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ABSTRACT 

In addition to acting in synaptic transmission, neurotransmitters have been shown to play 

roles in the development of nervous system. Developing neurons extend neurites to connect to 

their target cells, and growth cones at the tip of growing neurites are critical for pathfinding. 

Although evidence for the regulation of axonal growth and growth cone guidance by 

neurotransmitters and neuromodulators is emerging, less is known about the mechanisms by 

which neurotransmitters affect developing neurons. Here, I focus on three neurotransmitters/ 

neuromodulators and describe their actions (a) at the level of growth cone, especially on 

filopodia, which serve as sensors that allow growth cones to probe the environment they are 

traversing, and (b) on how neurotransmitters modulate neuronal electrical properties, which, in 

itself, have been shown to affect neurite extension. The goals of this dissertation are to 



 
 

investigate 1) the cholinergic modulation of neuronal activity and its effects on growth cone 

motility; 2) the excitatory modulation of neuronal excitability by nitric oxide (NO); and 3) the 

inhibitory modulation of neuronal activity by dopamine (DA). 

 The work uses a well-established model system to investigate growth cone motility and 

neuronal activity: identified neurons from the pond snail Helisoma trivolvis studied in cell 

culture or in the intact ganglion in situ. The study of B5 neurons demonstrates that acetylcholine 

(ACh) induces filopodial elongation, which is mediated by opening of nicotinic ACh receptors, 

membrane depolarization, and elevation of intracellular Ca level in growth cones. This 

dissertation also shows that NO inhibits two types of Ca-activated K channels to depolarize the 

membrane potential of B19 neurons. Additionally, the study reveals that DA serves as an 

inhibitory neurotransmitter to hyperpolarize and silence the electrical activity of firing B5 

neurons via a D2-like receptor/PLC/K channel pathway. Taken together, this dissertation 

elucidates novel cellular mechanisms through which neurotransmitters can regulate growth cone 

motility and neuronal electrical properties, further supporting evidence for potential roles of 

neurotransmitters in axon pathfinding and synaptic transmission in vivo. 

 

INDEX WORDS: Acetylcholine, Calcium, Cell excitability, Dopamine, Electrical activity, 

Filopodia, Growth cone, Helisoma trivolvis, Membrane potential, Nicotinic acetylcholine 

receptor, Nitric oxide, Potassium channel  
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CHAPTER 1   GENERAL INTRODUCTION 

1.1 Specific aims of dissertation 

The goal of this dissertation is to examine the effects of three critical neurotransmitters 

and neuromodulators, acetylcholine (ACh), nitric oxide (NO), and dopamine (DA) in the 

regulation of two aspects of neuronal development, growth cone motility and neuronal 

excitability. Moreover, this dissertation aims to characterize the intracellular signaling pathways 

and the membrane channel targets that mediate the effects. The research uses cultured neurons 

isolated from the freshwater pond snail Helisoma trivolvis as a model system. A brief summary 

for the specific aims is listed below. 

 

Specific Aim 1 (Chapter 2): How does ACh regulate neuronal activity and growth cone 

motility? 

In addition to acting as a classical neurotransmitter in synaptic transmission in the 

nervous system, ACh has been shown to play roles in developing neurons such as axonal growth 

and growth cone guidance (Lauder and Schambra, 1999; Phillis, 2005). However, neither the 

functions of ACh at the level of the growth cone nor the underlying mechanisms by which ACh 

affects growth cone filopodial dynamics have yet been fully understood. Moreover, electrical 

activity has been shown to regulate cell growth (Neely and Nicholls, 1995; Ming et al., 2001), 

but a comprehensive study of how cholinergic modulation of neuronal electrical activity may be 

linked to growth cone motility is presently lacking. Therefore, the present study tests the 

hypothesis that ACh regulates growth cone motility and approaches the question at the cellular 

and electrophysiological level. These experiments provide insights in the role of cholinergic 

modulation in neuronal pathfinding and/or synaptogenesis. 
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Specific Aim 2 (Chapter 3): How does NO modulate neuronal excitability of Helisoma B19 

neurons? 

Previous studies in our lab identified nitric oxide (NO) as an important regulator for 

growth cone motility and cell excitability in Helisoma B5 neurons (Trimm and Rehder, 2004; 

Artinian et al., 2010), where NO acted on various ionic conductances to regulate membrane 

properties (Artinian et al., 2010; Artinian et al., 2012). What we do not know is whether NO 

serves as a general neuromodulator acting on many cells, or if the actions of NO are limited to 

smaller subsets of neurons. Considering its physical location in the vicinity of NO-releasing 

neurons inside the buccal ganglion and its contribution to feeding motor patterns, known to be 

regulated by NO (Susswein and Chiel, 2012), I tested the modulatory role of NO on the electrical 

activity of another buccal neuron, B19. In particular, I wanted to investigate potential membrane 

channel targets of NO and determine whether the effects of NO on buccal neurons B5 and B19 

would be the same or different. An understanding of the effects of NO on the level of identified 

neurons would provide further evidence for NO being a crucial regulator with the potential to 

affect feeding behavior.  

 

Specific Aim 3 (Chapter 4): How does DA elicit effects on neuronal activity? 

The study of DA in modulating the electrical excitability of individual neurons to elicit 

various behaviors is of great interests in many systems. The fact that buccal neuron B5 

innervates the esophagus and is surrounded by dopaminergic processes (Perry et al., 1998) raises 

the questions whether DA modulates the electrical activity of B5 neurons to exert functions in 

feeding. If so, what are the membrane targets and intracellular signaling mechanisms underlying 
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the effect of DA? Such a demonstration would help dissect and understand the role of DA in 

regulating neuronal development and controlling feeding behaviors. 

Taken together, this dissertation addresses the roles of ACh, NO, and DA in regulating 

neuronal membrane properties and growth cone motility in two identified neurons. Moreover, it 

characterizes the intracellular signaling cascades activated by these 

neurotransmitters/neuromodulators in mediating their effects. It also identifies the membrane 

channel targets affected by these neuromodulators. Therefore, through the modulatory effects on 

the electrical activity, the release of ACh, NO, and DA in vivo may affect various processes of 

neuronal development and regulate the neuronal output of neural circuits in the nervous system. 

1.2 Neuronal growth cones 

Our nervous system consists of trillions of neurons interconnected into a variety of neural 

networks. The correct pattern of these intrinsic circuits is critical for the proper function of the 

nervous system and appropriate behaviors being produced. Formation of a functional neural 

circuit requires the precise execution of a sequence of developmental events starting from cell 

proliferation, neuronal differentiation, cell migration, growth cone formation, growth cone 

pathfinding and axon guidance, dendritic growth, synaptic target selection, to synaptogenesis 

(Waites et al., 2005; Colon-Ramos, 2009). With the full awareness of every step playing crucial 

roles during neuronal development, I will be only focusing on one step, growth cone pathfinding, 

in this dissertation, and try to promote our understanding of the underlying mechanisms how 

growth cones are regulated by the neurotransmitters/neuromodulators ACh, NO, and DA.  
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1.2.1 Growth cone structure and function 

During the development of nervous system, axon guidance is one of the key steps to build 

correct connections between a neuron sending out an axon, tipped with a growth cone at the 

leading edge, and a target neuron (Tessier-Lavigne and Goodman, 1996). The growth cone of 

developing or regenerating neurons constantly samples the environment it traverses in search for 

extracellular cues. These extracellular cues act on membrane receptors or intracellular targets in 

growth cones, activate signaling cascades, and change the cytoskeleton, through which the 

growth cone will be guided towards its target area and/or build a synaptic connection (Salie et al., 

2005; Shen and Cowan, 2010). Problems in the connectivity between neurons resulting from 

miswiring or even a lack of connectivity are associated with a variety of neurological disorders 

like epilepsy, autism, and schizophrenia (Mitchell, 2011; Mitchell, 2011).  

Growth cones were first described by Spanish neuroscientist Santiago Ramon y Cajal, 

who won the Nobel Prize in Physiology or Medicine in 1906 for his contribution to help 

understand the structure of the nervous system. He described the growth cone based on fixed 

chick embryonic tissues as ‘a concentration of protoplasm of conical form, endowed with 

amoeboid movements’ (Cajal, 1890). From then on, the structure of the growth cone and its 

associated functions in the nervous system became major interests in the field of developmental 

neuroscience.  

The growth cone is highly motile ‘fan-shaped’ structure at the tip of growing neurite. It 

consists of the following three major components [Fig. 1.1]:  

Central domain, the thick region located in the center of the growth cone closest to the neurite 

enclosing bundled microtubules;  
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Lamellipodium, the thin peripheral region surrounding the outer edge of the growth cone 

containing mainly the actin-based cytoskeleton;  

Filopodia, fine ‘finger’ like projections of the growth cone composed of bundles of actin 

filaments (Lowery and Van Vactor, 2009).  

 

Figure 1.1 Phase contrast images of a cultured neuron with growth cones. 

An entire growing Helisoma B5 neuron is imaged with a 20X objective (left). The enlarged 

growth cone shows the 3 major domains of a growth cone: the central domain, the lamellipodium, 

and the filopodia (right, 100X objective). 
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The more stable microtubule-based central domain contains vesicles and organelles and 

supports the rapidly growing growth cone and the extension of neurites. The actin-based 

filopodia act as sensors on growth cones and are important in growth cone motility and axon 

pathfinding (Kater and Rehder, 1995). Filopodia are extremely dynamic, and can form, elongate, 

and retract within minutes, or even seconds (Durkaya et al., 2009; Durkaya et al., 2009). Growth 

cones without filopodia lose their ability of pathfinding. A study of Xenopus retinal neurons 

showed that cytochalasin B-treated growth cones lacked filopodia but maintained active 

lamellipodia (Chien et al., 1993). These growth cones were found to continue to advance but 

made navigational errors when approaching normal turning points along their paths (Chien et al., 

1993). This result emphasizes the importance of filopodia in guiding the growing neurite. Once 

growth cones reach the target area, filopodia again play critical roles in building the first contact 

with the target cell before synapse formation (Shen and Cowan, 2010). Because this dissertation 

focuses on the modulation of growth cone motility during neuronal pathfinding, before the event 

of synaptogenesis, I will next introduce how growth cone pathfinding is achieved by various 

guidance cues. 

1.2.2 Guidance cues elicit growth cone pathfinding 

Growth cones respond to a variety of guidance cues they encounter in the environment by 

changing growth cone motility and structure (Dent et al., 2011). Through this mechanism, a 

growth pathway is determined. Guidance cues are released from certain neurons or tissues and 

are processed by the activation of membrane receptors in growth cones, resulting in the initiation 

of intracellular signaling cascades to activate appropriate growth cone behaviors.  Generally, 

these guidance cues can be divided into the following two groups based on their functions 

(Lowery and Van Vactor, 2009). 
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1) Adhesive cues. This type of cue is expressed on the cell surface of glial cells or neurons, 

where the growing axons encounter transmembrane cell adhesion molecules, such as cadherins 

(Wanner and Wood, 2002). They can also be assembled as part of the extracellular matrix, such 

as laminin (Evans et al., 2007; Maness and Schachner, 2007). The main function of adhesive 

cues is to serve as physical substrate to allow cell attachment and axon extension.  

2) Chemotropic cues. They are essential for giving directional information and steering the 

travelling growth cone. Based on their ability to induce positive or negative turning responses, 

they are further grouped into chemoattractive cues and chemorepulsive cues. Chemotropic cues 

include a large pool of neurotrophic factors, neurotransmitters, secreted transcription factors, etc 

(Lowery and Van Vactor, 2009; Shen and Cowan, 2010). Here I highlight a few well-studied 

chemotropic cues to explain their actions in inducing growth cone turning behaviors.  

The neurotrophin nerve growth factor (NGF) is long established as a chemoattractive cue, 

in addition to its roles in cell differentiation, maintenance, survival and morphogenesis of certain 

neurons (Snider, 1994), thanks to the historical study by Viktor Hamburger and Rita Levi-

Montalcini (Cowan, 2001). Sensory neurons of dissociated dorsal root ganglion (DRG) from 

chick embryos extend their axons towards a gradient of NGF (Letourneau, 1978). In vivo study 

showed that the sympathetic target innervation is absent in neonatal NGF knockout mice 

(Glebova and Ginty, 2004), further supporting the importance of NGF in sympathetic axon 

growth and target determination. Both the low-affinity NGF receptor p75 and the high-affinity 

receptor TrkA are shown to be involved in the NGF-induced positive turning response in the 

growth cone of chick DRG neurons (Gallo et al., 1997). 

Semaphorins are known as chemorepulsive cues, which repel the axons of sensory 

neurons by causing collapse of the growth cone (Luo et al., 1993). The main receptors for 
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semaphorins are plexins. Axons of DRG and hippocampal neurons from Plexin-A3 knockout 

mice are resistant to the repulsive response induced by Sema3 (Cheng et al., 2001). In addition, 

hippocampal afferent projections in Plexin-A3 knockout mice are defective, and end up in an 

inappropriate terminal region (Cheng et al., 2001). 

Netrins are a family of proteins secreted by axonal target cells, which impact the growth 

cones of neurons in the developing nervous system. Interestingly, they can induce either 

attractive or repulsive responses depending on the receptors that netrins interact with (Moore et 

al., 2007). The deleted in colorectal cancer receptor in mice (UNC-40 in C. elegans) is expressed 

in the axons of trochlear motor neurons and mediates netrin-1-induced positive turning, thereby 

directing the axonal growth away from the ventral midline (Li et al., 2008). On the other hand, 

the interaction between UNC-6, a netrin-1 homolog in C. elegans, and its UNC-5 receptor will 

repel growing axons (Jarjour et al., 2003).  

1.2.3 Intracellular calcium signals mediate growth cone turning 

Once guidance cues bind to their membrane receptors in growth cones, a number of 

intracellular signaling cascades will be initiated, which translate the information of guidance 

cues into the meaningful changes at the level of growth cone cytoskeleton. Within the large pool 

of intracellular second messengers, calcium (Ca) plays a central role, because the signaling 

elicited by a variety of environmental cues converges on Ca signals (Henley and Poo, 2004; 

Zheng and Poo, 2007). The concentration of intracellular Ca ([Ca]i) is important to regulate 

growth cone motility and neurite outgrowth. An increase in filopodial length, reduction in 

filopodial number, and slow down of neurite extension speed have been reported when [Ca]i is 

elevated globally in growth cones (Cohan and Kater, 1986; Kater et al., 1988; Rehder and Kater, 

1992). More interestingly, spatially restricted [Ca]i signals mediate growth cone turning 



9 
 

behaviors (Gomez and Spitzer, 2000). A high [Ca]i gradient across the growth cone (200 nM) 

leads to attractive turning, whereas a relatively low [Ca]i gradient (100 nM) causes repulsive 

turning in cultured Xenopus spinal neurons (Henley et al., 2004). Moreover, an elevation of [Ca]i 

causes growth cone repulsion, normally induced by myelin-associated glycoprotein (MAG), to 

become attractive turning (Henley et al., 2004), further supporting the essential role of Ca signals 

in growth cone turning behaviors. 

How is the [Ca]i regulated in growth cones? One of the major pathways is Ca influx via 

membrane channels and receptors permeable to Ca. Voltage gated Ca channels (VGCCs), L-type 

channels in particular, are obvious sources contributing to the elevation of [Ca]i in growth cones. 

Electrical stimulation of neurons causes Ca influx through instantly opening VGCCs to affect 

growth cone [Ca]i (Torreano and Cohan, 1997).  Additionally, a long list of membrane channels 

and receptors, including transient receptor potential (TRP) channels (Wang and Poo, 2005), 

glutamate receptors (Zheng et al., 1996), and nicotinic acetylcholine receptors (nAChRs) (Zheng 

et al., 1994), allow Ca influx and have been demonstrated to regulate axon pathfinding.  

Another major pathway for [Ca]i elevation is Ca release from internal stores. The 

endoplasmic reticulum (ER) contains inositol triphosphate receptors (IP3Rs) and ryanodine 

receptors (RyRs), which control the release of Ca intracellularly (Berridge, 1998; Berridge et al., 

2003; Jiang et al., 2010). Depletion of internal Ca stores by thapsigargin or the inhibition of Ca 

release from RyRs using a high concentration of ryanodine abolishes the MAG-induced 

repulsive turning (Henley et al., 2004), suggesting that Ca release from internal stores is 

necessary for MAG signaling.  

Interestingly, some guidance cues involve both sources of Ca to elicit their effects on 

axon pathfinding (Henley and Poo, 2004). A Netrin-1 gradient elevates [Ca]i to result in positive 
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turning of the growth cones in cultured Xenopus neurons (Ming et al., 1997). Further study 

revealed that the reduction of Ca signals by either blocking Ca influx or inhibiting Ca release 

leads to the switch of netrin-1-induced turning from attraction to repulsion (Hong et al., 2000). 

Taken together, [Ca]i plays key roles in mediating growth cone responses to various environment 

cues. Through the fine spatiotemporal regulation of Ca signals in growth cones, guidance cues 

will elicit their effects on growth cone steering behaviors. 

1.2.4 Cytoskeletal mechanism of growth cone filopodial dynamics  

The sensory structures of the growth cone, filopodia, are essential for growth cone 

motility and are highly sensitive to intracellular Ca signals. Global elevation of [Ca]i leads to 

filopodial elongation followed by a massive loss of filopodia (Rehder and Kater, 1992). The 

asymmetrical elongation of filopodia in growth cones induced by localized Ca signals underlies 

growth cone turning (Gomez et al., 2001). The converging cytoskeletal targets of all intracellular 

second messengers in growth cones are actin filaments and microtubules. Whereas microtubules 

contribute to the neurite extension rate, filopodial dynamics are primarily determined by the 

changes in actin (Lowery and Van Vactor, 2009). Polymerization of filamentous actin (F-actin) 

will cause the initiation and elongation of filopodia (Mattila and Lappalainen, 2008).  

The identification of cytoskeleton-related proteins that link intracellular second 

messengers to the growth cone cytoskeleton is of interest to the field. Small GTPases of the Rho 

superfamily are one of the key players that regulate the actin cytoskeleton. Within this family, 

CDC42 is particularly important in the formation of filopodia (Ridley, 2006). The Ca/CaMKII-

induced activation of CDC42 stimulates neuronal Wiskott-Aldrich Syndrome protein to induce 

actin filament nucleation and branching in a ARP2/3 complex-dependent manner (Carlier et al., 

1999; Zhou et al., 2013). RhoA, another major Rho GTPase, can also be stimulated by the 
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Ca/CaMKII pathway, which in turn activates downstream signaling of ROCK/LIM 

Kinase/cofilin, leading to actin depolymerization to inhibit growth cone motility (Yanyi et al., 

2010; Chen et al., 2011; Sit and Manser, 2011; Xue et al., 2013). Moreover, actin-binding protein 

ENA/VASP, localized at the leading edge of the filopodia, functions to enhance filopodia 

formation via its anti-capping activity of actin filament barbed ends (Bear et al., 2002). The 

protein profilin promotes actin polymerization by forming profilin-actin complexes to be added 

into growing actin polymers (Li et al., 2008). In contrast, cofilin, the actin severing protein, is 

involved in actin depolymerization (Yang et al., 1998). Taken together, cytoskeletal changes 

induced by guidance cues and mediated by intracellular second messengers and cytoskeleton-

binding proteins will finally lead to the changes of growth cone motility.  

1.3 Electrical activity 

Neurons are the most diverse cell type in the brain. They interconnect and, most 

importantly, communicate with each other. For example, the sensory neurons translate 

environmental signals, like touch on your hand, into electrical signals, which are interpreted 

centrally and result in the control of the movement of the hand in response to the touch. 

Therefore, by using electrical signals, neurons manage to rapidly and precisely conduct 

information over long distances, which is crucial for maintaining regular brain functions.  

 Electrical signals are coded by the frequency and pattern of action potentials (APs), 

which propagate within a neuron while transferring information from one location to another 

(Bean, 2007). A large number of ion channels and receptors, membrane-spanning proteins 

permeable to different ions depending on the channel and receptor type, are known to be 

important for the generation and propagation of the AP (Armstrong and Hille, 1998).  
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1.3.1 K channel overview 

K channels are membrane proteins present in virtually all types of cells, where they are 

involved in a variety of physiological functions (Sandhiya and Dkhar, 2009). Generally, the 

opening of K channels causes hyperpolarization of the membrane potential and dampens 

neuronal excitability by allowing rapid and selective flow of K ions across the cell membrane, a 

process essential for controlling neuronal excitability (Coetzee et al., 1999). In the nervous 

systems, K channels are subjected to the modulation by a variety of neurotransmitters (Harris-

Warrick et al., 1998; Sakurai et al., 2006). 

There are four major classes of K channels: voltage gated K (Kv) channels; Ca-activated 

K channels; inwardly rectifying K (Kir) channels; and two-pore domain K (TASK) channels. Kv 

channels are purely sensitive to the transmembrane voltage. During APs, Kv channels contribute 

to the repolarization phase and help in returning the depolarized cells to a resting condition. Ca-

activated K channels are highly sensitive to intracellular Ca. Increases in [Ca]i will lead to the 

opening of these channels. Kir channels pass current in the inward direction, unlike most K 

channels with outward currents. TASK channels are also known as leak K channels and 

primarily function in the maintenance of the resting membrane potential. 

1.3.1.1 Kv channels 

Kv channels are composed of four identical subunits, and each subunit contains six 

transmembrane domains. Mainly two types of purely voltage gated K channels, delayed rectifier 

K channels and transient outward (A-type) K channels, have been identified (Sakakibara et al., 

2005).  

Delayed rectifier K channels mediate slowly-inactivating or non-inactivating K currents, 

which are slowly activated by membrane depolarization and mainly contribute to the plateau 
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phase of repolarization of the APs (Blaine and Ribera, 2001). They are highly sensitive to 

tetraethylammonium (TEA) chloride, and blockade of delayed rectifier K channels significantly 

broadens the AP waveform (Berdan and Easaw, 1992). In the auditory MNTB principal neurons, 

the Kv3 current is inhibited in postsynaptic neurons by physiological release of NO, which 

allows for the modulation of neuronal excitability and synaptic efficacy (Steinert et al., 2008).  

A-type K channels conduct fast activating and rapidly inactivating K currents, which start 

to be activated at more negative membrane potentials compared to the delayed rectifier K 

channels. Therefore, A-type K channels not only participate in the initial repolarization of the AP 

(Staras et al., 2002) but also are involved in the regulation of spike frequency (Kang et al., 2000). 

Elimination of an A-type K current mediated by the Kv4 channel significantly shortens the 

latency to the first spike in response to depolarizing current injection in developing granule cells 

(Shibata et al., 2000). 4-aminopyridine (4AP) is a prominent blocker of A-type K channels.  

1.3.1.2 Ca-activated K channels 

A rise in cytosolic Ca activates a large family of K channels, namely Ca-activated K 

channels. They are found to regulate firing properties of neurons in a wide variety of cell types 

throughout the central nervous system (Faber and Sah, 2003). Two major Ca-activated K 

channels, large conductance (BK) and small conductance (SK) channels, have been identified at 

the molecular level.  

BK channels, initially being cloned from Drosophila (Adelman et al., 1992), have a large 

unitary conductance (100 to 300 pS). They are activated by both binding of cytosolic Ca and 

membrane depolarization. Pharmacological blockers include TEA in the micromolar range and 

iberiotoxin (IbTX) from the scorpion venom (Lee and Cui, 2010). The BK channel is composed 

of the pore-forming α subunit with a large C terminus and the modulatory β subunit. The β 
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subunit has been thought to modify the voltage dependence of activation and affect the Ca 

sensitivity of the channel (Wallner et al., 1999). Due to their sensitivity to the membrane 

potential, BK channels are activated during APs and contribute to the acceleration of AP 

repolarization (Jaffe et al., 2011; Scott et al., 2011). In addition, BK channels are responsible for 

the fast afterhyperpolarization (AHP), a fast hyperpolarizing potential following an AP. 

Treatment with low concentrations of TEA or IbTX blocks the fast AHP in many neurons (Shao 

et al., 1999).   

SK channels have a smaller unitary conductance (2 to 20 pS), which are solely activated 

by increases in intracellular Ca and are not sensitive to changes in membrane voltage (Stocker, 

2004). Multiple Ca-related proteins, including calmodulin, protein kinase CK2, and protein 

phosphatase 2A, are involved in the regulation of the Ca sensitivity of SK channels (Adelman et 

al., 2012). A wide range of neurotransmitters have been found to modulate SK channels via 

activation of protein kinases (Torres et al., 1996). A potent pharmacological inhibitor for the 

channel is the bee venon, apamin, the discovery of which significantly promoted our 

understanding of the structure and function of SK channels (Romey et al., 1984). The slow AHP 

mediated by SK channels is seen after a single AP in some cell types, but it has been more 

commonly observed after a train of APs (Hirst et al., 1985). The slow AHP functions to 

progressively reduce the AP frequency, a phenomenon called spike frequency adaptation, which 

in turn dampens the neuronal response to long-term excitation (Yen et al., 1999; Vandael et al., 

2012). 

AP waveform can determine the amount of Ca influx during each AP, whereas AP 

frequency acts as another parameter to determine the magnitude of Ca influx. Both Kv channels 

and Ca-activated K channels play major roles in the modulation of the AP waveform and spike 
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frequency and serve as ideal targets for various neurotransmitters and neuromodulators to affect 

cell excitability in the nervous system.   

1.3.2 Voltage gated Ca channels 

One of the determinants for intracellular Ca are VGCCs. A variety of Ca channels have 

been identified in the plasma membrane and are grouped into two categories based on their 

voltage sensitivity, high-voltage activated Ca channels and low-voltage activated Ca channels 

(Catterall, 2000). High-voltage L-type Ca currents are distinguished by a large unitary 

conductance and slow voltage-dependent inactivation. Low-voltage T-type Ca currents have a 

small unitary conductance and rapid voltage-dependent inactivation (Catterall, 2011). Both Ca 

currents have been characterized in gastropods and mediate physiological functions ranging from 

the control of synaptic transmission to the regulation of growth cone motility (Haydon and Man-

Son-Hing, 1988; Spafford et al., 2003; Spafford et al., 2006; Hui and Feng, 2008). 

As the main contributor to Ca influx, VGCCs play key roles in mediating the 

depolarization-induced changes in neurite elongation, growth cone motility and axon pathfinding 

(Mattson and Kater, 1987; Cohan, 1992; Zheng and Poo, 2007).  

1.3.3 Ligand gated ion channels 

In addition to voltage-gated ion channels, a large Cys-loop family of ligand-gated ion 

channels (LGICs) are activated by the binding of neurotransmitters (Le Novere and Changeux, 

1995) and function in chemical synapses to transfer information from one neuron to the other. In 

mammals, inhibitory glycine and GABAA receptors conduct anions that mediate membrane 

hyperpolarization, whereas excitatory 5-HT3 and nicotinic ACh receptors are selective for 

cations, and opening of these receptors leads to depolarization of the membrane potential (Jensen 

et al., 2005). The LGICs are composed of two different domains, an extracellular ligand-binding 
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domain providing an allosteric binding site, and a transmembrane domain, which forms the ion 

pore for ion selectivity. Each receptor exists as a pentameric complex, assembled either by the 

composition of five different subunits or from five copies of a single subunit (Clementi et al., 

2000). 

1.3.3.1 Ionotropic nicotinic ACh receptors 

The nicotinic ACh receptor (nAChR) was the first characterized LGIC. It was originally 

discovered at the neuromuscular junction, and these receptors were subsequently found 

throughout the nervous system (Phillis, 2005). Mammalian nAChRs have been extensively 

studied (Itier and Bertrand, 2001). Depending on the composition of the receptor subunits, 

nAChRs are in charge of a variety of physiological functions (Clementi et al., 2000). Some 

heteropentameric nAChRs composed of both α and β subunits are mainly permeable to Na and K, 

with a minimal Ca permeability. The Na influx via nAChRs causes a strong membrane 

depolarization. The change in membrane voltage in turn could open VGCCs to initiate 

downstream signaling cascades. nAChRs of the α3β2 type located in presynaptic terminal have 

been found to enhance the release of ACh (Jonsson et al., 2006). Some homopentameric nAChRs 

formed by the subunits α7 to α9 possess a high Ca permeability (Fucile et al., 2005). ACh can 

induce a significant increase in [Ca]i via activation of α7 nAChR homomers, and this receptor is 

found to be distributed in the rat hippocampus, amygdala, cerebral cortex (Seguela et al., 1993).  

ACh is known to serve as a chemoattractive cue for growing axons of Xenopus spinal 

neurons during neuronal development (Zheng et al., 1994). Moreover, nAChR α7 subunits have 

been found to be enriched in the growth cone of embryonic cortical neurons (Nordman and 

Kabbani, 2012). These results raise the possibility that ACh could be an important regulator for 

developing neurons. A dozen nAChR subunits have been cloned in the pond snail Lymnaea 
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stagnalis, a closely related species (van Nierop et al., 2005; van Nierop et al., 2006), although 

the functions of these receptors have yet to be characterized in the nervous system. Considering 

that nAChRs participate in the regulation of intracellular Ca and the exciting molecular evidence 

of nAChRs in gastropods, I propose a role for nAChRs in regulating growth cone motility in 

this dissertation. 

1.3.4 Metabotropic dopamine receptors 

Two distinct types of receptors mediate the action of various neurotransmitters. One type 

is the ionotropic receptor, which forms an ion channel pore, such as the LGICs mentioned above 

(Keramidas et al., 2004). The other type is the metabotropic receptor, a large group of G protein-

coupled receptors, such as muscarinic ACh receptors (mAChRs), GABAB receptors, and 

dopamine (DA) receptors (Kobilka, 2007). Ligand binding to the metabotropic receptor activates 

G-proteins, which in turn initiate intracellular second messenger cascades and indirectly regulate 

membrane excitability and channel activity. Depending on the specific G-protein type that is 

activated by the neurotransmitter, the output of G-protein-coupled effector systems could be 

either excitatory or inhibitory (Marinissen and Gutkind, 2001).  

DA receptors are such G-protein coupled receptors. They are grouped into 2 subtypes 

based on their ability to regulate adenylyl cyclase activity: D1-like receptors stimulate adenylyl 

cyclase via Gs, and D2-like receptors inhibit adenylyl cyclase via Gi (Sunahara et al., 1993; 

Beaulieu and Gainetdinov, 2011). In addition, some DA receptors have been found to activate 

PLC via Gq (Rashid et al., 2007). DA signaling is known to modulate a variety of ionic currents, 

including an A-type K current (Zhang et al., 2010), an inwardly rectifying K current 

(Kuzhikandathil et al., 1998), and a hyperpolarization and cyclic nucleotide gated (CNG) cation 

current (Harris-Warrick et al., 1998; Liss and Roeper, 2008). 
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In gastropods, DA has been shown to be an important neurotransmitter for the initiation 

and regulation of respiratory and feeding circuits (Magoski and Bulloch, 1999; Kabotyanski et 

al., 2000). Although DA signaling is known to involve a K conductance to modulate neuronal 

activity (de Vlieger et al., 1986), our understanding of how DA initiates second messenger 

cascades and which subtypes of membrane channels are under the control of DA signaling, are 

incomplete. Helisoma B5 neurons innervate the esophagus and participate in feeding behavior 

(Perry et al., 1998). Inside the buccal ganglion, B5 neurons are surrounded by dopaminergic 

processes (Quinlan et al., 1997). Based on the information collected from other molluscan 

systems, I am investigating whether DA regulates the electrical activity of B5 neurons to 

influence feeding behavior in Helisoma. Furthermore, a goal of this dissertation is to dissect the 

signaling pathway and membrane targets underlying the action of DA.  

1.3.5 Roles of electrical activity in early neuronal development 

With the knowledge that electrical activity is determined by a large number of ion 

channels and membrane receptors, it is not surprising to discover that electrical activity is 

involved in the regulation of many stages of neuronal development (Spitzer, 2006). Neural 

progenitor cells in the embryonic rat ventricular zone are depolarized by GABA and glutamate, 

which elevates intracellular Ca and, in turn, inhibits DNA synthesis to regulate neuronal 

proliferation (LoTurco et al., 1995). The activation of voltage gated Ca channels and NMDA 

receptors are required in the normal migration of postnatal mouse cerebellar granule cells 

(Komuro and Rakic, 1996). Neuronal differentiation is largely dependent on the correct 

expression of voltage gated ion channels to control the level of cell excitability (Moody, 1998). 

A G-protein coupled Kir channel has been implicated to be important in maintaining the 

membrane permeability for the normal differentiation of cerebellar granule cells (Patil et al., 
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1995). Moreover, appropriate specification of neurotransmitters in embryonic neurons is 

regulated by the development of Ca-dependent APs (Spitzer et al., 2004). Electrical stimulation 

of dissociated primary sensory neurons will promote the expression of tyrosine hydroxylase, an 

enzyme in dopamine synthesis, in a transcription-dependent manner (Brosenitsch and Katz, 2001; 

Brosenitsch and Katz, 2002). 

1.3.5.1 Electrical activity is important for growth cone motility and axon pathfinding 

Electrical activity has also been found to regulate migrating growth cones at the tip of 

growing neurites. Brief electrical stimulation would not only slow the advance of neurite 

elongation but also reduce the filopodial number in cultured Helisoma neurons (Cohan and Kater, 

1986). Moreover, electrical stimulation could influence growth cone steering induced by 

guidance cues (Ming et al., 2001). Ca signals seem to couple with electrical activity in mediating 

these effects, in which case extracellular Ca flows into the growth cones via ion channels, such 

as VGCCs (Nishiyama et al., 2011), CNG channels (Togashi et al., 2008), and TRP channels 

(Wang and Poo, 2005). Elevation of intracellular Ca would in turn result in changes in the 

cytoskeleton to affect growth cone behaviors. 

The importance of the membrane potential in growth cones has been convincingly 

demonstrated in axon pathfinding of developing Xenopus spinal neurons. The attractive cues 

netrin-1 and brain-derived neurotrophic factor (BDNF) depolarize growth cone membrane 

potential, whereas repulsive cues Sema3A and Slit2 cause hyperpolarization (Nishiyama et al., 

2008). During netrin-1-induced chemoattraction, L-type VGCCs are found to be directly 

modulated in axonal growth cones and largely contribute to the Ca elevation (Nishiyama et al., 

2003). Clamping the growth cone potential at a depolarized state would convert the Sema3A-

induced repulsion to attraction, further suggesting a causal relationship between membrane 
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potential and growth cone turning behaviors (Nishiyama et al., 2008). Interestingly, Ca signaling 

is involved in the Sema3A-induced hyperpolarization. CNG channels, Ca-conducting cation 

channels activated by cyclic nucleotides, have been found to be present in Xenopus spinal 

neurons, and Ca influx via these channels is required for the growth cone repulsion induced by 

Sema3A (Nishiyama et al., 2008). 

In addition to those conventional ion channels involved in the regulation of growth cone 

behaviors, TRP channels have been suggested to play an unexpected role in axonal growth 

(Gomez, 2005). TRP channels are non-selectively permeable to cations including Ca (Clapham, 

2003). Depending on the type of TRP channel, they can be activated by intracellular signaling 

via PLC, DAG, or even mechanical stretch of the membrane. TRP channels allow Ca influx near 

the resting membrane potential, which make them good candidates for elevating the [Ca]i inside 

growth cones (Talavera et al., 2008). In fact, they are found to mediate BDNF-induced positive 

turning in the growth cone of Xenopus spinal neurons (Li et al., 2005). In addition to their Ca 

permeability, the membrane depolarization introduced by TRP channels will be further amplified 

via activation of VGCCs. Both Ca channels and TRP channels have been implicated to 

contribute to the netrin-1-induced chemoattractive turning of Xenopus growth cones (Wang and 

Poo, 2005). Study in intact animals showed that TRP channels are required for the correct axon 

guidance of commissural interneurons at the midline in the developing Xenopus spinal cord 

(Shim et al., 2005). These data strengthens the notion that the membrane potential is a critical 

mediator for guidance cues to elicit their effects at the growth cone level.   

1.4 Helisoma trivolvis as an ideal model system 

Molluscan nervous systems were established as valuable model systems to study 

neurobiology-associated questions. They have following advantages: 
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1) Distinctive organization of the nervous system with a relatively small number of neurons. 

2) Large identifiable neurons. Some neurons are sized 100 μm in diameter, ten times larger 

than average mammalian neurons. 

3) Easy for neuronal isolation and culture in vitro, allowing to study cell growth at the single 

cell resolution 

4) Specified circuitry responsible for behaviors such as feeding, simple forms of learning, 

etc. 

These advantages pose opportunities for researchers to perform experiments in cellular, 

molecular, physiological, and behavioral neuroscience. Dr. Alan Hodgkin and Dr. Andrew 

Huxley won the Nobel Prize in Physiology or Medicine in 1963 for their work revealing ionic 

mechanism of action potentials on the squid giant axon. Dr. Eric Kandel was awarded for the 

Nobel Prize in 2000 for his work furthering the understanding of cellular and molecular 

mechanisms of memory formation using the sea slug Aplysia californica.  

In the 1970s, Dr. Stanley B. Kater brought Helisoma trivolvis, a pond snail, into the 

laboratory, and since then, Helisoma has quickly become a model for studying neuronal 

development and neurophysiology. Dr. Don Murphy wrote an in-depth review paper discussing 

the neural organization underlying feeding, describing the neurons of the feeding circuitry 

located inside the buccal ganglion (Murphy, 2001). Among buccal neurons, neurons B5 and B19 

are two of the largest neurons and they being used in the current study. The B5 neuron sends out 

its main axon through the ipsilateral esophageal trunk nerve, which innervates the muscle of the 

esophagus (Scannell et al., 2008). Excitation of the homologue neurons in Lymnaea stagnalis, a 

closely related species, leads to contraction of the foregut, whereas silencing the neuron relaxes it 

(Perry et al., 1998). Motoneuron B5 has been implicated to be not only cholinergic but also 
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nitrergic. Therefore, it could release nitric oxide to affect neuronal properties of other neurons 

(Haydon and Zoran, 1989; Artinian et al., 2010). Buccal neurons B19 in Helisoma are bilaterally 

symmetric motor neurons immediately downstream of the feeding central pattern generator and 

they innervate muscle groups in the radula, which participate in the retraction of the structure 

during rhythmic feeding movements (Murphy, 2001; Turner et al., 2011). The main projections 

of B19 neurons extend across the buccal commissure contralaterally and through the ventral 

buccal nerve, but they also have ipsilateral projections through both the ventral buccal nerve and 

lateral buccal nerve (Scannell et al., 2008).  

In addition to the advantage of studying neuronal circuitry, neurons isolated from the 

Helisoma nervous system undergo regeneration processes after removal from the nervous system 

and being placed in culture. This setup allows for studying neuronal development and 

regeneration (Wong et al., 1981). Questions like what are the growth-promoting and inhibiting 

factors (McCobb et al., 1988; Berdan and Easaw, 1992), what are the intracellular messengers in 

mediating cell growth (Mattson and Kater, 1987; Mattson et al., 1988), and how do changes in 

cytoskeleton underlie growth cone behaviors (Welnhofer et al., 1997; Torreano et al., 2005) have 

been addressed using the Helisoma neuronal culture system. Besides, Helisoma neurons have 

particular advantages for studying growth cone motility (Kater and Rehder, 1995). The large 

sized growth cone (10 to 50 μm in size) enables the identification of key components including 

central domain, lamellipodium, and filopodia. Therefore, highly motile filopodial behavior from 

neurons grown on glass-coverslip can be visualized easily by phase-contrast microscopy and 

fluorescence microscopy at a high resolution. When B5 and B19 neurons are isolated and 

cultured in tissue culture dishes, they show distinct growth cone morphology and tend to keep 

their membrane receptor properties as they did in vivo (Haydon et al., 1985; Zhong et al., 2013).  
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In the Rehder lab, we are interested in understanding the cellular mechanisms underlying 

the regulation of growth cone filopodial dynamics and neuronal excitability. In a series of 

studies on NO, we provided convincing evidence that NO serves as a regulator for growth cone 

motility and neuronal excitability. We also characterized the signaling pathway that mediates the 

effects of NO on growth cone motility. NO elevation caused filopodial elongation, a significant 

loss of filopodia, and a slow-down of the neurite outgrowth rate in buccal neuron B5 (Van 

Wagenen and Rehder, 1999; Trimm and Rehder, 2004). NO activates soluble guanlylate cyclase, 

which initiates the production of cyclic guanosine monophosphate (cGMP) (Van Wagenen and 

Rehder, 2001). Downstream of cGMP is protein kinase G (PKG). The activation of PKG 

elevates the level of cyclic ADP ribose, which in turn releases Ca from ryanodine sensitive Ca 

stores in the ER along with a Ca influx component via VGCCs (Welshhans and Rehder, 2005; 

Welshhans and Rehder, 2007).  Further studies revealed that B5 neurons not only respond to NO 

but also release NO (Tornieri and Rehder, 2007). NO release from B5 neurons can actually result 

in similar filopodial responses as seen after treatment with a NO donor, such as NOC7.  

In addition to the role of NO controlling growth cone motility, we also reported that NO 

regulates neuronal excitability by modulating various ionic conductances. The effects of NO on 

ion channels are two-fold. First, extrinsic NO elevation primarily inhibited Ca-activated K 

channels, apamin-sensitive SK channels and IbTX-sensitive BK channels, to lead to membrane 

depolarization (Artinian et al., 2010). Secondly, intrinsic NO production maintained a persistent 

Na current, voltage-gated Ca currents and partially inhibited SK channels (Artinian et al., 2010). 

Interestingly, the effects of NO stimulation on growth cone motility and neuronal excitability 

occur with a similar time course, which raises the interesting question whether the regulation of 
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neuronal electrical activity mediates growth cone responses to external stimulation. Studies in 

this dissertation aim to better understand this central question.  

The motoneuron B19 is located in the vicinity of NO-producing neurons in the buccal 

ganglion (Murphy, 2001), and it is active during the feeding motor patterns (Turner et al., 2011). 

NO is known to regulate the buccal feeding motor program (Susswein and Chiel, 2012). This 

evidence leads to the question whether NO might affect the electrical activity of B19 neurons 

by volume transmission. In this dissertation, I further characterize the ion channels affected by 

NO, and investigate if NO acts on similar sets of ion channels in B5 and B19 neurons. This study 

will test the notion that NO serves as a general modulator of neuronal activity. 

1.5 Dissertation summary  

Chapter 2 describes experiments that focus on the cholinergic modulation of growth cone 

motility and neuronal excitability. I report that bath application of ACh to Helisoma B5 neurons 

causes a rapid increase in filopodial length. I show that the effect of ACh requires Ca influx to 

elevate the [Ca]i of the growth cone. Furthermore, electrophysiological results reveal that ACh 

opens nAChRs to depolarize the membrane potential, which allows Ca to flow into the cell. 

Lastly, studies of physically isolated growth cones indicate that ACh can act locally at the 

growth cone to elongate filopodia, which strengthens the notion that ACh is able to act as a local 

signal to determine neuronal pathfinding and/or synaptogenesis. 

Chapter 3 summarizes work that tests the modulatory role of NO in B19 neurons. In these 

experiments, I report that NO causes a sustained depolarization of membrane potential and 

increases neuronal excitability. I describe that K channels instead of Ca channels are the targets 

of NO. I further show that the depolarization induced by NO is mediated by the closure of two 

types of Ca-activated K channels, apamin-sensitive SK channels and IbTX-sensitive BK 
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channels. The depolarizing effect of NO is mainly contributed by the inhibition of the SK 

channels. 

Chapter 4 details experiments testing the question whether DA modulates the electrical 

activity of B5 neurons to exert functions in support of feeding. I show that DA application causes 

a strong hyperpolarization in both physically isolated B5 neurons in vitro and B5 neurons within 

the buccal ganglion in situ. The signaling mechanism underlying the hyperpolarizing effect of 

DA is that activation of a D2-like receptor leads to activation of PLC signaling, which opens 

both TEA-sensitive and 4AP-sensitive K channels. 

Taken together, these experiments reveal the crucial roles of ACh, NO, and DA in 

determining the electrical activity and growth cone motility of developing neurons. The 

dissertation also characterizes the intracellular signaling pathways and ionic conductances that 

mediate these effects. A discussion is presented within each chapter (Chapters 2 - 4), followed by 

a comprehensive overall discussion in Chapter 5, which specifically discusses the potential roles 

of neuromodulators in regulating neuronal development and affecting neural circuits and its 

associated behaviors. 
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CHAPTER 2   ACETYLCHOLINE ELONGATES NEURONAL GROWTH CONE 

FILOPODIA VIA ACTIVATION OF NICOTINIC ACETYLCHOLINE RECEPTORS 

 

 

Published as Zhong L.R., Estes S., Artinian L. and Rehder V. (2013) Acetylcholine elongates 

neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors. 

Developmental Neurobiology. DOI: 10.1002/dneu.22071. 
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2.2 Abstract 

In addition to acting as a classical neurotransmitter in synaptic transmission, 

acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. 

What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, 

structures known to be important for neuronal pathfinding. We addressed this question using an 

identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell 

culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that 

required calcium influx and resulted in the elevation of the intracellular calcium concentration 

([Ca]i). Whole-cell patch clamp recordings showed that ACh caused a reduction in input 

resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 
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neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors 

(nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of 

ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the 

nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at 

the growth cone, because growth cones that were physically isolated from their parent neuron 

responded to ACh by filopodial elongation with a similar time course as growth cones that 

remained connected to their parent neuron. Our data revealed a critical role for ACh as a 

modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and 

resulted in Ca influx, which, in turn, caused filopodial elongation. 

 

KEYWORDS: Helisoma trivolvis, growth cone, filopodia, intracellular Ca, neuronal excitability.  

2.3 Introduction 

During early development, neurons extend neurites to connect to appropriate target cells. 

Growth cones at the tip of growing neurites are important for pathfinding and its filopodia serve 

as sensors to probe the environment for guidance cues (Rehder et al., 1996; Gomez and Zheng, 

2006; Farrar and Spencer, 2008). ACh, besides serving as a classical neurotransmitter in synaptic 

transmission, has been shown to play an unconventional role in axonal growth (Lauder and 

Schambra, 1999; Phillis, 2005). ACh inhibits neurite outgrowth in several neuronal cell types 

(Owen and Bird, 1995; Small et al., 1995; Rudiger and Bolz, 2008), and induces positive turning 

responses of growth cones in Xenopus spinal neurons in vitro (Zheng et al., 1994). In molluscan 

nervous systems, ACh is suggested to have a role in neurite extension (McCobb et al., 1988). 

However, neither the functions of ACh at the level of the growth cone nor the underlying 
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mechanisms by which ACh affects growth cone filopodial dynamics have yet been fully 

understood. 

Electrical activity has been shown to affect the neurite outgrowth rate of developing 

neurons (Neely and Nicholls, 1995).  Evoked action potentials cease neurite outgrowth and 

growth cone advance in both vertebrate and invertebrate neurons (Cohan and Kater, 1986; Fields 

et al., 1990), and the depolarization-induced suppression of neurite elongation requires an 

increase in cytoplasmic Ca (Cohan, 1992). A more recent study further identified the critical role 

of electrical activity in growth cone turning induced by various guidance cues (Ming et al., 2001). 

Whereas ACh is known to be involved in synaptic transmission and synapse formation in 

gastropods (Haydon, 1988; Elliott and Vehovszky, 2000), a comprehensive study of how 

cholinergic modulation of neuronal electrical activity may be linked to growth cone motility is 

presently lacking.  

B5 neurons can be removed from the buccal ganglion of the pond snail Helisoma trivolvis 

and transferred into cell culture, where they regenerate within 1 - 3 days and develop large-sized 

growth cones, providing the opportunity to study filopodial dynamics at high resolution. ACh is 

found to be used in synaptic transmission between B5 neurons in vitro (Haydon and Zoran, 

1989), making these identified neurons a model to study the role of ACh as a modulator of 

neuronal activity and filopodial motility. 

The main goal of the current study was to evaluate the effect of ACh on growth cones 

and to identify the signaling pathway(s) activated by ACh in B5 neurons.  We found that ACh 

decreased the input resistance (Rin), depolarized the membrane potential (RMP), increased the 

spiking frequency, elevated the intracellular Ca concentration ([Ca]i) in growth cones, and 

elongated growth cone filopodia of B5 neurons. Extracellular Ca was required for these ACh-
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induced changes at the growth cone. Activation of nAChRs was both necessary and sufficient in 

mediating ACh signals. We further found that the ACh-induced filopodial elongation can occur 

locally at growth cones. Taken together, this study demonstrates a modulatory role for ACh on 

B5 neurons, resulting in depolarization and filopodial elongation, and thereby suggesting a role 

for ACh in determining neuronal pathfinding and/or synaptogenesis.   

2.4 Methods 

2.4.1 Animals 

Freshwater pond snails, Helisoma trivolvis, were kept in aerated aquaria (10 gallons) 

containing filtered water under a 12 h light-dark cycle at room temperature. They were fed with 

organic lettuce and vegetable-based algae wafers (Hikari, Doctors Forster and Smith) once a day. 

Animals with a shell diameter of 15 – 20 mm were used for neuronal culture.  

2.4.2 Neuronal culture  

Identified B5 neurons were isolated from the buccal ganglion of Helisoma, and plated 

into Falcon Petri dishes as previously described (Rehder & Kater, 1992). Briefly, neurons were 

plated onto poly-L-Lysine (hydrobromide, MW, 70-150 kDa, 0.25 mg/ml; Sigma, St. Louis, MO, 

USA)-coated glass coverslips attached to the bottom of 35-mm cell culture dishes (Falcon 1008). 

B5 neurons were kept in conditioned medium at room temperature and used for experiments 24 – 

48 hours after plating. Conditioned medium was prepared by incubating two Helisoma trivolvis 

brains per 1 mL of Leibowitz L-15 medium (Invitrogen, Carlsbad, CA, USA) for 4 days (Wong 

et al., 1981). The composition of L-15 medium was as follows (mM): 44.6 NaCl, 1.7 KCl, 1.5 

MgCl2, 0.3 MgSO4, 0.14 KH2PO4, 0.4 Na2HPO4, 1.6 Na pyruvate, 4.1 CaCl2, 5 HEPES, 50 

μg/ml gentamicin, and 0.15 mg/ml glutamate in distilled water, pH 7.4. 
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2.4.3 Growth cone image acquisition and analysis 

Growth cones were viewed using a 100X oil immersion objective on a Sedival 

microscope (aus Jena, Germany). Phase-contrast images of growth cones were captured by a 

regular CCD camera (C-72, Dage-MTI, Michigan City, IN, USA) and analyzed with ‘Scion 

Image’ software (Scion Corporation, Frederick, MD, USA). Images for all experimental 

conditions were taken before (- 5 and 0 min) and at defined times (2, 5, 10, 15, 20, 25, 30, 40, 50, 

and 60 min) after drug treatment. Analysis of filopodial behavior was described previously 

(Trimm and Rehder, 2004). Briefly, filopodial length was analyzed by measuring the length of 

all individual filopodia from the tip to the edge of the central domain in one growth cone. 

Filopodial data were expressed as a percentage change normalized to the time point t = 0, which 

minimized the individual variability regarding to growth cone size and baseline filopodial length 

between different growth cones.  

2.4.4 Calcium imaging 

Growth cone calcium measurement was performed as previously described (Trimm and 

Rehder, 2004). Briefly, B5 neurons were injected with the cell-impermeable calcium indicator 

dye, Fura-2 pentapotassium salt (10 mM in H2O; Molecular Probes, Eugene, OR, USA) and used 

30 min after Fura-2 injection. Growth cone calcium imaging was achieved by employing an up-

right microscope (BX51 W1F, Olympus, Japan), cooled CCD camera (Andor, TILL Photonics, 

Germany), and calcium imaging acquisition and analysis software (Live Acquisition, TILL 

Photonics, Germany). Fura-2 was excited at 340 and 380 nm, and the emission ratio (340/380) 

was used as an indicator of growth cone [Ca]i. Growth cones were imaged for 5 min before, and 

up to 60 min after treatment. Image pairs were routinely obtained every 60 s and analyzed by 

placing a box over the central domain of the growth cone to quantify average fluorescence values. 
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In the experiment shown in Fig. 2.1(D) (representative example of 3 such experiments), the 

growth cone was imaged every 10 s and [Ca]i was measured simultaneously in filopodia, the 

central domain, and the neurite adjacent to the growth cone proper. The [Ca]i in filopodia was 

measured at filopodial half length for consistency. Growth cones with baseline fluorescence 

ratios above 0.5 indicated a higher resting level of [Ca]i and were excluded from the analysis.  

2.4.5 Electrophysiology 

Recordings from Helisoma B5 neurons in whole-cell current-clamp mode were obtained 

as described previously (Artinian et al., 2010). Patch electrodes were pulled from borosilicate 

glass tube (OD 1.5 mm; ID 0.86 mm; Sutter instruments) on a Sutter instruments micropipette 

puller (P-87) and heat polished (Micro Forge MF-830; Narishige) with resistances of about 3 - 8 

MΩ. Recordings were made using an Axopatch 700B amplifier (Molecular Devices) and an 

analog-to-digital converter (Digidata 1440). Data acquisition and analysis were performed using 

pClamp software version 10.0 (Molecular Devices). Current-clamp configuration was used to 

record membrane potential, firing properties, and input resistance (Rin). Normal saline was used 

as extracellular recording solution, which contained (mM): 51.3 NaCl, 1.7 KCl, 4.1 CaCl2, 1.5 

MgCl2, and 5 HEPES, pH 7.3 - 7.4 (127 mOsm). Intracellular recording solution contained (mM): 

54.4 K-aspartate, 2 MgCl2, 5 HEPES, 5 Dextrose, 5 ATP, and 0.1 EGTA (127 mOsm). Drug 

treatment and washout were achieved through a gravity-based perfusion system (Warner 

Instruments), switching among channels containing different reagents. Resting membrane 

potential (RMP) of spontaneous firing neurons was determined by measuring the value at the 

plateau of the depolarization phase before the membrane potential reached threshold. Continuous 

measurement of Rin was achieved by small hyperpolarizing current injection of - 50 pA for 1 s 

and repeated every 20 s. Rin was determined by dividing the peak change in membrane potential 
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by the magnitude of the injected current, and was then expressed as the percentage change 

normalized to Rin measured before treatment in order to remove individual variability between 

neurons.  

2.4.6 Growth cone transection 

The isolation of neuronal growth cones was achieved by severing the neurites close to the 

growth cone proper using a glass micropipette attached to a micromanipulator. Experiments on 

isolated growth cones were performed 60 min after the transection of neurites. This waiting 

period proved to be sufficient to restore filopodial motility to normal levels after the transient 

transection-induced filopodial elongation previously described in isolated growth cones (Rehder 

et al., 1991).  

2.4.7 Pharmacological agents and Ca-free conditions 

All agents were purchased from Sigma. Acetylcholine (ACh), 

dimethylphenylpiperazinium (DMPP), and tubucurarine (TC) were dissolved in water to make 

100 mM, 50 mM, and 100 mM stock solutions, respectively. For growth cone filopodia and 

calcium imaging experiments, stock solutions were mixed with 1 ml of conditioned medium 

removed from the culture dish and then gently added back around the periphery of the dish. 1 ml 

medium was then pulled out and released back into the dish for 3 times using a pipette to 

facilitate the equilibration of the drugs to their final concentrations. The Ca-free solution 

contained (mM): 51.3 NaCl, 5.6 MgCl2, 5 HEPES and 0.3 EGTA, pH 7.3 - 7.4 (127 mOsm). 

Extracellular Ca-free conditions were achieved by removing 1.8 ml of medium from the culture 

dish, adding back Ca-free solution, and repeating these steps for a total of three rinses in Ca-free 

solution. For electrophysiological experiments, drugs were prepared directly in the extracellular 

solution, and perfused into the dish to achieve final concentrations. 
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2.4.8 Statistical analysis 

All data were expressed as mean ± SEM. For growth cone filopodial analysis and 

calcium imaging results, a repeated-measures ANOVA was employed for testing overall 

statistical significance between conditions (SPSS statistical software, SPSS Inc., Chicago, IL, 

USA). The Tukey test was used for post hoc analysis of preplanned comparisons. An unpaired 

Student’s t-test or paired t-test was used for testing statistical significance between individual 

time points depending on the experimental conditions. For electrophysiological data analysis, the 

significance of effects was evaluated by one-way ANOVA and Tukey’s post hoc test using 

ORIGIN DATA ANALYSIS AND GRAPHING software (OriginLab, Northampton, MA, USA). 

Significant differences are indicated as *P < 0.05, **P < 0.01, and ***P < 0.001. 

2.5 Results 

2.5.1 ACh elongates growth cone filopodia and elevates [Ca]i in growth cones  

To investigate the effect of ACh on growth cone filopodial dynamics, we used identified 

B5 neurons extracted from buccal ganglia of the freshwater snail Helisoma trivolvis and 

investigated their morphology in response to various treatments. Experiments were performed 

after neurons had been cultured for 24 - 48 hours, at which time these neurons had extended well 

developed neurites tipped by motile growth cones (Welshhans and Rehder, 2005; Tornieri and 

Rehder, 2007). ACh had a significant overall effect on filopodial length (F3,53 = 21.67, P < 0.001; 

repeated-measures ANOVA) [Fig.2-1(B)]. Bath application of 0.5 µM ACh led to a transient but 

significant increase in filopodial length compared with the vehicle-only control condition 

(Tukey’s post hoc, P < 0.001) [Fig. 2.1(A and B)]. The ACh-induced filopodial elongation 

started as early as 2 min after treatment, and reached its maximal response (an increase by 40.5 ± 



34 
 

2.6%, n = 15) at 5 min following ACh application. After that, filopodial length slowly decreased 

in the continued presence of ACh and fully returned to the baseline levels 25 min after treatment. 

In previous studies, filopodial elongation had been shown to be elicited by transient 

increases in the intracellular calcium concentration ([Ca]i) in growth cones (Rehder and Kater, 

1992; Van Wagenen and Rehder, 1999; Cheng et al., 2002). Therefore, we next measured [Ca]i 

in growth cones using the calcium indicator Fura-2. ACh had a significant overall effect on [Ca]i 

(F3,51 = 76.94, P < 0.001; repeated-measures ANOVA). 0.5 µM ACh treatment caused an 

immediate and significant elevation in [Ca]i compared to the vehicle-control group (Tukey’s post 

hoc, P < 0.001)[Fig. 2.1(C)], as indicated by the fluorescence emission ratio at excitation 

wavelengths of 340 and 380 nm. The Fura-2 ratio was elevated significantly from the baseline 

level of 0.32 ± 0.01 (n = 17) to a maximal ratio of 1.18 ± 0.05 at 8 min after ACh application (t16 

= - 18.03, P < 0.001; paired t-test), indicating a strong increase in [Ca]i in growth cones. [Ca]i 

decreased and returned to a plateau level slightly above resting levels by 35 min. To investigate 

the location and time course of the ACh-induced elevation in [Ca]i with increased time resolution, 

we next acquired fura-2 images every 10 s, instead of every 60 s. The ACh-induced elevation in 

[Ca]i occurred throughout the entire growth cone and [Ca]i increased simultaneously in filopodia, 

the central domain, and the adjacent neurite [Fig. 2.1(D)]. Taken together, ACh induced an 

elevation in growth cone [Ca]i and an increase in filopodial length in B5 neurons with a similar 

time course.   

We showed previously that Ca-dependent filopodial elongation can be triggered either by 

Ca influx or by release of Ca from intracellular stores (Rehder and Kater, 1992; Welshhans and 

Rehder, 2007). Since studies of Xenopus spinal neurons identified the importance of extracellular 

Ca in ACh-induced growth cone turning behaviors, we next investigated whether extracellular 
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Ca was also required for the ACh-induced filopodial elongation. The culture medium was first 

replaced with Ca-free solution, and B5 neurons were then stimulated with ACh. Replacement 

with Ca-free solution caused a slight and long-term reduction in filopodial length by 10% 

starting at five minutes (t24= - 4.24, P < 0.001; two sample t-test; data not shown), compared to 

control. Interestingly, the effect of 0.5 µM ACh on filopodial elongation was fully blocked in 

Ca-free solution compared to ACh by itself (Tukey’s post hoc, P < 0.001) [Fig. 2.1(B)]. 

Correspondingly, Ca imaging studies on growth cones revealed that the increase in [Ca]i by 0.5 

µM ACh was eliminated in Ca-free solution as well (Tukey’s post hoc, P < 0.001) [Fig. 2.1(C)]. 

Taken together, these data suggested that ACh caused an increase in [Ca]i via Ca influx, which, 

in turn, resulted in filopodial elongation.   

2.5.2 ACh depolarizes membrane potential and reduces input resistance in a dose-dependent 

manner 

ACh has been shown to modulate neuronal activity in various systems, including neurons 

in the pond snails Helisoma trivolvis and Lymnaea stagnalis (Bahls, 1987; Perry et al., 1998). 

Given that we had measured a significant Ca influx in response to ACh, we next tested whether 

ACh treatment might have caused the increase in [Ca]i and the subsequent elongation of 

filopodia by regulating the electrical activity of B5 neurons. We used the patch clamp recording 

technique in the whole-cell current clamp configuration to investigate the role of ACh on 

neuronal electrical activity, and injected a small negative current (- 50 pA) for 1 s every 20 s to 

monitor input resistance (Rin) continuously. B5 neurons fire spontaneous action potentials (APs) 

with a resting membrane potential (RMP) close to - 40 mV [Fig. 2.2(A)] (Artinian et al., 2010). 

To test the effects of ACh on the electrical properties of B5 neurons, we stimulated neurons with 

various concentrations of ACh ranging from 10 nM to 100 µM using a perfusion system. ACh 
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began to depolarize the RMP at a concentration of 100 nM and its effect saturated at 10 µM with 

a depolarizing response of + 23.0 ± 0.6 mV (n = 6). Meanwhile, Rin started to decrease at 30 nM 

ACh and this response also saturated at 10 µM ACh, at which Rin was reduced to 10.4 ± 1.3% (n 

= 6). Although we observed a gradual increase in the firing frequency at lower concentrations, 

ranging from 10 nM to 1 µM, higher concentrations of ACh (> 3 µM) depolarized the membrane 

potential to a level that resulted in neuronal silencing [Fig. 2.2(A)]. ACh caused a concentration-

dependent depolarization of RMP with an estimated half maximal effective concentration (EC50) 

of 1.7 µM [Fig. 2.2(B)] and a reduction in Rin with an EC50 of 0.4 µM [Fig. 2.2(C)], based on the 

Hill equation. This result suggested that B5 neurons are tuned to dynamically respond to small 

changes in the concentration of ACh, but that they would become less responsive to synaptic 

inputs in the continued presence of relatively higher concentrations of ACh. Because the firing 

frequency could not be studied at higher concentrations of ACh, we instead quantified RMP and 

Rin in all following electrophysiology experiments.  

2.5.3 nAChR agonist DMPP elongates filopodia and elevates growth cone [Ca]i 

To further investigate the mechanism by which ACh induced filopodial elongation, we 

considered the possibility that ACh may signal through nAChRs, which are widely expressed in 

molluscan nervous systems and whose activation mediates a significant portion of ACh-

associated effects (Bahls, 1987; Perry et al., 1998; Elliott and Vehovszky, 2000). DMPP is a 

prominent agonist of nAChRs with little selectivity between neuronal nAChR subtypes. Bath 

application of 5 µM DMPP caused a significant increase in filopodial length when compared 

with the vehicle control (F1,25 = 33.17, P < 0.001; repeated-measures ANOVA) [Fig. 3(A)]. The 

maximal response of DMPP on filopodial length occurred 10 min after drug treatment (an 

increase by 33.8 ± 3.5%, n = 13). Interestingly, the peak response was not significantly different 
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between the groups treated with ACh (0.5 µM) and DMPP (5 µM) (t26 = - 1.59, P = 0.12; 

unpaired t-test), suggesting that the effect of ACh on filopodial elongation was indeed mediated 

through activation of nAChRs. 

In addition to its effect on filopodial elongation, DMPP also affected [Ca]i. Bath 

application of 5 µM DMPP induced a quick and significant increase in the Fura-2 ratio (F1,21 = 

73.61, P < 0.001; repeated-measures ANOVA) as compared to vehicle control, where no 

changes in the ratio were observed (n = 12) [Fig. 2.3(B)]. The peak ratio induced by 5 µM 

DMPP appeared 7 min after treatment (1.10 ± 0.10, n = 11). Taken together, both direct ACh 

application and treatment with the nAChR agonist DMPP produced similar effects on filopodia 

and [Ca]i, supporting the hypothesis that ACh acted on nAChRs to regulate growth cone 

filopodial dynamics.  

2.5.4 DMPP mimics the effect of ACh on electrical activity 

We next tested whether the activation of nAChRs was sufficient to explain the effects of 

ACh on the electrical activity seen above. 5 µM DMPP caused a depolarization of RMP by + 4.7 

± 0.4 mV (n = 11) and a reduction in Rin to 46.4 ± 3.8% (n = 12) [Fig. 2.4(A)]. To study the 

concentration dependency of DMPP on electrical properties, we next tested one lower (1 µM) 

and two higher concentrations (10 µM and 50 µM), respectively. 1 µM DMPP induced a much 

smaller depolarization (+ 1.5 ± 0.2 mV, n = 10) and a reduction in Rin (74.6 ± 5.1% , n = 9) 

compared to the 5 µM DMPP group, whereas 10 µM and 50 µM DMPP had stronger effects on 

both RMP (10 µM: a depolarization by + 6.5 ± 0.7 mV, n = 10; 50 µM: + 13.2 ± 1.6 mV, n = 9) 

and Rin (10 µM: a reduction to 37.0 ± 5.4%, n = 9; 50 µM: 24.9 ± 2.4%, n = 6) [Fig. 2.4(B and 

C)]. In 3 out of 9 cases, 50 µM DMPP caused silencing of B5 neurons [data not shown], a 

phenomenon that was similar to what we observed with higher concentrations of ACh (> 3 µM). 
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Taken together, activation of nAChRs by DMPP mimicked the effects of ACh on electrical 

activity of B5 neurons, namely depolarization of RMP and reduction of Rin in a dose-dependent 

manner.   

2.5.5 Inhibition of nAChRs by TC blocks DMPP-induced filopodial elongation and increase 

in [Ca]i 

If ACh indeed activated nAChRs to regulate growth cone motility, the blockade of 

nAChRs should inhibit the ACh-induced filopodial elongation. We tested this hypothesis by 

using the classical nAChR antagonist, tubocurarine (TC). TC is known to antagonize functional 

responses mediated by nAChRs in various organisms (Haydon and Zoran, 1989; Zheng et al., 

1994). In order to activate nAChRs selectively and to avoid the potential activation of other types 

of AChRs, the specific nAChR agonist DMPP was used in this set of experiments. Following a 

10-min pretreatment with 100 µM TC, 5 µM DMPP was bath applied into the dish. Whereas TC 

on its own did not affect filopodial dynamics (F1,25 =  2.83, P = 0.107; repeated-measured 

ANOVA; as compared to vehicle control, data not shown), pretreatment with TC eliminated the 

DMPP-induced increase in filopodial length (Tukey’s post hoc, P < 0.001, 100 µM TC + 5 µM 

DMPP compared to 5 µM DMPP alone; overall effect: F2,37 = 33.85, P < 0.001; repeated-

measures ANOVA) [Fig. 2.5(A and B)]. The maximal filopodial elongation normally observed 

at 10 min following 5 µM DMPP treatment was fully blocked in the group pretreated with 100 

µM TC (100 µM TC + 5 µM DMPP: increase by 0.4 ± 1.3%, n = 14 vs. 5 µM DMPP: 33.8 ± 

3.5%, n = 13; t25 = - 0.28, P < 0.001; unpaired t-test) [Fig. 2.5(B)]. Instead, the TC + DMPP 

group maintained filopodial length close to baseline levels throughout the post-treatment period. 

Furthermore, preincubation with 100 µM TC also fully inhibited the DMPP-induced elevation of 

[Ca]i (Tukey’s post hoc, P < 0.001, 100 µM TC + 5 µM DMPP compared to 5 µM DMPP alone; 
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F2,33 = 81.80, P < 0.001; repeated-measures ANOVA), whereas TC by itself did not have an 

effect on [Ca]i at growth cones (F1,24 =  0.08, P = 0.779; repeated-measured ANOVA; as 

compared to vehicle control, data not shown) [Fig. 2.5(C)]. These data strongly suggested that 

the activation of nAChRs was necessary for ACh to elicit its effect on growth cone filopodia, and 

that the increase in [Ca]i played a key role in filopodial elongation induced by nAChR activation. 

2.5.6 TC blocks DMPP-induced depolarization and decreases in Rin 

We next investigated whether the electrical responses induced by DMPP could also be 

blocked by pretreatment with TC. 100 µM TC on its own did not have an effect on either 

membrane potential (a depolarization by + 0.2 ± 0.4 mV, n = 9) or Rin (a reduction to 107.0 ± 

4.0%, n = 9) [Fig. 2.6(A)]. After perfusion with 100 µM TC, B5 neurons were treated with a 

solution containing 100 µM TC and 5 µM DMPP. As shown in Fig. 2.6(B), 5 µM DMPP failed 

to depolarize the RMP of B5 neurons in the presence of 100 µM TC (100 µM TC + 5 µM DMPP: 

+ 0.4 ± 0.2 mV, n = 15 vs. 5 µM DMPP, + 4.7 ± 0.4 mV, n = 11; P < 0.001; Tukey’s post hoc). 

Moreover, the DMPP-induced decrease in Rin was completely blocked in the presence of 100 

µM TC (100 µM TC + 5 µM DMPP: 108.6 ± 3.8%, n = 15 vs. 5 µM DMPP, 46.4 ± 3.8%, n = 12; 

P < 0.001; Tukey’s post hoc) [Fig. 2.6(C)]. Hence, the effects of DMPP further indicated that the 

modulation of the electrical activity of B5 neurons was mediated via activation of nAChRs. 

2.5.7 ACh acts locally at the growth cone to elongate filopodia 

Growth cones have been demonstrated to possess some degree of autonomous function, 

and contain most of the machinery required for proper responses to extrinsic stimulation (Kater 

et al., 1994; Gomez and Zheng, 2006). Therefore, we next tested whether ACh acted at the 

growth cone proper, or, alternatively, whether the ACh-induced changes in filopodial dynamics 

were the result of ACh acting on another region of the neuron, such as the cell body. To explore 
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this possibility, we physically isolated growth cones from the remaining neuron by transection of 

the adjacent neurites using a microknife [Fig. 2.7(A)]. Such isolated growth cones have been 

shown to survive for up to 24 hours and maintain many features seen in growth cones that are 

connected to their parent neuron (Rehder et al., 1991). In this series of experiments, 0.5 µM ACh 

was bath applied to dishes containing isolated growth cones. Filopodia responded to the ACh 

treatment with filopodial elongation within 2 mins, and reached their maximal length (an 

increase by 34.9 ± 3.5%, n = 14) 5 min after drug treatment, followed by a gradual decrease in 

filopodial length towards baseline [Fig. 2.7(A and B)]. The effect of ACh on filopodial length 

was significant when compared to the control group, in which only solvent was applied (F1,25 = 

45.57, P < 0.001; repeated-measures ANOVA) [Fig. 2.7(B)]. This result supported the 

hypothesis that ACh acted locally at the growth cone to regulate filopodial dynamics. 

2.6 Discussion 

ACh has been shown to affect numerous functions in developing neurons in vitro, 

including neurite outgrowth, growth cone guidance, synapse formation and synaptic transmission 

(Zheng et al., 1994; Lauder and Schambra, 1999; Woodin et al., 2002; Rudiger and Bolz, 2008). 

Here, we describe a role for cholinergic modulation at the growth cone, where ACh affects an 

important component of growth cone motility, namely filopodial dynamics. We report that ACh 

induced a transient but significant filopodial elongation in B5 neurons of the buccal ganglion of 

Helisoma trivolvis. The signaling cascade resulting in filopodial elongation is via opening of 

nAChRs, a depolarization of the membrane potential, and a subsequent elevation of [Ca]i in 

growth cones. Moreover, by performing experiments on physically isolated growth cones, we 

demonstrated that ACh can act as a local signal at the growth cone to elongate filopodia. 
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2.6.1 ACh and nAChRs 

nAChRs appeared to be both necessary and sufficient for ACh to elicit its effects on 

growth cone filopodial dynamics, intracellular calcium, and neuronal electrical properties. 

Treatment with DMPP, a non-selective nAChR agonist, fully mimicked the effects of ACh on 

membrane depolarization, reduction in Rin, elevation of [Ca]i, and filopodial elongation,. 

Meanwhile, TC, a well-known antagonist of nAChRs, completely inhibited all DMPP-induced 

responses. These results not only supported the specificity of our pharmacological approach, but 

also provided convincing evidence that ACh acted through activation of nAChRs to produce 

these effects. Taken together, our results add a novel role to the critical functions of nAChRs in 

cholinergic modulation of cellular properties in both vertebrates and invertebrates (Fu et al., 

1998; Clementi et al., 2000; Woodin et al., 2002; Cobb and Davies, 2005).    

nAChRs belong to a large Cys-loop family of ligand-gated ion channels including the 5-

HT3, glycine, and GABAA receptors (Le Novere and Changeux, 1995). nAChRs exist as 

pentameric complexes assembled either from five copies of a single subunit or by a composition 

of five different subunits (Clementi et al., 2000). Although the molecular identities of nAChRs 

are well studied in mammalian systems, much less information is available in gastropods. Van 

Nierop and Smit identified nAChR subunits in the pond snail Lymnaea stagnalis, a closely 

related species (van Nierop et al., 2005; van Nierop et al., 2006), and cloned a total of twelve 

subunits of nAChR. Considering that ACh treatment in this study caused the depolarization of 

RMP and an elevation in [Ca]i in Helisoma B5 neurons, it is likely that the effect of ACh was 

contributed by the classic, cation-selective nAChRs. A characterization of Helisoma nAChRs at 

the molecular level is beyond the scope of this study but will extend our understanding of 

cholinergic modulation in the Helisoma nervous system in the future. Because the effects of ACh 
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on growth cones and electrophysiological properties could be fully mimicked by the nAChR 

agonist, DMPP, we did not pursue any potential involvement of muscarinic ACh receptors in 

regulating growth cone filopodial length and [Ca]i.  

2.6.2 ACh and cell excitability 

Cholinergic modulation of cell excitability has been studied in some detail in gastropods. 

Salivary gland cells in Helisoma respond to ACh by a long-lasting depolarization followed by 

hyperpolarization (Bahls, 1987). Moreover, ACh is thought to be the core neurotransmitter to 

control neuronal activity in the feeding central pattern generator in Lymnaea, such as protraction 

phase premotor interneurons N1L and N1M (Elliott and Vehovszky, 2000). Cholinergic 

projections to the Lymnaea proesophagus modulate foregut contractile activity (Perry et al., 

1998). Furthermore, ACh acts on an ionotropic receptor sensitive to nicotinic antagonists to 

evoke an afterdischarge in Aplysia bag cell neurons (White and Magoski, 2012).  

We demonstrated that ACh induced rapid and significant changes in electrical activity in 

B5 neurons. Both treatment with ACh and the nAChR agonist, DMPP, caused a reduction in Rin 

in a dose-dependent manner, suggesting the opening of nAChRs. The activation of nAChRs, in 

turn, induced the depolarization of the membrane potential. Relatively lower doses of ACh or 

DMPP resulted in an increase in spiking frequency, whereas higher concentrations caused cell 

silencing at a depolarized membrane potential.  

2.6.3 ACh, Ca, and growth cone motility 

We report that both stimulation with ACh and activation of nAChRs by DMPP resulted 

in a quick and pronounced increase in [Ca]i in growth cones. Interestingly, the elevation of [Ca]i 

and the increase in filopodial length occurred with a very similar time course. Considering the 

critical role of spiking activity in regulating [Ca]i within neurons (Spitzer, 2006), and that 
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causality has been demonstrated between an elevation in [Ca]i and filopodial elongation in B5 

neurons (Rehder and Kater, 1992), the present study is consistent with the hypothesis that ACh 

functions through an increase in [Ca]i to elongate growth cone filopodia. After the replacement 

of culture medium with a Ca free solution, both the filopodial elongation and the elevation of 

[Ca]i induced by ACh were blocked,  suggesting that Ca influx plays a critical role in ACh-

signaling at the growth cone. In fact, other neurotransmitters and neuromodulators have been 

demonstrated to signal through [Ca]i to regulate growth cone functions (Henley and Poo, 2004; 

Gomez and Zheng, 2006). For example, the gaseous messenger nitric oxide affects growth cone 

filopodial dynamics in Helisoma B5 neurons via a Ca-dependent mechanism (Van Wagenen and 

Rehder, 2001; Trimm and Rehder, 2004; Welshhans and Rehder, 2005; Welshhans and Rehder, 

2007). An increase in [Ca]i is able to reduce neurite outgrowth rate in Helisoma neurons (Cohan, 

1992). In addition, [Ca]i is required for glutamate, netrin-1, and myelin-associated glycoprotein 

to guide growth cone turning in cultured Xenopus spinal neurons (Zheng et al., 1996; Ming et al., 

2001). Upon the elevation of [Ca]i at the growth cone, multiple Ca-mediated signaling pathways 

could be activated to translate external signals into cytoskeletal changes. Our lab previously 

showed that calmodulin and the Ca-dependent phosphatase calcineurin are acting downstream of 

Ca to elongate filopodia (Cheng et al., 2002). Moreover, calmodulin-dependent protein kinase II 

is found to mediate ACh-induced chemoattraction in growth cone guidance (Zheng et al., 1994).  

ACh has been shown to regulate cell movements, cell proliferation, and neuronal 

differentiation in various developing central nervous systems (Lauder and Schambra, 1999). 

Although the roles played by ACh in neuronal development in vivo are yet unclear, evidence for 

a functional role of ACh in developing neurons came from the studies of cultured embryonic 

Xenopus spinal neurons (Zheng et al., 1994). ACh was found to act as a chemoattractive 
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guidance cue that elicited growth cone turning behavior towards the source of ACh release. Here, 

we extended this research by studying the effect of ACh on growth cone filopodia. Filopodia on 

growth cones are essential for growth cone guidance, and filopodial elongation increases the area 

that a growth cone can sample during pathfinding (Kater and Rehder, 1995; Rehder et al., 1996). 

A transient elongation of filopodia, as seen in this study in response to stimulation with ACh, 

could play a critical role in decision-making at the growth cone. Longer filopodia would 

encounter cues located 10-20 μm ahead of the advancing growth cone proper, could result in a 

change in the direction of growth towards or away from the cue depending on the signal content, 

and ultimately, upon contact of an appropriate cellular target, could transform a growth cone into 

a presynaptic structure. In our experiments, ACh was bath-applied, mimicking a general, 

extrasynaptic stimulation of B5 neurons. To determine the location at which ACh acted to elicit 

filopodial elongation, we physically isolated growth cones and demonstrated that they responded 

to ACh treatment in a similar fashion as intact growth cones did, suggesting that ACh can 

regulate growth cone motility at the growth cone proper. We did not attempt to produce gradients 

of ACh across growth cones to determine if this would result in asymmetrical filopodial 

elongation, as might be expected to precede growth cone turning. In fact, filopodial asymmetry 

on growth cones of Xenopus neurons was found to precede growth cone turning in responses to 

glutamate gradients (Zheng et al., 1996). Additionally, our lab reported that both transient 

changes of growth cone filopodial dynamics (Van Wagenen and Rehder, 1999) and decreases in 

nerve growth speed (Trimm and Rehder, 2004) can be triggered by nitric oxide, a phenomenon 

we described as ‘slow-down and search’ behavior. Here, the ACh-induced change in filopodial 

dynamics may serve as a first response of an extending neurite to ACh encountered during 

pathfinding.  
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Although the sources of ACh release and physiological concentrations reached in the 

Helisoma buccal ganglia are unknown, several studies in which ACh release was measured 

suggest that the concentrations used in our in vitro study are comparable to in vivo conditions. 

The ACh concentration detected in the vicinity of magnocellular basal forebrain neurons using 

the nAChR-rich patches prepared from rat myotubes as focal ACh sensors was between 480 nM 

to > 50 μM (Allen and Brown, 1996). This concentration range of ACh matched the 

concentrations used in the current study and resulted in significant electrophysiological and 

morphological responses in B5 neurons. B5 neurons are responsive to ACh and are themselves 

cholinergic (Haydon and Zoran, 1989). In vitro, the site of ACh release in Helisoma neuron B5 is 

thought to be mainly confined to the distal neurites, but rarely detected from the soma. ACh 

release from neurites and growth cones has been reported in different neurons (Hume et al., 1983; 

Allen and Brown, 1996; Zakharenko et al., 1999; Yao et al., 2000), suggesting that growing 

cholinergic axons might influence other extending axons expressing nAChRs in order to regulate 

their developmental status. Moreover, ACh has been reported to act in an autocrine fashion on 

presynaptic terminal of Xenopus motoneurons (Fu et al., 1998), suggesting the possibility that 

ACh release from axonal terminals might directly affect growing axons via an autoreceptive 

feedback mechanism. 

2.7 Conclusion 

In conclusion, our results provide novel insights into the effects of ACh on developing 

neurons. ACh affected growth cone filopodial dynamics through the activation of TC-sensitive 

nAChRs by depolarizing membrane potential and increasing [Ca]i. While such effect could be 

caused by presynaptic stimulation, supporting the well-known literature of effects of electrical 

activity on neurite outgrowth and growth cone motility, the finding that ACh can act locally at a 
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growth cone suggested that ACh might also act at extrasynaptic receptors to modulate growth 

cone motility, neuronal pathfinding, and possibly synaptogenesis directly at the level of the 

growth cone.  

2.8 Figures 

 

Figure 2.1 ACh induces a transient increase in filopodial length and [Ca]i. 
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A: Phase-contrast images of a growth cone immediately before (left), 5 min after (center), and 30 

min after (right) treatment with 0.5 µM ACh. Helisoma B5 neurons were cultured for 24 - 48 

hours in vitro. Note the two white arrows pointing at the tips of two representative filopodia, 

highlighting their transient elongation and subsequent shortening. Scale bar, 10 µm. B: Bath 

application of 0.5 µM ACh resulted in a transient increase in filopodial length with the maximal 

response (an increase by 40.5 ± 2.6%, P < 0.001) occurring 5 min after ACh treatment, whereas 

growth cones receiving vehicle control did not show changes in filopodial length. Replacement 

of the culture medium with Ca-free solution prevented the ACh-induced filopodial elongation. C: 

Bath application of 0.5 µM ACh caused a transient and significant increase in the Fura-2 

fluorescence emission ratio in growth cones compared to the vehicle control group (P < 0.001). 

The elevation of Fura-2 ratio suggested that the [Ca]i in growth cones was elevated after ACh 

treatment. Replacement of the culture medium with Ca-free solution prevented the ACh-induced 

increase in [Ca]i. D: [Ca]i in filopodia (n=4), growth cone proper, and adjacent neurite from a 

representative growth cone imaged in 10 s intervals in response to 0.5 μM ACh. 
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Figure 2.2 ACh depolarizes the membrane potential and reduces Rin in a dose-dependent 

manner. 

A: Representative recordings of changes of the membrane potential and Rin in response to 

various concentration of ACh treatment (10 nM to 10 µM). Negative current injection (- 50 pA) 

was applied for 1 s of each 20 s recording trial. Note: Whereas lower concentrations of ACh (< 1 

µM) resulted in a progressive increase in spiking frequency, higher concentration (10 µM) 

caused neuronal silencing at a depolarized RMP. B: Dose-dependent curve showing that ACh 

caused a depolarization of RMP with an estimated EC50 of 1.7 µM. C: Dose-dependent curve 

suggesting that ACh progressively reduced Rin (changes of the membrane potential in response 

to the negative current injection; - 50 pA, 1 s) with an estimated EC50 of 0.4 µM. 
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Figure 2.3 nAChR agonist DMPP elongates filopodia and elevates [Ca]i.  

A: Bath application of 5 µM DMPP led to a significant increase in filopodial length followed by 

a gradual reduction towards baseline (P < 0.001 as compared to vehicle control), and the 

maximal response (an increase by 33.8 ± 3.5%) occurred 10 min after DMPP treatment. B: Bath 

application of 5 µM DMPP resulted in a significant increase in Fura-2 ratio (P < 0.001 as 

compared to vehicle control), indicating a pronounced increase in [Ca]i, which also peaked at 

around 10 min. 
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Figure 2.4 DMPP treatment results in a depolarization of RMP and a reduction in Rin in a 

dose-dependent manner.  

A: Examples of a firing B5 neuron before and after treatment with 5 µM DMPP. Note that 5 µM 

DMPP induced a small depolarization of RMP and a decrease in Rin. B: DMPP induced a 

depolarization of RMP in a dose-dependent manner. C: DMPP caused a dose-dependent 

reduction in Rin.   
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Figure 2.5 Inhibition of nAChRs by TC blocks the DMPP-induced filopodial elongation 

and increase in [Ca]i.  

A: Phase-contrast images of a growth cone immediately before (left), 10 min after 100 µM TC 

(center left), 5 min after addition of 5 µM DMPP in the presence of TC (center right), and 30 min 

after addition of 5 µM DMPP in the presence of TC (right). Note that these treatments did not 

result in obvious changes of filopodial length. Scale bar, 10 µm. B: The DMPP-induced 

filopodial elongation was significantly blocked by the treatment with 100 µM TC (P < 0.001 as 

compared to 5 µM DMPP alone). C: Treatment with 100 µM TC significantly inhibited the 

DMPP-induced increase in [Ca]i in growth cones (P < 0.001 as compared to 5 µM DMPP alone). 

 

 



52 
 

 

Figure 2.6 nAChR antagonist TC blocks the DMPP-induced depolarization and decrease in 

Rin.  

A: Example of a firing B5 neuron before (control, left), after pretreatment with TC (100 µM, 

center), after subsequent addition of DMPP (5 µM, right). Note that no obvious changes in 

membrane potential and hyperpolarizing responses to negative current injection (- 50 pA, 1 s) 

were seen. B: Quantification of changes in the membrane potential from experiments such as 

shown in A. The depolarizing response induced by 5 µM DMPP was significantly inhibited 

when B5 neurons were pretreated with 100 µM TC (P < 0.001 as compared to 5 µM DMPP), 

whereas 100 µM TC on its own had no effect on RMP. C: Quantification of normalized Rin from 

experiments such as shown in A. The effect of DMPP (5 µM) on Rin was fully blocked when B5 

neurons were pretreated with 100 µM TC (P < 0.001 as compared to 5 µM DMPP), whereas TC 

by itself had no effect on Rin. 
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Figure 2.7 ACh causes a transient increase in filopodial length on physically isolated 

growth cones.  

A: Phase-contrast images showing a cultured B5 neuron and a physically isolated growth cone 

generated by neurite transection (left, the isolated growth cone highlighted in dashed box and the 

transection site marked by a white arrowhead), and the same growth cone magnified immediately 

before (Pre), 10 min after (center), 40 min after treatment with 0.5 µM ACh (right). Note that 

filopodial elongation was clearly visible at 10 min after drug treatment, as indicated by the white 

arrows. Scale bar, 10 µm. B: Bath application of 0.5 µM ACh induced a transient and significant 

increase in filopodial length on isolated growth cones (P < 0.001 as compared to vehicle control), 

and the maximal response (length increase by 34.9 ± 3.5%) occurred 5 min after the treatment 

with ACh.   
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CHAPTER 3   NITRIC OXIDE REGULATES NEURONAL ACTIVITY VIA CALCIUM-

ACTIVATED POTASSIUM CHANNELS 

 

Submitted as Zhong L.R., Estes S., Artinian L. and Rehder V. Nitric Oxide Regulates Neuronal 

Activity via Calcium-Activated Potassium Channels  
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3.2 Abstract 

Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that 

has been shown to play various roles in the nervous system. How NO modulates ion channels to 

affect neuronal functions during neuronal development is not well understood. In gastropods, NO 

has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of 

the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the 

feeding motor program and is located in the vicinity of NO-producing neurons in the buccal 

ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. 

Previous work established NO as a key regulator of growth cone motility and neuronal 

excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question 

whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as 

well, and if so whether NO acted on the same or a different set of ion channels in both neurons. 

To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed 
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by other cells, experiments were performed on single cultured B19 neurons. Addition of NO 

donors caused a prolonged depolarization of the membrane potential and an increase in neuronal 

excitability. The effects of NO were mainly due to the inhibition of two types of Ca-activated K 

channels, apamin-sensitive and iberiotoxin-sensitive K channels. The results suggest that NO 

acts as a critical modulator of neuronal excitability in B19 neurons, and that Ca-activated K 

channels may serve as a common target of NO in neurons. 

 

KEYWORDS: nitric oxide; electrical activity; action potential; Ca-activated K channels; BK 

channels; SK channels; Ca channels; Helisoma trivolvis; B19 neuron; depolarization; patch-

clamp; iberiotoxin; apamin  

 

3.3 Introduction 

Nitric oxide (NO) serves as an unconventional membrane-permeable messenger molecule 

in the nervous systems of vertebrates and invertebrates, where it has been implicated in various 

cellular processes, including neuronal migration (Bicker, 2007), synaptogenesis (Nikonenko et 

al., 2008), and long-term potentiation (Kemenes et al., 2002; Hopper and Garthwaite, 2006). One 

mode of action by which NO has been shown to elicit its effects in neurons is by modulating 

ionic conductances (Garthwaite, 2008). Among ion channels, Ca channels (Tozer et al., 2012), K 

channels (Steinert et al., 2008), and HCN channels (Wilson and Garthwaite, 2010) have been 

shown to be targets of NO signaling. How NO modulates membrane channels to affect aspects of 

neuronal development and the functional output of neuronal circuits is of central interest in many 

systems.  
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Progress has been made towards understanding the role of NO signaling in gastropods 

(Moroz and Kohn, 2011). Using isolated neurons from the buccal ganglion of Helisoma trivolvis, 

NO has been characterized as a regulator of neurite outgrowth and growth cone motility (Van 

Wagenen and Rehder, 1999; Van Wagenen and Rehder, 2001). Application of NO-donors to the 

buccal neuron B5 slowed the advance of growing neurites (Trimm and Rehder, 2004), whereas 

growth cone filopodia underwent transient elongation (Van Wagenen and Rehder, 1999), 

suggesting a role for NO in neuronal pathfinding during development and regeneration. NO has 

also been shown to modulate neuronal excitability in B5 neurons by selectively affecting ion 

channels, such as K and Ca channels (Artinian et al., 2010; Artinian et al., 2012). On the level of 

neuronal circuitry and animal behavior, NO has been shown to be important in aerial respiration 

and long-term associative memory in Lymnaea (Kemenes et al., 2006; Lukowiak et al., 2006) 

and in feeding behaviors in Aplysia (Miller et al., 2011; Susswein and Chiel, 2012) and Lymnaea 

(Moroz et al., 1993; Kobayashi et al., 2000). 

Gastropod feeding is driven by central pattern generators (Quinlan et al., 1997; Murphy, 

2001), and NO has been implicated in regulating the buccal feeding motor program (Moroz et al., 

1993; Kobayashi et al., 2000). Buccal neuron B19 in Helisoma is a bilaterally symmetric motor 

neuron that innervates muscle groups in the radula (Murphy, 2001; Turner et al., 2011). The 

somata of B19 neurons are located in the vicinity of NO-producing neurons (Sadamoto et al., 

1998), suggesting that NO might affect B19 neurons by volume transmission. The goal of the 

current study was to investigate potential modulatory effects of NO on the electrical activity of 

B19 neurons, to identify the ion channels affected by NO, and to determine if NO acted on the 

same or a different set of ion channels than in the previously characterized buccal neuron (B5) 

involved in snail feeding. To eliminate possible indirect effects contributed by other cells, and to 
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allow cell type specific responses to NO to be investigated in isolation, we performed 

experiments at the single cell level in cultured neurons, where the source of NO is well 

controlled and the potential intracellular targets affected by NO can be investigated directly.  

We found that NO caused a prolonged depolarization of the membrane potential and an increase 

in neuronal excitability in cultured B19 neurons. This effect of NO was achieved in large part by 

the inhibition of Ca-activated K channels, with apamin-sensitive K (SK) channels serving as the 

main target, and their inhibition by NO fully accounting for the sustained depolarization. 

Inhibition by NO of iberiotoxin (IbTX)-sensitive K (BK) channels contributed an early and 

transient effect to the overall depolarization. Our data support the notion that NO can serve as a 

key modulator of neuronal activity, and that Ca-activated K channels may be a common target of 

NO signaling via volume transmission. 

3.4 Methods 

3.4.1 Animals 

Freshwater pond snails (Helisoma trivolvis) were kept in aerated aquaria (10 gallons) 

containing filtered water at room temperature on a 12 h light-dark cycle. Vegetable-based algae 

wafers (Hikari, Doctors Forster and Smith) and organic lettuce were used to feed snails once 

every day. Middle-sized animals with a shell diameter of 15 – 20 mm were chosen for the 

experiments.  

3.4.2 Neuronal culture 

Identified B19 neurons were isolated from the buccal ganglion of Helisoma and plated 

into Falcon Petri dishes as previously described (Zhong et al., 2013). Briefly, neurons were 

plated onto poly-L-Lysine (hydrobromide, MW, 70-150 kDa, 0.25 mg/ml; Sigma, St. Louis, MO, 
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USA)-coated glass coverslips attached to the bottom of 35-mm cell culture dishes (Falcon 1008). 

B19 neurons were kept in conditioned medium at room temperature. Conditioned medium was 

prepared by incubating two Helisoma trivolvis brains per 1 mL of Leibowitz L-15 medium 

(Invitrogen, Carlsbad, CA, USA) for 4 days. B19 neurons were used for experiments 24 – 48 

hours after plating. The composition of L-15 medium was as follows (mM): 44.6 NaCl, 1.7 KCl, 

1.5 MgCl2, 0.3 MgSO4, 0.14 KH2PO4, 0.4 Na2HPO4, 1.6 Na pyruvate, 4.1 CaCl2, 5 HEPES, 50 

μg/ml gentamicin, and 0.15 mg/ml glutamate in distilled water, pH 7.4. 

3.4.3 Electrophysiology 

 Recordings from Helisoma B19 neurons in whole-cell current-clamp mode were obtained 

as described previously (Zhong et al., 2013). The patch electrodes were pulled from borosilicate 

glass tubes (OD 1.5mm; ID 0.86mm; Sutter instruments) on a Sutter instruments micropipette 

puller (P-87) and heat polished (Micro Forge MF-830; Narishige) with a resistance of about 3 - 8 

MΩ. Neurons were recorded using 700B amplifiers (Molecular Devices, Union City, CA) and an 

analog-to-digital converter (Digidata 1440). Data acquisition and analysis were performed using 

pClamp software version 10 (Molecular Devices). Current-clamp configuration was used to 

record membrane potential, firing properties, and evoked action potentials (APs). Leibowitz L-15 

medium was normally used as extracellular recording solution. In some experiments, L-15 

medium was replaced with normal saline containing in (mM): 51.3 NaCl, 1.7 CaCl2, 1.5 MgCl2, 

and 5 HEPES, pH 7.3 - 7.4 (127 mOsm). Intracellular recording solution contained (mM): 54.4 

K-aspartate, 2 MgCl2, 5 HEPES, 5 Dextrose, 5 ATP 0.1 EGTA (127 mOsm). Mixed 

tetraethylammonium (TEA) chloride and 4-aminopyridine (4AP) solution was made by replacing 

20 mM NaCl with 20 mM TEA(Cl) and adding 5 mM 4AP right before the experiment. Solution 

replacement was achieved through a gravity-based perfusion system (Warner Instruments). The 
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resting membrane potential of a spontaneously firing neuron was determined by measuring the 

value at the plateau of the depolarization phase before the membrane potential reached threshold. 

Measurement of the effect of NO on membrane potential was made at two separate time points in 

order to account for what appeared to be an initial, slightly larger increase, followed by a 

sustained depolarization. The initial phase was measured at approximately 30 s after NOC7 

stimulation, whereas the plateau phase was measured at 3 min after NOC7 application. Neuronal 

excitability was tested by injecting depolarizing current with amplitudes of + 20 and + 100 pA 

for 1 s. Analysis of the properties of evoked APs was achieved by using the ‘threshold search’ 

function of Clampfit (pClamp 10, Molecular Devices). 

Recordings of voltage-gated Ca currents were achieved in the whole-cell voltage-clamp 

configuration, as described previously (Hui and Feng, 2008). To characterize total Ca currents, 

the membrane potential was held at - 60 mV and stepped from - 60 mV to + 60 mV for 500 ms 

and 10 mV increments. Extracellular solution contained (in mM): 10 CaCl2, 45.7 TEA(Cl), 1 

MgCl2, 2 4AP, 10 HEPES, pH 7.4 (TEA-OH); internal solution (in mM): 29 CsCl, 2.3 CaCl2, 2 

MgATP, 0.1 GTP-Tris, 11 EGTA, 10 HEPES. The internal solution was adjusted to pH 7.4 with 

CsOH. Recordings were filtered at 5 kHz (- 3 dB, 4 pole Bessel filters). Currents were analyzed 

by normalizing the peak inward current for each cell to the cell capacitance (pA/pF). 

3.4.4 Pharmacological agents 

NOC7 (Calbiochem) was dissolved in 100 mM NaOH to make a 100 mM stock solution. 

Diethylamine NONOate (DEA/NO, Calbiochem), cadmium chloride (CdCl2, Sigma), iberiotoxin 

(IbTX, Sigma), apamin (Alomone labs) were dissolved in distilled H2O to make 100 mM, 1 M, 

200 μM, 1 mM stock solutions, respectively. For patch clamp experiments, stock solutions were 

mixed with 200 μl extracellular solution removed from the recording dish, gently added back 
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around the periphery of the dish, and aspirated for 5 times using a 200 μl pipette to equilibrate 

the drugs to their final concentrations. The K channel blockers, TEA and 4AP, were prepared 

directly in the extracellular solution. The choice of pharmacological blockers was based on their 

successful prior usage in Helisoma (Artinian et al., 2010; Zhong et al., 2013). 

3.4.5 Statistical analysis 

 All data were expressed as mean ± SEM. Comparisons between two individual groups 

were made with either the Mann-Whitney U-test or the two-sample t-test, and comparisons 

between two paired groups were achieved by the paired-sample Wilcoxon signed-rank test using 

Origin Data Analysis and Graphing software (OriginLab Corporation, Northampton, MA). 

Significant differences are indicated as *P < 0.05, **P < 0.01, and ***P < 0.001. 

3.5 Results 

3.5.1 Nitric oxide depolarizes the membrane potential of B19 neurons 

Isolated B19 neurons from the buccal ganglion of Helisoma trivolvis were used for 

whole-cell patch-clamp experiments 24 – 48 hour after plating, at which time all neurons had 

well-developed neurites with growth cones at their tips. 74.6 percent of B19 neurons recorded 

(44 out of 59) were silent with a resting membrane potential at - 41.2 ± 0.7 mV, whereas the rest 

of B19 neurons (25.4%, 15 out of 59) fired spontaneous action potentials (APs) and had a 

slightly more depolarized membrane potential of – 38.3 ± 0.7 mV (P < 0.05; Two-sample t-test). 

We first asked how nitric oxide (NO) might affect the electrical activity of B19 neurons. The NO 

donor, NOC7 (half life: 10 min at 22 ˚C, pH 7.4, Calbiochem), was used to activate NO signaling. 

Despite their initial differences in membrane potential, all B19 neurons responded to 100 μM 

NOC7 with depolarization. In spiking neurons, as well as in neurons in which the depolarization 
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was large enough to bring neurons to the spiking threshold, neurons responded with a phasic 

increase in firing frequency, followed by sustained firing [Fig. 3.1(A)]. To include all neurons in 

the analysis, we decided to quantify the amount of depolarization resulting from the stimulation 

with NOC7. To account for what appeared to be an initial, slightly larger increase, followed by a 

sustained depolarization, we measured these effects of NO on membrane potential separately. 

The initial phase, measured approximately 30 s after NOC7 stimulation, showed a slightly 

stronger depolarization compared to the plateau phase, measured at 3 min after NOC7 

application (initial phase: + 3.8 ± 0.5 mV, n = 8; plateau phase: + 2.5 ± 0.4 mV, n = 8, P < 0.01; 

Paired-sample Wilcoxon signed-rank test) [Fig. 3.1(A, C and D)]. Both phases of the effect of 

NOC7 were significantly different from the solvent control, which had no effect (initial phase: + 

0.2 ± 0.2 mV, n = 6, P < 0.01, compared to NOC7; plateau phase: + 0.2 ± 0.1 mV, n = 6, P < 

0.01, compared to NOC7; Mann-Whitney U-test) [Fig. 3.1(C and D)]. 

We next wanted to independently confirm the effect of NO on membrane potential by 

using another NO donor, DEA/NO, which has been used successfully on B5 neurons in our 

system (Artinian et al., 2012). DEA/NO releases NO with a half-life of 16 min at 22 ˚C and pH 

7.4 (Calbiochem). Similar to the effects seen with NOC7, bath application of 100 μM DEA/NO 

caused an initial depolarization (+ 4.1 ± 0.2 mV, n = 6) and a plateau response (+ 3.6 ± 0.4 mV, 

n = 6) [Fig. 3.1(B to D)]. Both phases of the DEA/NO effect were significant compared to the 

solvent control (initial phase: + 0.4 ± 0.1 mV, n = 6, P < 0.01, compared to DEA/NO; plateau 

phase: + 0.1 ± 0.2 mV, n = 6, P < 0.01, compared to DEA/NO; Mann-Whitney U-test) [Fig. 

3.1(C and D)]. 

Taken together, stimulation with NO by the application of NOC7 or DEA/NO caused a 

depolarization of the membrane potential in B19 neurons, with a relatively stronger initial phase 
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and a sustained plateau phase. We next wanted to determine the source of the depolarization in 

response to NO and considered the opening of Ca channels and the closure of K channels as 

likely causes.  

3.5.2 The NO donor NOC7 does not affect voltage-gated Ca channels (VGCCs) 

To test possible effects of NOC7 on VGCCs, we recorded Ca currents in B19 neurons 

directly in the whole-cell voltage-clamp configuration, as previously described (Artinian et al., 

2012). We used a Na-free extracellular medium combined with a K-free intracellular solution to 

isolate Ca currents and applied voltage steps from – 60 to + 60 mV for 500 ms and 10 mV 

increments to evoke Ca currents. The maximal Ca current was not affected by treatment with 100 

μM NOC7 [Fig. 3.2(A and B)]. The normalized peak Ca currents during both the initial and the 

plateau phases of depolarization induced by NOC7 were not significantly different from the 

solvent control (initial phase: NOC7: 88.9 ± 3.6 %, n = 5 vs control: 91.4 ± 1.9 %, n = 4, P = 

0.71; plateau phase: NOC7: 86.0 ± 8.1 %, n = 5 vs control: 85.1 ± 3.3 %, n = 4, P = 1; Mann-

Whitney U-test) [Fig. 3.2(C)]. Subsequent treatment with 100 μM CdCl2, a prominent inhibitor 

of VGCCs, fully blocked the current (2.1 ± 3.1 %, n = 5) [Fig. 3.2(C)], suggesting that the 

current recorded was indeed a Ca current. Therefore, an opening of VGCCs in response to 

extrinsic NO stimulation could be ruled out as the source of depolarization. 

3.5.3 Inhibition of K channels fully blocks the depolarizing effects of NOC7 

In order to investigate the contribution of K channels in the NO-induced depolarization, 

we first used a cocktail of 20 mM TEA and 5 mM 4AP to block the majority of K channels. 

While this treatment depolarized the membrane potential instantly as expected (+ 4.7 ± 1.6 mV, 

n = 4) [data not shown], it also completely blocked any additional effect of a subsequent 

treatment with NOC7 (100 μM) (initial phase: NOC7 after TEA&4AP: + 0.2 ± 0.4 mV, n = 5, P 
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< 0.01, compared to NOC7; plateau phase: NOC7 after TEA&4AP: - 0.6 ± 0.2 mV, n = 5, P < 

0.01, compared to NOC7; Mann-Whitney U-test) [Fig. 3.3(A, C and D)]. Interestingly, the 

degree of depolarization obtained by inhibition of a majority of K channels (plateau phase: 

TEA&4AP: + 4.7 ± 1.6 mV, n = 4) was not significantly different from that seen after treatment 

with NOC7 (P = 0.27; Mann-Whitney U-test), suggesting that the effect of NO on membrane 

potential could likely be explained by an inhibitory effect of NOC7 on K channels. We next 

wanted to determine the class of K channels that mediated the NOC7-induced depolarization. 

3.5.4 NO depolarizes the membrane potential in a Ca-dependent manner 

To test for the involvement of Ca-activated K channels in the depolarizing response to 

NOC7, we first used CdCl2 to block VGCCs and then applied NOC7. 500 μM CdCl2 resulted in 

a depolarization of the membrane potential (CdCl2: + 2.9 ± 0.3 mV, n = 4 vs control: + 0.1 ± 0.2 

mV, n = 6, P < 0.05; Mann-Whitney U-test) [data not shown], suggesting a contribution of Ca 

influx to the resting membrane potential, likely mediated via Ca-activated K channels. 

Interestingly, the plateau effect of CdCl2 was not significantly different from that seen after 

treatment with NOC7 (P = 0.44; Mann-Whitney U-test), suggesting that the effect of NO on 

membrane potential might be largely explained by an inhibitory effect of NOC7 on Ca-activated 

K channels. Indeed, subsequent application of 100 μM NOC7 caused only a small depolarization 

during the initial phase (NOC7 after CdCl2: + 1.2 ± 0.1 mV, n = 4, P < 0.01, compared to NOC7; 

Mann-Whitney U-test) [Fig. 3.3(B and C)], whereas the plateau phase of the NO effect was 

completely blocked in the presence of 500 μM CdCl2 (NOC7 after CdCl2: + 0.1 ± 0.1 mV, n = 4, 

P < 0.01, compared to NOC7; Mann-Whitney U-test) [Fig. 3.3(B and D)]. 
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Therefore, Ca-activated K channels were the main cellular target of NO stimulation. We 

next investigated which classes of Ca-activated K channels might be targeted by NOC7 using 

pharmacological tools. 

3.5.5 IbTX-sensitive K channels contribute to the initial phase of the NO effect 

Two subtypes of Ca-activated K channels have been reported in Helisoma to date: a large 

conductance (BK) channel and a small conductance (SK) channel, each with a distinct 

pharmacological profile and contribution to neuronal activity (Artinian et al., 2010). We first 

investigated the potential effect of NO on BK channels. BK channels can be inhibited 

pharmacologically by iberiotoxin (IbTX), a scorpion toxin that acts on the outer face of the 

channel (Candia et al., 1992). IbTX has been used successfully in blocking BK channels in 

Helisoma B5 neurons (Artinian et al., 2010). 300 nM IbTX  caused a slow depolarization, which 

reached a plateau at around 10 min (IbTX: + 2.7 ± 0.7 mV, n = 4 vs control: + 0.1 ± 0.2 mV, n = 

6, P < 0.05; Mann-Whitney U-test) [data not shown], suggesting that BK channels in B19 

neurons are partially open at rest and help maintain the membrane potential at a hyperpolarized 

level. Subsequent application of 100 μM NOC7 in the presence of IbTX still caused additional 

depolarization, which was maintained throughout the recording, suggesting that NOC7 was 

acting on yet another conductance, in addition to BK channels [Fig. 3.4(A)]. During the early 

phase, in the presence of IbTX, NOC7 treatment was able to add an additional depolarization 

that was significantly smaller than the one produced by NOC7 itself (NOC7 after IbTX: + 1.8 ± 

0.3 mV, n = 4, P < 0.05, compared to NOC7; Mann-Whitney U-test) [Fig. 3.4(A and B)], 

indicating that the initial depolarization by NO was mediated by at least two channels: an IbTX-

sensitive K channel and a yet unknown channel. During the plateau phase, the depolarization in 

response to NOC7 in IbTX-pretreated neurons was not significantly different from NOC7 on its 
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own (NOC7 after IbTX: + 2.0 ± 0.1 mV, n = 4, P = 0.73; Mann-Whitney U-test) [Fig. 3.4(A and 

C)], suggesting IbTX-sensitive BK channels did not significantly contribute to the sustained 

plateau effect of NO. 

3.5.6 Apamin-sensitive K channels are the main target of NO in depolarizing the membrane 

potential 

SK channels are known to be the target of NO in Helisoma B5 neurons (Artinian et al., 

2010), which raised the possibility that SK channels might be affected by NO in B19 neurons as 

well. Treatment with 5 μM apamin, a specific blocker of SK channels, instantly led to a sustained 

depolarization in B19 neurons [Fig. 3.5(A)]. Whereas the initial depolarization by apamin was 

slightly smaller than that by NOC7 treatment (Apamin: + 2.0 ± 0.2 mV, n = 5, P < 0.05, 

compared to NOC7; Mann-Whitney U-test) [Fig. 3.5(C)], the sustained depolarization achieved 

by apamin was similar to that of NOC7 group (Apamin: + 2.3 ± 0.4 mV, n = 5, P = 0.71, 

compared to NOC7; Mann-Whitney U-test) [Fig. 3.5(A and D)]. The subsequent addition of 

NOC7 (100 μM) to apamin-treated neurons resulted in an additional, albeit transient 

depolarization (initial phase: NOC7 after apamin: + 2.2 ± 0.3 mV, n = 5, P < 0.05; compared to 

NOC7; Mann-Whitney U-test) [Fig. 3.5(B and C)], suggesting that the initial depolarization 

partially resulted from another channel in addition to SK channels, probably IbTX-sensitive BK 

channels as demonstrated earlier. Interestingly, no additional depolarization could be achieved 

by NOC7 in the presence of apamin during the plateau phase (NOC7 after apamin: + 0.3 ± 0.2 

mV, n = 5, P < 0.01; compared to NOC7; Mann-Whitney U-test) [Fig. 3.5(B and D)]. These 

results suggested that SK channels served as the main target of NO in B19 neurons, and that the 

sustained, plateau effect elicited by NOC7 could be fully explained by the blockade of SK 

channels. 
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3.5.7 NO increases neuronal excitability  

Given its depolarizing effect on membrane potential, we next wanted to further 

investigate the effect of NO on neuronal excitability. Injections of depolarizing current steps for 

1 s evoked APs in B19 neurons in a dose-dependent manner. In the example shown in Fig. 

3.6(A), 100 μM NOC7 shortened the inter-spike interval, which allowed one more evoked AP to 

occur over the period of + 20 pA current injection. Statistical analysis of the firing frequency of 

the evoked APs showed that B19 neurons significantly increased their firing frequency elicited 

by + 20 pA current injections compared to the vehicle control (NOC7:  123.2 ± 8.7 %, n = 4 vs 

control:  100.7 ± 0.8 %, n = 4, P < 0.05; Mann-Whitney U-test) [Fig. 3.6(C)]. The increased 

firing frequency induced by NO was maintained when a larger depolarizing current was applied 

(+ 100 pA: NOC7: 108.6 ± 2.7 %, n = 4 vs control:  98.3 ± 0.4 %, n = 4, P < 0.05; Mann-

Whitney U-test) [Fig. 3.6(B and C)]. Therefore, NO not only caused a depolarization of the 

membrane potential and increased firing frequency, but also led to a general increase in neuronal 

excitability of B19 neurons. 

3.6 Discussion 

The goal of current study was to understand the role of NO in modulating neuronal 

activity in B19 neurons from Helisoma trivolvis. We achieved this aim by investigating 

membrane channel targets that mediate the effects of NO at the electrophysiological level. The 

proposed model by which NO is thought to affect electrical activity in B19 neurons is 

schematically shown in Fig. 3.7. According to the model, NO depolarizes the membrane 

potential by inhibiting two types of Ca-activated K channels: apamin-sensitive K channels and 

IbTX-sensitive K channels, with the main effect of NO being contributed by the inhibition of 
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apamin-sensitive K channels. NO application on the other hand had no significant effect on 

VGCCs. 

3.6.1 Effects of NO on membrane potential and cell excitability 

Elevation of the NO concentration by treatment with the NO-donors NOC7 and DEA/NO 

led to a long-lasting depolarization of the membrane potential in B19 neurons. We divided this 

response into an initial phasic depolarization, followed by a tonic plateau response. The majority 

of B19 neurons were electrically silent before the stimulation with NO, and in most of these 

neurons, the NO-induced depolarization elicited transient or sustained spiking activity. Such a 

transition from a silent to a firing state constitutes a profound change in the physiological state of 

a neuron, regardless of whether a neuron is undergoing neurite outgrowth during development or 

regeneration, or serving as a member of a neuronal circuit in the mature nervous system. For 

example, neuronal spiking will increase the intracellular Ca concentration ([Ca]i), which has 

been shown to have a wide range of effects in both developing and mature nervous systems 

(Rehder and Kater, 1992; Torreano and Cohan, 1997; Berridge et al., 2003; Spitzer, 2006). 

Increases in [Ca]i in growth cones from several neuron types have been shown to result in a 

decrease in neurite outgrowth (Mattson and Kater, 1987), filopodial elongation (Rehder and 

Kater, 1992), and growth cone turning (Henley and Poo, 2004). In the intact nervous system, an 

increase in intrinsic spiking activity would result in altered postsynaptic excitation, and, 

depending on the degree of depolarization resulting from NO, it could lead to an increase or 

decrease in neuronal excitability (Prast and Philippu, 2001; Steinert et al., 2008). Even neurons 

that were originally silent, and in response to NO treatment became depolarized without reaching 

the spike threshold, would likely exhibit altered responses to presynaptic inputs.  
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In B5 neurons, we previously showed that NO had a biphasic effect, causing transient 

excitation, followed by silencing at a depolarized membrane potential (Artinian et al., 2010). In 

this case, NO caused an initial increase in firing frequency followed by a sustained 

depolarization, similar to that seen in B19 neurons. The difference between B5 and B19 neurons 

was that B5 neurons did not show a sustained increase in excitability in response to NO, whereas 

B19 neurons did show such an increase in excitability (Artinian et al., 2010). Therefore, the 

release of NO in vivo is expected to have complex effects on target neurons that may differ 

between cell types, depending on the mode of NO’s action on individual neurons.  

3.6.2 Ion channels affected by NO 

After ruling out the possibility that extrinsic NO might have opened VGCCs to cause 

depolarization, we found that the effect of NO on membrane potential was completely eliminated 

when K channels were inhibited with a cocktail of TEA and 4AP, supporting the hypothesis that 

K channels were primary targets of NO signaling. We next investigated any involvement of Ca-

activated K channels by using CdCl2 to block VGCCs, with the rationale that Ca-activated K 

channels would be largely inhibited without Ca influx (Herrera and Nelson, 2002). Interestingly, 

we found that VGCCs, at resting conditions, contributed to the membrane potential, perhaps by 

activating Ca-activated K channels that help maintain a hyperpolarizing drive on the membrane 

potential. After the blockage of Ca influx, Ca-activated K channels closed and resulted in 

depolarization. The finding that NOC7, in the presence of CdCl2, was unable to elicit additional 

depolarization during the later phase indicated that Ca influx and NOC7 signaling might be 

converging on a common target, such as Ca-activated K channels. In fact, NO signaling has been 

shown to inhibit Ca-activated K channels in various cells including Helisoma B5 neurons 

(Cetiner and Bennett, 1993; Artinian et al., 2010).  
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Further investigation of specific K channel subtypes identified Ca-activated K channels, 

SK channels and BK channels, as the main ion channel targets of NO. This finding is consistent 

with what we reported in Helisoma B5 neurons (Artinian et al., 2010), where NO regulates the 

electrical activity of tonically firing neurons through inhibition of SK channels and BK channels. 

Here, we further dissected the contributions of different channel inhibitors on the NO-induced 

membrane depolarization. The inhibition of SK channels with apamin resulted in an instant 

depolarization of the membrane potential, and this effect was sustained throughout the recording. 

The apamin-induced plateau depolarization was similar to that seen after NO treatment, and 

subsequent application of NOC7 did not show any additional effect on the plateau phase, 

suggesting that the plateau depolarization was most likely mediated by the closure of SK 

channels. However, NO still had a small depolarizing effect on membrane potential during the 

initial phase in the presence of apamin, although the level of depolarization was significantly 

smaller than that seen with NOC7 on its own. Interestingly, the initial effect of NO was also 

reduced when BK channels were blocked by IbTX. Taken together, these two findings suggested 

that the initial NO-induced depolarization could be explained by a combined effect of inhibition 

of both SK and BK channels by NO. Modulatory effects of NO on Ca-activated K channels were 

also reported in other cell types, including mammalian vascular smooth muscle (Bolotina et al., 

1994), avian ciliary ganglia neurons (Cetiner and Bennett, 1993), and other snail neurons 

(Schrofner et al., 2004), suggesting a conserved signaling role for NO on Ca-activated K 

channels.   

Although the main targets of NO were found to be Ca-activated K channels, NO might 

also inhibit other K channels. In fact, a residual small depolarization by NO was still seen in the 

initial phase after inhibition of Ca channels with CdCl2, which is thought to remove all 
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contributions of Ca-activated K channels. NO has been shown to regulate various K channels 

(Tricoire and Vitalis, 2012). For example, the delayed rectifier channel, Kv3, which regulates 

synaptic strength and intrinsic excitability, is inhibited by NO via volume transmission in the 

auditory brainstem and the hippocampus (Steinert et al., 2008; Steinert et al., 2011). Considering 

the important roles of K channels in determining action potential waveform (Bean, 2007), the 

modulatory effects of NO on K channels might not only have a strong impact on membrane 

potential but also tune the spike timing of these neurons.    

3.6.3 NO and gastropod feeding 

NO is free to pass the plasma membrane and capable of acting on cellular targets in the 

vicinity of NO-releasing neurons, making it a good candidate for the modulation of neuronal 

circuits (Artinian et al., 2010). How NO signaling would affect overall snail feeding is presently 

unclear. NO has been described as a regulator for the feeding motor patterns in Lymnaea. An 

early study showed that the treatment with a NO donor activates feeding movements of the 

buccal mass (Moroz et al., 1993), whereas a more recent study reported that NO release in situ 

functions to suppress rhythmic activity in buccal motor neurons, resulting in a reduced feeding 

rate (Kobayashi et al., 2000). These seemingly opposing effects of NO on snail feeding warrant 

future investigations on the effects of NO on multiple levels, including studies on isolated 

neurons, the neuronal circuitry generating the feeding motor program, and animal behavior.  
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3.7 Figures 

 

 

Figure 3.1 NO causes membrane potential depolarization in B19 neurons.  
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A: A silent B19 neuron was depolarized and started firing after treatment with NOC7 (100 μM, 

bath application; gray bar). Note electrical recording artifact upon drug addition. Enlarged areas 

of interest below the main recording trace (marked by black dashed boxed) show details of the 

recording (note that APs are clipped to emphasize membrane depolarization). The initial 

depolarization to NOC7 at 30 s was stronger than that during the plateau phase at 3 min. B: 

Representative data showing membrane potential depolarization of B19 neurons by another NO 

donor, DEA/NO (100 μM). C: Quantification of the changes in membrane potential during the 

initial phase such as shown in A and B. Both NOC7 and DEA/NO caused a significant 

depolarization compared to that of their vehicle control groups. D. Quantification of the plateau 

depolarization showing that both NOC7 and DEA/NO caused significant depolarization during 

the plateau phase. 
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Figure 3.2 Voltage-gated Ca channels are not affected by NOC7.  

Ca currents were recorded in whole-cell voltage-clamp mode. Voltage steps from a holding 

potential of – 60 mV to + 60 mV were applied in 10 mV increments. A: Representative traces of 

Ca currents evoked by a voltage step from – 60 mV to + 10 mV before (upper), during the initial 

phase (middle), and during the plateau phase of treatment with NOC7 (100 μM, lower). B: 

Representative I-V plot of Ca current measured at the peak amplitude and expressed as 

normalized Ca current (pA/pF) before and after NOC7 application. Note that NOC7 did not have 

an obvious effect on Ca currents. C: Quantification of the effect of NO on Ca currents showing 
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that treatment with NOC7 did not have a significant effect on normalized peak currents 

compared to control groups during both initial and plateau phases. Subsequent application of the 

Ca channel blocker CdCl2 (100 μM) fully eliminated Ca currents.  

 

  



75 
 

 

Figure 3.3 Ca-activated K channels mediate NO-induced depolarization.  

A: Representative recording of a B19 neuron pretreated with a cocktail of the K channel blockers 

TEA (20 mM) and 4AP (5 mM), and subsequently treated with NOC7 (100 μM). Inhibition of K 

channels completely blocked the depolarizing effect of NOC7. B: Example of a B19 neuron 

pretreated with CdCl2 (500 μM) before and after treatment with NOC7 (100 μM). CdCl2 was 
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used to block Ca influx, and indirectly inhibited the activation of Ca-activated K channels. Note 

that NOC7 had only a small depolarizing effect on membrane potential during the initial phase, 

whereas any depolarization during the plateau phase was fully inhibited in the presence of CdCl2. 

C: Quantification of the initial depolarization showing that pretreatment with TEA (20 mM) and 

4AP (5 mM) fully blocked the depolarizing effect of NOC7, whereas CdCl2 (500 μM) 

significantly inhibited the effect of NOC7 during the initial phase. D: Pretreatment with TEA and 

4AP and with CdCl2 prevented the NOC7-induced depolarization during the plateau phase.  
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Figure 3.4 IbTX-sensitive BK channels partially contribute to the initial depolarization 

induced by NOC7.  

A: Representative recording of a B19 neuron pretreated with IbTX (300 nM) and after addition 

of NOC7 (100 μM). Note that NOC7 after IbTX caused a sustained depolarization with similar 

initial and plateau amplitudes. B: Quantification of the initial depolarization showing that the 

amplitude of membrane depolarization was significantly reduced in the NOC7 after IbTX group 

compared to NOC7 by itself. C: Quantification of the plateau depolarization in response to 

treatment shown in A. IbTX pretreatment did not affect the depolarizing effect of NO during the 

plateau phase. 
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Figure 3.5 Apamin-sensitive SK channels are responsible for the main effect of NO on 

membrane potential.  

A: Representative recording of a B19 neuron before and after treatment with apamin (5 μM). 

Note that apamin application led to a sustained depolarization. B: Pre-incubation with apamin (5 

μM) fully blocked the plateau depolarization normally seen by treatment with NOC7 (100 μM), 

but a small initial depolarization was still observed. C: Quantification of the initial depolarization 
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such as shown in A and B. Apamin caused a depolarization, but the amplitude was significantly 

smaller than that of NOC7 group. NOC7 after pretreatment with apamin induced a significantly 

smaller depolarization than NOC7 by itself. D: Quantification of the plateau depolarization 

showing that treatment with NOC7 or apamin resulted in a similar depolarization. Subsequent 

application of NOC7 in the presence of apamin did not cause any additional depolarization 

during the plateau phase. 
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Figure 3.6 NOC7 increases the excitability of B19 neurons.  
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A: Comparison of action potentials evoked by injecting depolarizing current (+ 20 pA, 1s) before 

and after treatment with NOC7 (100 μM). Note that one more AP was induced after NOC7 

application. B: Evoked APs in response to + 100 pA current injection for 1 s before and after 

treatment with NOC7 (100 μM). Note that NOC7 application resulted in shortened inter-spike 

intervals. C: Quantification of normalized spike frequency for vehicle controls and NOC7 groups. 

The frequency of evoked APs after treatment was normalized to that before treatment. In both + 

20 pA and + 100 pA current injection conditions, NOC7 caused a significant increase in the 

frequency of evoked APs. 
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Figure 3.7 Proposed model of ion channel targets through which NO results in a prolonged 

depolarization.  

Elevation of NO by NO donors, such as NOC7 or DEA/NO, inhibits two types of Ca-activated K 

channels in Helisoma B19 neurons. Apamin-sensitive SK channels contribute to part of the 

initial effect of NO and are fully responsible for its long-lasting effect on membrane 

depolarization, whereas IbTX-sensitive BK channels only partially contribute to the initial 

depolarization. Voltage-gated Ca channels do not participate in the depolarizing effect of 

extrinsically applied NO. The mechanism(s) by which NO inhibits these ion channels is 

presently unknown (indicated by dotted lines). Inhibitors used are indicated in gray. 
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CHAPTER 4   DOPAMINE SUPPRESSES NEURONAL ACTIVITY OF HELISOMA B5 

NEURONS VIA A D2-LIKE RECEPTOR, ACTIVATING PLC AND K CHANNELS 

 

Published as Zhong L.R., Artinian L., and Rehder V. (2013) Dopamine suppresses neuronal 

activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels. 

Neuroscience. 228:109-119. 
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4.2 Abstract 

Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the 

central nervous system. How DA modulates the electrical excitability of individual neurons to 

elicit various behaviors is of great interest in many systems. The buccal ganglion of the 

freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is 

known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates 

in the control of gut contractile activity and is surrounded by dopaminergic processes, which are 

expected to release DA. In order to study whether DA modulates the electrical activity of 

individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture 

and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a 

strong hyperpolarization in both conditions and turned the electrical activity from a 
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spontaneously firing state to an electrically silent state. Using the cell culture system, we 

demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist 

sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the 

membrane potential of B5 neurons through activation of a D2-like receptor and PLC. Further 

studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 

4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the 

ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 

neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable 

feeding motor program.  

 

KEYWORDS: dopamine, D2-like receptor, Helisoma trivolvis, PLC, K channels, excitability.  

4.3 Introduction 

Dopamine (DA) acts as a neurotransmitter and neuromodulator in the central nervous 

system, where it regulates a wide range of neuronal circuits in both vertebrate and invertebrate 

species (Harris-Warrick et al., 1998; Murphy, 2001; Bevan et al., 2006). How DA modulates the 

electrical excitability of individual neurons, alters the output of neuronal circuits, and finally 

affects an animal’s behavior are central questions that are being addressed in many systems. 

Gastropods have a relatively simple nervous system with identifiable neurons in different 

ganglia, providing a convenient model to study the role of DA in neuronal function. Previous 

studies have demonstrated that DA regulates various cellular and physiological functions in 

gastropods. DA plays critical roles in initiation and regulation of respiratory and feeding central 

pattern generator activities in Helisoma trivolvis and Lymnaea stagnalis (Quinlan et al., 1997; 

Magoski and Bulloch, 1999). The DA-releasing RPeD1 neuron in Lymnaea promotes neurite 
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extension in its in vivo target neuron, but collapses growth cones of non-target neurons (Spencer 

et al., 1996; Spencer et al., 2000). Electrophysiological results have revealed that DA exposure 

alters neuronal electrical properties (Dobson et al., 2006). DA induces a sustained depolarization 

of the membrane potential in the Helisoma B19 neuron (McCobb et al., 1988). On the other hand, 

a hyperpolarizing response induced by DA is shown in multiple Lymnaea neurons (de Vlieger et 

al., 1986; Audesirk, 1989; Magoski et al., 1995; Dobson et al., 2006). Considering the diverse 

roles that DA plays in gastropod nervous systems, it is important to develop a detailed 

understanding of which signaling pathways are activated by DA in particular neurons.   

DA receptors are grouped into 2 subtypes: D1-like and D2-like receptors (Missale et al., 

1998; Beaulieu and Gainetdinov, 2011). They are G-protein coupled receptors, and separated 

based on their ability to modulate adenylate cyclase activity. D1-like receptors stimulate 

adenylate cyclase via Gs, whereas D2-like receptors inhibit it via Gi. In addition to the regulation 

of cAMP signaling, DA receptors can also activate PLC via Gq/11 (Lee et al., 2004). These DA-

activated intracellular signals have been reported to result in the modulation of a variety of ionic 

currents (Harris-Warrick et al., 1998). For example, an A-type K current has been shown to be 

regulated differentially by different DA receptors in the crustacean pyloric PD and LP neurons 

(Zhang et al., 2010). Therefore, a study of signaling pathways activated by DA in individual 

neurons is necessary to explain DA-associated effects on neuronal excitability.   

B5 neurons in Helisoma, like their homologs in the closely-related species Lymnaea and 

Clione, innervate the esophagus and are involved in feeding behavior (Perry et al., 1998; 

Malyshev and Balaban, 2009). Excitation of the neurons in Lymnaea leads to contraction of the 

foregut, while their silencing results in relaxation (Perry et al., 1998). Immunohistochemistry 

shows the presence of dopaminergic neurons in the buccal ganglion, and DA is found to 
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modulate the neural circuitry of feeding (Quinlan et al., 1997; Murphy, 2001). Here, we tested 

the effect of DA on the electrical activity of B5 neurons and investigated the signaling pathway 

activated by DA.  

We report that DA hyperpolarized the membrane potential and switched B5 neuron from 

a state of spontaneous firing to being silent in both in vitro and in situ recording conditions. To 

assure that DA release from sources within the ganglion could not complicate the interpretation 

of the data, we performed all following experiments on B5 neurons that had been physically 

isolated from buccal ganglia and maintained in cell culture. Investigation of the signaling 

mechanism underlying the DA–induced hyperpolarization revealed that DA acts on a D2-like 

receptor, signals via PLC, and subsequently opens two types of K channels, a 4AP-sensitive K 

channel and a TEA-sensitive K channel. The modulatory effect of DA on the electrical activity 

of B5 neurons may contribute to the coordinated output of various neurons involved in the snail 

feeding motor program. 

4.4 Methods 

4.4.1 Neuronal culture  

Identified B5 neurons were removed from the buccal ganglion of the freshwater pond 

snail Helisoma trivolvis and plated into Falcon Petri dishes as previously described (Rehder & 

Kater, 1992). Briefly, neurons were plated onto poly-L-Lysine (hydrobromide, MW, 70-150 kDa, 

0.25 mg/ml; Sigma, St. Louis, MO, USA)-coated glass coverslips attached to the bottom of 35-

mm cell culture dishes (Falcon 1008). B5 neurons were kept in conditioned medium at room 

temperature. Conditioned medium was prepared by incubating two Helisoma trivolvis brains per 

1 mL of Leibovitz L-15 medium (Invitrogen, Carlsbad, CA, USA) for 3 - 4 days (Wong et al., 
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1981). Neurons were used for experiments 24 - 48 hour after plating. The composition of L-15 

medium was as follows (mM): 44.6 NaCl, 1.7 KCl, 1.5 MgCl2, 0.3 MgSO4, 0.14 KH2PO4, 0.4 

Na2HPO4, 1.6 Na pyruvate, 4.1 CaCl2, 5 HEPES, 50 μg/ml gentamicin, and 0.15 mg/ml 

glutamate in distilled water, pH 7.4. 

4.4.2 Electrophysiology 

Recordings from the Helisoma B5 neuron in whole-cell current-clamp mode were 

obtained as described previously (Artinian et al., 2010). The patch electrodes were pulled from 

borosilicate glass tube (OD 1.5mm; ID 0.86mm; Sutter instruments) on a Sutter instruments 

micropipette puller (P-87) and heat polished (Micro Forge MF-830; Narishige) with a resistance 

of about 3 - 8 MΩ. Neurons were recorded using Axopatch 2B and 700B amplifiers (Molecular 

Devices, Union City, CA) and an analog-to-digital converter (Digidata 1440). Data acquisition 

and analysis were performed using pClamp software version 10 (Molecular Devices). Current-

clamp configuration was used to record membrane potential, firing properties, and input 

resistance. Leibowitz L-15 medium was normally used as extracellular recording solution. In 

some experiments, L-15 medium was replaced with normal saline containing in (mM): 51.3 

NaCl, 1.7 CaCl2, 1.5 MgCl2, and 5 HEPES, pH 7.3 - 7.4 (127 mOsm). Intracellular recording 

solution contained (mM): 54.4 K-aspartate, 2 MgCl2, 5 HEPES, 5 Dextrose, 5 ATP 0.1 EGTA 

(127 mOsm). TEA solution was made by replacing 20 mM NaCl with 20 mM TEACl. Low Cl 

solution was prepared by replacing 51.3 mM NaCl with 51.3 mM Na gluconate in the 

extracellular solution. Solution replacement was achieved through a gravity-based perfusion 

system (Warner Instruments). Membrane potentials were corrected for liquid junction potential 

caused by switching between solutions of different ionic composition. Resting membrane 

potential of spontaneous firing neuron was determined by measuring the value at the plateau of 
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the depolarization phase before the membrane potential reached threshold. Analysis of action 

potential properties was achieved by using the ‘template search’ function of Clampfit (pClamp 

10, Molecular Devices). Initial broadening of action potentials induced by 4AP was measured as 

the action potential width at one quarter of action potential amplitude from the positive peak, 

where the effect of 4AP was most obvious. Measurement of input resistance was made by a 

series of hyperpolarizing current injections from - 50 to - 200 pA in steps of - 50 pA for 3 s, and 

determined from the slope of a linear fit of the relationship between the peak change in 

membrane potential and the magnitude of the injected current (Robinson and Cameron, 2000).  

For intracellular recordings from B5 neurons located within buccal ganglia, ganglia were 

pinned down in a dissection chamber containing normal saline. The ganglionic sheath in the 

vicinity of B5 neuron was cut open using a fine microknife. Neurons were impaled with sharp 

glass microelectrodes filled with 3 M KCl having resistances of about 20 – 50 MΩ (Sakurai et al., 

2006). Neurons were recorded using Axoclamp 2B amplifiers (Molecular Devices, Union City, 

CA), and data acquisition and analysis were achieved with Spike2 software (Cambridge 

Electronic Design). Negative current (ranging from - 0.2 nA to - 1 nA, 1 s) was occasionally 

delivered to measure input resistance during recordings. 

4.4.3 Pharmacological agents  

All agents were purchased from Sigma. Dopamine (DA) was dissolved in water to make 

a 100 mM stock solution. R(+)-SCH-23390 hydrochloride (D1 receptor inhibitor), (S)-(-)-

Sulpiride (D2 receptor inhibitor), U-73122 hydrate (PLC inhibitor), U-73343 (inactive PLC 

inhibitor) were dissolved in dimethylsulfoxide (DMSO) to make 100 mM, 100 mM, 5 mM, 5 

mM stock solutions, respectively. For patch clamp experiments performed in cell culture, stock 

solutions were mixed with 50 μl of extracellular solution removed from the recording dish and 
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directly and gently added back around the periphery of the dish for drugs to equilibrate to their 

final concentrations. For intracellular recordings from buccal ganglia, stock solutions were 

mixed in 500 μl of saline solution that was initially removed from the recording dish and then 

added back. The final concentration of DMSO in the extracellular recording solution was less 

than 0.1% and that concentration by itself had no measurable effect on neurons. Other solutions 

used included Na gluconate and the K channel blockers tetraethylammonium chloride (TEA) and 

4-aminopyridine (4AP), which were prepared directly in the extracellular solution. 

4.4.4 Statistical analysis 

All data were expressed as mean ± SEM. Comparisons between two individual groups 

were made with the Mann-Whitney U-test, and comparisons between two paired groups were 

achieved by the Wilcoxon signed-rank test using Origin 6 software (OriginLab Corporation, 

Northampton, MA). Significant differences are indicated as *P < 0.05, **P < 0.01, and ***P < 

0.001. 

4.5 Results 

4.5.1 DA causes a strong hyperpolarization of neuron B5  

B5 neurons, isolated from the buccal ganglion of Helisoma trivolvis, were cultured for 24 

- 48 hour before experiments, at which time all neurons had well-developed neurites with growth 

cones at their tips. In a previous study, we had shown that B5 neurons at this developmental 

stage had resting membrane potentials (RMP) of - 43 ± 7 mV and fired action potentials 

spontaneously with an average frequency ranging from 0.5 Hz to 2 Hz (Artinian et al., 2010). 

We first asked how bath application of DA might affect the electrical activity of B5 neurons. All 

neurons treated with DA (1, 5, 20 or 100 μM) showed a strong hyperpolarizing response, and 
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switched from a state of spontaneous firing to being silent [Fig. 4.1(A)]. The maximal 

hyperpolarizing response induced by 1 μM DA was - 16.8 ± 4.0 mV (n = 5, Fig. 4.1(B)). This 

was significantly different from the solvent control, which had no effect (- 1.0 ± 0.7 mV; n = 5, P 

< 0.05, Fig. 4.1(B)). Increasing the DA concentration resulted in a dose-dependent increase in 

hyperpolarization (5 μM: - 19.2 ± 2.6 mV, n = 4; 20 μM: - 24.9 ± 1.7 mV, n = 7; and 100 μM 

DA: - 29.1 ± 1.0 mV, n=5; Fig. 4.1(B)). An analysis of the delay between the time of DA 

addition and the time when the hyperpolarizing response reached its maximum also showed a 

concentration-dependent effect, with 1 μM DA resulting in a peak at 1014.7 ± 110.6 s (n = 4, Fig. 

4.1(C)) after the drug application, while the 20 μM DA group peaked significantly earlier (409.0 

± 45.9 s; n = 7, P < 0.01, Fig. 4.1(C)). We used 20 μM DA from here on, because this 

concentration resulted in a robust hyperpolarization of the membrane potential with a relatively 

short delay.  

While neurons in cell culture and in situ often exhibit very similar receptor properties and 

ionic conductances, there are also reports in which responses in vitro differ from those recorded 

in situ (Turrigiano and Marder, 1993; Turrigiano et al., 1994; Haedo and Golowasch, 2006). To 

test if responses of B5 neurons in culture were representative of their behavior in the ganglion, 

we next performed intracellular recordings from B5 neurons located within the buccal ganglion. 

B5 neurons in situ fired action potentials, and treatment with 20 μM DA elicited a strong 

hyperpolarization of RMP, switching neurons from spiking to being silent [Fig. 4.2(A)], just as 

had been observed in B5 neurons in cell culture [Fig. 4.1(A)]. The maximal hyperpolarizing 

response was - 18.0 ± 2.0 mV (n = 5, Fig. 4.2(B)), which was significantly different from the 

vehicle control (+ 0.9 ± 0.5 mV; n = 6, P < 0.01, Fig. 4.2(B)). Increasing the concentration to 100 
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μM DA did not elicit an additional significant effect on membrane potential (- 21.2 ± 2.3 mV; n 

= 5, Fig. 4.2(B)) when compared to the 20 μM DA group (P = 0.4, Fig. 4.2(B)).  

Taken together, DA caused a strong hyperpolarizing effect on Helisoma B5 neurons both 

in vitro and in situ, converting them from spiking tonically to being silent. Given the similarity of 

responses to DA in B5 neurons in vitro and in situ, we performed all experiments from here on in 

culture, because no DA release from other cellular sources could potentially complicate the 

interpretation of results. 

4.5.2 A D2-like receptor mediates DA’s effect on electrical activity 

To investigate the signaling pathway that mediated the DA-induced hyperpolarizing 

effect, we next asked which receptors were activated by DA. There are two major subtypes of 

DA receptors: D1-like receptors and D2-like receptors. We first focused on the D2-like receptor, 

because they have been implicated in causing a hyperpolarization of RMP in different neuronal 

cell types, including several Lymnaea neurons (de Vlieger et al., 1986; Audesirk, 1989; Magoski 

and Bulloch, 1999; Dobson et al., 2006). 100 μM sulpiride, a D2-like receptor antagonist that 

had been used in Helisoma previously (Quinlan et al., 1997), did not change the RMP of B5 

neurons (- 0.2 ± 1.2 mV; n = 4, Fig. 4.3(C)), but when 20 μM DA was added in the presence of 

sulpiride (10 min preincubation), neurons maintained their firing activity (+ 0.7 ± 1.1 mV; n = 4, 

Fig. 4.3(A) and 3(C)), demonstrating that the hyperpolarizing effect of DA on RMP had been 

completely abolished (P < 0.05, Fig. 4.3(C)). These data indicated that DA likely acted on a D2-

like receptor to hyperpolarize the RMP of B5 neurons. 

A D1-like receptor has been suggested to mediate the DA-induced growth cone collapse 

in the neuron PeA in Lymnaea stagnalis (Dobson et al., 2006), a species of fresh water snail that 

is closely related to Helisoma trivolvis. To rule out a potential role of D1-like receptors in 
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mediating the effect of DA on RMP, we used a D1 receptor antagonist, SCH23390, to investigate 

whether the DA-induced hyperpolarization could be blocked when the D1-like receptor was 

inhibited (Magoski et al., 1995; Mukai et al., 2004). Whereas the pretreatment with 100 μM 

SCH23390, a concentration that has been demonstrated to be effective in Lymnaea, did not affect 

the RMP of B5 neurons (+ 0.4 ± 1.3 mV; n = 4, Fig. 4.3(C)), bath application of 20 μM DA in 

the presence of SCH23390 still elicited a strong hyperpolarization (- 27.4 ± 1.5 mV; n = 4, Fig. 

4.3(B) and 4-3(C)). This hyperpolarization was not significantly different from that induced by 

DA treatment alone (P = 0.51, Fig. 4.3(C)), suggesting that the effect of DA on the RMP was not 

mediated via a D1-like receptor.  

4.5.3 PLC plays a critical role in DA signaling 

To determine the signaling pathway downstream of the D2-like receptor, we first 

investigated phospholipase C (PLC), a prominent target of the D2 receptor-activated G-protein 

Gq/11. Activation of PLC signaling by Gq/11 has been shown to mediate the DA-induced 

hyperpolarization in Lymnaea PeA neurons (Dobson et al., 2006). The PLC inhibitor, U73122 

(0.5 μM), alone slightly hyperpolarized the RMP and silenced the spontaneous firing activity of 

B5 neurons (- 4.2 ± 0.6 mV; n = 5, Fig. 4.4(A) and 4-4(C)) (Dobson et al., 2006), suggesting that 

PLC activity was required for the generation of spontaneous firing activity. Interestingly, the 

hyperpolarizing effect of 20 μM DA on the RMP was blocked in the presence of 0.5 μM U73122 

(- 4.6 ± 1.4 mV; n = 5, P < 0.01, Fig. 4.4(A) and 4-4(C)). We next used U73343, the inactive 

analog of U73122, as a negative control. 0.5 μM U73343 on its own had no effect on RMP (- 0.5 

± 0.9 mV; n = 4, Fig. 4.4(C)), and the addition of 20 μM DA in the presence of U73343 still 

caused a strong hyperpolarization (- 25.5 ± 0.5 mV; n = 3), which was not significantly different 
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from the level of the hyperpolarization elicited by DA itself (P = 0.82, Fig. 4.4(C)). These results 

suggested that DA acted via activation of PLC to hyperpolarize RMP.  

4.5.4 K channels mediate the DA-induced hyperpolarizing effect 

We next addressed which ion channels might be affected by DA to elicit its 

hyperpolarizing effect. Using a current-clamp protocol, hyperpolarizing current injections before 

DA exposure and at the peak of the hyperpolarizing response to the DA treatment indicated that 

DA caused a decrease in input resistance (Rn) [Fig. 4.5(A)]. Rn was quantified by the slope of the 

linear fit of the relationship between the peak change in membrane potential and the magnitude 

of the injected current [Fig. 4.5(B)] (Robinson and Cameron, 2000). 20 μM DA significantly 

reduced Rn from 542 MΩ to 194 MΩ calculated from the example in Fig. 4.4B, and similar 

decreases in Rn were observed in other B5 neurons tested (pre: 447.8 ± 34.0 MΩ vs. post DA: 

169.8 ± 22.0 MΩ; n = 4, P < 0.01, Fig. 4.5(C)).  

The decrease in Rn indicated that the hyperpolarization caused by DA was likely due to 

the opening of a K and/or a Cl conductance. We first investigated the potential effects of DA on 

K channels, because DA has been suggested to modulate the activity of K channels by various 

downstream signaling pathways (Missale et al., 1998).  Studies in Lymnaea indicated the 

presence of two types of pharmacologically distinct K channels: one sensitive to 

tetraethylammonium chloride (TEA) and the other to 4-aminopyridine (4AP). They have been 

shown to contribute to different phases of action potential repolarization (Sakakibara et al., 

2005). The perfusion of a cocktail of 20 mM TEA and 5 mM 4AP, concentrations that have been 

suggested to be effective to block both K channels in Helisoma and Lymnaea (Berdan and Easaw, 

1992; Staras et al., 2002), caused a decrease in firing frequency by 34.5 ± 2.7% (n = 7, P < 0.05) 

combined with an increase in action potential amplitude by 21.5 ± 0.3% (n = 7, P < 0.05) [Fig. 
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4.5(D)]. A comparison of single action potentials showed a significant broadening by 95.5 ± 3.9% 

(n = 7, P < 0.05) after treatment with the solution containing a mixture of TEA and 4AP. Bath 

application of 20 μM DA in the presence of pharmacological inhibition of K channels with TEA 

and 4AP resulted in a significant reduction of the DA-induced hyperpolarizing response (- 2.5 ± 

1.4 mV; n = 5, P < 0.01, Fig. 4.5(E) and 5(F)). Therefore, K channels were the downstream 

targets of DA resulting in the hyperpolarization of the RMP of B5 neurons. 

We next investigated the potential involvement of Cl channels. With the reduction of the 

Cl concentration in the extracellular recording solution from 64.2 mM to 12.9 mM, any Cl 

current would be largely reduced (Woodward and Willows, 2006). Cells were first perfused with 

low Cl extracellular solution, and then DA was bath applied. The perfusion of low Cl solution 

did not alter RMP (+ 0.6 ± 0.5 mV; n = 4, Fig. 4.5(E)). Interestingly, DA still caused a strong 

hyperpolarization of RMP [Fig. 4.5(G)], and the magnitude of the hyperpolarization induced by 

DA in low Cl solution (- 19.8 ± 1.7 mV; n = 4, P = 0.16, Fig. 4.5(E)) was not significantly 

different from DA treatment in the control solution. These experiments suggested that Cl 

channels did not appear to contribute significantly to the hyperpolarization induced by DA.  

4.5.5 DA enhances both TEA-sensitive and 4AP-sensitive K currents, with the main target 

being a 4AP-sensitive K current 

We next wanted to differentiate which subtype of K channels was responsible for the 

hyperpolarizing response induced by DA. The delayed rectifying K current is TEA-sensitive, 

whereas the 4AP-sensitive, fast activating and rapidly inactivating K current contributes to the 

initial repolarization of the AP (Staras et al., 2002). Perfusion with 20 mM TEA solution led to a 

significant broadening of the AP repolarization shoulder by 129.5 ± 8.6% (n = 8, P < 0.01), 

which was consistent with the blockage of the delayed rectifying K channels, but TEA had no 
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effect on RMP (- 1.5 ± 0.7 mV; n = 4, Fig. 4.6(A) and 4-6(E)). Subsequent application of 20 μM 

DA in the presence of 20 mM TEA caused a strong hyperpolarization (- 18.2 ± 1.5 mV; n = 4, 

Fig. 4.6(C)), although the hyperpolarization was significantly smaller than the one seen with DA 

by itself (P < 0.05, Fig. 4.6(E)). Hence, a TEA-sensitive K channel partially contributed to the 

effect of DA on RMP. 

We next investigated the contribution of 4AP-sensitive K channels to the DA-induced 

hyperpolarization. Perfusion of 5 mM 4AP resulted in the initial broadening of the repolarization 

phase of the action potential (an increase by 41.0 ± 5.8%; n = 8, P < 0.01, Fig. 4.6(B)), 

suggesting that a transient K channel was inhibited by 4AP application in B5 neurons. Whereas 5 

mM 4AP caused a small hyperpolarization of RMP (- 4.7 ± 1.5 mV; n = 4, Fig. 4.6(E)), the 

treatment with 20 μM DA in the presence of 5 mM 4AP did not result in an additional 

hyperpolarization of RMP (- 4.9 ± 1.8 mV; n = 4, P < 0.05, Fig. 4.6(D) and 6(E)) compared to 

DA by itself. Taken together, DA acted on both TEA-sensitive and 4AP-sensitive K channels to 

hyperpolarize RMP of B5 neurons, with its main effect on 4AP-sensitive K channels. 

4.6 Discussion 

DA modulates electrical activities in different cell types, both in vivo and in vitro (Harris-

Warrick et al., 1998; Beaulieu and Gainetdinov, 2011). We report here that DA caused a strong 

hyperpolarizing and silencing response in B5 neurons of the buccal ganglion of Helisoma 

trivolvis both in vitro and in the ganglion. The mechanism by which DA alters cell excitability is 

schematically shown in Fig. 4.7. DA acted on a D2-like receptor, which in turn activated PLC 

signaling. The downstream ion channels identified in mediating the DA-induced 

hyperpolarization were 4AP-sensitive K channels and TEA-sensitive K channels. All 
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pharmacological blockers used in current research were chosen based on their successful usages 

either directly in Helisoma, or in closely related species, such as Lymnaea. 

4.6.1 DA signal transduction cascade  

A total of five distinct but closely related G-protein coupled DA receptor genes are 

cloned in vertebrates (Beaulieu and Gainetdinov, 2011). Based on their ability to modulate 

adenylate cyclase activity and differences in pharmacological properties, DA receptors are 

separated into two subtypes, D1 (D1 or D5) and D2 (D2, D3 and D5). In invertebrates, the 

identity of DA receptors is much less understood. DA is reported to activate D1-like receptors 

and D2-like receptors, which correspond to the vertebrate classification (Magoski et al., 1995; 

Dobson et al., 2006). In gastropods, only one Aplysia D1-like receptor is cloned and 

characterized (Barbas et al., 2006). We showed that the D2R inhibitor sulpiride blocked 

hyperpolarizing responses of DA in Helisoma B5 neurons, suggesting that a D2-like receptor is 

likely to be the target of DA in this neuron. D2-like receptors seem to play critical roles in 

gastropod nervous systems. Sulpiride blocked the effects of DA in multiple buccal central pattern 

generator neurons in Helisoma (Quinlan et al., 1997). Pharmacological studies of the DA-

containing RPeD1 neuron in Lymnaea suggest that D2-like receptors located on its in vivo target 

neurons mediate chemoattractive growth cone behavior (Spencer et al., 2000). Moreover, 

blocking the D2-like receptor eliminates hyperpolarizing responses caused by DA in RPeD1 

follower cells VD4, VJ, VI, and RPA (Magoski et al., 1995; Magoski and Bulloch, 1999) and its 

non-target neuron PeA in Lymnaea stagnalis (Dobson et al., 2006). These findings are consistent 

with the present study of B5 neurons in which the DA-induced hyperpolarization was mediated 

by a D2-like receptor. 
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In vertebrates, sulpiride acts as a general D2-like antagonist, but also has affinity for D3 

receptors (Freedman et al., 1994; Seabrook et al., 1994). Considering that much less information 

on DA receptors is available in molluscan systems, the identity of specific subtypes of DA 

receptors on B5 neurons is presently unclear. Therefore, we chose to characterize DA receptor 

types by their response to commonly used inhibitors and describe the receptors as D1-like or D2-

like receptors to acknowledge this uncertainty.  

Upon the activation of D2-like receptors, various downstream signaling pathways can be 

activated through G proteins, such as Gi/o and Gq/11 (Beaulieu and Gainetdinov, 2011). We found 

that inhibiting PLC using U73122 abolished the hyperpolarizing responses caused by DA 

treatment, indicating that the D2-like receptor likely coupled to Gq/11. This finding is consistent 

with the results reported in the Lymnaea PeA neuron (Dobson et al., 2006), where injection of 

the non-hydrolyzable GTP analog GDP-β-S or pretreatment with U73122 blocks the DA-induced 

hyperpolarization. Interestingly, another D2-like receptor-mediated pathway has been reported in 

the Lymnaea RPA neuron, in which DA causes the hyperpolarization of RMP via the Gi/o 

pathway (Dobson et al., 2006).  

4.6.2 Ion channels modulated by DA 

DA signaling pathways regulate cell excitability via the modulation of various ionic 

conductances (Turrigiano and Marder, 1993; Harris-Warrick et al., 1998). A wide range of cell 

types in the cerebral ganglion of Lymnaea respond to DA either by depolarization or 

hyperpolarization. Here, we report that the Rn of B5 neurons was reduced after DA treatment, 

suggesting the opening of membrane channels. Interestingly, although a K conductance has been 

suggested to mediate the DA-induced hyperpolarizing responses in different studies (de Vlieger 

et al., 1986; Magoski and Bulloch, 1999), a further characterization of the types of membrane 
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channels and the signaling pathway mediating the effect of DA on membrane potential is lacking. 

In the present study, we report that two types of K channels, a 4AP-sensitive K channel and a 

TEA-sensitive K channel, were activated by DA, and the 4AP-sensitive K channel had a larger 

contribution to the hyperpolarization than the TEA-sensitive K channel did. K channels play a 

critical role in determining action potential shape and firing frequency, so dopaminergic 

modulation of K channels could potentially alter postsynaptic neural circuitry via changing 

neuronal firing properties in target neurons (Shieh et al., 2000). The DA-induced changes of K 

conductances are extensively studied in the 14-neuron pyloric network of the crustacean 

stomatogastric ganglion. DA modulates a 4AP-sensitive A-type K current (IA) in almost every 

pyloric neuron (Harris-Warrick et al., 1995; Harris-Warrick et al., 1998). DA enhances IA in PD 

and VD, but reduces it in LP, PY and AB neurons. The opposite effects induced by DA in 

different cell types are due to the differences at the levels of the DA receptors and intracellular 

signaling pathways. cAMP/PKA signaling has been found to be important for DA to modulate IA 

in LP neurons (Zhang et al., 2010). Additionally, this K current has been shown to be enhanced 

by tonic stimulation with nanomolar DA concentration through a translation-dependent 

mechanism involving the target of rapamycin pathway in crustacean LP neurons (Rodgers et al., 

2011), a process thought to dampen extrinsic excitatory inputs. 

4.6.3 DA as a neurotransmitter in regulating neuronal functions in Helisoma 

The current study revealed an important role for DA in modulating the electrical activity 

of Helisoma B5 neurons. While the purpose of this dopaminergic modulation is presently 

unknown, the strong and prolonged hyperpolarization induced by DA would likely alter the 

efficacy of presynaptic inputs and the output onto postsynaptic targets. It has been suggested in 

the crustacean pyloric network that neuromodulatory inputs of DA can tune an anatomically 
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defined circuit to produce a variety of circuit outputs (Marder and Calabrese, 1996; Harris-

Warrick et al., 1998). Moreover, a tonic background concentration of DA was shown to convert 

NMDA receptor-independent long-term potentiation to long-term depression in rat PFC neurons 

(Matsuda et al., 2006). Similar modulatory effects on neuronal activity have been reported in 

related gastropods. For instance, nitric oxide transforms the inhibitory effect of glutamate into an 

excitatory response in the Lymnaea buccal neuron B4, and this effect is thought to modify 

feeding behaviors (D'Yakonova T and D'Yakonova V, 2008). In an early study of neurite 

regeneration performed on the Helisoma B19 neuron, the inhibition of neurite elongation 

normally observed after the serotonin application is eliminated when acetylcholine is co-applied 

(McCobb et al., 1988), arguing that the membrane potential serves as an integrator of the effects 

elicited by excitatory and inhibitory neurotransmitters/ neuromodulators.  

The DA-induced changes in electrophysiological properties may also exert 

morphological effects on developing or regenerating neurons via changes of internal Ca 

dynamics. Electrically silencing a neuron may reduce the intracellular free Ca concentration 

compared to a spontaneously spiking B5 neuron. This reduction in Ca could, in turn, alter neurite 

growth rates and axonal pathfinding (Rehder and Kater, 1992). In fact, studies in Lymnaea 

revealed that the DA-containing neuron RPeD1 can cause collapse or repel a nontarget growth 

cone (Spencer et al., 2000), a process that is thought to prevent inappropriate contacts between 

developing neurons. Additionally, the membrane potential has long been understood to be 

critical for controlling growth cone motility, and neuromodulators have been shown to regulate 

the membrane potential through their effects on ionic conductances  (McCobb and Kater, 1988). 

DA is a critical neurotransmitter involved in Helisoma feeding behaviors (Murphy, 2001). 

A food stimulus excites dopaminergic buccal interneuron N1a, inducing fictive feeding motor 
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patterns (Quinlan et al., 1997). A brief inhibition of the N1a activity by hyperpolarizing current 

injection resets the phase of the fictive feeding pattern. Studies on the Helisoma B5 neuron 

(Murphy and Kater, 1980), as well as in its homologues in Lymnaea (Perry et al., 1998) and 

Clione (Malyshev and Balaban, 2009), indicate that these neurons extend axons via the 

ipsilateral esophageal trunk nerve (Helisoma) and dorsobuccal nerves (Lymnaea) and project to 

the surface of the proesophagus. Experiments using an isolated foregut preparation reveal that 

manipulations of the neuronal activity of Lymnaea B2 neurons changed the tension of 

esophageal muscles (Perry et al., 1998). An increase in firing activity in B2 neurons induces gut 

contraction, whereas silencing of B2 activity suppresses spontaneous esophageal muscle 

contractions. Switching the electrical activity from a spontaneously firing state to being silent by 

DA in B5 neurons may reduce gut contractile activity and thereby affect feeding. A combined 

study of the effect of DA on B5 neurons and feeding at the electrophysiological and behavioral 

levels will provide additional insights in our understanding of the role of DA in feeding in 

Helisoma.  
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4.7 Figures 

 

 

Figure 4.1 DA induces membrane hyperpolarization and subsequent silencing of 

spontaneously firing B5 neurons in vitro.  

A: A spontaneously firing B5 neuron was hyperpolarized and stopped firing after the treatment 

with DA (20 μM, bath application; gray bar). Note that in order to capture the entire time course 

from the addition of DA to the maximum of the hyperpolarization, the time line had to be 
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compressed, resulting in a loss of resolution of individual APs. To allow an analysis of 

individual APs, representative firing activities before and after the addition of DA (marked by 

gray dashed boxed) are shown at higher time resolution below the main recording trace. Since 

the changes of membrane potential were the main interest in this study, representative data 

showing long-term recordings, which best reflected the strong hyperpolarizing responses induced 

by DA, are presented in the rest of the paper. B: Quantification of the changes of RMP showing 

that DA concentration ranging from 1 μM to 100 μM significantly hyperpolarized the membrane 

potential of B5 neurons. Furthermore, the hyperpolarizing level induced by 100 μM DA was 

statistically different from that of the 1 μM DA group. C: Quantification of time delay between 

DA addition and the peak of the hyperpolarizing response. Note that maximal hyperpolarization 

was reached faster with increased concentrations of DA. 
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Figure 4.2 DA elicits a strong hyperpolarization in B5 neurons in situ.  

A: A representative recording of a B5 neuron located within the buccal ganglion. The neuron 

was spiking before treatment and was silenced by a strong hyperpolarization in response to 20 

μM DA. Brief negative current injections (- 0.4 nA, 1s) were applied to measure the effect of DA 

on neuronal input resistance. B: Quantification of the maximal changes of membrane potential 

by DA. 20 μM DA and 100 μM DA significantly hyperpolarized the membrane potential of B5 

neurons compared to the vehicle control group. 
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Figure 4.3 D2-like receptors mediate the DA-induced hyperpolarizing response.  
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A: A representative recording of a B5 neuron pretreated with 100 μM D2 receptor antagonist 

sulpiride before and after the treatment with 20 μM DA. D2-like receptor inhibition fully blocked 

the hyperpolarizing effect of DA, indicated by the continued spiking activity. B: Example of a 

spontaneously firing B5 neuron pretreated with 100 μM D1 receptor inhibitor, SCH23390, and 

subsequently treated with DA (20 μM). Note that DA still strongly hyperpolarized the membrane 

potential in the presence of the inhibitor, suggesting that DA did not act via a D1-like receptor. C: 

Quantification of experiments shown in A and B. The hyperpolarizing response induced by DA 

plus SCH23390 was not significantly different from DA on its own, whereas the DA effect was 

fully inhibited when B5 neurons were pretreated with sulpiride.  
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Figure 4.4 Inhibition of PLC activity blocks the DA-induced hyperpolarization of 

membrane potential.  

A: Representative recording of a neuron pretreated with 0.5 µM PLC inhibitor U73122 before 

and after the treatment with 20 μM DA. Whereas the PLC inhibitor by itself caused a small 

hyperpolarization and resulted in silencing, the subsequence application of DA did not have an 

additional effect on membrane potential. B: Pre-incubation with 0.5 µM U73343, the negative 
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control for U73122, did not inhibit the DA-induced hyperpolarization. C: Quantification of 

experiments such as shown in A and B. U73122 pretreatment significantly inhibited DA’s effect 

on the membrane potential, whereas DA still elicited a hyperpolarizing response in the presence 

of the inactive analog U73343.  Interestingly, U73122 but not its inactive control U73343 

induced a slight membrane hyperpolarization and prevented B5 neurons from firing, suggesting 

the importance of PLC activity for maintaining the spontaneous firing activity in B5 neurons. 
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Figure 4.5 DA reduces input resistance by opening K conductances.  
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A: Representative recordings of the changes of membrane voltage in response to hyperpolarizing 

current steps (from – 50 pA to – 200 pA, 3 s) before (left) and after (right) 20 µM DA treatment. 

Note a decrease in input resistance (Rn) after DA exposure. B: Graph of the peak changes in 

membrane potential as a function of injected current for determination of Rn from the slope of 

the graphs. C: Quantification of experiments such as in B suggesting that Rn was significantly 

decreased after DA exposure. D: A representative recording from a B5 neuron suggesting that 

the inhibition of K conductances with TEA and 4AP slowed the spontaneous firing activity (top) 

and caused action potential broadening (bottom). E: Quantification of the changes of membrane 

potential showing that the DA effect was fully blocked in the presence of TEA (20mM) and 4AP 

(5mM), but that a low Cl solution had no significant effect on the DA-induced hyperpolarizing 

response. F: 20 μM DA caused only a small decrease in action potential frequency but did not 

induce a significant hyperpolarization in the presence of K channels blockers TEA (20 mM) and 

4AP (5 mM). G: Response of a representative B5 neuron in a solution of low extracellular Cl and 

after treatment with DA. Neurons still responded to 20 µM DA with a strong hyperpolarization, 

suggesting that the hyperpolarization was likely not mediated by a Cl conductance. 
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Figure 4.6 Both TEA-sensitive and 4AP-sensitive K channels contribute to the DA-induced 

hyperpolarizing response, but 4AP-sensitive K channels are the major target.  
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A: Comparison of single action potentials showing the broadening of the repolarization shoulder 

after treatment with 20 mM TEA compared to the control condition. B: Comparison of single 

action potentials showing the widening of the initial repolarization after the treatment with 5 mM 

4AP. C: A representative trace of a B5 neuron treated with DA (20 µM) in the presence of TEA 

(20 mM). Note that the DA plus TEA treatment resulted in the typical hyperpolarization, albeit 

of a smaller amplitude than DA treatment by itself. D: A representative recording of a B5 neuron 

pretreated with 5 mM 4AP and after addition of 20 µM DA. In the presence of 4AP, DA did not 

elicit an obvious hyperpolarizing response, as evidenced by the continuous spiking activity of the 

neuron. E: Quantification of the changes in membrane potential in response to treatment above. 

TEA pretreatment partially inhibited the effect of DA on RMP, whereas 4AP treatment inhibited 

the remaining hyperpolarizing response induced by DA.  
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Figure 4.7 Proposed model of the pathway by which DA causes a strong hyperpolarization 

in Helisoma B5 neurons.  

DA binds to D2-like receptors, which in turn activate PLC (likely through the G-protein Gq/11; 

activation is indicated by ‘+’). PLC activation results in the subsequent opening of two types of 

K channels, a TEA-sensitive and a 4AP-sensitive K channel. Our results suggest that the main 

effect of DA stimulation is mediated via a 4AP-sensitive K channel. The mechanism(s) by which 

the PLC activation in B5 neurons results in the modulation of K channel activity is presently 

unknown (indicated by dotted lines).    
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CHAPTER 5   GENERAL DISCUSSION 

 

During neuronal development, the growing state of a neuron is partially determined by 

environmental cues. These cues act on the membrane receptors of growing neurons and, in turn, 

trigger intracellular signaling cascades. These signals can, for example, result in changes in the 

growth cone motility affecting axon pathfinding, in the modulation of electrical activity 

influencing neuronal circuitry, or a combination of both. Several well-known neurotransmitters 

and neuromodulators have been implicated to act as environmental cues (Lauder and Schambra, 

1999; Farrar and Spencer, 2008). The aim of this dissertation is to further our understanding of 

the mechanisms by which neurotransmitters and/or neuromodulators elicit their effects on 

growth cone properties and electrical activity. I approached this question in three studies: 1) To 

investigate how ACh regulates growth cone motility via its modulation of electrical property and 

intracellular Ca; 2) To examine how NO affects the electrical activity of B19 neurons, with a 

focus on comparing the regulation of ion channels between B5 and B19 neurons; 3) To study 

how DA acts as a regulator of electrical activity and to understand its signaling cascade. A 

schematic summary of the findings is illustrated in Fig. 5.1.  
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Figure 5.1 Proposed signaling pathway by which ACh, NO, and DA regulate electrical 

activity and intracellular Ca. 

ACh binds to nAChRs, which causes membrane depolarization and an increase in firing activity 

in Helisoma B5 neurons. This cholinergic effect on electrical property elevates [Ca]i in growth 

cones potentially via the opening of VGCCs, which results in filopodial elongation. NO 

application inhibits two types of Ca-activated K channels, BK and SK channels, which 

depolarize the membrane potential of B19 neurons (similar channel targets of NO as found in B5 

neurons). SK channels serve as the main target of NO. On the other hand, DA binds to D2-like 

receptors, which activate PLC signaling (potentially through the G protein Gq) in B5 neurons. 
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PLC in turn activates K channels to hyperpolarize the membrane potential and silence the 

spontaneous firing activity in B5 neurons. This hyperpolarization is likely to reduce the [Ca]i in 

growth cones. Please note that results from neurons B5 and B19 are shown together in this 

schematic drawing of a neuron. Activation is indicated by ‘●’, whereas inhibition is shown by ‘|’.  

5.1 The actions of neurotransmitters are mediated by their membrane receptors 

Specific ligands activate either ionotropic and/or metabotropic receptors, through which 

they initiate a variety of cellular functions. For example, ACh is shown to activate nAChRs to 

cause the chemoattractive behavior of growth cone turning in Xenopus spinal neurons (Zheng et 

al., 1994), whereas DA can bind to a variety of G-protein coupled receptors to activate distinct 

signaling mechanisms (Beaulieu and Gainetdinov, 2011).  

Although much is known about ACh being a critical neurotransmitter in the nervous 

system (Phillis, 2005), its role during neuronal development and its associated  signaling 

mechanisms are less understood. There are mainly two types of acetylcholine receptors: nAChRs, 

which are ionotropic receptors known to directly pass cations (Dani and Bertrand, 2007), and 

muscarinic ACh receptors (mAChRs), which are coupled to G proteins (Abrams et al., 2006). In 

Chapter 2, evidence is provided to show that nAChRs mediate the effects of ACh in Helisoma 

B5 neurons at the electrophysiological, intracellular Ca, and growth cone morphological level. 

Inhibition of nAChRs with TC eliminates all neuronal responses to the stimulation of ACh, 

whereas the nAChR agonist DMPP mimics the effects of ACh. Activation of the ionotropic 

nAChRs immediately introduces the influx of cations, which results in membrane depolarization 

and an elevation in [Ca]i to cause filopodial elongation in growth cones. mAChR can also be 

involved in ACh effects, because both nAChRs and mAChRs have been shown to contribute to 

the decrease in the extension rate of developing mouse thalamic axons (Rudiger and Bolz, 2008). 
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These two types of ACh receptors are found to mediate different components of elevation in 

[Ca]i and membrane currents evoked by ACh in rat intracardiac ganglion neurons (Beker et al., 

2003). Because the effect of ACh on filopodial length, membrane potential, and [Ca]i in this 

dissertation could be fully explained by activation of nAChRs, I did not investigate any potential 

involvement of mAChRs. 

Neurons can be affected by NO through different mechanisms, ranging from activation of 

its canonical target, soluble guanylyl cyclase (sGC), to protein nitrosylation and lipid 

peroxidation (for reviews see (Stamler et al., 1992; Davis et al., 2001; Ahern et al., 2002; Brown 

and Borutaite, 2002; Foster et al., 2003)). In Chapter 3, the receptor of NO was not characterized, 

but sGC is likely to function as a key mediator of the effects of NO. sGC is known to be the 

intracellular receptor for the unconventional neuromodulator NO (Davis et al., 2001; Ahern et al., 

2002; Garthwaite, 2008). NO activates sGC signaling to modulate neuronal excitability and 

synaptic strength, through which NO controls learning and memory, as well as animal feeding 

(Bon and Garthwaite, 2003; Susswein and Chiel, 2012). Moreover, sGC signaling is known to be 

a mediator for the effects of NO on membrane channels, such as various types of Ca channels in 

neurons of the medial nucleus of the trapezoid body (Tozer et al., 2012), and hyperpolarization-

activated cyclic nucleotide-modulated cation channels in cerebellar nuclei neurons (Wilson and 

Garthwaite, 2010). In the related gastropod Lymnaea stagnalis, sGC has been found to mediate 

the NO-induced prolonged depolarization of the cerebral giant cell (Ribeiro et al., 2008). Studies 

on Helisoma neurons suggest that NO elongates growth cone filopodia and slows down neurite 

outgrowth via sGC (Van Wagenen and Rehder, 1999; Trimm and Rehder, 2004). Additionally, 

sGC is important in mediating the effects of intrinsic NO on VGCCs (Artinian et al., 2012). 

These examples strongly suggest a role for sGC in mediating the effect of NO in B19 neurons. In 



117 
 

addition to sGC signaling, NO might directly modulate ion channels by protein nitrosylation 

(Foster et al., 2003). Such modification of NO has been shown to inhibit human K channels 

(Nunez et al., 2006). Future studies of the signaling mechanisms mediating the effects of NO on 

intracellular proteins and membrane channels will be of interest. 

DA can activate various receptors, including D1-like and D2-like receptors, to initiate 

distinct G-protein coupled receptor-mediating signaling pathways (Missale et al., 1998). In 

Chapter 4, I describe that the D2-like receptor, a metabotropic receptor, plays a critical role in 

mediating DA-induced membrane hyperpolarization in buccal neuron B5. Inhibition of D2-like 

receptors with sulpiride completely blocks the hyperpolarization induced by DA addition. The 

DA/D2-like receptor pathway seems to be involved in the modulation of electrical activity of 

multiple central pattern generator neurons in Helisoma (Quinlan et al., 1997) and cerebral 

neurons in Lymnaea, a closely related species (Dobson et al., 2006). In addition, this DA 

signaling has also been shown to be important in target cell selection (Spencer et al., 1996; 

Spencer et al., 1998). Physiological DA release from growth cones of Lymnaea neuron, right 

pedal dorsal 1, attracts growth cones from its in vivo target cell for building synaptic connections, 

a process that requires the involvement of D2-like receptors (Spencer et al., 2000).    

 Taken together, the identification of the physiological role of a particular 

neurotransmitter/neuromodulator and its receptor is an important step towards understanding its 

functions in the nervous system. Depending on the distinct receptor, a variety of signaling 

pathways are activated to evoke different neuronal behaviors.   

5.2 Intracellular Ca is the converging target of various neurotransmitters  

Neurotransmitters and/or neuromodulators bind to receptors, which initiate distinct 

intracellular signaling events. As a critical intracellular second messenger, Ca plays a central role 
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during neuronal development, influencing processes such as neurite outgrowth and growth cone 

pathfinding (Gomez and Zheng, 2006; Zheng and Poo, 2007). How activation of different 

ionotropic and metabotropic receptors will affect the intracellular Ca dynamics is an important 

question to help understand the action of neurotransmitters.  

 Some ionotropic receptors, such as AMPA receptors and nAChRs, have been shown to 

be permeable to Ca ions (Seguela et al., 1993; Liu and Zukin, 2007). Different subtypes of 

nAChRs vary in their ability to pass Ca ions and can be quantified experimentally by 

determining the permeability ratio for Ca over Na (PCa/PNa values) (Fucile, 2004). The 

homopentameric nAChRs, containing α7 to α9 subunits, possess a higher permeability to Ca ions 

than heteropentameric receptors (Fucile, 2004). In the mouse cochlear cell line UB/OC-2, the 

homomeric α9 receptor has an estimated PCa/PNa value of 80 (Jagger et al., 2000), whereas most 

heteromeric nAChRs show minimal Ca permeability with PCa/PNa values less than 1, such as the 

human α4β4 nAChRs (Lax et al., 2002). Compared to mammalian systems, much less is known 

about molluscan nAChRs at the molecular level. Dr. Smit’s group in the Netherlands cloned 12 

nAChR subunits in Lymnaea (van Nierop et al., 2006), of which they functionally expressed the 

homomeric receptor containing A-subunits, highly similar to mammalian α subunit, in Xenopus 

oocytes. They also reported their presence in most nervous tissues, including a high level of 

expression in the buccal ganglion (van Nierop et al., 2005).  Although they did not further 

characterize the Ca permeability of the receptors, the sequence comparison suggests that the 

Lymnaea A subunit is most closely related to the human α7 subunit, a unit with high Ca 

permeability (Seguela et al., 1993; Uteshev, 2010). 

 In this dissertation, I show that nAChRs mediate an ACh-induced increase in [Ca]i in 

growth cones. Removal of the extracellular Ca completely blocks the effects of ACh on growth 
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cone [Ca]i and filopodial dynamics, suggesting the importance of Ca influx in this process. One 

important next step towards understanding ACh signaling is to determine whether Ca flows 

directly through nAChRs or indirectly through VGCCs that open in response to membrane 

depolarization. To differentiate between these two possibilities would require the separate 

measurement of current through the nAChRs and the VGCCs. Ongoing studies of cloning 

nAChRs from Helisoma in the Rehder lab showed that the A subunit is expressed in B5 neurons 

based on single-cell PCR data (unpublished data). Considering the high similarity between 

Lymnaea and Helisoma A subunits and the Human α7 subunit, B5 neurons expressing the 

nAChR A subunit are expected to be highly permeable to Ca ions. This would predict that 

nAChRs in B5 neurons may contribute a significant amount of the increase in [Ca]i seen in 

response to ACh. Future investigations of the Ca permeability of Helisoma nAChR subunits in 

heterologous expression systems will provide answers to this question. 

 In addition to Ca influx via Ca permeable membrane channels and receptors, Ca release 

from intracellular stores is another main source contributing to the elevation of Ca in the cytosol 

(Berridge et al., 2003). In Helisoma B5 neurons, NO has been shown to activate sGC to cause Ca 

release from intracellular stores via RyRs, and this increase in [Ca]i was further amplified by Ca 

influx via VGCCs (Welshhans and Rehder, 2005; Welshhans and Rehder, 2007). Although the 

current dissertation did not directly measure the changes in [Ca]i in B19 neurons, the membrane 

depolarization induced by two NO donors, NOC7 and DEA/NO, is likely to cause Ca release 

from stores via an intracellular second messenger mechanism as well as Ca influx via VGCCs. 

For those neurons responding to NO with an increase in firing frequency, the Ca influx 

component might contribute more to the overall Ca increase than release from Ca stores, but 

future experiments will have to clarify the relative contributions of the two sources of Ca.  
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Additionally, the inhibition of Ca-activated K channels induced by NO may provide for 

the opportunity of Ca influx via AP broadening. In fact, Ca-activated K channels are a common 

target of NO in both B5 and B19 neurons. APs are broadened after treatment with NOC7 in a BK 

channel-dependent manner in B5 neurons (Artinian et al., 2010), as evidenced by the finding that 

the specific inhibitor of BK channels, IbTX, mimics the effect of NO on AP waveform. With the 

prolonged AP duration, Ca channels can open for longer periods of time and introduce more Ca 

with each AP. The notion that AP waveform determines the [Ca]i is further strengthened by the 

result that broadening of APs by the inhibition of K channels with TEA induced a significant 

increase in [Ca]i in growth cones of B5 neurons (unpublished data).  

5.3 Electrical responses connect neurotransmitters to growth cone motility 

 Electrical activity of a neuron is tightly linked to the [Ca]i dynamics, which plays critical 

roles during neuronal development (Spitzer, 2006). Electrical stimulation of developing neurons 

cease growth cone advance and neurite outgrowth (Cohan and Kater, 1986; Fields et al., 1990; 

Cohan, 1992). In addition, manipulations of electrical activity lead to changes in growth cone 

turning in response to guidance cues (Ming et al., 2001). These lines of evidence raise the 

possibility that electrical activity serves as the mediator for neurotransmitters to function at the 

growth cone level. Ca signals act downstream of membrane depolarization, which in turn may 

alter the growth cone cytoskeleton through changes in F-actin dynamics to elongate filopodia 

(Mattila and Lappalainen, 2008). 

ACh treatment activates nAChRs, resulting in a significant depolarization of the 

membrane potential as well as an increase in firing activity. Both changes in electrical properties 

are important for Ca influx via Ca-permeable nAChRs or VGCCs, which accounts for the 
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increase in [Ca]i in growth cones necessary for ACh-induced filopodial elongation. Therefore, 

the electrical response mediates the action of ACh to change growth cone filopodial dynamics. 

 In Chapter 3, I reported that NO depolarizes the membrane potential of B19 neurons. 

74.6% of recorded neurons are silent, whereas the rest of B19 neurons fire AP spontaneously 

before the drug treatment. Nevertheless, all B19 neurons respond to NO by membrane 

depolarization. Although the main focus here is to understand how NO modulates the electrical 

activity of B19 neurons, I am also interested to know whether NO elevates the [Ca]i and has 

effects on growth cone motility in B19 neurons as it does in B5 neurons (Van Wagenen and 

Rehder, 1999). To answer this question requires linking the modulatory effect of NO at the 

electrophysiological level to the study at the growth cone level. Depending on the initial state 

and the resting membrane potential of B19 neurons, the depolarization by NO is expected to 

result in different [Ca]i. For example, silent neurons with a membrane potential of about – 40 

mV that become depolarized by about 4 mV in response to NO remain silent, and this 

depolarization may also not be enough to open VGCCs. Therefore, these neurons will maintain 

their [Ca]i at basal levels and are not expected to show a filopodial response in growth cones. 

The other two types of NO responses, silent neurons that become spiking and spiking neurons 

that increase their firing frequency due to membrane depolarization induced by NO, are expected 

to respond with a Ca elevation, similar to that seen in B5 neurons in response to NO. Under these 

conditions, neuronal firing activity can immediately translate a change in membrane potential 

into functional Ca signals due to Ca influx via VGCCs. Therefore, growth cones of B19 neurons 

may respond to NO application by filopodial elongation as those of B5 neurons do (Artinian et 

al., 2010). However, we previously reported that B19 neurons do not respond to NO with a 

significant increase in filopodial length (Van Wagenen and Rehder, 2001), suggesting that these 
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neurons might be depolarized only to a degree that did not result in a significant increase in [Ca]i. 

We have recently started experiments in which the electrical activity, the [Ca]i, and growth cone 

motility are measured simultaneously, and this novel approach will help us in future experiments 

to address how these parameters are connected.  

 An increase in the firing frequency or a release of Ca from intracellular stores results in 

an elevation of [Ca]i (Berridge, 1998). How will [Ca]i be affected when a firing neuron is being 

silenced? As shown in Chapter 4, application of DA was found to hyperpolarize and silence 

spontaneously firing B5 neurons both in vitro and in vivo. Whereas continuous spontaneous 

firing activity is expected to maintain a certain elevated basal [Ca]i, the strong hyperpolarization 

in response of DA, resulting in cell silencing, should decrease Ca influx and lead to a reduction 

in the basal Ca concentration. It will be interesting to investigate how a reduction in [Ca]i via 

membrane hyperpolarization might affect filopodial dynamics. In a growth cone turning assay 

using growth cones of Xenopus spinal neurons, Sema3A application was shown to induce a 

hyperpolarization of the membrane potential and act as a repulsive cue (Nishiyama et al., 2008).  

The state of electrical activity of a neuron set by one neurotransmitter and/or 

neuromodulator might influence the neuronal response to another stimulation. The sustained 

depolarization in B19 neurons induced by NO may change the response of this neuron to 

presynaptic inputs. Indeed, the synaptic strength of serotonergic neurotransmission between the 

cerebral giant cell and the buccal neuron B4 in Lymnaea is enhanced by NO-induced background 

membrane depolarization (Straub et al., 2007). In addition, 5HT has been shown to suppress 

neurite outgrowth by exciting developing B19 neurons in Helisoma. The excitatory effect of 5HT 

is abolished when these neurons are treated with ACh, which acts as an inhibitory 

neurotransmitter in B19 neurons (McCobb et al., 1988).  
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The notion that the electrical activity of a neuron may serve as an integrator to determine 

the responses of growth cones or neuronal excitability to external stimulation is further supported 

by evidence provided in cultured Xenopus spinal neurons. Manipulation of the membrane 

potential of growth cones by clamping them at a more depolarized potential converts the 

Sema3A-induced repulsion to attraction (Nishiyama et al., 2008). Moreover, electrical 

stimulation of neurons switches the myelin-associated glycoprotein-induced repulsion to 

attraction (Ming et al., 2001).  

5.4 Growth cone filopodial dynamics  

 Filopodia are known as sensory extensions of the growth cone that constantly explore the 

environment for guidance cues by elongation and retraction (Kater et al., 1994; Mattila and 

Lappalainen, 2008). Elongation of growth cone filopodia has been found to precede a reduction 

in neurite extension rate, a phenomenon termed ‘slow down and search’ behavior (Trimm and 

Rehder, 2004). The advantage of elongated filopodia and a slower rate of growth cone advance 

would be the ability to sample a larger area of the terrain ahead of the growth cone for a longer 

duration, which is thought to aid in the accurate decision-making of the navigating growth cone. 

The ‘slow down and search’ behavior has been reported in B5 neurons under the condition of 

either exogenous treatment with NO or direct inhibition of intracellular phosphatidylinositol-3-

kinase activity (Trimm and Rehder, 2004; Tornieri et al., 2006). Moreover, the concept that one 

signaling molecule affects both growth cone motility and neurite outgrowth is further supported 

by findings in chick embryo sensory neurons and cultured mouse hippocampal neurons (Oberstar 

et al., 1997; Kim et al., 2011).  

ACh, in this dissertation, has been found to act as a local signal to elongate filopodia, 

since physically isolated growth cones respond to treatment with ACh in a similar fashion as 
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intact growth cones do. By an increase in the exploratory radius of the growth cone, ACh would 

likely facilitate a decision-making process in the growing neurite, which may have an impact on 

neurite advance.  

 Homogeneous filopodial elongation across the entire growth cone was observed when 

ACh was added to the culture dish. Filopodia are expected to elongate to a different extent, when 

ACh is applied asymmetrically. An asymmetrical response of growth cones to guidance cues has 

been well-demonstrated in cultured Xenopus spinal neurons (Zheng et al., 1994; Hong et al., 

2000; Henley and Poo, 2004). Repetitive pulse application of chemicals through a micropipette 

can create a relatively stable gradient. In their case, the growing axons turn towards the higher 

gradient of ACh (Zheng et al., 1994). The ACh-induced chemoattractive behavior can be 

explained considering the localized filopodial responses. Filopodia on the side facing the higher 

concentration of ACh would elongate further, due to stronger Ca signals induced by ACh, 

compared to the other side facing the lower concentration. Therefore, the navigating growth cone 

is expected to gradually turn towards the higher gradient of ACh. In another example, an 

asymmetry in filopodia distribution induced by glutamate gradients has been shown to determine 

the chemoattraction of growing axons (Zheng et al., 1996).  

NO has been known to regulate growth cone filopodial dynamics in Helisoma B5 

neurons in the Rehder lab. Physiological release of NO from nNOS-expressing neuron or 

treatment with NO donors causes filopodial elongation through a Ca-dependent mechanism (Van 

Wagenen and Rehder, 1999; Tornieri and Rehder, 2007). A previous study in the lab suggested 

that the growth cones of B19 neurons respond to the NO donor, NOC7, to a much lesser degree 

than that of B5 neurons (Van Wagenen and Rehder, 2001). However, NOC7 inhibits Ca-

activated K channels and depolarizes the membrane potential of B19 neurons in a similar fashion 
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than it does in B5 neurons. The question whether growth cones of B19 neurons respond to NO is 

worthwhile to revisit in light of new tools allowing us to record growth cone Ca and electrical 

activity simultaneously. The current working hypothesis to explain the difference in response 

between the two neuron types is that the magnitude of the response to NO and the properties of 

the APs differ between B5 and B19 neurons. Additionally, the modulation of growth cone 

filopodia by NO may also affect axon pathfinding of growing axons. Indeed, NO gradients 

caused asymmetric Ca signals to lead to growth cone repulsion in developing dorsal root 

ganglion neurons (Tojima et al., 2009). 

 Taken together, growth cone filopodia are critical structures that influence neurite 

extension and axon pathfinding. Neurotransmitters and/or neuromodulators are able to regulate 

filopodial dynamics via the modulation of neuronal electrical activity and [Ca]i in growth cones. 

5.5 Neurotransmitters modulate activity of ion channels 

Neurotransmitters can either activate ionotropic receptors to directly alter cell excitability 

or bind to metabotropic receptors to trigger intracellular signaling cascades, which, in turn, 

modulate ion channels indirectly. Although the effect of DA in the modulation of CNG channels 

(Rodgers et al., 2011), K channels (Podda et al., 2010), and Ca channels (Wang et al., 2011) has 

been extensively studied in other systems, the understanding of how DA modulates ionic 

conductances to change cell excitability in gastropods is incomplete. DA is known to be a critical 

neurotransmitter in gastropod feeding (Murphy, 2001), and DA application activates the feeding 

motor pattern and triggers feeding movements in Helisoma (Quinlan et al., 1997). Previous 

studies suggested the involvement of a K conductance in dopaminergic synaptic transmission 

(Magoski and Bulloch, 1999). Here, I report that DA causes a strong hyperpolarization and 

silencing in firing B5 neurons both in vitro and in situ, and this hyperpolarizing effect is 
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mediated by both TEA-sensitive K channels and 4AP-sensitive K channels via a D2-like 

receptor/PLC pathway. This study has advanced our understanding of the action of DA on B5 

neurons and will provide insights in the role of DA in feeding in Helisoma.  

K channels largely contribute to shaping the waveform of the AP and maintaining the 

membrane potential, which make them ideal targets for neurotransmitters and neuromodulators 

to regulate cell excitability. Inhibition of TEA-sensitive K channels, which contribute to the 

delayed rectifying K current, leads to significant broadening of the repolarization shoulder of the 

AP, whereas the blockade of 4AP-sensitive K channels, that mediate a fast-activating and rapidly 

inactivating K current, causes a widening of the early repolarization phase of the AP. The 

hyperpolarizing effect of DA is completely blocked in the presence of a solution containing both 

TEA and 4AP, and the inhibition of each channel subtype significantly reduces the effect of DA 

on membrane potential. Therefore, I conclude that DA acts as a positive regulator of K channels, 

activating both TEA-sensitive and 4AP-sensitive K channels. Studies using neurons of the 

stomatogastric ganglion of the spiny lobster show that the signaling pathways of DA can be quite 

diverse and result in a positive or negative modulation of K channels (Harris-Warrick, 2011). DA 

has been found to reduce the 4AP-sensitive transient K current via the D1 receptor/Gs/PKA 

pathway in the lateral pyloric neuron (Zhang et al., 2010). D2 receptors, expressed in the pyloric 

dilator neuron, mediate the DA-induced enhancement of the transient K current (Harris-Warrick 

et al., 1998). 

Within the list of K channels, Ca-activated K channels, BK channels and SK channels, 

have been found to be the main target of NO in the Helisoma nervous system. BK channels are 

important in determining the width of the AP and the magnitude of fast AHP (Shao et al., 1999; 

Faber and Sah, 2003), whereas SK channels are critical in setting the resting membrane potential, 
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spike frequency, and slow AHP (Adelman et al., 2012; Vandael et al., 2012). Unlike the DA-

induced activation of K channels and hyperpolarizing responses, NO elevation caused a strong 

inhibition of BK and SK channels, resulting in membrane depolarization in both B5 and B19 

neurons (Artinian et al., 2010). Moreover, Ca-activated K channels have been reported to be 

modulated by NO signaling in other snail neurons, avian ciliary ganglia neurons, and mammalian 

vascular smooth muscle (Cetiner and Bennett, 1993; Bolotina et al., 1994; Schrofner et al., 2004), 

suggesting the existence of a conserved signaling mechanism of NO on Ca-activated K channels.  

5.6 Modulation of neuronal activity influences synaptic transmission 

Neurotransmitters are known to act in synapses where they lead to excitation or inhibition 

of post-synaptic neurons. In addition to this important function, evidence of modulatory roles of 

neurotransmitters on both sides of synaptic terminals, with the goal of fine tuning synaptic 

efficacy, is emerging (Kupfermann, 1979). The release of neurotransmitters from pre-synaptic 

terminals can act on the neuron itself to auto-regulate neuronal activity. Excitatory nAChRs 

located at the presynaptic terminal play a critical physiological role in enhancing the release of 

various neurotransmitters through a positive feedback mechanism (Dani and Bertrand, 2007). 

For example, ACh release is enhanced by presynaptic nicotinic autoreceptors at the developing 

neuromuscular synapse (Fu and Liu, 1997). Similar enhancement of neurotransmitter release 

mediated by presynaptic nAChRs has been reported in dopaminergic (Wonnacott et al., 2000), 

glutamatergic (McGehee et al., 1995) and GABAergic transmission (Zappettini et al., 2011). On 

the other hand, inhibitory receptors on the presynaptic terminal, such as D2-like receptors found 

in the current dissertation can directly silence the active presynaptic neuron and dampen synaptic 

transmission through a negative feedback mechanism (Benoit-Marand et al., 2001; Mizuno et al., 

2007). Such auto-inhibition is commonly found in many neurotransmitter systems, including 
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dopaminergic (Moquin and Michael, 2009), histaminergic (Arrang et al., 1987), and adrenergic 

synapses (Miyamoto et al., 2008), and will attenuate the total amount of neurotransmitter 

released during neuronal activity by limiting the presynaptic depolarization.  

Receptors located at the post-synaptic terminal can either directly participate in the 

regulation of post-synaptic neuronal activity or modulate the response of target neurons to other 

presynaptic inputs. A modulatory effect of NO on post-synaptic neurons has been demonstrated 

in the Lymnaea nervous system (Straub et al., 2007). The synapse between the cerebral giant cell 

and the B4 neuron in the Lymnaea feeding circuitry is not only serotonergic but also nitrergic 

(Walcourt-Ambakederemo and Winlow, 1995; Patel et al., 2006). Blockade of the endogenous 

NO production strongly reduces the serotonergic response of the B4 neuron to cerebral giant cell 

activity (Straub et al., 2007). Here I report that NO causes a significant membrane depolarization 

and an increase in cell excitability in a target neuron B19, which may potentially explain the 

enhanced serotonergic effect of the cerebral giant cell on B4 neuron. Endogenous produced NO 

functions to depolarize the membrane potential of postsynaptic neuron B4 and increases its 

neuronal excitability, resulting in an increase in response to 5HT release from the presynaptic 

neuron, the cerebral giant cell. In the mouse auditory pathway, NO is found to modulate the 

glutamatergic synaptic efficacy through inhibiting post-synaptic Kv3 potassium currents. 

Furthermore, DA/D2 receptor signaling is shown to modulate both excitatory and inhibitory 

neurotransmission in the rat oval bed nucleus of the stria terminalis (Krawczyk et al., 2011).  

In summary, in addition to serving as classic neurotransmitters between synapses, 

neurotransmitter/neuromodulator can also act on autoreceptor at the pre-synaptic terminal to alter 

synaptic efficacy, and/or modulate the neuronal activity of post-synaptic neurons in response to 

other stimuli.  
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5.7 Implications for gastropod feeding 

The buccal ganglion of Helisoma contains the circuitry of the central pattern generator 

for feeding. Due to the relative simplicity of their nervous systems and robustness of their 

behaviors, gastropods provide good model systems for the study of the organization and 

modulation of neuronal activity and the coordination of behaviors, such as feeding (Murphy, 

2001). To understand the signaling mechanisms by which neurotransmitter/neuromodulator 

affects neurons within the feeding circuitry will provide insight into how the neuronal activity is 

linked to the ultimate behavioral output.  

Both identifiable B5 and B19 neurons are located in the buccal ganglion and have been 

implicated to be involved in the feeding behavior in Helisoma (Murphy, 2001). The B5 neuron is 

an effector motor neuron innervating the esophagus (Scannell et al., 2008). The way B5 neurons 

control the activity of the esophagus has been studied in its homologue, the B2 neuron in 

Lymnaea (Perry et al., 1998). Electrical excitation of B2 neurons initiates contractile activity of 

the esophagus, whereas suppression of spiking reduces the contraction of the esophagus. 

Moreover, treatment with ACh mimicked the effects of a depolarizing current injection on both 

neuronal activity and esophagus contractile activity in Lymnaea B2 neurons (Perry et al., 1998), 

suggesting the presence of an excitatory cholinergic response. This study extends our perspective 

of the functional role of cholinergic modulation beyond the regulation of growth cone motility as 

studied in Chapter 2, and implicates that the release of ACh onto B5 neurons in vivo may 

promote the movement of esophagus. In addition, B5 neurons in situ respond to DA with a 

strong hyperpolarization and silencing of neuronal activity, which is similar to the neuronal 

response induced by hyperpolarizing current injection (Perry et al., 1998). Therefore, DA may 
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act as a negative regulator for esophagus contraction, and the release of DA is expected to lead to 

the relaxation of esophagus muscle groups.  

The B19 neuron is immediately downstream of the feeding central pattern generator, 

which innervates muscle groups in the radula (Turner et al., 2011). It displays bursting activity 

during the hyper-retraction phase of the feeding cycle in Helisoma, which helps to bring food 

particles into the esophagus (Murphy, 2001). Physiological release of NO is expected to 

depolarize B19 neurons and increase their cell excitability in vivo. This effect of NO may shorten 

the inter-burst interval of B19 neurons, which would accelerate the rate of hyper-retraction of the 

odontophore during feeding motor activity. Indeed, NO has been found to act as a general 

regulator of feeding in gastropods (Susswein and Chiel, 2012). In studies using Aplysia and 

Lymnaea, NO is shown to contribute to all stages of feeding behavior, including the maintenance 

of food arousal (Katzoff et al., 2006), resistance of swallowing (Miller et al., 2011; Miller et al., 

2011), and formation of the memory of food inedibility (Kemenes et al., 2002; Katzoff et al., 

2010). These functional effects of NO are elicited by the spatial and temporal regulation of NO 

signaling within the nervous system. Additionally, the fact that NO controls the resting 

membrane potential of both B5 and B19 neurons via a similar set of ion channel targets suggests 

that NO signaling might be conserved across different neuronal cell types. NO can freely pass 

the cell membrane and act on target neurons in the vicinity of NO-releasing neurons (Kiss and 

Vizi, 2001; Artinian et al., 2010), which makes NO an ideal modulator to coordinate the 

electrical activity of various neurons within neuronal circuits including, but not limited to, 

feeding. 
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5.8 Conclusion  

This dissertation focuses on three specific aims that address questions about the signaling 

mechanisms of neurotransmitters/neuromodulators in the regulation of neuronal electrical 

properties and growth cone motility in developing neurons. As shown in aim 1, ACh activates 

nAChRs and leads to membrane depolarization and an elevation of [Ca]i in growth cones, which 

cause filopodial elongation in B5 neurons. The results demonstrate that electrophysiological 

changes elicited by ACh in B5 neurons can affect growth cone motility and elucidate the 

underlying signaling pathway. In aim 2, NO is shown to specifically inhibit Ca-activated K 

channels, BK and SK channels, thereby modulating the neuronal excitability of B19 neurons. 

These channels were shown previously to be the target of NO in another neuron, B5, suggesting 

that Ca-activated K channels might be conserved targets of NO signaling. Aim 3 reveals that DA 

causes a strong hyperpolarization and silencing effect on B5 neurons via a D2-like 

receptor/PLC/K channel mechanism. Therefore, DA may serve as a prominent inhibitory 

neurotransmitter in the feeding circuitry of Helisoma. Taken together, the classical 

neurotransmitters ACh and DA, and unconventional neurotransmitter/neuromodulator NO have 

strong effects on neuronal electrical properties by directly or indirectly regulating the activity of 

ion channels and receptors. Additionally, these studies clearly link the electrical activity in 

identified neurons to growth cone motility. This might further explain why neurotransmitters like 

ACh are capable of controlling growth cone behaviors in developing neurons and might have 

implications for processes such as axon pathfinding and growth cone guidance during 

development in vivo. The accurate formation of neuronal connectivity is crucial for the normal 

function of the nervous system and proper behaviors to be produced. Therefore, this dissertation 

not only provides novel information about the role of neurotransmitter/neuromodulator in 



132 
 

developing neurons, but may also help our understanding of the causes of clinic conditions, in 

which the miswiring of the nervous system results in psychiatric disorders. Furthermore, this 

dissertation provides insight into the signaling pathways underlying the actions of 

neurotransmitter/neuromodulator in developing neurons, thereby strengthening the foundation 

for a better understanding of complex motor programs and behaviors in vivo. 
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