G21, . . . , G2n2 are i.i.d. N(0, 1) random variables independent of the

data. Conditional on the data, the limiting distribution of U∗
1 (t) coincides with that of

U1(t)/σdiff(t) for almost all data sequences. This can be shown by noting that U∗
1 is a

Gaussian process with independent components whose covariance converges to that of

U1/σdiff with probability 1, and by verifying tightness by applying the argument of Lin

et al. (1993, Appendix 1) to each of the terms.

The bootstrap resampling method is then used to obtain cα[τ1, τ2]: generate a large

number, say L = 3000, independent copies U∗
11, . . . , U

∗
1L of U∗

1 and take cα[τ1, τ2] to be

the upper α-quantile of

sup
t∈[τ1,τ2]

U∗2
11 (t), · · · , sup

t∈[τ1,τ2]

U∗2
1L(t).

A similar method gives the critical value Kα[τ1, τ2]: use

U∗
2 (t) =

n1/2

σ̂ratio(t)

(
S1,n1(t)

∫ t

0

∑n1

i=1 G1i dN1i(s)

Y1(s)
+ S2,n2(t)β̂(t)

∫ t

0

∑n2

i=1 G2i dN2i(s)

Y2(s)

)
,

as the bootstrap approximation for U2(t)/σratio(t).

4 Numerical example

The data come from a Mayo Clinic trial involving a treatment for primary biliary cir-

rhosis of the liver, see Fleming and Harrington (1991) for discussion. A total of n = 312

patients participated in the randomized clinical trial, 158 receiving the treatment (D-

penicillamine) and 154 receiving a placebo. Censoring is heavy (187 of the 312 observa-

tions are censored). We use τ1 = 304 and τ2 = 4427, respectively.

Figure 1 displays the proposed confidence band Bdiff for the difference of the dis-

tribution functions (placebo minus treatment). The corresponding difference of the

Kaplan–Meier curves is also displayed. Note that the simultaneous band contains the

horizontal line (difference = 0), so there is no evidence of a difference between treatment

7
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and placebo. As expected, the confidence band is much narrower in the left tail than in

the right.
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Figure 1: Mayo Clinic trial, 95% simultaneous confidence band for the difference of

distribution functions (placebo−treatment).
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Figure 2: Mayo Clinic trial, 90% simultaneous confidence band for the ratio of distribu-

tion functions (placebo/treatment).

Figure 2 displays the proposed confidence band Bratio for the ratio of the distribu-
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tion functions (placebo over treatment). The corresponding estimate of the ratio of the

distribution functions is also displayed. Note that the simultaneous band contains the

horizontal line (ratio = 1), so there is no evidence of a difference between treatment and

placebo on the basis of this analysis. The lower bound of confidence band is greater than

zero, which is within the range of parameter β(t). As expected, the confidence band is

much narrower in the right tail than in the left: the distribution function tends to zero

in the left tail, so the variance of the ratio estimate blows up.

5 Discussion

This article has developed an empirical likelihood approach for comparing the distribu-

tions of survival times from two independent samples of right censored survival data in

terms of ratios, differences, and other functionals of the underlying distribution func-

tions. Our methods have potential application in epidemiological cohort studies, and in

randomized clinical trials for the comparison of treatment and placebo groups. Standard

approaches to making such comparisons have been via pointwise confidence intervals ex-

pressed in terms of Kaplan–Meier estimates, with the standard errors computed by the

bootstrap or Greenwood’s formula in conjunction with the delta method; see, e.g., Bren-

ner and Hakulinen (2005) on the estimation of relative survival rates of cancer patients.

We have shown, on the other hand, that it is possible to obtain simultaneous confidence

bands in this setting without relying on the Wald approach of centering the confidence

band on a point estimate of the target function (cf., Parzen et al., 1997). Our approach

gives an added perspective to that obtained from other EL-type confidence bands for

the comparison of survival distributions: Q-Q plots (Einmahl and McKeague, 1999),

ratios of survival functions (McKeague and Zhao, 2002), and P-P plots (Claeskens et

al., 2003), the latter only being available in the absence of censoring.

Our proposed confidence bands are computationally intensive compared with the

closed form of Wald-type bands because they require the solution of a nonlinear equa-

tion at each uncensored survival time, and rely on the Gaussian multiplier simulation

technique. For this reason, a simulation study to assess their performance would be

9
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time-consuming, and we have not carried out such a study for the present article. Nev-

ertheless, based on a previous simulation study of an EL-type confidence band in a

survival analysis setting (Hollander et al., 1997), we expect that the present EL bands

will have significant advantages over their Wald-type counterparts in terms of coverage

accuracy and adaption to skewness in the sampling distribution of the point estimates.
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Appendix: Proofs

We need the following lemma to prove Theorem 2.1.

Lemma A.1. Under the assumptions of Theorem 2.1, the Lagrange multiplier solving

(2.4) satisfies λn = λn(t) = OP (n1/2) uniformly over [τ1, τ2].

Proof. First assume λn(t) < 0. Along similar lines as Li (1995, p. 101–102), it can be

shown that

−
K1(t)∑
i=1

log

(
1 − d1i

r1i + λn(t)ĝ1(T1i)

)
ĝ1(T1i) ≥

K1(t)∑
i=1

d1i

r1i

(
n1

n1 − |λn(t)|ĝ1(T1i)

)
ĝ1(T1i),

and

K2(t)∑
i=1

log

(
1 − d2i

r2i − λn(t)ĝ2(T2i)

)
ĝ2(T2i) ≥ −

K2(t)∑
i=1

d2i

r2i

(
n2

n2 + |λn(t)|ĝ2(T2i)

)
ĝ2(T2i)

+

K2(t)∑
i=1

(
log

(
1 − d2i

r2i

)
+

d2i

r2i

)
ĝ2(T2i).

Combining the above two inequalities and (2.4) we get
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α(t) ≥
K1(t)∑
i=1

d1iĝ1(T1i)

r1i

(
n1

n1 − |λn|ĝ1(T1i)

)

−
K2(t)∑
i=1

d2iĝ2(T2i)

r2i

(
n2

n2 + |λn|ĝ2(T2i)

)
+

K2(t)∑
i=1

d2iĝ2(T2i)

r2i

+

K2(t)∑
i=1

ĝ2(T2i) log

(
1 − d2i

r2i

)
. (A.1)

Denote T = [τ1, τ2], θ̂j(t) =
∑Kj(t)

i=1 ĝj(Tji)dji/rji, and θj(t) =
∫ t

0
gj(s)dAj(s) =

Fj(t), for t ∈ T . Let θ̃j(t) = −∑Kj(t)
i=1 log(1 − dji/rji)ĝj(Tji). Using 1/(1 + x) ≤ 1 for

x ≥ 0 and 1/(1 − x) ≥ 1 + x for 0 ≤ x < 1, from (A.1) we obtain

α(t) + θ̃2(t) − θ̂1(t) ≥
K1(t)∑
i=1

d1iĝ
2
1(T1i)

r1i

|λn|
n1

. (A.2)

In the case that λn(t) ≥ 0, a similar argument leads to

−α(t) ≥ −
K1(t)∑
i=1

d1iĝ1(T1i)

r1i

(
n1

n1 + |λn|ĝ1(T1i)

)
+

K1(t)∑
i=1

d1iĝ1(T1i)

r1i

+

K1(t)∑
i=1

ĝ1(T1i) log

(
1 − d1i

r1i

)
+

K2(t)∑
i=1

d2iĝ2(T2i)

r2i

(
n2

n2 − |λn|ĝ2(T2i)

)
. (A.3)

From (A.3), in a similar fashion to (A.2), we obtain

−α(t) + θ̃1(t) − θ̂2(t) ≥
K2(t)∑
i=1

d2iĝ
2
2(T2i)

r2i

|λn|
n2

. (A.4)

Next, in terms of the Nelson–Aalen estimator Âj of Aj, we have

√
nj(θ̂j(t) − θj(t)) =

√
nj

(∫ t

0

Sj,nj
(s−) dÂj(s) −

∫ t

0

Sj(s) dAj(s)

)

=
√

nj(Sj(t) − Sj,nj
(t)),

from the Volterra integral equation that relates the Nelson–Aalen estimator and the

Kaplan–Meier estimator (see Andersen et al., 1993, p. 92), and hence (
√

nj(θ̂j(t) −
θj(t)), j = 1, 2)

D−→ (Sj(t)Uj(t), j = 1, 2) in D[τ1, τ2] × D[τ1, τ2], where the Uj(t) are
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independent Gaussian martingales with mean zero and var(Uj(s)) = σ2
j (s) (Andersen et

al., 1993, p. 263). By nj/n → pj > 0, it follows that

√
n{[θ̂1(t) − θ1(t)] − [θ̂2(t) − θ2(t)]} D−→ S1(t)U1(t)√

p1

+
S2(t)U2(t)√

p2

,

or in terms of θ1(t) − θ2(t) = α(t), we have

√
n(θ̂1(t) − θ̂2(t) − α(t))

D−→ S1(t)U1(t)√
p1

+
S2(t)U2(t)√

p2

. (A.5)

Using | log(1 − x) + x| ≤ x2 for 0 ≤ x < 1, we have

√
nj|θ̂j(t) − θ̃j(t)| =

√
nj

∣∣∣∣∣∣
Kj(t)∑
i=1

log

(
1 − dji

rji

)
ĝj(Tji) +

Kj(t)∑
i=1

dji

rji

ĝj(Tji)

∣∣∣∣∣∣
≤

(
max

i≤Kj(t)

dji

√
nj

rji

)
Kj(t)∑
i=1

djiĝj(Tji)

rji

=

(
max

i≤Kj(t)

√
nj

rji

)
θ̂j(t)

P−→ 0 (A.6)

uniformly in t ∈ T , where in the last equality we use dji = 1 a.s., which is a consequence

of the continuity of Sj, and in the final step we used the Glivenko–Cantelli theorem and

the uniform convergence in probability of θ̂j(t) to θj(t) on T .

Combining (A.5) and (A.6), we have

√
n(α(t) − θ̂1(t) + θ̃2(t))

D−→ S1(t)U1(t)√
p1

+
S2(t)U2(t)√

p2

,

√
n(α(t) − θ̃1(t) + θ̂2(t))

D−→ S1(t)U1(t)√
p1

+
S2(t)U2(t)√

p2

.

Thus the l.h.s. of (A.2) and (A.4) are OP (n−1/2) uniformly for t ∈ T .

Applying Lenglart’s inequality to the martingale integral
∫ t

0
ĝk

j (s) d(Âj−Aj)(s) (cf.

Andersen et al., 1993, p. 190), where k ≥ 1, shows that it converges to zero uniformly in

probability over t ∈ T . Since Sj,nj
(t) is a uniformly consistent estimator of Sj(t), we have

that ĝk
j (t) is a uniformly consistent estimator of gk

j (t). Thus,
∫ t

0
(ĝk

j (s)−gk
j (s)) dAj(s) → 0

uniformly in probability over t ∈ T , and

Kj(t)∑
i=1

djiĝ
k
j (Tji)

rji

P−→
∫ t

0

gk
j (s)dAj(s) (A.7)
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uniformly over t ∈ T , for j = 1, 2 and any fixed k ≥ 1.

Using nj/n → pj > 0, (A.2), (A.4), (A.7), we find that λn = OP (n1/2) uniformly

for t ∈ T .

Proof of Theorem 2.1. Let fj(λn) =
∑Kj(t)

i=1 log(1−dji/(rji+λnĝj(Tji)))ĝj(Tji), and recall

θ̃j(t) = −∑Kj(t)
i=1 log(1 − dji/rji)ĝj(Tji). Then fj(0) = θ̃j(t), f ′

j(0) = γ̃j(t)/nj, where

γ̃j(t) = nj

∑
i:Tji≤t

ĝ2
j (Tji)dji

rji(rji − dji)
. (A.8)

is a uniformly consistent estimator of γj(t) over t ∈ [τ1, τ2]. This is proved in Lemma

A.3.

For any λn = OP (n1/2), by a Taylor expansion we have

fj((−1)j−1λn) = −θ̃j(t) +
γ̃j(t)(−1)j−1λn

nj

+
f ′′

j (ξjn)λ2
n

2
, (A.9)

where |ξjn| ≤ |λn|. By (A.7) with k = 3, f ′′
j (ξjn)λ2

n = OP (n−1
j ). Using nj/n → pj > 0,

(2.4) and (A.9) we then obtain

−α(t) = −θ̃1(t) + θ̃2(t) +
γ̃1(t)λn

n1

+
γ̃2(t)λn

n2

+ OP (1). (A.10)

It follows from (A.10) that

λn = −nσ̂−2
diff(α(t) − θ̃1(t) + θ̃2(t) + OP (n−1)). (A.11)

Since λnĝj(Tji)/(rji − dji) = oP (1) and λnĝj(Tji)/rji = oP (1) uniformly in i =

1, . . . , Kj(τ2), using a Taylor expansion for (2.3) and (A.11) we obtain

−2 log R(α(t), t, ĝ1, ĝ2) = λ2
n

⎛
⎝K1(t)∑

i=1

ĝ2
1(T1i)d1i

r1i(r1i − d1i)
+

K2(t)∑
i=1

ĝ2
2(T2i)d2i

r2i(r2i − d2i)

⎞
⎠

− 2λ3
n

3

K1(t)∑
i=1

ĝ3
1(T1i)

(
1

(r1i − d1i)2
− 1

r2
1i

)
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+
2λ3

n

3

K2(t)∑
i=1

ĝ3
2(T2i)

(
1

(r2i − d2i)2
− 1

r2
2i

)

+
λ4

n

2

K1(t)∑
i=1

ĝ4
1(T1i)

(
1

(r1i − d1i)3
− 1

r3
1i

)

+
λ4

n

2

K2(t)∑
i=1

ĝ4
2(T2i)

(
1

(r2i − d2i)3
− 1

r3
2i

)
+ oP (1)

= nσ̂−2
diff(α(t) − θ̃1(t) + θ̃2(t) + OP (n−1))2 + oP (1),

where in the last equality we use (A.7) for k = 3, 4. Combining (A.5), (A.6) and the

uniform consistency of σ̂2
diff(t) shows that the above process has the limiting distribution

indicated in the theorem.

In order to prove Theorem 2.2 we need the following lemma.

Lemma A.2. Under the assumptions of Theorem 2.2, the Lagrange multiplier solving

(2.5) satisfies λn = λn(t) = OP (n1/2) uniformly over [τ1, τ2].

Proof. The proof follows a similar pattern to the proof of Lemma A.1. First assume

λn(t) < 0. Then, as in Li (1995, p. 101–102),

−
K1(t)∑
i=1

log

(
1 − d1i

r1i + λn(t)ĝ1(T1i)

)
ĝ1(T1i) ≥

K1(t)∑
i=1

d1i

r1i

(
n1

n1 − |λn(t)|ĝ1(T1i)

)
ĝ1(T1i)

and

K2(t)∑
i=1

log

(
1 − d2i

r2i − β(t)λn(t)ĝ2(T2i)

)
ĝ2(T2i) ≥

K2(t)∑
i=1

(
log

(
1 − d2i

r2i

)
+

d2i

r2i

)
ĝ2(T2i)

−
K2(t)∑
i=1

d2i

r2i

(
n2ĝ2(T2i)

n2 + β(t)|λn(t)|ĝ2(T2i)

)
.

Combining the above two inequalities and (2.6), using 1/(1 + x) ≤ 1 for x ≥ 0 and

1/(1 − x) ≥ 1 + x for 0 ≤ x < 1, we obtain

−θ̂1(t) + β(t)θ̃2(t) ≥
K1(t)∑
i=1

d1iĝ
2
1(T1i)

r1i

|λn|
n1

. (A.12)

14

The International Journal of Biostatistics, Vol. 1 [2005], Iss. 1, Art. 5

http://www.bepress.com/ijb/vol1/iss1/5
DOI: 10.2202/1557-4679.1007



Second, supposing λn(t) ≥ 0, a similar argument leads to

−β(t)

K2(t)∑
i=1

d2iĝ2(T2i)

r2i

(
n2

n2 − β(t)|λn|ĝ2(T2i)

)
≥ −

K1(t)∑
i=1

d1iĝ1(T1i)

r1i

(
n1

n1 + |λn|ĝ1(T1i)

)

+

K1(t)∑
i=1

d1iĝ1(T1i)

r1i

+

K1(t)∑
i=1

ĝ1(T1i) log

(
1 − d1i

r1i

)
. (A.13)

In a similar fashion to (A.12), from (A.13) we obtain

θ̃1(t) − β(t)θ̂2(t) ≥ β2(t)

K2(t)∑
i=1

d2iĝ
2
2(T2i)

r2i

|λn|
n2

. (A.14)

By nj/n → pj > 0, we have

√
n{[θ̂1(t) − θ1(t)] − β(t)[θ̂2(t) − θ2(t)]} D−→ S1(t)U1(t)√

p1

+
β(t)S2(t)U2(t)√

p2

,

or in terms of θ1(t)/θ2(t) = β(t), we have

√
n(θ̂1(t) − β(t)θ̂2(t))

D−→ S1(t)U1(t)√
p1

+
β(t)S2(t)U2(t)√

p2

. (A.15)

Combining (A.6) and (A.15) gives

√
n(θ̂1(t) − β(t)θ̃2(t))

D−→ S1(t)U1(t)√
p1

+
β(t)S2(t)U2(t)√

p2

,

√
n(θ̃1(t) − β(t)θ̂2(t))

D−→ S1(t)U1(t)√
p1

+
β(t)S2(t)U2(t)√

p2

.

Thus the l.h.s. of (A.12) and (A.14) are OP (n−1/2). Using nj/n → pj > 0, β(t) ≥
θ1(τ1)/θ2(τ2) = F1(τ1)/F2(τ2) > 0, (A.7), (A.12), and (A.14), we find that λn = OP (n1/2)

uniformly for t ∈ T .

Proof of Theorem 2.2. This proof is a variation of the proof of Theorem 2.1. Recall

f ′
j(0) = γ̃j(t)/nj and note that 0 ≤ β(t) ≤ θ1(τ2)/θ2(τ1), t ∈ T . For any λn = OP (n1/2),

by a Taylor expansion we have

fj((−β)j−1(t)λn) = −θ̃j(t) +
γ̃j(t)(−β(t))j−1λn

nj

+
f ′′

j ((−β(t))j−1ξjn)(β(t))2(j−1)λ2
n

2
,

(A.16)
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where |ξjn| ≤ |λn|. By (A.7) with k = 3, f ′′
j (ξjn)λ2

n = OP (n−1
j ), and using nj/n → pj > 0,

(2.6) and (A.16), we obtain

0 = −θ̃1(t) + β(t)θ̃2(t) +
γ̃1(t)λn

n1

+
γ̃2(t)β

2(t)λn

n2

+ OP (1). (A.17)

It follows from (A.17) that

λn = nσ̂−2
ratio(θ̃1(t) − β(t)θ̃2(t) + OP (n−1)). (A.18)

Since λnĝj(Tji)/(rji − dji) = oP (1) and λnĝj(Tji)/rji = oP (1) uniformly in i =

1, . . . , Kj(τ2), using a Taylor expansion for (2.5) and (A.18) we have

−2 log R(β(t), t, ĝ1, ĝ2) = λ2
n

⎛
⎝K1(t)∑

i=1

ĝ2
1(T1i)d1i

r1i(r1i − d1i)
+

K2(t)∑
i=1

β2(t)ĝ2
2(T2i)d2i

r2i(r2i − d2i)

⎞
⎠

− 2λ3
n

3

K1(t)∑
i=1

ĝ3
1(T1i)

(
1

(r1i − d1i)2
− 1

r2
1i

)

+
2β3(t)λ3

n

3

K2(t)∑
i=1

ĝ3
2(T2i)

(
1

(r2i − d2i)2
− 1

r2
2i

)

+
λ4

n

2

K1(t)∑
i=1

ĝ4
1(T1i)

(
1

(r1i − d1i)3
− 1

r3
1i

)

+
β4(t)λ4

n

2

K2(t)∑
i=1

ĝ4
2(T2i)

(
1

(r2i − d2i)3
− 1

r3
2i

)
+ oP (1)

= nσ̂−2
ratio(θ̃1(t) − β(t)θ̃2(t) + OP (n−1))2 + oP (1),

where in the last equality we use (A.7) for k = 3, 4. Combining (A.6), (A.15) and the

uniform consistency of σ̂2
ratio(t) completes the proof.

Lemma A.3. The estimators γ̂j and γ̃j defined in (2.8) and (A.8), respectively, converge

uniformly in probability to γj over [τ1, τ2].

Proof. Note that φ(Fj, Gj)(t) =
∫ t

0
dFj(s)/(1 − Gj(s−)), t ∈ [0, τ2], is a continuous

functional of cdfs Fj and Gj in supremum norm (Andersen et al., 1993, Proposition
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II.8.6., p. 113), so the result for γ̂j follows from the uniform consistency of the Kaplan–

Meier estimators of Fj and Gj on [0, τ2]. The result for γ̃j can be proved by adapting

the argument on pages 191–192 of Andersen et al. (1993).
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