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ABSTRACT 

Approximately 1 in 6 infants are born prematurely each year. Typically, these infants 

spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful 

and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia 

are administered less than 30% of the time. Unalleviated pain during the perinatal period is as-

sociated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates 

of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in 

stress and pain behavior occur, and whether such alterations can be prevented by appropriate 

analgesia at the time of injury, remains unclear. We have previously reported in rats that in-

flammation experienced on the day of birth permanently upregulates central opioid tone, result-

ing in a significant reduction in adult pain sensitivity. However, the impact on early life pain on 

anxiety- and stress-related behavior and HPA axis regulation is not known. Therefore the goal 

of this dissertation was to determine the long-term impact of a single neonatal inflammatory pain 

experience on adult anxiety- and stress-related responses. Neuroanatomical changes in stress-



associated neurocircuits were also examined. As the endogenous pain control system and HPA 

axis are in a state of exaggerated developmental plasticity early in postnatal life, and these sys-

tems work in concert to respond to noxious or aversive stimuli, this dissertation research aimed 

to answer the following questions: (1) Does neonatal injury produce deficits in adult stress-

related behavior and alter stress-related neuroanatomy through an opioid-dependent mecha-

nism? (2) Does neonatal injury alter receptor systems regulating the activation and termination 

of the stress response in adulthood? (3) Are stress- and pain-related neurotransmitters altered 

within the first week following early life pain? (4) Is early activation of the pain system necessary 

for the long-term changes in anxiety- and stress-related behavior? Together these studies 

demonstrate the degree, severity and preventability of the long-term deficits in stress respond-

ing associated with a single painful experience early in life.  The goal of this research is to pro-

mote change in the treatment of infant pain in the NICU to reduce long-term sensory and mental 

health complications associated with prematurity. 
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1   CHAPTER ONE: INTRODUCTORY OVERVIEW 

Nicole C. Victoria 

Neuroscience Institute 

Center for Behavioral Neuroscience 

Georgia State University 

100 Piedmont Ave, Rm 880 

Atlanta, GA 30303 

1.1 Premature Birth And Pain Treatment In The Neonatal Intensive Care Unit                

Premature Birth  

Each year, 16.5% of infants worldwide and 12% of infants in the United States are born 

prior to 37 gestational weeks and are considered preterm (Martin et al., 2006). The etiologies 

underlying preterm birth are complex and not completely understood, but risk factors include 

maternal diabetes, hypertension, smoking, prenatal substance use, lack of prenatal care and 

assisted reproductive therapies (PeriStats, 2011).  

Following birth, the majority of premature infants are admitted into the Neonatal Intensive 

Care Unit (NICU), where they spend an average of 25 days (PeriStats, 2011). During their stay in 

the NICU, preterm infants undergo 10-18 invasive procedures each day, including repeated heel 

lance, endotracheal intubation, surgery, and respiratory and gastric suctioning, (Barker and 

Rutter, 1995; Simons et al., 2003; Carbajal et al., 2008; PeriStats, 2011). Despite the fact that the 

majority of these procedures produce pain and inflammation, less than 35% of NICU patients re-

ceive pre- and/or post-emptive analgesia or anesthesia (Simons et al., 2003). As this treatment 

occurs during a period of sensitive developmental plasticity, serious concerns from parents, practi-

tioners and researchers have surrounded the immediate and long-term consequences of these 

NICU practices (Anand et al., 1987b; Carbajal et al., 2008; McGrath, 2011; Rodkey and Pillai 

Riddell, 2013).  
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Modern Absence Of Pain Treatment Early In Life And Historical Origins  

The rationale for withholding pain treatment is complex and multifaceted. Historically, in-

fants and children were considered as lower ‘castes’ of people, unable to engage in sensory 

processing beyond the brainstem and thalamus, and lacking the cognitive capacity to remember 

early life events (Rodkey and Pillai Riddell, 2013). With this assumption, investigations of the 

19th and 20th centuries interpreted infant responses to surgery, pin-pricks or electric shock as 

reflexive or non-specific to the procedures (Rodkey and Pillai Riddell, 2013). These perspec-

tives guided medical training and practices, and by the 21st century, respiratory support and 

paralytics were deemed sufficient for preterm infants undergoing surgery (Wesson, 1982). The 

validity and ethics of such practices were strongly called into question in the 1980s (Anand et 

al., 1987a; Purcell-Jones et al., 1988). However, issues of reliable pain assessment, age-

appropriate dosing, opioid tolerance and long-term consequences associated with pharmaco-

logical intervention became points of concern that continue to hinder neonatal therapies for pain 

(Anand and Hickey, 1987; Anand et al., 1987a; Anand, 2000; Anand et al., 2005b; Anand et al., 

2005a; Qiu, 2006b; Cignacco et al., 2009; Bellieni, 2012).  

Evidence over the last 30 years has demonstrated that, indeed, premature and term in-

fants can discriminate noxious stimuli. NICU procedures induce robust secretion of stress hor-

mones (Anand et al., 1987b), elevated heart rate and facial reactivity (Grunau et al., 2005; 

Grunau et al., 2010). Further, preterm infants as young as 25 gestational weeks display evoked 

cortical activity in response to noxious stimulation (Bartocci et al., 2006; Slater et al., 2006). 

While insufficient and sporadic administration of pain therapy persists in the modern NICU 

(Carbajal et al., 2008), the vast majority of modern pediatric physicians acknowledge that pre-

term infants feel pain (Purcell-Jones et al., 1988).  
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Efficacy Of Neonatal Analgesia  

A number of clinical studies have demonstrated the benefit of acute opioid analgesia for 

infants undergoing invasive procedures in the NICU. For example, administration of opioid anal-

gesics significantly decreases cortisol, norepinephrine, epinephrine and ß-endorphin release, 

decreases sepsis and prevents death, both operatively and post-operatively in comparison to 

controls (Anand et al., 1987b; Anand and Hickey, 1992). Morphine administration before endo-

tracheal suctioning, central venous catheterization or heel lance reduces blood flow to the skin 

and decreases facial responses to procedural pain (McCulloch et al., 1995; Moustogiannis et 

al., 1996; Scott et al., 1999). These studies together suggest that specific and appropriate anal-

gesia has immediate antinociceptive benefits for preterm infants.  

Despite the effectiveness of opioid analgesics for infant pain, concerns of tolerance, de-

pendence and side effects such as bradycardia, hypotension, apnea, urinary retention and re-

duced gastrointestinal motility (Anand et al., 2011) make their use controversial. A number of 

studies have aimed to test the long-term impact of opioid analgesia in the NICU. However, the 

majority of these efforts have been challenged by small sample sizes, inclusion of infants with 

illnesses such as hypotension or pre-existing neurological impairment, or dosing that is age-

inappropriate for the infant (MacGregor et al., 1998; Bouwmeester et al., 2001; Anand et al., 

2004; Roze et al., 2008; de Graaf et al., 2011). Therefore, it is unclear what, if any, long-term 

consequences are associated with early life opioid analgesia. As a precaution, the International 

Association for the Study of Pain (IASP) currently recommends judicious use of morphine and 

its derivatives, and slow-speed infusions of fentanyl and other potent synthetic opioids for prem-

ature and term infants for moderate to severe procedural pain, pre-operative sedation, surgical 

pain and post-operative care (Anand et al., 2011). While caution is prudent, it is important to 

note a recent follow-up study reported that former preterm infants at 8-9 years old who received 

morphine in the NICU for pain management had improved executive functioning and reduced 

problems with externalization relative to infants that received placebo (de Graaf et al., 2013). 
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Non-opioid analgesics have also been shown to be effective in infants and are recom-

mended for procedural pain. For example, topical analgesics, such as tetracaine gel (4%) or 

lidocaine cream (5%), decrease composite pain profiles in response to venipuncture (Gradin et 

al., 2002) or intravenous cannulations (Moore, 2001).  Lidocaine before circumcision decreases 

facial reactivity, duration of crying, heart rate and O2 saturation (Benini et al., 1993; Lander et 

al., 1997; Woodman, 1999; Taddio et al., 2000). By contrast, acetaminophen and non-steroidal 

anti-inflammatory drugs (NSAIDs) have limited use in infants due to hepatic and/or renal toxicity, 

hypothermia, platelet dysfunction and gastrointestinal bleeding (Anand et al., 2011).     

A number of studies have examined oral sucrose for procedural pain relief in infants with 

varying outcomes. Slater et al. (2010) reported that 24% oral sucrose does not attenuate the 

nociceptive-specific brain, spinal cord and limb flexion activity elicited by heel stick (Slater et al., 

2010). However, a Cochrane Review, which systematically reviewed primary research in human 

health care and health policy between 1950 and 2011, found 24% oral sucrose or 30% glucose 

safe and effective for reducing pain associated with skin breaking procedures in preterm and 

term neonates (Anand et al., 2011; Stevens et al., 2013). In particular, oral sucrose administra-

tion before heel lance or assessment of retinopathy decreases total duration of crying, grimac-

ing and O2 saturation, suggesting that sucrose confers analgesia and reduces physical discom-

fort to the infant (Stevens et al., 2013). 

Non-pharmacological options are also effective for managing pain in infants. Physical an-

algesia, such as skin-to-skin contact, gentile massage or non-nutritive sucking (Corbo et al., 

2000; Jain et al., 2006; Golianu et al., 2007), reduces crying, grimacing and heart rate during 

heel-stick for preterm infants as young as 28 gestational weeks (Gray et al., 2000; Johnston et 

al., 2003; Johnston et al., 2008). Breastfeeding during heel lance or venipuncture confers anal-

gesia in term infants (Carbajal et al., 2003; Shah et al., 2012), with a recent study indicating it is 

also effective for reducing pain during acute procedures in preterm infants between 32-36 ges-

tational weeks (Simonse et al., 2012). Combination therapies that involve the use of physical 
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analgesia and sensory saturation with gentile tactile, auditory, visual, olfactory, gustatory and 

vestibular stimuli are also recommended (Bellieni et al., 2001; Bellieni et al., 2007). Whether 

such therapies alleviate nociceptive signals and stress hormone release associated with proce-

dural pain, or simply distract the infant from the painful intervention, remains to be systematical-

ly investigated (Cignacco et al., 2009).  

1.2 Early-Life Pain Impairs Stress And Pain Responding 

Clinical Studies 

Clinical studies show early life pain has an immediate impact on response to stress- and 

pain-evoking stimuli. For example, preterm infants undergoing surgical procedures without an-

algesic treatment have significantly higher concentrations of catecholamines and cortisol during 

and after surgery as compared with infants receiving analgesia (Anand et al., 1987b). Heart 

rate, facial reactivity and cortisol levels of preterm infants are initially high in response to proce-

dural pain. However, these behavioral, neuroendocrine and autonomic responses become sig-

nificantly blunted as the number of invasive procedures experienced in the NICU increases 

(Grunau et al., 2005; Grunau et al., 2010). This suggests that repeated, unalleviated pain results 

in immediate changes or ‘adaptations’ in systems mediating pain and stress that may become 

permanent.  

At 4 and 8 months, former preterm infants display decreased facial responsiveness to 

immunization pain in comparison to full-term peers (Oberlander et al., 2000). Toddlers born 

prematurely into the NICU exhibit blunted nociceptive responses and are rated by parents as 

less sensitive to pain in comparison to term-born controls (Grunau et al., 1994a). At 9-12 years 

of age, children that experienced infant cardiac surgery with limited pain therapy display global 

alterations in both mechanical and thermal somatosensory processing (Schmelzle-Lubiecki et 

al., 2007). Further, adolescence and teenagers that spent time in the NICU as infants are less 
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sensitive to thermal pain (Hermann et al., 2006; Walker et al., 2009b) and display attenuated 

stress-induced analgesia (Wollgarten-Hadamek et al., 2011) in comparison to controls.  

A number of studies have now associated NICU treatment with long-term changes in au-

tonomic and cortisol reactivity. For example, basal and immunization pain-induced cortisol re-

lease is blunted at 3 and 4 months, respectively, for former preterm infants as compared with 

term controls (Grunau et al., 2007; Grunau et al., 2010). At 6 months, tighter coordination of 

stress-related cortisol, heart rate and vagal tone is observed, suggesting an altered autonomic 

response pattern relative to term peers (Haley et al., 2010). As physiological changes in stress 

responding are associated with disorders of anxiety, depression, obessive compulsion, panic 

and post-traumatic stress (Heim et al., 2000; Heim et al., 2001; Chrousos, 2009), such findings 

indicate that preterm infants are at higher risk for developing later-life changes in affective func-

tioning.  

Indeed, altered cortisol reactivity for former preterm infants at age five is significantly 

associated with issues of internalization, emotional reactivity, anxiety, depression, inattention, 

and higher rates of negative verbalization during mother-child interactions (Bagner et al., 2010). 

By middle school, these children are at least 28% more likely than term peers to have clinical 

symptoms of anxiety, depression and inattention (Botting et al., 1997; Hayes and Sharif, 2009). 

Psychological social-stress testing evokes blunted cortisol responses in 8-14 yr old former pre-

term infants relative to age- and gender-matched term controls (Buske-Kirschbaum et al., 2007). 

Lastly, parents and teachers of former NICU patients report significantly higher rates of neuro-

behavioral and neuropsychiatric impairments at 20 years of age relative to term peers, including 

issues with internalizing and externalizing, reduced cognitive and behavioral flexibility, and 

higher rates of anxiety and depression (Hack et al., 2004; Aarnoudse-Moens et al., 2009; Hayes 

and Sharif, 2009; Sullivan et al., 2012).  

Early life pain is also associated with changes in brain development and later-life func-

tioning. For example, magnetic resonance imaging spectroscopy and diffusion tensor imaging of 
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preterm infants at 32 and 40 gestational weeks shows significant decreases in white and gray 

matter maturation that is positively correlated with the number of skin breaking procedures ex-

perienced (Brummelte et al., 2012). Pain-related stress in the NICU is associated with reduced 

spontaneous cortical gamma-to-alpha ratio oscillations during perceptual reasoning in childhood 

at 7-8 yrs of age that is independent of illness severity, days on mechanical ventilation, cumula-

tive morphine exposure and general intelligence, (Doesburg et al., 2013). Notably, gamma and 

alpha band activity are thought to occur during active recruitment of brain regions for perception 

(Jensen et al., 2007; Doesburg et al., 2008) and resting state (Pfurtscheller et al., 1996; 

Klimesch et al., 2007; Doesburg et al., 2013), respectively. As alterations in gamma band oscil-

lations are significantly correlated with neurological and psychiatric disorders (Uhlhaas and 

Singer, 2006), these findings further suggest that early life pain represents a significant risk fac-

tor for later-life pathology.  

 

Animal Studies 

Animal models of early life pain support clinical findings demonstrating a long-term impact 

on subsequent responses to pain, physiological markers of stress and brain development.  

Acute or repeated exposure to early life pain induced by foot shock, surgery, or inflammatory 

agents results in general thermal or mechanical hypoalgesia for adult rodents (Shimada et al., 

1990; Bhutta et al., 2001; Sternberg et al., 2005; LaPrairie and Murphy, 2007, 2009). Consistent 

with clinical findings showing blunted stress hormones in former preterm infants, early life in-

flammatory pain in male rats reduces adult release of stress hormones, corticotrophin releasing 

factor (CRF), arginine vasopressin (VAS) and adrenocorticotrophin releasing hormone (ACTH) 

following acute swim stress (Anseloni et al., 2005). Anatomically, early life pain results in cortical 

thinning and increases the number of apoptotic cells throughout the brain, specifically in the cor-

tex, septum, hypothalamus and hippocampus. Reduced expression of cortical and thalamic pro-

teins that control neuronal differentiation, migration and synaptic connections have also been 
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reported (Duhrsen et al., 2013). Notably, administration of morphine before early life injury pre-

vents long-term reductions in pain sensitivity and alterations in brain development (LaPrairie et 

al., 2008; Duhrsen et al., 2013). While the mechanisms underlying these long-term changes in 

pain and stress responding and brain development are not well understood, recent evidence 

suggests that decreased sensitivity to pain later in life results from upregulated endogenous 

opioid tone in key brain regions mediating pain (LaPrairie and Murphy, 2009). As endogenous 

opioids have organizational effects on the developing brain (Zagon and McLaughlin, 1983, 

1991) and contribute to the perception of stress (Akil et al., 1984), it is possible that the injury-

induced increase in opioid tone underlies the long-term reduction in stress sensitivity as well.   

1.3 The Nociceptive System Early In Life  

Over the last several decades, animal studies have allowed for examination of the noci-

ceptive system and its development (Fitzgerald, 2005).  In response to noxious/tissue damaging 

stimulation, nociceptive information ascends via the spinal cord for processing in the brain. In 

turn, nociceptive sensations are dampened through descending pain modulatory circuits that 

include the midbrain periaqueductal gray (PAG), rostral ventromedial medulla (RVM) and spinal 

cord dorsal horn (DH) (Basbaum and Fields, 1978, 1984).  

Neonates are significantly more sensitive to thermal and mechanical noxious stimulation 

in comparison to adults (Grunau et al., 2005; Hathway et al., 2012). Early in life, neurons of the 

DH are highly excitable, have large receptive fields, and noxious stimulation evokes prolonged 

action potentials of high amplitude (Fitzgerald, 2005). In addition, the neonatal DH is heavily in-

nervated with myelinated Aδ fibers that transmit phasic nociceptive signals and a lower frequen-

cy of mIPSCs in comparison to adults (Fitzgerald, 2005).  

Over the first 2-3 postnatal weeks, the balance between excitation and inhibition devel-

ops to result in adult-like descending inhibition of pain (Hathway et al., 2009). Inhibitory re-

sponses to electrical stimulation of the dorsal lateral funiculus, which connects supraspinal and 
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spinal cites of pain modulation, emerge by postnatal day 6 (P6) (Fitzgerald and Koltzenburg, 

1986). Between P3-P21, electrical stimulation of the PAG (van Praag and Frenk, 1991) or RVM 

(Hathway et al., 2009) of rat pups facilitates nociceptive reflexes in the hindlimbs and promotes 

neuronal firing in the DH. The opposite effects are observed by P40 (Hathway et al., 2009), indi-

cating that early in life nociceptive sensitivity is high and becomes attenuated with age.   

Paradoxically, morphine administration provides analgesia for rat pups given hindpaw in-

flammation between P1-P21 (Abbott and Guy, 1995; Gupta et al., 2001), suggesting that elec-

trophysiological and EMG stimulation studies reveal only a partial profile for development of de-

scending modulation. Indeed, the use of anesthesia for surgical implantation of electrodes 

(Fitzgerald and Koltzenburg, 1986), may tip the balance of descending modulation in favor of 

the excitatory state in the immature antinociceptive circuit.  

Both, enkephalin and ß-endorphin, key neuropeptides in the endogenous descending 

pain modulatory circuit, are present in the brain at birth, as are their receptors (Tsang and Ng, 

1980; Tsang et al., 1982; Rius et al., 1991). Injection of the µ- or δ-opioid receptor agonists, 

DAMGO or DPDPE respectively, into the ventral PAG or RVM results in thermal analgesia for 

rat pups on P3 (Barr and Wang, 2013).  Further, morphine injected into the ventrolateral PAG 

(vlPAG) of rat pups produces analgesia that is naloxone-reversible on P3, P10 and P14 (Tive 

and Barr, 1992).  

Recent studies show activation of the endogenous opioid system is essential for devel-

opment of the descending pain modulatory circuit. For example, subcutaneous morphine admin-

istration from P7-P14 accelerates normal development of antinociception, as electrical stimula-

tion of the RVM decreases reflex excitability in rat pups to mimic adult-like responses (Hathway 

et al., 2012). In contrast, blockade of endogenous opioid signaling early in life delays nocicep-

tive circuit development (Hathway et al., 2012). Indeed, such findings suggest that specific acti-

vation of the endogenous opioid system early in life is required to produce analgesia before the 

balance of excitation and inhibition are established at adult levels. 
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1.4 The Stress System Early In Life  

The hypothalamic-pituitary-adrenal (HPA) axis is used by the nervous system to mount 

physiological responses to stressors, promote survival in the presence of physical threats, and 

mediate psychological perturbations successfully, with the ultimate goal of reinstating homeo-

stasis. In response to stressors, a variety of forebrain and brainstem regions are recruited to 

stimulate the release of CRF from the paraventricular nucleus of the hypothalamus (PVN) (Vale 

et al., 1981). Through the hypophyseal portal system, CRF stimulates the anterior pituitary 

gland to release ACTH (Dallman et al., 1987). In turn, ACTH acts on the cortex of the adrenal 

gland to promote release of glucocorticoids (cortisol in humans; corticosterone in rats: 

CORT)(Dallman and Jones, 1973; Guillemin et al., 1977). CORT then feeds up to the pituitary 

and PVN to terminate further release of neurohormones, and to the hippocampus where binding 

to the glucocorticoid receptor (GR) reinstates inhibition of the PVN (Sapolsky et al., 1984a; 

Dallman et al., 1987; Ulrich-Lai and Herman, 2009). 

All components of the HPA axis are functional and interfaced by mid-gestation for hu-

mans and rodents (Kandel et al., 2000). In rodents, stressors such as ether or laparotomy 

stimulate the release of fetal CRF (Hiroshige and Sato, 1971) and CORT (Negellen-Perchellet 

and Cohen, 1975), indicating stress has specific effects on HPA activity during gestation. At 

birth, adrenal gland weight and circulating CORT concentrations are elevated (Corbier and 

Roffi, 1978b). Over the first postnatal week, CORT decreases to nearly detectable levels to initi-

ate the stress hyporesponsive period (SHRP), which spans approximately P2-P14 in rat pups 

(Sapolsky and Meaney, 1986; Walker et al., 1986); for humans a similar process occurs over 

the first months of life (Mantagos et al., 1998; Grunau et al., 2007). Although stressors such as 

ether, electric shock and hypoxia can activate the HPA axis, this period of adrenal quiescence 

allows glucocorticoid levels to remain low and promote neurogenesis, axonal outgrowth, synap-

togenesis, myelination, and rise of endogenous CRF and ACTH levels (Sapolsky and Meaney, 
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1986; Walker et al., 1986; Baud et al., 2005) (Antonow-Schlorke et al., 2009; Du et al., 2009; 

Liston and Gan, 2011).  

HPA axis dysfunction and the manifestation of neuropsychiatric disorders have been 

significantly associated with exposure to trauma early in life (Heim et al., 2001; Heim et al., 

2008). As such, the influence of early life perturbation on later-life outcomes has been studied 

extensively in rodents. These studies have revealed that the type of stress (e.g. acute, chronic, 

mild, severe, homotypic, heterotypic), developmental stage of presentation (e.g. prenatal, post-

natal, peripubertal), and in some cases the sex of the offspring, programs the HPA axis to be 

hyper- or hypo-responsive. For example, male but not female, offspring exposed to mild chronic 

variable stress during the first week of gestation show adult increases in CRF expression, 

stress-induced CORT and an increase in depression-related behaviors in both the forced swim 

(FST) and tail suspension tests (Mueller and Bale, 2008). Hyperactivity of the HPA axis is also 

observed in adult rats given the corticosteroid dexamethasone chronically during the last week 

of gestation  (Shoener et al., 2006). In contrast, chronic restraint stress from gestational day 14-

21 increases CRF expression and CORT output for adult females, whereas CRF expression 

decreases, ACTH increases, and no change in CORT is observed in males (Garcia-Caceres et 

al., 2010). Postnatal stress on P3 in the form of acute peripheral inflammation significantly de-

creases adult anxiety- and depression-related behaviors in the elevated plus maze (EPM) and 

FST, respectively, and blunts stress-induced CRF and ACTH release (Anseloni et al., 2005), 

suggesting HPA hyposensitivity. In contrast, chronic reduction of maternal resources for nest 

building on P2-P9 significantly increases basal CORT for offspring as adults (Rice et al., 2008). 

In response to mild peripubertal stress from P27-29, adult male and female rats show increases 

in CORT, and decreases in the number of central entries in the Open Field (OF) and time in the 

open arms of the EPM (Jacobson-Pick and Richter-Levin, 2010). In a model of chronic juvenile 

social subjugation, similar effects occur primarily in adult females (Weathington et al., 2012). 

Although the mechanisms underlying the maintenance of these changes in gene expression 
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and behavior are not completely understood, modification to the methylation and histone profiles 

of CRF and GR system genes are commonly observed in adult offspring exposed to early life 

stress (Weaver et al., 2004; Mueller and Bale; Elliott et al., 2010; Rodgers et al., 2013). In addi-

tion, epigenetic influence of miRNAs on the embryonic germ line have sex-specific, transgen-

erational effects on adult stress-related profiles (Morgan and Bale, 2011, 2012; Rodgers et al., 

2013), suggesting that production of sexually dimorphic phenotypes is more complex than or-

ganizational influence of sex steroids (Carruth et al., 2002; Konkle and McCarthy, 2011; 

McCarthy et al., 2012).  

1.5 Interaction Between Systems Mediating Pain And Stress Responding  

Notably, the endogenous opioid system works in concert with classic systems regulating 

HPA axis activity. For example, CRF and CRF receptors (CRFR) co-localize and co-express 

with endogenous opioids in the neurosecretory hypothalamus, thalamus, septum, hippocampus, 

amygdala, locus coeruleus, cortex, PAG and DH (Rivalland et al., 2005; Mousa et al., 2007) 

(Sakanaka and Magari, 1989; Larsen and Mau, 1994; Chalmers et al., 1995; Dumont et al., 

2000; Marchant et al., 2007). Acute or chronic stressors such as restraint, inflammatory pain, or 

osmotic distress simultaneously increase hypothalamic expression and release of CRF and 

enkephalin, and circulating ß-endorphin, ACTH and CORT (Guillemin et al., 1977; Lightman and 

Young, 1989; Shippenberg et al., 1991; Taylor et al., 1998). Dexamethasone or CORT com-

pletely blocks stress-induced increases in CRF, preproenkephalin and proopiomelanocortin 

(POMC) mRNA (Beaulieu et al., 1988; Harbuz and Lightman, 1989), and GR transcriptionally 

regulates expression of both the endogenous opioid and CRFR systems (Schoneveld et al., 

2004). Together these data suggest that the stress system recruits and regulates endogenous 

opioids to aid in the response to homeostatic perturbations. As enkephalin or morphine admin-

istration significantly reduces cortisol concentrations (McDonald et al., 1959; Stubbs et al., 

1978), and opioid receptor antagonists naloxone or naltrexone, increases plasma ß-endorphin, 
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ACTH and cortisol (Wand and Schumann, 1998; al'Absi et al., 2004), such findings support the 

role of opioids in reducing stress reactivity.  

While the CRFR system is well known for regulating responses to anxiety and stress 

(Smith et al., 1998; Bale et al., 2000; Coste et al., 2000; Weaver et al., 2004), it participates in 

antinociception as well. For example, administration of CRF in either humans or rodents stimu-

lates the release of ß-endorphin from the anterior pituitary to produce analgesia in response to 

noxious thermal heat (Hargreaves et al., 1987; Hargreaves et al., 1990). Adrenalectomy does 

not abolish CRF antinociception, indicating that analgesia results from central rather than pe-

ripheral release of CRF (Vit et al 2006). In addition, dexamethasone prevents analgesia pro-

duced by DAMGO or ß-endorphin (icv) in response to hot plate or tail flick testing (Pieretti et al., 

1994), suggesting that endogenous glucocorticoids can regulate analgesia.  

Enkephalin and endorphin dampen responses to anxiety and stress-related behavior 

(Akil et al., 1984). For example, pharmacological activation of µ- or δ-opioid receptors, to which 

enkephalin and endorphin bind, significantly reduces fear-potentiated startle (Glover and Davis, 

2008) and decreases stress-induced anxiety in the EPM (Randall-Thompson et al., 2010). In 

contrast, blockade of endogenous opioid signaling through these receptors with naltrexone de-

creases activity in the center of the OF (de Cabo de la Vega et al., 1995).  In addition, prepro-

enkephalin knockout mice display reduced time in the open area of the light-dark test, de-

creased entries and time spent in the inner area of the OF and increased startle amplitudes 

relative to wild-types. (Konig et al., 1996; Bilkei-Gorzo et al., 2008; Kung et al., 2010). Signifi-

cant reductions in basal CORT and prolonged recovery time from stress are also observed in 

these mice (Bilkei-Gorzo et al., 2008), suggesting enkephalin is an important regulator for neu-

roendocrine response and recovery from stress. Similar to mice lacking enkephalin, ß-endorphin 

knockout mice show decreases in total time and percent entries into the open arm of the EPM 

(Grisel et al 2008). However, loss of ß-endorphin increases stress-induced ACTH, blunts basal 

and peak stress-induced CORT while maintaining CORT recovery time similarly to wild-types 
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(Bilkei-Gorzo et al., 2008). Together these data suggest that although enkephalin and endorphin 

reduce anxiety, they have independent and unique rolls in regulating stress hormone respons-

es.  

In contrast to enkephalin and ß-endorphin, dynorphin promotes anxiety and stress 

through binding to the κ-opioid receptor. For example, activation of κ-opioid receptor with U-

50488H significantly decreases time in the center of the OF and percent time in the open arms 

of the EPM for mice (Wittmann et al., 2009). In contrast, anxiogenic effects are reversed by 

kappa antagonist nor-Binaltorphimine (Wittmann et al., 2009). Similarly, loss of prodynorphin 

increases time in the center of the OF, time in the open arms of the EPM and immobility in the 

tail suspension test (Wittmann et al., 2009; Kastenberger et al., 2012). Prodynorphin knockout 

mice show accelerated CORT peak following stress, yet negative feedback is prolonged in 

comparison to wild-type animals (Bilkei-Gorzo et al., 2008). These data suggest that dynorphin 

promotes anxiety, stress and has a specific role in stress hormone regulation. Collectively, the 

above findings suggest interplay between pain and stress systems, such that neuropeptides of 

the stress system participate in analgesia, whereas endogenous opioids dampen or increase 

sensitivity to anxiety and stress. 

1.6 Dissertation Goals  

Clinical findings indicate that early life exposure to repetitive pain, and therefore stress, 

in the NICU results in polysystemic adaptations. Former preterm infants have decreased sensi-

tivity to pain, blunted cortisol reactivity, altered autonomic coordination, differential gray and 

white matter development, differential perceptual processing and experience neurobehavioral 

and psychiatric disorders at significantly higher rates than full-term peers. These issues emerge 

early in the NICU and persist in children, teens and young adults, indicating that adaptations 

associated with neonatal pain-related stress are permanent. The mechanism(s) by which these 

long-term changes in stress and pain behavior and physiology occur in humans are not known. 
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Further, whether such alterations can be prevented by appropriate analgesia at the time of inju-

ry remains to be investigated.  

Animal studies indicate that permanent upregulation of endogenous opioids result from 

early life injury and are necessary for hypoalgesia in adult rats (LaPrairie and Murphy, 2007, 

2009). In contrast, mechanisms whereby long-term changes in anxiety- and stress-related be-

havior and HPA axis regulation occur as a result of early life pain remain unclear. Therefore the 

goal of this dissertation was to determine the long-term impact of a single neonatal inflammatory 

pain-experience on adult stress-related responses and neuroanatomy. As the endogenous pain 

control system and HPA axis are in a state of exaggerated developmental plasticity early in 

postnatal life, and these systems work in concert to respond to noxious or aversive stimuli, we 

hypothesized that (1) a single injury on the day of birth produces permanent adaptations in 

stress-, anxiety- and pain-related responses; (2) early life injury alters neurotransmitter circuits 

underlying responses to noxious and aversive stimuli; and (3) as males and females often re-

spond differently to stress, anxiety and pain, at least some of the long-term adaptations resulting 

from early pain are sexually dimorphic. This dissertation research tested these hypotheses via 

the following questions: (1) Does neonatal injury produce deficits in adult stress-related behavior 

and alter stress-related neuroanatomy through an opioid-dependent mechanism? (2) Does neo-

natal injury alter receptor systems regulating the activation and termination of the stress re-

sponse in adulthood? (3) Are stress- and pain-related neurohormones altered within the first 

week following early life pain? (4) Is early activation of the pain system necessary for the long-

term changes in anxiety and stress-related behavior?   

Together these studies demonstrate the degree, severity and preventability of the long-

term deficits in stress responding associated with a single painful experience early in life.  The 

clinical goal of this research is to promote change in the treatment of pain in the NICU to reduce 

long-term sensory and mental health complications associated with prematurity. 
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2.1 Abstract 

Approximately 500,000 infants are born prematurely each year in the United States. 

These infants typically require an extensive stay in the Neonatal Intensive Care Unit (NICU), 

where they experience on average 14 painful and invasive procedures each day. These proce-

dures, including repeated heel lance, insertion of intravenous lines, and respiratory and gastric 

suctioning, typically result in an inflammatory response, inducing pain and stress in the newborn.  

Remarkably, the majority of these procedures are performed in the complete absence of pre- or 



17 

post-emptive analgesics. Recent clinical studies report that former NICU patients have in-

creased thresholds for pain and stress later in life as compared with term born infants. However 

to date, the mechanisms whereby early life inflammation alters later life response to stress and 

pain are not known. The present studies were conducted to determine if neonatal injury impairs 

adult responses to anxiety- and stress-provoking stimuli. As we have previously reported that 

early life pain results in a significant increase in opioid peptide expression within the midbrain 

periaqueductal gray, the role of endogenous opioids in our behavioral studies was also exam-

ined.  Male and female rats received an intraplantar injection of the inflammatory agent carra-

geenan (1%) on the day of birth (P0).  In adulthood, animals were assessed for changes in re-

sponse to anxiety- and stress-provoking stimuli using the Open Field and Forced Swim Tests, 

respectively. Injury-induced changes in sucrose preference and stress-induced analgesia were 

also assessed. As adults, neonatally injured animals displayed a blunted response to both anxi-

ety- and stress-provoking stimuli, as indicated by significantly more time spent in the inner area 

of the Open Field and a 2-fold increase in latency to immobility in the Forced Swim Test as 

compared to controls. No change in sucrose preference was observed. Using in situ hybridiza-

tion and immunohistochemistry, we observed a 2-fold increase in enkephalin mRNA and protein 

expression, respectively, in stress-related brain regions including the central amygdala and lat-

eral septum. Administration of the opioid receptor antagonist naloxone reversed the attenuated 

responses to forced swim stress and stress-induced analgesia, suggesting the changes in 

stress-related behavior were opioid-dependent. Together, these data contribute to mounting ev-

idence that neonatal injury in the absence of analgesics has adverse effects that are both long-

term and polysystemic. 

2.2 Introduction 

Premature birth, defined as birth prior to 37 weeks of gestation, occurs at alarmingly high 

rates worldwide. According to the World Health Organization, 16.5% of all infants are born prema-
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ture, with over 500,000 preterm babies born each year in the United States alone (Martin et al., 

2006). Preterm infants spend, on average, 25 days in the Neonatal Intensive Care Unit (NICU), 

where they undergo 10-18 invasive procedures each day, including repeated heel lance, endotra-

cheal intubation, surgery, and respiratory and gastric suctioning 

(www.marchofdimes.com/peristats/) (Barker and Rutter, 1995; Simons et al., 2003; Carbajal et al., 

2008). Despite strong evidence that pain and stress circuitry are established and functional in 

preterm infants, 65% of these procedures are performed in the complete absence of analgesics 

(Anand et al., 1987b; Simons et al., 2003; Grunau et al., 2005; Slater et al., 2006; Carbajal et 

al., 2008). Unfortunately, it is becoming increasingly clear that pain experienced during the criti-

cal perinatal developmental period has long-lasting effects on adult responses to pain-, anxiety- 

and stress-provoking stimuli (Hack et al., 2004; Hermann et al., 2006; Wollgarten-Hadamek et 

al., 2011).  

Clinical studies report that children with prior NICU experience display decreases in pain 

and stress sensitivity that persist long after discharge from the NICU (Hermann et al., 2006; 

Grunau et al., 2007). For example, former preterm infants have significantly decreased nocicep-

tive sensitivity and blunted cortisol responses before and after immunization pain as compared 

with full term controls (Grunau et al., 2005; Hermann et al., 2006; Walker et al., 2009b; Grunau 

et al., 2010). In middle school, former preterm infants are at least 28% more likely to suffer from 

disorders of externalization and internalization (Botting et al., 1997; Hayes and Sharif, 2009). At 

20 years of age, parents and teachers of former NICU patients report significantly higher rates 

of neurobehavioral impairments relative to control counterparts (Levy-Shiff et al., 1994; Hack et 

al., 2004; Hayes and Sharif, 2009; Sullivan et al., 2012). The mechanism(s) by which these 

long-term changes in pain and stress behavior occur in humans are not known.  

While previous studies in rodents have reported decreased pain sensitivity following ear-

ly life injury, its impact on adult stress responsiveness is not known (Shimada et al., 1990; 

Bhutta et al., 2001; Ren et al., 2004; Sternberg et al., 2005; LaPrairie and Murphy, 2007). 



19 

Therefore, the present studies were conducted to determine whether a single inflammatory in-

sult on the day of birth impairs adult male and female responses to anxiety- and stress-

provoking stimuli. We have previously reported that a single inflammatory insult (1% carragee-

nan; hind paw) administered on the day of birth (P0) significantly increases leu- and met-

enkephalin protein levels in the ventrolateral periaqueductal gray (vlPAG) of adult rats (LaPrairie 

and Murphy, 2009). Indeed, in both male and female rats, a 180% increase in met-enkephalin 

protein levels was observed. As enkephalin has been implicated previously in responses to anx-

iety and stress (Lightman and Young, 1987; Konig et al., 1996; Bilkei-Gorzo et al., 2008), the 

role of opioid peptides in mediating the effects of early life pain was examined. 

Using behavioral pharmacology, in situ hybridization and immunohistochemistry, we 

present evidence for the first time that one inflammatory insult experienced on the day of birth 

attenuates adult responses to stress through an opioid-dependent mechanism. Parallel changes 

in adult proenkephalin mRNA and met-enkephalin protein expression were observed in the cen-

tral amygdala, lateral septum and vlPAG, regions previously implicated in pain, anxiety- and 

stress-related behaviors (Rizvi et al., 1991; Franco and Prado, 1996; Hunt and Mantyh, 2001; 

Ulrich-Lai and Herman, 2009; Herman, 2010).  

2.3 Materials And Methods 

Animals 

Pregnant Sprague-Dawley rat dams were obtained on gestational day 14 (G14) (Charles 

River). Dams were housed individually under 12:12 hr light:dark cycle with ad libitum access to 

food and water. On the day of birth (P0), pups were sexed by examination of anogenital dis-

tance and subjected to neonatal treatment. All litters were reared identically, weaned on P21 

and housed with same sex littermates in groups of 2-3. Male and female rats were used in all 

experiments and tested on separate days (LaPrairie and Murphy, 2007). All experiments ad-

hered to the guidelines of the Committee for Research and Ethical Issues of IASP, and were 
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approved by the Georgia State University Animal Care and Use Committee. Behavior experi-

ments were conducted during the light phase (10:00-17:00), animal order was randomized and 

the experimenter was blinded to neonatal treatment. All experiments were conducted with dif-

ferent cohorts of neonatally injured and handled adults. To ensure participation in previous be-

havioral experiments did not influence enkephalin expression, separate cohorts of animals were 

used for the anatomical studies. 

 

Neonatal Treatment 

Acute neonatal inflammatory injury was induced as in our previous studies (LaPrairie 

and Murphy, 2007, 2009). Briefly, male and female rat pups were injected with 5 µL Carragee-

nan (1% dissolved in saline; Sigma, USA) into the intraplantar surface of the right hind paw or 

handled identically within 24 hours of birth on P0. This well-established model causes acute, 

local inflammatory pain that persists for 24-72 hours and does not alter maternal behavior (Ren 

et al., 2004; LaPrairie and Murphy, 2007). Intraplantar saline control was not used, as we noted 

in our previous studies that this results in 24-48 hours of inflammation (LaPrairie and Murphy, 

2007). Pups were separated from their dam for <20 minutes and returned to the home cage as 

a group. Each litter received a single treatment. Animals are largely undisturbed until adulthood 

(P60).  

 

Test Of Anxiety-Like Behavior 

Adult anxiety-like behavior was assessed using the Open Field (OF), a well-established 

test sensitive to detecting the effects of early life manipulations on anxiety (Joffe et al., 1973). 

Animals (P65-70; n = 6-8/treatment/sex) were habituated to the testing room daily for 60 

minutes, 3 days before and on the day of testing. Adults were gently placed in the OF (gridded 

Plexiglas box 120 cm x 120 cm x 30 cm) facing the same direction. Testing occurred under red 

light. Each animal experienced the OF one time for 5 minutes. Behaviors were recorded digitally 
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with Noldus Observer 5.0 (Noldus, USA) and observed remotely with a video monitor. The test-

ing apparatus was cleaned thoroughly with 70% ETOH between each animal; vapors were al-

lowed to evaporate completely before the next session commenced. Scoring of anxiogenic (OF: 

duration in outer perimeter), anxiolytic behaviors (duration in inner area) and locomotor behavior 

(number of lines crossed) occurred post-hoc by an experimenter blinded to neonatal treatment. 

Data were expressed as duration or frequency. 

 

Tests Of Stress-Related Behavior 

Adult stress-related behavior was assessed with the modified Forced Swim Test (FST), 

Sucrose Preference Test (SPT) and Stress-Induced Analgesia (SIA) test. Animals (P70-90) 

were habituated to the testing room daily for 60 minutes, 3 days before and on the day of test-

ing. For SIA testing, animals were habituated to the Paw Thermal Stimulator daily for 60 

minutes 3 days before and on the day of testing. To avoid any carryover effects, different co-

horts of neonatally injured and handled adults were used for each test (FST, SPT, SIA).  

 

Forced Swim Test 

Water was maintained at 25˚C and filled to height such that animals could neither es-

cape nor could the tail touch the bottom (63.5 cm) (Porsolt et al., 1977; Porsolt et al., 1978). On 

day one of the FST, adults (n = 8-9/treatment/sex) were placed in a circular swim tank (71.2 cm 

x 62.5 cm x 56 cm) for 5 minute pre-swim to elicit “behavioral despair”(Armario et al., 1988). On 

day two, animal were placed in the swim tank for a 5-minute FST; all behaviors were digitally 

recorded. Following the FST, animals were dried with a clean towel and placed in clean cages. 

Fecal boli were counted and removed from the tank between each test. The tank was cleaned 

with detergent and ETOH between tests. The following behaviors were scored post-hoc: (1) la-

tency to immobility (LTI), defined as the first cessation of swimming with arched-back floating 

(Porsolt et al., 1978); (2) duration of immobility, characterized by arched-backed floating and 
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movement only necessary to keep the head above water or prevent drowning (Porsolt et al., 

1978). A separate cohort of animals (n = 8-9/treatment/sex) received naloxone HCl (1 mg/kg or 

5 mg/kg; i.p; Sigma, USA) dissolved in saline (0.9%) or equivolume saline 15 minutes before 

testing.  Data are expressed as frequency and duration. 

 

Sucrose Preference Test 

Animals (n = 9-16/treatment/sex) were singly housed for 7 days prior to testing. Separate 

water bottles were filled with 500 mL of tap water or sucrose solution (1%), weighed and placed 

in the cage in randomized order to control against place preference. During the 48-hour test, 

rats had ad libitum access to both bottles. After the first 24 hours, bottles were removed and 

immediately replaced with new bottles oriented in the opposite order. After the second 24-hour 

period elapsed, bottles were removed; final bottle weights (WTF) were subtracted from initial 

weights (WTI) yielding a difference score (D) for each animal. Percent sucrose preference was 

calculated using the following formula: [(WTD sucrose bottle)/(WTD sucrose bottle + WTD H2O 

bottle)] x 100, where WTD = (day 1 WTI – WTF) + (day 2 WTI – WTF). 

 

Stress-Induced Analgesia  

Immediately before (pre-stress) and after (post-stress) 30 minutes of restraint in acrylic 

restraint cylinders, pain threshold was tested using a Paw Thermal Stimulator (UCSD, San Die-

go, CA) (Aloisi et al., 1994; Costa et al., 2005). Animals (n = 6/treatment/sex) were placed in 

clear Plexiglas chambers mounted on the glass surface.  A radiant beam of light was focused 

on the plantar surface of each hind paw and the latency for the animal to withdraw its paw in 

response to the noxious thermal stimulus (50-51˚C) was recorded in seconds as the paw with-

drawal latency (PWL) (Hargreaves et al., 1988). Average PWL for three trials was calculated for 

each animal. The Paw Thermal Stimulator was set to produce latencies between 8-10 seconds 

and terminated after 20 seconds if no withdrawal occurred. Testing chambers and apparatus 
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were cleaned thoroughly with 70% ETOH between session; vapors were allowed to evaporate 

completely before the next session commenced.  

Twenty-four hours later, animals received naloxone (5 mg/kg; i.p.) or saline. Fifteen 

minutes after naloxone, PWL was measured immediately before (pre-stress) and after (post-

stress) 30 min of restraint stress as stated. Data are represented as raw latencies (in sec). 

 

Sample Collection  

Behaviorally naïve neonatally injured and control animals (P75-80) underwent perfusion 

fixation for immunohistochemistry (n=7/treatment/sex) or rapid decapitation for in situ hybridiza-

tion (n=5/treatment/sex). Tissue fixation occurred as reported previously (LaPrairie and Murphy, 

2009). Briefly, animals were given a euthanizing dose of sodium pentobarbital (160 mg/kg) in-

traperitoneally (i.p.) and perfused transcardially. Heparin-sodium (0.1 mL) was injected into the 

heart to prevent blood coagulation. Blood was removed from the brain with 0.9% sodium chlo-

ride and 2% sodium nitrite solution (250 mL). Fixation was achieved using 4% paraformalde-

hyde in 1 M phosphate buffer containing 2.5% acrolein (350 mL) (Polysciences, USA). A final 

wash of sodium chloride-sodium nitrite solution (250 mL) removed residual acrolein.  Brains 

were stored in 30% sucrose at 4˚C until sectioned. Alternatively, animals were placed in a 

decapacone (VWR, USA) and decapitated with a razor sharp guillotine. Immediately thereafter, 

brains were extracted, flash frozen in 2-methylbutane (VWR, USA) chilled on dry ice and stored 

at -80˚C until sectioned.  

 

Immunohistochemistry 

Perfusion-fixed brains were sectioned in 1:6 series at 25 µM through the rostrocaudal 

axis. Sections were removed from the cryoprotectant-antifreeze solution, rinsed extensively in 

potassium phosphate buffer (KPBS), and reacted for 20 minutes in 1% sodium borohydride to 

remove excess aldehydes. Sections were incubated in primary antibody solution directed 
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against methionine enkephalin in KPBS containing 1.0% Triton X for 1 hour at room tempera-

ture (RT), followed by 48 hours at 4°C. Met-enkephalin (Lot # 1004002) immunoreactivity was 

identified using polyclonal rabbit anti-met-enkephalin antibody at a concentration of 1:50,000 

(Immunostar; Hudson, WI, USA). Staining was completely eliminated by pretreatment with 5 µg 

met-enkephalin per mL diluted antiserum, but not 5 µg leucine enkephalin per mL diluted antise-

rum (manufacturer technical information). For chromagen staining, tissue was rinsed in KPBS, 

incubated for 1 hour in biotinylated goat-anti-rabbit IgG secondary antibody (Jackson Immu-

noresearch, USA; 1:600) solution containing KPBS and 0.4% Triton X, rinsed again, and incu-

bated for 1 hour in 0.009% avidin-biotin peroxidase complex (ABC Elite Kit; Vector Labs, USA). 

After rinsing in KPBS and sodium acetate (0.175 M; pH 6.5), antigens were visualized using 

nickel sulfate-intensified 3,3-diaminobenzidine solution containing 0.083% hydrogen peroxide in 

sodium acetate buffer. The reaction was terminated after 20-25 min by rinsing in sodium acetate 

buffer. Sections were mounted out of KPBS onto gelatin-subbed slides, air dried overnight, de-

hydrated in a series of graded alcohols, cleared in xylene, and coverslipped with Permount. For 

fluorescent staining, sections were washed in KPBS, incubated for 2.5 hours at RT in goat-anti-

rabbit IgG DyLight488 secondary antibody (Jackson Immunoresearch, USA; 1:50). Tissue was 

rinsed in KPBS, mounted as above and immediately coverslipped with VectaShield Hardset 

(Vector Labs, USA).    

 

Proenkephalin In Situ Hybridization 

Fresh frozen brains were sectioned in 1:6 series at 20 µM and mounted on SuperFrost Plus 

slides (Fisher Scientific, USA). Sections were stored at -80˚C until time of assay. Sense probe 

was hybridized to control for specific binding. Preproenkephalin in situ hybridization was per-

formed using oligonucleotide probe as reported previously (Lim et al., 2004). Briefly, 50-base 

oligonucleotide 

(5’TCATCTGCATCCTTCTTCATGAAACCGCCATACCTCTTGGCAAGGATCTC-3’), comple-
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mentary to bases 715-764 of the rat proenkephalin mRNA (Genebank accession number 

NM_017139) was labeled with 35S-dATP at the 3’ end using terminal deoxynucleotidyl transfer-

ase. Sections were fixed with 4% paraformaldehyde/PBS, acetylated, and hybridized with the 

antisense probe. After the hybridization, slides were washed, dried, and exposed to Kodak Bio-

Max MR films (Kodak, USA).  

 

Densitometry 

Chromagen immunohistochemistry was quantified in pain- and stress-related regions 

with high density of met-enkephalin protein expression according to Bregma and region size 

defined in Paxinos and Watson, 5th edition: ventrolateral periaqueductal gray (vlPAG; Bregma: 

rostral -6.72 to caudal -8.76), central amygdala (CeA; Bregma: rostral -1.44 to caudal -3.24), 

lateral septum (LS; Bregma: rostral 2.28 to caudal -0.48), paraventricular nucleus (PVN; Breg-

ma: rostral -0.84 to caudal -2.04, nucleus accumbens (NAcc; Bregma: rostral 2.52 to caudal 

0.84). For each region of interest (ROI), 12-bit grayscale images of each section were captured 

with a 20X objective on a Nikon Eclipse E800 microscope using a QImaging Retiga EXi CCD 

camera and quantified with iVision Software (BD Biosciences, USA; Apple, USA). For each ROI, 

three sections per animal were sampled randomly. The mean grayscale pixel value was meas-

ured from a box of fixed size (vlPAG: 1.5 mm2; CeA: 1.5 mm2; LS 2.0 mm2; PVN 1.0 mm2; NAcc 

2.0 mm2) and recorded. Measures were corrected for nonspecific binding by subtracting back-

ground adjacent to the ROI that lacked immunoreactivity. Mean specific immunoreactivity was 

reported as the relative optical density (ROD). For in situ hybridization data, C-14 microscales 

(GE Healthcare Life Sciences, USA) were used to create standard curves (R2>0.99) for each 

assay. For each ROI, sections were selected and captured using the above criteria with Scion 

Image (NIH and Scion Corp., USA), MTI CCD 72 camera and Northern Light box (Imaging Re-

search, Inc., CN). The mean pixel value was recorded and measures were corrected for non-
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specific binding by subtracting background adjacent to the ROI that lacked hybridization. Mean 

specific hybridization was reported as the disintegrations per minute per mg of tissue (dpm/mg). 

 

Statistical Analysis 

Significant main effects of neonatal treatment and sex or neonatal treatment and drug 

were assessed using two-way ANOVA or Repeated Measures ANOVA. Where effects of sex 

were not observed, data are collapsed by treatment for simplicity. Student’s unpaired or paired 

t-tests were used for post-hoc analyses to determine differences between groups. Where appli-

cable, values ≥2 standard deviations from the mean were eliminated as outliers. All compari-

sons were apriori specified. Confidence was set to p < 0.05 and considered statistically signifi-

cant.   

2.4 Results 

Neonatal Injury And Adult Affective Behaviors  

To test the impact of neonatal injury on adult responses to anxiety-provoking stimuli, 

male and female rats were exposed to the Open Field (OF). Significant main effects of treat-

ment and sex were assessed using a 2-way ANOVA.  Neonatally injured adults spent more time 

in the inner area than controls (F(1,23) = 50.24; P < 0.0001) independent of sex (F(1,23) = 1.21; P = 

0.28) (fig. 1a). Neonatal treatment had no effect on the number of lines crossed (F(1,23) = 1.13; P 

= 0.35) (fig. 1b) indicating no effect of injury on locomotion. Together, these data suggest that 

early life pain dampened behavioral responses to anxiety-provoking stimuli. 

To test the effect of neonatal injury on adult stress-related behavior, rats were exposed 

to the forced swim test (FST). A 2-way ANOVA was used to test for significant main effects of 

treatment and sex. Latency to immobility (LTI) was significantly increased in neonatally injured 

adults as compared with controls (F(1,30) = 23.03; P < 0.0001)(fig. 2a), suggesting reduced sensi-

tivity to stress. No significant main effect of sex was observed (F(1,30) < 1; P = 0.38). Neonatally 
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injured adults also excreted significantly less fecal boli (F(1,30) = 8.84; P = 0.0058) (fig. 2b) con-

sistent with the injury-induced decrease in sensitivity to stress. No significant change in the du-

ration of immobility was observed (F(1,30) < 1.0; P = 0.97) (fig. 2c). Together, these data suggest 

that early life pain dampened sensitivity to stress-provoking stimuli. 

 

Neonatal Injury And Anhedonia  

The sucrose preference test was used to assess for neonatal injury-induced changes in 

hedonic state. Significant main effects of treatment and sex were assessed using a 2-way 

ANOVA. Neonatal injury did not change adult preference for sucrose over water as compared 

with controls (F(1,49) < 1; P = 0.98). Similarly, no effect of sex was observed (F(1,49) = 2.10; P = 

0.15)(fig. 2d). These results suggest that early life pain had no impact on an animal’s hedonic 

state.   

 

Enkephalin Mrna And Protein Increase In Pain And Stress-Related Brain Regions  

To test whether neonatal injury increased adult enkephalin mRNA in pain and stress-

related brain regions, density of in situ hybridized proenkephalin was measured in the vlPAG, 

CeA, LS, NAcc and PVN (fig. 3). These regions were selected as they contain high levels of 

enkephalin and have been previously implicated in an organisms’ response to stress (Lightman 

and Young, 1987; Sanchez et al., 1992; Ulrich-Lai and Herman, 2009). Significant main effects 

of treatment and sex were assessed using a 2-way ANOVA. Neonatal injury significantly in-

creased proenkephalin mRNA expression in the vlPAG (56%; F(1,16)  = 18.12; P < 0.0006), CeA 

(66%; F(1,16)  = 96.80; P <0.0001) and LS (32%; F(1,16)  = 4.51; P = 0.049) as compared with con-

trols. No change in proenkephalin mRNA was observed in the NAcc (F(1,16)  = 0.54; P = 0.47) or 

PVN (F(1,16)  = 3.33; P = 0.087) (data not shown). Sex differences were not observed in any of 

the brain regions examined. 
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To test whether the injury-induced increase in proenkephalin mRNA expression in-

creased met-enkephalin protein, density of protein immunoreactivity was measured in the above 

regions of interest (fig. 4). Two-way ANOVA was used to test for significant main effects of 

treatment and sex. Neonatal injury significantly increased the expression of met-enkephalin pro-

tein in the vlPAG (138%; F(1,24)  = 180.81; P < 0.0001),  CeA (101%; F(1,24)  = 136.83; P < 0.0001) 

and LS (55%; F(1,24)  = 34.78; P < 0.0001) as compared to controls. No change in met-

enkephalin protein was observed in the NAcc (F(1,24)  = 1.10; P = 0.30) or PVN (F(1,24)  = 0.17; P = 

0.68) (data not shown). Consistent with proenkephalin mRNA expression, sex differences in 

met-enkephalin protein expression were not observed in any of the brain regions examined.  

 

Opioids Are Necessary For Impaired Stress Response 

Our anatomical data demonstrated a significant increase in enkephalin expression in 

neonatally-injured animals. Therefore, we next determined whether the increase in stress 

threshold observed in the FST was opioid-mediated. Rats (n=8-9/treatment/sex) were given the 

opioid receptor antagonist, naloxone HCl intraperitoneally (i.p.) 15 minutes before FST (fig. 5a). 

As no significant effect of sex was observed in our previous studies (see fig. 2), data are col-

lapsed across sex and analyzed for significant main effects of treatment and drug using a 2-way 

ANOVA. Systemic naloxone significantly reduced LTI of neonatally injured adult rats in compari-

son to vehicle control injured rats (drug: F(2,43) = 9.58; P = 0.0004) (fig. 5a). Importantly, latency 

to immobility of neonatally injured adults was similar to control levels in the presence of 1 mg/kg 

or 5 mg/kg naloxone (fig. 5a). Again, we observed no effect of treatment (F(1,43) < 1; P = 0.51) or 

drug (F(2,43) < 1; P = 0.97) in the duration of immobility (fig. 5b) and no significant change in fecal 

boli were observed (data not shown).  
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Neonatal Injury Impairs Adult Stress-Induced Analgesia  

It is well established that acute stress activates neural systems that inhibit pain. As our 

data show that neonatal injury decreases adult sensitivity to stress (fig. 2, fig. 5), we next as-

sessed whether adult stress-induced analgesia was altered by early life pain. Paw withdrawal 

latency (PWL) was measured using a Paw Thermal Stimulator before and after 30 minutes of 

restraint stress. No effect of sex was observed so data are collapsed. Restraint stress signifi-

cantly increased PWL from baseline in the left paw of controls, as compared with injured adults 

(Repeated Measures ANOVA: F(1,22) = 5.58; P = 0.028)(fig. 6a). Specifically, PWL for controls 

increases by 86% from baseline indicating the induction of stress induced analgesia (post-hoc 

paired t-test: t(11) = 8.25; P ≤ 0.0001)(fig. 6a). By contrast, neonatally injured adult rats did not 

display stress-induced analgesia (post-hoc paired t-test: t(11) = 1.53; P = 0.16) (fig. 6a) (PWL be-

fore stress 11.4 seconds versus 12.9 seconds after stress; 14% change from baseline). A simi-

lar trend was observed in the right paw, such that PWL increased by 88% for controls, but only 

44% for injured adults following restraint (data not shown). Data are collapsed by neonatal 

treatment, as no effect of sex was observed for the change in PWL from baseline in either the 

left (Repeated Measures ANOVA: F(1,20) < 1; P = 0.84) or right paws (Repeated Measures 

ANOVA: F(1,20) < 1; P = 0.53). 

To determine whether neonatal injury impaired stress-induced analgesia through an opi-

oid-dependent mechanism, naloxone HCl (5 mg/kg; i.p.) was administered 15 prior to restraint 

stress. Naloxone completely blocked stress-induced analgesia in the left (Repeated Measures 

ANOVA: F(3,20) = 5.078; P = 0.0089) and right (Repeated Measures ANOVA: F(3,20) = 3.41; P = 

0.038; data not shown) paw of controls and neonatally injured adults (fig. 6b). Consistent with 

fig. 6a, vehicle treated controls, but not neonatally injured adults, displayed stress-induced anal-

gesia. 
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2.5 Discussion  

The present studies were conducted to determine whether a single inflammatory insult 

administered on the day of birth impacted adult responses to stress- and anxiety-provoking 

stimuli through an opioidergic mechanism. Our results show that neonatally injured adults had 

significantly decreased anxiety-like behaviors and decreased sensitivity to stress as compared 

with controls. Administration of the opioid antagonist naloxone HCl attenuated stress thresholds 

in both the forced swim and stress-induced analgesia tests, suggesting the opioid system is 

necessary for the observed deficits in stress responsiveness. Neonatally injured adults showed 

significantly increased proenkephalin mRNA and met-enkephalin protein expression in the 

vlPAG, CeA, LS but not in the NAcc or PVN relative to controls. These data are the first mecha-

nistic demonstration that early life inflammatory pain changes adult responses to stress through 

alterations in the endogenous opioid system. Moreover, these data contribute to the growing 

number of animal studies addressing issues surrounding early life pain, analgesia and anesthe-

sia and their long-term consequences (Anand et al., 1999; Alvares et al., 2000; Bhutta et al., 

2001; LaPrairie et al., 2008; Medeiros et al., 2011; Medeiros et al., 2012). 

 

A Single Neonatal Injury Decreases Behavioral Sensitivity To Aversive Stimuli 

Neonatal injury impacted adult anxiety-like behavior in the OF such that adults spent 

significantly more time in exposed areas than controls, independent of locomotor behavior. The-

se data suggest that injury on P0 significantly decreases adult anxiety-like behaviors or sensi-

tivity to anxiogenic stimuli. In the FST neonatally injured adults had a significantly higher thresh-

old for stress, taking approximately 10-15 seconds longer (97%) than controls to become immo-

bile. Administration of the opioid antagonist naloxone attenuated the stress threshold of neona-

tally injured adults such that it was similar to controls, suggesting that our observed decrease in 

sensitivity to stress-provoking stimuli occurs through an opioid-dependent mechanism. In paral-

lel, neonatally injured adults excreted less fecal boli in the FST. As opioids are known to regu-
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late behaviors in the FST and decrease colonic motility, these data are consistent with in-

creased expression of endogenous opioids (Gillan and Pollock, 1980; Amir, 1982).  

We hypothesize that the observed changes in anxiety- and stress-related behaviors re-

sult from injury-induced augmentation of the enkephalinergic system. In support, viral overex-

pression of preproenkephalin or direct administration of enkephalin potentiates the anxiolytic 

effects of benzodiazepines, increases time in the open arms and blocks swim-stress induced 

anxiety in the EPM (Kang et al., 2000; Randall-Thompson et al., 2010). Conversely, knockout of 

the enkephalin gene in mice increases anxiety-like behavior in the OF, suggesting that 

enkephalin has anxiolytic properties (Konig et al., 1996; Kang et al., 2000; Randall-Thompson et 

al., 2010).  

Importantly our data are consistent with clinical studies showing that former NICU pa-

tients display significantly reduced sensitivity to stress, suggesting early life trauma reduces 

sensitivity to aversive stimuli (Hack et al., 2004; Hermann et al., 2006; Grunau et al., 2007; 

Hayes and Sharif, 2009). Reports also show former preterm infants experience impairments of 

self-concept relative to their environment, altered ability to externalize, reduced ability to adapt 

and cognitive inflexibility (Levy-Shiff et al., 1994; Hayes and Sharif, 2009). Although we cannot 

specifically delineate many of these behaviors in rodents, increased exploration into an open 

area exposed to predation or reduced behavioral sensitivity to acute or severe stressors can be 

likened to insensitivity to salient cues in the environment, inattention and impaired ability to 

adapt.  

 

Neonatal Injury Mitigates Stress-Induced Analgesia 

Consistent with our previous studies, we found that neonatal injury resulted in a signifi-

cant increase in basal pain sensitivity (LaPrairie and Murphy, 2007, 2009). Further, we now re-

port that injury on the day of birth attenuates restraint stress-induced analgesia by greater than 

100% in adults in comparison to controls. This impairment in stress-induced analgesia was ob-
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served in both the neonatally injured and uninjured paws of adults relative to controls. Systemic 

naloxone HCl prevented stress-induced analgesia (Mogil et al., 1996), suggesting that changes 

in the endogenous opioid systems are responsible for dysregulating normal functioning of the 

stress system. These findings are consistent with our previous studies showing opioid-

dependent increases in basal pain threshold (LaPrairie and Murphy, 2007, 2009), and threshold 

for forced swim stress. 

Previous studies have reported that early life stress in mice decreases adult stress-

induced analgesia (Sternberg and Ridgway, 2003).  Furthermore, our observed impairment is 

consistent with clinical reports of attenuated stress-induced analgesia in adolescents and teens 

that experienced burns early in infancy (Wollgarten-Hadamek et al., 2011). Consistent with our 

observed increase in endogenous opioid-tone, high levels of enkephalin are known to dampen 

the perception of noxious or aversive stimuli, including pain associated with formalin inflamma-

tion, anxiety in the EPM and fecal boli excreted in response to immobilization stress (Tanaka et 

al., 1989; Kang et al., 1998; Randall-Thompson et al., 2010). In the context of our observed in-

creases in anxiolytic behaviors and opioid-dependent increases in stress and pain thresholds 

(LaPrairie and Murphy, 2007, 2009), our stress-induced analgesia data are consistent with a 

general hyposensitivity to noxious or aversive stimuli. 

 

Neonatal Injury Site-Specifically Augments Expression Of Enkephalin  

The most profound increases in proenkephalin mRNA and met-enkephalin protein oc-

curred in the vlPAG, CeA and LS. Increases in enkephalin expression in these regions provide 

potential neuroanatomical substrates for impaired responses to stress observed in our neonatal-

ly injured adults.  Increases in mRNA and protein expression in each region occurred in parallel, 

and with similar magnitude, suggesting changes in expression are maintained through transcrip-

tional or post-transcriptional epigenetic mechanisms. These finding are in line with other models 

of early life perturbation showing concomitant, unidirectional changes in mRNA and protein in 



33 

adult animals (Weaver et al., 2005; Schwarz et al., 2011). For example, preproenkephalin 

mRNA and met-enkephalin protein increase significantly in stress-related brain regions, includ-

ing the CeA, in response to perinatal stress induced by dam restraint or pup exposure to an in-

fanticidal adult male rat (Sanchez et al., 1992; Wiedenmayer et al., 2002). Overexpression of 

enkephalin or direct administration of an enkephalin analogue into the CeA dampens anxiety in 

the EPM and produces naloxone-reversible analgesia (Kang et al., 1998; Kang et al., 2000; 

Randall-Thompson et al., 2010). Conversely, loss of proenkephalin increases anxiety-like be-

havior, as reflected by a decrease in the number of inner area entries into the OF, decrease in 

latency to attack an intruder and increase in startle amplitude in response to acoustic perturba-

tions (Konig et al., 1996; Bilkei-Gorzo et al., 2008). Collectively, these data suggest enkephalin 

is critical for reducing responses to anxiety- and stress-provoking stimuli.  

The contribution of other endogenous opioids, such as ß-endorphin and leu-enkephalin, 

to the long-term changes in affective behavior we observed cannot be ruled out. Previously, we 

reported that neonatal injury increases ß-endorphin in the vlPAG, but fiber number was low and 

distribution sparse (LaPrairie and Murphy, 2009). Injury also increases leu-enkephalin (LaPrairie 

and Murphy, 2009), however, preproenkephalin is known to yield four times more met-

enkephalin protein as compared with leu-enkephalin (Yoshikawa et al., 1984).  

Our working hypothesis is that early life pain experienced during this critical period of 

development (P0-P8 (LaPrairie and Murphy, 2007)) increases afferent drive to brain regions re-

sponsive to noxious input (e.g. vlPAG, CeA and LS). This increase in afferent nociceptive drive 

results in the activation of supraspinal pain and stress circuits (Walker et al., 1986; Fitzgerald, 

2005; LaPrairie and Murphy, 2009). Subsequent release of endogenous opioid peptides damp-

ens perception, produces analgesia and promotes recovery from the inflammatory insult. As the 

inflammation associated with intraplantar carrageenan persists for 24-72 hours, the release of 

endogenous opioids is sustained. It is highly probable the continuous demand for enkephalin 
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programs the methylation or chromatin profile of the enkephalin promoter, such that high pro-

duction of enkephalin becomes the basal state and persists throughout life.  

Our data fit within a broad framework of studies documenting the long-term impact of 

early life experience on stress responsiveness (Weaver et al., 2004; Anseloni et al., 2005; 

Benetti et al., 2007; Korosi et al., 2010; Morgan and Bale, 2011; Schwarz et al., 2011). To our 

knowledge this is the first study to mechanistically establish that early life pain impairs adult 

stress through an endogenous opioid-dependent mechanism. Collectively, these data argue that 

insensitivity to stress and pain (LaPrairie and Murphy, 2007, 2009) we observed are adaptions 

to the early life environment. However, decreased ability to evaluate or respond to aversive or 

noxious stimuli, such as venturing into an area open to predation, excess energy expenditure 

when faced with the threat of drowning or inability to produce appropriate analgesia, can have 

severe, even mortal consequences. Thus, these behavioral changes are potentially maladap-

tive. Admittedly, medical sequelae surrounding prematurity are diverse and complex. However, 

clinical studies report former preterm infants experience significantly higher behavioral and hor-

monal thresholds for stress and pain as compared with term-born controls, suggesting reduced 

sensitivity to noxious or potentially harmful stimuli (Hermann et al., 2006; Grunau et al., 2007). 

Here, our studies delineate specific long-term effects associated with a single neonatal injury. 

These findings should be considered by the clinical community to promote changes in analgesic 

regimens for NICU patients. Our observations advocate for consistent and appropriate analge-

sia regimens for NICU patients to reduce the potential for mental health complications associat-

ed with premature birth.  
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2.6 Chapter 2 Figures 

 

 

Figure 2.1 Neonatal injury increases adult anxiolytic behaviors 
(a) Duration spent in the inner area of the Open Field was significantly increased by neonatal 
injury for both females and males similarly. (b) Locomotor behavior, as measured by the num-
ber of lines crossed in the Open Field, was not affected by neonatal injury. Data are shown as 
2-way ANOVA (Mean ± SEM); n = 6-8 subjects per group. Significant main effect of treatment 
was observed in (a). (*) Denotes significant group differences as measured post-hoc by Stu-
dent’s t-test. P < 0.05. 
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Figure 2.2 Neonatal injury increases adult threshold for stress but does not produce   
anhedonia 
(a) Latency to immobility, the first display of immobile behavior in the Forced Swim Test (FST), 
was significantly increased by neonatal injury in females and males similarly, relative to handled 
controls. (b) Number of fecal boli excreted during the 5 minute FST were significantly reduced 
by neonatal injury. (c) Duration of immobility in the FST was not affected by neonatal injury. (d) 
Percent preference for 1% sucrose solution over a 48 hour period was not changed by neonatal 
injury. Data are shown as 2-way ANOVA (Mean ± SEM); n = 8-9 subjects per group in FST; n = 
9-16 subjects per group in SPT. Significant main effect of treatment was observed in (a-b). (*) 
Denotes significant group differences as measured post-hoc by Student’s t-test. P < 0.05. 
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Figure 2.3 Neonatal injury increases adult expression of proenkephalin mRNA in pain 
and stress-related brain regions 
Neonatal injury increases adult expression of proenkephalin mRNA in pain and stress-related 
brain regions. Proenkephalin mRNA was visualized on film via in situ hybridization using an oli-
go-proenkephalin probe. Relative optical density of proenkephalin mRNA was significantly in-
creased by neonatal injury in the (a) mid through caudal ventral lateral PAG (vlPAG), (b) central 
amygdala (CeA), (c) lateral septum (LS). (d) Specificity of oligo-antisense probe for pro-
enkephalin sequence as demonstrated by lack of hybridization with sense control. S-35 disinte-
grations per minute per milligram tissue (dpm/mg). Data are shown as 2-way ANOVA (Mean ± 
SEM); n = 5 subjects per group. Significant main effect of treatment was observed in (a-c). (*) 
Denotes significant group differences as measured post-hoc by Student’s t-test. P < 0.05. 
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Figure 2.4 Neonatal injury increases adult met-enkephalin protein immunoreactivity in 
pain and stress-related brain regions 
Consistent with proenkephalin mRNA expression, relative optical density of met-enkephalin im-
munoreactivity was significantly increased by neonatal injury in the (a) mid through caudal ven-
tral lateral PAG (vlPAG) consistent with our previous reports, (b) central amygdala (CeA), (c) 
lateral septum (LS). Aquaduct (Aq), basolateral amygdala (BLA), lateral ventricle (LV). Data are 
shown as 2-way ANOVA (Mean ± SEM); n = 7 subjects per group. Significant main effect of 
treatment was observed in (a-c). (*) Denotes significant group differences as measured post-
hoc by Student’s t-test. P < 0.05. 
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Figure 2.5 Naloxone attenuates the injury-induced increase in adult stress threshold 
 (a) Neonatally injured adults given vehicle had significantly increased latency to immobility (LTI) 
as compared with controls. Injured adults given naloxone HCl (1 mg/kg or 5 mg/kg; i.p.) 15 
minutes before FST show significantly reduced LTI such that LTI became similar to controls. (b) 
Duration of immobility in the FST was not affected by naloxone treatment. Data are shown as 2-
way ANOVA (Mean ± SEM); n = 8-9 subjects per group.  Significant main effects of treatment 
and drug were observed in (a). (*) Denotes significant group differences as measured post-hoc 
by Student’s t-test. P < 0.05. 
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Figure 2.6 Neonatal injury impairs adult stress-induced analgesia (SIA) through an     
opioidergic mechanism. 
 (a) Paw withdrawal latency (PWL) before and after 30 minutes of restraint stress. Restraint sig-
nificantly increased PWL in controls but not neonatally injured adults. (b) Naloxone HCl (5 
mg/kg) significantly reduced PWL in neonatally injured adults similarly to controls demonstrating 
that SIA is opioid-based. As in (a), neonatally injured adults given vehicle did not exhibit SIA as 
compared with controls. Data are shown as Repeated Measures ANOVA (Mean ± SEM) for the 
left paw as the same trend was observed in the right paw; n = 6 subjects per group. Significant 
main effect of treatment was observed in (a-b). (*) Denotes significant group differences as 
measured post-hoc by a paired Student’s t-test. P < 0.05. 
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Figure 2.7 Protocol for testing the effect of neonatal injury on adult stress-induced anal-
gesia 
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3.1 Abstract 

Inflammatory pain experienced on the day birth (postnatal day 0: PD0) significantly 

dampens behavioral responses to stress- and anxiety-provoking stimuli in adult rats. However to 

date, the mechanisms by which early life pain permanently alters adult stress responses remain 

unknown. The present studies examined the impact of inflammatory pain, experienced on the 

day of birth, on adult expression of receptors or proteins implicated in the activation and termi-
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nation of the stress response, including corticotrophin releasing factor receptors (CRFR1 and 

CRFR2) and glucocorticoid receptor (GR). Using competitive receptor autoradiography, we 

show that Sprague Dawley male and female rat pups administered 1% carrageenan into the 

intraplantar surface of the hindpaw on the day of birth have significantly decreased CRFR1 

binding in the basolateral amygdala and midbrain periaqueductal gray in adulthood. In contrast, 

CRFR2 binding, which is associated with stress termination, was significantly increased in the 

lateral septum and cortical amygdala. GR expression, measured with in situ hybridization and 

immunohistochemistry, was significantly increased in the paraventricular nucleus of the hypo-

thalamus and significantly decreased in the hippocampus of neonatally injured adults. In paral-

lel, acute stress-induced corticosterone release was significantly attenuated and returned to 

baseline more rapidly in adults injured on PD0 in comparison to controls. Collectively, these da-

ta show that early life pain alters neural circuits that regulate responses to and neuroendocrine 

recovery from stress, and suggest that pain experienced by infants in the Neonatal Intensive 

Care Unit may permanently alter future responses to anxiety- and stress-provoking stimuli. 

3.2 Introduction 

Approximately 12% of live births in the United States occur before 37 gestational weeks 

and are considered premature (http://www.marchofdimes.com/peristats/). These infants spend 

on average 25 days in the Neonatal Intensive Care Unit (NICU) where they endure 10-18 pain-

ful and inflammatory procedures per day, including heel lance, endotracheal intubation, respira-

tory and gastric suctioning and surgery (Barker and Rutter, 1995; Simons et al., 2003; Carbajal 

et al., 2008)http://www.marchofdimes.com/peristats/). Despite strong evidence that pain and 

stress circuitry are established and functional in preterm infants (Anand et al., 1987b; Grunau et 

al., 2005; Bartocci et al., 2006; Slater et al., 2006), 65% of these procedures are performed in 

the absence of analgesia (Barker and Rutter, 1995; Simons et al., 2003; Carbajal et al., 2008).  

Clinical studies suggest early life pain has an immediate and long-term impact on re-



44 

sponses to stress- and anxiety-provoking stimuli (Sullivan et al., 2012). Intrinsically, painful 

NICU procedures activate the stress response (Anand et al., 1987b; Grunau et al., 2005; 

Grunau et al., 2010). For example, preterm infants undergoing surgical procedures without an-

algesia have significantly higher concentrations of catecholamines and glucocorticoids (corti-

costerone: CORT) during and after surgery as compared with infants receiving analgesic treat-

ment (Anand et al., 1987b). While initially heart rate, facial reactivity and cortisol levels of pre-

term infants are high in response to procedural pain, they become significantly blunted as the 

number of skin breaking procedures increases (Grunau et al., 2005; Grunau et al., 2010). Even 

in early childhood, cortisol release in response to painful stimuli remains blunted in former pre-

term infants (Grunau et al., 2007; Grunau et al., 2010), and represents a known risk factor for 

adult psychopathologies such as depression and post-traumatic stress disorder 

(PTSD)(Chrousos, 2009).  

We have previously reported that a single inflammatory insult (1% carrageenan; hind 

paw), administered on the day of birth (postnatal day 0: PD0), significantly dampens behavioral 

responses to stress-, anxiety-, and pain-provoking stimuli in adult rats (LaPrairie and Murphy, 

2007, 2009; Victoria et al., 2013b). Our studies further show that these behavioral changes are 

due to alterations in the endogenous opioid system (LaPrairie and Murphy, 2007, 2009; Victoria 

et al., 2013b). Most recently, we reported that early life pain permanently upregulates enkepha-

lin mRNA and protein in the central amygdala, lateral septum and midbrain periaqueductal gray, 

brain regions that are highly responsive to stress (Victoria et al., 2013b). Notably, the endoge-

nous opioid system works in parallel with classic systems regulating hypothalamic pituitary ad-

renal (HPA) axis activity. For example, enkephalin and corticotrophin releasing factor (CRF), 

which is essential for activation of the HPA axis (Vale et al., 1981), are simultaneously released 

from the hypothalamus in response to stress (Lightman and Young, 1989). Further, CRF and 

CRF receptors (CRFR) co-localize with and co-express endogenous opioids throughout the 

brain (Rivalland et al., 2005; Mousa et al., 2007). The glucocorticoid receptor (GR) system, 
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which terminates HPA activity (Dallman et al., 1987), regulates expression of both the endoge-

nous opioid and CRFR systems (Lightman and Young, 1989). Given that early life pain alters 

the endogenous opioid system, which interacts with factors regulating the stress axis, the pre-

sent study was conducted to test the hypothesis that a single inflammatory insult on the day of 

birth alters CRFR and GR systems in adulthood.  

3.3 Materials And Methods 

Animals  

Pregnant Sprague-Dawley rat dams were obtained on gestational day 14 (GD14; 

Charles River, USA). Dams were housed individually under 12:12 hr light:dark cycle with ad libi-

tum access to food and water. On the day of birth (PD0), pups were sexed by examination of 

anogenital distance and subjected to neonatal treatment. All litters were reared identically, 

weaned on PD21 and housed with same sex littermates in groups of 2-3. Male and female rats 

were used in all experiments and tested on separate days. All experiments adhered to the 

guidelines of the Committee for Research and Ethical Issues of International Association for the 

Study of Pain, and were approved by the Georgia State University Animal Care and Use Com-

mittee. Behavior experiments were conducted during the light phase (9:00-12:30), animal order 

was randomized and the experimenter was blinded to neonatal treatment. 

 

Neonatal Treatment  

Acute neonatal inflammatory injury was induced as in our previous studies (LaPrairie 

and Murphy, 2007, 2009; Victoria et al., 2013b). Within 24 hours of birth on PD0, male and fe-

male rat pups received an injection of 5 µL carrageenan (CGN, 1% dissolved in saline; Sigma, 

USA) into the intraplantar surface of the right hind paw. This time point is developmentally com-

parable to 24 weeks of gestation in humans (Workman et al., 2013). Intraplantar CGN is a well-

established model of early life inflammatory pain that results in local edema lasting approximate-
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ly 24-72 hours in pups (Lidow et al., 2001; Ren et al., 2004; LaPrairie and Murphy, 2007). Sepa-

rate litters were handled as a control. Intraplantar saline was not administered as it results in an 

inflammatory response (<24 hrs). Pups were separated from their dam for no more than 20 

minutes, maintained on a warm surface and returned to the home cage as a group. We have 

previously reported that this protocol does not alter maternal behavior (LaPrairie and Murphy, 

2007; LaPrairie et al., 2008; LaPrairie and Murphy, 2009). In total, 26 litters (10-12 pups each) 

were generated, from which 117 animals were used in the present study. Approximately half of 

the animals were used for measures of anatomy (n = 60), while the remaining half were tested 

for HPA reactivity (n = 57). Therefore, while all measures do not contain pups from each litter, 

treatment consisted of pups from multiple litters in all measures (n = 5-12/treatment/sex per de-

pendent variable). Each litter received a single treatment. Animals were undisturbed except for 

routine cage changes until adulthood (PD60). A summary of the experimental protocol is pro-

vided in Figure 1.  

 

Estrus Cycling 

Two weeks before euthanization or stress testing, vaginal lavage (starting ≥PD60) was 

performed once daily to track the estrus cycle of females (Fig. 1). Estrus stage was defined by 

presence of stage-specific epithelial cells in ≥90% of the cell population. Specifically, proestrus, 

estrus, diestrus I and diestrus II were defined by presence of nucleated epithelial cells, cornified 

epithelial cells, leukocytes and all cell types, respectively (Becker et al., 2005). Males were han-

dled one time per day to control against an effect of handling on stress responsiveness in fe-

males. Similar to females, males were removed from their cage by the base of the tail, placed 

on a clean cart for 10 s (time for vaginal sample collection) and then returned to their cage. Cy-

cling and handling occurred in the morning between 08:00-10:00. Non-cycling females were 

eliminated from the study. Blood and tissue samples were collected across all cycle stages. 
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Euthanization 

Behaviorally naïve neonatally injured and control animals (PD75-80) underwent perfu-

sion fixation for immunohistochemistry or decapitation for receptor autoradiography and in situ 

hybridization (Fig. 1). For tissue fixation, animals were given a euthanizing dose of sodium pen-

tobarbital (160 mg/kg; i.p.) and perfused transcardially with 0.9% sodium chloride and 2% sodi-

um nitrite solution (250 mL; before and after fixation). Fixation was achieved using 4% para-

formaldehyde in 1 M phosphate buffer (pH 6.8) containing 2.5% acrolein (350 mL) (Polyscienc-

es, USA). Brains were stored in 30% sucrose at 4˚C until sectioned. Alternatively, animals were 

placed in a decapacone (VWR, USA) and decapitated with a razor sharp guillotine. Immediately 

thereafter, brains were extracted, flash frozen in 2-methylbutane (VWR, USA) chilled on dry ice 

and stored at -80˚C until sectioned.  

 

CRF Receptor 1 And 2 Autoradiography 

Fresh frozen brains were sectioned in 1:6 series at 20 µM and mounted on SuperFrost 

Plus slides (Fisher Scientific, USA). Sections were stored at -80˚C until time of assay. Competi-

tive autoradiography for CRFR1 and CRFR2 was conducted with CRFR agonist 125I Sauvagine 

(Perkin Elmer, USA) as the radioligand, and the CRFR1-selective antagonist CP-154,526 

(Tocris, USA) or CRFR2-selective antagonist Astressin-2B (Sigma, USA) as competitors to re-

veal CRFR2 and CRFR1, respectively. Procedures were performed as previously published 

(Lim et al., 2004; Ahern and Young, 2009). Briefly, slides were thawed at room temperature 

(RT) until dry and fixed in 0.1% paraformaldehyde (pH 7.4; 2 min). Slides were then washed in 

50 mM Tris buffer (pH 7.4; 10 min; 2 washes) and incubated for 2 hrs in tracer buffer containing 

50 mM Tris buffer, 10 mM MgCl2, 0.1% bovine serum albumin, 0.2 nM 125I Sauvagine and either 

500 nM Astressin-2B for visualization of CRFR1 or 500 nM CP-154,526 for visualization of 

CRFR2. Slides were incubated in 0.2 nM 125I Sauvagine without antagonists as a positive con-

trol; 0.2 nM 125I Sauvagine, 500 nM CP-154,526 and  500 nM Astressin-2B were applied to 
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slides to reveal nonspecific binding. Next, slides were washed in 50 mM Tris containing 0.2% 

MgCl2 for 5 min at 4˚C (4 washes) then for 30 min at RT (1 wash). Slides were briefly dipped in 

ddH2O, allowed to dry at RT and then exposed to BioMax MR film (Sigma, USA) for 72 hrs.  

 

Glucocorticoid Receptor In Situ Hybridization 

In situ hybridization was used to quantify GR mRNA. Fresh frozen brains were sectioned 

in 1:6 series at 20 µM, mounted on SuperFrost Plus slides (Fisher Scientific, USA), and stored 

at -80˚C until time of assay.  To measure rat GR mRNA, a GR fragment was amplified from 

cDNA of adult prairie vole brain with rodent GR primers (forward: 5’ 

GGACTTTCATAAAACCCTAAGGG 3’; reverse: 5’ ACCCAGCAGAAAACTCCAAATCC 3’) (In-

tegrated DNA Technologies, USA) using polymerase chain reaction. The 524 base pair nucleo-

tide sequence of prairie vole is 90.3% identical to base pairs 97-234 and 292-680 of rat GR se-

quence (Genbank accession number: NM_012576). 35S (Perkin Elmer, USA) UTP-labeled 

sense and antisense probes for GR mRNA were generated with GTP, CTP and ATP, spermi-

dine, DTT, RNAsin and RNA polymerase, using a linearized GR template by incubating for 2 hrs 

at 37 °C (Inoue et al., 2004; Burkett et al., 2011). Sense and antisense probes were purified, de-

hydrated and applied to slides in hybridization buffer for 16 hrs at 55˚C in a humidified chamber. 

Sections were stringently washed and excess probe was removed using RNAse digestion buffer 

containing RNAseA. Following a final high stringency wash and dehydration, sections were dried 

at RT and exposed to FujiFilm imaging plates (GE Healthcare Life Sciences, USA) for 4 days. 

Plates were processed with BAS5000 and Multigauge (FujiFilm, JP) for photomicrographic 

presentation. Sections were then laid on BioMax MR film (Sigma, USA) for 26 days for analysis 

and quantification.  
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Immunohistochemistry 

To confirm neonatal injury-induced changes in GR mRNA, perfusion fixed brains were 

sectioned in 1:6 series at 25 µM and processed immunohistochemically for visualization of GR 

protein as previously described (LaPrairie and Murphy, 2009). GR was visualized using a poly-

clonal IgG rabbit anti-GR antibody at a concentration of 1:40,000 (Santa Cruz Biotech Inc., 

USA; sc-1004 (M20)). This rabbit anti-serum was prepared against a peptide mapping at the N-

terminus of GRα of mouse origin. In Western Blotting, this antibody recognizes the 95/90 kDa 

GRα/ß protein. For chromagen staining, tissue was incubated for 1 hour in biotinylated goat-

anti-rabbit IgG secondary antibody (Jackson Immunoresearch, USA; 1:600) solution, rinsed and 

incubated for 1 hour in 0.009% avidin-biotin peroxidase complex (ABC Elite Kit; Vector, USA). 

After rinsing, antigen was visualized using nickel sulfate-intensified 3,3′-diaminobenzidine solu-

tion containing 0.083% hydrogen peroxide in sodium acetate buffer. The reaction was terminat-

ed after 20-40 min. Sections were mounted onto gelatin-subbed slides, air dried overnight, de-

hydrated in a series of graded alcohols, cleared in xylene, and coverslipped with Permount. 

 

Densitometry 

Binding, hybridization and immunoreactivity (ir) were quantified in regions previously im-

plicated in the activation, termination and processing of stressful stimuli (Ulrich-Lai and Herman, 

2009). As CRFR1 and CRFR2 are expressed differentially (Chalmers et al., 1995), measures 

were taken only in regions where specific binding was detectable from background. Selective 

binding of CRFR1 was quantified in the medial prefrontal cortex (mPFC; Bregma 3.72 to 2.52), 

lateral septum (LS; Bregma 2.28 to -0.48), BNST (BNST; Bregma 0.12 to -0.84), paraventricular 

nucleus (PVN; Bregma -1.32 to -2.04), medial amygdala (MeA; Bregma -1.44 to -3.60), basolat-

eral amygdala (BLA; Bregma -1.72 to -2.16) and ventrolateral periaqueductal gray (vlPAG; 

Bregma -6.72 to -8.76). Selective binding of CRFR2 was quantified in mPFC, LS, BNST, PVN, 

MeA, cortical amygdala (CoA; Bregma -3.96 to -5.64) and ventral hippocampus (vHPC; Bregma 
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-4.56 to -6.12). Positive control slides exhibited binding in regions known to express mRNA for 

both receptors (Chalmers et al., 1995). The presence of both antagonists prevented all binding 

in the negative control slides. GR mRNA hybridization was measured in the PVN, dorsal CA1 of 

the hippocampus (dCA1; Bregma -2.52 to -4.20), ventral CA1 of the hippocampus (vCA1; 

Bregma  -4.56 to -6.72) and central amygdala (CeA; Bregma -2.40 to -3.24). 125I and 14C mi-

croscales (ARC, USA; GE Healthcare Life Sciences, USA, respectively) with known tissue 

equivalent activities (disintegrations per minute per mg of tissue, dpm/mg) were used to create 

standard curves (R2>0.99) for each receptor autoradiography and in situ hybridization assay, 

respectively. ROI’s for receptor autoradiography and in situ hybridization were selected and 

captured using the above criteria with Scion Image Software (NIH), MTI CCD 72 camera and 

Northern Light box (Imaging Research, Inc., CN). Bregma and region size from Paxinos and 

Watson (2005), along with a series of adjacent sections stained with Neutral Red were used for 

anatomical reference. The mean pixel value was recorded from a box of fixed size (LS: 4.0 

mm2; mPFC: 2.5 mm2; vHPC: 2.0 mm2; BNST, PVN, MeA, BLA, CoA, CeA, vCA1, vlPAG: 1.5 

mm2; dCA1:  1.0 mm2). Measures were corrected for nonspecific binding (NSB) by subtracting 

background adjacent to the ROI that lacked binding or hybridization (mean NSB ± SEM was 

2.38 ± 0.15, 2.70 ± 0.46, 15.53 ± 0.92 dpm/mg for CRFR1, CRFR2 and GR, respectively). Mean 

specific binding or hybridization was reported as (dpm/mg).  

GR-ir was quantified in the PVN, dCA1, vCA1 and CeA. For each ROI, 12-bit grayscale 

images of each section were captured with a 10X objective for quantification (4X objective for 

photomicrograph presentation) on a Nikon Eclipse E800 microscope using a QImaging Retiga 

EXi CCD camera and quantified with iVision Software (BD Biosciences, USA; Apple, USA). For 

each ROI, three sections per animal were sampled randomly. The mean grayscale pixel value 

was measured from a box of fixed size as above and recorded. Measures were corrected for 

nonspecific binding by subtracting background adjacent to the ROI that lacked immunoreactivi-

ty. Mean specific immunoreactivity was reported as the relative optical density.  
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Restraint Or Forced Swim Stress And Blood Withdrawal 

Separate cohorts of neonatally injured and control adults (PD75-80) were subjected to 

15 minutes of restraint or 5 minutes of forced swim stress to activate the HPA axis. Animals 

were habituated to the testing rooms for 60 minutes, daily for 3 days before and on the day of 

testing. Males and females were tested on separate days in randomized order.  

Blood samples were collected (9:00-12:30) from the lateral saphenous vein directly into 

1 mL EDTA-hematology tube (BD from Fisher Scientific, USA) using a 23-gauge needle. Four 

time points were tested for each stressor. In tests using restraint stress, blood was collected 

immediately before placement into a plastic restrainer (baseline; 0 min), immediately after 15 

min of restraint (stress), 30 min after the onset of restraint (peak) and 75 min following onset of 

stress (recovery). Animals used in the forced swim test were first given a 5 min pre-swim 24 hrs 

prior to testing (Porsolt et al., 1977) as in our previous studies (Victoria et al., 2013b). On the 

day of forced swimming, blood was collected 60 min before swim to allow wound clotting and 

avoid water contamination (baseline; 0 min). Blood was also collected immediately after 5 min of 

swim in 25˚C water (stress), 30 min after the onset of swim (peak) and 75 min post-swim (re-

covery). Blood samples were maintained at room temperature for ≥30 min and centrifuged at 

4000 rcf at 4˚C for 15 min. Plasma was stored at -80˚C until radioimmunoassay for CORT (125I 

Double Antibody Corticosterone kit, MP Biomedicals, USA). Concentration of CORT was deter-

mined against known standards (R2 > 0.98) according to the manufacturer’s instructions. The 

minimum limit of detection was 7.02 ng/mL. Intra-assay coefficient of variation was 8.4%.  

 

Statistical Analysis 

All values are presented as Mean ± SEM. Significant main effects of neonatal treatment 

and sex were assessed using two-way analysis of variance (ANOVA) or Repeated Measures 

ANOVA for time. Area under the curve analyses relative to ground are reported for corti-

costerone data and were calculated using the formula, 
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, where C and t denote concentration of 

corticosterone and time point for sample collection, respectively (Pruessner et al., 2003). Per-

centages are reported as mean percent change from control. Tukey-Kramer was used for post-

hoc analyses to determine differences between groups. Where applicable, values ≥2 standard 

deviations from the mean were eliminated as outliers. All comparisons were apriori specified. 

Confidence was set to P < 0.05 and considered statistically significant.   

3.4 Results 

The Impact Of A Single Neonatal Injury On The Adult CRFR System  

Effect of neonatal injury on CRFR1 protein binding 

Competitive receptor autoradiography was used to measure binding of CRFR1 in mPFC, 

LS, BNST, PVN, MeA, BLA and vlPAG. Two-way ANOVA revealed that neonatal injury signifi-

cantly decreased CRFR1 protein binding in the BLA (overall mean decrease: 30%; F(1,16) = 6.57; 

P = 0.021) and vlPAG (overall mean decrease: 31%; F(1,16) = 4.73; P = 0.045) (Fig. 2A-B), re-

gions important for activation of the HPA axis, autonomic control and processing of noxious 

stimuli. No change in CRFR1 binding was observed in the PVN (F(1,16) < 1.0; P = 0.60), LS (F(1,16) 

< 1.0; P = 0.57), MeA (F(1,16) < 1.0; P = 0.46) and mPFC (F(1,16) < 1.0; P = 0.44) (Supplemental 

Fig. 1). Independent of treatment, males had significantly greater CRFR1 binding in the BNST 

as compared with females (overall mean increase: 40%; F(1,16) = 11.34; P = 

0.0039)(Supplemental Fig. 1). Significant sex differences were not observed in any other re-

gions examined; similarly, no interactions between treatment and sex were noted. 

 

Effect of neonatal injury on CRFR2 protein binding 

CRFR2 binding was measured in mPFC, LS, BNST, PVN, MeA, CoA, and vHPC using 

competitive receptor autoradiography. Two-way ANOVA revealed that neonatal injury signifi-
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cantly increased binding of CRFR2 in the LS (overall mean increase: 42%; F(1,16) = 6.93; P = 

0.018) and CoA (overall mean increase: 58%; F(1,16) = 7.23; P = 0.016) (Fig. 3 A-B). No change 

in CRFR2 binding was observed in the PVN (F(1,16) < 1.0; P = 0.96), MeA (F(1,16) < 1; P = 0.82), 

mPFC (F(1,16) < 1.0; P = 0.75) or vHPC (F(1,16) < 1.0; P = 0.44) (Supplemental Fig. 1). Independ-

ent of neonatal treatment, males showed significantly more CRFR2 binding in the BNST as 

compared to females (overall mean increase of 72%; F(1,16) = 12.61; P = 0.0027) (Supplemental 

Fig. 1). In the LS, significantly more CRFR2 binding was observed in injured males (71% in-

crease; Tukey’s post hoc, P < 0.05) relative to control males, but not between injured and con-

trol females (Tukey’s post hoc, P > 0.05). In contrast, significantly more CRFR2 binding in the 

CoA was observed in injured females (98% difference; Tukey’s post hoc, P < 0.05) relative to 

control females, but not between injured and control males (Tukey’s post hoc, P > 0.05). No 

significant interactions between treatment and sex were observed in any brain region examined. 

 

The Impact Of A Single Neonatal Injury On Adult CORT/GR System 

Neonatal injury alters GR mRNA and protein expression 

In situ hybridization was used to examine the impact of neonatal injury on adult GR 

mRNA expression in the PVN, dCA1, vCA1, and CeA. Two-way ANOVA revealed that the den-

sity of GR mRNA was significantly increased in the PVN (overall mean increase: 94%; F(1,16) = 

6.28; P = 0.023) of neonatally injured adults relative to controls (Fig. 4A). In contrast, neonatal 

injury decreased adult GR mRNA in dCA1 (overall mean decrease: 42%; F(1,16) = 9.67; P = 

0.0067) and vCA1 (overall mean decrease: 38%; F(1,16) = 11.79; P = 0.0034) as compared with 

controls (Fig. 4B-C). No change in GR mRNA was observed in the CeA (F(1,16) < 1; P = 0.58) 

(Supplemental Fig. 2). No significant main effect of sex or sex by treatment interaction was not-

ed for any region examined.      

To confirm our observed injury-induced changes in GR mRNA expression, density of GR 

protein immunoreactivity (ir) was measured in the PVN, dCA1, vCA1 and the CeA (Fig. 5). Con-
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sistent with GR mRNA data, two-way ANOVA revealed GR-ir was increased in the PVN (overall 

mean increase: 33%; F(1,35) = 11.37; P = 0.0018) but decreased in both dCA1 (overall mean de-

crease: 24%; F(1,36) = 10.89; P = 0.0022) and vCA1 (overall mean decrease: 26%; F(1,34) = 5.11; 

P = 0.030)  of neonatally injured adults as compared with controls (Fig. 5A-C). No significant 

change in GR protein expression was observed in the CeA (F(1,35) < 1.0; P = 0.60) (Supple-

mental Fig. 2). As noted with the in situ data, no significant sex or sex by treatment effects were 

observed in any region examined. 

 

Neonatal injury alters CORT negative feedback in response to restraint and swim stressors  

We next tested if neonatal injury alters adult CORT negative feedback in response to 

stress. Serum CORT concentrations were assayed from blood drawn before, immediately after 

and during recovery from restraint or forced swim (Fig. 6A and 6B, respectively). Repeated 

measures ANOVA across time points revealed a significant impact of neonatal treatment on 

adult CORT responses to 15 min of restraint (F(3,102) = 6.55; P = 0.015) (Fig. 6A) and 5 min of 

forced swim stress (time x sex x treatment interaction: F(3,45) = 3.65; P = 0.019) (Fig. 6B). Area 

under the curve analysis revealed that CORT release was significantly attenuated in neonatally 

injured adults as compared with controls (restraint: F(1,34) = 5.78; P = 0.022; swim: F(1,15) = 5.25; 

P = 0.037). Further, neonatally injured males had significantly reduced CORT relative to con-

trols at the 30 min peak (swim: Tukey’s post hoc, P < 0.01) and during recovery from stress at 

75 min (restraint: Tukey’s post hoc, P < 0.001; swim: Tukey’s post hoc, P < 0.05).  

Independent of neonatal treatment, females had significantly higher CORT concentra-

tions following restraint or swim as compared with males (restraint: F(1,102) = 36.90; P < 0.0001; 

swim: F(1,45) = 17.31; P < 0.0008). However, no effect of estrus was observed (restraint: F(2,45) < 

1.0; P = 0.72; swim: F(2,12) = 2.88; P = 0.17). Consistent with the observed differences in CORT 

concentrations, adrenal glands of injured and control females comprised a larger percent of 

body weight relative to males; among males adrenal glands comprised a significantly larger per-
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cent of body weight for injured relative to control males (sex x treatment interaction: F(1,36) = 

4.28; P = 0.046) (Supplemental Fig. 2). 

3.5 Discussion 

The present study examined the long-term impact of early life pain on mediators of 

stress reactivity. Our results demonstrate that neonatally injured adults have significantly de-

creased binding of CRFR1 in the BLA and vlPAG as compared with controls. In contrast, 

CRFR2 binding was significantly increased in the LS and CoA of neonatally injured adults rela-

tive to controls. As activation of the stress response is associated with CRFR1 (Vale et al., 

1981), whereas CRFR2 promotes return to homeostasis following a perturbation (Bale et al., 

2000; Coste et al., 2000), the present findings are consistent with models of acute early life 

stress showing long-term decreases in stress reactivity (Macri et al., 2011). These results are 

also consistent with our previous reports that early life pain blunts adult behavioral sensitivity to 

stress-, anxiety- and pain-provoking stimuli (LaPrairie and Murphy, 2007, 2009; Victoria et al., 

2013b). In parallel with the changes in CRFR, GR mRNA and protein were increased in the 

PVN but decreased in the hippocampus of neonatally injured adults in comparison to controls. 

Further, neonatally injured males showed reduced CORT release following restraint or swim 

stress. Taken together with our previous studies, these data suggest that a single neonatal inju-

ry alters receptor systems and neural circuits that contribute to activation of the stress axis and 

neuroendocrine recovery from stress, and likely contribute to the blunted behavioral responses 

previously observed in response to stress- and anxiety-provoking stimuli.  

 

A Single Neonatal Injury Decreases Extrahypothalamic CRFR1  

CRFR1 in the BLA has been implicated previously in the stress response.  For example, 

direct BLA administration of the CRFR1 agonist stressin-1 decreases percent time in the open 

arms of the elevated plus maze in mice (Bruchas et al., 2009), whereas lentiviral RNAi knock-
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down increases time in the center of the open field (Sztainberg et al., 2010). Similarly, lesions 

specific to the BLA reduce adrenocorticotropin hormone (ACTH) and CORT following acute re-

straint (Bhatnagar et al., 2004), suggesting that reduced CRFR1 binding in the BLA may con-

tribute to the decrease in CORT we observed following restraint stress. The decrease in BLA 

CRFR1 binding is also consistent with reports demonstrating that neonatally injured adults 

spend significantly more time in the center of the open field and support the hypothesis that ear-

ly life pain dampens adult responses to anxiety-provoking stimuli (Anseloni et al., 2005; Victoria 

et al., 2013b).  

The PAG has been linked to a variety of physiological changes that occur in parallel with 

the stress response.  For example, chemical or electrical stimulation of the vlPAG results in a 

redistribution of peripheral blood flow, changes in cardiovascular and autonomic output, and de-

creases pain sensitivity (Lewis and Gebhart, 1977; Behbehani and Fields, 1979; Carrive and 

Bandler, 1991; Depaulis et al., 1994; Inui et al., 1994), suggesting that the vlPAG alters auto-

nomic tone and promotes passive coping in response to stressors. In the context of early life 

pain, decreases in vlPAG CRFR1 binding suggest reduced perception of nociceptive infor-

mation, consistent with previous studies showing that early life pain decreases adult pain sensi-

tivity (Anseloni et al., 2005; LaPrairie and Murphy, 2007).  Moreover, our findings support clini-

cal data showing that as the number of skin breaking procedures increase in the NICU, auto-

nomic and behavioral responses of preterm infants become significantly blunted (Grunau et al., 

2005; Grunau et al., 2010), adaptations that are likely essential in an early life environment of 

repeated pain, inflammation and stress. 

 

A Single Neonatal Injury Increases Extrahypothalamic CRFR2  

In the present study, CRFR2 binding was significantly increased in the LS and CoA of 

adult rats injured on the day of birth. Numerous lines of evidence suggest that CRFR2 is neces-

sary for reinstating homeostasis and dampening stress. CRFR2 knockout mice have significant-
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ly accelerated ACTH and CORT release in response to brief restraint (Bale et al., 2000); CORT 

levels remain elevated relative to controls after 90 min (Coste et al., 2000), suggesting CRFR2 

is necessary for post-stress modulation and hormone recovery. Further, administration of a 

CRFR2 agonist intracerebroventricularly decreases stress-induced anxiety in the elevated plus 

maze (Valdez et al., 2002), while pharmacological blockade or genetic knockdown increases 

anxiety in the elevated plus maze and immobility in the forced swim test (Liebsch et al., 1999; 

Kishimoto et al., 2000) Together, these data support the role of CRFR2 in dampening stress to 

promote coping and recovery, and suggest that the observed increase in binding of CRFR2 in 

the LS and CoA may serve to promote homeostasis and dampen responses to stress, adapta-

tions that would promote survival following trauma early in life.  

 

Neonatal Injury Accelerates Corticosterone Negative Feedback  

Recovery from stress, defined as a return of CORT to basal levels, is achieved primarily 

through GR binding in the hippocampus (Sapolsky et al., 1984b; Herman and Cullinan, 1997; 

Ulrich-Lai and Herman, 2009). In the present study adult males injured on PD0 showed blunted 

CORT secretion between 30 and 75 minutes following stress (stress recovery), consistent with 

reports that inflammatory injury on P3 decreases release of CRF and ACTH 35 minutes after 

swim stress in adult male rats (Anseloni et al., 2005). In parallel, longitudinal studies measuring 

stress-reactivity of former preterm infants report blunted CORT secretion during recovery from 

pain-induced stress (Grunau et al., 2010). Collectively, these studies suggest a potentially per-

manent dysregulation of the glucocorticoid system as a consequence of early life stress in the 

form of injury. 

While hypersecretion of glucocorticoids is often found in models of chronic stress and is 

associated with high anxiety and major depressive disorder (Heim and Nemeroff, 2001; Ulrich-

Lai and Herman, 2009), we observed hyposecretion of CORT during recovery from both re-

straint and forced swim stressors in injured males, with similar trends observed in injured fe-
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males. Clinically, low cortisol has been reported in groups suffering from severe trauma and/or 

PTSD, and is comorbid with rheumatoid arthritis, fibromyalgia, chronic fatigue and chronic pain 

syndromes (Heim et al., 2000). In the context of the present studies, early life pain may predis-

pose preterm infants to inflammatory diseases (O'Reilly et al., 2013) and put them at greater 

risk for developing PTSD when faced with trauma later in life (Ward-Begnoche, 2007). 

 

Neonatal Injury Results In Compensatory Changes In GR Expression 

It is essential to consider the HPA axis as a functional unit, as we observed a significant 

increase in GR mRNA and protein immunoreactivity in the PVN, whereas GR expression de-

creased in both dorsal and ventral CA1. Recent studies in our lab indicate that induction of in-

flammatory pain in newborn rats elicits CORT release for at least 24 hours following injury (Vic-

toria, et al., unpublished observations). As GR in the hippocampus is exquisitely sensitive to 

high levels of CORT, especially during the first postnatal week when binding affinity is increased 

(Sapolsky et al., 1984b; Sapolsky and Meaney, 1986; Vazquez et al., 1996), we hypothesize 

that sustained injury-induced CORT release downregulates hippocampal GR, thereby, reducing 

hippocampal ability to terminate stress responding. In response, GR is upregulated in the PVN 

as a compensatory change that ultimately results in hastened negative feedback. Although 

speculative, these data are consistent with previous studies testing the impact of early life met-

abolic perturbation in rodents reporting changes in hippocampal and hypothalamic GR and ac-

celerated negative feedback (Proulx et al., 2001). Interestingly, rodent models of early life im-

mune challenge show disparate alterations in this circuit. Specifically, neonatal endotoxin de-

creases adult GR expression in both the hippocampus and hypothalamus and can produce ei-

ther dexamethasone resistance or blunted CORT reactivity (Shanks et al., 1995; Shanks et al., 

2000; Bilbo et al., 2008; Walker et al., 2009a). Despite differences in the direction of change and 

type of early life stress, these data, together with the present study, support a common circuit 

whereby neonates adapt to, and program, responses to stress in order to maximize survival.  
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Working Hypothesis 

Our working hypothesis is that early life pain experienced during the critical neurodevel-

opmental period (PD0-PD8; human equivalent 24-36 gestational weeks; (LaPrairie and Murphy, 

2007; Workman et al., 2013)) increases afferent drive to brain regions responsive to noxious 

input. This increase in afferent nociceptive drive results in the activation of supraspinal circuits 

subserving pain and stress (Walker et al., 1986; Fitzgerald, 2005; LaPrairie and Murphy, 2009). 

Endogenous opioids, including met-enkephalin and ß-endorphin, are released to dampen pain 

perception (Loh et al., 1976; Konig et al., 1996; Hurley and Hammond, 2001) and stress 

(Rossier et al., 1977; Rivier et al., 1982; Lightman and Young, 1987; Bilkei-Gorzo et al., 2008). 

Concurrently, neurohormones from the HPA axis, including CRF, ACTH and CORT, are re-

leased to mount appropriate physiological responses and promote recovery from the physical 

threat associated with inflammation (Vale et al., 1981; Dallman et al., 1987; Taylor et al., 1998). 

As the inflammation associated with intraplantar carrageenan persists for 24-72 hours, and re-

lease of CORT is sustained (Victoria, et al., unpublished observations), it is likely that sustained 

elevation of CRF downregulates CRFR1, while increasing CRFR2 (Bale and Vale, 2004) in re-

gions mediating stress activation and perception of noxious stimuli to re-program circuits such 

that future insults are less potent or aversive. As CORT levels remain high and continue to feed 

up to the hippocampus, GR becomes downregulated and the organism’s ability to terminate 

stress is impaired (Boyle et al., 2005); GR in the PVN becomes upregulated to compensate and 

promote HPA axis inhibition (Proulx et al., 2001) and CORT negative feedback becomes more 

efficient to facilitate recovery (Sapolsky and Meaney, 1986). As these perturbations occur during 

a highly plastic developmental period, and GR transcriptionally regulates numerous genes 

(Schoneveld et al., 2004), it is probable that methylation or chromatin profiles of GR (Weaver et 

al., 2004) and CRFR (Elliott et al., 2010) promoters are modified, such that this new receptor 

production profile becomes the basal state and persists throughout the life span.  
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Accelerated negative feedback may seem attractive. However, reducing the time over 

which glucocorticoids circulate in response to stress has physiological consequences, including 

decreased production and uptake of glucose, reduced breakdown of adipose tissue into free 

fatty acids, reduced protein synthesis and changes in immune system regulation (Bateman et 

al., 1989). In addition, we cannot rule out the potential contribution of cytokines to our observed 

changes in stress responsiveness, as neonatal administration of CGN results in upregulation of 

adult IL-10 (Ren et al., 2005). 

While accelerated recovery from an acute stressor may have an immediate physiological 

or survival benefit, reduced ability to liberate and sequester appropriate glucose could have se-

rious consequences for responses to repeated or chronic stressors and confer vulnerability to 

psychopathology. Indeed, for former preterm infants, altered cortisol reactivity is significantly 

associated with issues of internalization, emotional reactivity, anxiety, depression, inattention, 

and high rates of negative verbalization (Bagner et al., 2010). 

 

Conclusion  

Collectively, our findings demonstrate that a single inflammatory insult on the day of birth 

is associated with site-specific changes in circuits that contribute to stress activation, perception 

of noxious stimuli and neuroendocrine recovery from stress. Although issues surrounding prem-

aturity are diverse and complex, strong reconsideration of inconsistent and infrequent analgesia 

in the NICU is necessary to reduce physical and mental health complications associated with 

preterm birth. 
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3.6 Chapter 3 Figures 

 

Figure 3.1 Experimental procedure 
Time pregnant Sprague Dawley dams arrived in the animal facility on gestational day 14 
(GD14). Within 24 hrs of birth on postnatal day 0 (PD0) pups were injured (intraplantar injection 
of 1% carrageenan) or handled identically. With the exception of mandatory cage changes and 
weaning on PD21, animals were not disturbed until adulthood (≥PD60). Daily estrus cycling in 
females and handling in males (removal from cage for 10 s) began between PD60-65 and con-
tinued for 2 weeks until the day before sample collection (PD75-80). Between PD75-80 animals 
were either euthanized for receptor autoradiography (ARad), in situ hybridization (ISH), im-
munohistochemistry (IHC) or tested for HPA axis functioning in response to restraint or swim 
stress. 
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Figure 3.2 The impact of neonatal injury on adult CRFR1 binding  
Neonatal injury significantly decreased binding of 125I sauvagine to CRFR1 in the (A) basolateral 
amygdala (BLA) and (B) ventrolateral periaqueductal gray (vlPAG) relative to controls. Region 
of interest boxed in radiographs and atlas plates. Surrounding region abbreviations: medial 
amygdala (MeA), central amygdala (CeA), basomedial amygdala (BMA), anterior cortical amyg-
dala (ACo), dorsal endopiriform nucleus (DEn), piriform cortex layer 1 (Pir1), dorsal medial PAG 
(dmPAG), dorsal lateral PAG (dlPAG), lateral PAG (lPAG), dorsal raphe dorsal, (DRd), dorsal 
raphe ventral (DRv), deep mesencephalic nucleus (DpMe). Data are presented as Mean ± 
SEM; n = 5 subjects per group. Specific binding measured in disintegrations per minute per mil-
ligram of tissue (dpm/mg). Significant main effect of treatment observed using 2-way ANOVA, 
#P < 0.05 over bar. Significant between group differences measured post-hoc by Tukey-Kramer, 
*P < 0.05. 
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Figure 3.3 The impact of neonatal injury on adult CRFR2 binding  
Neonatal injury significantly increased binding of 125I sauvagine to CRFR2 in the (A) lateral sep-
tum (LS) and (B) cortical amygdala (CoA) relative to controls. Region of interest boxed in radio-
graphs and atlas plates. Surrounding region abbreviations: caudate putamen (CPu), dorsal or 
ventral lateral septum (LSD, LSV, respectively), medial septum (MS), basal amygdala nucleus 
(BL), field CA1 hippocampus (CA1), amygdalopiriform transitional area (APir), amygdalohippo-
campal transition area (AHi), ventral subiculum (VS). Data are presented as Mean ± SEM; n = 5 
subjects per group. Specific binding measured in disintegrations per minute per milligram of tis-
sue (dpm/mg).  Significant main effect of treatment observed using 2-way ANOVA, #P < 0.05 
over bar. Significant between group differences measured post-hoc by Tukey-Kramer, *P < 
0.05. 
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Figure 3.4 The impact of neonatal injury alters adult expression of GR mRNA  
Neonatal injury significantly increased GR mRNA in the (A) paraventricular nucleus (PVN) rela-
tive to controls. (B-C) Decreased GR mRNA was observed in both dorsal and ventral CA1 of the 
hippocampus (dCA1 and vCA1, respectively) of neonatally injured adults. Region of interest 
boxed in radiographs and atlas plates. Surrounding region abbreviations: zona inserta (ZIR), 
fornix (f), anterior hypothalamus (AH), third ventricle (3V), dentate gyrus (DG), field CA2 and 
CA3 hippocampus (CA2 and CA3, respectively), amygdalopiriform transitional area (APir), ven-
tral subiculum (VS).  Data are presented as Mean ± SEM; n = 5 subjects per group. Specific hy-
bridization measured in disintegrations per minute per milligram of tissue (dpm/mg). Significant 
main effect of treatment observed using 2-way ANOVA, #P < 0.05, ##P < 0.01 over bar. Signifi-
cant between group differences measured post-hoc by Tukey-Kramer, *P < 0.05. 
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Figure 3.5 The impact of neonatal injury on adult GR protein immunoreactivity (ir) 
GR-ir was significantly increased in neonatally injured adults in the (A) paraventricular nucleus 
(PVN) relative to controls. (B-C) Neonatal injury significantly decreased GR-ir in dorsal and ven-
tral CA1 of the hippocampus (dCA1, vCA1, respectively). Data are presented as Mean ± SEM; n 
= 9-11 subjects per group. Significant main effect of treatment observed using 2-way ANOVA, 
#P < 0.05 or ##P < 0.01 over bar. Significant between group differences measured post-hoc by 
Tukey-Kramer, *P < 0.05, **P < 0.01. 
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Figure 3.6 Plasma corticosterone (CORT) levels in response to restraint (A) or forced 
swim (B) stress 
 (A) Repeated Measures ANOVA for time revealed that neonatal injury significantly decreased 
CORT in males 75 min after the onset of restraint (recovery). (B) Following 5 min of swimming, 
CORT was significantly reduced at 30 min and 75 min in neonatally injured males relative to 
controls. Females had significantly higher CORT concentrations in response to restraint and 
swim independent of neonatal treatment as compared with males (A-B). Insets for (A-B) depict 
area under the curve. Data are presented as Mean ± SEM; n = 5-12 subjects per group. Signifi-
cant main effects of treatment, #P < 0.05. Significant time x sex x treatment interaction observed 
in (B), +P < 0.05. Significant between group differences measured post-hoc by Tukey-Kramer, 
*P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 3.7 Supplemental 1 
No significant change in competitive binding of 125I Sauvagine to CRFR1 (left column) or CRFR2 
(right column) was observed as a result of neonatal injury in a number of brain regions. Data are 
presented as Mean ± SEM; n = 5 subjects per group. Specific binding measured in disintegra-
tions per minute per milligram of tissue (dpm/mg). Region abbreviations: bed nucleus of the stria 
terminalis (BNST), paraventricular nucleus (PVN), medial amygdala (MeA), medial prefrontal 
cortex (mPFC), lateral septum (LS) and ventral hippocampus (vHPC). Significant main effect of 
sex observed using 2-way ANOVA &&P < 0.01 over bar. 
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Figure 3.8 Supplemental 2  
(A) Neonatal treatment did not significantly change GR mRNA expression and (B) immunoreac-
tivity in the central amygdala (CeA) as measured with in situ hybridization (n = 5 subjects per 
group) and immunohistochemistry (n= 9-11 subjects per group), respectively. (C) Adrenal gland 
weight as a percent of total body weight was significantly increased in females in comparison to 
males (n = 8-11 subjects per group). Among males, adrenal glands comprised a significantly 
larger percent of body weight for injured relative to control males. (D) No effect of estrus on 
CORT concentrations was found in either restraint or swim tests, therefore data are collapsed 
across tests into AUC. Similarly, no significant main effects were observe on CORT AUC (es-
trus: F(2,25) < 1; P = 0.46; treatment: F(1,25) = 2.71; P = 0.11; estrus x treatment interaction: F(2,25) < 
1; P = 0.46) (n = 3-8 subjects per group). Abbreviations: Proestrus (P), Estrus (E), Diestrus 
(DI/II). Data are presented as Mean ± SEM. Specific binding measured in disintegrations per 
minute per milligram of tissue (dpm/mg). Significant sex x treatment interaction observed using 
2-way ANOVA, +P < 0.05 over bar. Significant group differences measured post-hoc by Tukey-
Kramer, *P < 0.05. 
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4.1 Abstract 

Less than 60% of infants undergoing invasive procedures in the NICU receive analgesic 

therapy. These infants show long-term decreases in pain sensitivity and cortisol reactivity. In 

rats we have previously shown that inflammatory pain experienced on the day of birth signifi-

cantly decreases adult somatosensory thresholds and responses to anxiety- and stress-

provoking stimuli.  These long-term changes in pain and stress responsiveness are accompa-

nied by 2-fold increases in central met-enkephalin and ß-endorphin expression. However, the 

time course over which these changes in central opioid peptide expression occur, relative to the 

time of injury, are not known. The present studies were conducted to determine if the observed 

changes in adult opioid peptide expression were present within the first postnatal week following 

injury. The impact of neonatal inflammation on plasma corticosterone, a marker for stress reac-

tivity, was also determined. Brain, spinal cord and trunk blood were harvested at 24 hrs, 48 hrs 

and 7 days following intraplantar administration of the inflammatory agent carrageenan on the 

day of birth. Radioimmunoassay was used to determine plasma corticosterone and met-
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enkephalin and ß-endorphin levels within the forebrain, cortex, midbrain, and spinal cord. Within 

24 hrs of injury met-enkephalin levels were significantly increased in the midbrain, but de-

creased in the spinal cord and cortex; forebrain ß-endorphin levels were significantly increased 

as a result of early life pain. Corticosterone levels were also significantly increased. At 7 days 

post-injury, opioid peptides remained elevated relative to controls, suggesting a time point by 

which injury induced changes become programmed and permanent. 

4.2 Introduction 

Each year, 16.5% of infants worldwide and 12% of infants in the United States are born 

prior to 37 gestational weeks and are considered preterm (Martin et al., 2006). Preterm infants 

spend an average of 25 days in the Neonatal Intensive Care Unit (NICU) where they undergo 10-

18 painful, inflammatory and invasive procedures each day, including repeated heel lance, endo-

tracheal intubation, surgery, and respiratory and gastric suctioning (Barker and Rutter, 1995; 

Simons et al., 2003; Carbajal et al., 2008; PeriStats, 2011). While the majority of these procedures 

are painful and induce inflammation, analgesia or anesthesia is used in only 2-21% of the inva-

sive procedures performed in the NICU (Simons et al., 2003; Carbajal et al., 2008). Although it 

was previously thought that the newborn sensory system was incapable of responding to nox-

ious stimuli, it is now clear that preterm infants as young as 25 weeks gestation display evoked 

cortical activity (Bartocci et al., 2006; Slater et al., 2006), robust secretion of stress hormones 

(Anand et al., 1987b), and elevated heart rate and facial reactivity (Grunau et al., 2005; Grunau 

et al., 2010) in response to noxious stimulation. These neuroendocrine and autonomic respons-

es become significantly blunted as the number of invasive procedures experienced increases 

(Grunau et al., 2005; Grunau et al., 2010), indicating changes in systems mediating pain and 

stress. Decreased responses to pain- and stress-evoking stimuli persist later in life, as former 

preterm infants have dampened cortisol reactivity as children and reduced pain sensitivity as 
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young adults in comparison to term controls (Grunau et al., 2005; Hermann et al., 2006; Grunau 

et al., 2007; Grunau et al., 2010). 

Using a rat model for early life pain, we have previously reported that a single inflamma-

tory insult (carrageenan 1% (CGN); hindpaw) occurring within the first postnatal week (P0-8) 

significantly dampens adult responses to pain- and stress-evoking stimuli (i.e. a hypo-

responsive phenotype) (LaPrairie and Murphy, 2007; LaPrairie et al., 2008; LaPrairie and 

Murphy, 2009; Victoria et al., 2013b).   As adults, neonatally injured rats show significant and 

bilateral increases in their response to noxious thermal and mechanical stimuli (LaPrairie and 

Murphy, 2007; LaPrairie et al., 2008; LaPrairie and Murphy, 2009), as well as blunted responses 

to anxiety- and stress-provoking stimuli (Anseloni et al., 2005; Victoria et al., 2013b). These be-

havioral changes are paralleled by increased expression of the endogenous opioid peptides 

met- and leu-enkephalin and ß-endorphin in several brain regions, including the midbrain peria-

queductal gray (PAG), central amygdala (CeA) and lateral septum (LS) (LaPrairie and Murphy, 

2009; Victoria et al., 2013b). The injury-induced changes in pain and stress responsiveness are 

naloxone-reversible (Ren et al., 2004; LaPrairie and Murphy, 2007, 2009; Victoria et al., 2013b),  

suggesting that changes in central opioid tone contribute to the long-term consequences of ear-

ly life pain.   

Our overarching hypothesis is that changes in central opioid peptide expression occur 

neonatally as an immediate response to the injury, and that these changes are subsequently 

maintained into adulthood. However, the critical developmental time point when early life pain 

results in long-term changes in somatosensory thresholds (P0-P8) corresponds to the stress 

hypo-responsive period where plasma corticosterone levels are lower than normal and applica-

tion of a noxious stimulus evokes minimal changes in glucocorticoid levels (Corbier and Roffi, 

1978b, a; Henning, 1978; Meaney et al., 1985a; Walker et al., 1986).  Therefore, the present 

study was conducted to determine if early life pain alters brain and spinal cord enkephalin and 

ß-endorphin levels within the first postnatal week. The impact of early life pain on plasma corti-
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costerone was also examined. Using radioimmunoassay we present evidence for the first time 

that a single inflammatory insult on the day of birth significantly increases plasma corticosterone 

and central met-enkephalin and ß-endorphin 24 hrs after injury. By the end of the first postnatal 

week, these essential mediators of stress and pain remain elevated in comparison to controls, 

suggesting a time point by which injury induced changes become programmed and permanent.  

4.3 Materials And Methods 

Animals 

Pregnant Sprague-Dawley rat dams were obtained on gestational day 14 (G14) (Charles 

River, USA). Dams were housed individually under 12:12 hr light:dark cycle with ad libitum ac-

cess to food and water. On the day of birth (P0), pups were subjected to neonatal treatment. All 

experiments adhered to the guidelines of the Committee for Research and Ethical Issues of 

IASP, and were approved by the Georgia State University Animal Care and Use Committee.  

 

Neonatal Treatment 

Acute neonatal inflammatory injury was induced as in our previous studies (LaPrairie 

and Murphy, 2007, 2009; Victoria et al., 2013b).  Briefly, rat pups were injected with 5µL carra-

geenan (CGN; 1% dissolved in saline; Sigma, St. Louis, MO) into the intraplantar surface of the 

right hindpaw or handled identically within 24 hours of birth (P0). This well-established model 

causes acute, local inflammatory pain that persists for 24-72 hours and does not alter maternal 

behavior (Ren et al., 2004; LaPrairie and Murphy, 2007). Intraplantar saline alone was not used, 

as we have previously observed no difference from handled controls (LaPrairie and Murphy, 

2007; LaPrairie et al., 2008; LaPrairie and Murphy, 2009). Pups were separated from their dam 

for <20 minutes and returned to the home cage as a group. Treatment of all litters occurred be-

tween 11:00-12:00. Each litter (n = 5-14 pups; approximately equal numbers males and fe-
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males) received a single treatment as pups are indistinguishable after resolution of paw edema. 

Sex differences were beyond the scope of these studies due to disparate litter sizes.  

 

Sample Harvest 

Neonatally injured and control animals were decapitated with heavy scissors 24 hrs, 48 

hrs and 7 days after neonatal treatment. Immediately thereafter, trunk blood, brains and spinal 

cord were collected. Blood samples were collected directly into 1 mL EDTA-hematology tubes 

(BD from Fisher Scientific), maintained at room temperature for ≥30 min and centrifuged at 4000 

rcf at 4˚C for 15 min. Plasma was pipetted into microcentrifuge tubes and stored at -80˚C until 

time of assay. Brains and spinal cords were extracted, flash frozen in 2-methylbutane (VWR, 

USA) chilled on dry ice and stored at -80˚C. Brains harvested at 24 hrs and 48 hrs after neona-

tal treatment were sectioned coronally with a razor blade on dry ice into forebrain (caudal to ol-

factory bulbs and rostral to superior colliculus; corresponding to coronal figures 3-17 in Atlas of 

the Neonatal Rat Brain (Ramachandra and Subramanian, 2011) and midbrain (caudal to supe-

rior colliculus and rostral to medulla; coronal figures 18-28 (Ramachandra and Subramanian, 

2011)). Brains harvested on P7 were sectioned as above; forebrain and midbrain segments cor-

responded to coronal figures 47-61 and 61-69, respectively (Ramachandra and Subramanian, 

2011). External anatomy and atlas plates were used to include the striatum, septum, thalamus, 

hippocampus, hypothalamus and amygdala in the forebrain and colliculi and periaqueductal 

gray in the midbrain. For all time points, cerebral cortex was dissected away caudal to olfactory 

bulbs and rostral to superior colliculus. For each region of interest, sections were pooled from 2-

3 pups of the same treatment.  

 

Corticosterone Concentrations 

Plasma corticosterone was measured using I-125 labeled Double Antibody Corti-

costerone kit (MP Biomedicals, USA) according to the manufacturer’s instructions. Concentra-
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tion of corticosterone was determined against known standards (R2 > 0.98) where the minimum 

limit of detection was 3.125 ng/mL. Intra-assay coefficient of variation was 3.6%.  

 

Protein Extraction 

Protein was extracted from brain sections and the entire spinal cord using the protocols 

of Tsang and Ng (1979) and Kim et al. (1999). Tissue samples were bathed in 0.1 M (1 

mL/sample) acetic acid and boiled (95-100˚C) for 10-15 min. Samples were cooled for 1 hr, then 

homogenized with an electric pestle and centrifuged at 13000 x g for 15 min at 4˚C. Supernatant 

from each sample was divided into 300 µL aliquots, frozen to -80˚C, and then lyophilized to iso-

late extracted peptides. Samples were reconstituted with assay specific buffers and analyzed for 

met-enkephalin, ß-endorphin or total protein concentrations.  

 

Opioid Peptide Concentrations 

Met-enkephalin protein was measured using I-125 labeled Met-enkephalin RIA kit 

(Bachem, USA; Cat.# S-2119) according to the manufacturer’s protocol. Concentration of met-

enkephalin was determined against known standards (R2 >0.99), where the minimum limit of 

detection was 0.01 ng/mL. Intra-assay coefficient of variation was 2.4%.  

ß-endorphin protein was measured using I-125 labeled ß-endorphin RIA kit (Phoenix 

Pharmaceuticals, Inc., USA; Cat.# RK-022-06) according to the manufacturer’s protocol. Con-

centration of ß-endorphin was determined against known standards (R2 >0.99), where the mini-

mum limit of detection was 10.0 pg/mL. Intra-assay coefficient of variation was 1.8 %.  

Total protein concentrations were determined using Quick StartTM Bradford Protein As-

say (Bio Rad, USA) according to the manufacturer’s protocol. Concentration of total protein was 

compared to known standards (R2 >0.92), where the minimum limit of detection was 2.5 µg/mL. 

Intra-assay coefficient of variation was 3.6%.  
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Statistical Analysis  

Endogenous opioid concentrations are presented as total protein (ng/µg or pg/µg). Val-

ues are shown as Mean ± SEM. Significant main effects of neonatal treatment (injured, handled) 

and time post-injury (24 hrs, 48 hrs, 7 days) were assessed using two-way ANOVA. Percent-

ages are reported as mean percent change from control. Student’s unpaired t-tests were used 

for post-hoc analyses to determine differences between treatments at specific time points. 

Where applicable, values ≥2 standard deviations from the mean were eliminated as outliers. All 

comparisons were a priori specified. Confidence was set to p < 0.05 and considered statistically 

significant.   

4.4 Results 

The Impact Of A Single Neonatal Injury On Corticosterone Over The First Postnatal Week 

The impact of neonatal injury on plasma corticosterone levels was determined at 24 hrs, 

48 hrs and 7 days post-treatment (Fig. 1). A two-way analysis of variance (ANOVA) revealed a 

significant interaction between injury and time (F(2,55) = 12.85; P < 0.0001). Twenty-four hours 

after hindpaw inflammation, corticosterone was significantly higher relative to controls (t(18) = -

4.07; P = 0.0007), but precipitously decreased 48 hrs after injury (t(20) = 2.29; P = 0.033). Seven 

days after inflammatory pain, corticosterone levels plateaued and remained 92% higher than 

controls (t(17) = -2.12; P = 0.049). 

 

The Impact Of A Single Neonatal Injury On Endogenous Opioid Concentrations During The First 

Postnatal Week 

The impact of neonatal injury on brain and spinal cord met-enkephalin and ß-endorphin 

levels was determined as a function of total protein at 24 hrs, 48 hrs and 7 days post-treatment. 

Two-way ANOVA revealed a significant interaction of injury and time in the spinal cord (F(2,22) = 

5.07; P = 0.015) such that met-enkephalin was 61% lower than controls at 24 hrs post-injury, 
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remained low at 48 hrs, after which it increased by 96% relative to controls at 7 days (Fig 2). 

Significant main effects of injury (F(1,22) = 5.84; P = 0.024) and time (F(2,22) = 9.17; P = 0.0013) on 

met-enkephalin protein levels were observed for the midbrain, where met-enkephalin was signif-

icantly increased by 62% at 24 hrs in injured pups (t(7) = -3.51; P = 0.0099), was similar to con-

trol levels at 48 hrs, but remained 85% higher than controls 7 days after injury (Fig 2). A signifi-

cant main effect of time (F(2,22) = 3.68; P = 0.042) but not treatment (F(1,22) < 1; P = 0.36) was ob-

served in the forebrain, where met-enkephalin of injured pups was 69% higher than controls at 

24 hrs, decreased below controls by 42% at 48 hrs, then increased above controls by 62% 7 

days after injury (Fig 2). Similarly, a significant effect of time (F(2,22) = 5.75; P = 0.0098) but not 

treatment (F(1,22) < 1; P = 0.89) was observed in the cortex, where met-enkephalin was signifi-

cantly decreased by 50% relative to controls at 24 hrs in injured pups (t(7) = 2.38; P = 0.049), 

was similar to control levels at 48 hrs, but increased to 14% higher than controls 7 days after 

injury (Fig 2).  

A significant main effect of injury on ß-endorphin protein levels was observed in the cor-

tex (F(1,22) = 5.83; P = 0.024), independent of time (F(2,22) < 1; P = 0.42). Pups injured on P0 

showed a 51% increase in cortical ß-endorphin at 24 hrs and a 188% increase at 7 days relative 

to controls (t(7) = -2.68; P = 0.031) (Fig 3A). A significant interaction between injury and time 

(F(2,22) = 3.54; P = 0.046) was observed in the forebrain such that after hindpaw inflammation ß-

endorphin was 504% higher than controls at 24 hrs (t(7) = -2.49; P = 0.041), remained elevated 

by 107% above controls at 48 hrs, then decreased to control levels at 7 days (Fig 3B). A signifi-

cant main effect of time (F(2,22) = 4.02; P = 0.033) but not injury (F(1,22) = 2.84; P = 0.11) on ß-

endorphin protein levels was observed for the midbrain, where ß-endorphin was increased by 

118% at 24 hrs in injured pups, was similar to control levels at 48 hrs, but remained 400% high-

er than controls 7 days after injury (Fig 3C). No significant main effect of time (F(2,22) < 1; P = 

0.58) or treatment (F(1,22) < 1; P = 0.66) on ß-endorphin was observed in the spinal cord (Fig 

3D).  
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4.5 Discussion 

The present studies were conducted to determine the time course for change in gluco-

corticoid and endogenous opioid concentrations over the first postnatal week following a single 

inflammatory injury at birth. Our results show that 24 hrs post-treatment, injured pups had signif-

icantly increased levels of met-enkephalin and ß-endorphin in the midbrain and forebrain. By 

contrast, significant decreases in met-enkephalin levels were observed in the cortex and spinal 

cord at this time point. Plasma corticosterone levels were elevated in injured pups relative to 

controls indicating that intraplantar CGN resulted in the activation of the hypothalamic pituitary 

adrenal axis (HPA) axis. Seven days after treatment, met-enkephalin levels remained elevated 

relative to controls in all brain regions examined, while ß-endorphin remained significantly high-

er in the cortex and midbrain. Plasma corticosterone also remained significantly higher in injured 

pups. Together, these data suggest that early life pain impacts both glucocorticoid release and 

endogenous opioid concentration in a site- and time-specific manner during early postnatal de-

velopment. 

Our working hypothesis is that neonatal pain experienced during a critical neurodevel-

opmental period (P0-P8 (LaPrairie and Murphy, 2007)) increases afferent nociceptive drive to 

brain regions responsive to noxious input, including the thalamus and the periaqueductal gray. 

This increase in afferent drive triggers the activation of descending pain modulatory circuits, re-

sulting in the release of endogenous opioids (met-enkephalin and ß-endorphin) to dampen pain 

perception and produce analgesia (Walker et al., 1986; Fitzgerald, 2005; LaPrairie and Murphy, 

2009). As pain is a potent stressor, neurohormones from the HPA axis are also released to 

mount appropriate physiological responses that promote recovery from the physical perturbation 

of inflammatory insult (Vale et al., 1981; Iny et al., 1987; Lightman and Young, 1989; Taylor et 

al., 1998). As inflammation associated with intraplantar carrageenan persists for 24-72 hours, 

the release of endogenous opioids, as well as corticotrophin releasing factor (CRF) and corti-

costerone, is sustained. In adulthood, both met-enkephalin and ß-endorphin levels remain ele-
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vated within the PAG, CeA and LS (LaPrairie and Murphy, 2009; Victoria et al., 2013b). These 

regions have been previously implicated in pain and stress, and suggest that early life pain re-

sults in the permanent transcriptional modulation of promoters regulating opioid peptide expres-

sion (Schoneveld et al., 2004). 

 

One Neonatal Injury Disrupts Gradual Reduction Of Corticosterone Within The First Postnatal 

Week 

Systemic corticosterone levels are typically elevated shortly after birth, then gradually 

decrease to undetectable levels within the first postnatal week (Corbier and Roffi, 1978b, a; 

Henning, 1978; Meaney et al., 1985a; Walker et al., 1986). This reduction marks the stress 

hyporesponsive period (SHRP), which spans approximately P2-P14 in rat pups (Sapolsky and 

Meaney, 1986; Walker et al., 1986). During the SHRP, low glucocorticoid levels promote neuro-

genesis, axonal outgrowth, synaptogenesis and myelination (Sapolsky and Meaney, 1986; 

Walker et al., 1986; Baud et al., 2005; Antonow-Schlorke et al., 2009; Du et al., 2009; Liston 

and Gan, 2011). In the present study, corticosterone was significantly elevated 24 hrs after inju-

ry, precipitously decreased at 48 hrs, but remained significantly higher than controls on P7. 

These results parallel clinical data reporting that preterm infants undergoing surgery in the ab-

sence of anesthesia experience significantly elevated corticosterone levels post-operatively 

(Anand et al., 1987b).  

Persistently high corticosterone during the SHRP is known to negatively impact postna-

tal development. For example, treatment with the corticosteroid dexamethasone on P3-P4 in-

creases the density of cortical GABAergic interneurons by 50% and decreases cortical thick-

ness by P5 in mouse pups (Baud et al., 2005). Similarly, hydrocortisone injections between P1-

P4 decrease hippocampal volume of rat pups (Bohn, 1980). Moreover, high concentrations of 

glucocorticoids early in life accelerate dendritic spine formation and elimination in the soma-

tosensory (S1) cortex (Liston and Gan, 2011), suggesting variations in corticosterone may have 
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a sustained impact on circuit formation. Finally, high doses of corticosterone increase cell death, 

decrease Bcl2-glucocorticoid receptor (GR) complexes and promote excitotoxicity in cortical 

neurons (Du et al., 2009).  

We have recently reported that early life pain decreases behavioral sensitivity to stress- 

and anxiety-provoking stimuli (Victoria et al., 2013b). Adult male and female rats who were in-

jured on the day of birth spend significantly more time in the inner area of the open field and 

have increased latencies to immobility in the forced swim test (Victoria et al., 2013b). We have 

further reported that neonatal injury results in significant changes to adult neurocircuits underly-

ing the activation and termination of the stress response. For example, CRF receptor 1 

(CRFR1) is significantly decreased in the basolateral amygdala and PAG, sites that activate 

stress (Smith et al., 1998; Bhatnagar et al., 2004) and mediate autonomic tone (Lewis and 

Gebhart, 1977; Behbehani and Fields, 1979; Carrive and Bandler, 1991; Depaulis et al., 1994; 

Inui et al., 1994), respectively (Victoria et al, 2013, unpublished data). These rats also have sig-

nificantly increased levels of CRF receptor 2 (CRFR2) in regions that promote stress recovery 

(Bale et al., 2000; Coste et al., 2000), including the LS (Victoria et al, 2013, unpublished data). 

Given that corticosterone-GR complexes transcriptionally regulate the central expression of 

CRFRs (Schoneveld et al., 2004), such changes are expected.  

 

Injury On P0 Changes Met-Enkephalin And ß-Endorphin Concentration With Regional And 

Temporal Specificity 

Early life pain induced large time- and region-dependent changes in met-enkephalin 

concentration over the first postnatal week. In the cortex, met-enkephalin was reduced for in-

jured pups 24 hrs after treatment, then increased slightly above controls at 48 hrs and 7 days. 

Spinal cord met-enkephalin levels decreased 24 hrs after treatment then increased to 96% 

greater than controls by P7. This result is consistent with previous studies demonstrating signifi-

cant reduction in spinal cord preproenkephalin mRNA within 24 hrs of hindpaw inflammation 
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(Noguchi et al., 1989), suggesting a period during which enkephalin must be sufficiently replen-

ished to combat persistent inflammatory pain. In the midbrain and forebrain, met-enkephalin 

levels were elevated in injured pups at 24 hrs post-treatment and remained elevated 7 days af-

ter hindpaw inflammation. This increased level of expression is maintained into adulthood, 

where significantly increased met-enkephalin mRNA and protein is observed in the midbrain 

PAG, CeA and LS (LaPrairie and Murphy, 2009; Victoria et al., 2013b), and suggests that neo-

natal pain permanently upregulates the expression of central enkephalin in regions essential for 

processing pain- and stress-associated information. 

As with met-enkephalin, large time-dependent changes in ß-endorphin were observed 

over the first postnatal week. In the cortex, forebrain and midbrain, ß-endorphin levels were in-

creased at 24 hrs post-injury, and remained elevated in the cortex and midbrain one week later. 

These data are consistent with our previous report that early life pain increases ß-endorphin 

protein in the PAG of adults (LaPrairie and Murphy, 2009). Although no change in ß-endorphin 

levels was noted in the spinal cord, spinal cord ß-endorphin expression is known to be low and 

present primarily as POMC, its unprocessed precursor (Gutstein et al., 1992).  

In the present study, changes in endogenous met-enkephalin and ß-endorphin cannot 

be localized to specific nuclei within the midbrain and forebrain. However, these data support 

the hypothesis that neonatal pain rapidly impacts neural circuits and support our previous re-

ports that early pain permanently upregulates central endogenous opioid tone (LaPrairie and 

Murphy, 2007; LaPrairie et al., 2008; LaPrairie and Murphy, 2009; Victoria et al., 2013b). Early 

life changes in enkephalin and ß-endorphin have implications for brain development and func-

tion. In the absence of pain, acute subcutaneous administration of met-enkephalin reduces pro-

liferation of neurons and glia in the cerebellum, and decreases DNA synthesis in P6 rat pups 

(Zagon and McLaughlin, 1991). Such changes are reversible with concurrent application of na-

loxone (Zagon and McLaughlin, 1991) or naltrexone (Hammer et al., 1989). Together these find-
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ings suggest that aberrantly high levels of opioids early in life may have deleterious effects on 

brain development. 

Conversely, blocking endogenous opioids during postnatal life also has developmental 

consequences. For example, blockade of µ- and δ-opioid receptors from P0-P10 increases neu-

ronal maturation, spine number and dendrite length of pyramidal cells in the cerebral cortex, 

hippocampus and cerebellum (Hauser et al., 1989). Moreover, brain size, number of neurons 

and glia, and thickness of S1 cortex are significantly increased in juvenile rats receiving naltrex-

one between P0-P21 (Zagon and McLaughlin, 1983). Collectively, these findings suggest that 

either excessive or insufficient opioid levels in the brain during postnatal life disrupt sensitive 

developmental processes. Further, they support the hypothesis that development is regulated 

by finely tuned concentrations of neuropeptide early in life.   

Our results showing that early life pain results in the immediate and long-term release of 

endogenous opioid peptides (LaPrairie and Murphy, 2009; Victoria et al., 201bc) are consistent 

with growing clinical data suggesting that exposure to repeated tissue damaging procedures in 

neonates, with limited analgesic therapy, induces lasting changes in the brain and spinal cord, 

which have profound consequences for subsequent nociceptive processing (Anand, 2000; 

Whitfield and Grunau, 2000; Lidow, 2002; Walker et al., 2003; Grunau et al., 2005; Hermann et 

al., 2006; Hohmeister et al., 2010; Wollgarten-Hadamek et al., 2011). For example, infants with 

previous NICU experience display decreased facial and cardiovascular responses to heel lance 

compared to age matched full-term infants (Johnston et al., 1996). Moreover, decreased facial 

responsiveness to immunization at 4 and 8 months (Oberlander et al., 2000), and blunted noci-

ceptive sensitivity have been reported in 18 month old former preterm neonates compared to full 

term peers (Grunau et al., 1994a). Former NICU toddlers are also rated by parents as less sen-

sitive to pain compared to term-born controls, with a higher frequency of procedural pain expo-

sure associated with more dampened nociceptive responsiveness (Grunau et al., 1994a). Simi-

larly, 9-12 year olds that had previously undergone infant cardiac surgery with limited pain ther-
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apy display global alterations in both mechanical and thermal somatosensory processing 

(Schmelzle-Lubiecki et al., 2007). Collectively, these studies strongly indicate that early life pain 

in humans induces centrally-mediated changes in nociceptive pathways resulting in a long-term, 

if not permanent, attenuation in pain sensitivity. Our data demonstrating increased endogenous 

opioid peptide levels in immediate response to a traumatic injury that are maintained into adult-

hood provide a mechanism whereby early life pain permanently attenuates subsequent nocicep-

tive processing. 

 

Conclusions 

The current studies demonstrate that a single inflammatory insult on the day of birth sig-

nificantly alters central met-enkephalin and ß-endorphin concentrations over the first postnatal 

week. Our data further suggest that injury disrupts the SHRP, a period of quiescence that facili-

tates postnatal maturation (Sapolsky and Meaney, 1986). Together, our findings suggest a time 

course over which injury-induced changes become programmed and permanent. Collectively, 

these data have implications for the importance of analgesic intervention during painful and in-

flammatory procedures in the NICU. 
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4.6 Chapter 4 Figures 

 

 

Figure 4.1 Injury on P0 alters corticosterone over the first postnatal week 
Concentrations of corticosterone were measured from trunk blood collected 24 hrs, 48 hrs, and 
7 days after injury on P0. Corticosterone was significantly increased 24 hrs and 7 days after 
hindpaw inflammation on P0, but significantly decreased at 48 hrs in comparison to controls. 
Data are shown as 2-way ANOVA (Mean ± SEM); n = 5-14 subjects per group. Significant effect 
of time was observed. (*) Denotes significant effect of injury. (#) Denotes significant between 
group differences as measured post-hoc by Student’s t-test. P < 0.05. 
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Figure 4.2 Neonatal injury changes central met-enkephalin over the first postnatal week 
Met-enkephalin protein was measured relative to total protein in brain and spinal cord harvested 
24 hrs, 48 hrs, and 7 days after injury on P0. Met-enkephalin was significantly decreased in the 
cortex and spinal cord (A and D, respectively), but significantly increased in the midbrain (C) 24 
hrs after injury. Increases in met-enkephalin were observed in the cortex, forebrain, midbrain 
and spinal cord of injured pups relative to controls 7 days after treatment (A-D). Data are shown 
as 2-way ANOVA (Mean ± SEM); n = 3 - 6 pooled samples per group. Significant main effect of 
time was observed in (A, B, C). (*) Denotes significant main effect of treatment (C). (+) Denotes 
significant interaction of injury and time (D). (#) Denotes significant between group differences 
as measured post-hoc by Student’s t-test.  P < 0.05. 
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Figure 4.3 Neonatal injury rapidly changes ß-endorphin in the brain 
Neonatal injury rapidly changes ß-endorphin in the brain. ß-endorphin protein was measured 
relative to total protein in brains harvested 24 hrs, 48 hrs, and 7 days after injury on P0. ß-
endorphin was increased in the cortex (A), forebrain (B) and midbrain (C) 24 hrs after injury. ß-
endorphin concentrations returned to control levels in the forebrain but remained elevated in the 
cortex (A) and midbrain (C) 7 days after hindpaw inflammation. Data are shown as 2-way ANO-
VA (Mean ± SEM); n = 3 - 6 pooled samples per group. Significant main effect of time was ob-
served in (A and C). (*) Denotes significant main effect of treatment (A and B). (#) Denotes sig-
nificant between group differences as measured post-hoc by Student’s t-test.  P < 0.05. 
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5.1 Abstract 

Worldwide approximately 1 in 6 infants are born prematurely each year. Typically, these 

infants spend several weeks in the Neonatal Intensive Care Unit where they experience 10-18 

painful, inflammatory procedures each day. However, more than 70% of these procedures are 

conducted in the absence of pain therapy. Early life pain is associated with decreases in pain 

sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders later in life. In 

rats we have previously reported that a single inflammatory pain experience on the day of birth 

(P0) results in adult hypoalgesia, hyposensitivity to anxiety- and stress-provoking stimuli and 

blunts corticosterone following acute stress. Here, we asked whether morphine treatment for 

early life pain prevents changes in adult behavioral and hormonal sensitivity.  On P0 male and 

female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan in the 

presence or absence of (+/-) morphine. In adulthood, neonatal injury significantly increased time 

in the inner area of the open field, increased latency to immobility and decreased time immobile 

in the forced swim test, and accelerated return of corticosterone to baseline relative to controls. 
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Following 7 days of chronic variable stress, injured animals initiated immobility, spent signifi-

cantly more time floating and had significantly elevated corticosterone. Responses to acute and 

chronic stress were significantly attenuated in animals that received morphine at the time of in-

flammation. These data suggest analgesia for early life pain prevents adult hyposensitivity to 

acute anxiety- and stress-provoking stimuli, vulnerability to chronic stress and have important 

clinical implications.  

5.2 Introduction 

Each year, 16.5% of infants worldwide and 12% of infants in the United States are born 

premature, defined as birth prior to 37 gestational weeks (Martin et al., 2006). The majority of 

these infants spend an average of 25 days in the Neonatal Intensive Care Unit (NICU) (PeriStats, 

2011), where they undergo 10-18 invasive procedures each day, including repeated heel lance, 

endotracheal intubation, surgery, and respiratory and gastric suctioning (Barker and Rutter, 1995; 

Simons et al., 2003; Carbajal et al., 2008; PeriStats, 2011). Although the majority of these NICU 

procedures result in pain and inflammation, 79-98% are performed in the absence of analgesia 

or anesthesia (Carbajal et al., 2008).  

It was previously believed that infants born prematurely were incapable of responding to 

noxious stimuli (Rodkey and Pillai Riddell, 2013). However, recent studies show that preterm 

infants as young as 25 gestational weeks display evoked cortical activity (Bartocci et al., 2006; 

Slater et al., 2006), robust secretion of stress hormones (Anand et al., 1987b), and elevated 

heart rate and facial activity (Grunau et al., 2005; Grunau et al., 2010) in response to noxious 

stimulation. As the number of invasive procedures experienced increases, behavioral, neuroen-

docrine and autonomic responses become significantly blunted. These changes in response to 

pain and stress may be permanent; clinical studies report former preterm infants have de-

creased sensitivity to noxious stimuli and altered cortisol reactivity later in life as teenagers and 

young adults (Botting et al., 1997; Hack et al., 2004; Grunau et al., 2005; Hermann et al., 2006; 
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Hayes and Sharif, 2009; Walker et al., 2009b; Grunau et al., 2010; Sullivan et al., 2012). 

Whether these permanent changes can be prevented by analgesia at the time of injury is not 

known.  

Using a rat model of early life pain, we have previously reported that hindpaw inflamma-

tion (carrageenan 1%) during the first postnatal week (P0-8) results in decreased sensitivity to 

acute pain-provoking stimuli, but exaggerated responses to chronic inflammatory pain in adult 

male and female rats (LaPrairie and Murphy, 2007). Morphine treatment at the time of injury 

prevented both effects in adulthood (LaPrairie et al., 2008). Most recently, we reported that ne-

onatally injured adults show behavioral hyposensitivity to acute anxiety- and stress-provoking 

stimuli (Victoria et al., 2013b) and blunted corticosterone release (Victoria et al., 2013c), indicat-

ing dysregulation of the hypothalamic pituitary adrenal axis (Chrousos, 2009). These changes in 

response to pain- and stress-provoking stimuli are accompanied by site-specific changes in 

enkephalin, as well as glucocorticoid receptor (GR) and CRF receptors 1 and 2 (Victoria et al., 

2013c; Victoria et al., 2013b).  

While early life pain clearly alters adult responses to acute anxiety- and stress-provoking 

stimuli, to date, its impact on behavioral and hormonal responses to chronic stress is not known. 

Also, it is unknown whether morphine administration at the time of injury attenuates these long- 

term changes in response to acute or chronic stressors. For the first time, we present evidence 

that morphine treatment for early life pain prevents hyposensitivity to acute anxiety- and stress-

provoking stimuli, vulnerability to chronic stress, and alters corticosterone release following 

acute and chronic stressors similarly to controls.  

5.3 Materials And Methods 

Animals 

Pregnant Sprague-Dawley rat dams were obtained on gestational day 14 (G14) (Charles 

River). Dams were housed individually under 12:12 hr light:dark cycle with ad libitum access to 
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food and water. On the day of birth (P0), pups were sexed by examination of anogenital dis-

tance and subjected to neonatal treatment. All litters were reared identically, weaned on P21 

and housed with same sex littermates in groups of 2-3. Male and female rats were used in all 

experiments and tested on separate days. All experiments adhered to the guidelines of the 

Committee for Research and Ethical Issues of IASP, and were approved by the Georgia State 

University Animal Care and Use Committee.  

 

Neonatal Treatment 

On the day of birth (P0), male and female rat pups received an injection of carrageenan 

(5 µL, CGN 1%, dissolved in saline; Sigma, USA) into the intraplantar surface of the right hind-

paw or were handled in an identical manner (LaPrairie et al., 2008; Victoria et al., 2013b). Intra-

plantar CGN results in acute, local inflammatory pain that persists for 24-72 hours and does not 

alter maternal behavior (Ren et al., 2004; LaPrairie and Murphy, 2007). All animals received 

morphine sulfate (2 mg/kg, i.p.) or equivolume saline (0.9%, i.p.) 15 min prior to intraplantar 

CGN or handling. At peak paw inflammation (5 hrs post-CGN), a second dose of morphine or 

saline was administered (LaPrairie et al., 2008). This resulted in a total of 4 groups: Injury + Sa-

line, Handled + Saline, Injury + Morphine, Handled + Morphine. Pups were separated from their 

dam for 15 minutes, maintained on a warm surface and returned to the home cage as a group. 

All pups within a litter received the same neonatal treatment. Animals (n = 102) were undis-

turbed until adulthood (P60) except for cage changes and weaning (P21).  

 

Test Of Anxiety-Like Behavior 

Adult anxiety-like behavior was assessed using the Open Field (OF), a well-established 

test sensitive to detecting the effects of early life manipulations on anxiety (Joffe et al., 1973). 

Animals (P60-80; n = 4-8/treatment/sex) were habituated to the testing room daily for 60 

minutes, 2 days before and on the day of testing. Adults were gently placed in the OF (gridded 
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Plexiglas box 120 cm x 120 cm x 30 cm) facing the same direction in randomized order by an 

experimenter blinded to neonatal treatment. Testing occurred under red light (10:00 – 14:00). 

Each animal experienced the OF one time for 5 minutes. Behaviors were recorded digitally with 

Noldus Observer 5.0 (Noldus, USA) and observed remotely with a video monitor. The testing 

apparatus was cleaned thoroughly with 70% ETOH between each animal; vapors were allowed 

to evaporate completely before the next session commenced. Scoring of anxiogenic (OF: dura-

tion in outer perimeter), anxiolytic behaviors (duration in inner area) and locomotor behavior 

(number of lines crossed) occurred post-hoc by an experimenter blinded to neonatal treatment. 

Data were expressed as duration or frequency. 

 

Forced Swim Test And Blood Withdrawal 

Adult stress-related behavior was assessed with the Forced Swim Test (FST). Animals 

(P70-90) were habituated to the testing room daily for 60 minutes, 3 days before and on the day 

of testing. Testing occurred during the light phase (9:00-12:30). Water was maintained at 25˚C 

and filled to height such that animals could neither escape nor could the tail touch the bottom 

(63.5 cm) (Porsolt et al., 1977; Porsolt et al., 1978). On day one of the FST, adults (n = 4-

8/treatment/sex) were placed in a circular swim tank (71.2 cm x 62.5 cm x 56 cm) for a 5 minute 

pre-swim to elicit “behavioral despair”(Armario et al., 1988). On day two, animals were placed in 

the swim tank for a 5-minute FST; all behaviors were digitally recorded. Following the FST, ani-

mals were dried with a clean towel and placed in clean cages. Fecal boli were counted and re-

moved from the tank between each test. The tank was cleaned with detergent and ETOH be-

tween tests. The following behaviors were scored post-hoc: (1) latency to immobility, defined as 

the first cessation of swimming with arched-back floating (Porsolt et al., 1978); (2) duration of 

immobility, characterized by arched-backed floating and movement only necessary to keep the 

head above water or prevent drowning (Porsolt et al., 1978). Data are expressed as frequency 

and duration. 



91 

HPA output in response to swim stress was tested before and after 5 minutes of forced 

swimming. Blood samples were collected (9:00-12:30) from the lateral saphenous vein directly 

into 1 mL EDTA-hematology tube (BD from Fisher Scientific) using a 23-gauge needle 60 min 

before forced swimming to allow wound clotting and avoid water contamination (baseline; 0 

min), immediately after 5 min of swim in 25˚C water (stress), 30 min after the onset of swim 

(peak) and 75 min post-swim (recovery). Blood samples were maintained at room temperature 

for ≥30 min and centrifuged at 4000 rcf at 4˚C for 15 min. Plasma was pipetted into microcentri-

fuge tubes and stored at -80˚C until radioimmunoassay for CORT (I-125 Double Antibody Corti-

costerone kit, MP Biomedicals, USA). Concentration of CORT was determined against known 

standards (R2 > 0.98) according to the manufacturer’s instructions. The minimum limit of detec-

tion was 3.125 ng/mL. Intra-assay and inter-assay coefficients of variation were 4.3% and 5.6%, 

respectively.  

 

Mild Chronic Variable Stress 

To test the impact of neonatal injury on coping with unpredictable and repeated stress, 

adult rats (P85-P105) were exposed to 7 consecutive days of mild chronic variable stress 

(mCVS). A different cohort of neonatally-injured adult male and female rats (n = 5-

9/treatment/sex) were used in these experiments to avoid potential carryover effects from acute 

OF and FST testing. Animals were single housed 9-14 days prior to mCVS exposure. Stressors 

consisted of (1) water saturated bedding, (2) restraint in acrylic cylinder (30 min), (3) fox odor in 

cage (30 min; 1:5000 2,4,5-trimethylthiazole; Sigma, USA), (4) hypothermia stress (4 hrs; 4-

6˚C), (5) 6 cage changes in 24 hrs, (6) insufficient bedding (1:2), (7) white noise exposure (100 

dB), (8) novel objects in cage (7 white golf and ping pong balls), and (9) 36 hrs of constant light 

(Mueller and Bale, 2008; Morgan and Bale, 2011). Stressors were presented in random order 

and spanned the entire AM (7:00-13:00), PM (13:00-19:00), or overnight (19:00-7:00) period 

unless otherwise specified. All stressors were experienced 2-3 times by each animal. On day 7, 
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all animals experienced 30 min of restraint in the AM, 5 min of pre-swim in the PM and novel 

objects + white noise overnight. On day 8, adults were given FST and blood withdrawal (9:00-

12:30) as stated above to measure coping behavior and corticosterone following mCVS.  

 

Statistical Analysis 

Significant main effects of neonatal treatment and sex were assessed using two-way 

ANOVA or Repeated Measures ANOVA. Fisher PLSD was used for post-hoc analyses to de-

termine differences between groups. Area under the curve analyses relative to ground are re-

ported for corticosterone data and were calculated using the formu-

la, , where C and t denote concentration 

of corticosterone and time point for sample collection, respectively (Pruessner et al., 2003). Per-

centages are reported as mean percent change from control. Where applicable, values ≥2 

standard deviations from the mean were eliminated as outliers. All comparisons were apriori 

specified. Confidence was set to P < 0.05 and considered statistically significant.   

5.4 Results 

Impact Of Morphine Treatment On Adult Anxiety Responses   

To determine if morphine reversed the impact of early life pain on adult responses to 

acute anxiety-provoking stimuli, injured and control male and female rats (+/- morphine) were 

tested in the Open Field (OF) apparatus. A two-way ANOVA revealed a significant main effect 

of treatment (F(3,42) = 24.68; P < 0.0001) on time spent in the inner area; no significant effect of 

sex (F(1,42) = 1.28; P = 0.26), and no significant interaction (F(3,42) < 1; P = 0.78) was observed. 

Consistent with our previous report (Victoria et al., 2013b), neonatally injured adults spent signif-

icantly more time in the inner area than non-injured controls (Injury + Saline versus Handled + 

Saline, Fisher’s PLSD P < 0.0001) (Fig. 1A). This effect was reversed by morphine treatment 
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(Injury + Morphine versus Injury + Saline; Fisher’s PLSD post hoc, P < 0.0001). Indeed, no sig-

nificant differences were noted between morphine injured animals and handled controls (Injury 

+ Morphine versus Handled + Saline; Fisher’s PLSD, P > 0.05). Interestingly, animals given 

morphine in the absence of pain spent significantly more time in center of the OF as compared 

to handled controls (Handled + Morphine versus Handled + Saline; Fisher’s PLSD, P < 0.001) 

and injured animals treated with morphine (Fisher’s PLSD, P < 0.01).  

A two-way ANOVA was used to assess the impact of early life pain on the number of line 

crosses, and indicator of locomotor behavior. A significant main effect of sex (F(1,42) = 26.81; P < 

0.0001) was noted, with females crossing significantly more lines than males independent of 

treatment (F(3,42) = 1.13; P = 0.35). Together, these data suggest that dampened behavioral re-

sponses to anxiety-provoking stimuli induced by early life pain are reversed by morphine treat-

ment. In addition, they indicate that administration of morphine in the absence of pain results in 

moderate anxiolysis. 

 

Morphine Treatment For Neonatal Injury And Adult Behavioral Responses To Acute Stress   

We have previously reported that early life pain increases the latency to immobility in the 

forced swim test (FST) and reduces FST-induced CORT release in adulthood (Victoria et al., 

2013c; Victoria et al., 2013b).  To determine if morphine treatment reverses this effect, neona-

tally injured or handled adult male and female rats (+/- morphine) were exposed to the FST for 5 

min. A two-way ANOVA revealed a significant main effect of treatment (F(3,42) = 57.54; P < 

0.0001), with no effect of sex (F(1,42) = 1.31; P = 0.26) or a sex by treatment interaction (F(3,42) < 

1; P = 0.96). Consistent with our recent report (Victoria et al., 2013b), latency to immobility was 

significantly increased 6-fold in neonatally injured adults as compared with non-injured controls 

(Injury + Saline versus Handled + Saline, Fisher’s PLSD, P < 0.0001; Fig. 2A). Administration of 

morphine at the time of injury completely reversed this effect (Injury + Morphine versus Handled 

+ Saline, Fisher’s PLSD, P > 0.05). Both male and female rats that received morphine in the 
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absence of pain also had significantly longer latencies to immobility than non-injured control an-

imals (Handled + Morphine versus Handled + Saline, Fisher’s PLSD, P < 0.0001).  

A significant main effect of treatment was also observed for duration of immobility (F(3,42) 

= 15.03; P < 0.0001), with no effect of sex (F(1,42) = 4.00; P = 0.062) or sex by treatment interac-

tion (F(3,42) < 1; P = 0.99). Neonatally injured male and female rats spent significantly less time 

immobile than handled controls (Injury + Saline versus Handled + Saline, Fisher’s PLSD, P < 

0.0001). This effect was reversed by morphine treatment at the time of injury (Injury + Morphine 

versus Handled + Saline, Fisher’s PLSD, P > 0.05). Administration of morphine in the absence 

of pain significantly reduced duration of immobility in both males and females (Handled + Mor-

phine versus Handled + Saline, Fisher’s PLSD, P < 0.05). As in our previous reports (Victoria et 

al., 2013b), neonatally injured male and female rats excreted significantly less fecal boli in com-

parison to handled controls (Injury + Saline versus Handled + Saline, Fisher’s PLSD, P < 0.01), 

an effect that was also reversed by morphine treatment. Together these data suggest that pain 

on the day of birth decreases adult sensitivity to acute stress, an effect that is prevented by 

treatment with morphine at the time of injury. 

 

Morphine Treatment For Neonatal Injury And Adult Corticosterone Responses To Acute Stress 

To determine if morphine treatment at the time of injury alters adult corticosterone re-

lease in response to acute stress, plasma concentrations were assayed from blood drawn be-

fore, immediately after and during recovery from 5 min of forced swimming (Fig. 3). Repeated 

measures ANOVA revealed a significant treatment by sex by time interaction (F(9,126) = 2.65; P = 

0.0077). For females, a significant treatment by time interaction was observed (F(9,63) = 3.54; P = 

0.0013). Pain on the day of birth resulted in significantly higher basal corticosterone levels in 

comparison to morphine treated animals (overall mean increase: 142%; Injury + Saline versus 

Handled + Morphine, Fisher’s PLSD, P < 0.05; overall mean increase: 86%; Injury + Saline ver-

sus Injury + Morphine, Fisher’s PLSD, P < 0.05). No other group differences in baseline corti-
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costerone levels were observed. Immediately after swimming (0 min) neonatally injured females 

had significantly lower corticosterone relative to those treated with morphine for neonatal pain 

(overall mean decrease: 26%; Injury + Saline versus Injury + Morphine, Fisher’s PLSD, P < 

0.05).  Thirty minutes after stress, corticosterone levels were significantly elevated in injured fe-

males treated with morphine as compared with handled controls (overall mean increase: 33%; 

Injury + Morphine versus Handled + Saline, Fisher’s PLSD, P < 0.05). During recovery from 

swim stress (75 min) females that experienced neonatal pain had significantly reduced corti-

costerone levels relative to handled controls (overall mean decrease: 46 %; Injury + Saline ver-

sus Handled + Saline, Fisher’s P < 0.05). Morphine treatment at the time of injury reversed and 

augmented this effect (overall mean increase: 258%; Injury + Morphine versus Injury + Saline; 

Fisher’s PLSD, P < 0.01; overall mean increase: 92%; Injury + Morphine versus Handled + Sa-

line, Fisher’s PLSD, P < 0.05). 

A significant treatment by time interaction was also observed for male corticosterone 

levels (F(9,63) = 2.07; P = 0.046) (Fig 3B). Although significant changes were not observed in ba-

sal corticosterone concentrations, the pattern exhibited was similar to females. At 0 min no dif-

ferences in corticosterone concentrations were observed for handled controls versus injured 

animals or those that were treated with morphine (Handled + Saline versus Injury + Saline; ver-

sus Injury + Morphine; versus Handled + Morphine, Fisher’s PLSD, P > 0.05). Thirty minutes 

after stress, corticosterone levels were significantly decreased in injured males as compared 

with injured animals treated with morphine (overall mean decrease: 24%; Injury + Saline versus 

Injury + Morphine, Fisher’s PLSD, P < 0.01). At 75 min, corticosterone levels in animals given 

morphine before neonatal injury or those given morphine in the absence of pain had significantly 

reduced corticosterone levels relative to handled controls (overall mean decrease: 49%; Han-

dled + Saline versus Injury + Morphine; overall mean decrease: 54%; Handled + Saline versus 

Handled + Morphine, Fisher’s P < 0.05). Corticosterone levels of injured males tended to de-

crease by 40% relative to handled controls. 
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Morphine Treatment For Neonatal Injury And Adult Behavioral Responses To Mild Chronic Var-

iable Stress (mCVS)   

To determine the impact of neonatal injury on adult responses to chronic stress, male 

and female rats were exposed to 7 days of mCVS. On the 8th day, latency to immobility and total 

duration of immobility in response to a 5 min forced swim test were measured (Fig. 4). A two-

way ANOVA on latencies to immobility revealed significant main effects of treatment (F(3,44) = 

22.71; P < 0.0001) and sex (F(1,44) = 6.22; P = 0.016), but no significant interaction (F(3,44) < 1; P 

= 0.62). In contrast to responses following acute stress, 7 days of mCVS significantly reduced 

latency to immobility in neonatally injured adult males and females as compared with controls 

(Injured + Saline versus Handled + Saline, Fisher’s PLSD, females: P < 0.0001; males: P < 

0.0001, Fig. 4A), with injured animals stopping swimming 2-3 times faster than handled controls. 

Administration of morphine at the time of injury reversed this effect, with no significant differ-

ences noted for Injured + Morphine versus Handled + Saline adults (Fisher’s PLSD, females: P 

> 0.05; males: P > 0.05). Administration of morphine in the absence of pain (Handled + Mor-

phine) significantly affected adult phenotype, as latency to immobility for both males and fe-

males were significantly decreased relative to Handled + Saline controls (Fisher’s PLSD, fe-

males: P < 0.01; males: P < 0.05).     

Adult duration of immobility in the FST was also affected by mCVS, with significant ef-

fects of treatment (F(3,44) = 8.50; P = 0.0001) and sex (F(1,44) = 6.20; P = 0.016) but no significant 

interaction (F(3,44) = 1.51; P = 0.23) (Fig 4B). Injured adults that did not receive morphine (Injury 

+ Saline) floated significantly longer than Handled + Saline controls  (Fisher’s PLSD, females: P 

< 0.01; males: P < 0.01). Morphine treatment at the time of injury reversed this effect in both 

males and females with no significant differences noted in latency to immobility for Injury + Mor-

phine versus Handled + Saline adults (Fisher’s PLSD, females: P > 0.05; males: P > 0.05).  

Neonatal treatment also had a significant impact on adult fecal boli excreted in response 

to FST following mCVS (F(3,44) = 3.67; P = 0.019) with no noted effect of sex (F(1,44) < 1; P = 0.39) 
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or sex by treatment interaction (F(3,44) < 1; P = 0.92). Specifically, adults that experienced early 

life pain without analgesia (Injured + Saline) excreted significantly more fecal boli than Handled 

+ Saline controls (Fisher’s PLSD, P < 0.01) and Injury + Morphine treated animals (Fisher’s 

PLSD, P < 0.05). No differences were noted in Injured + Morphine versus Handled + Saline 

controls (Fisher’s PLSD, P > 0.05) (data not shown). Together, theses data indicate that early 

life pain in the absence of analgesia decreases adult resilience to chronic stress, an effect that 

is preventable with analgesia at the time of injury. 

 

Morphine treatment before neonatal injury and adult corticosterone responses after mCVS   

We next determined whether 7 days of mCVS differentially affected corticosterone re-

lease in neonatally injured animals +/- morphine treatment.  Repeated measures ANOVA re-

vealed a significant treatment by sex by time interaction (F(12,176) = 2.73; P = 0.0020). For fe-

males (Fig 5A), a significant treatment by time interaction was observed (F(12,92) = 2.49; P = 

0.0072). Females exposed to mCVS had significantly elevated corticosterone levels compared 

to females exposed to acute stress (Area under the curve: F(7,44) = 3.53; P = 0.0043). Corti-

costerone was increased by 37% for Injured + Saline females (Fisher’s PLSD, P < 0.05). For 

Handled + Saline females an increase of 34% was observed (Fisher’s PLSD, P < 0.0001). In-

terestingly, no difference was observed between females treated with morphine (+/- pain) for 

acute versus chronic stress (Fisher’s PLSD, P > 0.05). Corticosterone levels before mCVS (pre-

mCVS) were similar across groups. After 7 days of mCVS, basal corticosterone levels of injured 

females treated with morphine were significantly elevated (122-241%) in comparison to handled 

controls (+/- morphine) and injured females (- morphine) (Fisher’s PLSD, P < 0.05). No signifi-

cant group differences were observed in corticosterone concentrations at 0, 30 or 75 min after 

swim stress. However, corticosterone levels of neonatally injured females at 75 min failed to re-

turn to baseline faster than handled controls and injured females treated with morphine (Injury + 

Saline versus Handled + Saline; versus Injury + Morphine, P > 0.05) as observed in response to 
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acute stress (Fig 3A), suggesting that mCVS heightened HPA activity for females injured as ne-

onates without analgesia.  

A significant time by treatment interaction was also observed for male corticosterone 

levels (F(12,84) = 2.25; P = 0.016) (Fig 5B). Overall, males exposed to mCVS had significantly el-

evated corticosterone levels in comparison to males exposed to acute stress (Area under curve: 

F(7,42) = 3.66; P = 0.0036). Specifically, corticosterone was significantly elevated for neonatally 

injured males that experienced mCVS in comparison to males of the same treatment that expe-

rienced acute stress (overall mean increase: 37%; acute Injured + Saline versus mCVS Injured 

+ Saline, Fisher’s PLSD, P < 0.001). No difference was observed between handled males or 

those treated with morphine (+/- pain) (Fisher’s PLSD, P > 0.05). Similar to females, no signifi-

cant changes were observed in pre-mCVS baseline between groups. After 7 days of mCVS, 

basal corticosterone was significantly increased in injured males as compared with injured 

males treated with morphine (overall mean increase: 245% Injury + Saline versus Injury + Mor-

phine, Fisher’s PLSD, P < 0.05); a similar trend was observed relative to handled controls 

(132%, Fisher’s PLSD, P = 0.05), suggesting that mCVS heightened baseline functioning of the 

HPA axis for males that experienced pain without analgesia. No significant changes were ob-

served in corticosterone concentrations at 0 and 30 min. At 75 min after swim stress, corti-

costerone levels of injured males were significantly elevated above handled controls (overall 

mean increase: 137%; Injury + Saline versus Handled + Saline, Fisher’s PLSD, P < 0.01), 

males given morphine in the absence of pain (98%; Injury + Saline versus Handled + Morphine; 

Fisher’s PLSD, P < 0.01) and injured males treated with morphine (240%; Injury + Saline versus 

Injury + Morphine; Fisher’s PLSD, P < 0.05), suggesting that males injured without analgesia 

were vulnerable to the effects of chronic stress. 
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5.5 Discussion 

The present studies tested the impact of neonatal injury in the presence and absence of 

pain therapy on adult responses to 7 days of mild chronic variable stress (mCVS). In contrast to 

behavioral responses to acute stress, neonatally injured adults initiated floating rapidly and 

spent significantly more time immobile in the FST after mCVS exposure, suggesting vulnerabil-

ity to sequential, unpredictable perturbations and dysregulation of HPA activity. Morphine ad-

ministration for neonatal inflammatory pain prevented adult behavioral vulnerability to chronic 

stress, as well as hyposensitivity to acute anxiety- and stress-provoking stimuli. This provides 

additional support for opioid-dependent changes in stress responding that result from early life 

pain (Victoria et al., 2013b), and is consistent with our previous report that neonatal morphine 

treatment prevents adult changes in pain sensitivity (LaPrairie et al., 2008). 

 

Morphine Treatment For Neonatal Pain Rescues Deficits In Acute Anxiety And Stress Respond-

ing 

Adults that experienced unalleviated pain as neonates spent significantly more time in 

the center of the OF.  In the FST, P0 injury without analgesia resulted in a 5-6 fold increase in 

latency to immobility and decreased total time floating. Together, OF and FST data suggest that 

unalleviated pain decreases sensitivity to acute anxiety- and stress-provoking stimuli in adult-

hood (Victoria et al., 2013b). In support of the role of the endogenous opioid system in the ob-

served behavioral changes, others have shown that overexpression of preproenkephalin or 

enkephalin administration potentiates the anxiolytic effects of benzodiazepines, increases time 

in the open arms and blocks swim-stress induced anxiety in the elevated plus maze (EPM) in 

adult rodents (Kang et al., 2000; Randall-Thompson et al., 2010).  By contrast, animals that re-

ceived morphine for pain on the day of birth spent the same amount of time in the inner area of 

the OF, initiated floating (after approximately 10-12 seconds) and spent a comparable amount 

of time immobile in the FST as handled controls, suggesting that appropriate analgesia at the 
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time of injury prevents adult hyposensitivity to anxiety- and stress-provoking stimuli. This finding 

is consistent with previous studies showing that morphine treatment for neonatal pain prevents 

adult hypoalgesia (Bhutta et al., 2001; LaPrairie et al., 2008). In addition, chronic perinatal 

blockade of opioid signaling through µ- and δ-opioid receptor systems, or selective knockout of 

preproenkephalin increases anxiety-like behavior in the EPM and OF, and increases aggression 

(de Cabo de la Vega et al., 1995; Konig et al., 1996; Bilkei-Gorzo et al., 2008). Together these 

behavioral data suggest that blocking early life pain with opioid analgesia prevents hyposensitiv-

ity to acute anxiety- and stress-provoking stimuli, in turn allowing for normal stress coping.  

 

Morphine treatment rescues stress coping following chronic stress  

Early life perturbations have been shown to result in long-term changes in response to 

anxiety- and stress-provoking stimuli. In general, animals that have experienced either acute or 

mild perturbations during the perinatal period, including handling, licking, and grooming, show 

decreased responsiveness to stress-provoking stimuli and reduced HPA reactivity (Bhatnagar 

and Meaney, 1995; Caldji et al., 2000; Weaver et al., 2005; Boufleur et al., 2013). By contrast, 

the opposite behavioral profile is observed in adults exposed to severe neonatal stressors such 

as maternal separation and maternal isolation (Coutinho et al., 2002; Marais et al., 2008). In the 

present study, animals injured neonatally without morphine responded to acute stress with ex-

cessive resilience, but were extremely passive and vulnerable after 7 days of chronic, unpre-

dictable stress. In particular, mCVS significantly elevated corticosterone relative to acute stress, 

and promoted depressive-related behaviors in the FST for adults injured in the absence of mor-

phine.  

Similar disparities in acute versus chronic stimuli responding have been observed in 

other stress and early life perturbation models. For example, rats given acute restraint stress 

struggle 2-3 times longer than rats that are chronically restrained (Grissom et al., 2008). Adult 

rats injured as neonates exhibit hypoalgesia in response to a brief thermal stimulus, but severe 
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hyperalgesia in the presence of chronic inflammatory pain (Ren et al., 2004; LaPrairie and 

Murphy, 2007; LaPrairie et al., 2008). Neonatal endotoxin exposure on P4 results in increased 

sucrose preference and social interaction, and decreases corticosterone following acute tail 

shock (Bilbo et al., 2008). However, adult chronic stress exposure or LPS administration in-

creases anxiogenic behavior in EPM and OF, increases acoustic startle amplitude and elevates 

corticosterone release (Bilbo et al., 2008; Walker et al., 2009a). Interestingly, a model of chronic 

maternal separation (3 hrs/day on P2-P14) shows basal hyperactivation of the HPA axis in re-

sponse to acute air puff startle stress, but reduced ACTH and corticosterone following chronic 

stress (Ladd et al., 2005), suggesting that the HPA axis has flexibility for dichotomous dysregu-

lation in both directions as a result of early life perturbations.  

This hypo- versus hyper-reactive profile in response to acute versus chronic/severe 

stimuli is consistent with clinical findings in former preterm infants. For example, children, teens 

and young adults born prematurely are rated as less sensitive to pain by both their parents and 

physicians (Grunau et al., 1994b; Johnston et al., 1996; Oberlander et al., 2000; Hermann et al., 

2006), display reduced stress-induced analgesia (Wollgarten-Hadamek et al., 2011) and show 

blunted cortisol reactivity to psychological stress testing (Buske-Kirschbaum et al., 2007). In 

contrast, a hyperalgesic response is observed following surgery in the same dermatome, as well 

as increased negative verbalizations, and a higher incidence of catastrophic, rather than solu-

tion-based, thoughts related to painful interventions (Peters et al., 2005; Bagner et al., 2010; 

Hohmeister et al., 2010). Collectively, these findings support the hypothesis that early life trau-

ma confers physiological and psychological adaptations that result in extreme coping strategies, 

which are known risk factors for the manifestation of depression and post-traumatic stress dis-

order (PTSD) (Taylor and Stanton, 2007).  

Indeed, parents and teachers report former NICU patients as having significantly more 

issues with internalizing and externalizing, reduced cognitive and behavioral flexibility, and 

higher rates of anxiety and depression than full-term peers (Levy-Shiff et al., 1994; Botting et al., 
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1997; Hack et al., 2004; Aarnoudse-Moens et al., 2009; Hayes and Sharif, 2009). In this con-

text, our data suggest that early life pain decreases the ability to cope with sequential and un-

predictable challenges and may increase vulnerability to severe disorders of perception and 

stress. Notably, the present data show that behavioral and hormonal changes in adult respond-

ing to mCVS were prevented by treatment with morphine for early life pain. Similarly, admin-

istration of opioid analgesia to preterm infants for surgical or procedural pain reduces cortisol, 

norepinephrine, epinephrine and ß-endorphin release, suggesting that at least some of the ef-

fects of early life pain on stress reactivity are mitigated (Anand et al., 1987b; Anand and Hickey, 

1992). Together, theses data suggest that appropriate analgesic intervention for painful NICU 

procedures may mitigate later-life vulnerability to neuropsychiatric disorders for former preterm 

infants.  

 

Morphine Treatment In The Absence Of Pain  

Interestingly, male and female rats that received morphine on the day of birth in the ab-

sence of pain displayed a phenotype intermediate to rats injured with and without morphine. 

This suggests that early activation of the opioid system, either endogenously by early noxious 

stimulation (Victoria et al., 2013d) or exogenously with morphine, produces long-term changes 

in adult responses to anxiety- and stress-provoking stimuli. Consistent with opioid regulation of 

anxiety-like behavior, adult rats given morphine exhibit significantly reduced fear-potentiated 

startle (Glover and Davis, 2008) and spend significantly more time in the open arms of the EPM 

(Anand et al., 2012). Similarly, perinatal morphine exposure in rats increases opioid release in 

response to acute psychological stressors and reduces adult anxiety-related behaviors 

(Buisman-Pijlman et al., 2009). Others have shown that morphine treatment of adult rats during 

7 days of chronic variable stress increases immobility in the FST and decrease sucrose prefer-

ence (Molina et al., 1994; Zurita et al., 2000). Daily naloxone or naltrexone administration before 

stressors rescues depressive-related behaviors (Molina et al., 1994; Zurita et al., 2000), sug-
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gesting that chronic opioid signaling is necessary for FST behaviors in response to repeated 

stress. In addition, we observed basal corticosterone levels were significantly lower in females 

treated with morphine as neonates relative to injured or handled females given saline, with a 

similar trend observed in morphine treated males. Significant reductions in basal corticosterone 

have been observed in mice lacking preproenkephalin (Bilkei-Gorzo et al., 2008). Together, the-

se data support the hypothesis that early life activation of the opioid system alters sensitivity to 

noxious or aversive stimuli later in life. 

 

Conclusions   

Our working hypothesis is that morphine treatment for early life pain mitigates the injury-

induced increase in afferent nociceptive drive and reduces activation of supraspinal circuits 

subserving pain and stress (Walker et al., 1986; Tive and Barr, 1992; Abbott and Guy, 1995; 

Fitzgerald, 2005; LaPrairie and Murphy, 2009; Barr and Wang, 2013). In turn, release of endog-

enous opioids, such as met-enkephalin and ß-endorphin, and neurohormones from the HPA 

axis, including CRF, ACTH and corticosterone, is reduced (McDonald et al., 1959; Stubbs et al., 

1978; Anand et al., 1987b; Anand and Hickey, 1992; Van Bockstaele et al., 2000). Animals re-

ceiving morphine in the absence of pain also showed long-term changes in behavioral and hor-

monal responses to stress. Indeed, others have shown that morphine administration to rat pups 

twice daily from P3-7 in the absence of pain decreases adult immobility in the FST and basal 

corticosterone levels (McPherson et al., 2007) supporting the hypothesis that early life activation 

of the opioid system, either with injury-driven upregulation in endogenous opioid peptides 

(LaPrairie and Murphy, 2009; Victoria et al., 2013b; Victoria et al., 2013d) or administration of 

morphine in the absence of pain, permanently re-programs circuits sensitive to anxiety and 

stress.  

Although evidence over the last 30 years has clarified that infants feel pain, and the vast 

majority of modern pediatric physicians acknowledge this (Purcell-Jones et al., 1988), less than 



104 

35% of NICU patients receive analgesia before the 10-18 invasive and painful procedures expe-

rienced each day in the NICU (Barker and Rutter, 1995; Simons et al., 2003; Carbajal et al., 

2008). A variety of studies have aimed to test the efficacy and long-term impact of opioid anal-

gesia in the NICU, but this has proven to be a difficult task, challenged by small sample sizes, 

inclusion of infants with confounding illness such as hypotension or pre-existing neurological 

impairment, or dosing that may be age inappropriate (MacGregor et al., 1998; Bouwmeester et 

al., 2001; Anand et al., 2004; Roze et al., 2008; de Graaf et al., 2011). However, a recent study 

reported that former preterm infants at 8-9 years old who received morphine for pain manage-

ment in the NICU had improved executive functioning and reduced problems with externaliza-

tion relative to infants that received placebo (de Graaf et al., 2013). 

 In our simplified, yet clinically relevant model (Workman et al., 2013) of early life pain, 

we show for the first time that specific, low-dose morphine treatment for inflammatory injury pre-

vents hyposensitivity to acute anxiety- and stress-provoking stimuli in adulthood, and behavioral 

and hormonal vulnerability to chronic stress. These studies support the need for specific and 

appropriate analgesic regimes for human infants. The current absence and inconsistency of 

such treatment plans leaves former preterm infants at high risk for disorders of stress and per-

ception such as anxiety, depression and PTSD throughout life.  
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5.6 Chapter 5 Figures 

 
 
Figure 5.1 Morphine treatment reverses the impact of early life pain on adult anxiety re-
sponses  
A. Adult male and female rats that received an intraplantar injection of 1% CGN on the day of 
birth (Injury+Saline: n = 5 male; n = 7 female) spent significantly more time in the inner area of 
the Open Field than handled controls (Handled+Saline: n = 7 male; n = 8 female).  This effect 
was reversed by treatment with morphine at the time of injury (Injury+Morphine: n = 7 male; n = 
6 female). A significant increase in time spent in inner area was also observed for animals that 
received morphine in the absence of pain (Handled+Morphine: n = 6 male; n = 4 female). B. 
Females crossed significantly more lines than males, independent of treatment. Data are shown 
as Mean ± SEM. Main effects measured with two-way ANOVA for sex and treatment. Significant 
group differences (*P < 0.05) were measured post-hoc by Fisher’s PLSD. 
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Figure 5.2 Morphine treatment reverses the impact of early life pain on adult responses 
to acute stress 
A. Latency to immobility was significantly increased for male and female rats that received hind-
paw inflammation in the absence of morphine on P0. Administration of morphine at the time of 
injury completely reversed this effect.  B. Similar treatment effects were noted in the duration of 
immobility. Data are shown as Mean ± SEM. Main effects measured with two-way ANOVA for 
sex and treatment. Significant group differences (*P < 0.05) were measured post-hoc by Fish-
er’s PLSD; (Handled+Saline: n = 7 male; n = 8 female); (Injury+Saline: n = 5 male; n = 7 fe-
male);(Handled+Morphine: n = 6 male; n = 4 female) (Injury+Morphine: n = 7 male; n = 6 fe-
male). 
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Figure 5.3 Morphine treatment for neonatal injury alters adult corticosterone responses 
to acute swim stress.  
Plasma corticosterone was measured from blood drawn before (baseline; bsl), after (0 min, 30 
min) and during recovery (75 min) from 5 min of swim stress in adult females (A) or males (B). 
Basal corticosterone was significantly decreased in adult females that were given morphine (+/- 
injury). Immediately after swimming (0 min), corticosterone was significantly reduced for injured 
females. At 30 min corticosterone was significantly increased for females and males treated 
morphine for injury. At 75 min corticosterone was elevated in handled controls of both sexes. 
For females, morphine for injury rescued and augmented corticosterone levels. For males, mor-
phine treatment (+/- injury) reduced corticosterone. Data were analyzed using Repeated 
Measures ANOVA for time and are presented as Mean ± SEM. Significant interaction between 
time and treatment, +P < 0.01. Significant between group differences measured post-hoc by 
Fisher’s PLSD. *P < 0.05; (Handled+Saline: n = 7 male; n = 8 female); (Injury+Saline: n = 5 
male; n = 7 female);(Handled+Morphine: n = 6 male; n = 4 female) (Injury+Morphine: n = 7 
male; n = 6 female). 
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Figure 5.4 Neonatal injury significantly alters response to FST following 7 days of mCVS 
A. Latency to immobility in the Forced Swim Test was significantly decreased in adult male and 
female rats that received hindpaw inflammation on P0 in the absence of morphine (Injury + Sa-
line). This effect was reversed in animals that received morphine at the time of inflammation. 
Administration of morphine in the absence of pain also significantly reduced latency to immobili-
ty. B. Neonatal injury significantly increased duration of immobility during the 5 minute FST in 
comparison to handled controls, an effect reversed by morphine treatment at the time of injury. 
Data are shown as Mean ± SEM. Main effects measured with two-way ANOVA for sex and 
treatment. Significant group differences (*P < 0.05) were measured post-hoc by Fisher’s PLSD; 
(Handled+Saline: n = 9 male; n = 9 female); (Injury+Saline: n = 5 male; n = 8 fe-
male);(Handled+Morphine: n = 5 male; n = 5 female); (Injury+Morphine: n = 6 male; n = 5 fe-
male). 
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Figure 5.5 Morphine treatment for neonatal injury prevents hormonal dysregulation after 
mild chronic variable stress (mCVS) in females (A) and males (B)  
On the day of the Forced Swim Test, basal corticosterone was significantly elevated for males 
injured (-) morphine. At 75 min after swim stress, corticosterone concentrations remained signif-
icantly elevated in adult males injured (-) morphine on P0. C. Chronic stress significantly elevat-
ed corticosterone area under the curve relative to acute stress for females injured (-) morphine 
and handled females. D. Chronic stress significantly increased corticosterone area under the 
curve relative to acute stress for males injured (-) morphine. mCVS corticosterone and area un-
der the curve data were analyzed using Repeated Measures ANOVA  or one-way ANOVA, re-
spectively and are presented as Mean ± SEM. Significant interaction between time and treat-
ment, +P < 0.01. Significant between group differences measured post-hoc by Fisher’s PLSD. 
*P < 0.05; (Handled+Saline: n = 9 male; n = 9 female); (Injury+Saline: n = 5 male; n = 8 fe-
male);(Handled+Morphine: n = 5 male; n = 5 female); (Injury+Morphine: n = 6 male; n = 5 fe-
male). 
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6.1 Overview 

Each year, 16.5% of infants worldwide and 12% of infants in the United States are born 

prior to 37 gestational weeks and are considered preterm (Martin et al., 2006). The etiologies 

underlying preterm birth are complex and not completely understood, but risk factors include 

maternal diabetes, hypertension, smoking, prenatal substance use, lack of prenatal care and 

assisted reproductive therapies (PeriStats, 2011). Advances in medical technology now allow for 

preterm infants born as young as 24 gestational weeks to survive ex utero (Qiu, 2006b). How-

ever, the costs of preterm birth are high, both economically and physiologically. Annually, an 

estimated $26.2 billion is associated with the immediate and long-term impacts of prematurity 

on medical, education and work force costs (PeriStats, 2011).   

Preterm infant spend approximately one month in the NICU (PeriStats, 2011), where 

they are exposed to hundreds of procedures in the absence of analgesia. The experience of 

unalleviated pain at this developmental time point results in immediate reductions in pain and 

stress reactivity (Grunau et al., 2005; Carbajal et al., 2008). Indeed, numerous clinical studies 

have reported that NICU practices are associated with long-term changes in sensory percep-

tion, neuroendocrine and autonomic responses to stress, brain maturation and cognitive pro-

cessing and emotional profiles (Botting et al., 1997; Hack et al., 2004; Hermann et al., 2006; 

Buske-Kirschbaum et al., 2007; Grunau et al., 2007; Doesburg et al., 2008; Aarnoudse-Moens 
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et al., 2009; Hayes and Sharif, 2009; Walker et al., 2009b; Bagner et al., 2010; Grunau et al., 

2010; Haley et al., 2010; Wollgarten-Hadamek et al., 2011; Brummelte et al., 2012; Sullivan et 

al., 2012). Unfortunately, clinical studies are limited in the time over which they follow former 

preterm infants, their ability to control frequency of injury, and their ability to discern mecha-

nisms underlying changes associated with early life pain in the NICU. However studies in ro-

dents using a variety of different methodologies have now clearly established that early life pain 

results in long-term changes in adult somatosensory thresholds (Shimada et al., 1990; Ruda et 

al., 2000; Bhutta et al., 2001; Ren et al., 2004; Sternberg et al., 2005; LaPrairie and Murphy, 

2007; LaPrairie et al., 2008; LaPrairie and Murphy, 2009). Surprisingly, very few animal studies 

have tested the impact of early life pain on adult stress-related behavior, including potential 

changes in the anatomical and physiological characteristics of stress-associated neural circuits 

(Anseloni et al., 2005). Similarly, whether administration of analgesia at the time of injury miti-

gates the potential long-term effects of early life pain on stress responsiveness is also not 

known.  The studies comprising this dissertation research were designed to address these gaps 

in knowledge. In particular, experiments were conducted to delineate the specific impact of a 

single inflammatory injury on the day of birth on adult behavioral and hormonal responses to 

anxiety- and stress-provoking stimuli. Anatomical changes in neurocircuits regulating stress, 

anxiety and pain were also investigated, as well as the efficacy of neonatal analgesia for pre-

venting any such changes in adulthood. 

6.2 Early Postnatal Perturbations Result In Long-Term Adaptations In Later-Life Stress, 

Anxiety And Pain  

Summary Of Behavioral Findings 

One consistent finding we observed across all of our studies was that early life pain 

blunts adult sensitivity to acute anxiety- and stress-provoking stimuli (Victoria et al., 2013b; 

Victoria et al., 2013a). Neonatally injured adults spent significantly more time in the center of the 
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OF and took significantly longer to become immobile for the first time in the FST. We further 

showed that neonatally injured adults have a significantly attenuated stress-induced analgesia 

response (Victoria et al., 2013b). Blockade of endogenous opioid signaling with the broad-

spectrum opiate antagonist naloxone reversed the injury induced changes in response to the 

FST and stress-induced analgesia, suggesting that the observed behavioral hyposensitivity to 

stress in neonatally injured adults was mediated by an opioid-dependent mechanism (Victoria et 

al., 2013b). Such findings are consistent with previous reports from our lab that neonatal injury 

decreases adult nociceptive sensitivity through an opioid-dependent mechanism (LaPrairie and 

Murphy, 2007, 2009). 

In our final behavioral studies we tested the impact of injury on responses to 7 days of 

mild chronic variable stress (mCVS) (Victoria et al., 2013a). In contrast to the observed behav-

ioral responses to acute stress (hyposensitivity), neonatally injured adults initiated floating more 

rapidly and spent significantly more time immobile in the FST after mCVS exposure, suggesting 

vulnerability to sequential, unpredictable perturbations and dysregulation of HPA activity. Mor-

phine administration at the time of injury prevented adult behavioral vulnerability to chronic 

stress, as well as hyposensitivity to acute anxiety and stress-provoking stimuli. These data are 

consistent with our previous reports that neonatal morphine treatment prevents injury-induced 

changes in adult pain sensitivity (LaPrairie et al., 2008). 

 

Summary Of Anatomical and Physiological Findings 

Anatomically, we observed that neonatal injury significantly increased central expression 

of the opioids met-enkephalin and ß-endorphin, as well as plasma corticosterone within 24 hrs 

of injury (Victoria et al., 2013d). These markers of both pain and stress remained elevated by 

the end of the first postnatal week as compared with controls, suggesting aberrant regulation of 

critical developmental processes, and potential consequences for the developing organism. In 

adulthood, increases in endogenous opioid-peptide expression persisted in regions underlying 
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responses to pain, anxiety and stress, such as the vlPAG, CeA and LS (Victoria et al., 2013b). 

Alterations in CRFR1 and CRFR2 binding were observed in the vlPAG, several amygdalar nu-

clei and the LS (Victoria et al., 2013c), suggesting a common circuit whereby injury alters adult 

perception and responding to noxious stimulation.  

Lastly, neonatal injury altered adult HPA axis functionality, as evidenced by changes in 

GR expression in the PVN and hippocampus (Victoria et al., 2013b), key sites of HPA axis acti-

vation and termination (Dallman et al., 1987; Cullinan et al., 1993). In response to acute stress-

ors, corticosterone was reduced and returned to baseline more rapidly, whereas repeated HPA 

activation by mCVS resulted in prolonged corticosterone reactivity (Victoria et al., 2013b; 

Victoria et al., 2013a). Together with our behavioral findings, these data support the hypothesis 

that injury confers resilience to acute stress but vulnerability to chronic stress. As with behavior-

al adaptations, morphine treatment for early life pain mitigated changes in corticosterone re-

lease in response to both acute and chronic stressors, suggesting that long-term changes re-

sulting from neonatal injury were preventable with appropriate and specific pain therapy 

(Victoria et al., 2013a). As a whole, these findings provide valuable insight into the long-term 

consequences of early life injury and have the potential to influence pain treatment regimens for 

human infants in the NICU. 

 

Neonatal Injury In Relation To Behavioral Findings From Models Of Postnatal Perturbations 

Early life perturbations have been previously shown to result in long-term changes in re-

sponse to anxiety- and stress-provoking stimuli. In general, animals who have experienced ei-

ther acute or mild perturbations during the perinatal period, including handling, licking, and 

grooming, show decreased responsiveness to stress-provoking stimuli and reduced HPA reac-

tivity (Bhatnagar and Meaney, 1995; Caldji et al., 2000; Weaver et al., 2005; Boufleur et al., 

2013). By contrast, the opposite behavioral profile is observed in adults exposed to severe 

stress  (e.g. maternal separation and maternal isolation) as neonates  (Coutinho et al., 2002; 
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Marais et al., 2008)(for recent reviews of perinatal stress consequences: (Weinstock, 2008; 

LaPrairie and Murphy, 2010; Macri et al., 2011)).  

In our behavioral studies we observed that a single painful experience early in life results 

in behavioral and hormonal hyposensitivity to acute anxiety- and stress-provoking stimuli, but 

hypersensitivity upon exposure to chronic perturbations. Other studies testing the long-term 

consequences of postnatal perturbation have observed a similar dichotomy in adult responses 

to acute versus chronic/severe stressors. For example, early life inflammatory pain reduces ba-

sal pain sensitivity (hypoalgesia) in adult rats exposed to acute thermal or mechanical noxious 

stimuli.  However, following exposure to a chronic and more intense noxious stimulus, these rats 

display severe hypersensitivity (hyperalgesia) (Ren et al., 2004; LaPrairie and Murphy, 2007). 

Similarly, neonatal endotoxin exposure on P4 results in increased sucrose preference and so-

cial interaction, and decreased CORT following acute tail shock (Bilbo et al., 2008). However, 

adult chronic stress exposure or LPS administration increased anxiogenic behavior in EPM and 

OF, increased acoustic startle amplitude and elevated CORT release (Bilbo et al., 2008; Walker 

et al., 2009a). Interestingly, some models of chronic maternal separation (3 hrs/day on P2-P14) 

have shown basal hyperactivation of the HPA axis in response to acute air puff startle stress, 

but reduced ACTH and CORT following chronic stress (Ladd et al., 2005), suggesting that HPA 

axis has flexibility for dichotomous dysregulation in both directions.  

This hypo- versus hyper-reactive response profile in response to acute versus chron-

ic/severe stimuli is consistent with clinical findings in former preterm infants. For example, chil-

dren, teens and young adults born prematurely are rated as less sensitive to pain by both their 

parents and physicians, (Grunau et al., 1994b; Johnston et al., 1996; Oberlander et al., 2000; 

Hermann et al., 2006), display reduced stress-induced analgesia (Wollgarten-Hadamek et al., 

2011) and show blunted cortisol reactivity to psychological stress testing (Buske-Kirschbaum et 

al., 2007). In contrast, a hyperalgesic response is observed following surgery in the same der-

matome, as well as increased negative verbalization, and increased catastrophizing related to 
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painful interventions. These former preterm infants also have higher rates of anxiety, depression 

and emotional reactivity following a more pronounced stressor (Hack et al., 2004; Peters et al., 

2005; Aarnoudse-Moens et al., 2009; Hayes and Sharif, 2009; Bagner et al., 2010; Sullivan et 

al., 2012). Together theses data suggest that this hypo-/hyper-response profile may be a com-

mon adaptation that results from early life trauma. However, such extreme physiological and 

psychological coping strategies increase the risk for manifestation of disorders such as post-

traumatic stress (PTSD) (Taylor and Stanton, 2007).  

 

Neonatal Perturbations Affect Common Neurocircuits And Neurotransmitters Systems   

Animal models of early life perturbations have shown that the amygdala, septum, hypo-

thalamus and hippocampus are common sites where long-term changes in expression and 

function occur for the CRFR and GR systems (Bhatnagar and Meaney, 1995; Shanks et al., 

1995; Proulx et al., 2001; Ladd et al., 2005).  Indeed, we observed changes in these regions 

and transmitter systems, as well as novel changes in the vlPAG and endogenous opioid system 

(Victoria et al., 2013c; Victoria et al., 2013b; Victoria et al., 2013d). For example, our initial ana-

tomical studies showed early life pain significantly increased adult enkephalin expression in the 

LS, CeA and vlPAG (Victoria et al., 2013b). In support, a similar model of neonatal intraplantar 

CGN reports upregulation of preproenkephalin in the adult CNS (Ren et al., 2005). Our subse-

quent studies showed that neonatal injury decreased CRFR1 binding in the BLA and vlPAG, 

and increased CRFR2 in LS and CoA in adults (Victoria et al., 2013c). In support of a common 

circuit for postnatal adaptations, our findings overlap with observations in adult rats that experi-

enced maternal separation, showing decreases in CRFR1 binding in the BLA and stress-

induced increases in CRFR2 binding in the LS (Ladd et al., 2005). 

In our studies, GR expression was significantly increased in the PVN but decreased in 

both dCA1 and vCA1. Lack of neonatal handling and exposure to adult chronic stress results in 

decreased GR mRNA expression in the septum and hippocampus of rats (Bhatnagar and 
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Meaney, 1995). Further, metabolic perturbation with leptin on P2-P9 in rodents decreases GR 

expression in the hippocampus, increases GR expression in the PVN and accelerates dexame-

thasone suppression of CORT (Proulx et al., 2001). Lastly, early life immune challenge in rats 

(P3-P5) decreases adult GR expression in both the hippocampus and hypothalamus (Shanks et 

al., 1995).  

Changes in GR are associated with early life trauma in humans as well. For example, 

suicide victims that experienced childhood abuse show decreases in GR mRNA expression in 

post-mortem hippocampal samples (McGowan et al., 2009). Individuals that suffer from depres-

sion or PTSD show alterations in CRF from plasma and CSF (Bremner et al., 1997; Catalan et 

al., 1998; McEwen, 2002).   Former NICU patients suffer from a higher incidence of anxiety and 

depression (Levy-Shiff et al., 1994; Botting et al., 1997; Hack et al., 2004; Aarnoudse-Moens et 

al., 2009; Hayes and Sharif, 2009; Sullivan et al., 2012), suggesting changes in GR and CRF 

systems for former preterm infants. Together, these findings support the hypothesis that trau-

matic early life experience impacts later-life susceptibility to affective dysfunction, which is asso-

ciated with changes in CRFR and GR systems in the septum, amygdala, hippocampus, hypo-

thalamus.  In addition, our results suggest a role for the endogenous opioid system, as well as 

the PAG, in this susceptibility.  

 

Sexually Dimorphic Findings  

In all of our studies, the impact of neonatal injury on adult behavioral and hormonal re-

sponses to stress was assessed in both males and females, with sex differences observed in 

select measures. For example, the decrease in pain sensitivity observed following neonatal inju-

ry is exacerbated in females in comparison to males (LaPrairie and Murphy, 2007). Similarly, 

neonatally injured females show a significantly greater hyperalgesic response following a trau-

matic painful stimulus in comparison to males. Both effects are independent of estrus stage. In 

the present studies, sex differences were not observed in response to either acute anxiety- and 
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stress-provoking stimuli, or in early life pain-induced changes in enkephalin expression (Victoria 

et al., 2013b). Independent of treatment, acute stress induced significantly higher CORT release 

in females in comparison to males, and adrenal glands comprised a significantly larger propor-

tion of body weight as compared with males (Victoria et al., 2013c; Victoria et al., 2013a). This is 

consistent with previous studies showing females have higher HPA stress reactivity in compari-

son to males (Seeman et al., 2001).  

In contrast to studies of acute stress, males and females were affected differentially by 

chronic stress (Victoria et al., 2013a). Independent of neonatal treatment, females had signifi-

cantly longer latencies than males to become immobile in the FST after chronic stress expo-

sure. However, males spent more time immobile in the FST. These data suggest that divergent 

behavioral sex differences (McCarthy et al., 2012) may result from neonatal injury. Potentially, 

these differences remained latent (Shors et al., 2001) in response to acute stressors but mani-

fested in the presence of stress that is strong, persistent, and of unpredictable intensity.  

In many of our studies we observed trends towards effects of sex. This was the case for 

GR protein immunoreactivity in the PVN and CA1 of the hippocampus, as effects appeared to 

be more pronounced in males in comparison to females (Victoria et al., 2013c). Similarly, bind-

ing of CRFR2 was significantly higher in males than females in the BNST, a region known to be 

sexually dimorphic (del Abril et al., 1987). The observed injury-induced increase in septal 

CRFR2 was more pronounced in the males, whereas females exhibited a larger increase in the 

CoA, suggesting a potential sex-dependent adaptation through which responses to stress are 

mediated as a result of early life pain. As the animals used in our anatomy studies were behav-

iorally naïve, our observed trends in sex differences represent the basal state. Therefore, it is 

possible that adult exposure to stressful perturbations, such as chronic stress, amplify these 

trends in binding or expression profiles in opioid and stress receptor systems (Ladd et al., 2005; 

McCarthy et al., 2012). 
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6.3 Potential Mechanisms Underlying Long-Term Changes In Stress-, Anxiety- And 

Pain-Related Responding  

Opioids For Behavior And Anatomical Support 

Our pharmacological manipulations show that neonatal injury changes adult behaviors 

through an opioid-dependent mechanism.  In particular, we observed naloxone- changes in 

FST, stress-induced analgesia behaviors, suggesting opioids are necessary for injury-induced 

behavioral changes. As our data collectively suggest neonatal injury dampens basal perception 

of noxious or aversive stimuli, but exacerbates responses to chronic perturbations, the following 

sections provide behavioral evidence for the role of the opioid system in these coping strategies. 

Our data also suggest contribution of upregulated enkephalin mRNA and protein, therefore the 

role of this peptide in stress-, anxiety- and pain-related anatomy is discussed as well.  

 

Animal studies: Analgesia 

In our previous and current studies we observed increases in basal pain thresholds and 

impaired stress-induced analgesia (LaPrairie and Murphy, 2007; Victoria et al., 2013b). Our an-

atomical and pharmacological data suggest this is supported by increased endogenous opioid-

tone in pain- and stress-related brain regions (LaPrairie and Murphy, 2007; LaPrairie et al., 

2008; LaPrairie and Murphy, 2009; Victoria et al., 2013b; Victoria et al., 2013d; Victoria et al., 

2013a). In particular, we showed previously that enkephalin and endorphin immunoreactivity 

were significantly increased in vlPAG of adults that were injured on the day of birth (LaPrairie 

and Murphy, 2009). Systemic blockade of opioid receptors with naloxone, or vlPAG-specific an-

tagonization of µ- and δ-, but not κ-receptor attenuated the injury-induced increase in basal pain 

thresholds. In the current studies, neonatally injured adults showed significant upregulation of 

met-enkephalin mRNA and protein CeA and LS in addition to the vlPAG. As neonates, met-

enkephalin and ß-endorphin protein concentrations were elevated in the spinal cord, midbrain, 
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forebrain and cortex within 24 hrs of neonatal injury (Victoria et al., 2013d). By P7 opioids re-

mained elevated in the midbrain.  

Impaired stress-induced analgesia was observed in both male and female neonatally in-

jured animals (Victoria et al., 2013b).  In particular, 30 min of restraint stress significantly in-

creased paw withdrawal latencies in control, but not neonatally injured adults. Naloxone admin-

istration before restraint completely blocked stress-induced analgesia in controls, implicating an 

opioid dependent mechanism. Others have shown that stress-induced analgesia increases no-

ciceptive thresholds through µ-opioid receptor signaling in the amygdala and PAG (Stein et al., 

1992), and is prevented by pretreatment with naloxone (Lewis et al., 1980). In our studies, the 

inability of prolonged restraint (30 min) to alter sensory thresholds in injured rats suggests that 

enkephalin or endorphin could not increase beyond the 2-fold elevations observed for basal lev-

els (Victoria et al., 2013c; Victoria et al., 2013b). Notably, stress-induced CORT levels peak at 

30 min making it possible that any opioid surge above baseline was mitigated by CORT activat-

ed GR, which negatively regulates enkephalin and ß-endorphin expression (Schoneveld et al., 

2004). Impaired stress-induced analgesia suggested opioid-dependent vulnerability to more se-

vere stressors, as we later observed in the FST following chronic variable stress (Victoria et al., 

2013a). Our data are consistent with clinical reports hypothesizing that changes in the endoge-

nous opioid system mediate elevations in thermal pain sensitivity and impairments in stress-

induced analgesia observed in adolescence and teens burned early in infancy (Peters et al., 

2005; Hermann et al., 2006; Goffaux et al., 2008). 

In support of behavioral adaptations via the intersection of pain and stress systems, ad-

ministration of the enkephalin analogue, DAMGO, into the BLA, a nucleus known to regulate 

responses to stress, produces hypoalgesia that is blocked by lidocaine or electric lesion of the 

PAG or RVM (Helmstetter et al., 1998). Administration of enkephalinase inhibitor, RB101, pro-

duces analgesia similar to endogenous enkephalin or morphine (Valverde et al., 1996). In par-

ticular, infusion of RB101 into the CeA, thalamus, vlPAG or raphe results in antinociception in 
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response to electrical tail stimulation and decreases stimulation-evoked vocalizations, all of 

which are blocked by µ-opioid receptor antagonization. Enkephalinase inhibitor, thiophan, in-

creases jump latency and potentiates tail flick latency produced by inescapable foot shock; ef-

fects are preventable with naloxone (Chipkin et al., 1982). Evidence also supports the contribu-

tion of ß-endorphin, as plasma levels increase while pain reactivity decreases (Loh et al., 1976; 

Tordjman et al., 2009).  Together these data support the role for the µ-opioid system in blunting 

sensitivity to noxious stimuli.   

 

Animal studies: Social behavior 

A number of studies have tested the impact of opioids on social and affective behaviors 

in animal models. While we did not test social behavior directly, opioid regulation of defeat or 

predator-threat has implications for our observed injury-induced behavioral coping strategies 

and sites of enkephalin upregulation. Brief 10 min exposure of adult mice to predator odor in-

creases anxiety-like behaviors such as defensive burying, rearing, stretch-attending, freezing 

and time in the dark portion of the light-dark chamber. Shortly after odor exposure, activated 

enkephalin protein levels (co-labeled with fos-related antigen) increase in the CeA and BLA, 

suggesting dynamic changes in the enkephalin system in response to noxious, aversive pertur-

bations (Hebb et al., 2004). Interestingly, mice that displayed the lowest levels of anxiety 

showed the largest increases in enkephalin expression (Hebb et al., 2004). This finding is in 

agreement with our injury-induced decrease in anxiety-like behavior in the OF and upregualtion 

of enkephalin in the amygdala (Victoria et al., 2013b). In support of a dynamic role in coping for 

enkephalin, enkephalinase activity is decreased in the amygdala of adult rats immediately fol-

lowing 1 hr of immobilization stress (Hernandez et al., 2009). In addition, electrical stimulation of 

enkephalinergic neurons projecting from the CeA to the PAG have been implicated in reducing 

defensive rage in cats, whereas the opposite role is observed in glutamatergic neurons connect-

ing the BLA and PAG (Siegel et al., 1997). Together, these data suggest that brain regions me-
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diating aversive experiences recruit and utilize the opioid system and support our hypothesis 

that the amygdala and PAG work in concert to mediate the dampened behavioral responding 

we observed in response to acute anxiety- and stress-provoking stimuli.  

 

Animal studies: Anxiety- and stress-related behavior and anatomy 

Based on our early studies, we hypothesized that the neonatal injury-induced increase in 

endogenous opioid-tone decreases adult anxiogenesis in the OF and sensitivity to forced swim 

stress (Victoria et al., 2013b). Indeed, overexpression in enkephalin reduces anxiety-like behav-

ior in the EPM and OF, whereas loss of enkephalin has the opposite effect (Konig et al., 1996; 

Kang et al., 2000; Randall-Thompson et al., 2010). Similarly, perinatal morphine exposure re-

duces adult anxiety-related behaviors and increases opioid release in response to psychological 

stressors in rats (Buisman-Pijlman et al., 2009). We observed that morphine treatment for early 

life pain prevented the injury-induced increase in duration in the inner area of the OF, suggest-

ing that elevation of endogenous opioids and over activation of opioid receptors was prevented. 

In response to acute FST, neonatal injury significantly increases adult LTI and duration of 

swimming (Victoria et al., 2013b); naloxone reversed adult behaviors and neonatal morphine 

treatment prevented them from manifesting in adulthood (Victoria et al., 2013a). In response to 

mCVS, neonatally injured adults initiated floating rapidly and spent significantly more time im-

mobile relative to controls, suggest that high levels of opioids interact with chronic stress to re-

sult in depression-related behavior (Victoria et al., 2013a). Indeed, other have shown that mor-

phine treatment of adult rats during 7 days of chronic variable stress increases immobility in the 

FST and decreases sucrose preference (Molina et al., 1994; Zurita et al., 2000). Daily naloxone 

or naltrexone administration before stressors rescues these behaviors (Molina et al., 1994; 

Zurita et al., 2000), suggesting that chronic opioid signaling is necessary for FST behaviors in 

response to repeated stress. They further suggest that opioid blockade prevents vulnerability to 
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chronic stress. This is similar to what we observed in adults given morphine for neonatal pain 

(Victoria et al., 2013a). 

In our studies documenting the impact of injury on endogenous opioids profiles during 

the first postnatal week, we observed significant and time dependent increases in enkephalin 

and endorphin (Victoria et al., 2013d). We observed immediate changes in opioid concentra-

tions in the spinal cord, midbrain, forebrain and cortex. By the end of the first postnatal week, 

levels remained elevated in a site- and peptide-specific manner. Of note, both enkephalin and 

endorphin were upregulated in the midbrain. While the contribution of other endogenous opi-

oids, such as ß-endorphin and leu-enkephalin, to our adult phenotype cannot be ruled out, we 

reported previously that adult ß-endorphin fiber number was low and distribution sparse in the 

adult vlPAG (LaPrairie and Murphy, 2009). Injury also increases leu-enkephalin (LaPrairie and 

Murphy, 2009), however, in comparison preproenkephalin yields four times more met-

enkephalin protein (Yoshikawa et al., 1984). Therefore, we hypothesize the anatomical basis for 

our opioid-dependent behaviors are primarily due to the increase in endogenous enkephalin. In 

adulthood we observed significant elevation of enkephalin mRNA expression and protein in the 

LS, CeA and vlPAG, regions known to mediate responses to stress- anxiety- and pain-

provoking stimuli. The specific contribution of each region to our behavioral phenotype would be 

an interesting point of study in the future.  

Importantly, the CeA and vlPAG are reciprocally connected and work together to cope 

with noxious or aversive stimuli (Rizvi et al., 1991; Behbehani, 1995; Manning and Mayer, 1995; 

Zubieta et al., 2001). The CeA is essential for processing and applying affective valence to 

stimuli including affective components of pain (Davis and Whalen, 2001; Neugebauer, 2007; Fu 

and Neugebauer, 2008; Ulrich-Lai and Herman, 2009). The vlPAG is an important integrator of 

noxious stimuli (Behbehani and Fields, 1979) and autonomic tone (Bandler and Shipley, 1994; 

Floyd et al., 1996) to promote coping and survival (Bernard and Bandler, 1998). The CeA and 

vlPAG are both highly responsive to inflammatory pain and communicate to produce analgesia 
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in rat pups and adult rodents (Wiedenmayer et al., 2002) (Rizvi et al., 1991; Behbehani, 1995; 

Fu and Neugebauer, 2008). Electrical stimulation of the PAG, thalamus or CeA in adult rats de-

creases sensitivity to pressure, tail shock, burning, cold or laparotomy (Ribeiro et al., 2005). In 

rats, bilateral excitotoxic lesions of the CeA, but not BLA or MeA, prevents morphine antino-

ciception suggesting that the CeA is an important contributor to analgesia (Manning and Mayer, 

1995). In addition, electrical stimulation of the CeA results in increased endogenous opioid con-

centration in the PAG (Nakamura et al., 2013), supporting the hypothesis that the CeA and PAG 

work in concert to block perception of noxious stimuli. 

Neuronally, the CeA and PAG are rich sources of GABAergic/enkephalinergic signaling 

(Akil et al., 1984; Behbehani, 1995; Poulin et al., 2006). Agonization of the GABAergic cells in 

these regions results in increased exploration of the open arm in the EPM and decreased re-

sponse to aggression, suggesting a neural circuit for dampening anxiety and stress (Graeff et 

al., 1993). Enkephalin is known to dampen perception of noxious or aversive stimuli directly 

through postsynaptic inhibition or indirectly by presynaptic modulation of glutametergic and GA-

BAergic transmission (Sugita and North, 1993; Zhu and Pan, 2004, 2005).  

We also observed an injury-induced increase in enkephalin in the LS. The LS is primarily 

composed of GABAergic neurons that inhibit HPA axis activation (Herman, 2010). Benzodiaze-

pine administration into the LS increases the frequency of open arm exploration in the EPM and 

decreases burying of an electrified probe (Menard and Treit, 1999). Conversely, lesions of the 

LS increase anxiety-like behaviors and produce “septal rage” (Dobrakovova et al., 1982; 

Herman, 2010). When considered in the context of our behavioral observations, this evidence 

implicates the LS as an important region for decreasing anxiety to facilitate recovery from aver-

sive stimuli. Potentially, the LS collaborates with the CeA and vlPAG to dampen the noxious 

perception associated with neonatal pain. Increases in adult enkephalin protein and mRNA pro-

vides support for injury-induced programming of the enkephalin gene within the LS making it a 

probable contributor to the impairment of adult anxiety and stress-related behavior as we have 
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observed. Together, the LS, CeA and PAG are a potential circuit whereby early in life neonates 

are protected from noxious stimulation, and in adulthood sensitivity to anxiety-, stress- and pain-

provoking stimuli is reduced. Whether morphine treatment for early life pain prevents enkephalin 

upregulation in these regions remains to be tested in future studies. 

In the PVN, enkephalin mRNA is expressed rapidly in response to inflammation but is 

not detectable in the absence of stress (Lightman and Young, 1989). Therefore, it is not surpris-

ing that changes in enkephalin protein or mRNA were absent in the adult PVN. It is possible that 

PVN excitability is influenced by enkephalin upregulation in the CeA and LS, as both regions 

provide HPA-inhibition through their projections to the BNST (Jakab and Leranth, 1991; 

Chalmers et al., 1995; Choi et al., 2007; Choi et al., 2008a; Choi et al., 2008b). Together, our 

behavioral and anatomical data suggest that neonatal injury selectively acts on extrahypotha-

lamic circuits controlling pain, stress and anxiety to permanently alter responses to noxious or 

aversive stimuli.  

 

Human studies: Analgesia, affect, stress-related anatomy and physiology  

While our model of early life pain employs rodents, the effects of opioids on analgesia, 

affect, stress and underlying anatomy are similar in humans. Opioid-dependent hyposensitivity 

to pain is observed in individuals that have low social support, high levels of social obstruction, 

and people suffering from PTSD (McCubbin, 1993). In PTSD-diagnosed veterans, exposure to 

combat videos produces naloxone-reversible decreases in pain sensitivity (McCubbin, 1993). 

Morphine administration at the time of trauma, during resuscitation or early during treatment 

protects veterans from developing PTSD (Holbrook et al., 2010). Notable, these effects were 

specific to morphine, as benzodiazepines or serotonin reuptake inhibitors were not effective. 

Consistent with this finding, children given morphine for burn injuries are significantly less likely 

to show signs of PTSD in a 6 month follow up assessment (Saxe et al., 2001). Together these 

data suggest that morphine administration is effective for preventing long-term psychological 
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consequences associated with trauma, potentially through decreasing sensory-affective percep-

tion of pain and injury severity. In addition, these studies support our findings that morphine 

treatment for neonatal injury confers protection against extreme behavioral responses to acute 

or chronic perturbations.  

In our studies, early life pain resulted in significant changes in endogenous opioids in 

stress-, anxiety- and pain-related brain regions. Human imaging studies support the role of anx-

iety- and stress-related brain regions in sensory-affective perception. For example, intramuscu-

lar hypertonic saline injections produce persistent pain in people (Zubieta et al., 2001), which is 

associated with increased activity of a radiolabel fentanyl derivative in the PAG, amygdala, hy-

pothalamus, as well as the PFC (anterior cingulate, anterior insula, lateral cortex), thalamus and 

ventral basal ganglia (NAcc and VP). In the absence of painful stimulation, sad autobiographical 

recollections are significantly associated with decreases in opioid signaling in these same re-

gions, with the exception of the hypothalamus and PAG (Zubieta et al., 2003). Interestingly, only 

opioid activity in the amygdala and ventral basal ganglia were significantly associated with an 

increase in negative affect and decrease in positive affect (Zubieta et al., 2003).  

Changes in the endogenous opioid system directly impact human HPA physiology. For 

example, morphine treatment dampens CORT output from the HPA axis (McDonald et al., 1959; 

Zis et al., 1984). Adult men with the µ-opioid receptor gene A118G polymorphism show signifi-

cant increases in plasma ACTH and CORT in response to naloxone, suggesting tighter endog-

enous opioid regulation over HPA functioning (Wand et al., 2002). The A-G substitution has 

been linked to a 3-fold increase in ß-endorphin binding to µ-opioid receptor and is significantly 

associated with decreases in personality factors related to planning, task completion and organ-

ization (Wand et al., 2002). Adult females suffering from major depressive disorder show gen-

eral decreases for in vivo µ-receptor binding potential in the amygdala, thalamus and PFC, in 

addition to decreases in ACTH and CORT following autobiographical recall of a neutral or sad 

story relative to healthy controls (Kennedy et al., 2006). While these studies were not performed 
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in former preterm infants, their findings support the hypothesis that dysregulation of the endog-

enous opioid and stress systems are significantly related, and impact responding to environ-

mentally relevant stimuli that can culminate in affective dysfunction.  

 

Injury Is Sufficient To Create A New HPA Profile In Presence Of Acute And Chronic Stress 

Functionally, stressful stimuli, including pain and tissue inflammation, result in robust re-

lease of CRF from the hypothalamus, ACTH from the pituitary gland and CORT from the adren-

al cortex (Vale et al., 1981; Dallman et al., 1987; Taylor et al., 1998). CORT then feeds back to 

the hypothalamus and pituitary where it binds to GR to inhibit further peptide release (Rivier et 

al., 1982; Dallman et al., 1987). Collectively, we observed that injury is sufficient to create a new 

HPA profile in response to acute or chronic stress (Victoria et al., 2013c; Victoria et al., 2013a). 

Following injury at P0, a significant elevation in CORT was observed that persisted over the first 

postnatal week (Victoria et al., 2013d). As adults, no differences in basal CORT were observed. 

However, in response to acute restraint or swim stress, CORT concentrations of neonatally in-

jured adults returned to basal levels more rapidly than controls (Victoria et al., 2013c; Victoria et 

al., 2013a).   

Importantly, altering the time over which glucocorticoids circulate in response to stress 

has physiological consequences on production of new glucose from the liver, breakdown of adi-

pose tissue into free fatty acids, protein synthesis, glucose and amino acid uptake into cells, and 

immune system regulation (Bateman et al., 1989). Although the observed accelerated recovery 

from an acute stress may have an immediate physiological or survival benefit, reduced ability to 

liberate and sequester appropriate glucose could have serious consequences for responses to 

repeated or chronic stressors. Interestingly, individuals at risk for depression have more rapid 

CORT recovery times in response to a clinical stress test as compared with clinically depressed 

people (Dienes et al 2012). In addition, it is well documented that individuals who experienced 

early life trauma show alterations in HPA activity and are at significantly higher risk for the de-
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velopment of affective disorders. This includes former preterm infants, whom also display blunt-

ed HPA in response to clinical stress tests (Buske-Kirschbaum et al., 2007) and experience af-

fective disorders at a significantly higher rate than full term peers (Botting et al., 1997; Hack et 

al., 2004; Hayes and Sharif, 2009; Sullivan et al., 2012). 

Prolonged pain and inflammation during the first postnatal week provides the opportunity 

for sustained activation and reprogramming of the HPA axis. Our studies show that in adult-

hood, GR mRNA and protein levels are significantly increased in the PVN but decreased in the 

hippocampus, suggesting compensatory adaptations to facilitate termination of the HPA axis. As 

affinity for GR is elevated in the first postnatal weeks, high levels of CORT likely resulted in 

more frequent negative feedback, and therefore more efficient stress recovery (Sapolsky and 

Meaney, 1986). Based on early studies examining the development of the GR system and HPA 

axis functioning (Meaney et al., 1985b; Sapolsky and Meaney, 1986; Walker et al., 1986), we 

hypothesize that as CORT continues to feed up to the hippocampus, GR becomes downregu-

lated (Victoria et al., 2013c) and less able to terminate stress. To compensate, GR in the PVN 

becomes upregulated to promote HPA axis inhibition. Indeed, models of early life stress, im-

mune challenge and metabolic perturbations have also observed long-term changes in hypotha-

lamic and hippocampal GR expression, supporting the hypothesis that this system is malleable 

early in life (Sapolsky and Meaney, 1986; Proulx et al., 2001; Ladd et al., 2005; Bilbo et al., 

2008).  This is further supported by human studies showing that postmortem hippocampal GR 

expression is significantly decreased in severely depressed adults who were abused as children 

(McGowan 2009).  

In addition to the HPA axis-specific changes we observed in the GR system, we reported 

that neonatal injury significantly decreases adult CRFR1 binding only in the BLA and vlPAG. 

This suggests that injury on the day of birth selectively impacts circuits underlying the activation 

of stress (Bhatnagar et al., 2004), autonomic tone (Bandler and Shipley, 1994; Floyd et al., 

1996) and processing of noxious stimuli (Behbehani and Fields, 1979).  
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The BLA has long been implicated in the activation of the stress axis, as acute stressors 

like restraint, swim stress or foot shock evoke BLA cfos expression (Cullinan et al., 1995; 

Sawchenko et al., 1996; Dayas et al., 2001). Acute administration of CRF into the BLA increas-

es local neuronal excitability (Rainnie et al., 1992), suggesting this region is responsive to acute 

stress- or anxiety-provoking stimuli. BLA specific lesions reduce ACTH and CORT reactivity fol-

lowing acute restraint (Bhatnagar et al., 2004), suggesting that reduced CRFR1 binding in the 

BLA may contribute to the decrease in CORT we observed following restraint stress.  

In addition, we observed that CRFR2 binding was significantly increased in the LS and 

CoA of adult rats injured on the day of birth. Although little is known about the role of the CoA in 

stress, it is highly connected to the BLA (Canteras et al., 1992; McDonald et al., 1999), where 

we observed significantly decreased CRFR1 binding as a result of early life pain. Lesions of the 

LS increase stress-induced ACTH, CORT and the time spent immobile in the forced swim test 

(Singewald et al., 2011). Further, LS receives excitatory drive from CoA, along with other amyg-

dalar regions and the hippocampus (Joels and Urban, 1984; Gallagher et al., 2008) to modulate 

HPA activity (Chalmers et al., 1995; Reul and Holsboer, 2002; Singewald et al., 2011). Togeth-

er, these data suggest that the observed increase in binding of CRFR2 in the LS and CoA may 

serve to promote homeostasis and dampen responses to stress, adaptations that would pro-

mote survival following trauma early in life. 

Importantly, the intra and extrahypothalamic changes in the GR and CRFR systems that 

result from neonatal injury were observed in behaviorally naïve animals (Victoria et al., 2013c). 

Therefore, while this receptor profile likely mediates acute responses to stress, it is possible that 

dynamic changes in expression or binding occur as a result of chronic stress exposure. Alt-

hough speculative, it is a possibility, as previous studies in adult rats that were maternally sepa-

rated as pups show opposite CORT, GR and CRFR profiles in response to acute and chronic 

stressors (Ladd et al., 2005). In addition, we observed that morphine treatment for early life pain 

had sex-specific effects on CORT reactivity in response to acute and chronic stress. Specifical-
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ly, females treated with morphine had elevated CORT responses to acute stress relative to in-

jured and handled females, suggesting morphine treatment augmented acute stress responding 

and possibly changed either GR receptor expression or binding. Males treated with morphine 

recovered as quickly as injured males in response to acute swim stress, suggesting no change 

in the basal GR. In response to chronic stress, females treated with morphine before injury had 

higher basal CORT but recovered as quickly as controls. In contrast, CORT responses of males 

treated with morphine mirrored control males, suggesting complete protection from the effects of 

early life injury (Victoria et al., 2013a).  

Collectively, these findings suggest that while morphine treatment for early life pain was 

effective in rescuing injury-induced behavioral changes, reversal of HPA physiology may be 

more complicated. Similarly, environmental enrichment in peripubertal rats that were maternally 

separated as pups, rescues behavior and HPA reactivity, but does not return hippocampal GR 

mRNA or PVN CRF mRNA to control levels, suggesting compensatory mechanisms offset the 

impact of early life stress (Francis et al., 2002). In addition, contributions from the endogenous 

opioid system are also likely. Morphine, enkephalin or ß-endorphin all dampen HPA activity 

(McDonald et al., 1959; Zis et al., 1984; Wand et al., 2002). In addition, endogenous opioids co-

localize and co-express with CRFR and are negatively regulated by GR making it difficult to as-

sume specific and localized neuroanatomical changes as a result of neonatal morphine treat-

ment. 

 

Factors In Addition To Pain May Change Adult HPA Reactivity  

In addition to pain, neonatal injury results in inflammation, therefore the role of immune 

factors on HPA activity cannot be ruled out. In response to inflammation, peripheral CRF and 

cytokine IL-1ß are released and act on immune cells to stimulate the release of endogenous 

opioids, ß-endorphin or met-enkephalin, and result in antinociception (Schafer et al., 1994; 

Schafer et al., 1997). Centrally, IL-1ß is known to stimulate norepinephrine (NE) and activate 
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the HPA along with CRF (Brunton et al., 2005). While IL-1ß may contribute to the injury-induced 

changes in HPA reactivity, it is worth noting that enkephalin rapidly reduces stress-induced re-

lease of NE (Tanaka et al., 1989), suggesting that the injury-induced surge in enkephalin would 

mitigate the effects of IL-1ß on HPA activity. In addition, peripheral application of enkephalin 

mimics the anti-inflammatory effects of CRF (Schafer et al., 1994; Schafer et al., 1997), sug-

gesting neonatal CGN may instead upregulate anti-inflammatory factors. In fact, a similar model 

of early life inflammation results in adult upregulation of IL-10 and proenkephalin gene expres-

sion in the spinal cord with no observed changes in pro-inflammatory markers (Ren et al., 

2005). Certainly, this does not rule out the contribution of other immune system mediators, such 

as TNFα, which can stimulate the HPA axis and is also negatively regulated by GR (Tsigos and 

Chrousos, 2002). 

 

Working Hypothesis 

Our working hypothesis is that neonatal pain experienced during a critical neurodevel-

opmental period (P0-P8(LaPrairie and Murphy, 2007)) increases afferent nociceptive drive to 

supraspinal brain regions responsive to noxious input, including the septum, thalamus, hypo-

thalamus, amygdala and periaqueductal gray (Walker et al., 1986; Fitzgerald, 2005; LaPrairie 

and Murphy, 2009; Victoria et al., 2013b). Endogenous opioids, including met-enkephalin and ß-

endorphin, are released to dampen pain perception (Loh et al., 1976; Konig et al., 1996; Hurley 

and Hammond, 2001) and stress (Rossier et al., 1977; Rivier et al., 1982; Lightman and Young, 

1987; Bilkei-Gorzo et al., 2008). Concurrently, neurohormones from the HPA axis, including 

CRF, ACTH and CORT, are released to mount appropriate physiological responses and pro-

mote recovery from the physical threat associated with inflammation (Vale et al., 1981; Dallman 

et al., 1987; Taylor et al., 1998). As the inflammation associated with intraplantar carrageenan 

persists for 24-72 hours, endogenous opioids are released in regions mediating descending 

pain inhibition, perception of pain and HPA regulation (e.g. vlPAG, CeA, LS). Sustained activa-
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tion of the HPA axis observed in the first postnatal week following injury likely results in sus-

tained elevation of CRF, which in turn downregulates CRFR1, while increasing CRFR2 in re-

gions mediating stress activation and perception of noxious stimuli (e.g. vlPAG, amygdala, LS) 

to program circuits such that future insults are less potent or aversive. As CORT levels remain 

high and continue to feed up to the hippocampus, GR becomes downregulated and the organ-

ism’s ability to terminate stress is impaired (Boyle et al., 2005); GR in the PVN becomes up-

regulated to compensate and promote HPA axis inhibition (Proulx et al., 2001). In turn, CORT 

negative feedback becomes more efficient to facilitate recovery (Sapolsky and Meaney, 1986). 

As these perturbations occur during a highly plastic developmental period, and GR transcrip-

tionally regulates itself, CRFRs and endogenous opioids (Schoneveld et al., 2004), it is probable 

that this new production profile becomes epigenetically programmed as the basal state and per-

sists throughout the life span. Notably, opioids and CRFRs regulate inhibition and excitation, 

respectively and changes in their expression and function occur in regions that regulate HPA-

tone and responses to stress-, anxiety- and pain-provoking stimuli. As such, the neuroanatomi-

cal changes we observed likely interact to produce the behavioral phenotypes that results from 

injury. As adults, sensitivity to acute stress-, anxiety- and pain-provoking stimuli are dampened. 

However, chronic, unpredictable stressors induce extreme behavioral hypersensitivity, suggest-

ing repeated dynamic demands (Figure 6.1). Morphine treatment for early life pain rescued the 

injury-induced behavioral changes, suggesting pain therapy mitigates activation of circuits re-

sponsive to pain and stress. We hypothesize that morphine reverses the site-specific changes 

in neurohormone and receptor profiles. However, partial rescue or additional compensatory 

changes are possible, and are a potential starting point for future studies.  

6.4 Environmental Context, Adaptation, Programming And Permanency  

Epigenetics are changes in gene expression in the absence of DNA sequence altera-

tions. The two primary mechanisms of epigenetics are DNA methylation and post-translational 
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modification of histones (Clark et al., 2006; Qiu, 2006a; Berger, 2007). In addition, secondary 

epigenetic mechanisms modify gene expression through differential recruitment of transcription 

factors (e.g. CREB), alternative splicing of mRNA, RNA interference (RNAi) or differential pro-

cessing of protein products (Klug et al., 2006).  

It is possible that the long-term changes in opioid peptide and GR expression we ob-

served are the result of epigenetic modifications, and is a hypothesis that remains to be tested 

in future studies. Indeed, a number of studies have shown early life perturbations result in long-

term changes in gene expression in the stress system, as well as the opioid system (Weaver et 

al., 2004; Mueller and Bale, 2008; McGowan et al., 2009; Morgan and Bale, 2011; Vucetic et al., 

2011). Typically, such studies show the maintenance of adaptations in gene expression occur 

through primary or primary-dependent epigenetic phenomenon, specifically via changes in DNA 

methylation at CpG sites in gene promoters, chromatin remodeling via histone modifications, 

and more recently though miRNA regulation (Weaver et al., 2004; Hwang et al., 2007; Mueller 

and Bale, 2008; Wu et al., 2008; McGowan et al., 2009; Plagemann et al., 2009; Morgan and 

Bale, 2011; Vucetic et al., 2011).  

From an evolutionary perspective, adaptation of an organism to its early environment is 

essential for survival. The coincidence of developmental plasticity and early life perturbations 

provide a unique opportunity for such adaptations to become programmed and persist later in 

life. However, adaptations to one’s environment may result in extreme response strategies, and 

in turn, vulnerability and dysfunctional responding in another. For example, childhood adapta-

tions to survive abuse may result in extreme anxiety, fear, aggression or stress in non-

threatening situations later in life. Indeed, this is observed in people with PTSD, and is associat-

ed with changes in gene methylation profiles as a function of total life stress (Smith et al., 2011).   

The results of many early life manipulation studies can easily be interpreted to mean that 

the long-term consequences in physiology and behavior are permanent. However, evidence ex-

ists to the contrary, suggesting that early life programming is not a life sentence. For example, 
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rodent models of maternal separation show that the changes in behavior and HPA reactivity can 

be prevented by environmental enrichment given during the peripubertal period (Francis et al., 

2002). Modifications of methylation and histone profiles of the GR promoter, mRNA expression, 

protein levels and HPA responsivity that result from maternal care are also reversible with 

pharmacological treatment in adulthood (Weaver et al., 2005). Further chronic stress induces 

social avoidance behavior and demethylates the CRF promoter in the PVN of adult mice. Be-

havioral resilience and CRF promoter remethylation are rescued after only 3 weeks of treatment 

with the antidepressant, imipramine (Elliott et al., 2010), suggesting that programming of gene 

expression is not necessarily permanent if appropriate intervention is provided.  

 In the case of preterm birth and NICU treatment, evidence suggests that maternal pres-

ence and educational level are significant factors that can attenuate and even prevent long-term 

changes in pain sensitivity, cognitive performance and potential risk of affective dysfunction 

(Levy-Shiff et al., 1994; Hayes and Sharif, 2009; Hohmeister et al., 2010; Sullivan et al., 2012; 

Lowe et al., 2013)). Therefore, while changes in pharmacological pain treatment for NICU pa-

tients may take time, alternative steps can be taken to prevent deficits in sensory and affective 

functioning that are associated with preterm birth. 

6.5 Final Remarks  

Numerous clinical studies have shown that exposure to unalleviated pain and stress in 

the NICU has immediate and long-lasting consequences for sensory perception, neuroendo-

crine stress responses and emotional health in former preterm infants. In humans, the mecha-

nism(s) by which these long-term changes in stress and pain behavior and physiology occur, 

and whether such changes can be prevented by analgesic intervention at the time of injury, is 

not known. The goal of these dissertation studies was to delineate the specific impact of a single 

injury early in life on adult behavioral responses to anxiety- and stress-provoking stimuli, stress 

axis functioning, and associated changes in underlying neuroanatomical circuits. In addition, 
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these studies tested whether blockade of inflammatory pain with morphine administration atten-

uated the previously observed behavioral and hormonal responses. Our studies show for the 

first time that a single injury on the day of birth significantly reduces sensitivity to acute anxiety- 

and stress-provoking stimuli. Injury upregulated endogenous enkephalin in brain regions re-

sponsive to stress, anxiety and pain, and blockade of opioid signaling prevented injury-induced 

changes in stress-related behavior. These findings suggest that opioid dysregulation underlies 

blunted behavior sensitivity, which is consistent with clinical reports in former preterm infants. 

Our studies further showed that neonatal injury significantly altered classic stress-receptor sys-

tems in regions modulating the HPA axis. In turn, HPA functioning was dampened in response 

to acute stressors, consistent with dampened hormonal response to stress observed in former 

preterm infants. Our subsequent studies established that injury-induced increases in endoge-

nous opioids occurred within the first 24 hrs post-injury, and remained elevated at the end of the 

first postnatal week, suggesting a time point by which changes in the opioid system become 

programmed. In addition, HPA activity was significantly elevated following injury, suggesting dis-

ruption of developmentally sensitive HPA maturation, and establishing a mechanism supporting 

the observed adult changes in brain receptor systems mediating stress responses. Our final 

studies showed that neonatally injured adults were behaviorally and hormonally hypersensitive 

to the effects of chronic stress, suggesting vulnerability to affective dysfunction. However, mor-

phine analgesia for early life pain rescued adult behavioral hyposensitivity to acute stress, adult 

behavioral hypersensitivity to chronic stress, and attenuated associated hormonal changes. 

These data argue strongly that the experience of pain associated with early life injury is neces-

sary for the long-term changes in stress-related behavior and hormone responses. Collectively, 

these dissertation studies are the first to provide evidence that dysregulation of the opioid sys-

tem alters adult stress-related responding, and show that such changes are preventable with 

analgesic treatment. As former preterm infants are at risk for disorders of stress and perception, 
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such as anxiety, depression and PTSD, these studies provide imperative evidence for the de-

velopment and use of specific and appropriate analgesic regimes for human infants.  
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6.6 Chapter 6 Figures 

 

Figure 6.1 The lasting impact of a single neonatal injury on anxiety and stress respond-
ing. 
A. Preterm infants experience numerous painful, inflammatory procedures in the Neonatal In-
tensive Care Unit often in the absence of pain therapy. To model a single painful experience on 
the day of birth, rat pups receive an injection of the inflammatory agent carrageenan (CGN; 1%) 
into the intraplantar surface of the right hindpaw. B. Inflammatory pain increases afferent noci-
ceptive drive to supraspinal brain regions responsive to noxious stimuli (e.g. septum, thalamus, 
hypothalamus, amygdala and periaqueductal gray (PAG)). Met-enkephalin (ENK), ß-endorphin 
(ß-ENDO) and corticosterone (CORT) are released to dampen pain perception and stress asso-
ciated with inflammation. ENK and plasma CORT remain elevated at the end of the first postna-
tal week, suggesting permanent changes in the endogenous opioid and stress systems. C. In 
neonatally injured adults (D) CORT levels return to baseline more rapidly following acute stress 
stimulation of the hypothalamic pituitary adrenal (HPA) axis. In parallel, glucocorticoid receptor 
(GR) mRNA and protein are increased in the paraventricular nucleus of the hypothalamus but 
decreased in the dorsal and ventral hippocampus, suggesting support for accelerated negative 
feedback. E. Anatomical changes in corticotrophin releasing factor receptor (CRFR) 1 and 2, 
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and ENK are observed in circuits that process anxiety-, stress-, and pain-provoking stimuli, con-
tribute to stimulation of the HPA axis and homeostasis. CRFR1 binding is significantly de-
creased in the amygdala and ventrolateral (vl) PAG. CRFR2 binding was increased in the 
amygdala and lateral septum (LS). ENK mRNA and protein expression are significantly in-
creased in the vlPAG, amygdala and LS. F. In response to acute stressors, neonatally injured 
adults take significantly longer to initiate floating. By contrast, adults injured early in life float rap-
idly after exposure to 7 days of mild chronic variable stress. G, H. Hypo-sensitivity to acute 
stress-provoking stimuli and hypersensitivity to sequential, unpredictable stress is rescued if 
male and female rats are given morphine for early life pain, suggesting that 1) injury-induced 
behavioral and hormonal vulnerability are preventable, 2) neonatal pain is necessary for the 
long-term changes in stress responding. 
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• Rodent early life intervention with inflammatory and pharmacological agents 
• Rodent behavioral videography and analysis 
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• Rodent behavioral pharmacology 
• Rodent survival surgery 
• Rodent vaginal lavage 
• Rodent blood withdrawal 
• Rodent perfusion and dissection 
• Histology and immunohistochemistry  
• Microscopy and densitometry 
• Molecular biology 
• Radioimmunoassay 
• Receptor autoradiography 
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