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CORONARY ARTERY CALCIUM QUANTIFICATION IN CONTRAST-ENHANCED

COMPUTED TOMOGRAPHY ANGIOGRAPHY

by

ABINASHI DHUNGEL

Under the Direction of Dr. Michael Weeks

ABSTRACT

Coronary arteries are the blood vessels supplying oxygen-rich blood to the heart muscles.

Coronary artery calcium (CAC), which is the total amount of calcium deposited in these

arteries, indicates the presence or the future risk of coronary artery diseases. Quantification

of CAC is done by using computed tomography (CT) scan which uses attenuation of x-

ray by different tissues in the body to generate three-dimensional images. Calcium can be

easily spotted in the CT images because of its higher opacity to x-ray compared to that of

the surrounding tissue. However, the arteries cannot be identified easily in the CT images.

Therefore, a second scan is done after injecting a patient with an x-ray opaque dye known



as contrast material which makes different chambers of the heart and the coronary arteries

visible in the CT scan. This procedure is known as computed tomography angiography

(CTA) and is performed to assess the morphology of the arteries in order to rule out any

blockage in the arteries.

The CT scan done without the use of contrast material (non-contrast-enhanced CT) can

be eliminated if the calcium can be quantified accurately from the CTA images. However,

identification of calcium in CTA images is difficult because of the proximity of the calcium

and the contrast material and their overlapping intensity range. In this dissertation first we

compare the calcium quantification by using a state-of-the-art non-contrast-enhanced CT

scan method to conventional methods suggesting optimal quantification parameters. Then

we develop methods to accurately quantify calcium from the CTA images. The methods

include novel algorithms for extracting centerline of an artery, calculating the threshold

of calcium adaptively based on the intensity of contrast along the artery, calculating the

amount of calcium in mixed intensity range, and segmenting the artery and the outer wall.

The accuracy of the calcium quantification from CTA by using our methods is higher than

the non-contrast-enhanced CT thus potentially eliminating the need of the non-contrast-

enhanced CT scan. The implications are that the total time required for the CT scan

procedure, and the patient’s exposure to x-ray radiation are reduced.

INDEX WORDS: Coronary artery calcium, Quantification, Computed tomography an-
giography, Automatic vessel extraction
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CHAPTER 1

INTRODUCTION

Coronary artery calcium (CAC) scoring is done to quantify the total calcium deposited

in the coronary arteries which are the blood vessels supplying oxygen-rich blood to the

heart muscle. The assessement of CAC score is important as the deposition of calcium

in the arteries is highly indicative of the presence or the future risk of coronary artery

diseases(CAD).

The CAC scoring is done by using a computed tomography (CT) scan which uses x-

rays for imaging and three dimensional visualization of different anatomical organs. Calcium

can be easily spotted in the CT images because of its higher opacity to x-ray compared to

that of the surrounding tissue. However, the arteries and other coronary structures cannot

be identified easily in the CT images. Therefore an x-ray opaque dye known as contrast

material is injected to a patient and a second CT scan is done. The contrast material

circulates through the heart, and the coronary arteries and different chambers of the heart

can be easily identified in the CT scan. This procedure is known as computed tomography

angiography (CTA) and is performed to assess the morphology of the arteries in order to

rule out the blockage or abnormalities in the artery.

The CT scan done without the use of contrast material (non-contrast-enhanced CT)

for the purpose of CAC scoring can be eliminated if the total amount of calcium can be

accurately calculated from the contrast-enhanced CTA images. The implication being that

the total time required for the CT scan procedure is reduced and more importantly the

patient’s exposure to x-ray radiation is reduced. Identification of the calcium is difficult in

the CTA images since the contrast material circulating in the blood has an intensity that

which overlaps with the intensity range of the calcium. In this work, first we present a

comparative study of the calcium quantification by using a state-of-the-art non-contrast-
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enhanced CT scan to conventional methods suggesting appropriate parameters for optimal

calcium quantification. We then develop methods to accurately quantify calcium from the

CTA images by estimating the probability of calcium voxels in the overlapped intensity range.

We develop novel algorithms for extracting centerline of an artery, calculating the threshold

of calcium adaptively based on the intensity of contrast along the artery, calculating the

amount of calcium in mixed intensity range, and segmenting the artery and the outer wall.

The accuracy of the calcium quantification from CTA by using our methods is higher than

the non-contrast-enhanced CT thus potentially eliminating the need of the non-contrast-

enhanced CT scan. The implications are that the total time required for the CT scan

procedure, and the patient’s exposure to x-ray radiation are reduced.

1.1 Coronary Anatomy and Atherosclerosis

Arteries are the blood vessels that supply oxygen-rich blood to different parts of the

body. Arteries that supply blood to the heart muscle are known as the coronary arteries.

Figure 1.1 shows two coronary arteries, the right coronary artery (RCA) and the left coronary

artery branching out from a larger artery known as aorta which supplies blood to the other

parts of the body [1]. As can be seen from the figure, the left coronary artery branches into

the circumflex artery(LCx) and the left anterior descending (LAD) artery.

Atherosclerosis is a disease caused by plaque build-up in the arterial wall and is the

most common cause of a dangerous cardiac event such as heart attack [3]. Plaque is made

up of lipid, fibrous tissues, calcium etc. which builds up over time and narrows the internal

space of artery known as lumen. Figure 1.2 shows the narrowing of artery which is also

known as stenosis. A plaque can rupture inside an artery causing blood to clot on the rup-

tured surface. Heart attack or myocardial infarction is a life-threatening condition occurring

when a large clot completely blocks the artery and the heart muscle dies because of lack of

oxygen-rich blood [4]. Sometimes, the plaque may continue to build-up over several years

and may completely block one of the coronary arteries leading to heart attack [4].
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Figure 1.1 The heart and different coronary arteries. Picture adapted from [1]

.

Figure 1.2 Narrowing of an artery due to plaque buildup. Picture adapted from [2].
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The rupture prone or fast progressing plaques are also known as vulnerable plaques and

the slower progressing ones are known as stable plaques [5]. The stable plaque results in

its own complication called myocardial ischemia which reduces the blood flow to a part of

heart resulting in slow death of heart tissue and decreased efficiency of blood circulation [6].

The composition of plaque is often divided into four different types of tissues called fibrous,

fibrofatty, necrotic core and the calcified tissue [7].

The presence of calcified tissue or the calcium in coronary arteries is closely associated

with the total atherosclerotic burden and is indicative of future cardiovascular diseases [3,

5, 8]. In this work, we are concerned with the detection and quantification of the calcium

by using the computed tomography (CT) imaging.

1.2 Computed Tomography Imaging

Computed Tomography (CT) is used to generate images of different internal anatomical

structures of a person. A CT scanner has a source that generates an x-ray beam which after

passing through the patient’s body is detected and converted into an electric signal by a

detector array. As the x-ray passes through the patient’s body, the photons constituting the

x-ray beam are scattered or absorbed depending upon the initial x-ray energy as well as the

tissue density. This reduction of x-ray beam is known as attenuation, and its numerical value

is calculated from the electric signal produced by the detector array. The attenuation value

is measured upon the strength of x-ray beam. Hence a relative attenuation value is obtained

by calibrating the attenuation value of water to 0. The relative attenuation coefficient is

measured in Hounsfield unit (HU) as follows, [9]

C =
µ− µwater
µwater

× 1000HU, (1.1)

where C is the relative attenuation coefficient and µ is the actual attenuation coefficient

in HU. High density tissues attenuate the x-ray beam more than low density tissues and have

higher HU values. The x-ray generated by the source is restricted to a fan-shaped beam of
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45− 60◦ angular width by a collimator which is a device to align an x-ray beam in a certain

shape or direction. A second collimator placed perpendicular to the first collimator restricts

the x-ray into a thin beam so that the x-ray passes through a thin slice of the patient’s

body. Both the source and the detector array revolve around the patient’s body projecting

x-ray at different angles, so that a slice in a patient body produce multiple projections in

the detector array. These multiple projections are then reconstructed into an image of a

single cross-sectional slice of the body. Multiple slices are obtained by moving the patient

table forward to cover a desired portion of the body such as abdomen, chest etc. The final

CT data is thus a 3-D data volume composed of tiny units called voxels represented by the

attenuation coefficients in HU.

1.2.1 Coronary artery calcium (CAC) quantification and its clinical utility

The quantification of coronary artery calcium was first done by Agatston et al. [10] in 584

subjects, 475 among which did not have any coronary artery disease. Twenty contiguous

slices, each with 3 mm thickness were acquired using an ultrafast computed tomographic

scanner. The total calcium score was calculated by considering the area of each calcified

plaque also known as a lesion and the peak intensity value in each plaque. A contiguous

group of pixels in a slice was considered as a calcified lesion, if each pixel in the group was

130 HU or more and the total area of all the pixels in the group >= 1mm2. If the peak

intensity of a lesion was in the range 130 to 199 a density score of 1 was assigned. Similarly

the density scores of 2 for the range of 200 to 299, 3 for the range 300 to 399 and 4 for

peak >= 400 were assigned. The sum of all lesion scores which was obtained by multiplying

the area of each lesion with the density score then gave the total calcium score. If there

were no calcified lesions then the calcium score of 0 was assigned. The total calcium score

was found to increase with age and patients with coronary artery diseases had significantly

higher calcium scores than those without in all age groups considered (p < 0.0001).

The coronary artery calcium (CAC) score has been shown to be associated with the

risk of future cardiovascular events in numerous studies. One such study done in 25,253 in-
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dividuals without any coronary disease symptoms demonstrated CAC to be an independent

predictor of mortality [8]. Other studies proved that it can predict future cardiovascular

events independent of age, sex and race. Although the prevalence of calcium differs signifi-

cantly with different race, age groups and gender [11, 12], CAC predicts future cardiovascular

events independent of age, sex and race [13].

1.2.2 Computed Tomography Angiography

The coronary artery calcium (CAC) score of 0 indicates the absence of any calcified

plaques and is associated with a very low risk of future cardiovascular events in the case of

patients without any cardiovascular heart disease symptoms [14]. However, a CAC score of

0 is not sufficient to rule out the presence of non-calcified plaques in patients with symptoms

as these plaques are not visible in non-contrast-enhanced CT. Several studies have reported

the occurrence of obstructive (causing more than 50% stenosis) non-calcified plaques in

symptomatic patients with 0 CAC [15, 16]. Computed tomography angiography (CTA) is

done in symptomatic patients in order to assess a suspected coronary artery disease. CTA is

done by injecting a contrast agent in blood. A contrast agent has relatively higher opacity

to x-ray as compared to the opacity of soft tissues such as muscle, arterial wall etc. and

is clearly visible in the CT image. With the contrast agent in the blood CTA allows the

visualization of the coronary arteries and any stenosis can be easily detected. However,

some of the calcified plaques might be obscured due to the presence of high opacity contrast

agent. Both the contrast-enhanced CTA and non-contrast-enhanced CAC scoring are hence

performed in conjunction.

1.3 Coronary artery calcium quantification using contrast-enhanced CTA

Injecting the contrast material helps to visualize the arteries clearly since the contrast

material is opaque to the x-ray. However, some of the low density calcium the intensity

range of which overlap with the intensity range of contrast material may not be visible in

the CTA. Figures 1.3 (a) and 1.3 (b) show a slice from non-contrast-enhanced and contrast-
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enhanced CT scans respectively. Both the scans were obtained from the same patient and

approximately shows the same portion in the artery. In the non-contrast-enhanced figure,

the calcium can be easily seen and can be extracted easily by using a fixed cutoff threshold

such as 130 HU. The contrast-enhanced figure easily visualizes the arteries and larger vessels

which contain blood dyed with the injected contrast agent. However some of the low density

calcium have the same intensity as the contrast agent and may be inseparable by using a

single cutoff threshold.

(a) (b)

Figure 1.3 A slice from (a) non-contrast-enhanced CT scan (b) contrast-enhanced CT scan
of the same patient.

Coronary artery calcium quantification by using contrast-enhanced CTA has been at-

tempted by several studies recently [17, 18, 19, 20, 21, 22, 23]. Most of these studies use a

higher cutoff threshold such as 320 HU [17], 350 HU [21, 22] or even 600 HU [23] in order

to separate the high density calcium from the contrast material. A single cutoff threshold

is not appropriate for all the CTA data as the cutoff threshold should be proportional to

the peak HU intensity level of the contrast. The peak HU intensity level depends upon fac-

tors such as patient physiology, contrast injection rate, contrast concentration, time elapsed

since contrast administration, image noise etc. [24]. In chapter 5, we also observed the peak
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contrast intensity differs not only for different patients but also for different arteries of a

patient, and along the length of artery. Therefore use of a fixed cutoff threshold results in

inaccuracies in calcium quantification. For example, a threshold of 350 HU overestimated

the total calcium in [22], whereas the same threshold resulted in the underestimation of

total calcium in [21]. In order to address this issue, adaptive cutoff thresholds have also

been calculated based on the intensity profile of an artery [18, 19]. However, none of these

methods make an attempt to separate calcium and the contrast in the overlapped intensity

range and calculate artery-length adaptive cutoff thresholds.

1.4 IVUS-VH imaging technique used for detecting plaque

The intravascular ultrasound derived Virtual HistologyTM (Volcano Corporation)

(IVUS-VH) is a clinically established method for characterization of different kind of plaque

tissue. The IVUS-VH can detect four different kinds of plaque tissues, namely, fibrous, fi-

brofatty, necrotic, and dense calcium and visualize them with different color codes as shown

in figure 6.1. The figure shows a frame of IVUS-VH obtained from the same patient whose

non-contrast-enhanced and contrast-enhanced CT scans are shown in figures 1.3 (a) and 1.3

(b) respectively.

In IVUS-VH the images are formed by ultrasound waves. A catheter travels through

artery emitting ultrasound waves which gets reflected from the arterial wall. The amplitude

of the reflected waves are used to construct images of different layers of the arterial wall.

The frequency of the reflected waves are used to classify different tissue components and

different colors are assigned to these components. The white pixels are dense calcium, red

ones correspond to the necrotic core, light-green are fibrofatty and green are fibrous tissues.

The particular frame in figure 6.1 shows a highly calcified plaque which is found in an arterial

wall in the proximity to the lumen.

The IVUS-VH has been shown to analyze different components with very high predictive

accuracies. Nasu et al. demonstrated the accuracy of IVUS-VH by first obtaining IVUS-VH

images from inside the arteries and then by comparing the color-coded tissue components
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Figure 1.4 A frame of IVUS-VH showing different plaque components.

in the images with actual histology of the plaque tissues obtained by a procedure called

directional coronary atherectomy [25]. The directional coronary atherectomy is a medical

intervention to remove the arterial blockage by cutting away the plaque tissue from inside

an artery. In another study by Nair et al. the IVUS-VH images were compared against the

histology of the plaque tissue obtained from the arteries cut from dead subjects [7]. Both

the studies reported the IVUS-VH to have a predictive accuracy of more than 96% for dense

calcium. Therefore, we used the IVUS-VH in our preliminary study to assess the accuracy

of the quantification of calcium from non-contrast-enhanced CT scan.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. In chapter 2 we present a review

of recent literature of several different approaches used in quantifying calcium from the

contrast-enhanced CTA and analyze their drawbacks. Chapter 3 presents the preliminary

work of calcium quantification in non-contrast-enhanced CT scan. Although, the quantifica-
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tion in non-contrast-enhanced CT is extensively studied, we present the study by using scans

obtained from a state-of-the-art CT scanner which allows reconstruction with 0.5 mm slice

thickness. We compare the calcium quantification by using 0.5 mm and the conventional 3.0

mm slice thickness reconstruction widths at different cutoff thresholds. We report several

important findings such as for optimal calcium quantification by using 0.5 mm slice thick-

ness reconstruction the cutoff threshold should be increased to 226 HU from the conventional

threshold of 130 HU. We also found that optimal cutoff threshold has a high correlation with

the noise level of the CT scan in 0.5 mm non-contrast-enhanced CT.

In chapter 4, we use the eigenvalues of Hessian matrix to automatically extract artery

as well as the centerline of the artery. For finding the centerline, the distance transform of

the extracted artery is considered. The centerline extracted in chapter 4 is used for finding a

set of voxels located at its certain distance (3 to 5 mm) by using morphological operations.

These voxels are then statistically analyzed for finding an appropriate cutoff threshold for

quantifying high-density calcium in chapter 5. Calcium voxels in the overlapped intensity

range with the contrast voxels consist of low-density calcium in the vicinity of high-density

calcium as will be seen in chapter 5. Algorithms for finding both the low-density calcium and

and adaptive cutoff threshold for high-density calcium are developed in chapter 5. Chapter

6 validates the calcium quantified from the contrast-enhanced CTA by comparing it with

the IVUS-VH derived calcium volume and also compares the CTA calcium quantification

with the non-contrast-enhanced CT quantification. In chapter 7 we present a method for

segmenting the artery lumen and its surrounding wall based on the expectation maximization

method [26]. In chapter 8 we summarize our work and identify possible improvements.

1.6 Dissertation Statement

In this dissertation we find an optimal cutoff threshold for quantifying calcium from

non-contrast-enhanced computed tomography (CT) by using a state-of-the-art CT scanner

and compare it with the conventional method of calcium quantification. We develop novel

algorithms to calculate the total volume of coronary artery calcium from contrast-enhanced
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computed tomography angiography (CTA) which includes an automatic centerline extraction

algorithm, and a novel segmentation method based on expectation maximization algorithm

to segment the artery lumen and its surrounding tissues. The implication of the dissertation

is in the reduction of radiation dose to a patient by eliminating the need of the non-contrast-

enhanced CT for calcium scoring as the method developed by using CTA performs a more

accurate quantification than the non-contrast-enhanced CT.

1.7 Published works

The preliminary work of calcium quantification from non-contrast-enhanced CT has

been published as a conference paper [27] and an abstract [28] in which we have found

thresholds for optimal quantification of calcium volume in CT volume by validating against

the IVUS-VH derived calcium volume. Another abstracts [29] shows that the calcium vol-

ume quantified with thinner slice thickness of 0.5 mm has better accuracy than the 3.0 mm

slice thickness CT volume. We have also performed a detailed comparison of these two dif-

ferent slice thickness in terms of various statistical measures which is presented in chapter

3 and has been extended to a journal draft which is under review at the time of the disser-

tation writing. The abstract of calcium quantification by using contrast-enhanced CTA is

published in [30] which also compares the accuracy with the non-contrast-enhanced CT. A

detailed methodology for calcium quantification, from the CTA by automatically extracting

arteries and statistical analysis of the voxels are presented in chapters 4, 5, and 6 which

are unpublished but present novel ideas potentially contributing to several publications in

future.

Although not directly related to the work presented in the dissertation, we have studied

several areas during the course of Ph.D. These include quality measurement of wavelet based

video compression published in [31], a novel video quality assessment method published

in [32], and acceleration of a filtering algorithm in manycore and multicore architecture

published in [33].



12

CHAPTER 2

CALCIUM QUANTIFICATION FROM COMPUTED TOMOGRAPHY

ANGIOGRAPHY : LITERATURE REVIEW

Calcium quantification is commonly done by using three different scoring methods :

the Agatston score [10], the volume score [34], and the mass score [35]. Accurate quantifi-

cation using any of these methods require identification of calcified voxels from the back-

ground. Conventionally the quantification is done by using non-contrast-enhanced computed

tomography (CT) scan by designating any voxel with intensity greater than 130 Hounsfield

unit(HU) as a calcified voxel. The Agatston score assigns different scores to disjoint calci-

fied area known as lesions based on the peak intensity in each area and combining all the

scores assigned to these calcified lesions. The volume and mass score calculates the total

volume and the mass of the calcium respectively from the total number of calcified voxels.

The methods considered in this review perform quantification by using one or all the three

methods.

The non-contrast-enhanced CT is not sufficient to rule out the presence of coronary

artery disease (CAD) in case of patients with disease symptoms. Therefore, the computed

tomography angiography (CTA) is done in symptomatic patients to study the morphology

and to assess a suspected CAD. CTA is done by injecting an x-ray opaque dye called con-

trast agent which makes the arteries clearly visible in the scan by enhancing the intensity of

blood flowing in interior space of the artery known as the lumen. Since calcification occurs

in the artery wall, the high intensity of lumen in CTA may simulate calcification in the

artery wall [21]. This results in unreliable calcium quantification because of the possibility

of inclusion of contrast voxel as a calcium voxel or the exclusion of the calcium as contrast

material.
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Accurate calcium quantification is possible in CTA if the artery wall can be segmented

from the lumen. However, it is difficult to separate the wall from the lumen because the

cross section of a coronary artery occupies only a few voxels. In this chapter we review

recent studies that attempted to quantify calcium from the contrast-enhanced CTA by using

different methods.

2.1 Previous attempts of calcium quantification from CTA

Many studies have been done with the aim of replacing the non-contrast-enhanced coro-

nary artery calcium scan (CAC) with the calcium quantification derived from the contrast-

enhanced computed tomography angiography (CTA). These may be roughly divided into

clinical studies and automatic methods. The clinical studies are done in a population of pa-

tients by using commercially available CT image analysis software for calcium quantification.

Most of the clinical studies involve a significant amount of manual intervention, and the re-

sults are characterized by inter and intra-observer variability. Hence, the methods presented

may not be applied practically to obtain an accurate and repeatable calcium quantification

in CTA. One of the factors responsible for the drawbacks of these methods is the use of a

single threshold and no attempts to address the variability of thresholds for different patients

or multiple scans of a single patient. Another category of work focus on automatic extraction

of arteries and their centerline but suffers the drawback in not addressing the variability of

cutoff threshold along the length of artery, and separation of low-density calcium from the

contrast voxels in the overlapped intensity range. Other works consider calcium and con-

trast detection in larger vessels such as carotid artery or aorta and not directly applicable

to smaller vessels such as coronary arteries.

2.1.1 Clinical studies with fixed cutoff thresholds

Hong et al., used the fixed threshold of 350 HU to quantify calcium from 1.25 mm

slice thickness contrast-enhanced CTA in 50 patients [22]. The Agatston score and calcium

mass quantification done by a radiologist (Cheng Hong, Department of Clinical Radiol-
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ogy, University of Munich, Munich, Germany) by using a commercial software (InSight,

Neo-Imagery Technologies) were compared to the corresponding scores obtained from non-

contrast-enhanced CT scan by using 130 HU threshold. Linear regression showed high corre-

lation of both the Agatston score and the calcium mass (0.942, p < 0.001 and 0.977, p < 0.001

respectively) in contrast-enhanced and non-contrast enhanced scan. There was no signifi-

cant difference in calcium mass score and it had lower variability in repeated quantifications

than the Agatston score which was also significantly different in contrast-enhanced and

non-contrast-enhanced CT scans. The study also compared the accuracy of calcium quan-

tification in different slice thickness reconstructions of 3.0 mm, 1.25 mm, and 0.6 mm by

using a cardiac CT phantom. A phantom consists of artificial organs and tissues and is

used for calibration or validation study. The lower slice thickness reconstructions revealed

more calcified cylinders in the phantom than the higher slice thickness reconstructions. The

Agatston score in CTA was underestimated while the mass score was overestimated.

Mühlenbruch et al. performed a study similar to that of Hong et al. [22] by quantifying

Agatston score and the calcium mass in phantoms and 36 patients by using a threshold of

350 HU [21]. The study found overestimation of the scores in patients and underestimation

in the phantom and 57% of all patients were assigned to different risk groups by the calcium

quantified from the CTA. Although, the study found the use of CTA unreliable in assessing

the total amount of calcium in coronary arteries, more recent studies have shown a very high

correlation, low limits of agreement, high agreement to risk stratification by non-contrast-

enhanced quantification, etc., thus indicating the feasibility of reliable and accurate calcium

quantification from CTA.

Glodny et al. used an arbitrary threshold of 600 HU to quantify calcium using volume

score in contrast-enhanced CTA images in 113 patients and compared the volume with

Agatston score and calcium volume score using a threshold of 130 HU in non-contrast-

enhanced CT scan [23]. A CT workstation (AW 4.4, General Electric) was used to calculate

Agatston score and the volume score from non-contrast enhanced CT. The same workstation

was used to manually extract coronary arteries required for quantification from CTA. The
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choice of 600 HU was to eliminate the entire heart and artery lumen in one threshold step

and was based on the observation that smaller thresholds such as 350 HU used in previous

studies [22, 21] were unable to separate the lumen. The volume score obtained in CTA

had a strong correlation of more than 0.92 for two observers with both the Agatston score

and the volume score in non-contrast-enhanced CT. Inter and intra observer variation were

small. However, the high threshold led to exclusion of some low density calcium resulting

in underestimation of total calcium compared to both the Agatston score and the volume

score in non-contrast-enhanced CT.

Van der Bijl et al. obtained calcium scores in CTA in 100 patients and compared them

to the corresponding non-contrast-enhanced calcium scores computed in 50 CT with a 0

Agatston score and with an Agatston score of 1 or more in another 50 patients [36]. They

assigned two observers (with 2 - 4 years of experience in cardiac CT imaging) to manually

identify and draw contours around calcified spots in CTA and used the conventional thresh-

old of 130 HU to quantify the calcium. A software (Vitrea FX 1.0, Vital Images) was used

to calculate calcium score automatically from the plaques in both the scans. Although good

correlation and high sensitivity, specificity, positive predictive value, and negative predictive

value of detecting coronary calcium with CTA was observed, high Agatston scores were un-

derestimated by the CTA. Calcium spots were identified visually which might have excluded

some of the calcified voxels resulting in the underestimation of the Agatston score.

A recent study by Bischoff et al. concluded the quantification of coronary artery cal-

cium from contrast-enhanced feasible by showing a high correlation coefficient (r = 0.954,

p < 0.001) of calcium quantification in contrast-enhanced CTA in 100 patients [37]. 98% of

patients without coronary artery calcium were correctly identified by the calcium quantifica-

tion in contrast-enhanced CTA. More than 95% of the patients were correctly grouped into

same risk category by using their method.

More recently, Otton et al. quantified calcium from contrast-enhanced CTA by using a

threshold of 320 HU [17]. For the quantification, first a segmentation of lumen from artery

wall was done by using a commercial software tool (SurePlaque, Vitrea FX 3.1, Toshiba
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Medical Systems) followed by manual adjustments of incorrect segmentations. The thresh-

old of 320 HU was then applied to the segmented artery wall to calculate calcium volume.

The calcium volume derived from the contrast enhanced CTA was converted to Agatston

score by multiplying with an empirical conversion factor. The conversion factor was derived

by using regression analysis between the calcium volume derived from the contrast-enhanced

CTA and the Agatston score derived from non-contrast-enhanced scan in 90 patients who

had both contrast-enhanced and non-contrast enhanced scans done. A linear relation was

found from the regression analysis with a conversion factor of 3.13. The accuracy of calcium

score estimation was validated in contrast-enhanced and non-contrast enhanced CT scan

pairs from a set of 120 patients different from the original 90 patients used for determining

the conversion factor. Correlation coefficient of 0.99 was observed between the actual Agat-

ston score calculated from non-contrast-enhanced CT scan and the contrast-enhanced CTA

derived score by applying the empirical conversion factor.

The accuracy of the method is highly dependent on the cutoff threshold of 320 HU and

the accuracy of artery wall segmentation. The excellent correlation of 0.99 might have been

due to the manual correction of segmentation. The requirement of manual segmentation for

each CT scan reduces the repeatability and increases the time taken. The single conversion

factor of 3.13 may not be optimal as the Agatston score assigns different weights to voxels

of different intensity range [38].

Since the contrast filled lumen has high intensity, many studies increased the threshold

of detection of calcium from the conventional threshold of 130 HU in non-contrast-enhanced

CT to 320 HU [17], 350 HU [21, 22] or 600 HU [23] in order to separate the lumen from

calcium. However, these thresholds resulted either in underestimation [21, 23, 17] or over-

estimation [22] of calcium. A single threshold of 350 HU overestimated [22] and underesti-

mated [21] the calcium quantification thus indicating the unreliability of a single threshold

across different studies.



17

2.1.2 Adaptive cutoff thresholds for different arteries

An automatic calcium detection and quantification method in CTA has been described

by Teßmann et al. [18, 19]. The algorithm proceeds with extraction of artery centerlines by

using method described by in Gülsän and Tek [39] and full coronary artery tree from the

3D CTA data. A histogram based on intensity values along the centerlines of the segmented

artery is generated and the last maxima of the histogram is used as the mean intensity of the

lumen. The last maxima, i.e., the maxima corresponding to highest HU value was selected

as the mean of the contrast material based on the assumption that HU value of calcium lie

above the HU corresponding to the last maxima. The optimal cutoff threshold was chosen

as the HU value at which the derivative of the histogram function exceeded an empirically

derived threshold. The threshold was used to identify calcium from the segmented trees,

and lesions were identified by connected component analysis. Calcium quantification was

done according to three different measures : Agatston’s score, calcium volume and calcium

mass, each of which were found to have high correlation coefficients with the corresponding

scores assigned manually on 46 CTA images. The study calculated individual cutoff HU

threshold for different CTA data which is important since the contrast enhancement and

hence its peak HU intensity level depends upon factors such as patient physiology, contrast

injection rate, contrast concentration, time elapsed since contrast administration, image

noise etc. [24]. Although, a fully automated approach, including HU estimation, and lesion

segmentation was used to quantify calcium, the accuracy of this method largely depends upon

the accuracy of vessel centerline extraction and segmentation. The accuracy of validation

may not be reliable since the ground truth used for the validation is based on manual scores

assigned by a single radiologist chosen by Teßmann et al. [18] and hence might suffer from

inter-observer variability.

2.1.3 Quantification using both CTA and CAC

Saur et al. detected calcified plaque using both contrast-enhanced CTA and non-

contrast-enhanced CT scan by using rigid registration of plaques identified from the scan
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pair [20]. Plaques were identified in the CTA by first extracting vessel centerline using an

algorithm described in [40] followed by lumen segmentation in the cross sections perpen-

dicular to the detected centerline. The lumen segmentation was done by applying graph

cut algorithm [41] which models voxels as graph nodes and finds an optimal partition to

divide the set of nodes into two different sets. The segmentation was done with a circular

shape prior [42] which restricts the resulting cross section to be circular in shape. March-

ing cubes algorithm [43] was then applied to extract calcified plaque. The marching cubes

algorithm creates a three dimensional surface by interpolating voxels with similar values

known as an iso-value. Iso-values of µ + 5σ was used, where µ is mean and σ is standard

deviation of a 7 × 7 × 7 voxels neighborhood selected from the aorta. In non-contrast CT

plaque were identified by applying marching cube algorithm with an iso-surface value of 130

HU and removing connected components of large volumes corresponding to bones. Calci-

fied plaques extracted from both are then matched by using rigid registration which finds

out optimal rotation and translation parameters to match the source and target plaques.

The final set of plaques consisted of all matched pair of plaques from the contrast-enhanced

and non-contrast-enhanced CT and any plaques of higher intensity visible in CTA and not

visible in non-contrast-enhanced scan. 85.5% of calcified plaques were correctly identified

by using plaques identified manually by an assigned radiologist as ground truth data. The

algorithm does not completely exploit the contrast-enhanced CTA and requires the patients

to go through both the scans. Since no quantification of calcium was done from the plaques,

the accuracy of calcium volume that can be detected is unknown. Furthermore, the valida-

tion based on quantification done by single radiologist may not be accurate as it may suffer

from inter and intra-observer variability as was the case in the quantification by Teβmann

et al. [18].

2.1.4 Artery wall segmentation for different plaque identification

Another approach attempts to segment inner and outer artery wall in order to isolate the

calcium within the wall. Distinct threshold ranges are then used to classify different plaque
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components from within the artery wall. Vukadinovic et al. describes a method to segment

the outer wall [44] and use it for quantifying different plaque components from carotid artery

in contrast-enhanced CTA dataset [45]. They first use the level set [46] approach to segment

the carotid artery lumen and the calcium were extracted from around the lumen by using

320 HU cutoff threshold. Then a GentleBoost [47] classification was used to classify the

calcium extracted initially as true calcium or not. Different features such as distance to

the lumen, volume of the plaque, different intensity profiles radially and tangentially with

respect to the lumen from images smoothed with Gaussian derivative filters on multiple

scales etc were extracted from the training images with the contours of lumen and different

plaque tissues manually drawn by an expert assigned by Vukadinovic et al. [45]. Similar

classification was used to classify each voxel as lying inside or outside the artery. The result

of the two classification steps along with an ellipse fit to the vessel delineated the outer

wall. The area in between the outer wall and inner wall formed by the lumen edge was

the actual artery wall where different plaque components were quantified according to fixed

threshold range such as the voxels in the range -20 HU to 60 HU were identified as lipid,

60HU to 130HU were fibrous tissue. The conventional threshold of 130 HU was used to

identify calcium from the artery wall. Although the approach reported high correlation with

plaque components identified by radiologist, the actual difference in calcium quantity has not

been reported. The method, although extracts calcium and other plaque components with

least manual intervention, such as during level set segmentation, due to the fixed threshold

approach suffers same disadvantages as other clinical methods.

Carotid wall segmentation has been described in various works such as by Bruijne et

al. [48] by using active shape model [49], Olabarriaga et al. [50] by using a deformable-

model [51] for lumen segmentation and a k− nearest neighbor (k −NN) classifier for outer

wall segmentation. Different plaque components can be identified once the wall has been

delineated based on different intensity range. Since there is an overlap in intensity profiles

of calcium and the contrast-filled lumen, the segmentation of lumen might include some of

low density calcium objects. These methods, in general, do not make attempt to identify
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any calcium falsely classified as lumen because of overlapped intensity profile of low density

calcium and lumen and hence may not accurately quantify calcium.

Although the success of most of the methods are measured in terms of correlation with

different ground truth, the correlation-coefficient only measures the strength and not the

agreement [52]. In the measurement of CAC it is important to achieve lower difference

range, in order to not to reassign the patients into new risk stratification level.

2.1.5 Detection of the presence of contrast in a CT scan

Criminisi et al. constructed a probability model to detect the presence of the contrast

material in CT scans by using the intensity histogram as the feature to describe a local

window containing an organ of interest such as heart, kidney etc [53]. The binary decision of

whether a particular organ in a CT-scan has the intravenous contrast is done by first local-

izing a window [53] to an organ of interest and then by maximizing the posterior probability

p(c|S,O), where c is either contrast-enhanced class (C), or non-contrast-enhanced class (N),

S = {s1, s2, ..., sN}, where si represents the intensity histogram in HU for N different organs

of interest, and O = {o1, o2, ..., oN}, where oi = 1 is assigned by an observer if the organ

is clearly visible otherwise it is assigned 0. The probability p(si|oi = 1, c) is modeled as a

Gaussian for each organ and the parameters are learned from a trained set of images. Then

p(c|S,O) is found as,

p(c|S,O) =
1

Z
p(c)

N∏
i

p(si|oi, c)p(oi). (2.1)

The factor Z is same for both the classes C and N and is ignored for comparing the

posterior probabilities for the two classes. Whether a certain organ received the contrast

material is recorded manually in the metadata information of the CT volume file [53]. In this

study, the contrast detection is done in order to correct any error introduced during manual

entry of contrast in metadata. Although the method is useful in classifying the presence or

absence of contrast in an organ, it is not directly applicable in distinguishing a calcium voxel

from the contrast voxels as their intensity range overlap and the resolution of artery cross



21

section is not large enough for multi-scale feature detection.

2.1.6 Multiresolution feature based classification of calcium

Papadakis et al. used 3-D isotropic multiresolution representation [54] to classify texture

corresponding to different tissue components such as lumen, calcium deposits, lipids, fibrous

tissues, muscle cells, etc. from CT data [55]. Voxels corresponding to different tissue types

selected manually were used to construct a training set. The training set was then used to

classify unknown tissues throughout the CT volume data by matching statistics.

Bruijne combines a k −NN (nearest neighbor) pixel classifier with a spatially varying

calcium prior to detect calcium in X-ray radiography images of aorta in abdomen [56]. The

pixel classifier assigns a pixel into one of the two classes, calcium or background by using

k−NN algorithm. The feature vectors required for training and classification are obtained

from the outputs of applying the image to a set of Gaussian derivative filters at multiple

scales. Classification obtained from the pixel classifier are combined to a spatially varying

calcium prior to localize the detection of calcium in the aorta. The calcium prior probability

model is constructed, first by averaging calcium distributions across cross sections and along

the length of a number of training set of aortas. Bruijne then used a point distribution model

(PDM) [49] to estimate the shape and pose of aorta given a spine shape since the position of

two are correlated. A PDM represents shape by using Principal Component Analysis (PCA)

of a set of training shapes represented in a 2n dimensional (2n − D) space, where n is the

number of points (in 2-D (x, y) pair) used to represent each shape. A new shape variation

can be derived from linear combination of the mean along with the principle axes obtained

from the PCA of the shapes in the 2n−D space. An average of different random variations

in aorta shape was combined with the longitudinal and cross-sectional calcium profiles to

construct the calcium prior probability model.
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2.2 Summary

Different studies have been done to quantify calcium from the contrast-enhanced com-

puted tomography angiography (CTA). Several works have increased the cutoff thresh-

old to account for the increase in the lumen intensity due to contrast administra-

tion [17, 18, 19, 20, 21, 22, 23]. Since the cutoff threshold is proportional to the peak

contrast intensity, a single cutoff threshold does not provide an accurate quantification for

different CT scans and for a selected artery. The work by Teßman et al. [18, 19] remove

some of the inaccuracies by considering an adaptive threshold for each artery. However these

works do not address the contrast intensity variation along the length of the artery as will be

shown in chapter 5. Furthermore, none of the reviewed methods consider the quantification

of low-density calcium by separating them from the contrast voxels in the range of intensity

overlap. In chapter 5 we develop algorithms to find the probability of low-density calcium

voxels in the overlapped intensity range, and an adaptive cutoff threshold which varies along

the length of an artery to separate the high-density calcium lengthwise.

Other studies such as by Saur et al. [20] requires both the contrast-enhanced and non-

contrast-enhanced CT scans for the quantification. In larger arteries such as the carotid

artery and the arota, the quantification is facilitated by first segmenting the artery wall

and then applying a fixed range of thresholds to classify different plaques [45, 48, 50]. The

wall segmentation is not applicable to relatively smaller coronary arteries. Classification ap-

proaches for detecting contrast or calcified voxels in vessels and organs larger than coronary

arteries by multiresolution features detection [56, 53] are not directly applicable in distin-

guishing a calcium voxel from the contrast voxels as their intensity range overlap and the

resolution of the coronary artery cross section is not large enough for multiresolution feature

detection.
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CHAPTER 3

CALCIUM QUANTIFICATION IN NON-CONTRAST-ENHANCED

COMPUTED TOMOGRAPHY: PRELIMINARY WORK

In this chapter we perform the preliminary work of quantifying calcium from non-

contrast-enhanced computed tomography (CT) scan. We compare the CT volume quanti-

fied from 0.5 mm slice thickness reconstruction with the volume from 3.0 mm slice thickness

reconstruction. We study the effect of different cutoff thresholds in the accuracy of calcium

quantification and suggest an optimal cutoff thresholds for quantification in both the 3.0

mm and 0.5 mm slice thickness volumes. The results in this work can be clinically useful in

deciding an appropriate threshold for calcium quantification. We have developed software

tools and methods for manually extracting arteries from the CT volume, registering the ex-

tracted arteries with the intravascular ultrasound with virtual histology (IVUS-VH) images

and validating the accuracy of calcium quantification. The manual vessel extraction and

registration is necessary due to a very low or no contrast between the artery and the sur-

rounding tissue in a non-contrast-enhanced CT scan. The manual artery extraction and the

manual registration methods developed in this chapter are extended to automatic methods

to quantify calcium from the contrast-enhanced computed tomography angiography (CTA)

in chapters 4, and 5.

3.1 Introduction

Coronary Artery Calcium (CAC) quantification is done by using non-contrast-enhanced

Computed Tomography (CT) images. State-of-the-art 320-detector row CT scanners have

320 x-ray detector elements each of which can acquire an image of a section 0.5 mm thick,

thus covering 16 cm of an anatomy in one rotation. The images acquired from 320-detector

can be reconstructed with 0.5 mm slice thickness or a larger slice thickness of 3.0 mm is
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also available. Conventionally, CAC quantification is done by using 3.0 mm slice thickness

reconstruction where any voxel greater than or equal to 130 Hounsfield Unit (HU) is identified

as a calcium. 0.5 mm slice thickness reconstruction achieves higher spatial resolution than

the 3.0 mm slice thickness reconstruction. It has isotropic voxel size, i.e., the size of voxel is

almost equal in all three dimensions and hence it is easy to reconstruct coronary structures

in arbitrary plane. However, the accuracy of calcium quantification using 0.5 mm isotropic

resolution and the effect of different HU cutoff thresholds on the accuracy of quantification

have not been studied.

In this chapter we study the accuracy of calcium quantification on 0.5 mm isotropic

CT scan. We also study the effect of different attenuation cutoff threshold on the validity of

calcium quantification and compare the 0.5 mm and 3.0 mm CAC quantification by validating

against spatially registered IVUS-VH on a very detailed slice-by-slice basis. The calcium

volume obtained from a population of 23 patients using different HU thresholds were analyzed

by correlation as well as sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) to find an optimal threshold. For the 3.0 mm CAC quantification,

we found the 120 HU and for the 0.5 mm CAC 226 HU provide optimal quantification. The

calcium quantification done by using 0.5 mm slice thickness reconstruction in the optimal

range yielded higher sensitivity, specificity, NPV and PPV, and lower mean difference range

than the conventional 3.0 mm CAC in its optimal range.

3.2 Methods

A total of 23 patients were studied, 14 of whom had coronary artery disease and re-

maining 9 had normal arteries. Non-contrast-enhanced CAC quantification, and contrast-

enhanced-CTA was done in both diseased and normal patients. The 14 diseased patients

also underwent IVUS-VH in the selected artery. The investigation was approved by the in-

stitutional review board of Piedmont Hospital. The demographic information of the patients

is listed in Table 3.1.
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Table 3.1 Patient Demographics

CAD Normal

Patient Number 14 9

Age 61.5 ± 7.9 50.4 ± 8.8

Sex 10M, 4F 5M, 4F

CAC images were taken on a multi-detector CT with conventional imaging protocol with no

increase in radiation dose, in a prospective volumetric mode with a tube voltage of 120 kV,

tube current of 110 - 550 mA, 0.5 mm detector width and reconstructed with 0.5 mm and 3.0

mm slice thickness. In order to compare the CT images with IVUS-VH, we need to extract

the desired coronary artery from the CT images. Since it is difficult to extract a coronary

artery automatically from the non-contrast-enhanced CT scans, we have developed a software

(fig. 3.1) to manually extract the vessel centerline from the CT images, and transform the

vessel to a straight-vessel view. We also developed a software tool to align and register the

CAC images with the IVUS-VH, so that the calcium quantification in CAC and IVUS-VH

can be compared on a very detailed slice-by-slice basis in each of the cross-sectional slice

that is perpendicular to the vessel centerline.

3.2.1 Centerline Extraction in CAC Images

Our software allowed the users to browse through the 3D image set and manually

annotate the center-points of the vessel of interest. Figure 3.1 shows the snapshot of the

software. The manual annotation gave a set of 3D coordinates representing the actual path

of the vessel. The set of 3D points were then interpolated and made smooth by using the

snake deformable model [57].

The snake is a smooth curve which is pulled toward image features such as edges, lines,

etc. and hence typically used for segmenting desired object in an image by aligning it to

the object contour. The snake is initialized as a set of points and the pulling of these points

toward the image features is done iteratively by minimizing the external forces exerted by
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Figure 3.1 Software tool to browse through the CT slices and annotate the desired artery to
extract the centerline.

the image features at each step. During each iteration, a set of internal forces keeps the snake

smooth. The snake can be represented as u(s) = (x(s), y(s)), where s is the normalized arc

length along the curve u(s), x(s) and y(s) are the x and y coordinates of the points in u(s)

. The energy associated with the snake is given by,

E(u(s)) =

∫ 1

0

Eint(u(s)) + Eext(u(s)) ds. (3.1)

To converge at its final shape and position, the snake minimizes its total energy E(u(s))

which is composed of the internal energy Eint(u(s)) and the external energy Eext(u(s)). The

internal energy can be expressed as,

Eint(u(s)) =

∫ 1

0

α(s)|u′(s)|2 + β(s)|u′′(s)|2ds, (3.2)

where u′ and u′′ are the first-order and second-order derivatives of the snake function u(s);

α(s), and β(s) are the corresponding weighting functions. The first-order term is known as
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“membrane” which avoids tear or breaking of the snake, and the second-order term is known

as “thin-plate”which avoids sharp corners in the curve. The external energy or the image

potential can be expressed as the sum of energy due to different features such as edge, line

and terminals. In many practical applications external energy due to edge may be sufficient,

which can be expressed as the gradient of the image as follows,

Eedge = −| 5 Φ(x, y)|2, (3.3)

where Φ(x, y) is the image. The total energy functional E(u(s)) can be minimized by

solving the Euler-Lagrange equation and the snake at iteration t can be obtained from its

previous iteration as follows [57].

u(st) = (A+ γI)−1(u(st−1) + fext(u(st−1))) (3.4)

where I is the identity matrix and A is a pentadiagonal matrix formed by the weighting

parameters α and β as follows,

A =



c1 d1 e1 0 0 0 · · · 0 0 0 0 a1 b1

b1 c1 d1 e1 0 0 · · · 0 0 0 0 0 a1

a1 b1 c1 d1 e1 0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · 0 aN−2 bN−2 cN−2 dN−2 eN−2

eN−1 0 0 0 0 0 · · · 0 0 aN−1 bN−1 cN−1 dN−1

dN eN 0 0 0 0 · · · 0 0 0 aN bN cN


,

where

ai = βi−1,

bi = −2βi − 2βi−1 − αi,

ci = βi+1 + 4βi + βi−1 + αi+1 + αi,
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di = −2βi+1 − 2βi − αi+1,

ei = βi+1.

In order to smooth the manually annotated set of points in 3D, we initialized the snake

as a cubic interpolation of these points. The manually annotated points were used as the

salient features in 3D space which pulled the curve toward them in each iteration bringing

the initial snake close to the points and meanwhile smoothing it to approximate a vessel

centerline. Equation 3.4 can be decoupled with respect to x, y and z spatial parameters, and

the new positions for the discrete points (xi(u), yi(u), zi(u)), i = 1, ..., N along the length of

the snake can be obtained as,

xt = (A+ γI)−1(xt−1 + fx), (3.5)

yt = (A+ γI)−1(yt−1 + fy), (3.6)

zt = (A+ γI)−1(zt−1 + fz), (3.7)

The external force was obtained as a force proportional to the distance vector from the

snake to the manually annotated points with the force components given by,

fx = κ(xmanual − xsnake), (3.8)

fy = κ(ymanual − ysnake), (3.9)

fz = κ(zmanual − zsnake), (3.10)

where κ scales the force magnitude. In our experiments we set the value α = 0.10, β = 0.20,

and κ = 0.05 which produced smooth approximations of the centerline in a low number of

iterations.

Figure 3.2 shows an example of a snake interpolation at different iterations. The snake

was initialized as a line joining two extreme manually annotated points. At each iteration,
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Figure 3.3 External force acting on the snake. The external force shown as black arrows pull
the snake (red curve) toward the annotated points shown as circles.
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the snake is attracted toward the annotated points and the magnitude of the external force

gets smaller as the snake approaches the annotated points. The force pulling the snake at

an iteration step is shown in figure 3.3. The arrows show the direction in which each point

in the snake is attracted toward one of the manually clicked points.

Figure 3.4 2D cross-sectional slices sampled along the artery centerline in the CT image.

In order to compare the CAC volume with the set of 2D IVUS-VH images, appropriate

images from the 3D CAC data had to be extracted and lined up as in IVUS-VH image set.

As shown in Fig. 3.4, we extracted the images perpendicular to the centerline and equally

spaced from each other in order to emulate the images taken by IVUS catheter inside the

artery. In order to achieve more reliable registration and to facilitate comparison of 0.5 mm

and 3.0 mm reconstructions, we set the slice-to-slice spacing to be 3.0 mm, which resulted

in a total of 432 slices in both the modalities.

3.2.2 IVUS Image Acquisition and Analysis

IVUS-VH images were acquired in a IVUS-VH console with a catheter (Eagle Eye,

Volcano Corporation). A medication called Nitroglycerin was injected to enlarge the blood

vessels so as to facilitate the movement of the catheter. The catheter was advanced beyond

the target lesion and automated pullback with IVUS image acquisition was performed at a

rate of 0.5 mm/sec. A medical doctor was asked to manually delineate the lumen contour

and the outer boundary of the arterial wall on the image. Then, the IVUS-VH console

automatically classified the plaque area in between the two contours into 4 plaque compo-

sitions, by analyzing the reflected ultrasound signals using a principal component analysis
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(PCA)-based algorithm [7]. Fig. 2 shows the longitudinal view of a coronary artery created

by stacking 2D IVUS-VH images. White, red, light green, and dark green represent dense

calcium, necrotic core, fibrofatty, and fibrous tissue, respectively.

3.2.3 Calcium Quantification in CAC Images

The smoothed vessel centerline in CAC images was densely re-sampled and dilated in

3D using the morphological dilation operation [58] with a spherical structural element of

radius of 7 voxels. The choice of 7 voxels was determined experimentally which was enough

to cover all the possible calcified voxels in the selected vessels without including any non-

arterial calcification. All the voxels in the dilated vessel were then perpendicularly projected

into the vessel centerline to derive their distance values to the vessel centerline. Initially, we

implemented the conventional calcium attenuation cutoff threshold of 130 HU to derive the

calcified volume in the CAC image, i.e., if the Hounsfield unit (HU) of a voxel was equal to

or greater than 130 HU, it was reported as a unit of calcium.

A voxel in the dilated CAC vessel was assigned to the 2D slice closest to the voxel’s

projection in the centerline. The calcium volume in each cross-sectional slice along the

centerline in the CAC images was calculated by multiplying the volume of a voxel with the

total number of voxels whose attenuation values are equal to or greater than 130 HU, and

belongs to that slice. Figure 3.6(a), and 3.6(b) show the calcium volume quantified along

a vessel centerline in the 0.5 mm CT and 3.0 mm CT image set respectively. The initial

threshold of 130 HU was used only for the registration of CT CAC with IVUS-VH.

3.2.4 Non-contrast-enhanced CT and IVUS-VH Registration

Previous studies in Computed Tomography Angiography (CTA) and IVUS registration

were done by using contrast agent which is generally iodine based liquid injected intra-

venously to enhance the contrast of the vessel in the CT scan. Leber et al. for example,

registered CT vessel with IVUS by visual comparison by looking at landmarks such as side

branches in order to study the accuracy of 64-slice CT in classifying and quantifying plaque
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volume [59]. Marquering et al. matched IVUS and CTA data manually along the longitudi-

nal views, and semi-automatically registering segmented vessel contours in 2D cross-sectional

views [60]. More recently, Qian et al. registered CTA images obtained from 64-slice CT with

IVUS-VH by simulating the CTA image from IVUS-VH, and by using mutual information

based registration algorithm [61]. All of these works used contrast enhanced CTA images.

Different from the previous works, we use the 320-detector-row CT without any contrast

agent. Since it is difficult to segment the non-contrast-enhanced CT automatically, we chose

to manually register it by using the software tools we developed.

Vessel straight view of the IVUS-VH was reconstructed by stacking the 2D IVUS-VH

slices together and forming a longitudinal view. The registration between the straight views

of IVUS-VH and CAC was done by manually selecting a set of landmark points in the

straight views of both IVUS-VH and CAC by looking at different salient features, such as

vessel branches and calcium deposits, at different regions along the vessel. Fig. 3.5(a) and (b)

show the vessel straight views of aligned CT and IVUS-VH respectively. The green dotted

lines were the manually selected landmarks.

(a) CT

(b) IVUS-VH

Figure 3.5 Manual alignment of the (a) CT and (b) IVUS-VH images by visually comparing
the vessel straight views. Salient image features, such as vessel branches and calcium de-
posits, were utilized in the manual alignment. Calcium deposits can be seen as white patches
in CT and as white linings within the color-encoded vessel wall in IVUS-VH.

Visual alignment of the straight views gave a rough registration between IVUS-VH
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and CAC. However, it was not accurate enough for a slice-by-slice comparison. In order to

fine-tune the registration, we introduced a calcium volume curve alignment step by manu-

ally panning and scaling the curves sideways in the calcium curves obtained from both the

modalities. Fig. 3.6 shows the registration of the calcium curves obtained from CAC and

IVUS-VH. The calcium volume obtained from IVUS-VH (shown in red) can be panned and

scaled sideways over the calcium volume curve obtained from the CAC to obtain an accurate

registration.

Figure 3.6 Manual registration by panning calcium curve obtained from the CT over the
IVUS-VH calcium curve. The blue curve is calcium obtained from CT which is aligned to
the red curve obtained from IVUS-VH by manually panning and stretching horizontally.

The calcium volume along the centerline of the IVUS-VH scan was then interpolated and

calculated using the same sampling intervals as in the CAC calcium curve. Fig. 3.7 shows

an example of the aligned calcium curves obtained from the (a) CAC 0.5 mm, (b) CAC 3.0

mm, and c) IVUS-VH.

3.2.5 Calcium Quantification in CAC images using different cut-off threshold

For the 3.0 mm conventional CAC and 0.5 mm isotropic CAC scoring it is unknown if the

130 HU threshold is optimal for calcium quantification. Therefore, we quantified the CAC

volumes by using different cutoff thresholds starting from 50 HU to 400 HU and obtained a

group of calcium volume quantification values corresponding to each threshold. The group

of calcium volume values were then compared to IVUS-VH calcium values on a slice-by-slice

basis by using the registration coordinates obtained from the previous mentioned alignment
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Figure 3.7 Calcium volume curves derived from (a) 0.5 mm CT, (b) 3.0 mm CT, and the (c)
IVUS-VH.
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of IVUS-VH with the CAC curves. The CAC volumes obtained form 3.0 mm slice thickness

and 0.5 mm slice thickness reconstruction were also compared with each other.

3.2.6 Statistical analysis

We calculated the correlation coefficient of the slice-by-slice calcium volumes in IVUS-

VH with CAC obtained with different thresholds. Sensitivity, specificity, positive predictive

value (PPV) and negative predictive value (NPV) assessment were done to find the optimal

attenuation threshold for the population of patients studied. In our case, the true positive

(tp) is the total number of slices having calcium in both CT and IVUS-VH images, the true

negative (tn) is the total number of slices without calcium lesions in both the modalities,

false positive (fp) is the total number of slices having calcium in the CAC images but not

in the IVUS-VH images, and false negative (fn) is the total number of slices having calcium

in IVUS-VH images but not in CAC images. Then, the statistical measures are defined as,

Sensitivity =
tp

tp+ fn
, (3.11)

Specificity =
tn

tn+ fp
, (3.12)

PPV =
tp

tp+ fp
, (3.13)

NPV =
tn

tn+ fn
. (3.14)

As the correlation coefficient only finds the relation between data and scaling one of the

data by a constant term does not have any effect on the correlation. Data that have high

correlation can have poor agreement [62]. Therefore we also used Bland-Altman analysis [52]

to find the difference in the calcium volume reported by CT and IVUS-VH. The Bland-

Altman analysis is the plot of the difference of two observations against their average and is

used to measure the agreement between the two observation. Low limit of agreement (low

difference) is desired in calcium quantified in the CT and the IVUS-VH since the actual

amount of calcium in a patient should be reported same by both the imaging modalities.
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Based on the presence or absence of calcium on each slice we conducted the receiver

operating characteristic (ROC) [63, 64] analysis to compare the 0.5 mm and 3.0 mm recon-

structions with respect to the IVUS-VH volume. The ROC curve plots the true positive

rate against the false positive rates at all the thresholds considered. The true positive rate

which is the fraction of true positives out of all positives is same as the sensitivity, and the

false positive rate which is the fraction of false positives out of all negatives is same as 1

- specificity. The area under a ROC curve represents the accuracy of the classifier with a

higher area indicating lower number of false positives and false negatives.

3.3 Experiments

A total of 23 patients were studied, 14 of which had intermediate to severe coronary

artery disease. The 14 patients with coronary artery disease had undergone both CAC and

IVUS-VH imaging while the 9 normal patients had only CAC taken. Since, the conventional

CAC score has been established to have high accuracy of detecting calcium, we assumed

the calcium volume per slice in the normal patient to be 0 as no calcium was detected in

the normal patients in the non-contrast CT scan. The isotropic CAC and IVUS-VH were

co-registered using the aforementioned registration methods, and the calcium quantification

corresponding to different thresholds in CAC were compared with the registered IVUS-VH.

The 3.0 mm slice thickness and 0.5 mm slice thickness reconstructions were compared in

terms of different statistical measures mentioned above and also with respect to the calcium

volume over-estimation in comparison to the IVUS-VH derived calcium volume.

3.4 Results

As shown in figure 3.8, the slice-by-slice CAC quantification in two different reconstruc-

tions with 0.5 mm and 3.0 mm slice thickness using 130 HU threshold have the correlation

coefficients of 0.79 (p < 0.0001) and 0.75 (p < 0.0001) respectively with the IVUS-VH derived

calcium volume. Figure 3.9 shows the limits of agreements for CAC 0.5 mm vs IVUS-VH and

3.0 mm vs IVUS-VH using the 130 HU threshold. Table 3.2 summarizes these results along
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with sensitivity, specificity, PPV, NPV, and the over-estimation of calcium quantification

using the 130 HU threshold. The table shows the specificity of 0.5 mm CAC is lower than

that of 3.0 mm CAC indicating that the 130 HU is not an optimal threshold for calcium

quantification in 0.5 mm slice thickness.
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Figure 3.8 Linear regression of 0.5 mm with IVUS-VH, (a) and 3.0 mm with IVUS-VH
calcium volumes using the threshold of 130 HU.

Table 3.2 Comparison of the calcium quantifications in the 0.5 mm, and the 3.0 mm recon-
structions at the threshold of 130 HU by validating against the IVUS-VH calcium volume.
The correlation coefficient, sensitivity, specificity, PPV, NPV, overestimation, and the limits
of agreement are shown for each reconstruction using the 130 HU thresholds.

Slice(mm) corr. Sens. Spec. PPV NPV overest. diff(HU)

0.50 r = 0.79, 0.95 0.24 0.57 0.82 4.06 -5.83 ± 18.30
p < 0.0001

3.00 r = 0.75, 0.56 0.91 0.89 0.62 4.62 -5.11 ± 22.81
p < 0.0001

As shown in figure 3.10 the CAC quantification in 2 different reconstructions with 0.5 mm

and 3.0 mm slice thickness are significantly correlated with each other (r = 0.92, p < 0.0001)

and have low difference range using the threshold of 130 HU.
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Figure 3.9 Bland-Altman analysis of (a) CAC 0.5 mm with IVUS-VH, and (b) CAC 3.0 mm
with IVUS-VH using the threshold of 130 HU.
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Figure 3.10 Linear regression and limit of agreement between the 0.5 mm CAC and 3.0 mm
CAC using the cutoff of 130 HU.
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Figure 3.11 shows that the sensitivity, specificity, PPV and NPV curves for 0.5 mm CAC

converge at higher thresholds than 3.0 mm CAC thus suggesting optimal values of these

parameters at higher cutoff threshold for 0.5 mm CAC. To find and optimal threshold in

both 0.5 mm and 3.0 mm reconstructions we choose the closest top-left point [63, 65] on the

corresponding ROC curves. The cutoff threshold corresponding to the closest top-left point

as shown in figure 3.14 (b) minimizes the (1− sensitivity)2 + (1− specificity)2.

The two reconstructions were then compared with respect to different parameters as

shown in Table 3.3 at their corresponding optimal thresholds.
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Figure 3.11 Sensitivity, Specificity, NPV, and PPV of 0.5 and 3.0 mm CT calcium volume
in comparison to the IVUS-VH calcium volume.

Figure 3.12 shows the regression analysis and the limits of agreement between 0.5 mm

CAC and 3.0 mm CAC at the optimal thresholds of 226 HU and 130 HU respectively. As

shown in figure 3.13,the correlation coefficient of 0.5 mm CAC and 3.0 mm CAC with IVUS-

VH using the corresponding optimal thresholds are both around 0.75. However, figure 3.14

(a) shows that 0.5 mm reconstruction has higher correlation than 3.0 mm reconstruction

with IVUS-VH at all cutoff thresholds. The area under the ROC curve is higher in the 0.5

mm reconstruction than the 3.0 mm reconstruction as shown in figure 3.14(b). The higher
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Table 3.3 Comparison of the calcium quantifications in the 0.5 mm, and the 3.0 mm re-
constructions at the corresponding optimal thresholds by validating against the IVUS-VH
calcium volume. The correlation coefficient, sensitivity, specificity, PPV, NPV, overestima-
tion, and the limits of agreement are shown for each reconstruction at the corresponding
optimal thresholds.

Slice(mm) Thresh. (HU) r Sens. Spec. PPV NPV overest diff(HU)

0.50 226 r = 0.76, 0.68 0.90 0.88 0.73 2.78 -2.43 ± 12.36
p < 0.0001

3.00 120 r = 0.75, 0.59 0.87 0.86 0.63 2.22 -5.64 ± 24.11
p < 0.0001

area in the ROC of 0.5 mm suggests that calcium can be more accurately detected in a 0.5

mm reconstruction than a 3.0 mm reconstruction. This is also confirmed by the lower limit

of agreement for 0.5 mm CAC quantification than the 3.0 mm CAC using the corresponding

optimal thresholds as shown in figure 3.15.
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Figure 3.12 Linear regression and limit of agreement between the 0.5 mm CAC and 3.0 mm
CAC using the cutoff thresholds of 226 HU and 120 HU respectively.

We also used the closest top-left method to find out optimal cutoff threshold in the CT

scan of individual patients. Table 3.4 shows the optimal threshold of an individual patient

and the corresponding noise level in the CT scan. Both the optimal thresholds and the noise
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Figure 3.13 Linear regression of 0.5 mm with IVUS-VH, (a) and 3.0 mm with IVUS-VH
calcium volumes at the optimal cutoff thresholds of 226 HU and 120 HU respectively.
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Figure 3.14 Correlation coefficients and the ROC curve of the 0.5 mm and 3.0 mm reconstruc-
tions with the IVUS-VH. (a) Correlation coefficient of 0.5 mm and 3.0 mm reconstructions
at different thresholds with the IVUS-VH calcium volume. (b) ROC curve for 0.5 mm and
3.0 mm reconstructions in the range of 50 - 400 HU. The closest top-left points for each
curve is marked.
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Figure 3.15 Bland-Altman analysis of (a) CAC 0.5 mm with IVUS-VH, and (b) CAC 3.0
mm with IVUS-VH using the optimal cutoff thresholds of 226 HU and 120 HU respectively.

level in 0.5 mm CAC are higher than those in 3.0 mm CAC for individual patients. The

noise level of a CT volume was measured as the standard deviation of a small area in the

aorta. We found the optimal cutoff threshold was related to the noise level linearly with

the correlation coefficient of 0.72 (p < 0.0001) as shown in figure 3.16. This indicates the

possibility of estimation of optimal cutoff threshold from the statistics of voxel intensity in

aorta which we plan to investigate further in the dissertation.

Figure 3.16 Linear regressions analysis of the optimal cutoff thresholds and the noise levels.
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Table 3.4 Optimal cutoff thresholds and the corresponding noise levels in the aorta.

Optimal cutoff (HU) Noise level (HU) Optimal cutoff (HU) Noise level (HU)
3.0 mm 0.5 mm

75 12.49 121 25.12

59 17.55 128 38.23

69 11.96 127 20.95

84 12.02 129 21.19

54 14.47 129 26.00

87 23.20 225 41.31

121 18.67 260 36.99

55 18.18 161 36.74

143 16.07 296 30.75

50 17.95 183 36.96

224 18.17 228 36.28

72 16.99 72 30.98

55 23.45 160 44.07

65 17.99 97 33.60

147 15.87 202 28.57

98 15.73 172 27.92

165 24.62 302 47.33

107 22.66 191 33.70

140 24.05 239 40.49

139 26.56 251 46.62

138 21.15 219 35.46

106 19.41 188 32.45

112 19.08 191 30.12
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3.5 Discussion and Conclusion

In this study we compared the coronary artery calcium (CAC) quantified by conventional

CT with 3.0 mm slice-thickness reconstruction and the 0.5 mm isotropic reconstruction

at different cutoff thresholds by performing statistical analysis with the IVUS-VH derived

calcium volume. We developed a software to manually extract a desired coronary artery

from the CT volume images and manually registered them to the corresponding vessel in

IVUS-VH by visually comparing the landmarks and by panning the calcium volume curves

obtained from both the modalities.

We used the closest top-left point [63, 65] from the ROC curve in order to find an optimal

threshold. We found the 120 HU to be optimal for calcium quantification in the 3.0 mm slice

thickness reconstruction. The optimal cutoff threshold found is close to the conventional

cutoff threshold of 130 HU. However, for 0.5 mm reconstruction we found that in order to

achieve better calcium quantification, the threshold should be increased to 226 HU. The

CAC quantification done in 0.5 mm CAC using optimal threshold has higher sensitivity,

specificity, NPV, PPV, and lower difference range to the IVUS-VH derived calcium volume

as compared to the quantification in 3.0 mm CAC with the corresponding optimal threshold.

Statistical analysis by using the linear correlation (r-value) only quantifies the linear

relationship of the calcium quantified by CAC with that of IVUS-VH, but does not consider

the accuracy of detecting calcified slices. The sensitivity analysis gives the probability of

accurately detecting actual calcified slices in a CAC image; and specificity analysis gives the

ability to correctly identify the absence of calcified slices. The PPV finds the true proportion

of positive values among all positives classified by the CAC and the NVP identifies the true

proportion of negative values. We maximized specificity, PPV and correlation coefficient in

order to achieve the optimal cutoff threshold. In our case of slice-by-slice calcium volume

quantification specificity and PPV were relatively more important than sensitivity and NPV

because we wanted to minimize the total false positives by CAC quantification, in order for

the CAC to be clinically reliable since the presence of false positives may indicate falsely
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identifying a healthy tissue as calcium. The high numbers of false negatives that gave rise

to relatively low sensitivity and NPV, on the other hand, may be decreased by considering

total number of lesions rather than the presence or absence of calcium on a slice-by-slice

basis.

We observed over-estimation in both the 0.5 mm and 3.0 mm reconstructions. The

over-estimation may be explained by partial volume effect which is caused by classifying a

voxel with partial volume of calcium completely as calcium, thus giving rise to blooming

artifact which gives an enlarged appearance to densely calcified plaques. The probability of

finding high proportion of calcium in a voxel has been noted to be different for different HU

thresholds [66].

We use IVUS-VH as “gold standard” to validate the CT calcium quantification because

it has high predictive accuracy for detecting calcium, high spatial resolution and a high

sensitivity of detecting small volume of calcium. However, IVUS-VH produces acoustic

shadow behind the lining of dense calcium which may result in an inaccurate quantification

of calcium. The IVUS-VH uses sound wave reflected from different tissue to construct their

image. The sound wave emitted from the IVUS-VH catheter may not penetrate the calcium

lining in the arterial wall and the tissue underneath the calcium lining appears as a dark

area in the IVUS-VH image known as the acoustic shadow. The possible under-estimation

of calcium volume due to the shadow might be another factor contributing to the apparent

over-estimation by CT quantification of calcium. Other limitations of the study may be

due to the manual extraction of vessels and manual registration using visual alignment and

curve panning. The manual steps might alter the accuracy of calcium quantification and

registration.

In this work we found that the 0.5 mm slice-thickness reconstruction is better than 3.0

mm slice-thickness reconstruction for detecting calcium with higher sensitivity, specificity,

PPV, NPV, and lower mean difference range and over-estimation levels. Hence the use of 0.5

mm slice-thickness instead of the conventional 3.0 mm reconstruction improves the calcium

quantification accuracy. However, the calcium cutoff threshold for 0.5 mm slice-thickness
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reconstruction should be adjusted by increasing it more than the conventional 130 HU in

order to achieve the better performance.

Different parameters that affect the calcium volume over-estimation and the reduction of

over-estimation between CT and IVUS-VH quantification may be explored in the dissertation

work. In this study we also found that the cutoff threshold is linearly related to the noise

level in aorta. Hence, the optimal cutoff threshold may be formulated as a function of the

noise in the CT scan. In the dissertation we also plan to study various noise measurement

techniques and their relation to the optimal cutoff thresholds. Calcium blooming artifact

reduction for better accuracy of quantification may also be explored.
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CHAPTER 4

AUTOMATIC CORONARY ARTERY RECONSTRUCTION

4.1 Introduction

Coronary artery reconstruction is segmentation of the arteries from the background and

its geometric representation. The artery reconstruction is useful for visualization, different

anomaly detection, and their quantification. Segmentation or the extraction of the arteries

from the 3D volume of a CT scan can be done by using an active contour models such as

the snake deformable model [57] or a level-set method [46, 67]. In an active contour model,

an initial curve or a surface in 3D is iteratively evolved in shape and location under the

constraint of different forces such as the gradient of image, or the elasticity of the surface,

to fit to the desired object to be segmented. While these methods are robust and popular

for extracting different anatomical objects in medical images, it is difficult to adapt them to

narrow anatomical surfaces such as the arteries.

The contrast material has a certain intensity range in the CT and hence the anatomical

structures such as ventricle, aorta, arteries, etc., through which the contrast material is

flowing at the time of acquisition can be segmented by selecting voxels in the particular

intensity range. Other anatomical structures such as myocardial tissue or the heart muscle

do not get the contrast material and hence appear with lower intensity range. The heart can

be visualized with distinct anatomical structures based on the difference in the intensity range

between different structures. Figure 4.1 shows visualization of a heart using ray casting [68]

method. The visualization was done by using the visualization toolkit which is an open-

source C++ class library for 3D computer graphics, image processing and visualization [69].

The left ventricle, aorta and coronary arteries that receive the contrast have higher HU

values and appear with high opacity. The right ventricle and the myocardial layers have

lower HU value ranges and appear semi-transparent to transparent.
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Figure 4.1 CT volume visualized by using ray casting method showing the heart and different
coronary arteries. The voxels with higher intensity range (aorta, arteries, and ventricles) were
assigned higher opacity and those with lower intensity range (myocardial wall) were assigned
lower opacity.
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Utilizing the higher intensity range of the contrast material simpler intensity based

approaches such as isosurface extraction, can be used for segmentation. An isosurface is a

3D surface formed by points with a constant value known as isovalue. A range of thresholds

in HU can be used as an isovalue, such that the isosurface is formed by selecting the voxels

in the range. The isosurface can then be visualized by using methods such as the marching

cube algorithm [70, 71] which generate triangular meshes from the given data points in a

grid.

(a) (b)

Figure 4.2 Connected component analysis in a section of a CTA slice. (a) A section of CTA
slice. (b) The section thresholded and within the range of 300 ± 25 HU and the connected
component in shaded area.

A region growing algorithm [58] is a similar approach which requires the voxels in an

intensity range to be geometrically connected as well. In this method, the segmentation

starts with one or more seed voxels and seeks connected components to which the seed

voxels belong. A connected component is a set of voxels in which there is a path from a

voxel to any other voxels in the set. A path exists between two voxels if they are adjacent

to each other or a voxel can be reached from another by tracing through a set of adjacent

voxels. Different definitions of adjacency can be used; for instance, in a 2D image, two

pixels are 4-adjacent if one lies to left, right, up or down to another and both the pixels

are in a specified intensity range. With 8-adjacency, the diagonal pixels are also considered

adjacent. Similarly, in 3D 6-, 18-, and 26-adjacency can be used for defining adjacent voxels.



50

Figure 4.2 shows a connected component formed by selecting pixels in the range µ ± kσ,

where µ = 350 HU , σ = 25 HU, and k = 3. Figure 4.2 (a) show a section of a CTA slice

before thresholding, 4.2 (b) shows the connected component after thresholding the image, so

that the HU values in the range 350±75 HU are made 1 and all others 0. The shaded regions

of 1’s correspond to the connected component or the desired object to be segmented. The

value of µ and σ are somewhat arbitrary here, but they may be replaced by more accurate

estimate of the mean and standard deviation of the contrast material in the artery. Extension

to 3D can be done similarly. Figure 4.3 shows a volume that includes ventricle, portion of the

aorta and the right coronary artery (RCA). The volume was extracted by using the region

growing approach with a threshold of 190 HU, such that any adjacent voxels of 190 HU or

more are selected in the connected component. The desired coronary artery can be split

from the large connected component with some manual interactions, for example, by using

a plane passing through a point identified by a user at the base of the coronary artery.

Figure 4.3 Volume extracted by selecting pixels with intensity >= 190HU, smoothing, and
selecting the largest connected component.
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The range of intensity for the contrast material can vary across different CTA volumes

depending upon the amount of contrast concentration, patient physiology, contrast injection

rate, time elapsed since contrast administration, image noise etc. [24]. Furthermore, in

smaller arteries such as the RCA, the contrast concentration is not uniform across its length

and the narrow distal ends may by noisy. Usually a high threshold fails to include the

distal end with low contrast concentration and may even lead to fragmentation of different

branches. A low threshold, on the other hand can include myocardial tissue making it difficult

to separate the artery by using connected component analysis. Therefore a thresholding step

is not sufficient for accurate segmentation of vessels. Figure 4.4 (a) shows thresholding and

connected component extraction in a different patient than the one shown in figure 4.3. Due

to a lower contrast concentration, the threshold of 190 HU was high enough to exclude the

narrower distal ends. Figure 4.4 (b) shows the fragmented ends of the right coronary artery.

Meanwhile, the right ventricle was also included with the threshold. Increasing the threshold

to 300 HU was sufficient to separate the arteries from background but this led to exclusion

of larger portion of the distal end of the RCA as shown in figure 4.4 (c). Larger portion

of arteries were included by decreasing the threshold to 120 HU at the cost of including a

portion of myocardial wall fused with the arteries as shown in figure 4.4 (d). Therefore it

is difficult to find a good threshold for accurate segmentation of the arteries. Furthermore,

it is difficult to isolate the smaller arteries from the aorta and the ventricles. Therefore, we

enhance the arteries by using a geometry based filter as discussed in the section below.

4.2 Automatic vessel extraction

We enhance the vessels based on their local geometry analysis by using eigenvalues of

the second order derivative matrix at a point, also known as the Hessian matrix. With the

assumption that the volume function I is second order continuous in a neighborhood δx of

a point x0, the local intensity variation in the neighborhood of x0 can be approximated by

Taylor series expansion as,
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(a) (b)

(c) (d)

Figure 4.4 Inaccurate artery segmentation by using absolute intensity based cutoff thresh-
olds. (a) Volume extracted with a threshold of 190HU, smoothing, and selecting the largest
connected component. (b) Same volume with all the connected components showing a distal
end of RCA not connected to the main part (circle shows the discontinuity). (c) Volume
selected with a cutoff of 300 HU with a large fragment of RCA not connected (circle shows
the disconnected fragment). (d) Volume selected with a cutoff of 120 HU with the branches
of left coronary artery connected to a portion of myocardial wall.
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I(x0 + δx) ≈ I(x0) + δxT∇I(x0) + δxTF(I(x0))δx, (4.1)

where x = [x, y, z]T is a column vector representing a point in 3 dimension, ∇I(x0) is

the gradient and F(I(x0)) is the Hessian at point x0. The gradient is a 2× 1 column vector

for a 2-dimensional image, and 3× 1 column vector for a 3-dimensional image written as,

∇I(x0) =



∂I(x0)

∂x

∂I(x0)

∂y

∂I(x0)

∂z


, (4.2)

and represents the first order local structure or the rate of intensity variation along each

dimension. The Hessian is a square matrix of the second order partial derivatives of the

image at the point and is a 2x2 matrix for a 2-dimensional image, and a 3x3 matrix for a

3-dimensional image. For a 3-dimensional image I the Hessian F at a point is composed as,

F(I(x0)) =



∂2I(x0)

∂x2
∂2I(x0)

∂y∂x

∂2I(x0)

∂z∂x

∂2I(x0)

∂x∂y

∂2I(x0)

∂y2
∂2I(x0)

∂z∂y

∂2I(x0)

∂x∂z

∂2I(x0)

∂y∂z

∂2I(x0)

∂z2


(4.3)

In digital images with fixed resolution, the derivatives are calculated using finite differ-

ence approximations. Assuming the voxel is unit size in all three dimension, one of the ways

to represent the partial derivatives is, [58],
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∂I(x)

∂x
= I(x+ 1, y, z)− I(x, y, z) (4.4)

∂2I(x)

∂x2
= I(x+ 1, y, z) + I(x− 1, y, z)− 2I(x, y, z) (4.5)

∂2I(x)

∂x∂y
= I(x+ 1, y + 1, z) + I(x− 1, y − 1, z)− I(x+ 1, y − 1, z),−I(x− 1, y + 1, z).

(4.6)

The partial derivatives
∂2I(x)

∂2y
,
∂2I(x)

∂2z
,
∂2I(x)

∂x∂z
can be defined similarly. For a second

order continuous function, the Hessian matrix is symmetric, thus
∂2I(x)

∂y∂x
=

∂2I(x)

∂x∂y
, and

∂2I(x)

∂x∂z
=
∂2I(x)

∂z∂x
.

The second order derivative gives the curvature or a sharp variation in intensity. There-

fore, it is commonly used for identifying different image structures such as point, line, edge

etc [58]. For example, figure 4.5 shows a Gaussian profile P = e
−x2

2σ2p and its second derivative

d2P

dx2
. The second derivative is largest at the peak corresponding to the point of largest cur-

vature of the profile P (x;σ). It is to be noted that for a profile higher than its surrounding,

the response is negative or a minima and the opposite is true for a profile lower than its

surrounding. In case of three dimensions, a bright local structure in dark background has a

negative definite Hessian matrix, i.e., all three eigenvalues are negative. This is also known

as the second order sufficient condition for a point to be a local maxima [72]. Conversely,

a local minima or a dark structure in a bright background has a positive definite Hessian

matrix.

The second order derivative is very sensitive to noise. Therefore, smoothing the image,

for example, by convolving with Gaussian is an important preprocessing-processing step in

second order structure analysis. The popular Laplacian of Gaussian (LoG) filter [73] used

for edge detection is based on finding the zero-crossing of an imaginary line that connects

two extreme positive and negative values of the second derivative. The Gaussian component

of the filter reduces the effect of noise and the Laplacian
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Figure 4.5 Gaussian Profile P = e
−x2

2σ2p (left) and its second derivative (right).

L =
∂2I(x)

∂2x
+
∂2I(x)

∂2y
, (4.7)

finds the maxima and minima required to extract the zero-crossing. The LoG filter

uses only the Laplacian or the sum of diagonal entries of the Hessian. Eigenvector and

eigenvalue analysis of the full Hessian matrix provide important geometric information about

the local structure. Such information are used to construct filters that enhance a tube like

structures [74, 75, 76] and can be a useful preprocessing step in the segmentation of blood

vessels in CTA and MRA images. Once the Hessian matrix is computed, the second derivative

in any particular direction d is given by,

∂2I

∂d2
= dTFd. (4.8)

If λ1, λ2, λ3 are the eigenvalues of the Hessian F with |λ1| ≥ |λ2| ≥ |λ3|, and v1,v2,v3 are

the corresponding eigenvectors, then the largest second derivative is given by the eigenvalue

with highest magnitude, λ1 which is in the direction v1. The eigenvectors are orthogonal

to each other and hence gives a new basis for representation of the image in the order of

decreasing second derivative. Using equation 4.8, the eigenvalues may also be represented
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as,

λk = vTk Fvk, (4.9)

where k = 1, 2, 3 for a three dimensional image.

For a tubular structure in three dimensions, the second derivative has highest magnitude

in the direction perpendicular to the length of the tube and a very small positive or negative

second derivatives in the direction along the length of the tube. This is because of the high

intensity variation across the cross section of the tube and a very low intensity variation along

the length of the tube. A Hessian matrix at a point in the tube will have two eigenvalues of

large magnitude and one of small magnitude. Figure 4.6 (a) shows an ideal tube like structure

where the higher magnitude eigenvalues λ1 and λ2 are along the orthogonal directions v1 and

v2 both of which are perpendicular to v3 with λ3 along the length of the vessel. The signs

of λ1 and λ2 are negative for a bright tube in dark background and λ3 is either positive or

negative depending on whether the intensity is increasing or decreasing along the length of

the vessel. Ideally, for a tubular structure, |λ3| ≈ 0, |λ1|, |λ2| � |λ3|, and λ1 ≈ λ2 as shown

in figure 4.6 (a).

Based on the ratio of the eigenvalue magnitude, and sign several other shapes can be

identified. For example, Frangi et al. identified tube-like, plate-like, and blob-like structures

in a dark or bright background [76] based on the magnitude and sign of the eigenvalues as

shown in the table 4.1.

Eigenvalues of small magnitude in all three directions indicate a noisy structure, whereas

eigenvalues of high magnitude in all three directions is either a dark or bright blob depending

on their sign. The plate-like structure is shown in figure 4.6 (b), where as indicated in

table 4.1, it has a large eigenvalue across the plane and two small eigenvalues in the plane.

Similarly, a blob-like structure as shown in figure 4.6 (c), has all three eigenvalues large.

As with the LoG filter, the first preprocessing step before the calculation of Hessian is the

convolution of the image with a Gaussian. Since the second derivative is a linear operation,

the Hessian of Gaussian smoothed image is the same as the Hessian of the Gaussian convolved
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(a) (b)

(c)

Figure 4.6 (a) A Tube-like, (b)a plate-like, and (c) a blob-like second order structures. The
black arrows represent the direction of eigenvectors
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Table 4.1 Eigenvalues criteria for different of 3-D local structures [76].

Eigenvalues Possible structure

small |λ1|, |λ2|, |λ3| Noisy

large λ1, λ2
λ1, λ2 < 0 Bright tube
small |λ3|
large λ1
λ1 < 0 Bright plate

small |λ2|, |λ3|
large λ1, λ2, λ3
λ1, λ2, λ3 < 0 Bright blob

large λ1, λ2
λ1, λ2 > 0 Dark tube
small |λ3|
large λ1
λ1 > 0 Dark plate

small |λ2|, |λ3|
large λ1, λ2, λ3
λ1, λ2, λ3 > 0 Dark blob

with the image [58], the partial derivatives of the smoothed image can be written as,

F = σγs
∂2G(x;σs)

∂x2
∗ I(x) (4.10)

where G(x;σs) is the 3-dimensional Gaussian. If it is assumed to be isotropic, i.e., same

standard deviation σs in all three dimensions, then the Gaussian is given by,

G(x;σs) =
1

(2πσ2
s)

3
2

e
−x

2+y2+z2

2σ2
s , (4.11)

The Hessian matrix can be constructed by finding all the partial derivatives of the image

convolved with the Gaussian. In addition to filtering noise, the convolution with Gaussian is

useful for tuning the detection of second order structures of different size. For this, different

Hessian matrices (Fs) are calculated by changing σs. The eigenvalues λ1(s), λ2(s), λ3(s) of

these Hessians are tuned to a second order structure of a specific size. In an analogous

1-dimensional case, the response of second order derivative filter given by,
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RP (x;σp, σs) =
d2G(x;σs)

dx2
∗ P (x;σp), (4.12)

for a Gaussian profile P = e
−x2

2σ2p , shown in figure 4.5 is largest and considered to be

tuned to profile P when σp =
σs√

2
[75]. The parameter σγs in equation 4.10 is a normalization

parameter and is needed for integration of the response for different standard deviation or

different scales σs in terms of scale space theory [77].

Based on the ratio of the eigenvalues at each scale, Frangi constructed the following

vesselness measure for detecting bright vessels in dark background, [76]

V (s) =


0 if λ1 > 0 or λ2 > 0,(

1− e−
A2

2a2

)(
e−

B2

2b2

)(
1− e−

C2

2c2

)
otherwise ,

(4.13)

where

A =
|λ2|
|λ1|

, (4.14)

B =
|λ3|√
|λ1||λ2|

, and (4.15)

C =
√
λ21 + λ22 + λ23. (4.16)

The ratio A is high for a tube-like structure and low for a plate-like structure, the

ratio B is high for a blob-like structure, and C is high if there is a presence of any second-

order structure and is low for a plain background. Hence, the first factor

(
1− e−

A2

2α2

)
in

equation 4.13 distinguishes between a tube-like and a plate-like structures by assigning 0 for

an ideal plate-like structure. Similarly, the second factor

(
e
− B2

2β2

)
measures the deviation

from a blob-like structure and is low for an ideal blob-like structure, and the third factor(
1− e−

C2

2c2

)
is 0 for a plain background without any second order structure. A high product

(ideally 1) of these three factors are desired for a tube-like structure. The parameters a, b,
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and c are used to control the sensitivity of the vesselness measure to each of the ratios. The

integration across each scale is done by selecting the highest product for a point at different

scales, so that the overall vesselness measure gives an image with high probabilities for voxels

lying on vessels of different diameters.

Figure 4.7 shows different branches of the right coronary artery (RCA) and the left

artery extracted by using the Frangi’s vesselness filter. The probability image obtained by

applying equation 4.13 was thresholded to select high probabilities and using a seed point

in the RCA region growing was used to select the connected components. For extracting

different arteries, we used a, b = 0.5 and the c = m + s, where m is the mean, and s is

the standard deviation of matrix C in equation 4.13. The integration of vesselness was

done across 4 different scales with standard deviations of 1.5, 2.5, 3.5, and 4.5 voxels to

accommodate the non uniform diameter of blood vessels along their length. The constant

and scale values were empirically found to be good for extracting different vessels from our

dataset.

4.3 Centerline Extraction

Finding the centerlines of blood vessels is a useful preprocessing step in applications

involving the extraction of information from the vessels. For instance, a rough segmentation

of the vessel can be obtained by applying a morphological dilation operation on the centerline.

Automatic detection and quantification of plaque in vessels can be aided by knowing the

distance of suspected plaque tissue from the centerline. In our case, we extract centerline from

the contrast-enhanced CTA and study a morphologically dilated volume of voxels around

the centerline. We also register the centerline to non-contrast-enhanced CT to study the

corresponding volume of voxels and compare the calcium quantification in both the CT

scans.

Although a centerline is an imaginary line and has not been defined explicitly, it may be

considered as the medial axis for a simple tubular structure without any branch. The medial

axis of a solid in 2-dimensional Euclidean space is defined as the union of the centers of all
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(a)

(b)

Figure 4.7 The right coronary artery (RCA) (a), and the left coronary artery (b) extracted
by applying Frangi’s vesselness filter, thresholding, selecting connected components, and
smoothing.
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maximal circles (spheres for 3-dimensional Euclidean space) inscribed by the solid [78, 79],

where a circle is maximal if it is not contained in any other circle. In a tubular shaped

structure with many branches or any other shape in general, the medial axis is also known

as the skeleton of the shape . Hence, the centerline of a particular branch has to be isolated

from the skeleton. Figure 4.8 shows the medial axis or the centerline of a simple tubular

object plotted by connecting the centers of maximal circles inscribed by the vessel. For

proper visualization, only a few circles are shown of actual numbers required to obtain a

smooth centerline.

Figure 4.8 Centerline (blue) shown as a line formed by connecting a set of maximal circles
inscribed by a 2D tubular structure (black). The centers of the circles are indicated with
dots of the same color as the circles

Several approaches such as morphological thinning, distance transform, Voronoi tessella-

tion etc. can be used for finding the medial axis of an object [80]. Among these, the distance

transform is one of the popular and extensively studied methods. The distance transform of

an image assigns each of its pixels the distance to the closest pixels in a given set. Different

definitions of distance such as the Euclidean, L1(Manhattan), L∞(Chessboard), etc. [81] can

be used . For the purpose of medial axis, Euclidean distance is considered and the distance

transform of only the interior points from the boundary of the object is sufficient. Several

computationally efficient algorithms exist for finding the distance transform. Jones et al.
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have performed a comparative study of such algorithms in three dimensions based on their

accuracy, ease of implementation, computational complexity and runtime performance [82].

Algorithms that used different distance functions such as the Chessboard, Euclidean etc.

were considered for the comparison. A similar study by Fabri et al. compared 2-dimensional

distance transform algorithms using the Euclidean distance function [83]. The algorithms

by Meijster et al. [84] and Maurer et al. [85] are noteworthy as both of them are paralleliz-

able, extensible to three dimensions and have a low computational complexity with small

constants. The computation time for both of them are linear in terms of the total number

of pixels, O(N), where N = i× j for image with i rows and j columns, or N = i× j × k for

a three dimensional image with k slices. In parallel, both Meijster’s and Maurer’s algorithm

have the complexity of O(N/p), where p is the number of processors.

Figure 4.9 (a) shows a tubular object in two dimensions and 4.9 (b) is its distance

transform calculated in its interior point. We used Maurers algorithm [85] for calculating

the distance transform as it is fastest for the majority of images [83], and easily available as

the MATLAB [86]routine bwdist. The distance transformed points are visualized as gray

level image with the brighter pixels indicating higher distance from the boundary. As can be

seen in the figure, the medial axis lies in the line of maximal distance from the boundaries

of the object. A particular point on the medial axis lies at the highest curvature point in

the intensity profile across the width of the vessel. This is shown in figure 4.9 (c) which is

the intensity across the length of the red line shown in 4.9 (b).

As discussed in the previous section, second order derivative methods can be used to find

the points of high curvature. Xia et al. have used the Laplacian and determinant of Hessian

of distance transformed matrix to extract a point cloud which was then further localized to

the medial axis by using morphological thinning algorithm [80]. Figure 4.9 (d) shows the

Laplacian of the distance transform which localizes the centerline pretty well. Any pixel

with intensity (c) such that c < −ε can then be used to isolate the centerline, where −ε is

the threshold. The threshold in this case should be negative as the second order response is

strong negative for a point of high positive curvature as shown in figure 4.5. The determinant
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Figure 4.9 Distance transform of a 2D tubular object and different second order derivative
based responses of the distance transform. (a) The 2D tubular object. (b) Distance transform
in the interior of the object. (c) Profile of the Distance transform shown at the cross-section
of the tube at the position indicated by the vertical red line in (b). (d) Laplacian of the
distance transform. (e) Determinant of Hessian of distance transform. (f) Squared sum of
the 2nd order partial derivatives. (g) Squared sum of the eigenvalues of the Hessian matrix.
(h) Centerline extracted using a threshold of 0.5 and superimposed on the original image in
(a).
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of Hessian gives a sparse response to the centerline as shown in figure 4.9 (e). Figure, 4.9

(f) shows the response by using a different measure obtained by adding the squared sum the

second order derivatives as follows,

S =
∂2I(x)

∂2x

2

+
∂2I(x)

∂2y

2

, (4.17)

where I is an image and
∂

∂2
is the second order partial differential operator. Equa-

tion 4.17 equation is similar to the equation 4.7, except for the fact that it uses the squared

sum of the second order partial derivatives instead of simple sum in the calculation of Lapla-

cian. Figure 4.9 (g) shows another measure by taking squared sum of eigenvalues of Hessian.

It is clear from the picture that the squared sum of eigenvalues of Hessian gives better re-

sponse to the centerline compared to all other second order based methods considered in

this chapter. This is because the eigenvalues of Hessian directly gives the magnitude along

the direction of highest second derivatives thus giving a stronger response to the highest

curvature points than other points. The centerline can then be isolated by using a positive

threshold. Figure 4.9 (h) shows the centerline extracted by using a threshold of 0.5 and

superimposed upon the original image.

Applying threshold to the second order derivative responses may be sufficient for extract-

ing centerline of a simple synthetic tubular structure as shown in figure 4.9. In a structure

having multiple branches such as actual blood vessels such methods may be useful for finding

the skeleton of the object. Since our objective is to study calcium in a particular branch, we

need to isolate a desired branch from the skeleton. Ideally, the centerline algorithm should be

able to isolate any particular branch from the skeleton. Preprocessing steps such as finding

vessel like structures based on geometry or intensity as discussed in section 4.2 often results

in broken vessels due to high noise or other anatomical conditions of the blood vessels such

as stenosis. Therefore, extracting a connected centerline of a desired vessel requires further

processing.
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To select a particular branch, we need minimal user interaction such as selecting the

start and end point of a desired branch. The centerline can then be found as the global

minimum path from the start point to the end [87, 88, 89]. The minimal path may be found

by using graph based algorithms in which the pixels are modeled as the graph nodes and

some measure of similarity based on factors such as intensity, adjacency etc. can be used as

the edge weight. The shortest path can then be solved by using technique such as Dijkstra’s

single-source shortest path algorithm [90]. The Dijkstra’s algorithm updates the minimal

cost of entering a node starting from the source node.

Another method that can be used for finding the global minimal path is based on

propagating a wave front called the fast marching method [91]. Although the algorithm is

similar to Dijkstra’s algorithm, it considers the Euclidean distance from the source voxels

and does not require the construction of graph from the image. The algorithm is derived by

solving the equation of propagation of a wave front also know as Eikonal equation [91].

|∇T |F = 1, (4.18)

where T is the time of arrival of the wave front and F is the speed function at different

locations. The wave front propagates perpendicular to itself in the direction away from

the source. The time of arrival of the front at each voxel location (x, y, z) is recorded to

form the function T (x, y, z). The front may propagate with different speed at different

locations as indicated by the speed function F (x, y, z). However, F should be positive in

order for the wave to progress. Since the wave propagates from the source point, the time

corresponding to the source point is zero. Hence, the minimal path can be found by tracing

the shortest route from the end point to the source point. This can be achieved by using the

optimization algorithm such as the gradient descent algorithm [72]. The gradient descent

algorithm finds the global minimum of a function by stepping in gradient direction or the

direction of maximum decrease of the function. Since the gradient direction is perpendicular
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to the level set of a function, the traced path is perpendicular to the wave front at different

time steps thus giving a shortest path to source point.

Since the fast-marching method depends on the speed function, it is important to have

a speed function that will result in an accurate centerline. Figure 4.10 (a) shows a tube

object with branches and figure 4.10 is the speed image constructed by setting a uniform

speed all over the object. The speed is high in the interior of the object and close to zero

outside the object. Figure 4.10 (c), (d) and (e) show the level set of the time function at

different time instant. These are the wave front positions which originates from the end

point of the desired centerline as indicated by the white circle. Since, the speed is high and

uniform inside the object, the minimal or quickest path of the wave front corresponds to the

shortest distance which is shown in figure 4.10 (f) with the source and end points shown

by white circles. It is to be noted that the source point is the point from which the wave

originates and the centerline is traced back from a desired point in the object back to the

source point.

Therefore, the speed function should be higher toward the centerline and lower on

the periphery so that the wave-front travels quickly through the centerline thus giving a

centered response to the gradient descent algorithm. The distance transform of the object

in its interior has the property that it is higher in center than toward the edges and can

be used as a good speed function for the fast marching algorithm. Figure 4.11 (a) shows

the distance transform of the branched tubular structure. Any zero values in the distance

transform were replaced by a very low value (0.01 in this case) followed by normalization

and squaring to increase contrast between higher and lower pixel values. The wave front

position at increasing time instants are shown in figure 4.11 (b), (c), and (d). Figure 4.11 (e)

shows the centerline traced through one of the branches and figure 4.11 (f) shows both the

centerlines. For the second centerline, a new wave-front (which is not shown in the figures)

was generated from the point indicated by the white circle in the lower branch.

The second order derivative response such as Laplacian, or the Hessian of the image

can be used as a good speed function for the fast-marching method to extract the centerline
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10 Propagation of a wave-front from a source point in a branched tubular object
using a uniform speed function. (a) The tubular object with branches. (b) Speed image
with uniform speed in the interior of the object. (c),(d),(e) Level set of the time of arrival
of the wavefront at different time instant. The wave is propagated from the end point of the
centerline of the desired branch as indicated by the white circle(f) The minimal path (pink
line) for the uniform speed function which is not centered in the object.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11 Propagation of wave-front from a source point in a branched tubular object using
a distance transform based speed function.(a) Speed function derived by normalization and
squaring the distance transform of the object shown in figure 4.10 (a). (b),(c),(d) Level set
of the time of arrival of the wavefront at different time instant. (e) Centered minimal path
for the upper branch. (f) Centered minimal path for both the branches.
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between the specified source and end points. In the next section, we compare different

alternatives of the speed functions that can be used in the fast-marching algorithm.

The fast-marching method allows more flexibility compared to the Dijkstra’s algorithm

in a range of continuous problems such as robotic navigation [92]. The fast-marching method

is also applicable to find the distance transform of an image by setting the object pixels in the

image as source points and by using a uniform speed function, the arrival time of the front is

proportional to the distance of the pixels from the source points. Both the fast-marching and

Dijkstra’s algorithm are popular choice for extracting the shortest path algorithm. Besides

these minimal path extraction techniques, other approaches such as direct centerline tracking,

model based extraction etc. have also been used. These methods may further be divided

into automatic, semi-automatic, or interactive based on the level of interaction required to

extract the complete centerline. Please refer to [93] for the review and [94] the evaluation of

these methods.

4.3.1 Evaluation of speed functions for the fast marching method

As pointed out in the previous section, the fast marching method requires a speed

function that has a higher values along the centerline as compared to the values toward the

edges. In this section, we will see that highly localized speed functions such as the squared

sum of eigenvalues of the Hessian produces accurate centerlines. Most of the speed functions

we consider here are based on the second order derivatives of the distance transform as

already discussed in the previous section.

Figure 4.12 shows the centerline of the two branches of the object for different speed

functions. Figure 4.12 (a) uses the uniform speed in the interior of the object which does

not produce a path centered to the object. Figure 4.12 (b) uses the distance transform,

figure 4.12 (c) uses the Laplacian or the divergence of gradient of the distance transform,

figure 4.12 (d) uses the squared sum of second order derivatives of the distance transform,

figure 4.12 (e) uses the squared sum of the eigenvalues of the Hessian matrix of the distance

transform, and figure 4.12 (f) uses the logarithm of inverse magnitude of the Gradient Vector
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Flow (GVF) [95] as speed functions for calculating the centerline.

The gradient vector flow (GVF) algorithm was primarily developed as an external force

field for image segmentation by using an active contour model. In such models an initial

contour known as a snake [57] is iteratively guided toward the desired image features such

as edges by an external force field and the contour itself is kept smooth by its internal force.

The external force field is the gradient or the vector of the partial derivatives of the edge

written as ∇Gσ ∗ I, where Gσ is the Gaussian kernel with a standard deviation of σ used

for smoothing the image I. Edge found by using standard edge detector such as Canny may

also be used in place of the image I for edge localization. The smoothing may be done at

multiple scale spaces by choosing higher σ to extend the force field required to pull the snake

toward the edges. However, the smoothing also blurs the edges and may even fuse small

structures lying close [96].

The GVF algorithm [95] diffuses the edge gradient to homogeneous region by minimizing

the following energy functional,

E =

∫ ∫
µ∇2v + |∇f |2|v −∇f |2dxdy, (4.19)

where v(x, y) = [u(x, y), v(x, y)] is the gradient vector flow field, ∇f is the gradient

of the edge, ∇2 is the Laplacian operator or
∂2

∂x2
,
∂2

∂y2
. The above equation can be solved

iteratively as discussed in [95] to find the vector v. The GVF of an object has also been

used for finding centerline [96] by applying a vesselness filter [76] on the response. The

vectors produced by GVF algorithm are directed toward the boundary of the object and

have minimal response in the center. We used the magnitude of gradient of the image object

to find the edge map as shown in figure 4.13 (a) and then applied the GVF algorithm. To

maximize the response in center we inverted the normalized magnitude of the GVF response

and took its logarithm. The speed function by using GVF is shown in figure 4.13 (b).

As seen in figure 4.12 (a) the uniform speed function is unacceptable for finding the

centerline, and figure 4.12 (f) shows that the GVF based speed function produces a path

that is not centered to the object. Speed functions based on distance transform and its
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12 Centerline traced by using the fast-marching method with different speed func-
tions. (a) Uniform, (b) distance transform,(c) Laplacian of the distance transform, (d)
squared magnitude of the second order derivatives of the distance transform, (e) squared
magnitude of eigenvalues of Hessian of the distance transform, and (f) gradient vector flow
(GVF) of edge map speed functions.
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(a) (b)

Figure 4.13 Gradient vector flow based speed function. (a) Magnitude of the gradient vectors
of the original image used as the edge map for calculating the gradient vector flow speed
function. (b) Gradient vector flow derived from the edge map used as a speed function for
the fast marching method.

second order derivatives produce centered path when used with the fast marching as shown

in figure 4.12 (b),(c),(d), and (e).

We compared these further based on the consistency of response when the source point

for generating wave front are changed. Figure 4.14 shows skeleton of an object created

by combining centerlines of the object from one end point to the other. We used the fast

marching method for generating the centerline, for which three points marked 1, 2 and 3

were used as sources separately. The red, green, and yellow lines are the skeleton generated

by using points 1, 2, and 3 as source points respectively. Ideally all three skeletons should

completely overlap with each other for producing localized and accurate centerlines. The

distance transform speed function is not localized to the centerline and hence the skeleton

are wide apart from each other as shown in figure 4.14 (a). Based on the overlap of the

centerlines, the GVF based speed function shown in figure 4.14 (b) is better than the distance

transform but still has wide separation in the center of the object. Figure 4.14 (c), (d), and

(e) show the skeletons by using Laplacian of the distance transform, the squared sum of the

second order derivative, and squared sum of eigenvalues of Hessian of the distance transform

respectively. The latter three are all acceptable for tracing centerline with the last two

slightly better than the Laplacian response. Although the squared sum of derivatives and

the squared sum of eigenvalues of Hessian based skeletons are virtually indistinguishable, the
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Figure 4.14 Consistency of skeletons of an object found by using the fast-marching method
with different source points and speed functions. Three different points, 1, 2 and 3 are
separately used as the source of the wavefront. Red skeleton corresponds to source point
1, green for source point 2 and yellow for source point 3. The skeletons found by using (a)
distance transform, (b) gradient vector flow, (c) squared sum of second order derivatives of
the distance transform, (d) Laplacian of the distance transform, and (e), squared sum of the
eigenvalues of Hessian of the distance transform as speed functions.
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Hessian based response is highly localized to centerline with minimal response to the edge

as seen in figure 4.9(f) and (g). This is also shown in figure 4.15 where the squared sum of

second derivatives has high response for edges as well as centerline so that an outline of the

object can be traced whereas the Hessian based output has very low response for the edges.

(a) (b)

Figure 4.15 Squared sum of second derivatives of the distance transform of a 2D object. (a)
The squared sum of second derivatives in the x and y directions (b) Squared sum of the
eigenvalues of the Hessian.

As already discussed in the previous section since the eigenvalues of the Hessian give

the highest second order derivatives in directions orthogonal to each other, the square sum of

these values gives highest response to high curvature points. As the distance transform of an

object has the highest curvature points along the medial axis, the squared sum of eigenvalue

of Hessian provides very localized response to the medial axis. Furthermore, it was also seen

in this section that the edge response of the Hessian was lower than that for the squared

sum of the second order directional derivatives in the x and y direction. Therefore the

squared sum of eigenvalues of Hessian can directly be used to extract centerline by using a

thresholding step. Therefore, for extracting centerline of a particular branch it is an excellent

preprocessing step.
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4.4 Summary of centerline algorithm

Our centerline algorithm begins first by extracting vessels from the 3D volume of CT

image. For extracting the blood vessels we use eigenvalues of the Hessian matrix. The

eigenvalues calculated from multiple scales are combined in a way suggested by Frangi et

al. [76] to find blood vessels of different diameters. The vessel extraction process results

in 3D binary volumes of different blood vessels. Centerline of a desired branch is found by

using the fast marching method [91]. In this method, a wave-front is generated from a source

and the centerline is traced by finding the path through which the wave travels fastest. A

speed function which defines the speed of the wave at each location is required to propagate

the wave front from its source. The speed function should be higher in a narrow localized

region in the center so that the wave travels fastest there and the global minimum path with

lowest time function from a point to the source of the wave is the centerline of the object.

The distance transform and its second order derivative based responses of a binary object

provide good speed functions. The squared sum of eigenvalues of Hessian of the distance

transform in particular was found to provide a very localized response to the centerline. If

extracting the skeleton of an image is the final goal, applying a threshold to the Hessian

based response is enough. To extract a centerline, the Hessian based response can be used

as a preprocessing step to calculate the speed function or cost function for other methods

such as Dijkstra’s shortest path method [90].

The automatic blood vessel and centerline extraction method can be summarized in the

following steps.

Step 1. Extract Tube like structures.

Step 2. Threshold and select connected components.

Step 3. Find a centered response of the binary volume resulting form step 2.

Step 4. Find the centerline.

In step 1, a three dimensional subvolume of interest is extracted manually from the

CTA volume and then the Hessian matrix is calculated for each voxel in the subvolume as
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shown by equation 4.3. Eigenvalue decomposition of Hessian yields three eigenvalues for

each voxel which are then used to find the probability that each voxel is part of a vessel by

using the Frangi’s vesselness measure or the equation 4.13. In step 2, the probability matrix

obtained form step 1 is thresholded to select only the high probability voxels and a desired

connected component is selected on the resulting binary volume by using a manually clicked

seed point. Figure 4.7 shows the resulting blood vessels after the first 2 steps. In step 3, first

we find the distance transform in the interior of the binary volume. The distance transform

itself is a centered response with high values in the center (figure 4.9 (b)). However, it is

difficult to isolate the skeleton of the object by thresholding the distance transform, and

its use as a speed function does not provide optimal centerline (figure 4.14). Therefore, we

calculate square sum of eigenvalues of the Hessian of the distance transform. Precise skeleton

of the object can be isolated by using a single thresholding step to the Hessian and it can

also be used as a very good speed function for finding the centerline (figure 4.14). Finally in

step 4, we manually select the start and end points of the vessel of interest. Then using the

centered response of step 3 as the speed function, the fast marching method [91] is used to

find the centerline segment between the manually selected points.

4.5 Conclusion

In this chapter we experimented with different methods to automatically reconstruct

coronary arteries from the contrast-enhanced computed tomography angiography (CTA).

The reconstruction process included automatic vessel segmentation and centerline extrac-

tion using minimal user interactions such as manually marking start and end points of the

artery. We found that a threshold based segmentation was not sufficient for accurate seg-

mentation of the arteries, so used geometry based segmentation by analyzing the eigenvalues

of second order partial derivatives of the CTA volume. We also found that the squared

sum of eigenvalues of Hessian of the distance transform gave a very localized response to

the medial axis of an object and hence a simple thresholding step is sufficient for extracting

the geometric skeleton of an object. The squared sum of second ordered partial derivatives
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of the distance transform provided similar response as the Hessian based method and both

proved to be good preprocessing steps for isolating a desired centerline path of an object by

using methods such as fast marching method, Dijkstra’s shortest path algorithm etc.

The geometry based segmentation used in this chapter cannot distinguish between the

lumen and calcification in the vessels. Therefore, we used the centerline extracted in this

chapter as a preprocessing step for more accurate segmentation and calcium quantification

as discussed in the next chapter.
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CHAPTER 5

METHODOLOGIES FOR CALCIUM QUANTIFICATION IN COMPUTED

TOMOGRAPHY ANGIOGRAPHY (CTA)

5.1 Introduction

Calcification in arteries occur within the vessel wall which is in close proximity to the

vessel lumen. The cutoff threshold of 130 HU used in conventional calcium quantification

in non-contrast-enhanced CT scan may not be useful for calcium quantification in contrast-

enhanced CTA since the contrast agent administered to a patient during CTA exceeds 130

HU. As a result the intensity profiles of contrast-filled lumen and the calcium largely overlap

making it difficult to separate calcium by a fixed threshold. Many attempts have been made

to identify the calcium by using higher thresholds such as 320 HU [17], 350 HU [21, 22]

or even 600 HU [23], based on the assumption that by selecting a sufficiently large cutoff

threshold, the high density calcium can be separated from the contrast filled lumen. Calcium

quantification using fixed cutoff threshold may be inaccurate as there is a chance of inclusion

of lumen resulting in overestimation of calcium or exclusion of low density calcium resulting

in underestimation of calcium.

The overestimation or the underestimation of the calcium quantification can result in

classification of a patient into different risk category which is known as restratification.

Patients are classified into different risk categories based the coronary artery calcium (CAC)

score. The screening for heart attack prevention and education task force recommends to

classify a person to be in the low or moderate risk category if the CAC score is 0, moderately

high risk category if 0 < CAC score < 100, and < 75th percentile of the particular age group

and gender, high risk category if 100 ≤ CAC score < 400 or > 75th percentile, very high risk

category if CAC score > 100 and > 90th percentile, or if the CAC score ≥ 400 [97]. Different

treatment plans are recommended according to the risk category of a patient; a patient in
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higher risk group requires more aggressive lifestyle modifications than the one in lower risk

group [97]. Therefore, the restratification of a patient due to error in calcium quantification

is undesirable and can be hazardous.

To remove the drawbacks of a fixed threshold based calcium quantification in CTA,

cutoff thresholds have been calculated adaptively based on the intensity profile of contrast-

filled lumen [18, 19]. Although adaptive threshold calculation addresses the variation of

cutoff threshold across different CTA dataset, these methods do not separate the voxels that

are in the overlapped region of the intensity profile. If we were to consider the conventional

cutoff threshold of 130 HU to identify calcium, then the voxels in the range 130 HU to the

minimum attenuation of the contrast material in the lumen is the overlapped region, where

the voxel can either be a calcium or a lumen. Since calcification occurs in the arterial wall,

the location of the voxel with respect to the lumen may provide a clue to whether the voxel

is calcium or not.

A number of methods have been developed to segment the arterial wall in order to

quantify different plaque components within the wall. While it is easy to segment the lumen

in CTA based on the intensity profile alone, segmenting the outer arterial wall is a difficult

task because of the low contrast or even absence of contrast between the arterial wall and

surrounding tissue. The segmentation of arterial wall has been performed in larger arteries

such as carotid arteries [44, 48, 50]. Although a high correlation coefficient with manually

quantified plaque components were reported, the correlation coefficient alone may not be

sufficient for assessing the accuracy. Usually low difference range of the quantification is

desired in order to avoid the reassignment of a patient to different risk stratification. There

is a high chance of underestimation or overestimation of calcium quantified by these methods

as the accuracy is highly dependent on the accurate segmentation. These methods may not

be useful for smaller coronary arteries which have low resolution in the CTA and it is difficult

to delineate the outer contour of the arterial wall.

In this chapter we describe the methods to accurately quantify calcium from the

contrast-enhanced CTA. The novelty of our algorithm are the use of expectation maximiza-
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tion algorithm to estimate the total amount of calcium in the overlapped intensity range,

combining this information to the spatial feature based calcium classification in the mixed

intensity range and estimating cutoff threshold to separate high density calcium from the

calcium in overlapped intensity range.

5.2 Methodologies

Our method first extracts the blood vessels and the centerline. Then the centerline

is morphologically dilated possibly including some of the myocardial tissue or part of the

lungs. From the lengthwise plot of intensity, an adaptive cutoff threshold is developed to

separate the high-density calcium. Based on the probability of the contrast in the non-

calcified region, we then calculate the probability of contrast and hence the low-density

calcium in the calcified regions. The dilated voxels are also used to obtain segmentation

of the lumen and the surrounding tissues by using expectation maximization algorithm as

will be explained in Chapter 7. The methodology to quantify calcium from the CTA are

discussed in the following subsections.

5.2.1 Centerline extraction

The centerline extraction as discussed in chapter 4 begins with the geometric based

automatic extraction of the arteries by using the eigenvalues of the second order derivative

matrix, also known as the Hessian matrix. The output of this step is a probability volume

which is then thresholded to select high-probability tubes followed by connected component

analysis to select a desired artery such as the right or the left coronary artery. The result is a

binary volume with connected tubular branches. To find the 3D centerline, first the distance

transform of the binary tubular structure is obtained. Then, obtain the squared sum of

the eigenvalues of the Hessian matrix of the distance transformed volume. This response so

obtained can directly be used as the skeleton of tubular structure after a simple thresholding

step. If a centerline of a particular branch is desired as in our case it can be isolated by

using the eigenvalue based response of the distance transform as a speed or cost function for
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methods such as fast marching method [91] or Dijkstra’s shortest path algorithm [90] to find

the shortest path between desired points in the artery.

5.2.2 Morphological dilation of the centerline

In this step we morphologically dilate [58] the isolated centerline to cover the entire

arterial wall and possibly some surrounding tissue. The dilation can by done by using a 3

dimensional structural element such as a sphere or a cylinder. The radius can be decided

empirically. For example, in chapter 3 we used a spherical structural element of radius 7

voxels to dilate the centerline. The dilation step is necessary to include the arterial wall

since the outer wall of the artery is hard to detect in the CTA because of very low or no

contrast with the surrounding tissue. This can be seen in the figure 5.1 (a) and (b) where

the outer wall of the arteries can be seen only due to the calcium present on it otherwise the

outer wall cannot be distinguished from the surrounding tissue.

(a) RCA (b) LAD

Figure 5.1 A slice of contrast-enhanced CTA with (a) cross section of the right coronary
artery (RCA) and (b) left main along with the left anterior descending (LAD) branch.

5.2.3 Probability density estimate of the voxels

We quantify the total calcium based on the absolute intensity cutoff as well as the

probability of calcium in a range of intensities. The absolute cutoff threshold is the HU

intensity above which the voxels are only calcium. There is a range of intensities below the

cutoff where the voxels can either be contrast or calcium. The absolute cutoff as well as the
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mixed range of intensities can be different for different patient as well as along the length of

the individual arteries.

In order to find the absolute cutoff threshold, first we find the normalized intensity profile

of the dilated artery as shown in figure 5.2 which is calculated by finding the frequency or the

total number voxels of each observed HU intensity and dividing by the sum of the frequency.

The horizontal axis show occurrence of different intensity level and the height of each vertical

line is the normalized frequency of these levels. The total number of intensity levels in the

horizontal axis was made sparse by subsampling for proper display in the figure. The artery

was obtained by dilating the automatically extracted centerline as described in chapter 4.

The normalized profile which sums to 1 as required by the next step is also known as the

probability density function (PDF) of the data.
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Figure 5.2 Normalized intensity profile of the segmented and dilated artery from the contrast-
enhanced CTA of a diseased patient.

The voxels belonging to different tissue types such as contrast, arterial tissue, and

calcium can be separated by resolving different PDFs corresponding to these tissues. The

PDF of the dilated artery can be expressed as the mixture of different underlying components,

one for each tissue type. Figure 5.3 shows a PDF generated (solid line) as the weighted sum

of two Gaussian (broken lines) with weights 3 and 2. Resolving two components is the reverse
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of idea expressed in figure 5.3 since we have to start with a given PDF and estimate two

components and the corresponding weights. Chapter 7 explains the algorithm in details.

Figure 5.3 A probability density function (solid line) obtained as the weighted sum of two
Gaussian (broken lines) with weights 3 and 2.

In this approach we need to make assumption on the number of tissue components and

the model of the PDF of these components. Since the amount of calcium is variable and may

be much less than the contrast material, the calcium component may not always be resolved

with accuracy. Therefore we use non-parametric model to estimate the PDF of the dilated

artery by using an approach called Parzen window [98] method. A non-parametric density

estimate technique attempts to approximate a PDF from empirical or observed set of data

without making any assumption on the model of the PDF or its underlying components.

Therefore the resulting PDF can be arbitrarily shaped but approximates the empirical data.

The Parzen window approach is a data interpolation technique [99] that estimates a

continuous probability density functions of the voxel intensities by a smoothed or average

version of the intensity distribution. If X = {x1, x2, ...., xN} is a set of the observed HU

arterial intensities in the CTA, then the Parzen window estimate of the shape of its PDF is

given by,
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p(x) =
1

nh

N∑
i=1

K

(
xi − x
h

)
, (5.1)

where, p(x) is the probability estimated for each point x ∈ X. K
(
xi−x
h

)
is known as

the window or kernel function which should satisfy the constraints that it is non negative

and should integrate to 1 for the resulting function to be a density estimate [99]. Different

window functions such as triangular, uniform, Laplacian, Gaussian, etc. can be used. Let

us use a Gaussian kernel defined as,

K(x) = 1√
2π
e(−

x2

2
), (5.2)

which is non-negative, centered at 0, has a unit standard deviation, and integrates to

1. A Gaussian kernel is centered at each data point, so that it acts as a probability density

estimate of a single data point. Then the density estimate of the observed data is obtained

by taking the average of all the kernels at each point. The bandwidth h of equation acts

as the standard deviation σ of the Gaussian Kernel to control its width. Hence the density

estimate for each data point x ∈ X can be expressed as,

p(x) =
1

nσ
√

2π

N∑
i=1

e

(
−xi − x

2

2σ2

)
. (5.3)

Equation 5.3 is applied for each data point to obtain the shape of the density estimate.

Figure 5.4 (a) show the Parzen window density estimate by using the Gaussian kernels.

The red vertical lines are the normalized observed data with taller lines representing higher

frequency than the shorter ones, the dotted curves are the normalized Gaussian kernels

centered at each data location, and the solid black line is the average of the kernels at each

point or the final probability density estimate of the observed data.

The bandwidth or the standard deviation of the Gaussian kernel in this case is an

important parameter, since it creates a trade-off between the resolution and variation of data.

Selection of a high bandwidth leads to oversmoothing or low resolution while a low bandwidth
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Figure 5.4 Probability density estimation using the Parzen window with Gaussian kernels
of different bandwidths.(a) Gaussian kernel of 0.7 standard deviation (bandwidth) (b) Un-
dersmoothing due to low bandwidth of 0.2, (c) Oversmoothing due to high bandwidth of
2.0. (d) Application of the Parzen window method with automatic bandwidth selection to
estimate the probability density function (PDF) of the artery voxel intensities. The density
estimate is shown in red curve and the vertical lines are the normalized intensity profile.



87

leads to undersmoothing or a high spatial variation of the density estimate. Figure 5.4 (b)

shows the undersmoothing due to Gaussian kernel of 0.2 standard deviation and figure 5.4

(c) shows oversmoothing due to higher standard deviation of 2.0. Although figure 5.4 (a)

with standard deviation seems to be optimal in this case, the optimal choice of parameter is

specific to different data-sets. Different automatic methods have been developed for selecting

the bandwidth [100, 101, 102] . A review of the automated methods are presented in a survey

by Marron et al. [103] and a more recent one by Heidenreich et al. [104]. In our work we

used an improved version of Sheater and Jones’s method [100] of bandwidth selection and

is based on observed data without the requirement of any assumption on the model of the

data unlike the previous methods [102]. The kernel density estimate of the artery voxel

intensities is shown in figure 5.4 (d), where the red curve is the density estimate of the

normalized intensity profile shown by the vertical lines.

5.2.4 Finding a cutoff threshold for high-density calcium

Conventionally, a cutoff threshold of 130 HU is used to quantify calcium in non-contrast

enhanced CT. In chapter 3 we showed a better quantification is possible by using a higher

threshold in 0.5 mm slice thickness CT reconstruction. In a contrast-enhanced CTA volume,

the contrast-filled lumen achieves higher intensity range which overlaps with the intensity

profile of the calcium. To account for the increase of the intensity many studies have elevated

the cutoff threshold to 320 HU [17], 350 HU [21, 22] and even 600 HU [23]. A single cutoff

threshold, however is not optimal for different CT volumes as the intensity range for contrast

depends on factors such as contrast concentration, patient physiology, contrast injection rate,

time elapsed since contrast administration, image noise etc. [24]. Therefore, these studies

either resulted in underestimation [21, 23, 17] or overestimation [22] of calcium.

To isolate the high-density calcium, we introduce an adaptive cutoff threshold which

takes into account the variability of contrast range along the length of the arteries. Our

algorithm first calculates the intensity profile and estimates a probability density function

using Parzen window method as described in section 5.2.3. Figure 5.4 (d) shows the estimated
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probability density function in an artery. The same PDF has been replicated in figure 5.5

(a) but without the vertical lines for the observed voxel intensities. The high density calcium

have the highest intensity range in an artery and their frequency is less than that of contrast

voxels. Therefore the calcium intensity appears as a long shallow tail toward the right of

the PDF. The shallow tail of calcium can be separated by calculating the first derivative of

the PDF to find the right-most point at which the PDF has required amount of flatness. In

other words, we need to find the right-most point in the PDF where the squared magnitude

of its derivative exceeds a small threshold > ε. From the CTA dataset we empirically decided

ε value of 0.2× P , where P is the peak square magnitude of the first derivative provided a

good cutoff threshold for estimating the high density calcium.

Figure 5.5 (b) shows the squared magnitude of the derivative scaled to a peak value of

100. The red circles are the points at which the magnitude exceeds the required ε value for

flatness. Only few of these points are shown in the picture for clarity. Since we are interested

in the right-most flat region, we select the right-most circle position as the cutoff threshold.

The corresponding point is shown by an cross in figure 5.5 (a).

This phase of our algorithm used to find high-density calcium cutoff from the flat region

on the right of histogram is similar to the algorithm described by Teßmann et al. [18].

Our algorithm differs in that it smooths the probability density function by using Parzen-

window with Gaussian kernel and calculates the ε value relative to the peak magnitude

of the derivative in each CTA volume. This provided for better probability density and

cutoff estimation than the box-filter and fixed ε value used in [18]. Although, Teßmann et al.

considered inter-patient variability in contrast intensity range, they did not take into account

the variability in contrast range along the length of the artery which should be considered

for an accurate quantification of calcium in a CTA volume.

We observed that the contrast range differs not only across different CTA but also along

the length of a single artery thus posing more difficulty in accurate quantification of calcium.

This could be due to the high absorption of the contrast material toward the distal ends of the

artery so that the intensity range slightly narrows down toward the distal end of an artery.
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Figure 5.5 Cutoff selection from the probability density function estimated by using the
Parzen window method. (a) The estimated PDF of an artery voxel intensities. Cross in-
dicates the cutoff value selected by using the squared magnitude of its derivative (b) The
squared magnitude of first derivative of the PDF. Circles mark the points where the squared
magnitude of the derivative exceed ε.
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Figure 5.6 shows the decrease in intensity along length for 4 different arteries. The x-axis

is the length of the artery along the centerline and the y-axis is the intensity of the voxels.

Each dot represents a voxel at a particular location along the length of the artery. In order

to obtain a voxel’s location in the artery, it is projected to the centerline to find the closest

centerpoint. The location of the closest centerpoint is also the location of the voxel across the

length of the artery. In the figure the projection is done at an interval of 0.5 mm along the

centerline. The red line indicate the maximum intensity at each point and the voxels toward

the higher intensity levels are high-density calcium which can be clearly separated from the

contrast as indicated in figure 5.6 (a). At the base of each calcified region, there are some

low density calcium the intensity range of which overlap with the contrast as indicated by

the oval in the figure. The dashed black line is drawn at an arbitrary intensity level close to

peak contrast intensity to indicate the decreasing intensity of contrast materials toward the

distal end of the artery. The decreasing trend can be noticed very clearly in figure 5.6 which

has no calcified voxels. It can also be noted from the position of black line that the intensity

range of contrast is different for each figure. We observed that the contrast range differs

not only across different CTA but also along the length of a single artery thus posing more

difficulty in accurate quantification of calcium. This could be due to the high absorption

of the contrast material toward the distal ends of the artery so that the intensity range

slightly narrows down toward the distal end of an artery. Figure 5.6 shows the decrease in

intensity along length for 3 different arteries. The x-axis is the length of the artery along

the centerline and the y-axis is the intensity of the voxels. Each dot represents a voxel at

a particular location along the length of the artery. In order to obtain a voxel’s location in

the artery, it is projected to the centerline to find the closest centerpoint. The location of

the closest centerpoint is also the location of the voxel across the length of the artery. In

the figure the projection is done at an interval of 0.5 mm along the centerline. The red line

indicate the maximum intensity at each point and the voxels toward the higher intensity

levels are high-density calcium which can be clearly separated from the contrast as indicated

in figure 5.6 (a). At the base of each calcified region, there are some low density calcium the
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intensity range of which overlap with the contrast as indicated by the oval in the figure. The

dashed black line is drawn at an arbitrary intensity level close to peak contrast intensity to

indicate the decreasing intensity of contrast materials toward the distal end of the artery.

The decreasing trend can be noticed very clearly in figure 5.6 which has no calcified voxels.

It can also be noted from the position of black line that the intensity range of contrast is

different for each figure.

(a) (b)

(c) (d)

Figure 5.6 The voxel intensity along the length of arteries in different CTA volumes decrease
toward the distal ends. The red line is the maximum voxel intensity along the length with
regions of higher peaks having calcified voxels. The black dashed line is drawn to indicate
the difference in the intensity level of contrast material along the length.

The cutoff threshold calculated from the histogram is used as a preprocessing step to

calculate an adaptive threshold which depends on the peak contrast value along the length

of the artery. The idea behind the adaptive cutoff threshold is to calculate approximate

peak contrast values in the calcified region by smoothing and interpolating the peak contrast
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values in the non-calcified regions. First, we select only the peak intensity value at a constant

interval along the length of the artery. Figure 5.7 (a) shows a curve isolated from figure 5.6

(a) by joining only the peak intensity values at each x-axis location. In the second step we

remove all the high-density calcium with intensities higher than the cutoff obtained from

the PDF of the arterial intensities. As a result, we are left with contrast material and low

density calcium as shown in figure 5.7 (b) where we do not know the peak contrast in the

calcified regions around 40 − 60 in x-axis. The peak contrast values are indicated by small

circles in both figures 5.7 (a) and (b). Since the variation in contrast along the length

is not regular, we developed an algorithm (“peak-fitting”) to fit smooth line to the peak

contrast intensities. The region of unknown peak contrast intensity are treated as missing

contrast values and the “peak-fitting” algorithm automatically interpolates these missing

values. The “peak-fitting” algorithm as listed in 1 is based on subsampling the known peak

contrast intensities, interpolating the subsamples with cubic splines [105] and averaging the

interpolated subsamples.

Algorithm 1 (peakFit) takes 5 different inputs. X is the array of input locations or

the x-axis with known peak contrast values in figure 5.7. As shown by the red curve in

figure 5.7 (b) Y is an array of peak contrast intensities in the location indicated by X. Xall

is the array of the complete x-axis location including the calcified area where we want to

interpolate the smoothed contrast peak values. The curve subsampled with the factor f , and

dx is the distance between two consecutive x-axis points. The algorithm produces Y mean as

the output which is an approximation of peak contrast value in the calcified region obtained

by smoothing and interpolating peak contrast values elsewhere in the plot in figure 5.7 (a).

Line 1 of the algorithm calculates the total number of points in X or th total number

of known contrast peak values. Lines 2 − 3 return if the subsampling factor is larger than

the total number of points. Lines 4− 5 initialize empty array for padding the inputs X and

Y . Padding is necessary to correct the end points after smoothing and interpolation. Lines

6− 8 pad the array X by extending the left-most point to −f · dx with f points in between.

Similarly, the right-most point is extended to f points with dx interval. Lines 9 − 11 pad
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Input:
X = [x0, x1, ....xn] : array of input location where intensity values are present,
Y = [y0, y1, ....yn] : array of intensity values at X locations,
Xall : array of desired locations where the input intensities are to be fit and
interpolated,
f : subsampling factor,
dx : the distance(increment) between two data locations.
Output:
Y mean : array of values representing the smoothed and interpolated input contrast
intensities.

1 N ← length(X) ;

2 if f ≥ N then
3 return

4 Xpad[1, N + 2 · f ]← [0 · 1, 0 · 2, ..., 0 · (N + 2 · f)] ;

5 Ypad[1, N + 2 · f ]← [0 · 1, 0 · 2, ..., 0 · (N + 2 · f)] ;

6 Xpad[1, f ]← [−f · dx, (−f + 1) · dx, (−f + 2) · dx...(−f + f − 1) · dx] ;

7 Xpad[f + 1, N + 1]← X[1, N ] ;

8 Xpad[N+f+1, N+2·f ]← [X[N ]+dx,X[N ]+2·dx,X[N ]+3·dx, ...X[N ]+(f−1)·dx]
;

9 Ypad[1, f ]← Y [1] ;

10 Ypad[f + 1, N + 1]← Y [1, N ] ;

11 Ypad[N + f + 1, N + 2 · f ] = Y [N ] ;

12 sn ← ceil(N/f);

13 Ysum = [0 · 1, 0 · 2, ...0 ·N ];

14 for i← 1 to f do

15 Ysub[1, sn]← Ypad[i, i+ f, i+ 2 · f, ..., i+ sn · f ];

16 Xsub[1, sn]← Xpad[i, i+ f, i+ 2 · f, ..., i+ sn · f ];

17 Yinterp[1, N ]← splineInterp(Xsub, Ysub, Xall);

18 Ysum[1, N ]← Ysum[1, sn] + Yinterp[1, sn];

19 Y mean[1, N ]← Ysum[1, sn]/f ;

Algorithm 1: The “peak-fitting” contrast peak smoothing and interpolation algo-
rithm (Algorithm peakF it).
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the Y values by replicating the boundary values to the padded left and right portions. Line

12 calculates the total number points in the subsampled arrays and line 13 initializes an

empty array for storing the sum of all interpolated subsamples. Lines 15 and 16 extract a

subsample from the array Y , and a subsample from array X respectively with an interval of

f , elements. Line 17 interpolates the subsampled function Ysub to all the points in Xall by

using cubic spline interpolation [105]. We assume the availability of the splineInterp cubic

spline interpolation algorithm which takes function values Ysub at given locations indexed

by Xsub and interpolate them at required points Xall. We used the MATLAB R© [86] routine

interp1 with ‘spline’ parameter for the purpose. Lines 15 − 18 are repeated for each

alternating subsamples from 1 to f with line 18 taking sums of all the alternate interpolated

subsamples. Line 19 takes the average of the sum of all interpolated subsamples which is

the final smoothed line.

The subsampling factor f in the peakF it algorithm can be changed to obtain desired

degree of smoothness of the peak contrast intensity. A larger value of f tend to generate

smooth line with low variation while a smaller value generates curves with high variation.

Figure 5.8 shows the smoothed line with different f values. We used a value of f = 32 as it

provided an optimal cutoff value for our CTA dataset.

For a subsampling factor of f , lines 15− 19 are repeated f times obtaining a subsample

in each iteration and interpolating each subsample with cubic spline. Thus the final smooth

peak contrast line is an average of these interpolations. The individual subsample interpo-

lation contributing to the final peak contrast smooth line are shown in figure 5.9. The thick

black line is the average of the thinner spline-interpolated curves.

The final mean cutoff line Y mean obtained by removing high-density calcium and using

the “peak-fitting” algorithm is shown by the solid black line in figure 5.7 (b) and (c). Using

the mean cutoff line directly results in the inclusion of contrast from non-calcified regions as

well. Therefore, we calculated the standard deviation of the peak contrast values from the

mean cutoff line and added multiple standard deviations to the mean cutoff line to obtain

the absolute cutoff. We found 2.5 standard deviation from mean to provide a very good
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Figure 5.7 Peak intensity values, smooth adaptive cutoff threshold, and the location of high
and low-density calcium. Peak intensity values along the length of the artery is shown by red
curve in (a). Intensity values greater than cutoff obtained from figure 5.5 (a) are removed
and smoothed by using the peakF it algorithm shown as solid black line in (b) and (c). The
actual intensity values are indicated by small blue circles in both (a) and (b). The black
dashed lines in (c) are 2.5 standard deviation apart from the mean contrast peak line. The
pink dotted and dashed line shows the initial cutoff value obtained from the PDF of figure 5.5
(a). The blue rectangle in figure (c) indicates the mixed intensity range.
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Figure 5.8 Smooth interpolation of peak contrast intensity by using the algorithm peakF it
(algorithm 1). The algorithm run with different subsampling factor of f = 8 in (a), f = 16
in (b),f = 32 in (c), and f = 64 in (d) to smooth the peak intensity values indicated by the
blue circles.
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Figure 5.9 Different subsample interpolated with cubic spline in line numbers 15 − 18 of
Algorithm 1 (peakF it). The thick black line which is the final smooth peak contrast value
is the average of the curves calculated by line number 19 in the algorithm.

cutoff value to exclude all the contrast and low density calcium from the experiments done

in our CTA dataset. The dashed black lines in figure 5.7 (c) show the mean cutoff ±2.5

standard deviation. Any calcified region in between these dashed line have their intensity

range overlapped with that of contrast voxels. The pink dotted and dashed line in figure 5.7

(a), (b), and (c) shows the initial cutoff value obtained from the PDF of figure 5.5 (a). The

blue rectangle in figure 5.5 (c) indicate the mixed intensity range of low density calcium and

contrast voxels. We develop another algorithm to quantify the low density calcium in this

region in the following section.

Using the peak contrast and the standard deviation, the high density calcium is calcu-

lated using the algorithm 2 (calcHigh). The inputs are the mean peak contrast intensity

(Y mean) calculated by the algorithm peakF it, the standard deviation sd of peak contrast

voxels from Y mean in non-calcified regions, and voxels which is a set of all voxels in the

morphologically dilated artery. We assume that the voxels are organized in an appropriated

data structure so that a set of all voxels at a particular location with index i can be ob-

tained in a single operation as shown in line 3 of calcHigh. Since the cutoff is adaptive, it is

calculated for each x-location in line 1. Line 3 counts the total number of voxels exceeding
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the cutoff threshold at that location and stores it in an array. The output of the algorithm

nHigh is an array of the total number of high-density calcium voxels along the length.

Input:

Y mean = [y0, y1, ..., yn] : An array of peak mean contrast value obtained by
applying algorithm 1,
voxels = v0, v1, ..., vn : set of all voxels in the dilation,
sd : standard deviation of peak contrast values from peak mean contrast value.
Output:
nHigh : An array of high-density calcium along the length of the artery.

1 nHigh← [0 · 1, 0 · 2, ...0 · length(Y mean)];
2 for i← 1 to length(Y mean) do

3 cutoff ← Y mean[i] + 2.5 · sd
4 nHigh[i]← findSum(voxels[i] ≥ cutoff) ;

Algorithm 2: Algorithm used to find the High density calcium using the adaptive
cutoff threshold (calcHigh).

5.2.5 Quantification of low-density calcium

Calcium appears with distinct intensity peaks and usually a plaque has a high-density

center surrounded by relatively low-density calcium as observed in the CT-scan images. For

an accurate calcium quantification it is important to consider all the calcified voxels. By

including partially calcified and low-density calcified voxels, the accuracy of total quantified

volume can be significantly improved. In this section we develop a probability based algo-

rithm to quantify the low density calcium present in the vicinity of the high density calcium.

As per our knowledge, none of the previous works has attempted to quantify the calcium in

this mixed range.

Figure 5.10 (a) shows the height map or the surface plot of the intensity in a calcified

region from a slice in a non-contrast CT scan. The height map is a three dimensional

plot created by using the intensity level as the z-coordinates data from a CT slice. The

corresponding surface plot of calcified region in the contrast-enhanced CTA is shown in
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figure 5.10 (b). Both the surface plots are rotated to display the calcium peak properly. The

major difference between these two surface plots is the intensity in the middle of the peaks.

Since the calcification occurs only in the artery wall, these appear as peaks in the periphery of

the arterial lumen which appear as valley in the middle in a surface plot. Due to the contrast

enhancement in the CTA, the center portion is higher than the corresponding portion in non-

contrast enhanced CT. It can be seen that in a non-contrast enhanced CT, much of the low

density calcium are distinct from the lumen while in case of contrast-enhanced CTA, the low

density calcium are largely occluded by the contrast material.

The voxels outlined by blue rectangles in the plot of figure 5.5 (c) are in the overlapped

intensity range of low density calcium and contrast voxels. A magnified portion of the calci-

fied region and the overlapped intensity range is shown in figure 5.11 (b). In the overlapped

intensity range, we cannot tell precisely if a voxel is calcium or contrast just by looking at

the intensity of the voxel. The algorithm we developed to quantify calcium in this region is

similar to the peakF it algorithm, in that both the algorithms use information of contrast

voxels in the non-calcified area to estimate the total probability of contrast voxels in in the

calcified area.

Our algorithm first calculates the total number of contrast voxels in mean peak intensity

value ±2.5 standard deviation range. The mean peak intensity is shown by a thick black line

and the 2.5 standard deviation from the mean are shown by the dashed black lines in the

figure 5.11. All the peak contrast intensity variations shown by red curve in figure 5.11 (a) lie

between these two standard deviation lines. Therefore, we calculate the total area occupied

by contrast voxels in the non-calcified regions (labeled “N” in figure 5.11 (a)) bounded by

the two lines. The total contrast area (bounded by the red curve and the lower standard

deviation line) divided by the total area between the standard deviation lines in the non-

calcified regions gives us an estimate of the fraction of contrast material in between the lines.

We then apply this fraction to estimate the total amount of contrast in the calcified regions

(labeled “M” in figure 5.11 (a)).
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(a)

(b)

Figure 5.10 Surface plot of the intensity in a calcified region indicated by the red square in
a (a) non-contrast-enhanced CT slice and the corresponding slice in (b) contrast-enhanced
CTA.
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Figure 5.11 Calcified and non-calcified regions in the lengthwise intensity plot with the high-
density, and the low-density calcium voxels locations. (a) Calcified regions are labeled “M”
and the non-calcified regions are labeled “N”. The total area bounded by the red curve and
the lower standard deviation line indicated by dashed line divided by the area between the
dashed line in region “N” gives us an estimate of a fraction of contrast material in region
“M”. (b) A magnified calcified region to show the discrepancy of a single cutoff threshold and
adaptive cutoff threshold. “A” is the adaptive cutoff threshold, any voxel intensity above
“A” is calcium. “C” is the fixed cutoff threshold which is uniform lengthwise, the range
“B” has low-density calcified voxels as well as contrast and “D” is the range of intensities
excluded by considering a single cutoff threshold only.
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Input:
Y mean = [y0, y1, ..., yn] : An array of peak mean contrast value obtained by
applying algorithm 1,
Imax = [i0, i1, ..., in] : array of maximum intensity values along the length,
sd : standard deviation of peak contrast values from peak mean contrast value.
Output:
p : Probability of contrast material in the non-calcified area.

1 j ← 1 ;

2 for i← 1 to length(Y mean) do

3 if (Imax[i] < Ymean[i] + 2.5 · sd)&(Imax[i] >= Y mean[i]− 2.5 · sd) then

4 a← Y mean[i] + 2.5 · sd ;

5 b← Y mean[i]− 2.5 · sd ;

6 P [j]← (Imax[i]− b)/(a− b) ;

7 j + + ;

8 sum← 0

9 for j ← 1 to length(P ) do

10 sum← P [j] ;

11 p← sum/length(P ) ;

Algorithm 3: Algorithm used to find the fraction of contrast material in the non-
calcified region (probContrast).

The steps to calculate low density calcium lengthwise are listed in algorithms 3

(probContrast), and 4 (calcLow). First, the algorithm probContrast calculates the prob-

ability or the fraction of peak contrast material in non calcified region labeled as “N” in

figure 5.11 (a). Then the algorithm calcLow calculates the probability or the fraction of

calcium in the calcified area labeled “M” in figure 5.11 (a) by using the p value calculated

by the probContrast algorithm.

The algorithm probContrast needs Y mean which is an array of the mean peak contrast

intensity calculated by the algorithm peakF it, Imax an array of maximum intensity value

along the length, sd the standard deviation of the peak contrast intensity from the mean
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peak contrast intensity in the non-calcified regions, and p which is the fraction of contrast

material in the non-calcified region “N” in figure 5.11 (a). The output is the fraction or

the probability of contrast voxels in the non-calcified region between the two 2.5 standard

deviation lines.

Lines 2 − 7 are repeated for each x-axis position and if the peak contrast intensity at

an x location is between the 2.5standard deviation lines is checked by line 3. Therefore lines

4 − 7 are executed for the peak contrast intensity in the non-contrast regions only. Line 6

calculates the fraction of peak contrast intensity within the standard deviation range aand

b at each x-axis location. Lines 8 − 11 calculate the average of the peak contrast fraction

p across all non-calcified locations. P in line 6 should be initialized with a dynamic array

outside the loop which has not been shown in the algorithm.

Input:

Y mean = [y0, y1, ..., yn] : An array of peak mean contrast value obtained by
applying algorithm 1,
Imax = [i0, i1, ..., in] : array of maximum intensity values along the length,
voxels = v0, v1, ..., vn : set of all voxels in the dilation,
sd : standard deviation of peak contrast values from peak mean contrast value,
p : The peak contrast probability calculated by using algorithm, 3.
Output:
nLow : An array of low density calcium along the length of the artery.

1 nLow ← [0 · 1, 0 · 2, ...0 · length(Y mean)];
2 for i← 1 to length(Y mean) do

3 if Imax[i] > Ymean[i] + 2.5 · sd then

4 a← Y mean[i] + 2.5 · sd ;

5 b← Y mean[i]− 2.5 · sd ;

6 v[i]← findSum(voxels[i] ≥ a&voxels[i] ≤ b) ;

7 nLow[i] = v[i] · (1− p) ;

Algorithm 4: Algorithm used to find the fraction of contrast material in the calcified
region (calcLow).

The algorithm calcLow needs similar inputs as the algorithm probContrast and in
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addition it also needs its output p which is the fraction of contrast in the non-calcified

region, voxels which is the set of all voxels in the morphologically dilated artery. We also

assume that the voxels are organized in an appropriated data structure so that a set of all

voxels at a particular location with index i can be obtained in a single operation as shown

in line 5 of calcLow. The output nLow is an array with the fraction of total voxels with

low-density calcification.

Since the low density calcium is present in the proximity of high-density calcium, line

2 checks for the presence of high density calcium by using the cutoff of Y mean+ 2.5 · sd at

the particular location. Thus, lines 3 − 6 are calculated for the voxels in between the two

standard deviations in the calcified regions. Line 5 calculates the total number of voxels lying

between the standard deviations at an x location in a calcified region. The total number

of voxels is multiplied by the probability of calcium, i.e. (1− p) to estimate the fraction of

calcium at each location.

The area of low density calcium is shaded green in figure 5.11 (b). Although, figure 5.10

shows the distribution of calcium in 2-dimensional slice, a calcified-plaque appears contigu-

ously across adjacent slices. The x-axis in figure 5.11 does not necessarily correspond to

a slice in the CT volume but the low density calcified voxel may be projected to adjacent

centerpoints. Therefore, we also calculated the low density calcium in the adjacent regions

shaded blue in 5.11 (b). The calculation of calcium in adjacent centerpoints is not shown in

algorithms 4 for simplicity. Similarly this adjacent region was treated as low-density calcium

in algorithm 3 but not shown for simplicity. The label “A” points to the adaptive cutoff

which is different for each x-location, label “C” points the fixed cutoff threshold calculated

from the Parzen window PDF. Label “D” points the total low-density calcium voxels missed

by considering the fixed cutoff threshold only.

5.2.6 Calcium quantification

We calculate the calcium volume along the length of an artery at a very detailed interval

of 0.5 mm which is summarized as follows. As discussed in subsection 5.2.1, first we extract
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the centerline of a desired artery automatically. The details of this method is described

in chapter 4. The centerline is morphologically dilated to cover all the arterial voxels and

possibly including the myocardial tissue as outlined in subsection 5.2.2. The intensity of

these voxels are statistically analyzed to estimate a probability density function (PDF) of

the intensity distribution as described in subsection 5.2.3. By excluding a shallow tail of

calcium in the right side of the PDF, an initial high-density calcium cutoff intensity (cutPDF )

is calculated.

In subsection 5.2.4 we showed that the peak contrast intensity drops along the length

of the artery and developed an algorithm to find the adaptive cutoff threshold (cutadaptive)

to extract the high density calcium voxels. An adaptive cutoff threshold is different along

the length of the artery depending on the peak contrast intensity at the location. The initial

cutoff cutPDF and the peak contrast intensity along the length of artery are used to calculate

an adaptive cutoff threshold as listed in the peakF it algorithm (Algorithm 1).

Low-density calcium that are present in the vicinity of high-density calcium and are

calculated by algorithms probContrast and caclLow (Algorithm 4). The cutadaptive threshold

is used by both these algorithms to find the low-density calcium area. First, the probContrast

algorithm (Algorithm 3) finds the fraction of calcium in the low-density calcium area and the

algorithm calcLow calculates the total low density calcium lengthwise. The total number

of calcium voxels along the length is the sum of high-density calcified voxels nHigh and

low-density calcified voxels nLow calculated by the algorithms calcHigh (Algorithm 2), and

calcLow respectively. The final calcium volume is obtained as follows,

calcV oxels = nHigh+ nLow, (5.4)

calcV ol = calcV oxels× voxelV olume, (5.5)

where the sum is vector sum for the elements of nHigh and nLow. calcV oxels gives a to-

tal number of calcified voxels which when multiplied by the volume of a voxel (voxelV olume)
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gives the calcium volume per increment (0.5 mm) along the artery.

5.3 Software Developed

In this section we describe the software tools and user interface (UI) developed for

manual and automatic extraction of coronary arteries, selecting a desired artery to extract

the centerline, and registration and transformation of non-contrast-enhanced and contrast-

enhanced CT. All the software tools were developed using MATLABTM programmatically,

and also interactively by using the MATLAB graphical user interface development environ-

ment (GUIDE) [106].

Figure 5.12 Main GUI for browsing CT volumes.

The software tool developed in Chapter 3 for manually annotating and extracting cen-

terline was extended to provide support for automatic extraction, and selection of vessels. A

snapshot of the main GUI is shown in figure 5.12. The main GUI was developed program-

matically by using nested functions in MATLAB. The main GUI has two different panels in

the left and the right. The panel on the left side is for displaying CT volumes. The panel
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on the right side is for displaying extracted arteries, centerlines, calcium curve, and calcium

profile from a selected CT volume.

(a) (b)

Figure 5.13 UI Controls (a)Table for browsing and loading CTA volumes(b) Controls for
manual and automatic artery extraction.

The non-contrast-enhanced, and contrast-enhanced CT volume files are listed on two

separate tables on the left-most side, one of which is shown separately in figure 5.13(a). Each

row of the table has a context menu to load the selected file into the software for further

processing. After loading a CT volume, a user can scroll through different slices of a volume

by using the scroll bar attached to the image panel or by using the mouse scroll wheel.

Different functionalities are achieved through the button control on the right-most side

of the software which is also shown in figure 5.13 (b). User can manually annotate a visible

section of an artery as shown by the red cross in the figure 5.14. The 3D location of manually

clicked points are extracted as shown in the right side panel in figure 5.15. These points are

used to approximate a centerline by using the smoothing step.

The dialog for selecting parameters for smoothing and dilation is shown in figure 5.16
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Figure 5.14 Visible section of arteries annotated manually.

Figure 5.15 Centerpoints extracted in 3D from the annotation.
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Figure 5.16 Dialog showing different smoothing and dilation parameters.

which is invoked by pressing the ‘Smooth’ button. Pressing the ‘Smooth & Dilate’ button in

the dialog results in a centerline and a dilated artery as shown in the right panel of figure 5.17

Figure 5.17 The ‘centerline’ view showing the dilated artery and its centerline.

Figure 5.17 is the centerline view which is the default view. A different view can be

selected by changing the selection of combo box ‘Select View’ in the right side. Figure 5.18

(a) shows the calcium volume view which plots the lengthwise calcium volume (mm3) of the

selected artery. The Hounsfield Unit (HU) threshold for calcium can be changed with the
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(a) (b)

Figure 5.18 (a) Calcium volume view shows the lengthwise calcium volume in mm3. The HU
threshold can be changed by using the threshold slider and the volume changes accordingly(b)
Calcium profile view shows the intensity profile or the histogram of the voxels in the artery.
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slider in the bottom. Figure 5.18 (b) shows the calcium profile view which is the intensity

profile or the histogram of the HU intensities of the voxels in the selected artery.

Figure 5.19 Automatically extracted arteries.

Figure 5.19 shows vessels extracted automatically by pressing the ‘Extract Vessels’ but-

ton. In order to select a particular branch and extract its centerline, we developed another

GUI shown in figure 5.20

The GUI in figure 5.20 is used to mark end points of a desired vessels. In order to

facilitate the end point selection, the arteries can be rotated in 3D by using the two sliders.

A desired artery can be isolated for proper point selection by clicking on the artery and

pressing the ‘Filter’ button. Connected component of the clicked point is used to isolate the

artery. The isolated artery is shown in figure 5.21. Centerlines between the selected end

points are extracted automatically on exiting the GUI.

After automatic centerline extraction and dilation of an artery, the software also auto-

matically segments the dilated voxels into lumen, artery wall, and myocardial tissue. The

segmentation can be viewed by checking the ‘Highlight Vessel’ checkbox and then scrolling

through the slices which is shown in figure 5.22.
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Figure 5.20 GUI visualizing and selecting the end points of a desired artery.

Figure 5.21 Selecting a particular artery for end points selection.
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Figure 5.22 Left panel showing a segmented artery section.

Figure 5.23 GUI for selecting landmarks and extracting subvolume for registration.
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We also developed software tool for manual and automatic registration. Figure 5.23

shows the GUI developed for manually registering the non-contrast-enhanced and contrast-

enhanced CT scans by selecting landmark points. The GUI also allows subvolume selection

from both the CT scans and the selected landmarks are used for a coarse registration by

using linear transformation.

Figure 5.24 Main GUI for registering the contrast-enhanced and non-contrast-enhanced CT
subvolumes.

Figure 5.24 shows the main GUI for registering a non-contrast and contrast-enhanced

CT. Using this GUI tool, the coarsely registered subvolumes are further refined by using non-

rigid registration. The registration parameters can also be used to transform a particular

artery in contrast-enhanced CTA to a corresponding artery in non-contrast-enhanced CT.

The registration GUI provides interface for the elastix, and transformix tools [107] which are

actually used to perform the registration and transformations respectively.
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5.4 Summary

In this chapter we developed methodologies to quantify calcium from the non-contrast-

enhanced computed tomography angiography (CTA). We developed algorithms to calculate

an adaptive cutoff threshold that separates high-density calcium along the length of artery.

We also quantified the low-density calcium which are in the overlapped intensity range to

the contrast voxels by using a probability based method to estimate the total amount of

contrast in the calcified region. The total calcium is then the sum of both high-density and

low-density calcium at each position along the length of artery.
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CHAPTER 6

VALIDATION OF THE CALCIUM QUANTIFICATION

6.1 Introduction

In this chapter we present the experiments done to automatically extract calcium from

contrast-enhanced computed tomography angiography (CTA). This includes extracting ves-

sels and centerline, quantification of the calcium along the length of centerline, validation

of the quantification with the intravascular ultrasound, the calcium quantification between

contrast-enhanced computed tomography angiography (CTA) and non-contrast-enhanced

CT (CAC), and the software tools developed for the tasks. The implementation of the quan-

tification process was done in a GUI based prototype software which can be developed into

a fully functional clinical package with minimal efforts. For an accurate, lengthwise com-

parison, another set of software tools were developed for the registration of subvolumes, and

transformation of the blood vessels derived from the CTA to CAC.

In order to validate our methods, we do lengthwise comparison of the calcium volume

obtained from CTA with calcium volume obtained from the intravascular ultrasound with

Virtual Histology TM (Volcano Corporation) (IVUS-VH). In addition, we also compare the

calcium volume obtained from the CAC to the IVUS-VH, and the volume obtained from the

CTA data set.

The IVUS-VH acquires a stack of 2D cross-sectional images from inside an artery and

lacks the knowledge of 3D Cartesian coordinates, while CAC is a 3D volumetric data set that

includes all the anatomical structures in the thoracic area. Therefore, to compare the calcium

obtained from the CT data we need to extract and align the arteries with the artery obtained

from the IVUS-VH images. In the following subsections, we also describe the alignments or

the registration done for the lengthwise statistical comparison of the calcium volume obtained

in these different modalities. The results from our experiment show that the proposed
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calcium quantification method using CTA outperformed the best calcium quantification by

using 0.5 mm CAC as compared to the IVUS-VH.

6.2 IVUS Image Acquisition and calcium quantification

In IVUS the images are reconstructed by acquiring the ultrasound waves reflected from

the artery wall and the surrounding tissues. A catheter travels through artery emitting

ultrasound waves which gets reflected from the arterial wall and the surrounding tissues.

The amplitude of the reflected waves are used to construct images of different layers of

the arterial wall. The frequency of the reflected waves are used to classify different tissue

components and different colors are assigned to these components with a technology called

Virtual Histology (VH) which is the trademark of Volcano Corporation, San Diego, CA,

USA. The white pixels shown in the figure are dense calcium, red ones correspond to the

necrotic core, light-green are fibrofatty and green are fibrous tissues. The particular frame in

figure 6.1 shows a highly calcified plaque which is found in an arterial wall in the proximity

to the lumen.

Figure 6.1 A frame of IVUS-VH showing an artery section with highly calcified plaque. The
white pixels are dense calcium, red ones correspond to the necrotic core, light-green are
fibrofatty and green are fibrous tissues.
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The IVUS-VH has been shown to analyze different components with very high predictive

accuracies. Nasu et al. demonstrated the accuracy of IVUS-VH by first obtaining IVUS-VH

images from inside the arteries and then by comparing the color-coded tissue components

in the images with actual histology of the plaque tissues obtained by a procedure called

directional coronary atherectomy [25]. The directional coronary atherectomy is a medical

intervention to remove the arterial blockage by cutting away the plaque tissue from inside

an artery. In another study by Nair et al. the IVUS-VH images were compared against the

histology of the plaque tissue obtained from the arteries cut from dead subjects [7]. Both

the studies reported the IVUS-VH to have a predictive accuracy of more than 96% for dense

calcium. Therefore, we use the IVUS-VH in our preliminary study (Chapter 3) as well as in

this chapter to assess the calcium quantification accuracy by using non-contrast-enhanced

CT (CAC) and the contrast-enhanced CTA scans.

IVUS-VH images were acquired in a IVUS-VH console with a catheter (Eagle Eye,

Volcano Corporation). A medication called Nitroglycerin was injected to enlarge the blood

vessels so as to facilitate the movement of the catheter. The catheter was advanced be-

yond the plaque area target for the study and automated pullback was done at a rate of

0.5 mm/sec. A medical doctor was asked to manually delineate the lumen contour and the

outer boundary of the arterial wall on the image. Then, the IVUS-VH console automatically

classified the plaque area in between the two contours into 4 plaque compositions, by an-

alyzing the reflected ultrasound signals using a principal component analysis (PCA)-based

algorithm [7].

Since, the resolution of each IVUS-VH frame and the distance between each frame are

known, the total calcium volume in each frame is obtained by multiplying the total calcified

area in frame with the resolution and inter-frame distance. The calcium volume (in mm3)

for each frame in an IVUS-VH image of the right coronary artery (RCA) of a patient is

shown in figure 6.2.
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Figure 6.2 Calcium volume for each frame in the right coronary artery. The distance of
each frame from the ostium of the coronary artery is shown as the x-axis. The blue dots
represents the actual calcium level in each frame.

6.3 Calcium quantification from the computed tomography (CT)

We performed a lengthwise comparison of the calcium volumes obtained from both the

contrast-enhanced and non-contrast enhanced CT scans with the IVUS-VH derived calcium

volumes. The lengthwise calcium quantification requires a complete extraction of artery,

centerline and the analysis of voxel intensities around the centerline. The method for calcium

quantification from the contrast-enhanced CTA is described in details in chapter 5 and

briefly summarized below. A manual method for calcium quantification from non-contrast-

enhanced CT (CAC) is presented in chapter 3. However, for a fair comparison of the calcium

quantification, we develop the automated calcium extraction from the non-contrast-enhance

CAC in this chapter. The automatic centerline and vessel extraction in the CAC is based

on the registration and transformation of vessels extracted from the contrast-enhanced CTA

as will be discussed in the subsequent subsections.

6.3.1 Automatic vessel extraction from the contrast-enhanced computed tomography

angiography (CTA).

Calcium quantification along the length of an artery required the complete extraction

of a desired branch of the artery. Automatic artery extraction is facilitated by the contrast-
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enhancement of the lumen. Therefore we used a geometry based approach to automatically

extract the arteries by using Frangi’s vesselness filter [76]. An experiment of different param-

eters selection for the filter is presented in chapter 4. Figure 6.3 (a) shows a right coronary

artery (RCA) extracted by applying the vesselness filter and by considering the largest

connected component. Figure 6.3 (b) shows the cerebral arteries extracted from Magnetic

Resonance Angiography (MRA) dataset. Few slices of the MRA are shown in figure (c - f)

where the bright structures are the portion of arteries visible in the particular slice. The

MRA was obtained from the IXI MRI public dataset [108].

In chapter 4, we also found that the squared magnitude of eigenvalues of Hessian of

the distance transform provides a very good response to the centerline of an object. Fast

marching method [91] was then used to extract the centerline of a desired branch in between

the user specified points. A user interface for selection the endpoints of an artery branch

was developed. The extracted centerline of all the branches are shown along with the vessels

in figure 6.3.

The geometry based filters extracts only the lumen since the parameters were specifically

tuned for the contrast intensity range and the diameters. Calcified plaques may not be

large enough to analyze the geometry and are usually excluded as noisy structures. In

order to include all possible structures including the arterial wall and any calcifications, we

morphologically dilate [58] the centerline uniformly along the length of a desired branch. We

used a spherical structural element of radius 3mm as it included all of desired artery section

without including any extra-arterial calcification. We also used morphologically dilated

centerline to segment out lumen, wall, calcified plaques, and the surrounding tissue which is

presented in chapter 6. For the segmentation purpose we used a dilation radius of 5mm as

it provided a better statistical analysis of the voxel intensities.
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(a) (b)

(c) (d) (e)

(f)

Figure 6.3 Vessels and centerline extracted from a cardiac CT and a brain MRA. (a) Different
branches of the RCA with the corresponding centerlines. (b) Different branches of the
cerebral arteries the corresponding centerlines. (c, d, e, f) Some of the slices of the MRA
used for extracting the cerebral vessels and the centerlines. The arteries appear as the white
spots in each slice.
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6.3.2 Automatic vessel extraction from the non-contrast-enhanced computed tomog-

raphy (CAC)

Due to the small size of the arteries and no contrast enhancement in the CAC, we

extracted the arteries manually by annotating the centerpoints in the visible sections of

the artery, smoothing the centerpoints, and then by morphologically dilating the smooth

centerline. In this chapter, however, we compare the calcium quantification obtained in

the contrast-enhanced CTA and the non-contrast-enhanced CAC. Therefore we, registered

subvolume from the contrast-enhanced CTA with a subvolume extracted from the non-

contrast-enhanced CAC and used the registration parameters to transform the automat-

ically extracted centerline in the CTA to obtain a corresponding centerline in the CAC.

The centerline was then dilated to include an artery region for further analysis in the non-

contrast-enhanced CAC.

The subvolume registration were performed in 2 steps of manual landmark based rough

alignment and an automatic non-rigid registration. A landmark point such as artery branch

location or the ostium of an artery were identified in both subvolumes which was used to

translate the non-contrast-enhanced CAC subvolume to match the contrast-enhanced CTA

subvolume. The subvolume in CTA was extracted manually to included all the desired vessels

and is the same subvolume used in the automatic extraction of artery by using the vesselness

filter. A software tool was developed for manual landmark selection. Since, the contrast-

enhanced and non-contrast-enhanced CT are acquired at different time instances, the beating

of heart can introduce non-linear differences in the position of arteries captured. Hence

the subvolumes were also registered using non-rigid registration method for an accurate

transformation of the vessel centerline.

6.3.3 Calcium quantification from contrast-enhanced CTA

The calcium quantification from CTA is made difficult by the contrast enhancement

of the lumen which raises the intensity range of the lumen thereby occluding some of the

low-density calcium. In chapter 5 we developed an adaptive cutoff threshold and probability
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based method to accurately quantify both the high-density as well as low-density calcium

along the length of an artery from the CTA which we validate by comparing with the IVUS-

VH derived calcium volume. We encourage the readers to refer to chapter 5 for the details

of the method.

For comparing with the IVUS-VH derived calcium volume, we obtained 2 different

types of calcium quantifications from the morphologically dilated artery voxels in the CTA

dataset. First, the calcium was quantified by using a fixed cutoff threshold obtained from

the probability density function (PDF) of the voxel intensity histogram. The method for

obtaining cutoff in CTA is described in chapter 5. A similar method for the non-contrast-

enhanced CT is discussed in this chapter in the following section and illustrated in figure 6.5.

Lets refer to the calcium quantified by using this method CTAhigh. The cutoff threshold is

shown by the label “B” in figure 6.4 (a). Any intensity above this cutoff is quantified as

calcium. Each dot in the figure represent a voxel intensity and the red curve is the maximum

intensity along the length of an artery.

In another method we considered an adaptive cutoff threshold which is different along

the length of an artery as shown by the label “A” in figure 6.4 (a). Any voxel with intensity

above this threshold is high density calcium. We used the peakF it algorithm developed

in chapter 5 for calculating the adaptive cutoff threshold. The adaptive cutoff threshold

was then used by the calcHigh algorithm to quantify high-density calcium as discussed in

chapter 5. The low-density calcium shown in the green shaded region were also considered

in this method. The probContrast, and the calcLow algorithms in chapter 5 were used for

the quantifying the low-density calcium. Finally the total calcium is obtained by adding the

high-density calcium to the low-density at each position of the artery. Let us refer to the

total calcium as CTAall. It can be noted from figure 6.4 (a) that the CTAhigh discards most

of the low-density calcium shown by the shaded green region.



124

20 40 60 80 100 120 140

300

400

500

600

700

800

900

1000

1100

1200

A
B

(a)

20 40 60 80 100 120 140

200

400

600

800

1000

1200

P

Q

R

P

Q

R

(b)

Figure 6.4 Different calcium quantification methods in the non-contrast-enhanced CT, and
the contrast-enhanced CTA. Each dot represent the voxel intensity of an artery plotted along
the length of an artery. The red curve in each plot represent the maximum intensity along
the length. Figure (a) is the intensity plot for artery extracted form CTA. The label “A”
represents the adaptive cutoff developed in chapter 5. Any intensity above “A” are high-
density calcium. The shaded region are the regions of low-density calcium. Figure (b) is the
intensity plot for artery extracted from CAC. The label “P” is the optimal threshold of 226
HU derived from chapter 3, the label “Q” is individual cutoff threshold for a patient derived
from the profile of an artery, and “R” is the conventional threshold of 130 HU unit.
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6.3.4 Calcium quantification from non-contrast-enhanced CAC

In chapter 3 we studied the quantification accuracy of the 0.5mm and 3.0mm slice-

thickness reconstructions of the non-contrast enhanced CT (CAC) by comparing them with

the IVUS-VH calcium volumes. We found that the 0.5mm slice-thickness reconstruction

provided better quantification than the 3.0mm reconstruction in terms of different statistical

parameters. We also suggested that the cutoff should be increased from the conventional

threshold of 130 HU to 226 HU to achieve the optimal quantification. Therefore, in this

chapter we consider only the comparison of 0.5 mm CAC with the CTA and IVUS-VH

scans.

After transformation of the CTA centerline, and its morphological dilation to include

voxels around the artery, we used 3 different types of calcium quantification in the non-

contrast-enhanced CAC dataset. First, the conventional threshold of 130 HU was used which

is labeled “R” in figure 6.4 (b). Second, an optimal cutoff threshold of 226 HU developed in

chapter 3 was used which is labeled “Q” in figure 6.4 (b). Finally, we quantified the calcium

by using an individual cutoff threshold derived from the voxel intensity distribution of each

artery. This is labeled “P” in figure 6.4 (b). Lets refer to the calcium quantified by these

three methods as CAC130, CAC226, and CACind respectively.

−400 −200 0 200 400 600 800 1000 1200

Figure 6.5 The PDF estimation of a non-contrast-enhanced CAC by using Parzen window
method. The asterisk at the right end is the cutoff developed by finding a point at which
the curve starts to flatten.

The last cutoff threshold differed not only across different patient, but also across dif-
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ferent arteries. We do not need a lengthwise adaptive cutoff threshold in the non-contrast-

enhanced CAC because unlike the contrast-enhanced CTA the intensity distribution of the

lumen does not taper along the distal end of the artery. This can be observed by compar-

ing figures 6.4 (a) and (b). To find the individual cutoff threshold the probability density

function (PDF) of the voxel intensities in an artery was estimated by using the Parzen win-

dow [98] method. The PDF estimated for an artery is shown as the red curve in figure 6.5.

The calcium voxels appears as a shallow tail on the right-most end of the PDF curve. A

cutoff point as shown by the black asterisk in figure 6.5 can then be found by calculating

the first derivative of the PDF and find the right-most point at which the PDF has required

amount of flatness. The cutoff point labeled “P” in figure 6.4 (b) correspond to the cutoff

indicated by the asterisk in figure 6.5. This method of cutoff estimation from the PDF is

also used in the CTA as a preprocessing step and discussed in detail in chapter 5.

Table 6.1 summarizes a total of 5 different types of calcium quantification considered

for comparing to the calcium quantified from IVUS-VH.

Table 6.1 Different calcium quantification methods considered to compare with the IVUS-VH
derived calcium volume lengthwise.

Method CT Type Description

CTAhigh CTA High-density calcium.
Only the intensities above “A” in figure 6.4 (a).

CTAall CTA High-density and low-density calcium.
Also includes the calcium in the shaded regions in figure 6.4 (a) .

CAC130 CAC Conventional cutoff threshold of 130 HU.
All the intensities above “R” in figure 6.4 (b).

CAC226 CAC Optimal cutoff threshold derived in chapter 3.
All the intensities above “Q” in figure 6.4 (b).

CACind CAC Individual cutoff threshold derived from the PDF of voxel intensities.
All the intensities above “P” in figure 6.4 (b).
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6.3.5 Registration of CT with the IVUS-VH for calcium comparison

For a slice-by-slice comparison of calcium volume in the CT and IVUS, these two dif-

ferent modalities should be registered lengthwise at a very fine level. The two different

modalities are difficult to align because IVUS-VH provides a very detailed resolution from

the interior of an artery while in CT the smallest voxel that can be captured is only 0.5mm

in side. Further difficulty in registration is added by the fact that in an IVUS-VH we do

not have the 3D geometry information of a pixel with respect to an anatomical location.

The lengthwise calcium quantifications obtained from the CT volume, the voxels assigned

to a centerline location may not necessarily correspond to the frame-by-frame pixels of the

IVUS-VH.

Previous studies in computed tomography (CT) and IVUS registration were done specif-

ically for the contrast-enhanced CTA only. Leber et al. for example, registered CT vessel

with IVUS by visual comparison by looking at landmarks such as side branches in order to

study the accuracy of 64-slice CT in classifying and quantifying plaque volume [59]. Mar-

quering et al. matched IVUS and CTA data manually along the longitudinal views, and

semi-automatically registering segmented vessel contours in 2D cross-sectional views [60].

More recently, Qian et al. registered CTA images obtained from 64-slice CT with IVUS/VH

by simulating the CTA image from IVUS/VH, and by using mutual information based reg-

istration algorithm [61]. All of these works used contrast enhanced CTA volumes. Different

from the previous works, we developed a general 2-step process for registering both non-

contrast-enhanced CAC and the contrast-enhanced CTA with the IVUS-VH dataset. In the

first step we manually perform the visual alignment of the straight vessel views extracted

from the IVUS-VH and the CT scans and in the second step we align the calcium curves

directly by panning and adjusting the data location.

The manual registration by visually comparing the straight vessel view of the non-

contrast-enhanced CAC and the IVUS-VH is discussed in chapter 3. The same process of

straight-vessel view extraction and alignment by comparing the landmark is also applicable

for the contrast-enhanced CTA. In the following subsection we discuss the automatic curve



128

alignment done after the manual alignment process.

Automatic calcium curve alignment In chapter 3 we achieved the curve alignment

manually by panning one of the curves and its points sideways to match the peaks of the

other. Since the manual process can introduce errors, we use an automatic curve alignment

in this chapter for aligning lengthwise calcium quantification obtained from chapter 5 with

the IVUS-VH derived calcium curve. The alignment of the curve is based on maximizing

correlation by sliding a curve on top of another and by realigning the points to different

x-axis location to match the target curve. This automated method for curve registration is

known as correlation optimized warping (COW) [109]. The COW algorithm registers two

curves piecewise by a panning a source, also known as the moving curve over a target curve

to maximizes the correlation coefficient between the two. It is similar to manually panning a

curve and its points but can be controlled with factors such as maximum horizontal panning

thus enabling a fair comparison across different datasets.

Figure 6.6 (a) shows the calcium quantification of the RCA obtained from the IVUS-VH

frames and the CTA by using the methods discussed in chapter 5. The red curve is obtained

from the IVUS-VH image and treated as the stationary or the target curve. In both IVUS-

VH and CTA the quantification was done in an interval of 0.5 mm. In order to improve

the accuracy of comparison the calcium were first smoothed by summing at an interval of

3.0 mm length as shown in figure 6.6 (b), and finally the COW algorithm was applied to

maximize the correlation coefficient between the two curves. The registered curves are shown

in figure 6.6 (c). The same process is applied for comparing non-contrast enhanced (CAC)

and the IVUS-VH derived calcium curves.

A similar curve registration was also performed for comparing the lengthwise calcium

quantification from non-contrast-enhanced CAC and contrast-enhanced CTA. Therefore

comparing the CAC and CTA was done after 3 different registration steps.
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Figure 6.6 Correlation optimized warping for aligning the calcium curves automatically. The
red-curve is the calcium quantified from IVUS-VH frames and the blue one is from the CTA
volume. Figure (a) shows unregistered curves, (b) shows the smoothing by summing the
calcium volume at an 3.0 mm interval for increasing accuracy of comparison and (c) shows
the alignment of the curves by applying the correlation optimized warping (COW) algorithm.
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6.4 Statistical analysis

We compared 5 different quantification methods in the contrast-enhanced and the non-

contrast-enhanced CT by conducting linear regression analysis and calculated the correlation

coefficients (r) with the calcium volumes derived from IVUS-VH. These 5 different methods

are outlined in table 6.1. Considering the IVUS-VH calcium volume data as ground truth,

sensitivity (sens), specificity (spec), positive predictive value (PPV ) and negative predictive

value (NPV ) assessment were done for each of the 5 quantification methods. In our case,

the true positive (tp) is the total number of slices having calcium in both CT and IVUS-VH,

the true negative (tn) is the total number of slices without calcified plaques in both the

modalities, false positive (fp) is the total number of slices having calcium in the CT but

not in the IVUS-VH , and false negative (fn) is the total number of slices having calcium

in IVUS-VH images but not in CT . Then, the statistical measures are defined as,

sens =
tp

tp+ fn
, (6.1)

spec =
tn

tn+ fp
, (6.2)

PPV =
tp

tp+ fp
, (6.3)

NPV =
tn

tn+ fn
. (6.4)

A high value for each of the statistical measures are desired for better accuracy. A

compound index based on the correlation coefficient, sensitivity, specificity PPV, and NPV is

constructed to compare the accuracy of 5 different quantification methods. Existing methods

such as the F1-score combines only the precision and recall [110] which are equivalent to the

PPV and the sensitivity in our case. The F1-score takes the harmonic mean of sensitivity

and PPV and given by,

F1 =
2.PPV.sens

PPV + sens
(6.5)
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We construct a similar metric by taking the harmonic mean of the sens, spec, PPV ,

and NPV as follows,

HM =
4.sens.spec.PPV.NPV

spec.PPV.NPV + sens.PPV.NPV + sens.spec.PPV + sens.spec.NPV
(6.6)

Then a compound index is constructed by putting equal weight on the correlation co-

efficient r and the harmonic mean HM as follows.

M = r ×HM (6.7)

Other parameters were also measured for comparing the five different quantification

methods. The Bland-Altman analysis [52] was used to find the mean difference in the

calcium volume reported by CT and IVUS-VH. For better accuracy a low mean difference

is desired since the actual amount of calcium in a patient should be reported same by both

the imaging modalities. The total overestimation of calcium by each method was compared

with respect to the IVUS-VH. The overestimation or the underestimation are not desired as

it can re-assign a patient into a different risk category.

6.5 Results and Discussion

12 patients (8 M and 4 F, age: 60± 8.5) undergoing all three of 0.5 mm isotropic non-

contrast-enhanced CAC, contrast-enhanced CTA, and the IVUS-VH were studied. Isotropic

CAC was obtained using the conventional CAC imaging protocol with no increase in radiation

dose. Imaging parameters included: prospective volumetric mode with a tube voltage of 120

kV, tube current of 100 - 550 mA, 0.5 mm detector width. Images were reconstructed using

0.5 mm slice thickness. CTA was acquired prospectively using 60 to 80 ml of intravenous

iodinated contrast followed by 30 ml of normal saline flush. Imaging parameters were: tube

voltage was 100-120 kV, tube current was 100550 mA, and reconstruction slice thickness

was 0.5 mm. IVUS-VH image acquisition and calcium quantification was done in selected
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vessels with intermediate to severe diseases as discussed in section 6.2. The isotropic CAC

and CTA were registered with IVUS-VH using the 2-steps registration method discussed in

section 6.3.5 and the calcium quantification obtained by methods outlined in table 6.1 were

compared with the registered IVUS-VH slice-by-slice calcium volume. The calcium volume

in the thinner slices were added to obtain volumes of 3.0mm artery sections along the artery

length. This is illustrated in figure 6.6 (a) and (b) for an artery. Thus a total of 528 calcium

volumes from each CT and IVUS-VH were obtained for comparison.

Table 6.2 shows the comparison of these five quantification methods with respect to the

statistical measures discussed in section 6.4. The method of calcium quantification is given

in the first column. Second column is the CT scan type either contrast-enhanced (CTA)

or the non-contrast-enhanced (CAC) from which the quantification was obtained. Third

column is the correlation coefficient. Columns 4−7 are the sensitivity, specificity, PPV, and

NPV respectively. Column 8 is the harmonic mean of these four measured obtained by using

equation 6.6, column 9 is the final metric obtained by combining the correlation coefficient

and the harmonic mean by using equation 6.7. Column 10 gives the overestimation or

underestimation of the calcium as compared to the IVUS-VH calcium quantification. A value

of overestimation greater than 1 is overestimation and less than 1 indicate underestimation

of the calcium volume. A value close to 1 is desired for optimal calcium quantification.

The last column is the difference in calcium quantification obtained by using Bland-Altman

analysis.

Table 6.2 Comparison of five different calcium quantification obtained from the non-contrast-
enhanced, and the contrast-enhanced CT by validating against the IVUS-VH slice-by-slice
calcium volume.

Method Type r sens spec PPV NPV HM M overest diff. (HU)

CTAhigh CTA 0.70 0.68 0.92 0.76 0.89 0.80 0.56 1.04 0.12 ± 4.34

CTAall CTA 0.76 0.70 0.88 0.77 0.85 0.79 0.60 2.01 -1.64 ± 8.04

CAC130 CAC 0.78 0.95 0.32 0.89 0.56 0.56 0.44 3.50 -5.25 ± 15.11

CAC226 CAC 0.76 0.82 0.60 0.78 0.65 0.70 0.53 2.47 -1.45 ± 10.54

CACind CAC 0.74 0.85 0.57 0.81 0.64 0.70 0.51 2.65 -1.79 ± 12.01
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Table 6.2 shows that the metric constructed by combining all the statistical measures is

highest (0.59) for the calcium quantification obtained from the contrast-enhanced CTA by us-

ing the method CTAall. The calcium quantification method considers both the high-density

as well as low-density calcium quantification in the vicinity of the high-density calcium. The

high-density calcium are based on the adaptive cutoff threshold and the low-density calcium

are quantified based on the probability of calcium in the neighborhood of high-density cal-

cium. Different algorithms are developed for this calcium quantification include the peakF it,

calcHigh, probContrast, and calcLow algorithms which are discussed in chapter 5. This

method has the very low difference range of −0.23± 3.65HU and the amount of calcium is

close to the IVUS-VH level with and underestimation factor of only 0.96.

CTAhigh which considers only the high-density calcium quantification is the next best

method in our ranking. However, since it does not consider the low-density calcium, it

underestimates the total calcium volume with a factor of 0.52 and the correlation coefficient

is lower than that of the calcall. CAC130 has the highest correlation coefficient. However

this conventional method of calcium quantification from non-contrast-enhanced CAC with

the fixed cutoff threshold of 130 HU has an unacceptable specificity of 0.26. The combined

metric of r×HM , NPV, overestimation factor, and the difference range are also the worst of

all the methods. As indicated by our preliminary study, increasing the threshold of the 0.5

mm CAC to 226 HU (the CAC226 method) improved the statistical measure and provided the

best quantification among the non-contrast-enhanced quantification method. The individual

cutoff threshold based on the probability density function (PDF) of an artery follows very

close to the CAC226 in most of the statistical parameters.

Based on different statistical parameters discussed in section 6.4, our method of calcium

quantification from the contrast-enhanced CTA dataset by considering both the high-density

and low-density calcium was the most accurate and reliable method for calcium quantifica-

tion among all the methods considered. Among the non-contrast-enhanced quantification

methods, the quantification done with the cutoff threshold of 226 provided the best results.

A comparison of the best CAC and CTA methods are shown in figure 6.7. The figures on
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the left shows the linear regression of the lengthwise CT calcium volume with the slice-by-

slice IVUS-VH calcium volume. The figures on right show the Bland-Altman analysis of the

calcium quantification. Each point in the figure represents calcium volume in a 3.00 mm

long section of CT or IVUS.

We also compared the calcium quantification by CAC with respect to the calcium quan-

tified with the CTA. We had a total of 23 patients with CTA and CAC data out of which

4 were excluded due to noise or artifact. For example, figure 6.8 shows the CTA dataset

with high noise and stent which is a metallic mesh inserted to support a weak artery from

inside the artery. Therefore we compared a dataset of 19 patients (13 M, 6 F, age: 58± 9).

Three major arteries, right coronary artery (RCA), left anterior descending (LAD), and left

circumflex (LCX) arteries were chosen from the automatically extracted set of arteries in

CTA. The arteries extracted were registered to obtain corresponding arteries from CAC as

discussed in section 6.3.4 and further calcium curve alignment was done for a fair comparison

by using curve registration as discussed in section 6.3.5. Some of the arteries with higher

registration errors were excluded from comparison resulting in a total of 1701 slices at 3mm

interval for comparison.

A comparison of all the CAC quantification methods with the CTAall method is shown in

table 6.3. The CAC226 method for calcium quantification by using the fixed cutoff threshold

of 226 HU was closest to our calcium quantification method by using the contrast-enhanced

CTA based on different statistical measures shown in the table . The linear regression and

bland-Altman analysis between the two methods is shown in figure 6.9.

Table 6.3 Comparison of 3 different calcium quantification obtained from the non-contrast-
enhanced with the calcium quantification obtained from the CTA by using the CTAall
method.

Method Type r sens spec PPV NPV HM M overest diff. (HU)

CAC130 CAC 0.80 0.48 0.93 0.44 0.94 0.62 0.49 1.59 -5.19 ± 25.77

CAC226 CAC 0.83 0.79 0.91 0.87 0.84 0.85 0.70 1.14 -0.71 ± 15.28

CACind CAC 0.82 0.69 0.92 0.78 0.89 0.81 0.66 1.34 -2.01 ± 19.18
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Figure 6.7 (a) Linear regression analysis, and the Bland-Altman analysis of the calcium
quantification obtained from CTA by using the calcall method with the calcium obtained
from IVUS-VH. (b) Linear regression analysis, and the Bland-Altman analysis of the calcium
quantification obtained from CAC by using the calc226 method with the calcium obtained
from IVUS-VH. Only 2 methods among the 5 method considered are shown as these provided
the best quantification for CTA and CTA.
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(a) (b)

Figure 6.8 Examples of some CTA data excluded from comparison. (a) CT volume with
high noise and (b) with a stent in the Left Anterior Descending (LAD) artery shown by the
red ellipse.
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Figure 6.9 A comparison of calcium quantification between CAC by using the CAC226 method
and CTA by using CTAall method.
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In this section we validated different calcium quantification obtained from the contrast-

enhanced CTA by using 2 different methods and from the non-contrast-enhanced CAC by

using 3 different methods against the IVUS-VH derived calcium volumes. Both the CAC

and CTA had a reconstruction slice thickness of 0.5 mm. The comparison was done at a very

detailed level of 3.0mm artery length sections in terms of correlation coefficient, sensitivity,

specificity, npv, ppv, calcium overestimation, and difference range in quantification. We

found that the calcium quantification done by considering both the high-density as well as

low-density calcified voxels from the contrast-enhanced CTA had the highest accuracy of all

the methods. The accuracy was found to be better than that of the non-contrast-enhanced

CAC by using different cutoff thresholds.

In order for the quantification to be accurate it is important to quantify the low-density

calcium in the periphery of high-density calcium. The low-density calcium usually have their

intensity range overlapped with the intensity range of the contrast material flowing in the

lumen and hence is difficult to be identified. A complete method for calcium quantification

based on an adaptive cutoff threshold for high-density quantification and a probability based

method for quantifying low-density method has been developed in chapter 5.
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CHAPTER 7

SEGMENTATION BY USING THE EXPECTATION-MAXIMIZATION

ALGORITHM

In this chapter we develop a method to segment the morphologically dilated voxels ob-

tained in chapter 5 to high density calcium, high probability contrast region, artery wall,

and the surrounding myocardial tissue. The method is based on the combination of our

high-density calcium extraction algorithm discussed in chapter 5 and the expectation max-

imization (EM) algorithm [26] which calculates the probability of each voxel belonging to

one of the possible classes of tissue considered. The described method of segmentation ac-

curately separates high-density calcified plaque and the artery lumen from the background

myocardial tissue and is useful in the visualization of the calcium, lumen and any narrowing

or stenosis of the lumen. First, we describe the EM algorithm in the following section and

the use of EM algorithm for tissue segmentation is subsequent section.

7.1 The Expectation-maximization (EM) algorithm

The Expectation-Maximization (EM) algorithm developed by Dempster et al. [26] esti-

mates the probability density function (PDF) of an observed random variables as a sum of

the PDFs of underlying components. The number of components should be specified as an

input, and the PDFs of the components are usually assumed to be of a parametric form such

as Gaussian, Poisson distribution etc. The application of EM algorithm is appropriate for

segmentation in our case for two reasons. First, we know the number of tissue components

in a selected subvolume of the CTA. The majority of voxels in the segmented and dilated

arteries are either contrast filled lumen or the surrounding tissue including arterial wall and

the myocardial tissue. Hence the intensity profile of the artery can be modeled as a mixture

of (PDFs) for each of the tissue components. Second, the EM algorithm returns the mem-
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bership probability of a voxel to each class of tissues instead of “hard” assignment to the

classes. Due the limited resolution, different tissue types can be captured in a single voxel in

a CTA. Therefore, for a segmentation of low resolution structures such as coronary arteries

a “soft” clustering approach of the EM algorithm is preferred.

In the next two sections, we briefly describe the derivation of the EM algorithm and

formulate its application to our problem of separating tissue types in a morphologically

dilated subvolume of a CTA. For a complete and detailed analysis of the EM algorithm,

please refer to Dempster et al. [26].

7.2 The Expectation Maximization (EM) algorithm

Let X = {x1, x2, ...., xN} be a set of the observed arterial HU intensity values in a desired

subvolume of the CTA, then we need to find functions that are most likely to generate the

observed data X. Assuming the functions can be described in terms of some parameters θ,

the total likelihood of the data being generated from the functions can be written as,

L(θ) =
∑
z

P (X,Z|θ) (7.1)

where Z is set of the two classes that are most likely to generate each data point xi.

P (X,Z|θ) is the joint probability of the observed data X and the unobserved or latent

variable Z. The joint probability and the corresponding likelihood function can be expanded

as follows,

L(θ) =
∑
z

P (X|Z, θ)P (Z|θ), (7.2)

where P (X|Z, θ) is the probability density function (PDF) of observed data given a partic-

ular class and P (Z|θ) is the probability of occurrence of each class. The sum of probability

over all classes gives the total probability. Equation 7.2 describes the PDF of observed data

as the linear mixture of the PDF of each class weighted by P (Z|θ).

The EM algorithm finds the parameters (θ) that maximize the log-likelihood function
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(l(θ)) by applying the Expectation or E-step and the Maximization or M-steps alternatively.

The function l(θ) is the logarithm and the lower bound of the likelihood function L(θ).

Therefore, the maximization of L(θ) may be replaced by the maximization of l(θ). The

E-step in each iteration calculates the following conditional likelihood given the current

estimates of the parameters (θ(t)),

l(θ|θ(t)) =
∑
z

P (Z|X, θ(t))lnP (X,Z|θ), (7.3)

The idea of the E-step or the equation 7.3 is to calculate the log-likelihood of the data at

each step. However, since the new parameters are unknown, equation 7.3 finds the expected

or the average log-likelihood over the classes Z given the observed data X and the current

parameter estimate θ(t). Representing this conditional expectation as EZ|X,θ(t) , equation 7.3

can be written as,

l(θ|θ(t)) = EZ|X,θ(t)(lnP (X,Z|θ)). (7.4)

The M-step finds a new set of parameters (θ) that maximizes the log-likelihood l(θ|θ(t)) at

each iteration step,

arg max
θ
l(θ|θ(t)). (7.5)

The EM algorithm is started by guessing an initial set of parameters. The E-step finds

the conditional expectation and the M-step finds a new set of parameters to maximize

the expectation. The algorithm maximize the likelihood incrementally and is guaranteed

to converge. The likelihood function can have multiple local maxima and the parameter

estimation can stop at a local maximum without giving the optimal result. In practice, the

convergence to the global maximum can be checked by applying the EM multiple times with

different random parameters [26].
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7.3 EM algorithm formulation for the arterial tissue separation

The latent variable Z = {z1, z2, ..., zN} in our case represent the three different classes

of voxels. In the next section we provide a discussion that the assumption of 3 components

after the removal of high-density calcium and low-intensity lung voxel provides optimal

segmentation. Hench, for each xi in X, the corresponding zi ∈ Z represents the membership

of xi to one of the classes zi = 1, zi = 2 or, zi = 3. For simplicity, we will assume the PDFs

of all the classes follow Gaussian distribution. Therefore, the probability that the observed

variable X is generated from these classes are,

P (xi|zi = k) = N (xi;µk, σ
2
k), k ∈ {1, 2, 3} (7.6)

where,

N (xi;µk, σ
2
k) =

1√
2πσ2

k

e−
1
2
(x−µ
σ

)
2

, (7.7)

µk and σ2
k are the mean and covariance of Gaussian functions corresponding to the class

k ∈ {1, 2, 3}. Then the E-step becomes,

l(θ|θ(t)) =
N∑
i=1

2∑
k=1

P (zi = k|xi, θ(t)k )lnP (Zk|θ)P (xi|zi = k|θk), (7.8)

Since the current parameter estimates θ(t) is a known quantity, the membership probability

P (zi = k|xi, θ(t)k ) can be calculated by using the Bayesian rule as follows,

P (zi = k|xi, θ(t)k ) =
P (xi|zi = k, θ

(t)
k )P (Zk|θ(t)k )∑2

k=1 P (xi|zi = k, θ
(t)
k )P (Zk|θ(t)k )

, (7.9)

where P (xi|zi = k|θ(t)k ) = N (xi;µ
(t)
k ), σ

2(t)
k . The quantity P (Zk|θ(t)k ) represents probability of

occurrence of each class. Since we have three distinct classes of voxels the following equation

holds true for the probability,
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3∑
k=1

P (Zk|θ(t)k ) = 1. (7.10)

Let P (Z1|θ(t)k ) = λ1, P (Z2|θ(t)k ) = λ2 and, P (Z3|θ(t)k ) = λ3. Since, the λ is

also an unknown parameter, the E-step begins by guessing the parameters θ(t) =

(µ1, σ
2
1, µ2, σ

2
2, µ3, σ

2
3, λ1, λ2, λ3), and calculates the membership probabilities Mi,k = P (zi =

k|xi, θ(t)k ) from the current parameter estimates at each step. The M-step finds a new set

of parameters that maximize the equation 7.8. Substituting Mi,k = P (zi = k|xi, θ(t)k ),

P (xi|zi = k|θk) = N (xi;µk), σ
2
k, and P (Zk|θk) = λk, the equation 7.8 can be written as,

l(θ|θ(t)) =
N∑
i=1

3∑
k=1

Mi,k(lnλk + ln(
1√

2πσ2
k

e−
1
2
(x−µ
σ

)
2

)). (7.11)

By setting the partial derivatives ∂l(θ|θ(t))
∂µk

, ∂l(θ|θ
(t))

∂σk
, and ∂l(θ|θ(t))

∂λk
to 0, the M-step finds the

new parameters that maximize equation 7.11 as follows,

µ
(t+1)
k =

∑N
i M

(t)
i,kxi∑N

i M
(t)
i,k

, (7.12)

σ
2(t+1)
k =

∑N
i M

(t)
i,k (xi − µ(t+1)

k )2∑N
i M

(t)
i,k

, (7.13)

λ
(t+1)
k =

1

N

N∑
i

M
(t)
i,k . (7.14)

The EM algorithm starts with an initial guess of parameters θ(0) = (µ
(0)
k , σ

2(0)
k , λ

(0)
k ) and

alternates between E and M step until the difference θ(t+1) − θ(t) is small enough. The

difference may be determined empirically.
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7.4 Application of the Expectation-maximization (EM) algorithm for arterial

segmentation

We apply the EM algorithm to the morphologically dilated centerline obtained from

section 5.2.2 in chapter 5. Since the centerline was dilated to include 4 different types of

tissues, viz., the lumen, calcium, arterial wall, and the myocardial tissue, we can assume 4

different components in applying the EM algorithm. However, assumption of a parametric

density function for the calcium often introduce inaccuracy as the frequency of calcified

voxels is variable and is typically much less compared to the voxels of other tissues. In some

cases, the dilation also includes a small portion of lung voxels which appears separately in

the left part of the profile and can be another source of inaccuracy. Therefore we remove

the calcium and the lung tissues and apply EM assuming 3 components.

−500 0 500 1000 1500
(a)

−200 0 200 400 600
(c)

−1000 −500 0 500 1000
(b)

−200 0 200 400 600
(d)

Figure 7.1 EM algorithm applied assuming different numbers of underlying Gaussian com-
ponents. (a), (b) 4 Gaussian components. (c), (d) 3 Gaussian components after the removal
of high-density calcium and the low intensity lung tissues.
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Figure 7.1 (a), and (b), show the EM algorithm applied for 4 different components

assuming Gaussian distribution for each. The green curve is the sum of all component and

the overall estimate of the probability density function of all the voxels. The black curves

represent the first 3 components, and the red is the component corresponding to calcium. As

can be observed from both (a) and (b), the Gaussian component for calcium expands across

the entire profile. The fourth Gaussian component in the figure does not resolve calcium

accurately as the calcified voxels occur only within higher intensity range. Furthermore, the

frequency of calcium is typically less compared to other tissue and it is difficult to assume any

parametric model for the calcium. Nonetheless, we have developed a method for accurately

quantifying calcium in the preceding sections. Therefore, we remove any high density calcium

voxels with intensities greater than the cutoff Y mean + 2.5 × sd, where sd is the standard

deviation of the peak contrast intensity and Y mean is the mean peak contrast intensity

calculated by using the peakF it algorithm described in chapter 5.

−200 0 200 400 600
(b)

−200 0 200 400 600
(a)

Figure 7.2 EM algorithm applied assuming 2 Gaussian components is not accurate for seg-
menting the contrast.

Figure 7.1 (b) shows a first Gaussian component centered near the −500HU which

appears due to the inclusion of a small portion of lung voxels. Since the lung mostly contains

air, it has a low attenuation value and appears black in the CT scan with large negative HU

values. To remove the lung tissue we use a fixed threshold of −200 HU such that any voxels

below this threshold are removed. After removal of any high-density calcium and the lung

tissues, we apply the EM by assuming 3 Gaussian components. Figure 7.1 (c), and (d) shows
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the application of EM for 3 Gaussian components after removing the high-density calcium

and the lung voxels from figures (a), and (b) respectively. The first 2 components do not

always separate the myocardial tissue and the arterial walls completely but are required for

accurately resolving the third component. For example, figure 7.2 (a) and (b) shows the EM

algorithm for the same profiles of figure 7.1 (a), and (b) but considering 2 components only.

In both profiles and all of the CTA profiles of our data set 3 components provides a better

fit and in most of them the arterial wall and myocardial tissues are resolved fairly accurate.

The segmentation of each component on the CTA slice are visualized in figure 7.3, which

shows different sections of a right coronary artery (RCA) and a section of the left main artery.

The blue area in the segmentation corresponds to the contrast or the lumen, the dark green

regions surrounding the blue lumen correspond to the arterial wall, the light green region are

the myocardial tissue voxels included in the dilation and red regions correspond to calcium.

Figure 7.3 (a) shows the RCA branching out from the Aorta, (b) shows a cross section of a

highly-calcified region in the RCA, (c) shows a narrowed portion or stenosis in the artery;

the wall in this section appears to be thickened probably due to deposition of non-calcified

plaque, (d) shows a normal segment of the RCA, (e) shows the left main artery with some

calcification, and (f) shows the magnified view of the calcified section in (b). The high-

density calcium voxels seen as bright-red in the magnified view were obtained by applying

the cutoff from the peakF it algorithm described in chapter 5. Since the low-density calcium

surrounds the high-density calcium as shown in the surface plot in figure 5.10, we obtained

the low-density calcium voxels by using the 8-connected neighbors of the high-density calcium

voxels. Any low-density voxels overlapping with high-probability arterial wall, or contrast

components obtained from the EM algorithm were removed. The low-density calcium voxels

can be seen as light red voxels surrounding the high-density calcium in figure 7.3 (f).

Figure 7.4 shows the visualization of the segmented artery by using the ray casting

method [68]. The semi-transparent outer layer is the dilated portion of the artery including

both the myocardial tissue and the arterial wall. The blue solid region in the center is

the contrast or the lumen and the red patches are the high-density calcium. There are
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(a) (b) (c)

(d) (e) (f)

Figure 7.3 Segmentation done by applying the EM algorithm and the peakF it algorithm
described in chapter 5. Blue component in the center is the lumen, red is calcium, dark green
surrounding the lumen is the arterial wall, and light green on the periphery is myocardial
tissue. Figure (a) shows RCA branching out from the Aorta, (b) a highly-calcified region
in the RCA, (c) a stenosis in the artery (d) a normal segment of the RCA, (e)the left main
artery with some calcification, and (f) magnified view of the calcified section in (b).
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few possibilities for improvement to the segmentation. For example, the accuracy of the

segmented lumen can further be increased by combining the EM segmentation with geometry

based approaches such as the Frangi’s method [76] discussed in chapter 4. Also, a very

accurate centerline of the artery can be extracted by applying our centerline extraction

algorithm discussed in chapter 4 to the segmented lumen. Based on the distance of a voxel

from the centerline, the low-density calcium can be separated more accurately from the

lumen. We plan to address these in our future works.

Figure 7.4 Visualization of the segmented artery by using the ray casting method. The
inner solid region is the lumen and the red patches are the high density calcium. The outer
semi-transparent layer consists of both myocardial tissue and the arterial wall.
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CHAPTER 8

SUMMARY AND FUTURE WORKS

In this dissertation we studied the coronary artery calcium quantification by using

contrast-enhanced computed tomography angiography (CTA). The CTA constructs a volu-

metric images of an anatomical region of a body based on the attenuation of x-ray passed

through the body. The CTA procedure is done by injecting a patient with a dye known as

contrast material. The dye is opaque to x-ray and therefore helps to visualize the blood flow

path such as artery and different chambers of heart which otherwise are not readily visible.

Therefore, CTA is performed to assess the morphology of the arteries in order to rule out the

blockage or abnormalities in the artery. The CTA is done in conjunction with another scan

for measuring the total coronary artery calcium (CAC) which does not involve any contrast

dye injection. Calcium quantification is an important clinical procedure as the presence of

calcium in the coronary arteries is highly indicative of the presence or the future risk of

coronary artery diseases. The CTA itself is not suitable for assessing a particular calcium as

the contrast material has attenuation value similar to some of the low-density calcium. As a

result, the intensity range of some of the calcium and contrast range overlap with each other

thus resulting in inaccurate calcium quantification. We developed an accurate method for

calcium quantification from the contrast-enhanced CTA thus obviating the need for a scan

done solely for quantification of the calcium. As a result, the total time required for the CT

scan procedure and the patient’s exposure to x-ray radiation is reduced.

In chapter 3 of the dissertation, we compared the calcium quantification accuracy of 0.5

mm slice thickness and 3.0 mm slice thickness reconstructions width from the non-contrast-

enhanced CAC scan by comparing against the intravascular ultrasound with radiofrequency

analysis of backscatter data (IVUS-VH). We studied the effect of different cutoff thresholds

in the accuracy of calcium quantification and found a range of thresholds that are optimal for
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quantification in both the 3.0 mm and 0.5 mm slice thickness volumes. Although the 3.0 mm

slice thickness reconstruction, and the cutoff threshold of 130 HU are used conventionally

for calcium quantification, our result showed that the 0.5 mm with higher cutoff thresholds

provides better quantification accuracy. The results in this work can be clinically useful

in deciding an appropriate threshold for calcium quantification. Although our method of

calcium quantification from CTA provides a better accuracy than both of the CAC based

quantification, the 0.5 mm reconstruction width can be implemented in clinics until calcium

quantification from the CTA becomes a practice.

In chapters 4, and 5 we develop the methodologies for extracting calcium from a desired

vessel in a CTA volume. In chapter 4 we implemented a method to extract artery information

by analyzing their shape using eigenvalues of the Hessian matrix. Then, eigenvalues of

Hessian was also used to find the centerline by first finding the distance transform on the

interior of the extracted artery. The centerline extracted in chapter 4 was used for finding a

set of voxels located at its certain distance (3 to 5 mm). These voxels were then analyzed

statistically for finding an appropriate cutoff threshold for quantifying high-density calcium

in chapter 5. Algorithm for finding low-density calcium in the vicinity of high-density calcium

was also developed. The total calcium was then the sum of both high-density and low-density

calcium.

In chapter 5 we also presented the software developed for quantification of calcium

in contrast-enhanced CTA. The software was developed for facilitating the automatic and

manual extraction of arteries from CTA and CAC, visualizing, registering the CTA, CAC

and IVUS-VH, and for quantifying calcium in the CTA as well as CAC. With minimal effort

the software can be scaled to a fully working clinical application for calcium quantification.

However, IVUS-VH produces acoustic shadow behind the lining of dense calcium which

may result in an inaccurate quantification of calcium. The IVUS-VH uses sound wave re-

flected from different tissue to construct their image. The sound wave emitted from the

IVUS-VH catheter may not penetrate the calcium lining in the arterial wall and the tis-

sue underneath the calcium lining appears as a dark area in the IVUS-VH image known as
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the acoustic shadow. The possible under-estimation of calcium volume due to the shadow

might be another factor contributing to the apparent over-estimation by CT quantification

of calcium. Other limitations of the study may be due to the manual extraction of vessels

and manual registration using visual alignment and curve panning. The manual steps might

alter the accuracy of calcium quantification and registration.

In chapter 6 we validated our calcium quantification method against the calcium quan-

tified from the IVUS-VH images by comparing the calcium volumes on a slice-by-slice ba-

sis. The proposed calcium quantification method from CTA outperformed the best calcium

quantification by using 0.5 mm CAC as compared to the IVUS-VH thus making our method

preferable to the conventional method of calcium quantification using non-contrast-enhanced

CT scan.

In chapter 7, we used the expectation maximization method for segmenting the dilated

region around centerline into lumen, artery wall, and the myocardial tissue. The method

first used the algorithm developed in chapter 5 to exclude all the high-density calcium in

order produce an accurate segmentation of the remaining tissues.

Therefore in this dissertation, we study the quantification accuracy of conventional

methods from the CAC, developed a method to accurately quantify calcium from CTA thus

contributing to an accurate quantification of calcium which is very important for better risk

assessment of a patient. Since the CTA based quantification was found to be more accurate

than the CAC based quantification, the first phase of scan can be eliminated, thus reducing

time, and most importantly the radiation exposure in performing the scans. The software

tools developed for the dissertation can serve as a prototype for developing a full clinical

application. In addition, we also developed an algorithm for segmenting the calcified plaque,

lumen, artery wall and the surrounding tissue, which in general can be applied for separating

any tissue types.

Topics of future interest include, further refinement of segmentation developed in chap-

ter 6. For instance, the geometry based vessel extraction done in chapter 4 can be combined

with the expectation maximization based segmentation to delineate lumen. The algorithms
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developed can also be extended to quantify and segment non-calcified plaques as the resolu-

tion and image quality of the CTA improves in future.

One of the limitations of the current study is the validation by using IVUS-VH. IVUS-

VH produces acoustic shadow behind the lining of dense calcium and may result in an

inaccurate quantification of calcium. Therefore, further improvement in the quantification

accuracy may be achieved by using machine learning technique to quantify calcium based on

the spatial distribution of calcium learned from actual histological study. Another limitation

could be due to the number of data available for validation. Although we have tried to curb

the problem by extracting multiple slices from a single artery, a larger validation study is

desirable for better predictability.
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