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DATA COLLECTION AND CAPACITY ANALYSIS IN LARGE-SCALE WIRELESS

SENSOR NETWORKS

by

SHOULING JI

Under the Direction of Dr. Yingshu Li

ABSTRACT

In this dissertation, we study data collection and its achievable network capacity in

Wireless Sensor Networks (WSNs). Firstly, we investigate the data collection issue in dual-

radio multi-channel WSNs under the protocol interference model. We propose a multi-path

scheduling algorithm for snapshot data collection, which has a tighter capacity bound than

the existing best result, and a novel continuous data collection algorithm with comprehensive

capacity analysis. Secondly, considering most existing works for the capacity issue are based



on the ideal deterministic network model, we study the data collection problem for practical

probabilistic WSNs. We design a cell-based path scheduling algorithm and a zone-based

pipeline scheduling algorithm for snapshot and continuous data collection in probabilistic

WSNs, respectively. By analysis, we show that the proposed algorithms have competitive

capacity performance compared with existing works. Thirdly, most of the existing works

studying the data collection capacity issue are for centralized synchronous WSNs. However,

wireless networks are more likely to be distributed asynchronous systems. Therefore, we

investigate the achievable data collection capacity of realistic distributed asynchronous WSNs

and propose a data collection algorithm with fairness consideration. Theoretical analysis

of the proposed algorithm shows that its achievable network capacity is order-optimal as

centralized and synchronized algorithms do and independent of network size. Finally, for

completeness, we study the data aggregation issue for realistic probabilistic WSNs. We

propose order-optimal scheduling algorithms for snapshot and continuous data aggregation

under the physical interference model.

INDEXWORDS: Wireless sensor networks, Data collection, Data aggregation, Delay
analysis, Capacity analysis, Protocol interference model, Physical inter-
ference model, Generalized physical interference model, Deterministic
network model, Probabilistic network model
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PART 1

INTRODUCTION

1.1 Background

Recently, the developments of embedded computing technology, distributed information

processing technology, wireless communication technology, and Micro-Electro-Mechanical

Systems (MEMS) enable the emerging of low-cost, low-power, multi-functional wireless sen-

sor nodes, which have the computing, communication, and sensing capabilities [2]. Wireless

Sensor Networks (WSNs) consist of spatially distributed autonomous wireless sensor nodes

to monitor physical or environmental conditions, such as temperature, sound, vibration,

pressure, motion, or/and pollutants, and to cooperatively pass their data through the net-

work to a base station (sink) [3]. Ever since WSNs emerged, plenty of applications are

developed based on them, e.g. area monitoring, air pollution monitoring, forest fires detec-

tion, greenhouse monitoring, landslide detection, machine health monitoring, data logging,

water/wasterwater monitoring, structural monitoring, etc. [2][3]. Due to their wide ap-

plications, WSNs attract extensive interests from both the research communities and the

industry.

One of the most important services provided by WSNs is to gather data from the

physical world. Therefore, in this work, we focus on designing and implementing data

collection algorithms and analyzing the achievable data collection capacity of the proposed

algorithms.

1.2 Characteristics of WSNs

Wireless sensor nodes, the basic building block of WSNs, are usually composed of six

parts: power unit, sensing unit, processing unit, storage, communication unit, and software.

However, the computing, communication, and storage capabilities of a sensor node are very
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limited, although it can be viewed as a small computer. Therefore, different from traditional

wireless mesh and ad hoc networks, WSNs have many distinguished characteristics, which

bring many challenge issues to the research community and industry. Specifically, some

typical characteristics of WSNs can be summarized as follows.

1. Large-Scale Wireless Networks. A WSN may consist of thousands of sensor nodes

and the deploy region of a WSN may be very large. Consequently, it is a challenge work

to maintain such a huge network. When design algorithms for WSNs, the robustness

and dynamical scalability of the algorithms should be considered.

2. Limited Energy. Wireless sensor nodes are usually battery-powered, and thus the

available energy for a node is very limited. Furthermore, WSNs are large-scale networks

and the deploy regions of WSNs are ever-changing, sometimes even the hazardous

places that human intervention is not desirable or feasible. Therefore, the batteries

of sensor nodes are not replaceable. Hence, how to use the limited precious energy of

wireless sensor nodes is one of the most important concern when design algorithms for

WSNs.

3. Limited Communication Capability. The transmission range of a sensor nodes

is varied from tens of meters to hundreds of meters, which is highly depend on the

geographical environments and the natural causes. The bandwidth of a sensor node is

also very limited. Consequently, how to finish the expected tasks under the constraint

of limited communication capability is a challenge issue in WSNs.

4. Limited Computing and Storage Capabilities. The computing, processing, and

storage capabilities of sensor nodes are very limited. Thus, only some basic data

processing and computing tasks can be finished on a node. Meanwhile, the memory

and storage space of sensor nodes are also very limited, where some temporary data can

be stored. Therefore, how to effectively finish some complicated tasks and cooperatively

store large-scale of data is a research issue in WSNs.
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5. Dynamic Network. As mentioned before, WSNs are large-scale networks. During

the working process of a WSN, some nodes may die due to exhaust their energy or

damaged by some other causes, and some new nodes may come to join the network.

Hence, how to deal with this dynamics for WSNs and make the network adapt the

changes is a challenge issue when design algorithms and protocols for WSNs.

6. Huge Data Flows. The data produced by the sensor nodes by viewed as data flows.

Intuitively, as time goes on, huge data flows are generated by a WSN. Among these

data flows, there may be a lot of redundant data. Considering the limitations of sensors

nodes on computing, communication, and storage capabilities, how to manage, query,

analyze, and utilize these data is another challenge works for researchers.

In summary, the characteristics of WSNs make solutions for traditional wireless networks

unsuitable for WSNs. They also introduce many challenge issues for researchers.

1.3 Research Progress on Data Gathering and Capacity Analysis in Wireless

Networks

Generally speaking, data gathering in wireless networks can be categorized as data

collection [1][4][5][6], which gathers all the data from a network without any data aggregation

or merging, and data aggregation [7][8][9][10][11], which obtains some aggregation values,

e.g. MAX, MIN, SUM, etc. To evaluate network performance, network capacity, which

reflects the data transmission/collection/aggregation/broadcast rate, is usually employed,

e.g. multicast capacity [12][13][14], unitcast capacity [15][16][17], broadcast capacity [18],

data collection capacity [1][4][5], etc. In this section, we summarize the related works and

advances on data gathering and capacity analysis in wireless networks.

1.3.1 Capacity for Single-Radio Single-Channel Wireless Networks

Following the seminal work [19] by Gupta and Kumar, extensive works emerged to

study the network capacity issue. The works in [20]-[21] focus more on the MAC layer to
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improve the network capacity. In [20], the network capacity with random-access scheduling

is investigated. In this work, each link is assigned a channel access probability. Based on

which some simple and distributed channel access strategies are proposed. Another similar

work is [17], in which the authors studied the capacity of CSMA wireless networks. The

authors formulated the models of a series of CSMA protocols and study the capacity of

CSMA scheduling versus TDMA scheduling. They also proposed a CSMA scheme which

combines a backbone-peripheral routing scheme and a dual carrier-sensing and dual channel

scheme. In [22], the authors considered the scheduling problem where all the communication

requests are single-hop and all the nodes transmit at a fixed power level. They proposed an

algorithm to maximize the number of links in one time-slot. Unlike [22], the authors in [21]

considered the power-control problem. A family of approximation algorithms were presented

to maximize the capacity of an arbitrary wireless networks.

The works in [12], [13], [14], [15], [16], and [23] study the multicast and/or unicast

capacity of wireless networks. The multicast capacity for wireless ad hoc networks under the

protocol interference model and the Gaussian channel model are investigated in [12] and [13]

respectively. In [12], the authors showed that the network multicast capacity is Θ(
√

n
logn
·W
k
)

when k = O( n
logn

) and is Θ(W ) when k = Ω( n
logn

), where W is the bandwidth of a wireless

channel, n is the number of the nodes in a network, and k is the number of the nodes

involved in one multicast session. In [13], the authors showed that when k ≤ θ1
n

(logn)2α+6

and ns ≥ θ2n
1/2+β, the capacity that each multicast session can achieve is at least c8

√
n

ns

√
k
,

where k is the number of the receivers in one multicast session, n is the number of the

nodes in the network, ns is the number of the multicast sessions, θ1, θ2 and c8 are constants

and β is any positive real number. Another similar work [14] studies the upper and lower

bounds of multicast capacity for hybrid wireless networks consisting of ordinary wireless

nodes and multiple base stations connected by a high-bandwidth wired network. Considering

the problem of characterizing the unicast capacity scaling in arbitrary wireless networks, the

authors proposed a general cooperative communication scheme in [15]. The authors also

presented a family of schemes that address the issues between multi-hop and cooperative
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communication when the path-loss exponent is greater than 3. In [16], the authors studied

the balanced unicast and multicast capacity of a wireless network consisting of n randomly

placed nodes, and obtained the characterization of the scaling of the n2-dimensional balanced

unicast and n2n-dimensional balanced multicast capacity regions under the Gaussian fading

channel model. A more general (n,m, k)-casting capacity problem was investigated in [23],

where n, m and k denote the total number of the nodes in the network, the number of

destinations for each communication group, and the actual number of communication-group

members that receive information respectively. In [23], the upper and lower bounds for the

(n,m, k)-cast capacity were obtained for random wireless networks.

In [24], the authors investigated the network capacity scaling in mobile wireless ad hoc

networks under the protocol interference model with infrastructure support. In [25], the

authors studied the network capacity of hybrid wireless networks with directional antenna

and delay constraints. Unlike previous works, the authors in [26] studied the capacity of

multi-unicast for wireless networks from the algorithmic aspects, and they designed provably

good algorithms for arbitrary instances. The broadcast capacity of wireless networks under

the protocol interference model is investigated in [27], where the authors derived the upper

and lower bounds of the broadcast capacity in arbitrary connected networks. When the

authors in [28] studied the data gathering capacity of wireless networks under the protocol

interference model, they concerned the per source node throughput in a network where a

subset of nodes send data to some designated destinations while other nodes serve as relays.

To gather data from WSNs, a multi-query processing technology is proposed in [29]. In that

work, the authors considered how to obtain data efficiently with data aggregation and query

scheduling. Under different communication organizations, the authors in [30] derived the

many-to-one capacity bound under the protocol interference model. Another work studied

the many-to-one capacity issue for WSNs is [31], where the authors considered to use data

compression to improve the data gathering efficiency. They also studied the relation between

a data compression scheme and the data gathering quality. In [32], the authors studied the

scaling laws of WSNs based on an antenna sharing idea. In that work, the authors derived the
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many-to-one capacity bounds under different power constraints. In [33], the authors studied

the multicast capacity of MANETs under the physical interference model, called motioncast.

They considered the network capacity of MANETs in two particular situations, which are the

LSRM (local-based speed-restricted) model and the GSRM (global-based speed-restricted)

model. The multi-unicast capacity of wireless networks is studied in [34] via percolation

theory. By applying percolation theory, the authors obtained a tighter capacity bound for

arbitrary wireless networks.

The data collection capacity of WSNs is studied in [35], [4], [1], [36], [37], [38], [39], [40],

[41], [42], [43], [44], [45], etc. In [35], the authors considered the collision-free delay-efficient

data gathering problem. Furthermore, they proposed a family of path scheduling algorithms

to collect all the data to the sink and obtained the network capacity through theoretical

analysis. The authors of [4] extended the work of [35]. They derived tighter upper and lower

bounds of the capacity of data collection for arbitrary WSNs. [1] is a work studying how to

distribute the data collection task to the entire network to achieve load balancing. In this

work, all the sensors transmit the same number of data packets during the data collection

process. In [36] and [37][38][39][40], the authors investigated the capacity of data collection

for WSNs under protocol interference model and physical interference model, respectively.

They proposed a grid partition method which divides the network into small grids to collect

data and then derived the network capacity. In [42], the authors studied the distributed data

collection problem in asynchronous wireless networks. They proposed a distributed data

collection algorithm and theoretically analyzed the delay and capacity performance of the

proposed algorithm, which are proven to be order-optimal. The worst-case capacity of data

collection of a WSN is studied in [41] under the physical and protocol interference models.

In [43], [44] and [45], the data gathering issue for cognitive radio networks is investigated

and analyzed.

The capacity and energy efficiency of wireless ad hoc networks with multi-packet re-

ception under the physical interference model is investigated in [46]. With the multi-packet

reception scheme, a tight bound of the network capacity is obtained. Furthermore, the au-
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thors showed that a tradeoff can be made between increasing the transport capacity and

decreasing the energy efficiency. In [47], a scheduling partition method for large-scale wire-

less networks is proposed. This method decomposes a large network into many small zones,

and then localized scheduling algorithms which can achieve the order optimal capacity as a

global scheduling strategy are executed in each zone independently. A general framework

to characterize the capacity of wireless ad hoc networks with arbitrary mobility patterns is

studied in [48]. By relaxing the “homogeneous mixing” assumption in most existing works,

the capacity of a heterogeneous network is analyzed. Another work [49] studies the rela-

tionship between the capacity and the delay of mobile wireless ad hoc networks, where the

authors studied how much delay must be tolerated under a certain mobile pattern to achieve

an improvement of the network capacity.

1.3.2 Capacity for Multi-Radio Multi-Channel Wireless Networks

Since wireless nodes can be equipped with multiple radios, and each radio can work

over multiple orthogonal channels, multi-radio multi-channel wireless networks attract many

research interests recently [50][51][52][53]. In [50], the authors studied the data aggregation

issue in multi-channel WSNs under the protocol interference model. Particularly, they de-

signed a constant factor approximation scheme for data aggregation in multi-channel WSNs

modeled by Unit Disk Graphs (UDGs). Unlike [50], we study the data collection capacity

issue for WSNs. In [51], [52], and [53] the authors investigated the joint channel assign-

ment and routing problem for multi-radio wireless mesh networks, software-defined radio

networks, and multi-channel ad hoc wireless networks, respectively. They focused on the

channel assignment and routing issues, while in data collection, especially continuous data

collection, we focus on how to solve the data accumulation problem at the sensors near the

sink to improve the achievable network capacity.

The issue of the capacity of multi-channel wireless networks also attracts a lot of atten-

tion [54][55][56][57][58]. In [54] and [55], the authors studied the connectivity and capacity

problem of multi-channel wireless networks. They considered a multi-channel wireless net-
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work under constraints on channel switching, proposed some routing and channel assignment

strategies for multiple unicast communications and derived the per-flow capacity. The mul-

ticast capacity of multi-channel wireless networks is studied in [56]. In this work, the authors

represented the upper bound capacity of per multicast as a function of the number of the

sources, the number of the destinations per multicast, the number of the interfaces per n-

ode, and the number of the available channels. Subsequently, an order-optimal scheduling

method is proposed under certain circumstances. In [57], the authors first proposed a multi-

channel network architecture, called MC-MDA, where each node is equipped with multiple

directional antennas, and then obtained the capacity of multiple unicast communications

under arbitrary and random network models. The impact of the number of the channels, the

number of the interfaces and the interface switching delay on the capacity of multi-channel

wireless networks is investigated in [58]. In this work, the authors derived the network

capacity under different situations for arbitrary and random networks.

In [5][59], we studied the snapshot and continuous data collection issues and their achiev-

able capacities for dual-radio multi-channel WSNs under the protocol interference model.

First, we proposed a novel multi-path scheduling algorithm for snapshot data collection. By

theoretical analysis, we showed our snapshot data collection algorithm has a better perfor-

mance than the state-of-the-art method. Subsequently, we pipeline-based continuous data

collection method, which also proved to have a good capacity performance.

1.3.3 Data Aggregation

Ever since the data aggregation problem is raised, extensive research has been conduct-

ed on this issue ([7], [8], [60], [61], [62], [63], [64], [65], and references therein), especially for

the Minimum-Latency Aggregation Schedule (MLAS) problem, which tries to obtain a data

aggregation schedule with the objective to minimize the latency (minimize M). In [60], [61]

and [7], several centralized data aggregation algorithms are proposed under the Unit Disk

Graph (UDG) model and the protocol interference model. Chen et al. [60] proved that the

MLAS problem is NP-hard. Furthermore, they designed a (∆− 1)-approximation algorithm
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for this problem, where ∆ is maximum degree of the topological graph of the network. Sub-

sequently, Huang et al. [61] proposed another data aggregation algorithm which has a better

performance. By analysis, they showed that the delay of their algorithm is upper bounded

by 23R+∆−18 (R ∼ L and L is the height of the data aggregation tree), where R is the net-

work radius. Recently, Wan et al. [7] proposed three data aggregation algorithms of latency

upper bounded by 15R+∆−4, 2R+O(logR)+∆, and (1+O(logR/ 3
√
R))R, respectively.

Xu et al. [62] studied periodic query scheduling for data aggregation with minimum delay

consideration. They designed centralized aggregation scheduling algorithms under various

wireless interference models, and analyzed the induced delay of each algorithm. As we have

already known, centralized algorithms have many shortcomings in distributed wireless net-

works. To overcome these shortcomings, some state-of-the-art distributed algorithms are

proposed under the UDG model and the protocol interference model [63][64][65]. In [63],

Yu et al. proposed a distributed Connected Dominating Set (CDS)-based data aggregation

schedule algorithm with latency upper bounded by 24D+ 6∆+ 16, where D is the network

diameter. Xu et al. [64] also proposed a distributed data aggregation algorithm with a better

latency bound of 16R′ + 6∆ − 14, where R′ is the inferior network radius which satisfies

R′ ≤ R ≤ D ≤ 2R′. The most recently published distributed data aggregation algorithm

is [65], in which Li et al. proposed an aggregation scheme of latency upper bounded by

16R′ +∆− 14.

1.3.4 Remarks

Unlike the existing works, in this dissertation, we study the data collection and data

aggregation issues and their achievable capacities for WSNs under different scenarios, and

proposed a series of data collection and aggregation algorithms. We theoretically analyze

all the proposed algorithms, and obtain their delay and capacity performance. We also

conduct extensive simulations to validate the performance of all the proposed algorithms,

and compare them with the state-of-the-art methods.

Particularly, some or all the following aspects distinguish the works in this dissertation
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from existing literatures.

1. Most of the above mentioned works are specifically for single-radio single-channel wire-

less networks, while our work (Part 2) considers the network capacity for dual-radio

multi-channel WSNs.

2. Our work (Part 2, Part 3) is the dedicated one that investigates the network capacity

for continuous data collection in detail under the protocol interference model/physical

interference model, whereas most of the previous works study the network capacity

for multicast or/and unicast, etc, which are different communication modes from the

snapshot data collection, especially the continuous data collection. For the works that

study the data collection capacity of wireless networks, they focus on the snapshot data

collection problem which is a special case of continuous data collection. Compared with

them, the results proposed in this dissertation are more universal.

3. Most of the previous works considered the network capacity issues under the determin-

istic network model, which is not practical due to the existence of plenty of lossy links.

Unlike them, we study the network capacity issue under the probabilistic network

model (Part 3, Part 5), which is more realistic.

4. To the best of our knowledge, this work (Part 4) is the first attempt to address the

distributed data collection problem with capacity analysis for asynchronous wireless

sensor networks, which is more complicated, however, more practical. As summarized

in Section 1.3, the existing works study the data collection capacity issue based on

centralized and synchronized scheduling/algorithms. On the other hand, we propose

a scalable and order optimal asynchronous distributed data collection algorithm in

Part 4. This demonstrates that asynchronous distributed data collection schemes can

also achieve order optimal data collection capacity as synchronized and centralized

algorithms do.

5. For completeness, we also consider the data gathering issue with data aggregation, and
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propose centralized and distributed data aggregation algorithms (Part 5), which are

proven to be order-optimal.

1.4 Organization

The rest of this dissertation is organized as follows: Part 2 studies the snapshot and

continuous data collection issues for dual-radio multi-channel WSNs, where a multi-path

scheduling algorithm for snapshot data collection and a pipeline-based scheduling algorithm

for continuous data collection are proposed and analyzed. Part 3 investigates the data

collection issue for practical probabilistic WSNs, where a snapshot data collection algorithm

and a continuous data collection algorithm are proposed and analyzed under the physical

interference model. Part 4 studies the distributed data collection problem for asynchronous

WSNs. In that part, an asynchronous distributed data collection algorithm is proposed. By

theoretical analysis, we show that the proposed distributed data collection algorithm can also

surprisingly achieve order-optimal data collection capacity as centralized and synchronized

algorithms do. For completeness, Part 5 studies the data aggregation issue for probabilistic

WSNs, where two data aggregation algorithms are proposed and analyzed for snapshot and

continuous data aggregation, respectively. Finally, the dissertation is concluded in Part 6.
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PART 2

CONTINUOUS DATA COLLECTION AND CAPACITY IN DUAL-RADIO

MULTI-CHANNEL WIRELESS SENSOR NETWORKS

2.1 Introduction

Wireless Sensor Networks (WSNs) are mainly used for collecting data from the phys-

ical world. Data gathering can be categorized as data aggregation [7]-[61], which obtains

aggregated values from WSNs, e.g. maximum, minimum or/and average value of all the

data, and data collection [1]-[5], which gathers all the data from a network without any data

aggregation. For data collection, the union of all the sensing values from all the sensors at

a particular time instance is called a snapshot [38][4][5]. The problem of collecting all the

data of one snapshot is called snapshot data collection. Similarly, the problem of collecting

multiple continuous snapshots is called continuous data collection. Different from wired net-

works, WSNs suffer from the interference problem, which degrades the network performance.

Consequently, network capacity, which can reflect the achievable data transmission rate, is

usually used as an important measurement to evaluate network performance. Particularly,

for a data collection WSN, we use the average data receiving rate at the sink during the data

collection process, referred to as data collection capacity [38][4][5], to measure its achievable

network capacity, i.e. data collection capacity reflects how fast data been collected to the

sink. In this part, we study the snapshot and continuous data collection problems, as well

as their achievable capacities for WSNs.

After the first work [19], extensive works emerged to study the network capacity issue

for variety of network scenarios, e.g. multicast capacity [12]-[14], unicast capacity [15], [16],

broadcast capacity [18][66], snapshot data collection capacity [1]-[37], [4], etc. Most of the

previous studies on network capacity are for single-radio single-channel WSNs [1]-[37], [4],

[19]-[49], where a network consists of a number of nodes, each with only one radio, and all
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the nodes communicate over a common single channel. Because of the inherent limitations

of such networks, transmissions suffer from the radio confliction problem [67]-[58] and the

channel interference problem [54]-[57], [58] seriously. This degrades network performance

significantly. The radio confliction problem is caused by the fact that each node is equipped

with only one radio, which means a node can only work on a half-duplex mode, i.e. this

node cannot receive and transmit data simultaneously. The channel interference problem is

caused by all the nodes working over a common channel. When one node transmits data,

all the other nodes within its interference radius cannot receive any other data and all the

other transmissions interfere with this transmission cannot be carried out simultaneously.

Fortunately, many current off-the-shelf sensor nodes are capable of working over multiple

orthogonal channels, e.g. IEEE 802.11 b/g standard supports 3 orthogonal channels and

IEEE 802.11a standard supports 13 orthogonal channels [68], [57] respectively, which can

greatly mitigate the channel interference problem. Furthermore, with the development of

hardware technologies and the decreasing of hardware cost, a sensor node can be equipped

with multiple radios. This helps with solving the radio confliction problem. Therefore,

multi-radio multi-channel WSNs are currently becoming more and more attractive [67]-[58].

Different from the previous works which investigate the capacity issues for single-radio

single-channel WSNs, we study the network capacity problem for both continuous data

collection and snapshot data collection in dual-radio multi-channel WSNs under the protocol

interference model. Similarly as [4], we define capacity as the data rate at the sink to

continuously receive data from sensor nodes. We propose two channel scheduling algorithms

for both continuous data collection and snapshot data collection, respectively, in this part.

The motivation of this part lies in the fact that dual-radio multi-channel WSNs can make

nodes work in a full-duplex manner without incurring high hardware cost, while the channel

interference problem can be mitigated significantly. To the best of our knowledge, most of

the previous works focus on addressing the snapshot data collection capacity problem, while

this part is the dedicated one investigating the continuous data collection capacity problem

in detail under the protocol interference model. Besides, this part is suitable for dual-radio
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multi-channel WSNs. The main contributions of this part are as follows:

1. For the snapshot data collection problem in single-radio multi-channel WSNs, we

propose a new multi-path scheduling algorithm. We prove that this algorithm can

achieve the order-optimal network capacity Θ(W ) and has a tighter lower bound

W
2⌈(1.81ρ2+c1ρ+c2)/H⌉ compared with the previously best result in [4], which is W

8ρ2
, where

W is the channel bandwidth, H is the number of orthogonal channels, ρ is the ratio

of the interference radius over the transmission radius of a node, c1 =
2π√
3
+ π

2
+ 1, and

c2 =
π√
3
+ π

2
+ 2.

2. We propose a novel pipeline scheduling algorithm that combines Compressive Data

Gathering (CDG) [1] and pipeline together, which significantly improves the con-

tinuous data collection capacity for dual-radio multi-channel WSNs. We also prove

that the achievable asymptotic network capacity of this algorithm in a long-run is

nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e ≤ 12 or nW

M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12, where n

is the number of the sensors, M is a constant value and usually M ≪ n, ∆e is the

maximum number of the leaf nodes having a same parent in the routing tree (i.e. data

collection tree), c3 =
8π√
3
+π+2, and c4 =

8π√
3
+2π+6. A straightforward upper bound of

data collection of a dual-radio WSN is 2W , since a dual-radio sink can simultaneously

receive two packets at most. Whereas, thanks to the benefit brought by the pipeline

technique and CDG, analysis shows that our pipeline scheduling algorithm can even

achieve a capacity higher than 2W .

3. For completeness, we also examine the performance of the proposed pipeline schedul-

ing algorithm in single-radio multi-channel WSNs, denoted by the single-radio-based

pipeline scheduling algorithm. Theoretical analysis shows that for a long-run contin-

uous data collection, the lower bound of the achievable asymptotic network capacity

of the single-radio-based pipeline scheduling algorithm for single-radio multi-channel

WSNs is nW
16M⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e ≤ 12 or nW

M(∆e+4)⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12.

4. The simulation results indicate that the proposed algorithms have a better snapshot
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data collection capacity compared with the previously best works. Particularly, when

ρ = 2 and H = 3, for snapshot data collection in a WSN with 4000 nodes, the

improvements of the capacity of our multi-path scheduling algorithm are 74.3% and

29% compared with BFS [4] and SLR [54] respectively. For continuous data collection

in a WSN with 10000 nodes, our pipeline scheduling algorithm achieves a capacity 7.6

times of that of CDG [1], 22.8 times of that of BFS [4] and 19.4 times of that of SLR

[54], respectively.

The rest of this part is organized as follows: Section 2.2 introduces the network mod-

el and preliminaries. The multi-channel scheduling algorithm for snapshot data collection

in single-radio multi-channel WSNs is proposed and analyzed in Section 2.3. Section 2.4

presents a novel multi-channel scheduling algorithm for continuous data collection and its

theoretical achievable asymptotic network capacity. The simulations to validate the perfor-

mance of the proposed algorithms are shown in Section 2.5. We conclude this part and point

out possible future research directions in Section 2.6.

2.2 Network Model and Preliminaries

In this section, we describe the network model and assumptions, construct the routing

tree used for data collection, and introduce some necessary preliminaries. For the frequently

used notations in this part, we list them in Table 2.1.

2.2.1 Network Model

We consider a WSN consisting of n sensors and one sink, represented by a connected

undirected graph G = (V,E), where V is the set of all the nodes in the network and E is the

set of all the possible links among the nodes in V . Every sensor in the WSN produces one

packet in a snapshot (defined in the subsequent paragraph). Each sensor has two radios and

each radio has a fixed transmission radius normalized to one and a fixed interference radius,

denoted by ρ, ρ ≥ 1. Since we use the protocol interference model, for any receiving node v,

v can receive a packet successfully from a transmitting node u if ∥u− v∥ ≤ 1 and there is no
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Table 2.1 Notations used in this part.

Notation Description

G(V,E) The network topology graph, V is the set of all

the nodes, E is the set of all the possible links

n The number of sensors in a WSN

ρ The interference radius

λ1, · · · , λH The H available orthogonal channels

W The bandwidth of a channel

b The size of a data packet

t A time slot

τ The time consumption of snapshot/continuous

data collection

N The number of snapshots in a continuous

data collection

Υ The snapshot/continuous data collection capacity

D/C The set of dominators/connectors

G′ The graph constructed by nodes in D

L′ The radius of G′

T The data collection tree

R(A) The conflicting graph of A

∆(·)/δ(·) The maximum/minimum degree of a graph

∆e The maximum number of leaf nodes having

a same parent in T

δ∗(·) The inductivity of a graph

βr The number of the dominators within

a half-disk with radius r
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other node s satisfying ∥s− v∥ ≤ ρ and trying to transmit a packet simultaneously over the

same channel with u. Here ∥−∥ is the Euclidean distance. Furthermore, we say two links

are interfering links if at least one transmission over them will fail if they transmit data

simultaneously. Each radio can work over H orthogonal channels, denoted by λ1, λ2, . . . , λH

respectively. A fixed data-rate channel model [4] is adopted in this part, which means each

sensor can transmit at a rate of W bits/second over a wireless channel. The size of all

the packets transmitted in the network is set to be b bits. We also assume that all the

transmissions are synchronized and the size of a time slot is t = b/W seconds.

We formally define the problem follows. For a WSN consisting of n sensors and one

sink, every sensor produces a data packet with b bits at a particular time instant. The union

of all the n data packets produced by the n sensors at a particular time instant is called

a snapshot. The process to collect all the data of a snapshot to the sink is called snapshot

data collection. The snapshot data collection capacity is defined as Υ = nb
τ
, where τ is the

time used to collect all the data of a snapshot to the sink, i.e. snapshot data collection

capacity reflects the average data receiving rate at the sink during snapshot data collection.

Similarly, the process to collect all the data of N continuous snapshots is called continuous

data collection. The continuous data collection capacity is defined as Υ = Nnb
τ
, where τ

now is the time consumption to collection all the data of these N snapshots to the sink, i.e.

continuous data collection capacity reflects the average data receiving rate at the sink during

continuous data collection. In this part, we study the snapshot data collection and continuous

data collection problems for WSNs, as well as their achievable network capacities1.

2.2.2 Routing Tree

Let G(V,E) be a unit-disk graph representing a WSN. We define the sink s0 as the

center of G. The radius of G with respect to s0 is the maximum depth of the Breadth-

First-Search (BFS) tree rooted at s0. For a subset U of V , U is a Dominating Set (DS)

1In the following of this part, we use snapshot/continuous data collection capacity and network capacity
interchangeably without confusion.
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Figure 2.1 The construction of a CDS based routing tree. s0 is the sink. The black nodes in
(b) are dominators, and the blue nodes in (c) are connectors.

of G if every node in V is either an element of U or adjacent2 to at least one node in U .

If the subgraph of G induced by U is connected, then U is called a Connected Dominating

Set (CDS) of G. Since CDS can serve as a virtual backbone of a WSN, it receives a lot of

attention [7], [69]-[70], [71]-[72], recently.

Taking the WSN shown in Figure 2.1(a) as an example, we build a CDS based routing

tree T (shown in Figure 2.1(d)) using the method proposed in [7]. Let G represent the

network in Figure 2.1(a). T is rooted at sink s0 and can be built according to the following

steps. First, construct a Breadth-First-Searching (BFS) tree on G beginning at the sink and

obtain a Maximal Independent Set (MIS) D according to the search sequence. As shown in

Figure 2.1(b), the set of all the black nodes {s0, s5, s7, s9, s11} is a MIS of the network shown

in Figure 2.1(a). Note that D is also a DS of G and an element in D is called a dominator.

Clearly, every dominator is out of the communication range of any other dominators. Let G′

be a graph on D in which two nodes in D linked by an edge if and only if these two nodes

have a common neighbor in G, e.g. s0 and s7. Obviously, sink s0 is in G′ and we also denote

2In this part, if we say two nodes u and v are adjacent/connected, we mean u and v are within the
communication range of each other, i.e. ∥u− v∥ ≤ 1.
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s0 as the center of G′. Suppose that the radius of G′ with respect to s0 is L′ and we denote

the union of dominators at level l (0 ≤ l ≤ L′) as set Dl. Note that, D0 = {s0}. Second,

we choose nodes, also called connectors, to connect all the nodes in D to form a CDS. Let

Sl (0 ≤ l ≤ L′) be the set of the nodes adjacent to at least one node in Dl and at least one

node in Dl+1 and compute a minimal cover Cl ⊆ Sl for Dl+1. Let C = ∪L′−1
0 Cl and therefore

D ∪ C is a CDS of G. As shown in Figure 2.1(c), the blue nodes {s1, s2, s3} are connectors

chosen to connect the dominators in D0 = {s0} and D1 = {s5, s7, s9, s11}. Meanwhile, the

union of the dominators and connectors in Figure 2.1(c) forms a CDS of the network shown

in Figure 2.1(a). Finally, for any other node u, also called a dominatee, not belonging to

D ∪ C, choose the nearest dominator as u’s parent node. In this way, the routing tree T of

G is obtained as shown in Figure 2.1(d).

For each link in T , we assign it a direction from the child node to the parent node along

the data transmission flow to the sink as shown in Figure 2.1(d). Furthermore, the receiving

(respectively, transmitting) node, i.e. parent (respectively, child) node, of a link is called a

head (respectively, tail). Suppose that A is a set of links of T . The corresponding conflicting

graph of A is denoted by ℜ(A) = (VA, EA), where each link in A is abstracted to a node

in VA and two nodes in VA form an edge in EA if the corresponding two links of these two

nodes are interfering links.

Lemma 2.2.1 in [7] can be used to derive some useful results of the routing tree T .

Lemma 2.2.1 [7] Suppose that O (respectively, O′) is a disk (respectively, half-disk) with

radius r, and U is a set of points with mutual distances of at least one. Then the number of

the points αr in a disk and the number of the points βr in a half-disk are

αr = |U ∩O| ≤ 2π√
3
r2 + πr + 1 (2.1)

βr = |U ∩O′| ≤ π√
3
r2 + (

π

2
+ 1)r + 1. (2.2)

From Lemma 2.2.1, the authors in [7] derived the following properties of the routing tree

T . First, for each 0 ≤ l ≤ L′ − 1, each connector in Cl is adjacent to at most 4 dominators
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in Dl+1. Second, for each 1 ≤ l ≤ L′ − 1, each dominator in Dl is adjacent to at most 11

connectors in Cl. Third, |C0| ≤ 12.

2.2.3 Vertex Coloring Problem

For a graph G = (V,E), the maximum degree (respectively, minimum degree) of G is

denoted by ∆(G) (respectively, δ(G)). A subgraph of G on U ⊆ V is denoted by G(U). The

inductivity of G is defined as δ∗(G) = max
U⊆V

δ(G(U)). A vertex coloring of G is a scheme of

coloring all the vertices in G such that no two adjacent vertices share the same color. The

chromatic number χ(G) of G is the least number of colors used to color G. Deciding the

lower bound of χ(G) is a well-known NPC problem. However, the upper bound of χ(G) has

been derived in graph theory [7][73]. The following lemma was proven in [7] and [73].

Lemma 2.2.2 χ(G) ≤ 1 + δ∗(G) and a vertex coloring scheme, called first-fit coloring, for

G using at most 1 + δ∗(G) colors can be found in polynomial time.

Given a link set A of T , the channel assignment problem for A can be abstracted to the

vertex coloring problem for its corresponding conflicting graph ℜ(A). If the tail (respectively,

head) of every link in A is a dominator, then Lemma 2.2.3 in [7] gives the upper bound of

δ∗(A).

Lemma 2.2.3 [7] δ∗(A) ≤ βρ+1 − 1.

Lemma 2.2.3 implies that in the worst case, at most βρ+1 channels may be assigned to

all the links in A without channel interference by a first-fit coloring method.

2.3 Capacity of Snapshot Data Collection

In this section, we investigate the traditional snapshot data collection problem, propose

a scheduling algorithm for this problem in single-radio multi-channel WSNs and analyze the

achievable capacity of the proposed algorithm. Subsequently, we point out that the proposed
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algorithm and most existing works cannot improve the capacity of a network by the pipeline

technology.

Since at any time slot, the sink can receive data from at most one neighboring sensor,

therefore, the upper bound of the snapshot data collection capacity is W [38][4][5]. Aiming

at this upper bound, we design a scheduling algorithm for snapshot data collection which is

order-optimal and has a tighter lower bound than the previously best result [4].

2.3.1 Scheduling Algorithm for Snapshot Data Collection

The idea of single-path scheduling has been employed in [35] and [4] to collect data for a

WSN. However, their methods have a looser bound of the snapshot data collection capacity.

In this subsection, we design a new multi-path scheduling algorithm based on the routing

tree T built in Section 2.2, which is proven to have a better performance. We first study how

to schedule a single path and then extend it to the scheduling of multi-path in the routing

tree T .

For simplicity, we introduce the concept of round. A round is a period of time which

consists of multiple continuous time slots. We take the path shown in Figure 2.2(a) as an

example to explain the idea of the single path scheduling scheme. In Figure 2.2(a), the path,

denoted by P , consists of one sink s0 and three sensors s1, s2, and s3, where s0 and s2 are

dominators, s1 is a connector, and s3 is a dominatee. The value marked in each node is the

number of the packets at this node to be transmitted during a time slot. Initially, every

sensor on P has one packet and there is no packet at s0. Po (respectively, Pe) denotes the set

of links on P whose heads (respectively, tails) are dominators and whose tails have at least

one packet to be transmitted. For the path shown in Figure 2.2(a), Po = {(s3, s2), (s1, s0)}

and Pe = {(s2, s1)}. We schedule P according to the following two steps and repeat them

until all the packets have been collected by s0.

Step 1: In an odd round, schedule every link in Po once, i.e. assign a dedicated channel

and one dedicated time slot to each link in Po.

Step 2: In an even round, schedule every link in Pe once, i.e. assign a dedicated channel
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Figure 2.2 (a) A single path and (b) its scheduling (r=round).

and one dedicated time slot to each link in Pe.

The detailed scheduling in Step 1 can be conducted in the following way: first, for any

link ιi ∈ Po, let IPo(ιi) = {ιj|ιj ∈ Po, ιi and ιj are interfering links}; second, sort the links

in Po according to |IPo(ιi)| (1 ≤ i ≤ |Po|) in a non-decreasing order, where | · | denotes

the cardinality of a set, and denote the resulting link sequence as {ι′1, ι′2, . . . , ι′|Po|}; finally,

during the i-th (1 ≤ i ≤
⌈
|Po|
H

⌉
) time slot of a round, let the j-th ((i − 1)H < j ≤ iH)

link in Po work on channel λj%H+1. Here, we sort the links in Po first and subsequently

assign channels is based on the first-fit coloring scheme in Lemma 2.2.2. Furthermore,

according to Lemma 2.2.2 and Lemma 2.2.3, the channel assignment plan for the links in Po

is interference/collision-free. The detailed scheduling in Step 2 is similar to that of Step 1.

The scheduling process of P in Figure 2.2(a) is shown in Figure 2.2(b). During the

first (odd) round, links (s3, s2) and (s1, s0) are scheduled and the packets at s3 and s1 are

transmitted to their parent nodes. After the first round, s3 has no packet to transmit.

During the second (even) schedule, link (s2, s1) is scheduled and s2 transmits one packet to

its parent node. This process continues until all the packets on path P has been transmitted

to s0.

We now consider the scheduling of the routing tree T built in Section 2.2. Suppose that

there are m leaf nodes in T denoted by sl1, s
l
2, · · · , slm respectively. The path from leaf node
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Figure 2.3 A routing tree and its scheduling. In (a), black nodes are dominators, blue nodes
are connectors, and the other nodes are dominatees.

sli (1 ≤ i ≤ m) to the sink s0 is denoted by Pi. Two paths Pi and Pj are said intersecting

if they have at least one common node besides the sink node. Assume path Pi and Pj are

intersecting, the lowest common ancestor of sli (Pi) and slj (Pj), i.e. the common node of Pi

and Pj having the largest number of hops from the sink, is called an intersecting point of Pi

and Pj. If path Pi intersects with other paths, the route from sli to the nearest intersecting

point of Pi is called a sub-path, denoted by Fi. Otherwise, Fi is actually Pi.

Taking the routing tree T̂ shown in Figure 2.3(a) as an example, T̂ consists of one sink

s0 and 10 sensor nodes denoted by si (1 ≤ i ≤ 10). T̂ has three leaf nodes s1, s2, and s3,

which correspond to paths P1, P2, and P3, respectively. In T̂ , P1 and P2 are intersecting
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and their intersecting point is s5. Nevertheless, P1 and P3, as well as P2 and P3, are not

intersecting since they have no common node beside s0. For P1, the route from s1 to s5 is

the sub-path of P1, denoted by F1. For P3, since it is not intersecting with any path, F3 is

P3 itself.

Algorithm 1: Multi-path Scheduling Algorithm

input : a routing tree T with m leaf nodes
output: a schedule plan for the routing tree T

1 for i = 1; i ≤ m; i++ do
2 while there is some data for transmission on Fi do
3 P ← {Pi};
4 S ← ∅;
5 if rdi%2 == 1 then
6 S ← P i

o;
7 rdi ++;

8 else if rdi%2 == 0 then
9 S ← P i

e ;
10 rdi ++;

11 for j = i+ 1; j ≤ m; j ++ do
12 if Pj is not intersecting with any path in P && there is some data for

transmission on Fj then
13 if rdj%2 == 1 && all the transmissions in P j

o and all the
transmissions in S are interference/collision-free then

14 P ← P ∪ {Pj};
15 S ← S ∪ P j

o ;
16 rdj ++;

17 if rdj%2 == 0 && all the transmissions in P j
e and all the

transmissions in S are interference/collision-free then
18 P ← P ∪ {Pj};
19 S ← S ∪ P j

e ;
20 rdj ++;

21 schedule the links in S in a round as in the single-path scheduling algorithm;

22 if there is no data for transmission on Fi then
23 remove all the links on Fi from T ;

To schedule multiple paths on the routing tree T , we propose a multi-path scheduling

algorithm as shown in Algorithm 1. In Algorithm 1, P is the set of paths been scheduled
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simultaneously in a round, S is the set of links from multiple paths that can be scheduled

in a round, rdi/rdj indicates the number of available rounds that has been assigned to path

Pi/Pj, and P i
o/P

j
o (respectively, P i

e/P
j
e ) is the set of links on Pi/Pj whose heads (respectively,

tails) are dominators and whose tails have at least one packet to be transmitted. From

Algorithm 1, we can see that lines 2-10 are used to schedule path Pi according to the single-

path scheduling algorithm. Lines 11-20 are used to find other paths that can be scheduled

simultaneously with Pi according to the single-path scheduling algorithm at the same round.

We further explain the multi-path scheduling algorithm through the routing tree T̂

shown in Figure 2.3(a). Assume the interference radius ρ = 1, i.e. the interference radius is

equal to the transmission radius, which implies each round consists of two time slots. Further-

more, we use I(si) (1 ≤ i ≤ n) to denote the set of sensor nodes that cannot be transmitted

data simultaneously with si. For the nodes in T̂ , we assume I(s1) = {s4, s5, s6, s7, s8},

I(s2) = {s6, s7}, I(s3) = {s9, s10}, I(s4) = {s1, s5, s7, s8}, I(s5) = {s1, s4, s7, s8, s10},

I(s6) = {s1, s2, s7, s8}, I(s7) = {s1, s2, s4, s5, s6, s8}, I(s8) = {s1, s4, s5, s6, s7}, I(s9) =

{s3, s10}, and I(s10) = {s3, s5, s9}. Additionally, for path P1, P
1
o = {(s1, s4), (s5, s0)} and

P 1
e = {(s4, s5)}, for path P2, P

2
o = {(s2, s6), (s7, s8), (s5, s0)} and P 2

e = {(s6, s7), (s8, s5)},

and for path P3, P
3
o = {(s3, s9), (s10, s0)} and P 3

e = {(s9, s10)}. At the beginning of Algo-

rithm 1, the network is shown in Figure 2.3(b) with the number inside each node denoting

the number of the data packets at this node. According to the algorithm, during the first

round, P 1
o is scheduled, and path P2 will not be scheduled since it is intersecting with P1.

P3 also will not be scheduled since the link (s10, s0) in P 3
o and the link (s5, s0) in P 1

o are

not interference/confliction-free. Thus, after the first round, the network situation is shown

in Figure 2.3(c). During the second round, P 1
e will be scheduled. Now, all the links in P 1

e

and all the links in P 3
o are conflict/interference-free (Here, we consider P 3

o instead of P 3
e

is because for path P3, the current round is the first available round.). Hence, P1 and P3

can be scheduled simultaneously at the second round. After the second round, the network

situation is shown in Figure 2.3(d). Similarly, according to Algorithm 1, the network after

the third, the fourth, the fifth, and the sixth round is shown in Figure 2.3(e), (f), (g), and
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(h), respectively. Finally, for T̂ shown in Figure 2.3(a), it will take 13 rounds to collect all

the data packets to the sink by the multi-path scheduling algorithm. By contrast, it will take

18 rounds to collect all the data packets to the sink by the single-path scheduling algorithm.

2.3.2 Capacity Analysis

In this subsection, we analyze the achievable network capacity of the proposed multi-

path scheduling algorithm. The upper bound of the snapshot data collection capacity is W

which has been explained. Consequently, we focus on the lower bound of the snapshot data

collection capacity. In the worst case, all the paths in the routing tree T are intersecting, i.e.

they have a common intersecting point, which means only one path can be scheduled at any

time. In order to derive the lower bound of the multi-path scheduling algorithm, we first

investigate the number of the rounds needed to finish the scheduling of one single path and

then study the number of the time slots in each round. Lemma 2.3.1 gives the maximum

number of the rounds used for the scheduling of one single path.

Lemma 2.3.1 For a single path P of length L in T , it takes at most 2L−1 rounds to collect

all the packets on P at the sink node.

Proof: Suppose that the node sequence on P is s1, s2, . . . , sL, s0, where s1 is the leaf

node (dominatee), and s0 is the sink node. Considering the building process of T , each link

in P has either a dominator head or a dominator tail. According to the scheduling scheme

of a single path, during the first (odd) round, the links in Po are scheduled, which implies

each non-dominator with at least one packet transmits this packet to its parent node. After

the first round, the sink, receives one packet and all the other dominators of the links in Po

have two packets to be transmitted. During the second (even) round, the links in Pe are

scheduled, which implies that every dominator in Pe transmits one packet to its parent node.

As a result, the sensor si (2 ≤ i ≤ L) has exactly one packet to be transmitted and a new

odd-even scheduling round begins. In summary, after every two rounds, the sink receives

one packet and the length of the data collection path decreases by 1. Since the length of P
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is L and s0 is the destination of all the packets which does not have to transmit any data, it

takes at most 2L− 1 rounds to collect all the packets on P . 2

From Lemma 2.3.1, it is straightforward to obtain the number of the rounds used to

collect all the data on the sub-path F of P as shown in Corollary 2.3.1.

Corollary 2.3.1 For the sub-path F of length Ls in P , it takes at most 2Ls rounds to

collect all the packets on F .

Proof: The proof of Corollary 2.3.1 is similar to that of Lemma 2.3.1. Note that the

intersecting point is not a sink node in this case and thus it needs one round to transmit its

packet. 2

By Lemma 2.3.1 and Corollary 2.3.1, we can obtain the number of the rounds used

to collect the packets on a path. The maximum number of the time slots in a round is as

follows.

Lemma 2.3.2 In the single-path scheduling algorithm, a round has at most
⌈
βρ+1

H

⌉
time

slots, where βρ+1 is the number of the dominators in a half-disk with radius ρ + 1 and H is

the number of available orthogonal channels.

Proof: During every odd (respectively, even) round, the scheduled links are links in Po

(respectively, Pe). Since the heads (respectively, tails) of links in Po (respectively, Pe) are

dominators, we can schedule all the links in Po (respectively, Pe) in one time slot with at

most βρ+1 channels in polynomial time by Lemma 2.2.3 and Lemma 2.2.2. Now, we have

H available channels, which means we can finish the scheduling within
⌈
βρ+1

H

⌉
time slots.

Therefore, the lemma holds. 2

Now we can obtain the lower bound of the achievable capacity of the multi-path schedul-

ing algorithm as shown in Theorem 2.3.1.

Theorem 2.3.1 The capacity Υ at the sink of T of the multi-path scheduling algorithm is at

least W
2⌈(1.81ρ2+c1ρ+c2)/H⌉ , where c1 =

2π√
3
+ π

2
+ 1 and c2 =

π√
3
+ π

2
+ 2, which is order-optimal.
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Proof: Suppose that T has m paths and the length of each path is Li (1 ≤ i ≤ m). In

the worst case, all the m paths cannot be scheduled concurrently. Then by Lemma 2.3.1,

Corollary 2.3.1 and Lemma 2.3.2, the total time τ used to collect all the packets of T at the

sink is at most t ·
m∑
i=1

2Li

⌈
βρ+1

H

⌉
. According to the multi-path scheduling algorithm, for any

path Pi, the time used to collect packets on Pi is equal to the time used to collect packets on

the corresponding sub-path Fi of Pi
3. Therefore, τ ≤ t ·

m∑
i=1

2Li

⌈
βρ+1

H

⌉
= t ·

m∑
i=1

2 |Fi|
⌈
βρ+1

H

⌉
=

2t
⌈
βρ+1

H

⌉ m∑
i=1

|Fi|.

Since the number of the links in T is equal to the number of the sensors in T ,
m∑
i=1

|Fi| = n.

Then, τ ≤ 2nt
⌈
βρ+1

H

⌉
. Therefore, the capacity

Υ =
nb

τ
≥ nb

2nt
⌈
βρ+1

H

⌉ =
b

2t
⌈
βρ+1

H

⌉ =
W

2
⌈
βρ+1

H

⌉ . (2.3)

From, Lemma 2.2.1, we have

βρ+1 ≤
π√
3
(ρ+ 1)2 + (

π

2
+ 1)(ρ+ 1) + 1 (2.4)

=
π√
3
ρ2 + (

2π√
3
+

π

2
+ 1)ρ+

π√
3
+

π

2
+ 2 (2.5)

≈ 1.81ρ2 + c1ρ+ c2, (2.6)

where c1 =
2π√
3
+ π

2
+1 and c2 =

π√
3
+ π

2
+2. This implies Υ ≥ W

2
⌈
βρ+1
H

⌉ ≥ W

2
⌈
1.81ρ2+c1ρ+c2

H

⌉ . Since
H is a constant and the upper bound of Υ is W , Υ is order-optimal. 2

From Theorem 2.3.1, we know that the achievable capacity of the multi-path scheduling

algorithm is order-optimal, and it also has a tighter lower bond compared with the previously

best result in [4], which has a lower bound of W
8ρ2

.

3From lines 2-10 in Algorithm 1, the scheduling of path Pi is stopped when all the data packets on the
sub-path Fi have been collected by the sink. As shown in Figure 2.3(f) and (g), after all the data packets
on F1 (the sub-path of P1) have been collected by the sink, we begin to schedule path P2. Additionally,
based on the definition of a sub-path, F3 in Figure 2.3 is P3 itself since P3 does not intersect with any
path. Therefore, the time used to collect packets on Pi is equal to the time used to collect packets on the
corresponding sub-path Fi of Pi.
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2.3.3 Discussion

When we address the continuous data collection problem, an intuitive idea is to pipeline

the existing snapshot data collection operations [4]. Nevertheless, such an idea cannot achieve

a better performance. This is because the sink can receive at most one data packet at a time

slot. By pipeline, data transmissions at the nodes far from the sink are really accelerated.

However, the fact that a sink can receive at most one packet at each time slot makes the

data accumulated at the nodes near the sink. Finally, the network capacity cannot be

improved even with pipeline. This motivates us to investigate new methods for continuous

data collection.

2.4 Capacity of Continuous Data Collection

Since multi-path scheduling algorithm and existing works with pipeline cannot improve

the capacity of continuous data collection, we propose a novel pipeline scheduling algorithm

based on compressive data gathering (CDG) [1] in dual-radio multi-channel WSNs, which

augments the continuous data collection capacity significantly. Here we consider dual-radio

multi-channel WSNs because dual radios can make a half-duplex single-radio node work in

a full-duplex mode, i.e. a dual-radio node can receive and transmit data simultaneously

with the two radios over different channels. Furthermore, the full-duplex working mode is in

favor of pipeline. For completeness, we also analyze the achievable network capacity of the

pipeline scheduling algorithm (a little modification is needed) in single-radio multi-channel

WSNs.

2.4.1 Compressive Data Gathering (CDG)

CDG is first proposed in [1] for snapshot data collection in single-radio single-channel

WSNs. The basic idea of CDG is to distribute the data collection load uniformly to all the

nodes in the entire network. We take the data collection on a path consisting of L sensors

s1, s2, . . . , sL and one sink s0 as shown in Figure 2.4 [1] as an example to explain CDG. In
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(a) (b)

Figure 2.4 Comparing of (a) basic data collection and (b) CDG [1].

Figure 2.4, the packet produced at sensor sj (1 ≤ j ≤ L) is dj. In the basic data collection

shown in Figure 2.4(a), s1 transmits one packet d1 to s2, s2 transmits two packets d1 and

d2 to s3, and finally all the packets on the path are transmitted to s0 by sL. Obviously,

nodes near the sink has more transmission load compared with nodes far from the sink in

the basic data collection. To balance the transmission load, the authors in [1] proposed the

CDG method as shown in Figure 2.4(b). Instead of transmitting the original data directly,

s1 multiplies its data with a random coefficient ϕi1 (1 ≤ i ≤ M), and sends the M results

ϕi1d1 to s2. Upon receiving ϕi1d1 (1 ≤ i ≤ M) from s1, s2 multiplies its data d2 with a

random coefficient ϕi2 (1 ≤ i ≤ M), adds it to ϕi1d1, and then sends ϕi1d1 + ϕi2d2 as one

data packet to s3. Finally, sL does the similar multiplication and addition and sends the

result
∑L

j=1 ϕijdj (1 ≤ i ≤ M) to s0. After s0 receives all the M packets, s0 can restore

the original packets based on the compressive sampling theory [1]. By CDG, all the sensors

send M packets to their parent nodes, which achieves the goal to uniformly distribute the

data collection task to the entire network. The number of the transmitted packets is O(n2)

in Figure 2.4(a) and is O(NM) in Figure 2.4(b), and usually M ≪ n for large scale WSNs.

Therefore, CDG reduces the number of the transmitted packets.

2.4.2 Pipelining

In computing, a pipeline is a set of data processing elements connected in series, so that

the output of one element is the input of the next one and the elements of a pipeline are

often executed in parallel. For instance, Figure 2.5 shows a pipeline system consisting of
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time line

Figure 2.5 A pipeline system.

four functional element S1, S2, S3, and S4 to address four tasks T1, T2, T3, and T4. To finish

four tasks by this pipeline, we can input these tasks sequentially for processing. As shown

in Figure 2.5, we first input task T1 (at time 0) to the functional element S1 for processing.

After T1 is processed by S1 (at time t1), S1 outputs the result to S2 for processing, and

meanwhile, T2 will be input to S1 (also at time t1) for processing. Then, at some time slot, it

can be achieved that multiple tasks are processed simultaneously at different elements of the

pipeline system. For instance, all the four tasks are processed by the pipeline system during

time slot (t3, t4) in Figure 2.5. Evidently, by exploiting the pipeline technique, the efficiency

of the entire functional system can be improved and thus the time consumption to process

multiple tasks can be decreased. Consequently, to improve the efficiency and reduce the

induced delay of the data collection process of continuous data collection, we will partition

the network into different functional elements to form an efficient data collection pipeline.

2.4.3 Pipeline Scheduling

Thanks to the benefit brought by CDG, we can address the continuous data collection

problem with the pipeline technique. From the building process of the routing tree T , we

know that the nodes in T can be divided into sets by levelsDe, DL′ , CL′−1, DL′−1, CL′−2, . . . , D1, C0, D0 =
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{s0|s0 is the sink} in a bottom-up way, where De is the set of all the dominatees, i.e. leaf

nodes, Di (0 ≤ i ≤ L′) is the set of the dominators at the i-th level, and Ci (0 ≤ i ≤ L′ − 1)

is the set of the connectors at the i-th level. Since every node has two radios, one radio

can be dedicated to receive data and the other dedicated to transmit data. Therefore, the

nodes at every level can receive and transmit data simultaneously over different channels.

Consequently, for a continuous data collection task consisting of N snapshots, we propose a

pipeline scheduling algorithm as follows.

Step 1: The nodes at the dominatee level transit data packets to their parent nodes

snapshot by snapshot in the CDG way. All the nodes in De transmit the packets of the j-th

(1 ≤ j ≤ N−1) snapshot to their parent nodes in the CDG way, i.e. for every node s ∈ De, s

multiplies its data with M random coefficients respectively, and sends the M products to its

parent node. After all the packets of the j-th snapshot have been transmitted successfully,

the nodes in De immediately transmit the packets of the (j + 1)-th snapshot in the CDG

way.

Step 2: After the nodes at each dominator level receive all the data packets of the j-th

snapshot, they transmit the data of the j-th snapshot to their parent nodes in the CDG way.

After all the nodes in Dl (1 ≤ l ≤ L′) receive all the packets of the j-th snapshot from their

child-level, they send the packets of the j-th snapshot to their parent nodes in the CDG way,

i.e. every node s ∈ Dl combines its packet of the j-th snapshot with the received packets of

the j-th snapshot, and sends the M new packets to its parent node. After all the packets of

the j-th snapshot have been transmitted successfully, the nodes in Dl immediately transmit

the packets of the (j + 1)-th snapshot to their parent nodes in the CDG way, if they have

received all the packets of the (j + 1)-th snapshot from their child-level.

Step 3: After the nodes at each connector level receive all the data packets of the j-th

snapshot, they transmit the data of the j-th snapshot to their parent nodes in the CDG way.

After all the nodes in Cl (0 ≤ l ≤ L′ − 1) receive all the packets of the j-th snapshot from

their child-level, they send the packets of the j-th snapshot to their parent nodes in the

CDG way, i.e. every node s ∈ Cl combines its packet of the j-th snapshot with the received
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packets of the j-th snapshot, and sends the M new packets to its parent node. After all the

packets of the j-th snapshot have been transmitted successfully, the nodes in Cl immediately

transmit the packets of the (j+1)-th snapshot in the CDG way if they have received all the

packets of the (j + 1)-th snapshot from their child-level.

Step 4: The sink restores the data of a snapshot in the CDG way after it receives all the

packets of this snapshot.

Steps 1-4 provide the general frame of our pipeline scheduling scheme. Now, we discuss

how to prevent radio confliction and channel interference in Steps 1-3. If two or more nodes

have the same parent node, we call them sibling nodes. In Steps 1-3, radio confliction may

arise if two or more sibling nodes send data to their parent node simultaneously even over

different orthogonal channels. This is because every sensor only has one radio dedicated to

receiving data. Suppose that there are at most ∆e (respectively, ∆d and ∆c) nodes in De

(respectively, Dl (1 ≤ l ≤ L′) and Cl (1 ≤ l ≤ L′ − 1)) which have the same parent node.

Usually, ∆e < ∆(T ) except in one-hop WSNs, where any sensor is just one hop away from

the sink, ∆e = ∆(T ). Then, ∆d ≤ 4 and ∆c ≤ 11 (Note that |C0| ≤ 12.) (see Section

2.2.2). To avoid confliction, we divide the nodes in De (respectively, Dl (1 ≤ l ≤ L′) and

Cl (1 ≤ l ≤ L′ − 1)) into ∆e (respectively, ∆d and ∆c) subsets to guarantee that each

node belongs to one subset and no sibling nodes belong to the same subset. Then, when we

schedule the nodes of each level, we schedule these subsets in a certain order. For the nodes

in C0, we schedule them in a certain order, e.g. the nodes with small IDs are scheduled with

high priority.

Different from the multi-path scheduling algorithm, in which a sensor sends one packet

over a link in one time slot, we employ the CDG way, where a sensor sends M packets for

a snapshot. We now introduce the concept of a Super Time Slot (STS) which consists of

M time slots. In a STS, a sensor can send M packets over a channel for a snapshot. For

the links working simultaneously, we assign channels and STSs in the similar way of the

multi-path scheduling algorithm.
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2.4.4 Capacity Analysis

In this subsection, we analyze the achievable network capacity of the proposed pipeline

scheduling algorithm. For completeness, we also analyze the achievable network capacity of

the pipeline scheduling algorithm in single-radio multi-channel WSNs (a little modification

is needed since each sensor has one radio now) at the end of this subsection.

Lemma 2.4.1 indicates the inductivity (defined in Section 2.2.3) of the corresponding

conflicting graph of the links scheduled simultaneously in the pipeline scheduling algorithm,

which is used to obtain the upper bound of the number of the necessary channels to schedule

these links.

Lemma 2.4.1 Suppose that A is the set of the links in T scheduled simultaneously in the

pipeline scheduling algorithm, and ℜ(A) is the corresponding conflicting graph of A, then,

δ∗(ℜ(A)) ≤ 2βρ+2 − 1, where δ∗(ℜ(A)) is the inductivity of ℜ(A) and βρ+2 is the number of

the dominators within a half-disk of radius ρ+ 2.

Proof: Since the sibling nodes at every level have been divided into different subsets

and different subsets are scheduled in a certain order, there is no radio confliction among

the links in A. Furthermore, for any link in A, either the tail or the head of this link is

a dominator according to the building process of the routing tree T . Suppose that A′ is a

subset of A and e is the link in A′ whose tail, denoted by t(e), or head, denoted by h(e), is

the bottommost dominator among all the dominators in A′. Then, we prove the number of

the links interfered with e, i.e. δ(ℜ(A′)), is at most 2βρ+2 − 1 case by case as follows.

Case 1: t(e) is a dominator. In this case, assume that e′ is another link in A′ interfered

with e and t(e′) is a dominator. Since t(e) is the bottommost dominator, the necessary

condition for e and e′ to be interfering links is that t(e′) locates at the upper half-disk

centered at t(e) with radius ρ + 1. On the other hand, if h(e′) is a dominator, then the

necessary condition for e and e′ to be interfering links is that h(e′) locates at the upper

half-disk centered at t(e) with radius ρ+2. By Lemma 2.2.1, the number of the dominators

within a half-disk of radius ρ+ 2 is at most βρ+2. Since every dominator in A′ is associated
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with at most two links, there are at most 2βρ+2 links within the half-disk of radius ρ + 2

centered at t(e). Therefore, δ(ℜ(A′)) ≤ 2βρ+2 − 1, where minus 1 means e is also in the

half-disk. As a result, δ∗(ℜ(A)) = max
A′⊆A

δ(ℜ(A′)) ≤ 2βρ+2 − 1.

Case 2: h(e) is a dominator. By the similar method as in Case 1, it can be proven that

the conclusion also holds in this case. 2

Based on the result of Lemma 2.4.1, we can determine the number of the STSs used to

schedule all the links in A as follows.

Lemma 2.4.2 For the links of set A in Lemma 2.4.1, we can use
⌈
2βρ+2

H

⌉
STSs to schedule

them without channel interference.

Proof: By Lemma 2.4.1, δ∗(ℜ(A)) ≤ 2βρ+2 − 1. By Lemma 2.2.2, we can use 1 +

δ∗(ℜ(A)) ≤ 2βρ+2 channels to schedule all the links in A in one STS simultaneously. Now,

we have H channels, which implies we can schedule all the links in A in
⌈
2βρ+2

H

⌉
STSs of H

links in each STS. 2

From the pipeline scheduling algorithm we know that the transport of subsequent snap-

shots has some time overlap with the transport of preceding snapshots. Therefore, we first

analyze the time used to collect the packets of the first snapshot since it is the base of the

pipeline, and then analyze the achievable capacity of the entire pipeline.

Theorem 2.4.1 The number of the time slots used to collect the packets of the first snapshot

by the pipeline scheduling algorithm is at most M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1).

Proof: In Step 1 of the pipeline scheduling algorithm, we divide the nodes in De into ∆e

subsets and schedule them in a certain order. By Lemma 2.4.2, each scheduling uses at most⌈
2βρ+2

H

⌉
STSs. Consequently, Step 1 needs at most ∆e

⌈
2βρ+2

H

⌉
STSs to finish the scheduling

for the first snapshot. In Step 2 (respectively, Step 3), we divide the nodes in Dl (1 ≤ l ≤ L′)

(respectively, Cl (1 ≤ l ≤ L′ − 1)) into ∆d (respectively, ∆c) subsets and schedule them in a

certain order. Since, ∆d ≤ 4 (respectively, ∆c ≤ 11), Step 2 (respectively, Step 3) needs at

most 4L′
⌈
2βρ+2

H

⌉
(respectively, 11(L′ − 1)

⌈
2βρ+2

H

⌉
) STSs to finish the scheduling for the first
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snapshot. Furthermore, it needs at most 12
⌈
2βρ+2

H

⌉
STSs for C0 to transmit the packets for

the first snapshot to the sink. In summary, the total number of the STSs used for the first

snapshot is at most

∆e

⌈
2βρ+2

H

⌉
+ 4L′

⌈
2βρ+2

H

⌉
+ 11(L′ − 1)

⌈
2βρ+2

H

⌉
+ 12

⌈
2βρ+2

H

⌉
(2.7)

=

⌈
2βρ+2

H

⌉
(∆e + 4L′ + 11L′ − 11 + 12) (2.8)

=

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1). (2.9)

Since every STS has M time slots, then the number of the time slots used for the first

snapshot is at most M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1). 2

On the basis of the result in Theorem 2.4.1, we obtain the time slots used to collect

all the packets of N continuous snapshots for the pipeline scheduling algorithm as shown in

Theorem 2.4.2.

Theorem 2.4.2 The time slots used for the pipeline scheduling algorithm to collect N

continuous snapshots are at most M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 12N − 11) when ∆e ≤ 12 or

M
⌈
2βρ+2

H

⌉
(N∆e + 15L′ + 1) when ∆e > 12.

Proof: From the proof of Theorem 2.4.1 we know, it takes the nodes in De (respectively,

Dl (1 ≤ l ≤ L′), Cl (1 ≤ l ≤ L′ − 1) and C0) at most ∆e

⌈
2βρ+2

H

⌉
(respectively, 4

⌈
2βρ+2

H

⌉
,

11
⌈
2βρ+2

H

⌉
and 12

⌈
2βρ+2

H

⌉
) STSs to transmit packets for a snapshot. In order to obtain the

upper bound of the number of the time slots used, we assume the STSs used by nodes in

De (respectively, Dl (1 ≤ l ≤ L′), Cl (1 ≤ l ≤ L′ − 1) and C0) are ∆e

⌈
2βρ+2

H

⌉
(respectively,

4
⌈
2βρ+2

H

⌉
, 11

⌈
2βρ+2

H

⌉
and 12

⌈
2βρ+2

H

⌉
) in the following proof. Then, we prove Theorem 2.4.2

by cases.

Case 1: ∆e ≤ 4. For clearness, we use the transmission of two snapshots S-1 and

S-2 shown in Figure 2.6(a) as an example for explanation. In Figure 2.6(a), the vertical

axis denotes the levels in the routing tree T and the horizontal axis denotes time slots.

te = ∆e

⌈
2βρ+2

H

⌉
, td = 4

⌈
2βρ+2

H

⌉
, tc = 11

⌈
2βρ+2

H

⌉
, and t0 = 12

⌈
2βρ+2

H

⌉
, respectively. From
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Figure 2.6 Data transport in (a) Case 1 and (b) Case 4.

Figure 2.6(a) we know, the nodes at the De-level begin to send packets of S-2 immediately

after they send out the packets of S-1. Since ∆e ≤ 4, after the nodes at the DL′-level receive

all the packets of S-2, they may still be busy with the transmission of the packets of S-1.

Nevertheless, from the CL′−1-level to the D1-level, the pipeline can be utilized in a maximum

degree, which implies whatever the packets of S-1 or the packets of S-2, they can be sent

immediately. After the packets of S-2 are sent from the nodes at the D0-level to the nodes in

C0, they may have to wait for a while at the nodes of the C0-level, since the transmission for

the packets of S-1 may last for as long as 12
⌈
2βρ+2

H

⌉
STSs. This implies the sink will receive

all the packets of S-2 in 12
⌈
2βρ+2

H

⌉
STSs after it receives all the packets of S-1. According

to the description of the pipeline scheduling algorithm, the subsequent snapshots will be

transmitted in the same way, which implies the sink will receive all the packets of a snapshot

within at most every 12
⌈
2βρ+2

H

⌉
STSs, after it receives the packets of the first snapshot which

takes at most M
⌈
2βρ+2

H

⌉
(∆e+15L′+1) time slots by Theorem 2.4.1. As a result, the number

of time slots used to collect the packets of N continuous snapshots by the pipeline scheduling
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algorithm is at most

M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1) + (N − 1) · 12M

⌈
2βρ+2

H

⌉
(2.10)

= M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1 + 12N − 12) (2.11)

= M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 12N − 11). (2.12)

Case 2: 4 < ∆e ≤ 11 and Case 3: ∆e = 12. These two cases can be proven by the

similar method used in Case 1. The number of the time slots used to collect the packets of

N continuous snapshots is also at most M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 12N − 11).

Case 4: ∆e > 12. We use the data transmission of two snapshots shown in Figure

2.6(b) as an example to show the proof. The notations in Figure 2.6(b) are the same as

those in Figure 2.6(a). Since ∆e > 12, the pipeline can be utilized in a maximum degree at

the DL′-level and continue to the C0-level. Then, the sink can receive all the packets of a

subsequent snapshot every ∆e

⌈
2βρ+2

H

⌉
STSs after it receives the packets of the first snapshot.

Therefore, the number of the time slots used to collect the packets of N continuous snapshots

is at most

M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1) + (N − 1) ·∆eM

⌈
2βρ+2

H

⌉
(2.13)

= M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1 + (N − 1)∆e) (2.14)

= M

⌈
2βρ+2

H

⌉
(N∆e + 15L′ + 1). (2.15)

As a conclusion, Theorem 2.4.2 is true. 2

Theorem 2.4.2 shows the number of the time slots used to collect N continuous snap-

shots. This prepares us to derive the achievable capacity of the pipeline scheduling algorithm.

The lower bound of the achievable continuous data collection capacity in a long-run is given

in Theorem 2.4.3.

Theorem 2.4.3 For a long-run continuous data collection, the lower bound of the achievable
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asymptotic network capacity of the pipeline scheduling algorithm is nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ when

∆e ≤ 12 or nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12, where c3 =

8π√
3
+π+2 and c4 =

8π√
3
+2π+6.

Proof: We prove Theorem 2.4.3 in two cases.

Case 1: ∆e ≤ 12. In this case the number of the time slots used to collect N continuous

snapshots is at mostM
⌈
2βρ+2

H

⌉
(∆e+15L′+12N−11) as proven in Theorem 2.4.2. Therefore,

the lower bound of the capacity of the pipeline scheduling algorithm is

N · nb

tM
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 12N − 11)

(2.16)

=
nb

tM
⌈
2βρ+2

H

⌉
(∆e

N
+ 15L′

N
+ 12− 11

N
)

(2.17)

=
nW

M
⌈
2βρ+2

H

⌉
(∆e

N
+ 15L′

N
+ 12− 11

N
)
. (2.18)

When N →∞, the above equation approaches to nW

12M
⌈
2βρ+2

H

⌉ . From Lemma 2.2.1, we have

2βρ+2 ≤ 2[
π√
3
(ρ+ 2)2 + (

π

2
+ 1)(ρ+ 2) + 1] (2.19)

=
2π√
3
ρ2 + (

8π√
3
+ π + 2)ρ+

8π√
3
+ 2π + 6 (2.20)

≈ 3.63ρ2 + c3ρ+ c4, (2.21)

where c3 =
8π√
3
+ π + 2 and c4 =

8π√
3
+ 2π + 6. This implies the asymptotic network capacity

in this case is nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ .

Case 2: ∆e > 12. The lower bound of the asymptotic network capacity in this case is

nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ , which can be proven similarly as in Case 1. 2

In a dual-radio multi-channel WSN, since every node has two radios, the upper bound

of the network capacity is 2W . This is because the sink can receive at most two packets

in one time slot. From Theorem 2.4.3, when ∆e ≤ 12 and M ≤ n
24⌈(3.63ρ2+c3ρ+c4)/H⌉ , or

∆e > 12 and M ≤ n
2∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ , the achievable continuous data collection capacity of

the pipeline scheduling algorithm is greater than 2W . By checking the reasons carefully, we
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find the pipeline scheduling and CDG are responsible for this improvement. By forming a

CDG based pipeline, the time overlap of gathering multiple continuous snapshots conserves

a lot of time, which accelerates the data collection process directly and significantly. These

two reasons are also validated by the simulation results in Section 2.5.

Furthermore, we find that the pipeline scheduling algorithm is more effective for large

scale WSNs, since large scale WSNs incur large size routing trees, which are more suitable for

pipeline. The pipeline scheduling algorithm is also more effective for a long time continuous

data collection, which can also be seen from Theorem 2.4.3.

For completeness, we also analyze the achievable network capacity of the pipeline

scheduling algorithm in single-radio multi-channel WSNs. Now, since each sensor node has

one radio, we make some modifications of the pipeline scheduling algorithm as follows. For

the nodes in De, Dl (1 ≤ l ≤ L′), and Cl (1 ≤ l ≤ L′−1), instead of transmitting the packets

of the (j + 1)-th (j ≥ 1) snapshot immediately after transmitting the packets of the j-th

snapshot, they wait until their parent nodes have transmitted all the data packets of the j-th

snapshot successfully (Note that the transmission of the data from the first snapshot does

not have the waiting process.). For convenience, we refer to the modified pipeline scheduling

algorithm as the single-radio-based pipeline scheduling algorithm. Then, by the similar proof

technique shown in Theorem 2.4.1, the following lemma can be proven.

Lemma 2.4.3 The number of the time slots used to collect the packets of the first snapshot

by the single-radio-based pipeline scheduling algorithm for single-radio multi-channel WSNs

is at most M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1).

On the basis of Lemma 2.4.3, the number of time slots used to collect all the packets of

N continuous snapshots by the single-radio-based pipeline scheduling algorithm is shown in

Theorem 2.4.4.

Theorem 2.4.4 The time slots used by the single-radio-based pipeline scheduling algorith-

m to collect N continuous snapshots for single-radio multi-channel WSNs are at most
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M
⌈
2βρ+2

H

⌉
(∆e + 15L′ + 16N − 15) when ∆e ≤ 12 or M

⌈
2βρ+2

H

⌉
(N∆e + 15L′ + 4N − 3)

when ∆e > 12.

Proof: Similar as the analysis in the proof of Theorem 2.4.2, when ∆e ≤ 12, the sink

will receive all the packets of a snapshot within every 12
⌈
2βρ+2

H

⌉
+ 4

⌈
2βρ+2

H

⌉
= 16

⌈
2βρ+2

H

⌉
STSs after it receives the packets of the first snapshot, which implies the number of time

slots used to collect the packets of N continuous snapshots by the single-radio-based pipeline

scheduling algorithm is at most

M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1) + (N − 1) · 16

⌈
2βρ+2

H

⌉
(2.22)

= M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 16N − 15). (2.23)

Similarly, when when ∆e > 12, the sink will receive all the packets of a snapshot within

every ∆e

⌈
2βρ+2

H

⌉
+ 4

⌈
2βρ+2

H

⌉
= (∆e + 4)

⌈
2βρ+2

H

⌉
STSs after it receives the packets of the

first snapshot, which implies the number of time slots used to collect all the packets of N

continuous snapshots by the single-radio-based pipeline scheduling algorithm is at most

M

⌈
2βρ+2

H

⌉
(∆e + 15L′ + 1) + (N − 1) · (∆e + 4)

⌈
2βρ+2

H

⌉
(2.24)

= M

⌈
2βρ+2

H

⌉
(N∆e + 15L′ + 4N − 3). (2.25)

2

Therefore, based on Theorem 2.4.4, the lower bound of the achievable continuous data

collection capacity of the single-radio-based pipeline scheduling algorithm in a long-run is

shown in Theorem 2.4.5.

Theorem 2.4.5 For a long-run continuous data collection, the lower bound of the achievable

asymptotic network capacity of the single-radio-based pipeline scheduling algorithm for single-

radio multi-channel WSNs is nW
16M⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e ≤ 12 or nW

M(∆e+4)⌈(3.63ρ2+c3ρ+c4)/H⌉

when ∆e > 12, where c3 =
8π√
3
+ π + 2 and c4 =

8π√
3
+ 2π + 6.
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Table 2.2 Comparison of the multi-path scheduling algorithm, the pipeline scheduling algo-
rithm, and the best existing works (SDC = Snapshot Data Collection, CDC = Continuous
Data Collection, IM = Interference Model, PrIM = Protocol Interference Model, PyIM =
Physical Interference Model, RWN = Random Wireless Networks, AWN = Arbitrary Wire-
less Networks).

Algorithm name SDC/CDC IM Υ

Zhu’s algorithm [35] SDC PrIM Θ(W )

Chen’s algorithm [4] SDC PrIM Θ(W )

Luo’s algorithm (CDG) [1] SDC PrIM/PhIM Θ(W )

Chen’s Algorithm [37] SDC/CDC PhIM Ω(W )

Multi-path scheduling SDC PrIM Ω( W
2⌈(1.81ρ2+c1ρ+c2)/H⌉) = Ω(W )

Pipeline scheduling CDC PrIM Ω( nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉) = Ω( nW

12M
);

or Ω( nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉) = Ω( nW

M∆e
);

Proof: By the similar technique in the proof of Theorem 2.4.3 and based on Theorem

2.4.4, this theorem holds. 2

From Theorem 2.4.3 and Theorem 2.4.4, the capacity improvement ratio of the pipeline

scheduling algorithm for multi-radio WSNs compared with the single-radio-based pipeline

scheduling algorithm for single-radio WSNs is 4
3
when ∆e ≤ 12, or ∆e+4

∆e
when ∆e > 12.

In summary, we compare the achievable network capacity of the proposed algorithms

with the most recently published algorithms for data collection, and the result is shown in

Table 2.2.

2.5 Simulations and Results Analysis

We conducted simulations to verify the performances of the proposed algorithms through

implementing them with the C language. For all the simulations, we assume every WSN has

one sink, and all the sensor nodes of each WSN are randomly distributed in a square area

and the communication radius of each node is normalized to one. Suppose the network MAC

layer works with TDMA, i.e. the network time can be slotted. Every node produces one data

packet in a snapshot and the size of a packet is normalized to one. Every available channel
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has the same bandwidth normalized to one. For any two different channels, we suppose they

are orthogonal, i.e. the communications initialized over any two channels have no wireless

interference. Furthermore, we assume a packet can be transmitted over a channel within a

time slot.

The compared algorithms are BFS [4], SLR [54] and CDG [1]. BFS is a snapshot data

collection algorithm based on a breadth first search tree and the scheduling is carried out path

by path [4]. BFS is specifically proposed for single-radio single-channel WSNs. We extend

it to the dual-radio multi-channel scenario in our simulations for fairness. SLR is a straight-

line routing method for multi-unicast communication in multi-channel wireless networks with

channel switching constraints [54]. For data collection, SLR works by setting every sensor

having a unicast communication with the sink simultaneously. We also remove the channel

switching constraints in SLR for fairness. Furthermore, we also implement the pipelined

versions of BFS and SLR (i.e. add the pipeline technique to the data transmission in BFS

and SLR), referred to as BFS-P and SLR-P respectively, when evaluate the performance of

the proposed pipeline scheduling algorithm. The basic idea of CDG is discussed in Section

2.4. The proposed multi-path scheduling algorithm for snapshot data collection is referred

to as MPS and the proposed pipeline scheduling algorithm for continuous data collection is

referred to as PS in the following discussions.

In the remainder of this section, we investigate the achievable capacities of MPS and

PS through three groups of simulations respectively. In the simulations, H is the number

of the available channels, ρ is the interference radius, n is the number of the sensors in a

WSN, AR refers to the square area where a WSN is deployed, and N is the number of the

snapshots in a continuous data collection task.

2.5.1 Performance of MPS

The snapshot data collection capacities of MPS, BFS, and SLR in different network

scenarios are shown in Figure 2.7. In Figure 2.7(a), the capacity of every algorithm increases

when the number of the available channels increases. This is because more available channels
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Figure 2.7 Snapshot data collection capacity (packets/time slot).
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enable more concurrent transmissions, which accelerates the data collection process resulting

in a higher capacity. After the number of the available channels arrives at 4, the capacities

of BFS and SLR almost maintain the same level. This is because 4 channels are enough

to prevent channel interference. However, radio confliction becomes the main barrier of

a higher capacity at this time. MPS achieves a higher capacity compared with BFS and

SLR. This is because MPS simultaneously schedules all the paths without radio confliction

(except at the sink). Since radio confliction on a single path can be avoided easily, MPS

can simultaneously schedule all the links without radio confliction on multiple paths, which

implies MPS can make use of channels in a maximum degree. Whereas, BFS just schedules

links without radio confliction on one path every time and SLR schedules all the transmission

links simultaneously, which leads to serious radio confliction. On average, MPS achieves

77.49% and 41.95% more capacity than BFS and SLR, respectively.

The effect of the interference radius on the capacity is shown in Figure 2.7(b). With

the increase of the interference radius, more transmission interference occurs, which leads

to the decrease of the capacities of all the algorithms. Nevertheless, MPS still achieves the

largest capacity since it simultaneously schedules multiple paths without radio confliction,

which suggests a nice tradeoff between BFS and SLR. On average, MPS achieves 67.45%

and 37.37% more capacity than BFS and SLR, respectively.

The effect of the number of the sensors on the capacity is shown in Figure 2.7(c). We

can see that the number of the sensors in a network has a little impact on the capacities

of MPS and SLR and almost no impact on the capacity of BFS. There are two reasons for

this result. First, BFS is a single-path scheduling algorithm. Whatever the number of the

sensors is, it schedules only one path every time. Second, the number of the channels is fixed

to 2 in all of these three algorithms. This implies that whatever the number of the sensors is,

they can simultaneously schedule at most two interfering links without radio confliction. On

average, MPS achieves 83.51% and 32.87% more capacity than BFS and SLR, respectively.
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Figure 2.8 Continuous data collection capacity (packets/time slot) in different scenarios
(AR=50× 50, N=1000, M=100).



47

2.5.2 Performance of PS

The continuous data collection capacities of PS, CDG, BFS-P, BFS, SLR-P, and SLR

in different network scenarios are shown in Figure 2.8. Figure 2.8(a) (respectively, Figure

2.8(b) and Figure 2.8(c)) and Figure 2.8(d) (respectively, Figure 2.8(e) and Figure 2.8(f))

are same except we do not show the achievable capacity of PS in Figure 2.8(d) (respectively,

Figure 2.8(e) and Figure 2.8(f)). This is mainly for conveniently and clearly checking the

achievable capacities of CDG, BFS-P, BFS, SLR-P, and SLR.

Figure 2.8(a) and (d) reflect the effect of the number of the available channels on the

achievable continuous data collection capacity. As explained before, the capacities of all the

algorithms increase as more and more channels are available. This is because more channels

can prevent channel interferences among concurrent transmission links. PS has a much higher

capacity compared with the other five algorithms. This is because: by forming a CDG based

pipeline, the time overlap of gathering multiple continuous snapshots conserves a lot of time,

which accelerates the data collection process directly and significantly in PS. Furthermore,

PS collects data in the CDG way, which can reduce the overall data transmission times. This

also explains why CDG has a higher capacity compared with BFS and SLR. From Figure

2.8(d), we can also see that BFS-P and SLR-R have higher network capacities than BFS

and SLR, respectively. This is because the use of the pipeline technique can accelerate the

data collection process. On average, PS achieves a capacity of 8.22 times of that of CDG,

17.1 times of that of BFS-P, 21.94 times of that of BFS, 13.17 times of that of SLR-P, and

18.39 times of that of SLR, respectively.

The effect of the interference radius on the capacity is shown in Figure 2.8(b) and (e).

With the increase of the interference radius, a transmission link will interfere with more and

more other transmission links, which leads to the decrease of capacity whatever algorithm

it is. PS has the highest capacity among all the algorithms since it works with pipeline and

CDG. On average, PS achieves a capacity of 7.31 times of that of CDG, 15.9 times of that

of BFS-P, 20.43 times of that of BFS, 12.53 times of that of SLR-P, and 16.08 times of that

of SLR, respectively.
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Figure 2.9 The impacts of N and M to the capacities (packets/time slot) of PS and CDG
(ρ=2, H=3, n=5000, AR=50× 50).

The effect of the number of the sensors on the capacity is shown in Figure 2.8(c) and

(f). The increase of the number of the sensors has a little impact on BFS and SLR, and the

reasons are similar to those explained in the previous subsection. Whereas, the capacities of

PS and CDG have some improvement with more sensors in a WSN. This is because PS and

CDG are more effective for large scale WSNs. On average, PS achieves a capacity of 8.77

times of that of CDG, 15.48 times of that of BFS-P, 23.15 times of that of BFS, 12.49 times

of that of SLR-P, and 18.06 times of that of SLR, respectively.

2.5.3 Impacts of N and M

In this subsection, we investigate the impacts of the number of the snapshots and the

value of M to the capacities of PS and CDG. As shown in Figure 2.9(a), with the increase

of N in a continuous data collection task, PS achieves about 87.54% more capacity. This is

straightforward from the analysis in Section 2.4. Since PS employs the pipeline technology,

the transmissions of continuous snapshots are overlapped, which can significantly reduce

the time used to collect all the snapshots data. With more snapshots in a continuous data

collection task, the capacity of PS approaches closer and closer to its theoretical asymptotic

capacity. For CDG, the number of the snapshots has little impact on its capacity.
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Since the performance of CDG is depends on the value of M , the capacities of both

PS and CDG decrease about 80% with the increase of the value of M as shown in Figure

2.9(b). This is because a bigger M implies more packets have to be transmitted for every

sensor and longer transmission time for each snapshot is resulted. Nevertheless, considering

that the value of M is usually much less than n, PS can still achieve a high capacity.

2.6 Conclusion

Motivated by the fact that there exist no works dedicated studying the capacity of

continuous data collection for WSNs under the protocol interference model, we investigate

this problem in dual-radio multi-channel WSNs in this part. We first propose a multi-path

scheduling algorithm for the snapshot data collection problem and prove that its achievable

network capacity is at least W
2⌈(1.81ρ2+c1ρ+c2)/H⌉ , where W is the channel bandwidth, H is the

number of available orthogonal channels, ρ is the ratio of the interference radius over the

transmission radius of a node, c1 = 2π√
3
+ π

2
+ 1, and c2 = π√

3
+ π

2
+ 2. For the continuous

data collection problem, we find that pipeline with the existing snapshot data collection

methods cannot actually improve the network capacity. We explain the reason of this, and

then propose a novel continuous data collection method for dual-radio multi-channel WSNs.

This method speeds up the data collection process significantly. Theoretical analysis of this

method shows that the achievable asymptotic network capacity is nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ when

∆e ≤ 12 or nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12, where n is the number of the sensors,

M is a constant value and usually M ≪ n, ∆e is the maximum number of the leaf nodes

having a same parent in the routing tree (i.e. data collection tree), c3 = 8π√
3
+ π + 2, and

c4 = 8π√
3
+ 2π + 6. Furthermore, for completeness, we also analyze the performance of the

proposed pipeline scheduling algorithm in single-radio multi-channel WSNs, which shows

that for a long-run continuous data collection, the lower bound of the achievable asymptotic

network capacity is nW
16M⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e ≤ 12 or nW

M(∆e+4)⌈(3.63ρ2+c3ρ+c4)/H⌉ when

∆e > 12. Simulation results indicate that the proposed algorithms improve the network

capacity significantly compared with existing works.
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The future work of this part involves the following directions. First, in this work we

study the snapshot data collection and continuous data collection problems for single/dual-

radio multi-channel WSNs. We will extend this work to general multi-radio multi-channel

WSNs to study the achievable capacities of snapshot data collection and continuous data

collection. Second, the WSNs considered in this part are randomly deployed. We would

like to further investigate the snapshot data collection/continuous data collection capacity

in arbitrary WSNs. Third, the parameter M is crucial for the performance of the pipeline

scheduling algorithm. Although the authors in [1] indicated that M = 3K ∼ 4K is usually

sufficient for CDG, where K is a value determined by the correlations of the data of a

snapshot and K ≪ n, we also would like to derive the function relation between M and

n for random WSNs, as well as arbitrary WSNs, in the future work. Finally, to study the

snapshot data collection and continuous data collection capacities for arbitrary WSNs under

the general physical interference model will be another future research direction.
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PART 3

SNAPSHOT AND CONTINUOUS DATA COLLECTION IN

PROBABILISTIC WIRELESS SENSOR NETWORKS

3.1 Introduction

As discussed in Part 1, after the seminal work [19], many works emerged to study

the network capacity issue under the protocol interference model [4][5] or/and the physical

interference model [13] for a variety of network scenarios, e.g. multicast capacity [12], unicast

capacity [16], broadcast capacity [18][66], and snapshot data collection capacity [1][4]. All of

the above mentioned works are based on the deterministic network model, where any pair of

nodes in a network is either connected or disconnected. If two nodes are connected, i.e. there

is a deterministic link between them, then a successful data transmission can be guaranteed as

long as there is no collision. For the WSNs considered under the deterministic network model,

we call them deterministic WSNs. However, in real applications, this deterministic network

model assumption is too ideal and not practical due to the “transitional region phenomenon”

[74][75]. With the transitional region phenomenon, a large number of network links (more

than 90% [74]) become unreliable links, named lossy links [74]. Even without collisions, data

transmission over a lossy link is successfully conducted with a certain probability, rather than

being completely guaranteed. Therefore, a more practical network model for WSNs is the

probabilistic network model [74], in which data communication over a link is successful with

a certain probability rather than always successful or always failing. For convenience, the

WSNs considered under the probabilistic network model are called probabilistic WSNs.

Recently, many efforts have been spent on the data collection issue. In [35][4][5][59][42][76],

some tree-based data collection algorithms are proposed under the deterministic network

model. In [35], the authors designed a family of path scheduling algorithms for SDC. Later

on, the authors in [4][5][59] improved the path scheduling algorithms in [35] and implemented
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order-optimal data collection methods with higher achievable capacity. Unlike [35][4][5][59],

the authors in [42][76] studied the distributed data collection issue and designed an order-

optimal distributed data collection algorithm. In [36][38][77][39][37], some data collection

schemes are designed based on the cell-partition idea. Furthermore, by exploiting the geo-

metrical properties of network distribution, the achievable data collection capacity are also

analyzed in [36][38][77][39][37]. In [1], taking the advantage of the compressive data gath-

ering technique, the authors in [1] designed a tree-based data collection algorithm. By

analysis, they showed that the designed algorithm is order-optimal under both the PrIM

and the PhIM. Unfortunately, for the data collection capacity issue, all the above mentioned

existing works are based on the ideal deterministic network model rather than the more

realistic probabilistic network model. Actually, lossy links may degrade the achievable net-

work capacity of data collection since retransmissions may happen when transmit data, and

thus more interference and congestion may be induced, followed by lower data transmission

concurrency and efficiency. On the other hand, how these lossy links and retransmissions

affect the snapshot and continuous data collection capacities is still an open problem. This

motivates us to investigate the achievable network capacity of WSNs under the probabilistic

network model.

Specifically, in this part, we study the achievable SDC and CDC capacity for probabilis-

tic WSNs. Inspired by existing network partition methods [78], [34], we first investigate how

to partition a probabilistic WSN into cells and zones to improve the concurrency of the data

collection process. Subsequently, we propose two data collection schemes, the Cell-based

Path Scheduling (CPS) algorithm and the Zone-based Pipeline Scheduling (ZPS) algorithm

for SDC and CDC respectively. This work is dedicated to the data collection capacity issue

for probabilistic WSNs and the main contributions are as follows:

1. For a probabilistic WSN deployed in a square area, we first partition the network into

small cells. Then, we abstract each cell to a super node in the data collection tree

built for data collection. Based on the data collection tree, we design a novel Cell-

based Path Scheduling (CPS) algorithm for SDC. Theoretical analysis shows that the
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achievable network capacity of CPS is Ω( 1
5ω lnn

·W ) in the sense of the worst case, and

Ω( po
2ω
·W ) in the sense of expectation, where po is the promising transmission threshold

probability defined in Section 3.2, ω is a constant defined in Section 3.3, and W is the

data transmitting rate over a wireless channel, i.e. the channel bandwidth. Since the

upper bound of the SDC capacity is shown to be W [4][5], CPS successfully achieves

the order-optimal network capacity in the sense of expectation.

2. For the CDC problem in a probabilistic WSN, an intuitive idea is to employ a SDC

method in a pipeline manner. However, this idea can only improve network capacity

within a constant factor even in a deterministic WSN [5]. Therefore, by combining the

Compressive Data Gathering (CDG) technique (a data gathering technique by exploit-

ing the compressive sampling theory) [1] and the pipeline technique, we propose a novel

Zone-based Pipeline Scheduling (ZPS) algorithm for CDC in probabilistic WSNs. Tak-

ing the benefits brought by CDG and pipeline, ZPS improves the achievable network

capacity significantly. For collecting N continuous snapshots, we theoretically prove

that the asymptotic achievable network capacity of ZPS is (a) Ω( N
√
n

10ωM
√
logn lnn

·W ) if

N = O(
√

n/ log n) or Ω( n
20ω2M logn lnn

·W ) if N = Ω(
√
n/ log n) in the sense of the

worst case; and (b) Ω(
poN
√

n/ logn

4ωM
· W ) if N = O(

√
n/ log n) or Ω( pon

8ω2M logn
· W ) if

N = Ω(
√
n/ log n) in the sense of expectation, where n is the number of nodes in a

WSN and M is a parameter used in CDG and usually M ≪ n in large-scale WSNs.

Considering that the upper bound capacity is also W for CDC, this implies that the

achievable network capacity of ZPS is N
√
n√

logn lnn
or n

logn lnn
times better than the opti-

mal capacity of the snapshot data collection scenario in order in the sense of the worst

case, and
√
n/ log n or n/ log n times better than the optimal capacity of the snap-

shot data collection scenario in order in the sense of expectation, which are significant

improvements.

3. The simulation results also indicate that the proposed algorithms significantly improve

the network capacity compared with the existing works for probabilistic and determin-
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istic WSNs.

The rest of this part is organized as follows: Section 3.2 and Section 3.3 introduce the

probabilistic network model and the network partition strategy which is crucial for the pro-

posed data collection methods, respectively. The Cell-based Multi-Path Scheduling (CMPS)

algorithm for snapshot data collection in probabilistic WSNs is proposed and analyzed in

Section 3.4. Section 3.5 presents a novel Zone-based Pipeline Scheduling (ZPS) scheme

for continuous data collection and its theoretical achievable asymptotic network capacity is

shown. The simulations to validate the proposed algorithms are conducted in Section 3.6

and we conclude this part in Section 3.7.

3.2 Network Model

In this section, we describe the network model and assumptions. For the frequently

used notations, we list them in Table 3.1 for convenience of referencing.

In this part, we consider a WSN consisting of n nodes, denoted by s1, s2, · · · , sn respec-

tively, and one sink (base station) deployed in a square plane with area A = cn (i.e. the

node density of the network is 1/c), where c is a constant. Furthermore, we assume the

distribution of all the nodes is i.i.d. (independent and identically distributed) and without

loss of generality, the sink is located at the top-right corner of the square1. At each time

interval, every node generates a data packet with size B bits, and transmits its data to the

sink via a multi-hop way over a common wireless channel with bandwidth W bits/second,

i.e. the data transmitting rate of the common channel is W . We further assume the time is

slotted into time slots with each of length to = B/W seconds.

During the data collection process, all the nodes in the network transmit data with

an identical power P . Therefore, when node si transmits a packet to node sj, the SINR

1Note that it is same with the situation when the sink is located at somewhere of the network, and we
divide the network into four parts by a vertical line and a horizontal line, and consider each part individually.
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Table 3.1 Notations in this part.

Parameter Value

n the number of sensor nodes
si a sensor node
A the size of the network deploying area
c, ci, N0 constants
ηi, µ

z
i constants

B the size of a data packet
W the bandwidth of the wireless channel
to a time slot
P the working power of sensor nodes
Λ(si, sj) the SINR value at sj associated with si
α the path-loss exponent
Pr(si, sj) the data transmission success probability

from si to sj
po the promising transmission threshold probability
~ the upper bound of retransmissions for a

data packet over a lossy link
l the length of a cell
m the number of cells in a row/column
κi,j a cell
χi,j the number of sensor nodes within cell κi,j

Si,j the Compatible Transmission Cell Set (CTCS)
containing cell κi,j

ω, r constants, see Theorem 3.3.1
oi,j a compatible zone
R = ωl the length of a compatible zone
sui,j the super node corresponding to cell κi,j

T the data collection tree
Si a segment
Li

j the j-th level in segment Si

tp the maximum super time slots consumed by a
segment for transmitting one snapshot
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(Signal-to-Interference-and-Noise-Ratio) associated with si at sj is defined as

Λ(si, sj) =
P · ∥si − sj∥−α

N0 +
∑

sk∈S,sk ̸=si

P · ∥sk − sj∥−α , (3.1)

where ∥si − sj∥ is the Euclidean distance between si and sj, α is the path-loss exponent

and usually α ∈ (2, 4), N0 > 0 is a constant representing the background noise, and S is

the set of all the transmitters that transmit data simultaneously with si. Traditionally, in

a deterministic network model, people assumed that if the SINR value at a node is greater

than or equal to a threshold value, the packet can be received successfully. However, in real

application environments, due to the existence of plenty of lossy links, this deterministic

network model is too ideal. To be more practical and realistic, instead of taking the deter-

ministic network model, we define a probabilistic network model, where each link is associated

with a success probability which indicates the probability that a successful data transmission

is conducted over this link. Based on the empirical literatures [75], we define the success

probability associated with si and sj as

Pr(si, sj) = (1− η1 · e−η2·Λ(si,sj))η3 , (3.2)

where η1, η2 and η3 > 1 are positive constants. Clearly, when si transmits a data packet

to sj, until a successful transmission (i.e. sj successfully received the whole data packet),

the number of transmissions satisfies the geometric distribution with parameter Pr(si, sj).

Therefore, the expected transmission times from si to sj is 1/Pr(si, sj), i.e. this transmission

will cost 1/Pr(si, sj) time slots on average.

Actually, we do not want the success probability to be too low, which implies too

many transmission times, too much energy consumption and induced interference, as well as

low transmission concurrency. Therefore, we introduce a promising transmission threshold

probability po here. For any promising transmission, we require its success probability is no

less than the promising transmission threshold probability po, i.e. for any node pair si and
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sj, the transmission between si and sj can be conducted only if Pr(si, sj) ≥ po. Now, for any

qualified communication pair to transmit one data packet, the expected transmission time

is no more than to/po. For convenience, in the sense of expectation, we define a modified

time slot tm = to/po. Furthermore, we have Lemma ?? as follows, which indicates the upper

bound of consumed time slots by any qualified communication to successfully transmit a

data packet.

Lemma 3.2.1 In a interference-free communication environment, it is almost sure that the

number of consumed time slots of any qualified communication pair is upper bounded by

~ = arg min
1<z<1/(1−po)

2µz
1 lnn+ µz

2 = O(lnn),

where µz
1 = − 1

ln z(1−po)
and µz

2 = − logz(1−po)
po

(1−po)(z−1)
are some adjustable constant values

depending on z 2.

Proof: Please refer to the supplementary file. Suppose that the data transmission from

si to sj is a qualified communication, i.e. Pr(si, sj) ≥ po. Let X be a random variable that

denotes the number of consumed time slots for si to successfully transmit a data packet to

sj. Evidently, X is a geometrically distributed random variable with parameter Pr(si, sj).

Then, applying the Chernoff bound on X, we have

Pr(X ≥ ~) (3.3)

≤ min
0<ξ<− ln(1−po)

E[eξX ]

eξ~
(3.4)

= min
0<ξ<− ln(1−po)

poe
−ξ~

1− po
((1− (1− po)e

ξ)−1 − 1). (3.5)

2Here, n is a notation that represents a large number. We exploit n to represent the upper bound of
consumed time slots is mainly for the convenience of following derivations.
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Let ξ = − ln z(1− po), where 1 < z < 1/(1− po). Then, e
ξ = 1

z(1−po)
and

Pr(X ≥ ~) (3.6)

≤ min
1<z<1/(1−po)

po
(1− po)(z − 1)

eln z(1−po)~ (3.7)

= e−2 lnn (3.8)

=
1

n2
. (3.9)

∑
n>0

1
n2 = π2

6
is a particular case of the Riemann Zeta function which is upper bounded. Thus,

according to the Borel-Cantelli Lemma, Pr(X ≤ ~) ∼ 1, i.e. it is almost sure that a qualified

data communication can be successfully finished within ~ = arg min
1<z<1/(1−po)

2µz
1 lnn+µz

2 time

slots. 2

Similarly, in the sense of the worst case, we define another modified time slot tw = ~ · to

according to Lemma 3.2.1. In this part, we analyze the achievable snapshot and continuous

data collection capacities in the sense of expectation and the worst case, respectively.

We further formally define the achievable data collection capacity as the ratio between

the amount of data successfully collected by the sink and the time Γ used to collect these

data. For instance, in our probabilistic WSN model, to collect N continuous snapshots, the

achievable data collection capacity is defined as NnB/Γ, which is actually the data receiving

rate at the sink. Particularly, when N = 1, nB/Γ is the SDC capacity.

3.3 Network Partition

In this section, we explain the network partition method, which is essential for our

following data collection algorithm.

3.3.1 Cell-Based Network Partition

In the previous subsection, we assume the network is distributed over a square with

area size A = cn. Now, we partition the network into small square cells with edge length

l =
√
4c log n by a group of horizontal and vertical lines. The resulting network is shown
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Figure 3.1 Network partition.

in Figure 3.1. For convenience, we use m =
√
cn/
√
4c log n =

√
n/4 log n to denote the

number of cells in each column/row and further define m′ = m − 1. For each cell shown

in Figure 3.1, we assign each cell a pair of integer coordinates (i, j)(1 ≤ i, j ≤ m), and a

cell with coordinates (i, j) is denoted by κi,j. Clearly, the sink is located at the cell κm,m.

Based on the network partition method, and considering that the sink is located at the

top-right corner cell, we decide the possible communication modes for each cell (actually, for

the nodes in each cell)3 are upward transmission, rightward transmission, and up-rightward

transmission. Take cell κi,j as an example, when κi,j works on the upward (respectively,

rightward, up-rightward) transmission mode, it transmits its data to cell κi,j+1 (respectively,

κi+1,j, κi+1,j+1). For cell κi,j(1 ≤ i, j ≤ m), let the random variable χi,j denote the number

of nodes within it. Then, based on the above network partition, the following three lemmas

can be derived.

Lemma 3.3.1 The expected number of nodes E[χi,j], i.e. the average number of nodes, in

3Without confusion, we use cell and the nodes within this cell interchangeably.
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κi,j(1 ≤ i, j ≤ m) is 4 log n.

Proof: Since all the nodes are i.i.d., for any node, it is located at κi,j with probability

l2/A = 4 log n/n. Hence, the number of nodes within κi,j is a binomial random variable with

parameters (n, 4 log n/n). Thus, E[χi,j] = n · 4 log n/n = 4 log n. 2

Lemma 3.3.2 It is almost surely that no cell is empty, i.e. it is almost surely that Pr(there

exists at least one cell with no nodes) ∼= 0 for large n.

Proof: For any cell κi,j, let ei,j to denote the event that κi,j is empty, i.e. χi,j =

0. As explained in Lemma 3.3.1, χi,j satisfies the binomial distribution with parameters

(n, 4 log n/n). Then, applying the Chernoff bound and for any ξ < 0, we have

Pr(χi,j = 0) ≤ Pr(χi,j ≤ 1) ≤ min
ξ<0

Pr(eξχi,j ≥ eξ) (3.10)

≤ min
ξ<0

E[eξχi,j ]

eξ
(3.11)

= min
ξ<0

[1 + (eξ − 1) · 4 log n/n]n

eξ
(3.12)

≤ min
ξ<0

e4 logn(e
ξ−1)

eξ
(by 1 + x ≤ ex) (3.13)

= min
ξ<0

exp(4(eξ − 1) log n− ξ) (3.14)

≤ exp(−3 log n) (for large n) (3.15)

≤ 1

n3
. (3.16)
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Then, according to Boole’s inequality, we have the probability of the event that there exists

at least one cell with no nodes as follows.

Pr(there exists at least one cell with no nodes) (3.17)

= Pr(
∪

1≤i,j≤m

χi,j = 0) (3.18)

≤
∑

1≤i,j≤m

1

n3
(3.19)

=
n

4 log n
· 1
n3

(3.20)

=
1

4n2 log n
. (3.21)

Based on the Borel-Cantelli Lemma, we conclude that it is almost surely that no cell is

empty for large n. 2

Lemma 3.3.3 It is almost surely that no cell contains more than 10 log n nodes.

Proof: For any cell κi,j, applying the Chernoff bound and for any ξ > 0, we have

Pr(χi,j > 10 log n) ≤ min
ξ>0

E[eξχi,j ]

e10ξ logn
(3.22)

= min
ξ>0

[1 + (eξ − 1)4 log n/n]n

e10ξ logn
(3.23)

≤ min
ξ>0

exp(4(eξ − 1) log n− 10ξ log n) (3.24)

= min
ξ>0

exp((4eξ − 4− 10ξ) log n) (3.25)

≤ exp(−3 log n) (3.26)

≤ 1

n3
. (3.27)
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Similarly, according to Boole’s inequality, we obtain the probability that there exists at least

one cell contains more than 10 log n nodes as follows.

Pr(
∪

1≤i,j≤m

χi,j > 10 log n) ≤
∑

1≤i,j≤m

1

n3
(3.28)

=
1

4n2 log n
. (3.29)

Again, based on the Borel-Cantelli Lemma, we conclude that it is almost surely that no cell

contains more than 10 log n nodes for large n. 2

From Lemma 3.3.1 we know that the expected number of nodes within a cell is 4 log n.

Lemma 3.3.2 implies that for large WSN, i.e. large n, every cell will have some nodes within

it. Furthermore, from Lemma 3.3.3, the probability that a cell contains more than 10 log n

is zero when n → ∞. Hence, in the following discussion, we assume a cell contains 4 log n

nodes in the sense of expectation and 10 log n nodes in the sense of the worst case.

3.3.2 Zone-Based Network Partition

After partitioning the network into cells, we want to find which cells can carry out trans-

missions concurrently. Further, for these cells that can conduct transmissions concurrently,

we define them as a Compatible Transmission Cell Set (CTCS), denoted by S. Formally, we

define S = {κi1,j1, κi2,j2, · · · , κig,jg| (1) 1 ≤ ik, jk ≤ m for 1 ≤ k ≤ g; (2) κik,jk(1 ≤ k ≤ g)

can conduct transmissions concurrently; (3) For κik,jk(1 ≤ k ≤ g), suppose κ′
ik,jk is its desti-

nation, i.e. κik,jk transmits data to κ′
ik,jk, then when κik,jk(1 ≤ k ≤ g) conduct transmissions

simultaneously, min
1≤k≤g

Pr(κik,jk, κ
′
ik,jk) = min

1≤k≤g
min{Pr(su, s′u)|su is a node in κik,jk, and s′u is

a node/sink in κ′
ik,jk} ≥ po.}. Clearly, the CTCS is an equivalence relation defined on the

cells (i.e. CTCS is reflexive, symmetric, and transitive). Hence, a CTCS can be viewed as

an equivalence class.

In order to partition the cells of a WSN into equivalence classes, i.e. CTCSs, we assign

each cell κi,j(1 ≤ i, j ≤ m) a vector representation κ⃗i,j = ((i − 1) · l, (j − 1) · l) = κi,j.

We further introduce two vectors X⃗ = (R, 0) and Y⃗ = (0, R), where R = ω · l, ω ∈ Z.
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Figure 3.2 Equivalence classes (CTCS) and zones.

Then, for any cell κi,j(1 ≤ i, j ≤ m), we define the equivalence class, i.e. the CTCS,

containing κi,j as the set Si,j = {κ⃗i,j + a · X⃗ + b · Y⃗ |a, b ∈ Z}, i.e. Si,j = {κi+a·ω,j+b·ω|a,

b ∈ Z, 1 ≤ i + a · ω, j + b · ω ≤ m} (Here, we suppose Si,j is a CTCS. Later we will show

how to choose R to make it actually a CTCS.). Taking the WSN shown in Figure 3.1 as

an example, if we set ω = 3, i.e. R = 3l, then the network can be partitioned into 9

equivalence classes, i.e. CTCSs, Si,j(1 ≤ i, j ≤ 3) as shown in Figure 3.2. In Figure 3.2, the

CTCS containing κ1,1 is S1,1 = {κ1,1, κ4,1, κ7,1, κ1,4, κ4,4, κ7,4, κ1,7, κ4,7, κ7,7}. Now, we start

from the bottom-left corner of the WSN and partition the network into square zones, named

compatible zones, with edge length R = ω · l as shown in Figure 3.2 (where ω = 3). Similar

to denote a cell, for each compatible zone, we use oi,j(1 ≤ i, j ≤ ⌈m/ω⌉) to denote it, and

the bottom-left zone with the smallest i and j, i.e. o1,1. Clearly, oi,j = {κi′,j′|(i− 1) ·ω+1 ≤

i′ ≤ i · ω, (j − 1) · ω + 1 ≤ j′ ≤ j · ω}, i.e. within a compatible zone, none of the cells belong

to the same equivalence class. Furthermore, all the cells with the same relative position in

different compatible zones belong to the same equivalence, i.e. the same CTCS.

Now, to make any X⃗, Y⃗ -based cell set Si,j actually a CTCS, we need to decide the value
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of R. For large WSNs, the value of R is determined by the following Theorem 3.3.1.

Theorem 3.3.1 Let R = ω · l, ω = Θ( r+o(1)
l

), r = 2
√
2l 4, X⃗ = (R, 0), Y⃗ = (0, R), then the

set Si,j = {κ⃗i,j + a · X⃗ + b · Y⃗ |a, b ∈ Z} = {κi+a·ω,j+b·ω|a, b ∈ Z, 1 ≤ i+ a · ω, j + b · ω ≤ m}

is a CTCS.

Before proving Theorem 3.3.1, we prove Lemma 3.3.4 and Lemma 3.3.5 first. In the

following proof, assume all the cells in a CTCS Si,j conduct transmissions concurrently, and

all other cells keep quiet or receive data from some cells in Si,j.

Lemma 3.3.4 For each Si,j, ∀κi,j ∈ Si,j, suppose κ′
i,j is the destination cell of κi,j, then

Λ(κi,j, κ
′
i,j) = min{Λ(su, sv)|1 ≤ u, v ≤ n, su ∈ κi,j, sv ∈ κ′

i,j} ≥ P ·r−α

N0+P ·β·R−α , where r = 2
√
2l

and β is a positive constant.

Proof : For an arbitrary cell κi,j ∈ Si,j, suppose it is located in zone oi′,j′ as shown in

Figure 3.3(a). Let h⃗ = κ⃗i,j, then the compatible cells of κi,j in Si,j can be partitioned into

eight disjointed subsets, denoted by Ak (1 ≤ k ≤ 8), as shown in Figure 3.3(a), where each

Ak is defined as follows:

4r is a parameter in the derivation, which can be viewed as the maximum transmission range of a node.
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A1 ≡ {h⃗+ b · Y⃗ |b ∈ Z+} ≡ {κi,j+b·ω|b ∈ Z+}

A2 ≡ {h⃗+ a · X⃗|a ∈ Z+} ≡ {κi+a·ω,j|a ∈ Z+}

A3 ≡ {h⃗+ b · Y⃗ |b ∈ Z−} ≡ {κi,j+b·ω|b ∈ Z−}

A4 ≡ {h⃗+ a · X⃗|a ∈ Z−} ≡ {κi+a·ω,j|a ∈ Z−}

A5 ≡ {h⃗+ a · X⃗ + b · Y⃗ |a, b ∈ Z+}

≡ {κi+a·ω,j+b·ω|a, b ∈ Z+}

A6 ≡ {h⃗+ a · X⃗ + b · Y⃗ |a ∈ Z+, b ∈ Z−}

≡ {κi+a·ω,j+b·ω|a ∈ Z+, b ∈ Z−}

A7 ≡ {h⃗+ a · X⃗ + b · Y⃗ |a, b ∈ Z−}

≡ {κi+a·ω,j+b·ω|a, b ∈ Z−}

A8 ≡ {h⃗+ a · X⃗ + b · Y⃗ |a ∈ Z−, b ∈ Z+}

≡ {κi+a·ω,j+b·ω|a ∈ Z−, b ∈ Z+}

. (3.30)

Then, for any node (sender) su in κi,j and its corresponding receiver sv under any

communication mode, we consider the achievable Λ(su, sv). Evidently, ∥su − sv∥ ≤ r under

any communication mode. Furthermore, since P is fixed (P is fixed for every node, and
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meanwhile P has to be large enough to guarantee the communications of neighboring cells)

and N0 is a constant, the value of Λ(su, sv) depends on
∑
w ̸=u

∥sw − sv∥−α only. Considering

that Si,j \ {κi,j} has been partitioned into Ak(1 ≤ k ≤ 8), we consider sw ∈ Ak (1 ≤ k ≤ 8)

separately. In the following derivation, we use the facts that R ≥ 3l, and α ∈ (2, 4).

Case 1: sw ∈ A1. In this case, we have ∥sw − sv∥ ≥ b ·R− 2l, which implies

∑
sw∈A1

∥sw − sv∥−α (3.31)

≤
∑
b≥1

(b ·R− 2l)−α (3.32)

= R−α · [(1− 2l

R
)−α +

∑
b>1

(b− 2l

R
)−α] (3.33)

≤ R−α · [(1− 2

3
)−α +

∑
b>1

(b− 1)−2] (3.34)

= R−α · ((1
3
)−α +

π2

6
) (3.35)

= c1 ·R−α, (3.36)

where c1 = (1
3
)−α + π2

6
. Similarly, we can prove that for Case g (2 ≤ g ≤ 4, sw ∈

Ag),
∑

sw∈Ag

∥sw − sv∥−α ≤ cg ·R−α, where cg(2 ≤ g ≤ 4) are some positive constants.

Case 2: sw ∈ A5. In this case, the cells in A5 can be layered with respect to κi,j with the

δ-th layer having 2δ− 1 cells5 as shown in Figure 3.3(b). Furthermore, the distance between

sv and any node sw in the δ-th layer is greater than δR− 2l, i.e. ∥sw − sv∥ ≥ δR− 2l for sw

5This can be proven by mathematical induction.
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located in the cell at the δ-th layer. Hence

∑
sw∈A5

∥sw − sv∥−α (3.37)

≤
∑
δ≥1

(2δ − 1)(δR− 2l)−α (3.38)

= R−α
∑
δ≥1

(2δ − 1)(δ − 2l

R
)−α (3.39)

≤ R−α
∑
δ≥1

(2δ − 1)(δ − 2

3
)−α (3.40)

≤ R−α · [3α +
∑
δ≥2

(2δ − 1)(δ − 1)−α] (3.41)

= R−α · [3α +
∑
δ̂≥1

(2δ̂ + 1)δ̂−α] (3.42)

= R−α · [3α +
∑
δ̂≥1

(2δ̂1−α + δ̂−α)] (3.43)

= R−α · (3α + 2ζ(α− 1) + ζ(α)) = c5R
−α, (3.44)

where ζ(·) is the Riemann zeta function and ζ(α − 1) ≤ 1
α−2

, ζ(α) ≤ π2

6
. In the derivation,

δ̂ = δ − 1.

Similarly, we can prove that for Case g (6 ≤ g ≤ 8, sw ∈ Ag),
∑

sw∈Ag

∥sw − sv∥−α ≤

cg ·R−α, where cg(6 ≤ g ≤ 8) is a positive constant. In summary,

∑
w ̸=u

∥sw − sv∥−α =
8∑

g=1

∑
sw∈Ag

∥sw − sv∥−α (3.45)

≤
8∑

g=1

cg ·R−α. (3.46)

Let β =
8∑

g=1

cg, we have Λ(su, sv) ≥ P ·r−α

N0+P ·β·R−α . Since su ∈ κi,j and sv ∈ κ′
i,j are arbitrarily

chosen, this lemma holds. 2

Lemma 3.3.5 Si,j is a CTCS when R ≥ (c9 · r−α+ c10)
−1/α, where c9 =

η2
β·ln η1(1− η3

√
po)−1 and

c10 = − N0

P ·β .
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Proof: To prove this lemma, we need to show ∀κi,j ∈ Si,j, suppose κ
′
i,j is the destination

cell of κi,j, Pr(κi,j, κ
′
i,j) = min{Pr(su, sv)|su ∈ κi,j, and sv ∈ κ′

i,j} ≥ po when R ≥ (c9 · r−α +

c10)
−1/α. This is equivalent to show ∀su ∈ κi,j, ∀sv ∈ κ′

i,j, Pr(su, sv) = (1−η1·e−η2·Λ(su,sv))η3 ≥

po. Hence, it is sufficiency to have

(1− η1 · exp(−η2 ·
P · r−α

N0 + P · β ·R−α
))η3 ≥ po (3.47)

⇔ exp(−η2 ·
P · r−α

N0 + P · β ·R−α
) ≤

1− η3
√
po

η1
(3.48)

⇔ η2 ·
P · r−α

N0 + P · β ·R−α
≥ ln

η1
1− η3

√
po

(3.49)

⇔ R ≥ (
η2

β · ln η1(1− η3
√
po)−1

· r−α − N0

P · β
)−1/α. (3.50)

Let c9 =
η2

β·ln η1(1− η3
√
po)−1 and c10 = − N0

P ·β , the conclusion holds. 2

Now, we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1: From Lemma 3.3.5, we know that when R ≥ (c9 ·r−α+c10)
−1/α,

Si,j is a CTCS. Since large |Si,j| implies more concurrent data transmissions, we prefer small

R. Thus, let R = (c9 · r−α + c10)
−1/α. Define ω = ⌈R/l⌉. For large n, i.e. large-scale WSNs,

R ∼ Θ(r+ o(1)), which implies ω = Θ( r+o(1)
l

). Thus, the conclusion of Theorem 3.3.1 holds.

2

From Theorem 3.3.1, we know that if we set R = ω · l, then, all the CTCSs can conduct

data transmissions simultaneously in an interference-free manner. Based on the conclusion

of Theorem 3.3.1, the following corollary can be obtained.

Corollary 3.3.1 By X⃗ and Y⃗ , the cells κi,j(1 ≤ i, j ≤ m) can be partitioned into at most

ω2 CTCSs (equivalence classes).

Proof: From Theorem 3.3.1, we know that Si,j = {κ⃗i,j + a · X⃗ + b · Y⃗ |a, b ∈ Z} =

{κi+a·ω,j+b·ω|a, b ∈ Z, 1 ≤ i+a ·ω, j+b ·ω ≤ m}. Therefore, for each cell κi′,j′(1 ≤ i′, j′ ≤ m),

κi′,j′ ∈ Si,j if (i′ mod ω) = (i mod ω) and (j′ mod ω) = (j mod ω). Since both (i′

mod ω) and (j′ mod ω) have ω distinct values for all 1 ≤ i′, j′ ≤ n, we have at most ω2

CTCSs, i.e. equivalence classes. 2
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3.4 Snapshot Data Collection

In this section, we study the achievable network capacity of SDC. First, we propose a

novel Cell-based Path Scheduling (CPS) algorithm for SDC. Subsequently, we analyze the

achievable network capacity of CPS. Finally, we make some further discussion about the

extension from SDC to CDC.

3.4.1 Cell-based Path Scheduling (CPS)

Before giving the CPS algorithm, we construct a data collection tree, which serves as

the routing structure, for the data collection process. For each cell κi,j(1 ≤ i, j ≤ m), we

abstract it to a super node, denoted by sui,j
6. Following the discussion in Section 3.3.1, a

cell contains 4 log n nodes in the sense of expectation and 10 log n nodes in the sense of the

worst case. Thus, we abstract the data packets of nodes within a cell as a super data packet,

whose size is 4 log n · B bits in the sense of expectation and 10 log n · B bits in the sense of

the worst case. Accordingly, to send out a super data packet, we define a super time slot ts

as 4 log n · tm = 4to log n/po in the sense of expectation and 10 log n · tw = 10~ log n · to in

the sense of the worst case. Afterwards, considering the communication modes defined in

Section 3.3.1, we construct a data collection tree, denoted by T, rooted at the sink to connect

all the super nodes according to the following rules: 1) For super nodes sui,j(1 ≤ i, j ≤ m′)

(note that m′ = m − 1), sui,j transmits its data to sui+1,j+1, i.e. create a link from sui,j to

sui+1,j+1. 2) For super nodes sum,j(1 ≤ j ≤ m′), sum,j transmits its data to sum,j+1, i.e. create

a link from sum,j to sum,j+1. 3) For super nodes sui,m(1 ≤ i ≤ m′), sui,m transmits its data

to sui+1,m, i.e. create a link from sui,m to sui+1,m. After applying the above rules to all the

super nodes except for sum,m, the data collection tree is built. Taking the WSN shown in

Figure 3.1 as an example, the obtained data collection tree is shown in Figure 3.4. For a

data transmission route from a leaf super node to the root in T, we call it a path. The path

starting from sui,1(1 ≤ i ≤ m) is denoted by Pi and the path from su1,j(2 ≤ j ≤ m) is denoted

6Without confusion, we use cell and super node exchangeably.
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Figure 3.4 Data collection tree.

by P ′
j , as shown in Figure 3.4.

According to Corollary 3.3.1, all the cells of a WSN can be partitioned into ω2 CTCSs

(equivalence classes). For each CTCS Si,j(1 ≤ i, j ≤ ω), we map it to an integer (i−1) ·ω+j.

In Figure 3.4, the number next to each super node indicates the CTCS it belongs to. For

convenience, we also use S(i−1)·ω+j to represent the CTCS Si,j(1 ≤ i, j ≤ ω).

Based on the abstracted data collection tree T, we propose a novel Cell-based Path

Scheduling (CPS) algorithm, which has two phases. In Phase I of CPS, we schedule the ω2

CTCSs one by one, until all the data packets of cells κi,j(1 ≤ i, j ≤ m′) have been collected

to the cells on path Pm, path P ′
m, or the sink. In Phase II of CPS, we schedule the cells of

Pm and P ′
m until all the data packets have been collected to the sink. We use the example

shown in Figure 3.4 to present the main idea of CPS as follows. The formal description of

CPS is shown in Algorithm 27.

Phase I: Inner-Tree Scheduling. Since the cells within a CTCS can be scheduled

7Note that, although the two phases are not shown explicitly in Algorithm 2, the data collection process
can be viewed consisting of two phases as discussed.
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Algorithm 2: The CPS Algorithm

input : a data collection tree, CTCSs
output: a data collection plan

1 while the sink has not collected all the data do
2 for i = 1; i ≤ ω; i++ do
3 for j = 1; j ≤ ω; j++ do
4 if all the cells in CTCS Si,j have no data for transmission then
5 continue;

6 Assign CTCS Si,j a super time slot;
7 During the assigned super time slot, schedule all the super nodes (cells)

in Si,j simultaneously: for ∀κu,v ∈ Si,j, schedule all the nodes with data
for transmission in κu,v sequentially according to some order, e.g. the ID
order, each with one modified time slot;

to transmit data concurrently, schedule CTCSs S1, S1, · · · ,Sω2 orderly, each for a super time

slot. Repeat Phase I until there is no packet remaining at the super node sui,j(1 ≤ i, j ≤ m′),

i.e. all the data packets at sui,j(1 ≤ i, j ≤ m′) have been collected to the sink or sui,j(i = m

or j = m). For the specific nodes within a cell, schedule them sequentially according to

any order at the available super time slots for this cell8. Taking the data collection tree T

shown in Figure 3.4 as an example, the cells in T can be partitioned into 9 CTCSs. For the

9 CTCSs S1, S1, · · · ,S9, we schedule them orderly each for one super time slot. At the end

of Phase I, all the data packets of sui,j(1 ≤ i, j ≤ 7) have been collected to the sink, or the

cells on path P8 and P ′
8.

Phase II: Scheduling of Pm and P ′
m. For the super nodes s

u
i,j(i = m or j = m) which

have data packets waiting for collection, partition them into λ CTCSs (Actually, λ ≤ 2ω− 1

8Suppose the parent node of super node sui,j is sui′,j′ , i.e. all the nodes in cell κi,j will transmit their data
to the nodes in cell κi′,j′ . Then, when a node su in cell κi,j is scheduled to transmit data to some node
in cell κi′,j′ , su will transmit its data to the node sv in cell κi′,j′ , where sv satisfies the condition that the
success probability of the link from su to sv is the highest among the links from su to all the nodes in cell
κi′,j′ .
Now, assume the success probability of the link from su to sv is 0.5. Then, when su transmits a data

packet to sv, sv successfully receives this data packet with probability 0.5. If this data transmission fails,
su will retransmit that data packet until the packet is successfully received by sv. Evidently, the expected
transmission times of that packet is 2 in this case.
In this part, without specification, for any node su, it determines its next hop and transmits data in terms

of the aforementioned manner.
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which is proven in Lemma 3.4.4.). Then, schedule these λ CTCSs sequentially each for one

super time slot. Repeat Phase II until all the packets have been collected to the sink. Taking

P8 and P ′
8 shown in Figure 3.4 as an example, the cells on P8 and P ′

8 can be partitioned into

5 CTCSs. Then, we schedule these 5 CTCSs sequentially until all the data packets been

collected to the sink.

From the description of CPS, we know it can collect all the data packets to the sink after

Phase I and Phase II. In the following subsection, we will analyze the achievable network

capacity of CPS.

3.4.2 Capacity Analysis of CPS

In this subsection, we investigate the achievable network capacity of CPS. The upper

bound of SDC is W even under the deterministic network model [4][5] 9. Therefore, the

upper bound of SDC under the probabilistic network model is W too. Consequently, we

focus on the lower bound of CPS in the following analysis.

For convenience, we introduce the concept of scheduling round. A scheduling round

for Phase I (respectively, Phase II) of CPS is the time used to run Phase I (respectively,

Phase II) once. For the data collection tree T shown in Figure 3.4, a scheduling round is

9ts (respectively, 5ts) in Phase I (respectively, Phase II), since there are 9 (respectively, 5)

CTCSs need to schedule in each running of Phase I (respectively, Phase II). Now, we can

obtain the number of super time slots used in Phase I of CPS as shown in Lemma 3.4.1.

Lemma 3.4.1 For SDC, it takes CPS ω2m′ super time slots to finish Phase I.

Proof: According to the scheduling in Phase I, every CTCS is scheduled once in a

scheduling round. This implies every super node in the network is scheduled once in every

scheduling round. Therefore, for each super node sui,j(1 ≤ i, j ≤ m′), it can receive one super

data packet at most from its child and send out one super data packet at most to its parent

9This is because the sink node can receive at most one data packet during a time slot. Consequently,
based on the definition of data collection capacity (which is defined as the average data receiving rate of the
sink during a data collection process), W is a trivial upper bound of any data collection algorithm in both
deterministic WSNs and probabilistic WSNs.
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during every scheduling round. Thus, for each path of Pi(1 ≤ i ≤ m′) and P ′
j(2 ≤ j ≤ m′),

its length will decrease by one after each scheduling round (if we assume the node without

any data for transmission will be deleted from the path). It follows that the data packets

of sui,j(1 ≤ i, j ≤ m′) will be collected to the sink or sui,j(i = m or j = m) in m′ scheduling

round, i.e. ω2m′ super time slots, since the length of the longest path of Pi(1 ≤ i ≤ m′) and

P ′
j(2 ≤ j ≤ m′) is m′. 2

Now, we study the time slots used in Phase II of CPS. First, we derive the number

super data packets remaining at each of the super nodes sui,j(i = m or j = m) waiting

for transmission at the beginning of Phase II. Subsequently, we obtain the upper bound of

the number of super time slots used in Phase II, and followed by the lower bound of the

achievable network capacity of CPS. In the following analysis, we use ϕi,j(1 ≤ i, j ≤ m) to

denote the number of super data packets transmitted/forwarded by sui,j through the entire

SDC process. Further, we use φi,j(1 ≤ i, j ≤ m) to denote the number of super data packets

at sui,j waiting for transmission at the beginning of Phase II. Clearly, φi,j = 0(1 ≤ i, j ≤ m′)

after Phase I.

Lemma 3.4.2 For 1 ≤ i ≤ m′, ϕm,i =
i(i+1)

2
.

Proof: Based on the constructed data collection tree in the previous subsection, for

sum,i(2 ≤ i ≤ m′), it has two children sum−1,i−1 and sum,i−1. Hence, during the entire data

collection process, the number of super data packets transmitted/forwarded by sum,i(2 ≤ i ≤

m′) is the sum of the number of super data packets transmitted/forwarded by sum−1,i−1 and

sum,i−1 plus 1 (1 means the super data packet of sum,i itself), i.e. ϕm,i = ϕm−1,i−1 + ϕm,i−1 +1.

Considering ϕm−1,i−1, it has only one child ϕm−2,i−2. Thus, ϕm−1,i−1 = ϕm−2,i−2 + 1. In a

sum, we have


ϕm,1 = 1, ϕm−i+1,1 = 1

ϕm−1,i−1 = ϕm−2,i−2 + 1

ϕm,i = ϕm−1,i−1 + ϕm,i−1 + 1

(3.51)
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Then, it is straightforward for us to obtain the generating functions of ϕm−1,i−1 which is

ϕm−1,i−1 = i− 1, and ϕm,i(1 ≤ i ≤ m′) which is ϕm,i =
i(i+1)

2
. 2

From the proof of Lemma 3.4.2 and by symmetry, we have the following corollary.

Corollary 3.4.1 For 1 ≤ i ≤ m′, ϕi,m = i(i+1)
2

.

Based on Lemma 3.4.2, we obtain the number of super data packets at sum,i waiting for

transmission at the beginning of Phase II as shown in Lemma 3.4.3.

Lemma 3.4.3 Let θ = ⌈
√
1+8m′−1

2
⌉, then

φm,i =


0, 1 ≤ i < θ

ϕm,i −m′ = i(i+1)
2
−m′ ≤ i, i = θ

i, θ < i ≤ m′

(3.52)

Proof: We prove this lemma by cases.

Case 1: 1 ≤ i < θ. From Lemma 3.4.2, sum,i transmits/forwards ϕm,i = i(i+1)
2

super

data packets to its parent through the entire SDC process. In Phase I, we schedule every

CTCS for m′ times by the proof of Lemma 3.4.1, which implies sum,i has been scheduled

for m′ times. It follows that sum,i can transmit/forward m′ super data packets to its parent

during its available super time slots in Phase I. Considering that 1 ≤ i < θ, we have

ϕm,i =
i(i+1)

2
≤ 1

2
(θ2 + θ) = 1

2
· 2m′ = m′. Thus, we conclude that sum,i(1 ≤ i < θ) has already

finished its data transmission task in Phase I, i.e. φm,i(1 ≤ i < θ) = 0 at the beginning of

Phase II.

Case 2: i = θ. According to the proof of the previous case and the scheduling of Phase

I, for super node sum,θ, its two children sum,i−1 and sum−1,i−1 have no data packet waiting for

transmission at the beginning of Phase II. Furthermore, as explained in the previous case,

sum,θ has been scheduled for m′ times in Phase I, which implies that sum,i transmitted m′ super

data packets to its parent. It follows that the number of data packets waiting at sum,θ for

transmission is φm,i = ϕm,i −m′ = i(i+1)
2
−m′ ≤ i at the beginning of Phase II.
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Case 3: θ < i ≤ m′. For the child sum−1,i−1 of s
u
m,i, it transmitted i−1 super data packets

to sum,i in Phase I by the proof of Lemma 3.4.2. For another child sum,i−1 of s
u
m,i, it transmitted

m′ super data packets to sum,i in Phase I by the proof of Lemma 3.4.1. Furthermore, sum,i also

transmitted m′ super data packets to its parent sum,i+1 by the proof of Lemma 3.4.1. This

implies the number of super data packets waiting at sum,i(θ < i ≤ m′) for transmission at the

beginning of Phase II is φm,i = (i− 1) + 1 = i. 2

According to Corollary 3.4.1 and Lemma 3.4.3, it is straightforward to obtain the fol-

lowing corollary.

Corollary 3.4.2

φi,m =


0, 1 ≤ i < θ

ϕm,i −m′ = i(i+1)
2
−m′ ≤ i, i = θ

i, θ < i ≤ m′

(3.53)

Lemma 3.4.4 For super nodes sum,i(θ ≤ i ≤ m′) and suj,m(θ ≤ j ≤ m′), they can be par-

titioned into at most 2ω − 1 CTCSs, i.e. λ ≤ 2ω − 1, where λ is the one in Phase II of

CPS.

Proof: According to the vector-based CTCS partition method in Section 3.3.2, the super

nodes sum,i(θ ≤ i ≤ m) can be partitioned into at most ω CTCSs. Similarly, suj,m(θ ≤ j ≤ m)

can be partitioned into at most ω CTCSs too. Furthermore, sum,m lies in the same CTCS no

matter how to partition these cells, which implies sum,i(θ ≤ i ≤ m′) and suj,m(θ ≤ j ≤ m′) can

be partitioned into at most 2ω − 1 CTCSs. 2

Lemma 3.4.5 In Phase II of the CPS algorithm, it costs at most 1
2
(2ω−1)(m′+θ)(m′−θ+1)

super time slots to transmit all the data packets to the sink.

Proof: During each schedule round of Phase II, every super node of sum,i(θ ≤ i ≤ m′)

and suj,m(θ ≤ j ≤ m′) is scheduled once to transmit a super data packet to its parent. Hence,

the sink will receive two super data packets during every scheduling round. From Lemma
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3.4.3 and Corollary 3.4.2, we know that the total number of super data packets waiting at

sum,i(θ ≤ i ≤ m′) and suj,m(θ ≤ j ≤ m′) for transmission at the beginning of Phase II is at

most 2
m′∑
i=θ

= (m′ + θ)(m′ − θ + 1). It turns out that the sink can collect all the super data

packets at sum,i and suj,m within 1
2
(2ω − 1)(m′ + θ)(m′ − θ + 1). 2

Now, we are ready to derive the achievable network capacity of CPS in the sense of the

worst case and in the sense of expectation as shown in Theorem 3.4.1.

Theorem 3.4.1 For the achievable data collection capacity of CPS for SDC, it is Ω( 1
5ω lnn

·

W ) in sense of the worst case, which is a degradation of O(lnn) of the optimum capacity,

and Ω( po
2ω
·W ) in the sense of expectation, which is order-optimal.

Proof: From Lemma 3.4.1 and Lemma 3.4.5, the total number of super time slots used

by CPS is at most

ω2m′ +
1

2
(2ω − 1)(m′ + θ)(m′ − θ + 1) (3.54)

≤ ω2m+
1

2
· 2ω(m+ θ)(m− θ) (3.55)

≤ ω2m+ ωm2 (3.56)

= ω2

√
n

2 log n
+

ωn

2 log n
(3.57)

≤ O(
ωn

2 log n
). (3.58)

The total amount of data received by the sink is n · b. Thus, in the sense of the worst

case, the achievable network capacity of CPS is

n ·B
O( ωn

2 logn
) · ts

=
n ·B

O( ωn
2 logn

) · 10 log n · tw
(3.59)

=
n ·B

O( ωn
2 logn

) · 10 log n · ~to
(3.60)

= Ω(
1

5ω~
·W ) (3.61)

= Ω(
1

5ω lnn
·W ). (3.62)



77

Similarly, in the sense of expectation, the achievable network capacity of CPS is

n ·B
O( ωn

2 logn
) · ts

=
n ·B

O( ωn
2 logn

) · 4 log n · to
po

(3.63)

= Ω(
po
2ω
·W ). (3.64)

Since the upper bound of SDC is W under deterministic/probabilistic network model, and

po, ω are constants, the achievable network capacity of CPS in the sense of expectation is

order-optimal. However, the data collection capacity of CPS has a degradation of O(lnn) in

the sense of the worst case. 2

When addressing the CDC problem, an intuitive idea is to combine the existing SDC

methods with the pipeline technique. Nevertheless, such an idea cannot induce a signifi-

cant improvement on the network capacity. Taking the CPS as an example, it has already

achieved the order-optimal data collection capacity. By pipelining the CPS algorithm, data

transmissions at the nodes far from the sink can definitely be accelerated. However, the fact

that the sink can receive at most one packet during each time slot makes the data accumu-

lated at the nodes near the sink. As a result, the network capacity still cannot be improved

even with pipeline [5].

3.5 Continuous Data Collection

Intuitively, CDC has much more traffic load than SDC. Therefore, it is easier for the data

to accumulate at the nodes near the sink, which makes the data transmission schedule very

complicated and inefficient. Consequently, new elegant techniques are required to address

this situation. On the other hand, the combination of a SDC method and the pipeline

technique cannot improve network capacity effectively. Therefore, we propose a novel Zone-

based Pipeline Scheduling (ZPS) algorithm based on the technology used in Compressive

Data Gathering (CDG) [1] in this section. The basic idea of CDG is discussed in Section 2.4.

Theoretical analysis shows that ZPS can improve the data collection capacity significantly.
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Figure 3.5 Levels and segments.

3.5.1 Zone-based Pipeline Scheduling

Considering the benefit brought by CDG, we combine it with the pipeline technique

to design an efficient CDC algorithm, named the Zone-based Pipeline Scheduling (ZPS) al-

gorithm. Before giving the detailed design of ZPS, we further partition the data collection

tree T constructed in Section 3.4.1 into levels and segments, which are sets of cells (super

nodes) and compatible zones, respectively. As shown in Section 3.3.2, a WSN can be parti-

tioned into (⌈m/ω⌉)2 compatible zones. For these zones, we define the set {oj,i, oi,j|i ≤ j ≤

⌈m/ω⌉}(1 ≤ i ≤ ⌈m/ω⌉) as a segment, denoted by Si(1 ≤ i ≤ ⌈m/ω⌉). Within segment

Si(1 ≤ i ≤ ⌈m/ω⌉), we define the set {suy,x, sux,y|x = (i− 1) ·ω+ j, x ≤ y ≤ m}(1 ≤ j ≤ ω) as

a level, denoted by Li
j(1 ≤ j ≤ ω). Taking the T shown in Figure 3.4 as an example, it can be

partitioned into 3 segments as shown in Figure 3.5, where S1 = {o1,1, o2,1, o3,1, o1,2, o1,3}, S2 =

{o2,2, o3,2, o2,3}, and S3 = {o3,3}. Within a segment, the super nodes can be partitioned in-

to ω levels, e.g. in Figure 3.5, within S2, the super nodes can be partitioned into levels

L2
1 = {su4,4, su5,4, su6,4, su7,4, su8,4, su4,5, su4,6, su4,7, su4,8}, L2

2 = {su5,5, su6,5, su7,5, su8,5, su5,6, su5,7, su5,8}, and

L2
3 = {su6,6, su7,6, su8,6, su6,7, su6,8}.

Based on the definitions of segment, level and CTCS, we observe that (i) for level-
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s Li
j(1 ≤ i ≤ ⌈m/ω⌉), all their super nodes (cells), i.e.

∪⌈m/ω⌉
i=1 Li

j, come from CTCSs

Sj,k

∪
Sj,k(j ≤ k ≤ ω), i.e. the super nodes in

∪⌈m/ω⌉
i=1 Li

j can be partitioned into at most

2ω−1 CTCSs; and (ii) on the other hand, for every super node (cell) in Sj,k

∪
Sj,k(j ≤ k ≤ ω),

it is located at level Li
j for some 1 ≤ i ≤ ⌈m/ω⌉. According to the observations, we design

a Zone-based Pipeline Scheduling (ZPS) algorithm for CDC, which consists of inter-segment

pipeline scheduling and intra-segment scheduling as follows.

Inter-Segment Pipeline Scheduling. Since the super nodes in levels Li
j(1 ≤ i ≤

⌈m/ω⌉) can be partitioned into 2ω − 1 CTCSs, we can take each level as an unit and

schedule the j − th(1 ≤ j ≤ ω) level of all the segments Si(1 ≤ i ≤ ⌈m/ω⌉) simultaneously.

In other words, we can schedule all the segments concurrently as long as we schedule the

same j− th(1 ≤ j ≤ ω) level within each segment. Therefore, when we collect N continuous

snapshots, we can pipeline the data transmission on the segments, i.e. for each segment

Si(1 ≤ i ≤ ⌈m/ω⌉), Si starts to transmit the data packets of the (k + 1)-th (k > 0)

snapshot immediately after it transmits all the data of the k-th snapshot to segment Si+1.

Suppose t(Si)(1 ≤ i ≤ ⌈m/ω⌉) is the number of super time slots used by segment Si to

transmit all the data packets of a snapshot to the subsequent segment (or the sink) and let

tp = max{t(Si)|1 ≤ i ≤ ⌈m/ω⌉}. Then, a segment data transmission pipeline on all the

segments is formed with each segment works with tp super time slots for every snapshot

(Now, a snapshot is equivalent to an individual task in a traditional pipeline operation). By

this data transmission pipeline, the sink can receive the data of a snapshot in every tp super

time slots after it receives the data of the first snapshot.

Intra-Segment Scheduling. The inter-segment pipeline scheduling provides a scheme

to form a data transmission pipeline over all the segments. Clearly, the efficiency of the

formed pipeline highly depends on tp, which is determined by the intra-segment scheduling.

Within segment Si(1 ≤ i ≤ ⌈m/ω⌉) to transmit the k-th snapshot, we schedule the super

nodes level by level, i.e. schedule Li
1, L

i
2, · · · , Li

ω sequentially to transmit the k-th snapshot.

Finally, the data packets of the k-th snapshot are transmitted to the next segment by the

super nodes in level Li
ω. When schedule Li

j(1 ≤ j ≤ ω) for the k-th snapshot, we first
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partition the super nodes in Li
j into at most 2ω − 1 CTCSs according to the observations.

Subsequently, we schedule these 2ω − 1 CTCSs sequentially. When schedule a particular

CTCS, we let all the super nodes within this CTCS transmit their data in the CDG way, i.e.

for every super node in this CTCS, it first does the similar multiplication-addition operations

as in CDG, and then transmits the M new obtained results to its parent in the subsequent

level. Thus, to schedule a CTCS in the CDG way takes M super time slots instead of

one. However, this way is more suitable for the pipeline operation by avoiding the data

accumulation at nodes near the sink.

In summary, for CDC, ZPS pipeline the data transmission of ⌈m/ω⌉ continuous s-

napshots over ⌈m/ω⌉ segments with each segment transmits a snapshot respectively and

concurrently. For a particular snapshot transmission within a segment, it is transmitted

level by level by the CDG way. Finally, the sink can receive the data of a snapshot in every

tp super time slots after it receives the data of the first snapshot.

3.5.2 Capacity Analysis of ZPS

In this subsection, we analyze the the achievable data collection capacity of ZPS to

collect N continuous snapshots. First, we investigate the consumed time slots to collect the

first snapshot, which is the foundation of the formed data collection pipeline. Subsequently,

we derive the achievable CDC capacity of ZPS in different cases.

Lemma 3.5.1 (i) For the tp in the inter-segment pipeline scheduling of ZPS, tp ≤ ω(2ω −

1)M ; (ii) The number of super time slots used to collect the first snapshot is at most

⌈m
ω
⌉ω(2ω − 1)M .

Proof: (i) According to the intra-segment scheduling, the super nodes in each level of a

segment can be partitioned into at most 2ω−1 CTCSs. Moreover, for the super nodes within

each CTCS, they transmit their data in the CDG way, i.e. each CTCS can be scheduled

within M super time slots. Further, each segment contains at most ω levels, which implies

for a single snapshot, a segment can be scheduled within ω(2ω − 1)M super time slots, i.e.

tp ≤ ω(2ω − 1)M .
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(ii) Based on (i), the number of super time slots used to collect the first snapshot is at

most ⌈m
ω
⌉ω(2ω − 1)M , since a WSN can be partitioned into at most ⌈m

ω
⌉ segments. 2

Based on Lemma 3.5.1, we can derive the achievable CDC capacity of ZPS in different

cases as shown in Theorem 3.5.1.

Theorem 3.5.1 To collect N continuous snapshots, the achievable network capacity of ZPS

is  Ω( N
√
n

6
√
2ωM

√
logn lnn

·W ), if N = O(
√
n/ log n);

Ω( n
12ω2M logn lnn

·W ), if N = Ω(
√
n/ log n).

in the sense of the worst case, and

 Ω(
poN
√

n/ logn

2
√
2ωM

·W ), if N = O(
√
n/ log n);

Ω( pon
4ω2M logn

·W ), if N = Ω(
√

n/ log n).

in the sense of expectation.

Proof: To collectN continuous snapshots, the data transmission process can be pipelined

according to ZPS, which implies the sink can receive the data of a snapshot every tp super

time slots after it receives the first snapshot. Therefore, by Lemma 3.5.1, the number of

super time slots used to collect N continuous snapshots is at most ⌈m
ω
⌉ω(2ω − 1)M + (N −

1)ω(2ω − 1)M ≤ (m
ω
+ 1) · 2ω2M + 2ω2(N − 1)M = O(2ωmM + 2ω2NM).

Thus, in the sense of the worst case, the achievable network capacity of ZPS is at least

NnB

O(2ωmM + 2ω2NM) · 10 log n · tw
(3.65)

=
NnW

O(20ωmM~ log n+ 20ω2~NM log n)
(3.66)

=
NnW

O(10ωM~
√
n log n+ 20ω2~NM log n)

(3.67)

=

 Ω( N
√
n

10ωM
√
logn lnn

·W ), if N = O(
√

n/ log n);

Ω( n
20ω2M logn lnn

·W ), if N = Ω(
√
n/ log n).

(3.68)
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Similarly, in the sense of expectation, the achievable network capacity of ZPS is at least

NnB

O(2ωmM + 2ω2NM) · 4 log n · tm
(3.69)

=
poNnW

O(8ωmM log n+ 8ω2NM log n)
(3.70)

=
poNnW

O(4ωM
√
n log n+ 8ω2NM log n)

(3.71)

=

 Ω(
poN
√

n/ logn

4ωM
·W ), if N = O(

√
n/ log n);

Ω( pon
8ω2M logn

·W ), if N = Ω(
√
n/ log n).

(3.72)

2

From Theorem 3.5.1, we know that (i) the achievable network capacity of ZPS is N
√
n√

logn lnn

or n
logn lnn

times batter than the optimal capacity of the snapshot data collection scenario

in order in the sense of the worst case, and
√

n
logn

or n
logn

times better than the optimal

capacity of the snapshot data collection scenario in order in the sense of expectation, which

are very significant improvements. By examining ZPS carefully, we find that two main

reasons are responsible for this improvement. The primary reason is the use of the CDG

technique, which distributes the traffic load evenly over the entire WSN, and then the data

accumulation at the nodes near the sink is avoided. Another reason is the pipeline scheduling.

According to ZPS, the time overlap of the data collection of multiple continuous snapshots

in the transmission pipeline conserves a lot of time, which accelerates the network capacity

directly and significantly; (ii) ZPS will be more effective for large-scale WSNs, since large

scale WSNs incur large data collection trees, which are more suitable for pipeline; and (iii)

ZPS is also more effective for long-term CDC. The longer the CDC process is, the closer for

ZPS to its theoretical achievable network capacity.

3.6 Simulations

In this section, we validate the effectiveness of the proposed algorithms via simulations.

For all the simulations, we consider a probabilistic WSN has one sink, and all the sensor
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Table 3.2 System parameters.

Parameter Value Parameter Value

α 3.0 P
N0

10.0

η1 0.25 ρ 3.0
η2 10.0 M 50
η3 10.0 N 1000

nodes are randomly distributed in a square area. The network time is slotted, and for the size

of each time slot is normalized to one. Every node produces one data packet in a snapshot

and the size of a packet is normalized to one. All the nodes work with the same power P

over a common wireless channel, which has a bandwidth also normalized to one. Further,

we define the node density of a WSN as ρ, i.e. ρ is the average number of nodes distributed

within a unit area. In all the following simulations, we set ρ = 3. For the other parameters,

we set them by referring the settings in [79] and they are given in Table 3.2. In Table 3.2,

the parameters have the same meanings as in previous sections. As explained in Section

Network Model of Main File, the success probability of a link between any two nodes can be

obtained in terms of the parameters shown in Table 3.2 and Equation 2 (Section Network

Model) of the Main File. Moreover, each group of simulations are repeated for 100 times

and the results are the average of these 100 times.

Since there is no existing data collection algorithm for probabilistic WSNs currently, we

compare our proposed algorithms with the latest data collection algorithms for deterministic

wireless networks. The compared algorithms are PS [4] and MPS [5][59] for CPS.

• PS is the latest SDC algorithm based on a Breadth First Search (BFS) tree under the

deterministic network model. First, PS constructs a BFS tree over the network graph.

Subsequently, PS schedule the BFS tree path by path to collect the data on each path

to the sink. By analysis, the authors showed that BFS can achieve order-optimal data

collection capacity.

• MPS is also a SDC algorithm for deterministic WSNs, which extends PS to a multi-

path data scheduling algorithm. In MPS, a CDS-based data collection tree is first
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constructed. Then, multiple paths in the data collection tree are scheduled simul-

taneously as long as they are interference-free. By theoretical analysis, the authors

demonstrated that MPS has a tighter capacity bound than that of PS.

• Although both PS and MPS are initially designed for deterministic WSNs, the algo-

rithms themselves are actually independent of the underlying network model (deter-

ministic or probabilistic). Therefore, when PS and MPS work in probabilistic WSNs,

they follow the same original schedule idea. The only modification is that they may

assign more than one time slots to a data transmission over a lossy link now, since

a data transmission in probabilistic WSNs may have to transmit multiple times to

guarantee that the receiver receives a data packet successfully. Furthermore, since PS

and MPS are designed under the PrIM, we set the interference range of nodes in PS

and MPS as ω · l (ω · l can prevent interference as we proven in Theorem 1).

For ZPS, we compare it with PSP (PS + pipeline) [4], CPSP (CPS + pipeline), CDGP

(CDG + pipeline) [1], and PSA [5][59].

• PSP and CPSP are the pipelined versions of PS and PSP, respectively. CDGP is the

pipelined version of CDG, which is a recent work for data collection for deterministic

WSN and the first work applying the compressive sampling theory (the idea of CDG

is discussed in Section Continuous Data Collection of the Main File). In PSP, CPSP,

and CDGP, the data collection of each snapshot is scheduled in terms of PS, CPS, and

CDG, respectively. Furthermore, the data collection of subsequent snapshots will be

scheduled (also in terms of PS, CPS, and CDG) as soon as possible if their data trans-

missions are interference-free with the data transmissions of previous snapshots, i.e. in

PSP, CPSP, and CDGP, subsequent snapshots may start to schedule for transmission

before the sink receives previous snapshots.

The reason to add the pipeline technique to PS and CDG is for fairness consideration.

• PSA is our previous work proposed for CDC in deterministic WSNs under the protocol

interference model. In PSA, a CDS-based data collection tree is first constructed.
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Figure 3.6 Snapshot data collection capacity.

Then, through partitioning the data collection tree into levels, a scheduling algorithm

for CDC is designed exploiting pipeline and data compressing (CDG) techniques.

• Similarly, the designs of PSP, CDGP, and PSA are independent of the underlying

network model (deterministic or probabilistic). Therefore, they can work in proba-

bilistic WSNs by scheduling a data transmission over a lossy link until it is successfully

finished.

3.6.1 Performance of CPS

We implement PS, MPS, and CPS in a probabilistic WSN deployed in an area of 100×

100 for SDC, and the achievable capacities are shown in Figure 3.6 for different po values.

From Figure 3.6 we know that when po varies from 0.6 to 0.9, the capacities of PS, MPS, and

CPS increase. This is because a higher po implies fewer average transmissions over a lossy

link (note that the average number of transmissions over a lossy link is 1
po
). Consequently,

with the increasing of po, the capacities of PS, MPS, and CPS increase. However, when po

varies from 0.9 to 0.95, the capacities of PS, MPS, and CPS decrease. This is because, on

the other hand, a higher po also implies a larger R from the proof of Lemma 6. Whereas,
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larger R implies fewer parallel transmissions can be concurrently conducted, which leads

to the decrease of the achievable capacities of PS, MPS, and CPS. Note that although the

capacities of CPS for the case po = 0.8 and the case po = 0.95 are similar, they have

quite different meanings. Since small po implies more average transmission times, a network

consumes less energy in the case po = 0.95 than that in the case po = 0.8 even they have

similar capacities.

From Figure 3.6 we can also see that CPS always achieves a higher network capacity

compared with PS and MPS. This is because that PS is a single path scheduling algorithm

performed on a BFS tree. While CPS schedules a CTCS each super time slot, which is equiv-

alent to schedule multiple cells on multiple paths. In other words, CPS achieves complete

concurrency by scheduling multiple cells. Furthermore, the CDS-based data collection tree

used by MPS is unbalanced and does not consider lossy links, which leads to the degradation

of its capacity. Particularly, CPS achieves 44.02% more capacity than PS and 12% more

capacity than MPS on average.

3.6.2 Performance of ZPS

To compare the performances of PSP, CPSP, CDGP, PSA, and ZPS for CDC, we con-

duct several groups of simulations in probabilistic WSNs with different sizes and po values,

respectively. The results are shown in Figure 3.7. Specifically, in Figure 3.7(a)-(c), we fix the

po value in each figure and compare the achievable network capacity of different algorithms

in networks with different sizes. On the other hand, in Figure 3.7(d)-(f), we fix the network

size in each figure and compare the achievable network capacity of different algorithms in

networks with different po values.

From Figure 3.7(a)-(c), we can see that with the increase of the network size (i.e.

the number of nodes in a WSN), the achievable capacities of all the algorithms except for

PSP and CPSP increase. This is because that the data transmission pipeline is easier to

form and more effective in large-scale WSNs. On the other hand, since CDGP, PSA, and

ZPS addressed the data accumulation problem, they can form effective data transmission
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(a) po = 0.65.
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(b) po = 0.8.
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(c) po = 0.95.
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(d) Network size: 100× 100.
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(e) Network size: 150× 150.
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(f) Network size: 200× 200.

Figure 3.7 Continuous data collection capacity.
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pipelines, which finally make them achieve higher capacities than PSP and CPSP. However,

in PSP and CPSP, due to the existing of the data accumulation phenomenon near the sink,

PSP and CPSP have similar data collection capacity in networks with different sizes.

From Figure 3.7(d)-(f), we can see that, because of the reasons discussed before, when

po varying from 0.6 to 0.7, the capacities of CDGP, PSA, and ZPS have a slight increase.

By contrast, when po varying from 0.75 to 0.9, the capacities of CDGP, PSA, and ZPS have

some decrease. Additionally, the performance of CDGP, PSA, and ZPS highly depends on

the data transmission pipeline. Larger po (i.e. larger R) implies larger segments (i.e. large tp

in Section Continuous Data Collection of the Main File), which further leads to the decrease

of the capacities of CDGP, PSA, and ZPS. Moreover, since network size has a little impact

on PS and CPS and data accumulates at nodes near the sink, PSP and CPSP also keep

stable data collection capacities in WSNs with different sizes.

Finally, we can also see that ZPS achieves a higher capacity than CDGP and PSA from

Figure 3.7(a)-(f). This is due to (i) when constructing data collection trees, PSA and CDGP

do not consider lossy links; (ii) the data collection trees used by PSA and CDGP may be

very unbalanced, which obstructs to form effective data transmission pipelines. By contrast,

the data collection tree used by ZPS is balanced and has a more reasonable structure, which

is more suitable to form a pipeline; (iii) ZPS has a more sound scheduling scheme compared

with CDGP, i.e. a WSN is partitioned into multiple CTCSs, and ZPS achieves complete

concurrency while scheduling these CTCSs.

3.6.3 Impacts of M and N on ZPS

The impacts of M (the parameter in CDG) and N (the number of snapshots in a CDC

task) are shown in Figure 3.8. From Figure 3.8(a), we can see that the achievable capacities

of CDGP, PSA, and ZPS decrease when M increases (PSA also exploits the CDG technique).

This is because a large M implies more data packets have to be transmitted by each node

for each snapshot. Consequently, more traffic are induced in CDGP, PSA, and ZPS, and

followed by more time consumption and capacity degradation.
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Figure 3.8 Impacts of M and N on ZPS.
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Figure 3.8(b) shows the impacts of N on the achievable capacity of ZPS. From Figure

3.8(b), the achievable capacities of CDGP, PSA, and ZPS increase with the increase of

N . This is because that all the three algorithms finish CDC by forming data transmission

pipeline systems, which prefer large network size and are more efficiency when the number

of snapshots in a CDC task increases. This can also be seen from Theorem 3.

From Figure 3.8, we can also see thatM andN almost have no impacts on the achievable

capacities of PSP and CPSP. This is because that no data compressing technique is employed

in the two algorithms. Moreover, PSP and CPSP do not provide dedicated solutions to the

data accumulation problem in the CDC scenario, which is much severer than that in the

SDC scenario.

3.6.4 CPS and ZPS in Deterministic WSNs

To examine the performance of CPS and ZPS in deterministic WSNs, we also implement

them in deterministic WSNs with different sizes for completeness. The results are shown

in Figure 3.9. From Figure 3.9, we know that even under the deterministic network model,

CPS and ZPS achieve better data collection capacities compared with the existing works

because of the subtle network partition and CTCS scheduling in CPS and ZPS.

3.7 Conclusion

For most existing works studying the network capacity issue, their designs and analysis

are based on the deterministic network model. However, in real applications, this determinis-

tic network model assumption is not practical due to the “transitional region phenomenon”.

Actually, a more practical network model for WSNs is the probabilistic network model, where

a transmission over a link is conducted successfully with a probability instead of being de-

termined. Unfortunately, few of the existing works study the data collection capacity issue

for WSNs under the probabilistic network model, i.e. for probabilistic WSNs, until now. To

fill in this gap, we investigate the achievable snapshot and CDC capacities for probabilistic

WSNs in this part. For SDC, we propose a novel Cell-based Path Scheduling (CPS) algo-
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Figure 3.9 CPS and ZPS in deterministic WSNs.



92

rithm, which schedules multiple super nodes on multiple paths concurrently. Theoretical

analysis of CPS shows that its achievable network capacity is order-optimal in the sense

of expectation and has O(lnn) of degradation in the sense of the worst case. For CDC,

we propose a Zone-based Pipeline Scheduling (ZPS) algorithm. ZPS significantly speeds up

the CDC process by forming a data transmission pipeline, and achieves a surprising net-

work capacity.The simulation results also validate that the proposed algorithms significantly

improve network capacity compared with the existing works.
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PART 4

DISTRIBUTED DATA COLLECTION IN ASYNCHRONOUS WIRELESS

SENSOR NETWORKS

4.1 Introduction

Following the seminal work [19] by Gupta and Kumar, many works emerged to study the

network capacity issue under various network scenarios, e.g. multicast, unicast, broadcast,

and data collection/aggregation. However, to our knowledge, most of the existing works s-

tudied the network capacity issue under an ideal assumption that the network time is slotted,

and the entire network is strictly synchronized explicitly or implicitly, i.e. they are mainly

for centralized synchronous wireless networks. Under the above ideal assumption, many cen-

tralized algorithms with nice network capacity bounds are designed and analyzed for various

communication modes (e.g. multicast, unicast, broadcast, and data collection/aggregation).

In the sense of providing theoretical frameworks/bounds for the design of communication

protocols, these works are still sound. However, in practice, wireless networks, especially

WSNs, are more likely to be distributed systems. Furthermore, for WSNs, it is difficult

and not realistic to achieve ideal strict time synchronization due to the unstable deployment

environments, clock drift, and other technical limits. Therefore, to comprehensively and

profoundly understand the performance of practical WSNs, it is important to investigate the

achievable network capacity of distributed asynchronous WSNs. Particularly, we study the

achievable data collection capacity for distributed asynchronous WSNs in this part.

Different from the study in centralized synchronous WSNs, there are many new chal-

lenges arising when investigating the data collection capacity issue for distributed asyn-

chronous WSNs. We summarize the main challenges as follows.

• C1: unlike that in centralized synchronous WSNs, where we can acquire the overall in-

formation of a network and further make an optimized decision for data transmissions,
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we can only schedule data transmissions according to local information in distributed

asynchronous WSNs. Due to this reason, it is very difficult to find an optimal sched-

ule. Therefore, how to design an effective distributed algorithm for data collection is

a challenge.

• C2: since we cannot maintain a uniform time clock for all the sensor nodes in dis-

tributed asynchronous WSNs, every node carries out data transmissions based on its

own time clock and local information. Intuitively, this kind of communication mode

leads to many data collisions and retransmissions, incurring capacity degradation, un-

fairness among data flows, etc. Thus, how to avoid the disadvantages introduced by

an asynchronous time scheme is a primary concern when designing distributed data

collection algorithms.

• C3: following challengesC1 andC2, the third challenge is how to theoretically analyze

the achievable network capacity bounds for a data collection algorithm in distributed

asynchronous WSNs. Since the data collection algorithm works in a distributed man-

ner, it is difficult, sometimes even impossible, to know the exact time when a data

transmission occurs, as well as the time duration of a data transmission. Hence, both

elegant analysis techniques and a carefully designed data transmission mechanism are

important to obtain the achievable data collection capacity.

To address these challenges, we propose a scalable and order-optimal distributed algo-

rithm, named Distributed Data Collection (DDC), with fairness consideration and capacity

analysis under the generalized physical interference model. To the best of our knowledge,

this is the first attempt to provide detailed protocol design and rigorous capacity analysis

for data collection in distributed asynchronous WSNs. DDC works in a CSMA-like manner,

except for the RTS/CTS communication mode and the necessity to reply an ACK pack-

et after receiving a data packet. In DDC, when a sensor node has some data packets for

transmission, it sets up a backoff timer, and senses the wireless channel with a predefined

Carrier-sensing Range (CR). If the channel is free when the backoff timer expires, this node
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conducts a data transmission. Under this transmission manner, DDC gathers all of the data

in a network to the sink (i.e. base station). Moreover, we extend our data collection method

to the case of data gathering with aggregation, and propose a Distributed Data Aggregation

(DDA) algorithm. We summarize the main contributions of this part as follows.

1. The carrier-sensing range is an important parameter in DDS, which has a significant

impact on the performance of data collection. To avoid data transmission collisions/in-

terference, especially the collisions/interference caused by the hidden-node problems,

we derive an R0-Proper Carrier-sensing Range (R0-PCR) under the generalized physi-

cal interference model for the nodes in a data collection WSN, where R0 is the satisfied

threshold of data receiving rate. By taking R0-PCR as its CR, any node can initiate a

data transmission with guaranteed data receiving rate as long as there is no ongoing

transmissions within its CR.

2. Based on the obtained R0-PCR, we propose a scalable and order-optimal Distributed

Data Collection (DDC) algorithm with fairness consideration for asynchronous WSNs.

DDC works in a CSMA-like manner, and effectively gathers all the data to the sink.

Theoretical analysis of DDC surprisingly shows that its asymptotic achievable network

capacity is C = Ω( 1
2(βκ+βκ+1)

·W ), where βx (x ∈ {κ, κ+1}) is a constant value depends

on R0, and W is the bandwidth of a wireless communication channel. Since the upper

bound capacity of data collection is O(W ) [4][5], which implies the achievable data

collection capacity of DDC is order-optimal. Furthermore, since C is independent of

network size, DDC is scalable.

3. For completeness, a Distributed Data Aggregation (DDA) algorithm for asynchronous

WSNs is designed. We show that the number of time slots induced by DDA is upper

bounded by log n+(βκ+βκ+1−1)L+c3, where n is the number of the sensor nodes in a

WSN, L is the hight of the data aggregation tree, and c3 is a constant value depending

on R0-PCR.

4. To be more general, we further study the delay and capacity of DDC and DDA under
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the Poisson node distribution model. By analysis, we demonstrate that DDC is again

scalable and order-optimal, and DDA has a delay performance upper bounded by

a log n+ (βκ + βκ+1 − 1)L− c4, where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
) and c4 = βκ + βκ+1

are constant values.

5. We also conduct extensive simulations to validate the performance of DDC/DDA in

distributed asynchronous WSNs. The simulation results indicate that DDC/DDA can

achieve comparable data collection capacity as the latest centralized and synchronized

data collection algorithm.

The rest of this part is organized as follows. In Section 4.2, the considered network

model is discussed. In Section 4.3, the proper carrier-sensing range satisfying a predefined

data receiving rate for communication is derived. According to the obtained proper carrier-

sensing range, a distributed asynchronous data collection algorithm is proposed in Section

4.4, followed by the theoretical analysis, which demonstrates that the proposed algorithm can

achieve order-optimal data collection capacity as centralized and synchronized algorithms.

Furthermore, how to applying the derived proper carrier-sensing range to data aggregation

is discussed in Section 4.5. To be more general, we study the delay and capacity of DDC and

DDA under the Poisson distribution model in Section 4.6. In Section 4.7, we validate the

performance and scalability of DDC and DDA by simulations. Finally, this part is concluded

and some possible future research directions are pointed out in Section 4.8.

4.2 Network Model

In this part, we consider a connected WSN consisting of one sink node serving as the base

station denoted by s0, and n sensor nodes denoted by s1, s2, · · · , sn respectively, deployed

in an area with size A = c1n, where c1 is a constant. Furthermore, we assume all the nodes

are independent and identically distributed (i.i.d.). Each node is equipped with one radio

and works with a fixed power P . All the data transmissions are conducted over a common

wireless channel with bandwidth W bits/second. The size of a data packet is B bits, and thus
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the transmission duration of a data packet is τ = B/W seconds. The maximum transmission

radius of a sensor node is set to r (r is associated with the lowest data transmission rate

determined by the following defined generalized physical interference model). Hence the

network can be modeled as a graph G = (V,E), where V = {si|i = 0, 1, 2, · · · , n} and E

includes all the possible links formed by any pair of nodes in V . A node si (i ∈ [1, n]) is

said to be active at time t iff si is transmitting a data packet to some other node at time

t. Thus, we use St = {sk|sk is active at time t} to denote the set of all the active nodes at

time t.

To capture the wireless interference in wireless networks, the protocol interference model

and physical interference model are frequently used. Furthermore, these two models abstract

a data transmission as a binary function, with values successful or failed. Instead of modeling

a data transmission process as a binary function, the Generalized Physical Interference model

(GPI) is more accurate to characterize a practical data transmission. Suppose node si is

transmitting a data packet to node sj at time t, i.e. si ∈ St, and Rt
i,j is the data receiving

rate of sj from si at time t. Then, under the GPI model, Rt
i,j is determined by

Rt
i,j = W · log(1 + SINRt

i,j) (4.1)

where SINRt
i,j is the Signal-to-Interference-plus-Noise Ratio (SINR) value at sj associated

with si and is defined as

SINRt
i,j =

P ·D(si, sj)
−α

N0 +
∑

sk∈St,sk ̸=si

P ·D(sk, sj)−α
(4.2)

where N0 is the background noise, α is the path loss exponent and usually α ≥ 3, and D(·, ·)

is the Euclidian distance between two nodes.

Suppose the time consumption to gather all the n data packets produced at si (1 ≤ i ≤

n) is T , then the achievable data collection capacity C can be defined as nB/T , i.e. the

data collection capacity reflects how fast that data can be gathered by the sink.
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4.3 Carrier-sensing Range

Since we study data collection in distributed asynchronous WSNs, every node si (i ∈

[1, n]) in a WSN senses the activities of other nodes within its Carrier-sensing Range (CR)

when it has some data packets for transmission. Only when there is no ongoing data trans-

missions within its CR, si can initiate a data transmission. Thus, how to determine the CR

for each node, to make all the concurrent transmitters out of the CR of each other to simul-

taneously conduct data transmissions with a data rate no less than a threshold, is crucial

for the performance of a distributed data collection scheme. Intuitively, a small CR implies

a high degree of spatial reuse, which further implies small SINR values and followed by low

data receiving rates at the receivers. On the other hand, a large CR implies a low degree of

spatial reuse, which further implies large SINR values and high data receiving rates. There-

fore, in this section, we study how to set a Proper Carrier-sensing Range (PCR) for each

node to guarantee a satisfied data receiving rate and meanwhile the highest spatial reuse

degree. For clarity, we make some definitions as follows.

Definition 4.3.1 R0-feasible state. The set of all the active nodes St (defined in Section

4.2) is an R0-feasible state if all the nodes in St can simultaneously transmit data and the

data receiving rate at each of their corresponding receivers is no less than R0. In an R0-

feasible state St, ∀si ∈ St, assume si is transmitting a data packet to sj, then Rt
i,j ≥ R0.

Based on Definition 4.3.1, if the lowest tolerable data transmission rate of a WSN is

R0, then the data collection process can be represented as a series of R0-feasible states

St (t = τ, 2τ, 3τ, · · · ,mτ), where m = ⌈T /τ⌉.

Definition 4.3.2 R-set (SR). Assume R is the carrier-sensing range represented by G =

(V,E). An R-set, denoted by SR, is any maximal subset of V that satisfies ∀si, sj ∈ SR

(si ̸= sj) and D(si, sj) ≥ R.
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Definition 4.3.3 R0-Proper Carrier-sensing Range (R0-PCR). The carrier-sensing

range R of a WSN is an R0-proper carrier-sensing range if for any R-set SR, it is always

an R0-feasible state.

From Definition 4.3.3, if R is an R0-PCR, then si can initiate a data transmission with

a guaranteed data receiving rate no less than R0 as long as there is no other active nodes

within R of si. Then, given a threshold of data receiving rate R0, the R0-PCR can be

determined by the following Theorem 4.3.1. In the following analysis, as that in [80], we

assume the background noise is very small compared with the transmission power (N0 ≪ P )

and thus can be ignored.

Theorem 4.3.1 R0-PCR ≥ ( α
√

c2(2R0/W − 1) + 1) · r, where c2 is a constant.

Proof: Let R = R0-PCR and I = R − r. To make any R-set SR always an R0-feasible

state, for ∀si ∈ SR, assuming its destination node is sj, then, we have

Ri,j ≥ R0 (4.3)

⇔ W · log(1 + SINRi,j) ≥ R0 (4.4)

⇔ 1 + SINRi,j ≥ 2R0/W (4.5)

⇔ SINRi,j ≥ 2R0/W − 1 (4.6)

⇔ P ·D(si, sj)
−α

N0 + P ·
∑

sk∈SR,sk ̸=si

D(sk, sj)−α
≥ 2R0/W − 1 (4.7)

⇔ D(si, sj)
−α∑

sk∈SR,sk ̸=si

D(sk, sj)−α
≥ 2R0/W − 1 (4.8)

Now, we derive the lower bound of
D(si,sj)

−α∑
sk∈SR,sk ̸=si

D(sk,sj)−α . Evidently, D(si, sj)
−α ≥ r−α

since r is the maximum transmission range of a node (defined in Section 4.2). Furthermore,

if we abstract a data transmission link as a node as shown in Figure 4.1(a), then, for the

nodes in SR, the densest packing of nodes is the hexagon packing [80] with edge length I

as shown in Figure 4.1(b). Subsequently, the nodes in SR can be layered with respect to vi
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Figure 4.1 (a) Link abstraction and (b) hexagon packing.

(abstracted by the transmission link from si to sj), with the l-th layer having at most 6l

nodes. Furthermore, the distance between vi and any node at the l-th layer is no less than
√
3
2
lI. Then, we have

∑
sk∈SR,sk ̸=si

D(sk, sj)
−α (4.9)

≤ 6 · I−α +
∑
l≥2

6l · (
√
3

2
lI)−α (4.10)

= 6 · I−α + 6 · (
√
3

2
I)−α ·

∑
l≥2

l−α+1 (4.11)

In Equation 4.11,
∑
l≥2

l−α+1 = ζ(α − 1) − 1, where ζ(·) is the Riemann zeta function.

Considering that α ≥ 3, then ζ(α− 1) ≤ ζ(2) = π2

6
. It follows that

∑
l≥2

l−α+1 ≤ π2

6
− 1. Thus,

we have

∑
sk∈SR,sk ̸=si

D(sk, sj)
−α (4.12)

≤ 6 · I−α + 6 · (
√
3

2
I)−α · (π

2

6
− 1) (4.13)

= (6 + (π2 − 6)(

√
3

2
)−α) · I−α (4.14)

= c2 · I−α, (4.15)
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where c2 = (6 + (π2 − 6)(
√
3
2
)−α). It follows that

D(si, sj)
−α∑

sk∈SR,sk ̸=si

D(sk, sj)−α
≥ r−α

c2 · I−α
. (4.16)

Therefore, to make Equation 4.8 valid, it is sufficient to have

r−α

c2 · I−α
≥ 2R0/W − 1 (4.17)

⇔ I−α ≤ r−α

c2(2R0/W − 1)
(4.18)

⇔ I ≥ (
1

c2(2R0/W − 1)
)−1/α · r (4.19)

⇔ I ≥ α

√
c2(2R0/W − 1) · r. (4.20)

Therefore, R0-PCR = R = I + r ≥ α
√
c2(2R0/W − 1) · r + r = ( α

√
c2(2R0/W − 1) + 1) · r. 2

From Theorem 4.3.1, we know that given a threshold of data receiving rate R0, we

can determine an R0-PCR, which is at least a constant times r. Since a small CR implies

a high degree of spatial reuse, we set R0-PCR = ( α
√
c2(2R0/W − 1) + 1) · r. Furthermore,

Figure 4.2 depicts the relation between R0 and R0-PCR, where the X-axis represents the

threshold of data receiving rate R0, and the Y -axis represents the corresponding R0-PCR.

From Figure 4.2, we can tell with the increase of R0, the associated R0-PCR increases

accordingly for every α value. This is because a high data receiving rate requires that CR

should be sufficiently large to avoid interferences, which also implies a low degree of spatial

reuse. Additionally, a large α also implies a small R0-PCR. This is because the interference

impact decreases quickly with the increase of α, which can also be derived from Equation

4.2.

4.4 Distributed Data Collection and Capacity

According to the obtained R0-PCR in Section 4.3, if we set the CR of a WSN as

R0-PCR, then all the nodes in an R-set (R = R0-PCR) can simultaneously transmit data
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Figure 4.2 R0 vs. R0-PCR.

at a guaranteed data receiving rate without interference by letting each node work on the

Re-Start (RS) mode [80]. Thus, in this section, we propose a CSMA-like data collection

algorithm for distributed asynchronous WSNs, which has an order-optimal capacity.

4.4.1 Distributed Data Collection

Before presenting the distributed data collection algorithm, for a WSN represented by

G = (V,E), we construct a Connected Dominating Set (CDS)-based data collection tree,

denoted by T , according to the method in [7]. The construction process is discussed in Part

2.

Assume L is the height of T , i.e. the maximum number of hops from s0 to any node,

and L(si) is the number of hops from node si to s0 in T . Evidently, according to the

construction process of T , ∀si ∈ D, L(si) is an even number, and ∀sj ∈ C, L(sj) is an odd

number. Furthermore, we define Lι = {si|L(si) = ι} (0 ≤ ι ≤ L). Then, the following

lemma [7] shows some properties of T .

Lemma 4.4.1 [7] (i) s0 is adjacent to at most 12 connectors in C; (ii) ∀si ∈ D, si ̸= s0, si

is adjacent to at most 11 connectors in LL(si)+1.
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Based on T , we propose a Distributed Data Collection (DDC) algorithm for asyn-

chronous WSNs as shown in Algorithm ??. In Algorithm ??, counter(si) is a counter that

denotes the number of data packets transmitted by si, τw is the backoff contention window,

and tji (1 ≤ j ≤ counter(si)) is the backoff time set for the transmission of the j-th data

packet at node si. As that in [80] and because of the same reasons, we assume (i) τw ≪ τ such

that τw is negligible compared with the data transmission time, and (ii) no two transmitters

within the CR of each other have their backoff timers expired at the same time instant1.

According to Algorithm ??, DDC runs in a CSMA-like manner, except for the RTS/CTS

working mode and the necessity to reply an ACK packet after receiving a data packet. This

is because that by properly setting the CR and working in the RS mode, a transmission with

satisfied data receiving rate can be guaranteed as shown in Section 4.3.

In Algorithm ?? (here, taking the algorithm running process at node si as an example),

Lines 1-5 are basic settings. Line 6 randomly sets the backoff time for each data transmission.

In Lines 7-8, the backoff time for each transmission is reset to (τw − tj−1
i ) + tji , and this is

mainly for fairness (any node will not wait too long when it has some data to transmit)

as shown in Theorem 4.4.1 and Corollary 4.4.2 (see Section 4.4.2). Under this setting, a

node cannot transmit multiple data packets in a short time period. Actually, each node can

transmit up to one data packet during each backoff contention window. In Lines 9-14, si

begins the countdown process and keeps sensing the channel with R0-PCR. If the wireless

channel is busy sensed by si, the countdown process at si will be frozen. In this way, when

a data transmission is ongoing, all the other nodes having data packets within the CR of

the transmitter will stop their countdown process, i.e. they can share the waiting time. In

Lines 15-16, si transmits the j-th data packet when the backoff timer expires. Since no two

transmitters that within the CR of each other have their backoff timers expired at the same

time instant, the transmission of the j-th data packet can carried out successfully.

1Collisions due to simultaneous countdown-to-zero can be tackled by an exponential backoff mechanism in
which the transmission probability of each node is adjusted in a dynamic way based on the network busyness
[80].
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Algorithm 3: The DDC Algorithm

input : CDS-based data collection tree T , R0-PCR
output: a distributed asynchronous data collection plan

1 counter(si)←0;
2 si(i ∈ [1, n]) sets its CR as R0-PCR according to the required threshold of data
receiving rate R0;

3 while si has some data packets for transmission do
4 counter(si)← counter(si) + 1;
5 j ←counter(si);

6 si randomly sets a backoff time tji for the transmission of the j-th packet in
window (0, τw];

7 if j > 1 then

8 tji ← (τw − tj−1
i ) + tji ;

9 while tji is not countdown to 0 do
10 si senses the channel with R0-PCR;
11 if si senses that the channel is busy then
12 si stops the countdown process (the backoff timer is frozen) until the

channel becomes free again;

13 if si senses that the channel is free then

14 tji −−;

15 if tji == 0, i.e. the backoff timer expires then
16 si transmits the j-th data packet to its parent node;
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4.4.2 Capacity Analysis

In this subsection, we analyze the achievable data collection capacity of the DDC al-

gorithm. Since the upper bound capacity of data collection is O(W ) [4][5], we investigate

the lower bound capacity of DDC in this subsection. First, we study the upper bound time

consumption to collect all data packets at dominatees to the CDS, i.e. the upper bound time

consumption to collect data packets at V \ (D ∪ C) to D ∪ C.

Let R = R0-PCR = ( α
√

c2(2R0/W − 1) + 1) · r, where R0-PCR is the CR used in DDC.

Then, we have the following lemma which indicates the average/upper bound number of the

sensor nodes, denoted by A/U, within the CR of a node.

Lemma 4.4.2 Let the random variable X denote the number of sensor nodes within the

carrier-sensing area of a node. Then,

(i) A = E[X] = πR2

c1
.

(ii) Pr[X > log n + πR2(e2−1)
2c1

] ≤ Pr[X ≥ log n + πR2(e2−1)
2c1

] ≤ 1
n2 . Thus, it is almost

impossible that the carrier-sensing area of a node contains more than log n+ πR2(e2−1)
2c1

nodes,

i.e. it is almost sure that U = log n+ πR2(e2−1)
2c1

.

Proof: Since all the wireless nodes are i.i.d. in an area with size A = c1n, then for any

node, it is located at the carrier-sensing area of a particular node with probability p = πR2

c1n
.

Then, X satisfies the binomial distribution with parameters (n, p). Thus, the average number

of the nodes within the carrier-sensing area of a node is A = np = πR2

c1
.

Now, we prove the second statement. Let a = log n + πR2(e2−1)
2c1

. Then, applying the
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Chernoff bound and for any ϵ > 0, we have

Pr[X > a] ≤ Pr[X ≥ a] (4.21)

≤ min
ϵ>0

E[eϵX ]

eϵa
(4.22)

= min
ϵ>0

[1 + (eϵ − 1)p]n

eϵa
(4.23)

≤ min
ϵ>0

e(e
ϵ−1)pn

eϵa
(4.24)

= min
ϵ>0

exp[(eϵ − 1)pn− ϵa] (4.25)

= min
ϵ>0

exp[(eϵ − 1)A− ϵa]. (4.26)

Particularly, let ϵ = 2, then

Pr[X > a] (4.27)

≤ exp[(e2 − 1)A− 2a] (4.28)

= exp[(e2 − 1) · πR
2

c1
− 2(log n+

πR2(e2 − 1)

2c1
)] (4.29)

= exp[−2 log n] ≤ exp[−2 lnn] (4.30)

=
1

n2
. (4.31)

∑
n>0

1
n2 is the Riemann zeta function with parameter 2, and

∑
n>0

1
n2 = π2

6
< ∞. It follows

that Pr[X ≤ a] ≈ 1 according to the Borel-Cantelli Lemma, i.e. it is almost sure that the

carrier-sensing area of a node contains no more than log n + πR2(e2−1)
2c1

nodes. Thus, it is

reasonable to use log n+ πR2(e2−1)
2c1

as the upper bound of the number of the nodes within the

carrier-sensing area of a node, i.e. U = log n+ πR2(e2−1)
2c1

. 2

Based on Lemma 4.4.2, we can derive the upper bound time consumption to collect all

the data packets at V \ (D ∪ C) to D ∪ C in DDC.

Theorem 4.4.1 Any node si with data packets for transmission can transmit at least one

data packet to its parent node within time 2Uτ = (2 log n+ πR2(e2−1)
c1

)τ .
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Figure 4.3 Transmission sequence of si and sj.

Proof: According to the DDC algorithm, for any node si with data packets for trans-

mission, it will carrier-senses the node activities within its CR. When the backoff timer of

si expires and meanwhile the channel sensed by si is free, si can transmit a data packet

successfully. Thus, the problem now is how long it takes for si until it actually initiates a

data transmission in the worst case, i.e. the waiting time of si in the worst case. For conve-

nience, assume sj is any other node within the CR of si having data packets for transmission,

ti, tj ∈ (0, τw](ti ̸= tj) are the backoff time for the current data transmissions of si and sj

respectively, and T (U), T (si) and T (sj) are the universal time (standard time), the system

time maintained at si and sj respectively. Furthermore, if sj has more than one data packet

for transmission, the backoff time for sj to transmit a subsequent data packet is denoted

by tj+1. Evidently, the transmission sequence of si and sj follows one of the following three

cases (Note that no two transmitters within the CR of each other have their backoff timers

expired at the same time instant).

Case 1: si and sj share a synchronized backoff contention window. In this case, as shown

in Figure 4.3(a), si will transmit a data packet before/after sj transmits a data packet. This

is because tj+1 = tj + (τw − tj) + t′j+1 = τw + t′j+1 > ti, where t
′
j+1 ∈ (0, τ ] is the backoff time

chosen by sj for the subsequent data transmission according to the DDC algorithm.

Case 2: si and sj share an asynchronous backoff contention window and ti < tj. In this

case, as shown in Figure 4.3(b), si will transmit a data packet before sj according to DDC.

Case 3: si and sj share an asynchronous backoff contention window and ti > tj. In this
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case, as shown in Figure 4.3(c), when si tries to transmit a data packet, it sets a backoff

time ti for the packet and carrier-senses the channel. It turns out that the channel is busy

since sj is transmitting some data. Therefore, we conclude that 0 < ti − tj < 2τw because

the time slots of si and sj have some overlap (otherwise, si cannot know that the channel

is occupied by sj when it tries to transmit the data packet). Since 0 < ti − tj < 2τw, it is

possible that tj+1 = tj + (τw − tj) + t′j+1 = τw + t′j+1 < ti. This implies that sj may transmit

two data packets before si transmits one data packet. On the other hand, according to the

DDC algorithm, we have tj+2 = tj + (τw − tj) + t′j+1 + (τw − t′j+1) + t′j+2 = 2τ + t′j+2 > ti,

where tj+2 is the time that sj transmits its third data packet and t′j+2 is the backoff time set

by sj for its third data packet transmission. Consequently, si will transmit one data packet

before sj transmits the third data packet.

In summary, sj can transmit at most two data packets before si transmits one data

packet in the worst case. Considering that there are at most U sensor nodes within the

carrier-sensing area of si according to Lemma 4.4.2, si can transmit at least one data packet

to its parent node within time 2Uτ in the worst case in DDC. 2

Corollary 4.4.1 In DDC, the time consumption of collecting all the data packets at V \

(D ∪ C) to D ∪ C is at most 2Uτ .

Proof: Based on the construction process of the data collection tree T , every node in

V \ (D ∪ C) has a parent node in D ∪ C. Thus, all the data packets at V \ (D ∪ C) can be

transmitted to the nodes in D ∪ C within time 2Uτ according to Theorem 4.4.1. 2

After time 2Uτ , all the data packets at V \ (D∪C) will be collected to D∪C according

to Corollary 4.4.1. Subsequently, we investigate the time consumption to collect all the data

packets at (D ∪ C) \ {s0} to the sink s0.

Lemma 4.4.3 [7] Assume that X is a disk of radius rd andM is a set of points with mutual

distance of at least 1. Then |X ∩M| ≤ 2πr2d√
3
+ πrd + 1.

Let κ = α
√

c2(2R0/W − 1) + 1. It follows that R0-PCR = κ · r. Then, we can obtain the

following lemma by applying Lemma 4.4.3.
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Lemma 4.4.4 Assume that X is a disk of radius R0-PCR, then |X ∩ (D∪C)| ≤ βκ + βκ+1,

where βx = 2πx2
√
3
+ πx+ 1, i.e. the number of dominators and connectors within the CR of a

node is at most βκ + βκ+1 in DDC.

Proof: Since X is a disk of radius R0-PCR, it is possible for some connectors in X only

connecting some dominators out of disk X as shown in Figure 4.4. On the other hand, all

the dominators adjacent to the connectors in X ∩ C must locate in a concentric disk of X

with radius R0-PCR+r = (κ+ 1)r, denoted by X ′ as shown in Figure 4.4.

2R
0
-PCR rr

Dominator Connector

Figure 4.4 The number of dominators and connectors within the CR of a node.

Now, if r is normalized to 1, then X (respectively, X ′) is a disk of radius κ (respectively,

κ+1), and D is a set of nodes with mutual distance of at least 1. Then, by Lemma 4.4.3, we

have |X ∩D| ≤ βκ = 2πκ2
√
3
+πκ+1 (respectively, |X ′∩D| ≤ βκ+1 =

2π(κ+1)2√
3

+π(κ+1)+1), i.e.

the number of the dominators within X (respectively, X ′) is at most βκ (respectively, βκ+1).

Additionally, according to the aforementioned discussion and the CDS-based data collection

tree construction process, each connector in X ∩C must have a dominator parent located at

disk X ′, which implies |X ∩ C| ≤ |X ′ ∩D| ≤ βκ+1. It follows that |X ∩ (D ∪ C)| ≤ βκ + βκ+1

is proven. 2

From Lemma 4.4.4, we can obtain the following corollary.

Corollary 4.4.2 After time 2Uτ , every node in (D ∪ C) \ {s0} with data packets for trans-

mission can transmit at least one data packet to its parent node within time 2(βκ + βκ+1)τ
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in DDC.

Proof: According to Lemma 4.4.4, there are at most βκ+βκ+1 dominators and connectors

within the CR of a node. Furthermore, all the nodes in V \ (D ∪ C) have no data packets

for transmission after time 2Uτ according to Corollary 4.4.1. Then, by the same technique

used to prove Theorem 4.4.1, the conclusion of this corollary can be obtained. 2

Based on Lemma 4.4.4 and Corollary 4.4.2, we can obtain the time consumption to

collect all the data packets at (D ∪ C) \ {s0} to the sink s0 as shown in Theorem 4.4.2.

Theorem 4.4.2 After time 2Uτ , it takes at most 2(n−∆0) · (βκ + βκ+1) · τ time to collect

all the data packets at (D ∪ C) \ {s0} to the sink s0 in DDC, where ∆0 is the degree of s0 in

the data collection tree T .

Proof: As shown in Corollary 4.4.1, after time 2Uτ , all the nodes in V \ (D ∪ C) have

no data packets for transmission, and meanwhile, s0 has received at least ∆0 data packets

according to Theorem 4.4.1, since it has ∆0 child nodes in T . Subsequently, s0 receives at

least one data packet in every 2(βκ+βκ+1)τ time according to Corollary 4.4.2. Thus, it takes

at most (n−∆0) · 2(βκ + βκ+1)τ time to collect all the data packets at (D ∪ C) \ {s0} to the

sink s0 after time 2Uτ . 2

Theorem 4.4.3 The lower bound of data collection capacity achieved by DDC is Ω( 1
2(βκ+βκ+1)

·

W ), which is scalable and order-optimal.

Proof: According to Theorem 4.4.1 and Theorem 4.4.2, to collect all the n data packets

to the sink, the time consumption

T ≤ 2Uτ + 2(n−∆0) · (βκ + βκ+1) · τ (4.32)

= [(2 log n+
πR2(e2 − 1)

c1
) + 2(n−∆0) · (βκ + βκ+1)] · τ (4.33)

≤ [2 log n+
πR2(e2 − 1)

c1
+ 2(βκ + βκ+1)n] · τ (4.34)

= O(2(βκ + βκ+1)n · τ). (4.35)
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Thus, the achievable data collection capacity of DDC is C = nB
T ≥ nB

O(2(βκ+βκ+1)n·τ) =

Ω( 1
2(βκ+βκ+1)

·W ). As mentioned before, the upper bound capacity of data collection is O(W )

[4][5], and βκ+1 is a constant value depending on R0, which implies the achievable data col-

lection capacity of the DDC algorithm is order-optimal. Furthermore, since C is independent

of network size n, DDC is scalable. 2

4.5 R0-PCR-based Distributed Data Aggregation

As introduced in Part 2, data gathering can be categorized as data collection and data

aggregation. Therefore, for completeness, we in this section discuss how to apply the derived

proper carrier-sensing range R0-PCR to distributed data aggregation in WSNs.

In data aggregation, multiple data packets can be aggregated into one data packet by

applying an aggregation function, e.g. MAX, MIN, SUM, etc. Formally, the data aggregation

problem can be defined as follows. Let X,Y ⊆ V and X ∩ Y = ∅. The data of the nodes

in X is said to be aggregated to the nodes in Y in a time slot, if all the nodes in X can

transmit their data packets to the nodes in Y concurrently and interference-freely during a

time slot. Here, X is called a transmitter set. Then, the data aggregation problem can be

defined as to seek a data aggregation schedule which consists of a sequence of transmitter

sets X1, X2, · · · , XM , such that

1. ∀1 ≤ i ̸= j ≤M , Xi ∩Xj = ∅;

2.
∪M

1 Xi = V \ {s0}, where M is the latency of this data aggregation schedule;

3. Data can be aggregated from Xi to V \
∪i

j=1 Xj during time slot i for i = 1, 2, · · · ,M .

Ever since the data aggregation problem is raised, extensive research has been conduct-

ed on this issue ([7],[60]-[65], and references therein), especially for the Minimum-Latency

Aggregation Schedule (MLAS) problem, which tries to obtain a data aggregation schedule

with the objective to minimize the latency (minimize M). In [60], [61] and [7], several cen-

tralized data aggregation algorithms are proposed under the Unit Disk Graph (UDG) model
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and the protocol interference model. Chen et al. [60] proved that the MLAS problem is

NP-hard. Furthermore, they designed a (∆− 1)-approximation algorithm for this problem,

where ∆ is the maximum degree of the topological graph of a network. Subsequently, Huang

et al. [61] proposed another data aggregation algorithm which has a better performance. By

analysis, they showed that the delay of their algorithm is upper bounded by 23R +∆− 18

(R ∼ L and L is defined in Section 4.4), where R is the network radius. Recently, Wan et al.

[7] proposed three data aggregation algorithms of latency upper bounded by 15R +∆ − 4,

2R + O(logR) + ∆, and (1 + O(logR/ 3
√
R))R, respectively. Xu et al. [62] studied peri-

odic query scheduling for data aggregation with the minimum delay consideration. They

designed the centralized aggregation scheduling algorithms under various wireless interfer-

ence models, and analyzed the induced delay of each algorithm. As explained in Section 4.1,

centralized algorithms have many shortcomings in distributed wireless networks. To over-

come these shortcomings, some state-of-the-art distributed algorithms are proposed under

the UDG model and the protocol interference model [63][64][65]. In [63], Yu et al. proposed a

distributed CDS-based data aggregation schedule algorithm with latency upper bounded by

24D+6∆+16, where D is the network diameter. Xu et al. [64] also proposed a distributed

data aggregation algorithm with a better latency bound of 16R′ + 6∆− 14, where R′ is the

inferior network radius which satisfies R′ ≤ R ≤ D ≤ 2R′. The most recently published

distributed data aggregation algorithm is [65], in which Li et al. proposed an aggregation

scheme of latency upper bounded by 16R′ +∆− 14.

Unlike the previous works, we design an R0-PCR-based Distributed Data Aggregation

(DDA) algorithm. The main differences between this DDA and the previous works can be

summarized as follows. First, DDA is a distributed and asynchronous algorithm while many

previous algorithms (e.g. [7], [60]-[62]) are centralized. Since WSNs tend to be distributed

systems, distributed and asynchronous algorithms are more practical and suitable. Second,

DDA runs under the generalized physical interference model while most of the previous

works are under the UDG model or the protocol interference model. Compared with the

generalized physical interference model, the protocol interference model is simplified and
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can make the analysis process much easier. On the other hand, the generalized physical

interference model considers the aggregated interference in a WSN, which is more practical

as well as more complicated.

The description of our algorithm is shown in Algorithm 4. DDA is similar to DDC. The

main difference is that each node si (1 ≤ i ≤ n) only transmits one data packet to its parent

node, while in DDC, it may have to transmit multiple data packets to its parent node, i.e.

the traffic load of a data collection task is much heavier than that of a data aggregation task.

Algorithm 4: The DDA Algorithm

input : CDS-based data collection tree T , R0-PCR
output: a distributed asynchronous data aggregation plan

1 si (1 ≤ i ≤ n) sets its CR as R0-PCR according to the required threshold of data
receiving rate R0;

2 while s0 has not received the aggregation data do
3 if si is a leaf node in T or si has received the aggregation data from all of its

children in T then
4 if si is a non-leaf node then
5 si obtains the aggregation value of its data and the data of its children by

applying the aggregation function;

6 si randomly sets a backoff time ti for its data transmission in window (0, τw];
7 while ti is not countdown to 0 do
8 si senses the channel with R0-PCR;
9 if si senses that the channel is busy then

10 si stops the countdown process (the backoff timer is frozen) until the
channel becomes free again;

11 if si senses that the channel is free then
12 ti −−;

13 if ti == 0, i.e. the backoff timer expires then
14 si transmits the aggregation data to its parent node in T .

In Algorithm 4, the routing structure is a CDS-based data collection tree T as in DDC,

and we also assume no two transmitters within the CR of each other have their backoff

timers expired at the exactly same time instant.

Now, we analyze the delay performance of DDA. Similar to the delay of DDC, we can
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obtain the upper bound of the time consumption of DDA as shown in Theorem 4.5.1.

Theorem 4.5.1 The induced delay of DDA is upper bounded by log n+(βκ+βκ+1−1)L+c3

time slots, where L is the hight of the data collection (aggregation) tree T , and c3 =
πR2(e2−1)

2c1
−

βκ − βκ+1 is a constant value depending on R0-PCR.

Proof: From Lemma 4.4.2, the upper bound of the number of nodes within a disk of

radius R0-PCR is U = log n+ πR2(e2−1)
2c1

. Therefore, for any node, it waits at most U−2 time

slots before transmitting its data to its parent node (minus two means the transmitter and

its parent node are not counted). Therefore, it takes at most (U−1) · τ time to aggregate all

the data at V \ (C ∪D) to C ∪D according to the schedule strategy in DDA. After (U− 1) · τ

time, there is no data for transmission at nodes in V \ (C ∪ D). Based on Lemma 4.4.4, the

number of dominators and connectors within a disk of radius R0-PCR is upper bounded by

βκ+βκ+1. Consequently, according to DDA, a node in C ∪D has an opportunity to transmit

one data packet within time (βκ + βκ+1− 1) · τ . Considering the hight of the data collection

(aggregation) tree T is L (which implies the number of hops from the sink to any node in

C ∪ D is at most L− 1), the number of time slots consumed by DDA is upper bounded by

(U− 1) + (βκ + βκ+1 − 1)(L− 1) (4.36)

= U+ (βκ + βκ+1 − 1)L− βκ − βκ+1 (4.37)

= log n+ (βκ + βκ+1 − 1)L+
πR2(e2 − 1)

2c1
− βκ − βκ+1 (4.38)

= log n+ (βκ + βκ+1 − 1)L+ c3, (4.39)

where c3 =
πR2(e2−1)

2c1
− βκ − βκ+1. 2

4.6 Data Collection and Aggregation under the Poisson Distribution Model

In Section 4.2, we assume that all the sensor nodes are independent and identically

distributed. Based on that network distribution model, we obtain the achievable capacity

of the proposed data collection method DDC, which is order-optimal, and the delay upper



115

bound of the designed data aggregation method DDA. To be more general, in this section,

we consider another frequently employed non-i.i.d. model, named the Poisson distribution

model, and analyze the performances of DDC and DDA.

Under the Poisson distribution model, we assume that one sink node s0 and n sensor

nodes s1, s2, . . . , sn are distributed according to a two-dimensional Poisson point process

with density λ in some area with size A = c1n. To make data collection and aggregation

meaningful, we also assume that the network is connected. Then, by the same method in

Section 4.4, a CDS-based data collection tree T can be constructed. Therefore, we can still

exploit DDC and DDA to finish data collection and aggregation tasks under the Poisson

distribution model. Now, we analyze the delay performance of DDC and DDA.

Let R = R0-PCR = ( α
√

c2(2R0/W − 1)+1) ·r = κ ·r. We first analyze the average/upper

bound of the number of sensor nodes within the CR of a node as shown in the following

lemma.

Lemma 4.6.1 Let the random variable X denote the number of sensor nodes within the CR

of a node. Then, we have

(i) E[X] = πλR2;

(ii) it is almost sure that the number of sensor nodes within the CR of a node is upper

bounded by a log n, where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
).

Proof: (i) Since the sensor nodes are distributed according to a two-dimensional Poisson

point process with density λ, we have

E[X] =
+∞∑
k=1

Pr(X = k) · k (4.40)

=
+∞∑
k=1

(πλR2)k

k!
exp(−πλR2) · k (4.41)

= πλR2. (4.42)

(ii) Similar to the proof in Lemma 4.4.2, applying the Chernoff bound and for any ϵ > 0,
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we have

Pr[X > a log n] ≤ Pr[X ≥ a log n] (4.43)

≤ min
ϵ>0

E[eϵX ]

eϵa logn
= min

ϵ>0

exp(πλR2(eϵ − 1))

eϵa logn
(4.44)

= min
ϵ>0

exp(πλR2(eϵ − 1)− ϵa log n) (4.45)

= exp(−2 log n) ≤ 1

n2
. (4.46)

Since
∑

n>0
1
n2 is upper bounded by π2

6
, it follows that the number of sensor nodes within the

CR of a node is upper bounded by a log n almost surely, where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
).

2

Based on Lemma 4.6.1, it is reasonable to take a log n as the upper bound of the number

of sensor nodes within the CR of a node. Then, we have the following theorem, which

indicates the upper bound of the induced delay of our data collection algorithm DDC under

the Poisson distribution model.

Theorem 4.6.1 Under the Poisson distribution model, the induced delay of DDC to collect

all the data (n data packets) to the sink is upper bounded by 2(a log n+(n−∆0)(βκ+βκ+1))·τ ,

where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
).

Proof: Based on Lemma 4.6.1 and by similar methods to Theorem 4.4.1 and Corollary

4.4.1, it can be proven that the time consumption to collect all the data packets at V \(D∪C)

to D ∪ C is upper bounded by 2a log nτ . Subsequently, similar to Theorem 4.4.2, the time

consumption to collect all the n data packets to the sink is

T ≤ 2a log nτ + 2(n−∆0)(βκ + βκ+1)τ (4.47)

= 2(a log n+ (n−∆0)(βκ + βκ+1)) · τ, (4.48)

where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
). 2

Based on Theorem 4.6.1, the achievable data collection capacity of DDC can be obtained
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as shown in the following theorem.

Theorem 4.6.2 Under the Poisson distribution model, the achievable data collection capac-

ity of DDC is lower bounded by Ω( 1
2(βκ+βκ+1)

·W ), which is scalable and order-optimal.

Proof: By a similar method to Theorem 4.4.3, this theorem can be proven. 2

Now, we analyze the induced delay of DDA under the Poisson distribution model, which

is shown in Theorem 4.6.3

Theorem 4.6.3 Under the Poisson distribution model, the induced delay of DDA is upper

bounded by a log n+(βκ+βκ+1−1)L−c4, where a = argmin
ϵ>0

(2
ϵ
+ πλR2(eϵ−1)

ϵ logn
) and c4 = βκ+βκ+1

are constant values.

Proof: By a similar method to Theorem 4.5.1, this theorem can be proven. 2

4.7 Simulation Results

In this section, we present simulation results to validate the performances of DDC

and DDA. In all the simulations, we consider the WSNs consisting of one sink node and

n sensor nodes which are randomly deployed in a square area with size A = c1n. Thus

the node density is 1
c1
. Since our primary concern is the achievable capacity and scalability

(respectively, induced delay) of DDC (respectively, DDA), we make some simplification and

normalization on the simulation settings. The maximum transmission radius of a node

is normalized to one and any node can work on the Re-Start (RS) mode with the IPCS

technique [80]. During the data collection period, every node produces a data packet whose

size is also normalized to one. Furthermore, all the nodes work with the same transmission

power P = 1 and over a common wireless channel with bandwidth normalized to one, which

implies the transmission time of a data packet τ is 1 in the ideal case. Then, we set the

backoff contention window τw = 1
10

for DDC and DDA in all the simulations. For a data

transmission, the background noise is negligible compared with the interference brought

by concurrent transmissions. Hence, we do not consider the background noise. For other
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important system parameters, e.g. the network size A, the node density 1
c1
, the number of

nodes n, the path loss exponent α, etc., we specify them later in each group of simulations.

The compared algorithm for DDC is the Multi-Path Scheduling (MPS) algorithm pro-

posed in [5], which is the most recently published centralized and synchronized data collection

method under the simplified protocol interference model for WSNs. In MPS, the interference

radius RI = η · r(η ≥ 1), where η is a constant and r is the communication radius of a

node. Thus, in the following simulations, we set RI = R0-PCR, which guarantees that MPS

can also initiate data transmissions with a satisfied data receiving rate R0. The compared

algorithm for DDA is the Enhanced Pipelined Aggregation Scheduling (E-PAS) algorithm [7],

which is the best and latest centralized data aggregation algorithm. Since E-PAS is also

designed under the protocol interference model, we set the interference radius of E-PAS to

R0-PCR according to different R0 values. In the following, each group of simulations is

repeated for 100 times and the results are the average values.

4.7.1 DDC Capacity vs. R0 and α

In this subsection, we consider the WSNs deployed in a square area with size A = 20×20

and the node density is 3. The impacts of R0 and α on the capacities of DDC and MPS

are shown in Figure 4.5. From Figure 4.5(a)-(c), we can see that with the increase of R0,

the achievable capacities of both DDC and MPS increase. Although a large R0 implies a

large R0-PCR (shown in Figure 4.2), which further implies that fewer nodes can conduct

transmissions concurrently, on the other hand a largeR0-PCR also implies short transmission

time of a data packet. Furthermore, with the increase of R0, the decrease of the transmission

time of a data packet is faster than the increase of R0-PCR, i.e. R0 dominates the achievable

data collection capacity. It follows that a large R0 leads to a high capacity for both DDC

and MPS.

From Figure 4.5(d)-(f), we can see that with the increase of α, the achievable capacities

of DDC and MPS also increase. This is because, for any transmission, the interference impact

from other concurrent transmissions decreases quickly with the increase of α. Thus, a large
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(f) R0 = 0.8

Figure 4.5 DDC capacity vs. MPS capacity.
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Figure 4.6 DDC/MPS capacity vs. Node density/Network size.

α implies a small R0-PCR and results in more nodes being able to initiate transmissions

concurrently. Therefore, the achievable data collection capacities of DDC and MPS increase

when α increases.

From Figure 4.5, we can also see that DDC achieves similar data collection capacity

to the centralized and synchronous MPS, although DDC is a distributed and asynchronous

data collection algorithm. The reason is that we set a proper CR for DDC. By setting the

CR of each node as R0-PCR, as many as possible nodes can initiate data transmissions

concurrently with a guaranteed data receiving rate at the receivers. This can also be seen

from Theorem 4.3.1. From the proof of Theorem 4.3.1, by packing all the possible concurrent

data transmissions in the densest manner, we obtain a small proper CR maximizing the

number of concurrent transmissions. Consequently, as many as possible transmissions can

be scheduled simultaneously without interference at any time, inducing high achievable data

collection capacity of DDC. Particularly, the average capacity differences between DDC and

MPS are 5.25%, 4.99%, and 4.27% when α = 3, α = 4, and α = 5, respectively, which

indicates that DDC achieves comparable capacity as centralized and synchronized MPS.
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4.7.2 Scalability of DDC

We examine the scalability of DDC with respect to the number of sensor nodes in a

WSN. In the following simulations, we set the path loss exponent α to 4, R0 to 1 (i.e. the

CR for DDC is 1-PCR), the default network size to 10× 10, and the default node density to

be 4. The impacts of the node density and the network size on the scalability and achievable

capacities of DDC and MPS are shown in Figure 4.6. where we can see that with the increase

of the number of sensor nodes (by fixing the network size and increasing the node density in

Figure 4.6(a) and fixing the node density and increasing the network size in Figure 4.6(b)),

the acheivable capacity of DDC keeps stable as that of centralized and synchronized MPS,

which implies DDC is scalable with respect to n, the number of sensor nodes in a WSN. This

is because the capacity of DDC only depends on R0-PCR, which is a distance-dependent

parameter. Thus, DDC is scalable for WSNs with different network sizes and node densities.

4.7.3 Performance of DDA

In this subsection, we examine the performance of DDA with respect to α, R0, and the

number of sensor nodes n. In all the simulations, we set the node density to 4. The results

are shown in Figure 4.7.

From Figure 4.7(a)-(c), we can see that with the increase of the guaranteed data receiv-

ing rateR0, the induced delay by both DDA and E-PAS increases for different α values. This

is different from the data collection situation, where the capacities of both DDC and MPS

increase when R0 increases. This is because: (i) with the increase of R0, the corresponding

R0-PCR increases as well (which can be seen from Figure 4.2). It follows that fewer data

transmissions can be conducted simultaneously in DDA and E-PAS. On the other hand,

even a larger R0 implies more data can be transmitted during one data transmission, i.e.

fewer transmission times. The induced delay of DDA and E-PAS still increases with the

increase of R0 since R0-PCR now plays the dominating role in data aggregation; (ii) data

collection has much more traffic (which is of order of O(n2)) than data aggregation (which is

of order of O(n)). Therefore, the data transmission rate (decided by R0) has more impacts



122

0.0 0.2 0.4 0.6 0.8 1.0

60

70

80

90

100

110

120

D
el
ay

R0

 DDA
 E-PAS

(a) α = 3, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0

65

70

75

80

85

90

95

R0

D
el
ay

 DDA
 E-PAS

(b) α = 4, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0

65

70

75

80

85

R0

D
el
ay

 DDA
 E-PAS

(c) α = 5, n = 2000

1000 1500 2000 2500 3000
0

20

40

60

80
D
el
ay

Number of Wireless Nodes

 DDA
 E-PAS

(d) R0 = 0.2, α = 4

1000 1500 2000 2500 3000
0

20

40

60

80

100

D
el
ay

Number of Wireless Nodes

 DDA
 E-PAS

(e) R0 = 0.5, α = 4

1000 1500 2000 2500 3000
0

20

40

60

80

100

D
el
ay

Number of Wireless Nodes

 DDA
 E-PAS

(f) R0 = 0.8, α = 4

Figure 4.7 Data aggregation delay of DDA and E-PAS.
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on the delay (as well as capacity) of data collection, while the data transmission concurrency

(decided by R0-PCR) has more impacts on the delay of data aggregation, i.e., the guaran-

teed data receiving rate (R0) will dominate the delay increasing of data collection while the

carrier-sensing (interference) range (R0-PCR) will dominate the delay increasing of data ag-

gregation. From Figure 4.7(a)-(c), we can also see that DDA has similar delay performance

to E-PAS although DDA schedules data transmission in a distributed and asynchronous

manner. On average, the delay differences between DDA and E-PAS in Figure 4.7(a)-(c) are

around 3.1%, 3.2%, and 2.6% respectively, which are quite small.

The data aggregation delay of DDA and E-PAS in WSNs with different sizes is shown

in Figure 4.7(d)-(f). From Figure 4.7(d)-(f), we can see that the induced delay of DDA and

E-PAS increases when the network becomes larger. The reason is straightforward since more

sensor nodes imply heavier traffic load. From Figure 4.7(d)-(f), we can also see that the

delay difference between DDA and E-PAS is very small. Particularly, in Figure 4.7(d)-(f),

the average delay differences between DDA and E-PAS are about 6.1%, 4.4%, and 3.3%

respectively, which implies DDA has comparable delay performance as the best centralized

data aggregation algorithm.

4.8 Conclusion

Since WSNs in practice tend to be distributed asynchronous systems and most of the

existing works study the network capacity issues for centralized synchronized WSNs, we

investigate the achievable data collection capacity for distributed asynchronous WSNs in this

part. To avoid data transmission collisions/interferences, we derive an R0-Proper Carrier-

sensing Range (R0-PCR) under the generalized physical interference model. By taking R0-

PCR as its carrier-sensing range, any node can initiate a data transmission with a guaranteed

data receiving rate. Subsequently, based on the obtained R0-PCR, we propose a scalable

Distributed Data Collection (DDC) algorithm with fairness consideration for asynchronous

WSNs. Theoretical analysis of DDC surprisingly shows that its achievable data collection

capacity is also order-optimal as that of centralized synchronized algorithms. Moreover, we
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study how to apply R0-PCR to distributed data aggregation in asynchronous WSNs, and

propose a Distributed Data Aggregation (DDA) algorithm. By analysis, the delay bound

of DDA is present. To be more general, we investigate the delay and capacity of DDC and

DDA under the Poisson node distribution model. The analysis again shows that DDC is

order-optimal and scalable with respect to achievable data collection capacity. The extensive

simulation results demonstrate that DDC has comparable data collection capacity compared

with the most recently published centralized and synchronized data collection algorithm,

and DDC is scalable in WSNs with different network sizes and node densities. DDA also

has similar performance to the latest and best centralized data aggregation algorithm.

The future work can be conducted along the following directions: first, we would like

to apply the derived PCR to other issues in WSNs, e.g. broadcast scheduling, multicast

scheduling, etc, and propose efficient distributed solutions for these issues. Second, we study

the data collection and aggregation problems for randomly deployed WSNs in this part.

However, it is still an open problem to design an order-optimal data collection algorithm

in arbitrarily distributed WSNs. The reason is that the nodes may distribute according

to any model in arbitrary WSNs, and thus there are many challenges to design an order-

optimal data collection algorithm with accurate capacity analysis. Therefore, we will study

order-optimal distributed data collection and aggregation issues for arbitrarily distributed

WSNs. Finally, there is a trade-off between network capacity and lifetime. In this work, we

focus on designing a distributed data collection algorithm with the objective to maximize

the achievable capacity. In the future work, we would like to study how to implement an

order-optimal data collection algorithm and meanwhile maximize network lifetime.
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PART 5

CONTINUOUS DATA AGGREGATION AND CAPACITY IN

PROBABILISTIC WIRELESS SENSOR NETWORKS

5.1 Introduction

For completeness, we study the snapshot and continuous data aggregation problems for

probabilistic WSNs in this part. In data gathering WSNs, the problem of collecting the

aggregated value of one snapshot is called Snapshot Data Aggregation (SDA). The problem

of collecting the aggregated value of each snapshot of multiple continuous snapshots is called

Continuous Data Aggregation (CDA). For snapshot data aggregation and continuous data

aggregation, we use the ratio between the amount of data been aggregated and the time

used to transmit the aggregated values of these data to the sink, referred to as snapshot data

aggregation capacity and continuous data aggregation capacity respectively, to measure their

achievable network capacity1.

As discussed in Part 3, most of the existing works that study the network capacity issue

are based on the ideal Deterministic Network Model (DNM), where any pair of nodes in a

network is either connected or disconnected. If two nodes are connected, i.e. there is a deter-

ministic link between them, then a successful data transmission can be guaranteed as long

as there is no collision. Otherwise, if two nodes are disconnected, the direct communication

between them is assumed to be impossible. However, in real applications, this determinis-

tic network model assumption is too ideal and not practical due to the “transitional region

phenomenon” [74][75]. With the transitional region phenomenon, a large number of network

links (probably more than 90% [74]) become unreliable, named lossy links [74]. Even without

collisions, data transmission over a lossy link is successfully conducted with a certain proba-

1Without confusion, we use snapshot data aggregation/continuous data aggregation capacity and network
capacity interchangeably in the following of this part.
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bility, rather than being completely guaranteed. Therefore, a more practical network model

for WSNs is the Probabilistic Network Model (PNM) [74], in which data communication over

a link is successful with a certain probability rather than always being successful or always

fail.

As mentioned before, for the network capacity issues (including uni/multi/broad-cast,

data collection/aggregation capacities), most of the existing works are based on the ideal

DNM rather than the more practical PNM. This motivates us to study the achievable network

capacity of WSNs under the realistic probabilistic network model, i.e. for probabilistic WSNs.

Specifically, in this part, we investigate the achievable network capacities of snapshot data

aggregation and continuous data aggregation under the probabilistic network model. When

studying the snapshot data aggregation and continuous data aggregation capacities, we first

partition the network into cells and derive the lower and upper bounds of the number of

sensors within each cell (as in Part 3). Afterwards, we use two vectors to further partition

all the cells into different equivalent color classes (as the compatible transmission cell set in

Part 3). Based the equivalent color classes, we design a Cell-based Aggregation Scheduling

(CAS) algorithm for snapshot data aggregation, and a Level-based Aggregation Scheduling

(LAS) algorithm for continuous data aggregation. Furthermore, we prove that both CAS

and LAS are order-optimal by analyzing their achievable network capacities. Particularly,

the main contributions of this part are summarized as follows:

1. Inspired by the network partition method in [78], we first partition a WSN into cells and

use two vectors to further partition these cells into equivalent color classes. According

to the obtained cells and equivalent color classes, we design a two-phase Cell-based

Aggregation Scheduling (CAS) algorithm for the SDA problem in probabilistic WSNs.

In the first phase, all the non-local aggregation nodes transmit their data packets to the

local aggregation node in the same cell. In the second phase, all the local aggregation

nodes transmit the local aggregation values along the constructed data aggregation

tree to the sink. Theoretical analysis shows that the achievable capacities of CAS are

all Ω(po
√
en logn
2ω

·W ) in the worst case, in the average case, and in the best case, where
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po is the promising transmission threshold probability (Section 5.2), n is the number of

sensor nodes in the considering WSN, ω is a constant value, and W is the bandwidth

of the wireless channel. Moreover, we study the upper bound capacity of the SDA

problem, which is O(po
√
en logn
3

·W ). This implies that CAS has successfully achieved

order optimal capacities in all the cases.

2. We propose a Level-based Aggregation Scheduling (LAS) algorithm for the CDA prob-

lem in probabilistic WSNs. LAS gathers the aggregation values of continuous snapshots

by forming a data aggregation/transmission pipeline on the segments and scheduling

the cell-levels in a cell-level class concurrently. Theoretical analysis of LAS shows that

its achievable network capacity is


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n

logn
);

Ω( po
13.4ω2

n
logn
·W ), if N = Ω(

√
n

logn
).

in the worst case,


Ω( poN

2
√
eω

√
n

logn
·W ), if N = O(

√
n

logn
);

Ω( po
2eω2

n
logn
·W ), if N = Ω(

√
n

logn
).

in the average case, and


Ω( e

√
epoN
ω

√
n

logn
·W ), if N = O(

√
n

logn
);

Ω( epo
ω2

n
logn
·W ), if N = Ω(

√
n

logn
).

in the best case, where N is the number of snapshots in a continuous data aggregation

task. We also investigate the upper bound capacity of the CDA problem, which is


O(2e

√
epoN
3

√
n

logn
·W ), if N = O(

√
n

logn
);

O(2epo
9

n
logn
·W ), if N = Ω(

√
n

logn
).

.
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This implies that LAS has already achieved optimal capacities in order in every case.

3. To be more general, we further theoretically analyze the capacity performance of CAS

and LAS under the Poisson point distribution model. The analysis show that CAS and

LAS can also achieve order optimal capacities under the Poisson distribution model.

4. We also conduct extensive simulations to validate the performances of CAS and LAS

in probabilistic WSNs. Evaluation results indicate that CAS and LAS can improve

the SDA and CDA capacities, as well as network lifetime, of probabilistic WSNs sig-

nificantly, compared with the latest SDA and CDA methods for deterministic WSNs,

respectively.

The rest of this part is organized as follows: In Section 5.2, we give the PNM and make

some assumptions. In Section 5.3, we discuss the network partition method, which is cru-

cial for the following data aggregation scheduling algorithms. The Cell-based Aggregation

Scheduling (CAS) algorithm for SDA is proposed and analyzed in Section 5.4. In Section

5.5, we design the Level-based Aggregation Scheduling (LAS) algorithm for CDA, and we

also derive the achievable capacity of LAS theoretically. To make our work more general,

we also analyze the capacity performance of CAS and LAS under the non-i.i.d. node distri-

bution model in Section 5.6, which turns out to be order optimal either. In Section 5.7, the

simulations are conducted to validate the performances of CAS and LAS, and we conclude

this part and point out possible future research directions in Section 5.8.

5.2 Network Model

We employ the network model defined in Part 3 as follows. We consider a probabilistic

WSN consisting of n sensors, denoted by s1, s2, · · · , sn respectively, and one sink deployed

in a square area with size A = cn (i.e., the node density of this WSN is 1
c
), where c is a

constant. All the sensor nodes know their location information. Furthermore, we assume all

the sensors are independent and identically distributed (i.i.d.) and without of generality, the
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sink is located at the top-right corner of the square2. During each time interval, every sensor

produces a data packet of B bits, and multiple data packets of the same snapshot can also

be aggregated to a single data packet of B bits. All the transmissions are conducted over

a common wireless channel with bandwidth W bits/second, i.e. the data transmission rate

between any pair of nodes is at mostW . We further assume the network time is synchronized

and slotted into time slots of length to = B/W seconds3.

During the data transmission process, all the sensors work with a fixed power P . There-

fore, when sensor si transmits a packet to sensor sj, the Signal-to-Interference-plus-Noise

Ratio (SINR) associated with si at sj is defined as

Λ(si, sj) = SINR(si, sj) =
P · ∥si − sj∥−α

N0 +
∑
k ̸=i

P · ∥sk − sj∥−α , (5.1)

where, ∥si − sj∥ is the Euclidean distance between si and sj, α is the path-loss exponent

and usually α ∈ [3, 5], N0 is a constant representing the background noise, and sk is another

concurrent sender other than si. To simplify the analysis, under the DNM, people usually

assume that sj can receive the data packet from si successfully if Λ(si, sj) is greater than a

predefined value. However, in real applications, due to the existence of many lossy links, a

successful data transmission between two nodes can be conducted with a probability instead

of a fixed predetermined value. Therefore, a more practical and accurate method to depict

WSNs is by a Probabilistic Network Model (PNM), where each link is associated with a

success probability which indicates the probability that a successful data transmission can be

conducted over this link. According to the empirical literatures [75], we define the success

probability associated with si and sj as

Pr(si, sj) = (1− η1 · e−η2·Λ(si,sj))η3 , (5.2)

2Note that it is easier to extend to the situation that the sink is located at anywhere else in the WSN,
and we partition the WSN into four quadrants (taking the sink as the origin) and consider each quadrant
individually.

3This assumption is reasonable since recent works, e.g. [81], showed that network-wide synchronization
(at least at the millisecond level) is achievable.
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where η1, η2, and η3 > 1 are positive constants. Clearly, to successfully transmit a data packet

to sj, the expected number of transmission times of si satisfies a geometric distribution with

parameter Pr(si, sj), i.e. the expected number of time slots used to successfully transmit a

data packet from si to sj is 1/Pr(si, sj).

Actually, the successful probability of each link should not be too low, since a low

successful probability implies many retransmission times and too much energy consumption

until a successful transmission. Thus, similar as in Part 3, we define a promising transmission

threshold probability po. Then, for any pair of nodes si and sj, the data transmission between

them can be initialized only if Pr(si, sj) ≥ po. Now, for any qualified data transmission node

pair, the expected number of transmission times to successfully transmit a data packet is at

most 1/po. Therefore, similar as in Part 3, we define a normalized time slot tn = to/po for

convenience.

In the studied data aggregation problem, multiple data packets can be aggregated into

one by applying a data aggregation function, e.g. MAX, MIN, SUM, etc. Formally, similar

as in Part 4, we can define the SDA problem as follows. Let X and Y bet two subsets of

V = {s0, s1, s2, · · · , sn}, where s0 is the sink node, and X ∩ Y = ∅. The data of the nodes

in X is said to be aggregated to the nodes in Y in a time slot if all the nodes in X can

transmit their local aggregation data to the nodes in Y concurrently and interference-freely

during that time slot. In this aggregation process, we call X a transmitter set. Then, the

SDA problem can be defined as to seek a SDA schedule which consists of a sequence of

transmitter sets X1, X2, · · · , XM , such that

1. ∀1 ≤ i ̸= j ≤M,Xi ∩Xj = ∅;

2.
∪M

i=1Xi = V \ {s0}, where M is the latency of this SDA schedule;

3. Data can be aggregated from Xi to V \
∪i

j=1 Xj during time slot i for i = 1, 2, · · · ,M .

Based on the SDA problem, the definition of the CDA problem can be defined to seek an

aggregation schedule for multiple continuous snapshots, with each snapshot corresponds to

a schedule similar as in the SDA problem. Note that, the schedule for multiple snapshots in
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the CDA problem may have some time overlap, i.e. the data aggregation in CDA may be

pipelined.

According to the defined PNM, SDA problem, and CDA problem, we further formally

define the data aggregation capacity as the ratio between the amount of data been aggregated

and the time used to transmit the aggregated values of these data to the sink, i.e. SDA

capacity is defined as nB/Γ, where Γ is the time used to transmit the aggregated value of

a snapshot to the sink; to gather the aggregated value of each snapshot of N continuous

snapshots (gathering N aggregated values to the sink, finally), the CDA capacity is defined

as NnB/Γ, where now Γ is the time used to transmit the N aggregated values to the sink.

5.3 Network Partition

In this section, we partition a WSN into cells and equivalent color classes by the similar

method used in Part 3.

5.3.1 Cell-Based Network Partition

Since we assume a WSN is deployed in a square area with A = cn, we partition this

square into small square cells with side length l =
√
ce log n by horizontal and vertical lines

starting at the left-bottom-most point. Moreover, we use m =
√

n/e log n to denote the

number of cells in each row/column. For convenience, we also assign each cell a pair of

coordinates (i, j) (1 ≤ i, j ≤ m), where i and j indicate this cell is located at the i-th column

and the j-th row respectively from the left-bottom-most point. Further, we use ci,j to denote

the cell with coordinates (i, j). According to the communication mode of data aggregation

and considering the fact that the sink is located at the top-right corner, we define four possible

data transmission modes for the sensors in each cell, namely inside transmission mode,

upward transmission mode, rightward transmission mode, and up-rightward transmission

mode. Under the insider transmission mode, a node in ci,j transmits its data packet to

another node also in ci,j. Under the upward (rightward/up-rightward) transmission mode,
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cell ci,j transmits its data packets to cell ci,j+1 (ci+1,j/ci+1,j+1)
4.

For cell ci,j, let the random variable Xi,j denote the number of sensors in it. Then, the

expected number of sensors within ci,j (1 ≤ i, j ≤ m), i.e. E[Xi,j], can be determined by

Lemma 5.3.1.

Lemma 5.3.1 E[Xi,j] = e log n.

Proof: Since all the sensors are i.i.d., the number of sensors within a cell satisfies the

binomial distribution with parameters (n, l
2

A
). Thus, E[Xi,j] = n · l2

A
= e log n. 2

Subsequently, we can obtain the upper and lower bounds of the number of sensors within

cell ci,j (1 ≤ i, j ≤ m) as shown in Lemma 5.3.2 and Lemma 5.3.3, respectively. The proof

techniques of Lemma 5.3.2 and Lemma 5.3.3 are similar as that in the proof of Lemma 3.3.2

and Lemma 3.3.3.

Lemma 5.3.2 For any cell ci,j (1 ≤ i, j ≤ m), Pr(ci,j contains 6.7 log n sensors or more) =

Pr(Xi,j ≥ 6.7 log n) ≤ 1
n2 . Then, it is almost sure that ci,j contains no more than 6.7 log n

sensors.

Proof: Since Xi,j is a binomial random variable with parameters (n, l
2

A
) as shown in

Lemma 5.3.1, by applying the Chernoff bound and for any ξ > 0, we have

Pr(Xi,j ≥ 6.7 log n) ≤ min
ξ>0

E[exp(ξXi,j)]

exp(6.7ξ log n)
(5.3)

= min
ξ>0

(1 + (eξ − 1) · e log n/n)n

exp(6.7ξ log n)
(5.4)

≤ min
ξ>0

exp((eξ − 1) · e log n)
exp(6.7ξ log n)

(5.5)

= min
ξ>0

exp((eξ+1 − e− 6.7ξ) · log n). (5.6)

4For convenience, we use a cell and the sensors within this cell interchangeable in the following of this
part.
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Particularly, let ξ = ln 6.7− 1. We have

Pr(Xi,j ≥ 6.7 log n) ≤ exp(−2 log n) (5.7)

≤ exp(−2 lnn) (5.8)

=
1

n2
. (5.9)

Since
∑
n>0

1
n2 is bounded by the result of the Basel problem, Pr(χi,j ≤ 6.7 log n) ∼ 1

according to the Borel-Cantelli Lemma, i.e. it is almost sure that Xi.j ≤ 6.7 log n. 2

Lemma 5.3.3 For any cell ci,j (1 ≤ i, j ≤ m), Pr(ci,j contains 1
2e
log n sensors or fewer) =

Pr(Xi,j ≤ 1
2e
log n) ≤ 1

n2 . Then, it is almost sure that ci,j contains no fewer than 1
2e
log n

sensors.

Proof: Similar to the proof of Lemma 5.3.2, applying the Chernoff bound and for any

ξ < 0, we have

Pr(Xi,j ≤
1

2e
log n) ≤ min

ξ<0
exp((eξ+1 − e− 1

2e
ξ) · log n). (5.10)

Let ξ = ln 1
2e
− 1, we have

Pr(Xi,j ≤
1

2e
log n) (5.11)

≤ 1

n2
. (5.12)

Thus, by the Borel-Cantelli Lemma, Pr(χi,j ≥ 1
2e
log n) ∼ 1, i.e. it is almost sure that ci,j

contains no fewer than 1
2e
log n sensors. 2

From Lemma 5.3.1, we know that the average number of sensors within a cell is e log n.

From Lemma 5.3.2 and Lemma 5.3.3, we know that the probabilities that a cell contains

more than 6.7 log n sensors or fewer than 1
2e
log n sensors are zero for large n. Therefore, it is

reasonable for us to use 6.7 log n and 1
2e
log n as the upper and lower bounds as the number

of sensors within a cell, respectively. In the following discussion, we assume a cell contains
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e log n sensors in the average case, 6.7 log n sensors in the worst case, and 1
2e
log n sensors

in the best case.

5.3.2 Equivalent Color Class

After partitioning the WSN into cells, we further partition all the cells into disjoint

cell sets, named equivalent color classes, by two vectors. For each equivalent color class, we

assign it a color (actually assign this color to all the cells within this equivalent color class),

denoted by a natural number. The two vectors we use to partition the cells are X⃗ = (ω, 0)

and Y⃗ = (0, ω), where ω ∈ N+ is a constant positive integer. Based on X⃗ and Y⃗ , we define

the equivalent color class containing ci,j as {cx,y|(x, y) = (i, j) + a · X⃗ + b · Y⃗ , x ∈ [1,m], y ∈

[1,m], a ∈ Z, b ∈ Z}. Within an equivalent color class, if cell ci,j has the smallest distance to

the left-bottom-most point, ci,j is called the pivot cell of this class. Further, the equivalent

color class having ci,j as the pivot cell is denoted by Ci,j.

Based on the equivalent color class partition method, it is straightforward to obtain the

following lemma.

Lemma 5.3.4 The cells of a WSN can be partitioned into ω2 equivalent color classes.

Let Λ(Ci,j) = min{Λ(su, sv)|su is any sensor in any cell of Ci,j, sv is the destination node

of su under any transmission mode}. Then, we have the following lemma. Lemma 5.3.5 can

be proven by similar techniques in Lemma 3.3.4.

Lemma 5.3.5 Let R = ωl. If all the cells not in Ci,j keep silent and all the cells within

Ci,j conduct data transmissions concurrently and successfully5, then Λ(Ci,j) ≥ P ·d−α

N0+P ·ϖ·R−α ,

where d ≤ 2
√
2l is the distance between a communication pair and ϖ ≈ 8 · (3α + 2.847) is a

positive constant.

Based on Lemma 5.3.5, we can determine the value of ω to make all the cells within

each equivalent color class conduct transmissions concurrently and successfully as shown in

5Here, “successfully” means all the data transmissions conducted are promising transmissions under any
transmission mode.
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Theorem 5.3.1. Theorem 5.3.1 can be proven by similar techniques in Lemma 3.3.5 and

Theorem 3.3.1.

Theorem 5.3.1 If we properly set ω = Θ(d+Θ(1)
l

) and all the other cells not in Ci,j keep

silent, then all the cells in Ci,j (1 ≤ i, j ≤ ω) can conduct data transmissions under any

communication mode concurrently and successfully.

Based on Theorem 5.3.1, we assign an appropriate value for ω, i.e. Θ(d+Θ(1)
l

), in the fol-

lowing discussion, which implies that all the cells in equivalent color class Ci,j (1 ≤ i, j ≤ m)

can conduct data transmissions under any communication mode concurrently and success-

fully.

5.4 Snapshot Data Aggregation

In this section, we consider the snapshot data aggregation problem, propose a Cell-based

Aggregation Scheduling (CAS) algorithm for snapshot data aggregation, and analyze the

achievable network capacity of CAS. Furthermore, we also derive the upper bound network

capacity of the snapshot data aggregation problem, which shows our proposed CAS is order-

optimal.

5.4.1 Cell-Based Snapshot Data Aggregation

As proven in Section 5.3.1, each cell ci,j (1 ≤ i, j ≤ m) contains e log n, 6.7 log n,

and 1
2e
log n sensors in the average case, the worst case, and the best case, respectively.

Therefore, we define a super time slot, denoted by ts, for convenience, where ts = e log n · tn,

ts = 6.7 log n · tn, and ts =
1
2e
log n · tn in the average case, the worst case, and the best case,

respectively. Thus, within a super time slot, all the sensors within a cell can be assigned

one normalized time slot to transmit its data. Then, we design a two-phase snapshot data

aggregation algorithm, named Cell-based Aggregation Scheduling (CAS), as follows.

Intra-Cell Scheduling Phase. In this phase, we schedule the data aggregation op-

erations within each cell. First, for cell ci,j (1 ≤ i, j ≤ m), we choose one sensor from this
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Figure 5.1 Data aggregation tree.

cell as the local aggregation node of this cell, denoted by Ai,j. As shown in Figure 5.1, the

black node within each cell is the local aggregation node of that cell. Subsequently, with-

in each cell ci,j (1 ≤ i, j ≤ m), all the non-local aggregation nodes transmit their data to

Ai,j under the inside transmission mode according to a sequential order, e.g. sensors with

smaller ID transmit first. Finally, Ai,j (1 ≤ i, j ≤ m) aggregates all the data it received

and its own data to form a new aggregated data packet to transmit in the second phase. In

Section 5.3.2, we have partitioned all the cells into ω2 equivalent color classes and assigned

each Cx,y (1 ≤ x, y ≤ ω) a color x + (y − 1)ω. Moreover, all the cells within an equivalent

color class can conduct data transmissions under any transmission mode concurrently and

successfully according to Theorem 5.3.1. Thus, to schedule all the cells to finish the intra-cell

scheduling phase, we can schedule each equivalent color class for one super time slot, with

Cx,y scheduled in the (x+ (y − 1)ω)-th super time slot.

After the first phase, all the local aggregation nodes need to transmit the local aggregat-

ed values to the sink to obtain the final aggregation value of the whole snapshot (note that

data can also be aggregated during the transmission process). To finish the data aggregation

task in the second phase, we construct a data aggregation tree, denoted by T , rooted at the
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sink to connect all the local aggregation nodes according to the similar rules as in Part 3 to

construct a data collection tree:

• For Ai,j (1 ≤ i, j ≤ m − 1), it transmits its data to Ai+1,j+1 under the up-rightward

transmission mode, i.e. connect Ai,j with Ai+1,j+1 as its parent node;

• ForAm,j (1 ≤ j ≤ m−1), it transmits its data toAm,j+1 under the upward transmission

mode, i.e. connect Am,j with Am,j+1 as its parent node;

• For Ai,m (1 ≤ i ≤ m − 1), it transmits its data to Ai+1,m under the rightward trans-

mission mode, i.e. connect Ai,m with Ai+1,m as its parent node.

An example data aggregation tree is shown in Figure 5.1. For Ai,j, we define the level

of Ai,j in T , denoted by hi,j, as the number of hops from Ai,j to the root of T (i.e. the sink).

Clearly, T has m − 1 levels. Furthermore, we denote the set of all the local aggregation

nodes with the same level k (1 ≤ k ≤ m − 1) as Lk, i.e. Lk = {Ai,j|hi,j = k}. For the

local aggregation nodes in Lk (1 ≤ k ≤ m− 1), suppose they come from Ck equivalent color

classes. Then, we gather the final aggregation value of a snapshot as shown in the second

phase.

Inter-Cell Scheduling Phase. In this phase, we schedule local aggregation nodes

level by level, staring from the (m − 1)-th level. For every local aggregation node in Lk,

after it receives the aggregation values from its children local aggregation nodes in Lk+1, it

aggregates the received values with its own data to form a new data packet. Subsequently, it

transmits the new obtained data packet to its parent local aggregation node in Lk−1 during

its available time slots. Since the local aggregation nodes in Lk (1 ≤ k ≤ m− 1) come from

Ck equivalent color classes, they can be scheduled by Ck normalized time slots.

At the end of the second phase, the sink will receive partial aggregated values of a

snapshot. Consequently, the sink can obtain the final aggregation value of a snapshot by

doing some aggregation calculations.
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5.4.2 Capacity Analysis of CAS

In this subsection, we analyze the achievable network capacity of CAS in the worst case,

the average case and the best case, respectively. Subsequently, we study the upper bound

capacity of the snapshot data aggregation problem, which implies the achievable capacities

of CAS in all the cases are order-optimal.

Lemma 5.4.1 For snapshot data aggregation, the number of normalized time slots used by

CAS is at most 6.7ω2 log n+ (2ω− 1)(m− 1) in the worst case, eω2 log n+ (2ω− 1)(m− 1)

in the average case, and 1
2e
ω2 log n+ (2ω − 1)(m− 1) in the best case, respectively.

Proof: First, it is straightforward that in the first phase of CAS, the number of super

time slots used is ω2. According to the definition of a super time slot tu, it follows that the

number of normalized time slots used by CAS in the first phase is 6.7ω2 log n in the worst

case, eω2 log n in the average case, and 1
2e
ω2 log n in the best case.

In the second phase of CAS, the local aggregation nodes in T are scheduled level by

level, and level Lk will cost Ck normalized time slots. In Lk = {Am−k,j|m − k ≤ j ≤

k} ∪ {Aj,m−k|m− k ≤ j ≤ k}, both {Am−k,j|m− k ≤ j ≤ k} and {Aj,m−k|m− k ≤ j ≤ k}

come from at most ω equivalent color classes. Am−k,m−k can be from only one equivalent

color class, which implies Ck ≤ 2ω − 1. Furthermore, T has m− 1 levels, which implies the

second phase of CAS can be done with at most (2ω − 1)(m − 1) normalized time slots. In

summary, Lemma 5.4.1 holds. 2

Based on Lemma 5.4.1, we can obtain the achievable network capacities of CAS in

different cases as shown in Theorem 5.4.1.

Theorem 5.4.1 For snapshot data aggregation, the achievable network capacity of CAS is

Ω(
pon

6.7ω2 log n+ 2ω
√
n/e log n

·W ) = Ω(
po
√
en log n

2ω
·W )
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in the worst case,

Ω(
pon

eω2 log n+ 2ω
√

n/e log n
·W ) = Ω(

po
√
en log n

2ω
·W )

in the average case, and

Ω(
pon

1
2e
ω2 log n+ 2ω

√
n/e log n

·W ) = Ω(
po
√
en log n

2ω
·W )

in the average case.

Proof: In the worst case, the achievable network capacity of CSA is

nB

(6.7ω2 log n+ (2ω − 1)(m− 1)) · tn
(5.13)

≥ ponB

(6.7ω2 log n+ 2ωm)to
(5.14)

= Ω(
pon

6.7ω2 log n+ 2ω
√

n/e log n
·W ) (5.15)

= Ω(
po
√
en log n

2ω
·W ). (5.16)

Similarly, the achievable capacities of CAS in the average case and best case can be obtained.

2

Now, we study the upper bound capacity of the snapshot data aggregation problem as

shown in Theorem 5.4.2, which is an inherent property of snapshot data aggregation.

Theorem 5.4.2 The upper bound capacity of the snapshot data aggregation problem is at

most O(po
√
en logn
3

·W ), which implies that CAS has successfully achieved order optimal ca-

pacities in every case.

Proof: First, to aggregate the data produced at cells ci,1 (1 ≤ i ≤ m) and c1,j (1 ≤ j ≤

m), we need at least 1
2e
log n normalized time slots no matter what scheduling algorithm we

use. Second, since it is easy to know that for anyAi,j ∈ Lk (i = k or j = k) whose parent node

is Ai+1,j+1, both Λ(Ai+1,j,Ai+1,j+1) and Λ(Ai+2,j,Ai+1,j+1) are no less than Λ(Ai,j,Ai+1,j+1)
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at Ai+1,j+1, as well as Λ(Ai,j+1,Ai+1,j+1) and Λ(Ai,j+2,Ai+1,j+1). It follows that Ck ≥ 3 for

every 1 ≤ k ≤ m− 1. This further implies that we need at least 3(m− 1) normalized time

slots to transmit the aggregated values at Ai,1 (1 ≤ i ≤ m) and A1,j (1 ≤ j ≤ m) to the

sink. In summary, the number of normalized time slots used to obtain the final aggregation

value of a snapshot is at least 1
2e
log n + 3(m − 1), which implies the upper bound capacity

of the snapshot data aggregation problem is at most

nB

( 1
2e
log n+ 3(m− 1)) · tn

(5.17)

=
pon

1
2e
log n+ 3(

√
n/e log n− 1)

·W (5.18)

= O(
po
√
en log n

3
·W ). (5.19)

Since the achievable capacities of CAS in every case areO(po
√
en logn
2ω

·W ), CAS has successfully

achieved order optimal capacities. 2

5.5 Continuous Data Aggregation

To address the continuous data aggregation problem, we design a Level-based Aggrega-

tion Scheduling (LAS) algorithm in this section. Firstly, LAS partitions the data aggregation

tree T (constructed in Section 5.4.1) into segments (as the segments in Part 3) and cell-level

classes. Subsequently, LAS forms a data aggregation pipeline on the segments by scheduling

the data aggregations of a level class concurrently. Furthermore, we also analyze the achiev-

able capacities of LAS in every case, as well as the upper bound capacity of the continuous

data aggregation problem, which implies that LAS has successfully achieved order-optimal

capacities.

5.5.1 Level-based Aggregation Scheduling

In Section 5.4.1, we partition the local aggregation nodes Ai,j (1 ≤ i, j ≤ m) on T

into k levels, denoted by Lk (1 ≤ k ≤ m − 1). Since Ai,j corresponds to cell ci,j (Ai,j
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is the local aggregation node of ci,j), we also define a cell-level Lc
k as Lc

k = {ci,j|hi,j = k}

(1 ≤ k ≤ m−1). Then, to form a data aggregation pipeline, we partition the m−1 cell-levels

into
⌈
m−1
ω

⌉
segments with segment Sι = {Lc

k|m − (ι − 1) · ω − 1 ≥ k ≥ max{1,m − ι · ω}}

(1 ≤ ι ≤
⌈
m−1
ω

⌉
). For instance, the data aggregation tree corresponding to the WSN

shown in Figure 3.2 has 7 cell-levels, e.g. Lc
4 = {c4,4, c4,5, c4,6, c4,7, c4,8, c5,4, c6,4, c7,4, c8,4} and

Lc
2 = {c6,6, c6,7, c6,8, c7,6, c8,6} as shown in Figure 5.2. If ω = 3, these cell-levels can be

partitioned into three segments with S1 = {Lc
7,Lc

6,Lc
5}, S2 = {Lc

4,Lc
3,Lc

2}, and S3 = {Lc
1}

as shown in Figure 5.2(a), respectively. Furthermore, we also partition cell-levels into ω

cell-level classes, with each cell-level class defined by Lg = {Lc
k|k%ω = g} (1 ≤ g ≤ ω). For

instance, the network shown in Figure 5.2(a) has three cell-level classes: L1 = {Lc
7,Lc

4,Lc
1},

L2 = {Lc
5,Lc

2}, and L0 = {Lc
6,Lc

3}. Based on the definitions of segments and cell-level

classes, it is clear that (i) each segment has ω cell-levels (only S⌈(m−1)/ω⌉ may have fewer

cell-levels); (ii) all the cell-levels within any segment belong to different cell-level classes,

i.e. each segment contains exactly one cell-level from each of the ω cell-level classes; (iii)

according to the definitions of equivalent color classes and cell-level classes, the cells within

a cell-level class come from at most 2ω − 1 equivalent color classes. Now, to collect the

aggregation value of each of N continuous snapshots, we are ready to propose our Level-

based Aggregation Scheduling (LAS) algorithm. We explain the idea of LAS in a hierarchical

way, from a coarse granularity to a subtle granularity, as follows.

Segment-Granularity Scheduling. Since a WSN has been partitioned into segments,

a data aggregation/tranmission pipeline on these segments can be formed if we take each

segment as a unit. Suppose for segment Sι (1 ≤ ι ≤
⌈
m−1
ω

⌉
), the number of normalized time

slots used to transmit the aggregation values of a snapshot to the subsequent segment (to

the sink for S⌈(m−1)/ω⌉) is t
n
ι and define tp = max{tnι |1 ≤ ι ≤

⌈
m−1
ω

⌉
}. Then, to gather the N

aggregation values of N continuous snapshots, a data aggregation/tansmission pipeline can

be formed on these
⌈
m−1
ω

⌉
segments, with each segment working for tp normalized time slots

to transmit the aggregation values for each snapshot. Particularly, for segment Sι, after it

transmits the aggregation values of the j-th snapshot to segment Sι+1 in tp normalized time
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(a) Segment partition. In this example, we as-
sume ω = 3, which implies this network can be
partitioned into 3 segments: S1 = {Lc

7,Lc
6,Lc

5},
S2 = {Lc

4,Lc
3,Lc

2}, and S3 = {Lc
1}

(b) Segment-granularity and cell-
granularity scheduling.

Figure 5.2 Level-based aggregation scheduling.

slots (which also implies that Sι has already received the aggregation values of the (j+1)-th

snapshot from segment Sι−1), it starts to aggregate and transmit values for the (j + 1)-th

snapshot. For instance, the data aggregation pipeline formed on the three segments in Figure

5.2(a) is shown in Figure 5.2(b).

Level-Granularity Scheduling. Within each segment, LAS schedules data ag-

gregation and transmission cell-level class by cell-level class, i.e. level by level. Tak-

ing the data aggregation/transmission process of the j-th snapshot in segment S1 =

{Lc
m−1,Lc

m−2, · · · ,Lc
m−ω} as an example, LAS first schedules Lc

m−1 to transmit the aggrega-

tion values of the j-th snapshot to Lc
m−2. Subsequently, after Lc

m−2 receives the aggregation

values of the j-th snapshot from Lc
m−1, it aggregates the received values with its own data

and transmits the new obtained aggregation values to the subsequent cell-level. This process

is repeated until Lc
m−ω transmits the aggregation values of the j-th snapshot to next segment.

Since every segment does the same scheduling and the cell-levels have been partitioned into

cell-level classes, the level-granularity scheduling is equivalent to schedule cell-level classes
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repeatedly according to the order L(m−1)%ω,L(m−2)%ω, · · · ,L(m−ω)%ω. Furthermore, since the

cells within any cell-level class come from at most 2ω − 1 equivalent color classes as men-

tioned before, a cell-level class can be scheduled within 2ω−1 super time slots. For the data

aggregation pipeline shown in Figure 5.2(b), the cells in L1 = {Lc
7,Lc

4,Lc
1} will be scheduled

simultaneously to transmit data equivalent color class by equivalent color class to the cells

in L0 = {Lc
6,Lc

3}. Similarly, the data flow will be transmitted from cells in L0 = {Lc
6,Lc

3} to

cells in L2 = {Lc
5,Lc

2}, and then from L2 to L1.

Cell-Granularity Scheduling. Within each cell-level Lc
k (1 ≤ k ≤ m − 1), we have

2k+1 cells which come from at most 2ω− 1 equivalent color classes as explained in Lemma

5.4.1. This further implies all the cells in Lc
k can be scheduled in 2ω − 1 super time slots.

For cell ci,j, during its available super time slot, it does similar operations as in CAS, i.e.

all the non-local aggregation nodes transmit their data to Ai,j, and then Ai,j transmits the

aggregation value of cell ci,j to its parent node in T . For instance, in cell-level Lc
7 shown

in Figure 5.2(b), all the cells come from 5 equivalent color classes: {c1,1, c4,1, c7,1, c1,4, c1,7},

{c2,1, c5,1, c8,1}, {c3,1, c6,1}, {c1,2, c1,5, c1,8}, and {c1,3, c1,6}. These equivalent color classes of

each cell-level will be scheduled one by one. For all the cells in each equivalent color class,

they will be scheduled simultaneously as in CAS.

5.5.2 Capacity Analysis of LAS

Lemma 5.5.1 In LAS, tp ≤ 6.7ω(2ω − 1) log n in the worst case; tp ≤ eω(2ω − 1) log n in

the average case; tp ≤ 1
2e
ω(2ω − 1) log n in the best case.

Proof: As proven in Lemma 5.4.1, the cells within each cell-level come from at most

2ω − 1 equivalent color classes, which implies a cell-level can be scheduled in 2ω − 1 super

time slots, i.e. 6.7(2ω − 1) log n normalized time slots in the worst case. Furthermore, each

segment contains at most ω cell-levels, which implies that tp ≤ 6.7ω(2ω − 1) log n in the

worst case. By similar reasons, Lemma 5.5.1 also holds in the average case and the best

case. 2

Based on Lemma 5.5.1, we can obtain the achievable network capacities of LAS in every
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case as shown in Theorem 5.5.1.

Theorem 5.5.1 To gather the aggregation value of each of N continuous snapshots, the

achievable capacity of LAS is


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
13.4ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the worst case, 
Ω( poN

2
√
eω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
2eω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the average case, and


Ω( e

√
epoN
ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( epo
ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the best case.

Proof: From Lemma 5.5.1, tp ≤ 6.7ω(2ω− 1) log n in the worst case, which implies that

it takes at most
⌈
m
ω

⌉
·6.7ω(2ω−1) log n normalized time slots to gather the aggregation values

of the first snapshot by the sink. After that, according to the pipeline scheduling of LAS,

the sink will receive the aggregation values of a subsequent snapshot every 6.7ω(2ω−1) log n

normalized time slots, until the aggregation values of all the N continuous snapshots have

been gathered by the sink. Therefore, LAS uses at most

⌈m
ω

⌉
· 6.7ω(2ω − 1) log n+ (N − 1) · 6.7ω(2ω − 1) log n (5.20)

= O(13.4ω
√
n log n/e+ 13.4ω2N log n) (5.21)

normalized time slots to gather all the aggregation values of N continuous snapshots. It
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follows that the achievable capacity of LAS in the worst case is

nNB

O(13.4ω
√
n log n/e+ 13.4ω2N log n) · tn

(5.22)

=
ponN

O(13.4ω
√
n log n/e+ 13.4ω2N log n)

·W (5.23)

=


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
13.4ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

. (5.24)

By a similar method, we can obtain the achievable capacities of LAS in the average case

and in the best case. 2

Now, we study the upper bound capacity of the continuous data aggregation problem

as shown in Theorem 5.5.2, which implies that LAS has already successfully achieved order

optimal capacities in every case.

Theorem 5.5.2 The upper bound capacity of the continuous data aggregation problem to

collect the aggregation values of N continuous snapshots is


O(2e

√
epoN
3

√
n

logn
·W ), if N = O(

√
n

logn
)

O(2epo
9

n
logn
·W ), if N = Ω(

√
n

logn
)

.

Proof: As proven in Theorem 5.4.2, the local aggregation nodes (cells) of each level

(cell-level) come from at least 3 equivalent color classes, which implies that it takes at least

3 super time slots to schedule a cell-level. Furthermore, because of the same reason, the

cell-levels can be partitioned into segments with each segment contains at least 3 levels.

Therefore, tp ≥ 9
2e
log n. Then, the number of normalized time slots used to gather the

aggregation values of N continuous snapshots is at least

⌈m
3

⌉
· 9
2e

log n+ (N − 1) · 9
2e

log n (5.25)

= Ω(
3

2e

√
n log n

e
+

9N

2e
log n). (5.26)
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Thus, the upper bound capacity of the continuous data aggregation problem is

nNB

Ω( 3
2e

√
n logn

e
+ 9N

2e
log n) · tn

(5.27)

=
ponN

Ω( 3
2e

√
n logn

e
+ 9N

2e
log n)

·W (5.28)

=


O(2e

√
epoN
3

√
n

logn
·W ), if N = O(

√
n

logn
)

O(2epo
9

n
logn
·W ), if N = Ω(

√
n

logn
)

, (5.29)

which implies that the achievable capacities of LAS in every case are order optimal according

to Theorem 5.5.1. 2

5.6 Discussion: Capacity of CAS and LAS under Non-I.I.D. Models

Assuming the network is distributed according to an i.i.d. model is convenient for algo-

rithm design and analyzing the achievable data aggregation capacity of proposed algorithms.

However, this assumption may not hold in some situations. Therefore, in this section, we

analyze the capacity performance of CAS and LAS under non-i.i.d. models. Specifically,

we consider that all the sensor nodes are deployed according to a stationary Poisson point

process in this section.

Similar as in Section 5.2, we assume n sensor nodes deployed in a square area of size

A = cn according to a stationary Poisson point process with parameter λp. Subsequently,

by the same network partition method in Section 5.3.1, we partition the network into cells

with side length l =
√
ce log n. Then, for cell ci,j, the expected number of sensor nodes in
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ci,j is

E[Xi,j] =
+∞∑
k=1

Pr(Xi,j = k) · k (5.30)

=
+∞∑
k=1

(λpl
2)k

k!
exp(−λpl

2) · k (5.31)

= λpl
2 (5.32)

= ceλp log n. (5.33)

According to E[Xi,j], we can prove the following conclusions by similar techniques in

Lemma 5.3.2 and Lemma 5.3.3.

Lemma 5.6.1 For any cell ci,j and a constant value a = argmin
ξ>0

ceξ+1λp−ceλp+2

ξ
, Pr(ci,j con-

tains a log n sensors or more) = Pr(Xi,j ≥ a log n) ≤ 1
n2 , which implies it is almost sure that

ci,j contains no more than a log n sensor nodes.

Proof Sketch: Based on E[Xi,j] and applying the Chernoff bound and for any ξ > 0, we

have

Pr(Xi,j ≥ a log n) = Pr(eξXi,j ≥ eξ·a logn) (5.34)

≤ min
ξ>0

E[eξXi,j ]

eξ·a logn
(5.35)

= min
ξ>0

eceλp logn·(eξ−1)

eξ·a logn
(5.36)

= min
ξ>0

e(ce
ξ+1λp−ceλp−ξa) logn (5.37)

= e−2 logn (5.38)

≤ e−2 lnn (5.39)

=
1

n2
. (5.40)

Since
∑
n>0

1
n2 is bounded, Pr(χi,j ≤ 6.7 log n) ∼ 1 according to the Borel-Cantelli Lemma,

i.e. it is almost sure that Xi.j ≤ 6.7 log n. 2
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From Lemma 5.6.1, we know that the number of sensor nodes within a cell is upper

bounded by a log n with probability 1, where a = argmin
ξ>0

ceξ+1λp−ceλp+2

ξ
. Similarly, we can

also derive the lower bound of the number of sensor nodes within a cell as follows.

Lemma 5.6.2 For any cell ci,j and a constant value b = argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
, Pr(ci,j con-

tains b log n sensors or less) = Pr(Xi,j ≤ b log n) ≤ 1
n2 , which implies it is almost sure that

ci,j contains no less than b log n sensor nodes.

From Lemma 5.6.2, we can see that the lower bound of the number of sensor nodes

within a cell is b log n, where b = argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
. Based on Lemma 5.6.1 and Lemma

5.6.2, we can obtain the capacity bounds of CAS and LAS, which are both order optimal,

under the distribution model where all the nodes are deployed according to a Poisson point

process as follows.

Theorem 5.6.1 Under the Poisson point process distribution model, the achievable network

capacity of CAS is Ω( pon

logn+2ω
√

n/e logn
·W ) = Ω(po

√
en logn
2ω

) in the best case, average case, and

worst case, which is order optimal.

Theorem 5.6.2 Under the Poisson point process distribution model, the achievable network

capacity of LAS to gather the aggregation values of N continuous snapshots is


Ω(poN

ϑ

√
n

logn
·W ), if N = O(

√
n

logn
);

Ω( po
ϑω

n
logn
·W ), if N = Ω(

√
n

logn
).

, (5.41)

where

ϑ =


2aω = 2ω argmin

ξ>0

ceξ+1λp−ceλp+2

ξ
, in the worst case;

2ceλpω, in the average case;

2bω = 2ω argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
, in the best case.

(5.42)

and the achievable capacity is order optimal in all the cases.



149

5.7 Simulations

In this section, we validate the effectiveness of CAS and LAS via simulations. The

simulations are conducted on a home-made simulator, which is implemented by VC++.

Basically, the simulator consists of several modules involving the network generation module,

the network time/synchronization control module, the network topology control module, the

protocol module, etc. In all the simulations, we consider a WSN with one sink and all

the sensors randomly distributed in a square area. The network time is slotted, and each

time slot is normalized to one. All the nodes transmit data with a fixed power, denoted by

P . Furthermore, all the sensors work on a common wireless channel with bandwidth also

normalized to one. During each snapshot, every sensor node produces a packet with size

one. The aggregation functions are assumed to be perfect data aggregation functions, i.e.

the aggregation value of multiple data packets from the same snapshot is expressed using a

packet of size one. Moreover, we define the node density of a WSN as ρ, i.e. on average,

there are ρ sensors within a unit area. Throughout this section, we set ρ = 5.0 as default,

which implies the WSNs with different sizes have different numbers of sensors. For other

important system parameters, we set α = 3.0, η1 = 0.25, η2 = 10.0, η3 = 10.0, P/N0 = 10.0,

and N = 100. Furthermore, each group of simulations is repeated 100 times and the results

are the average values.

Since there are no existing works studying the SDA or CDA problems for probabilistic

WSNs, we compare our proposed algorithms with the most recently published data aggrega-

tion algorithms for deterministic WSNs. Specifically, we compare our SDA algorithm CAS

with DPr-S proposed in [36], Clu-DDAS proposed in [65], E-PAS proposed in [7], and DAS

proposed in [63]. DPr-S is an SDA algorithm under the protocol interference model, which is

a simplified interference model for ease of analysis, for deterministic WSNs [36]. Clu-DDAS

is an energy-efficient algorithm for minimum-latency data aggregation scheduling under the

protocol interference model for WSNs [65]. E-PAS is an SDA algorithm with the best known

delay performance under the unit disk graph model, which is also analyzed under the protocol
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interference model [7]. DAS is a distributed data aggregation algorithm, which is designed

under the unit disk graph model and protocol interference model for WSNs [63]. For our

CDA algorithm LAS, we only compare it with DPr-C [36], which is the pipelined version

of DPr-S. This is because most existing works are dedicated for the SDA problem, and it

is nontrivial to extend Clu-DDAS, E-PAS, and DAS to their pipelined versions. According

to [36], when gathering the aggregation values of continuous snapshots, DPr-C also forms a

data aggregation/transmission pipeline in three phases. In contrast, the data aggregation/-

transmission pipeline in LAS is formed based on segments and scheduled based on cell-level

classes and equivalent color classes, which has only one phase.

5.7.1 Performance of CAS

The achievable capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS in WSNs with

different sizes (e.g. 100× 100, 200× 200, and 300× 300) and different promising transmis-

sion threshold probabilities po are shown in Figure 5.3 and Figure 5.4. From Figure 5.3,

we can see that with the increase of the network size, the achievable capacities of CAS,

DPr-S, Clu-DDAS, E-PAS, and DAS also increase. This is because of the benefit brought

by data aggregation. In large WSNs, more cells can conduct data aggregation operations

concurrently, which implies within a time slot, more data can be aggregated. It results in

increasing the data aggregation capacity. This is also validated by Theorem 5.4.1.

From Figure 5.4, we can also see that with the increase of po, the achievable capacities of

CAS, DPr-S, Clu-DDAS, E-PAS, and DAS increase at first. However, after some threshold

po, the achievable capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS decrease with

the increase of po. For instance, in the WSN with size 200 × 200 shown in Figure 5.4(b),

when po increases from 0.6 to 0.85, the achievable capacity of CAS increases. After that, the

capacity of CAS decreases with the increase of po. This is because first, when po increases,

the expected number of time slots to successfully transmit a data packet, i.e. tn, decreases,

which implies that the total number of time slots used to gather the aggregation values

of a snapshot decreases. It follows that the capacities of CAS, DPr-S, Clu-DDAS, E-PAS,
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100×100 200×200 300×300
0
13
26
39
52
65
78
91
104
117
130
143
156
169
182
195
208
221
234
247  CAS

 DPr-S
 Clu-DDAS
 E-PAS
 DAS

SD
A

 C
ap

ac
ity

Network Size

(b) SDA capacity (po = 0.75).
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(c) SDA capacity (po = 0.9).

Figure 5.3 SDA capacity vs. network size (the node density ρ = 5.0).
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(b) SDA capacity in a WSN of size 200× 200.
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(c) SDA capacity in a WSN of size 300× 300.

Figure 5.4 SDA capacity vs. po (the node density ρ = 5.0).
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and DAS increase. Second, since a large po implies high-quality data communication, i.e.

on the other hand, less cells can conduct aggregation operations concurrently. Thus, the

network capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS decrease after exceeding

some threshold. Note that in the WSN shown in Figure 5.4(b), for the cases of po = 0.65

and po = 0.95, although CAS achieves a similar capacity, they have quite different meanings.

Since a small po implies more retransmission times to successfully transmit a data packet,

CAS consumes more energy for the case po = 0.65 although it has similar network capacity

as in the case po = 0.95.

Finally, as shown in Figure 5.3 and Figure 5.4, CAS always achieves a larger network

capacity than DPr-S, Clu-DDAS, E-PAS, and DAS. This is because of the network partition

methods and the equivalent color class-based scheduling scheme of CAS. By scheduling all

the cells in an equivalent color class, CAS achieves complete concurrency. On the other hand,

in DPr-S, Clu-DDAS, E-PAS, and DAS, either the data aggregation tree is not balanced, or

the wireless channel is under-utilized, i.e. full concurrency cannot be achieved. Therefore,

low SDA capacity is induced. On average, CAS achieves 67.2% more capacity than that of

DPr-S, 82.46% more capacity than that of Clu-DDAS, 47.38% more capacity than that of

E-PAS, and 89.65% more capacity than that of DAS.

5.7.2 Performance of LAS

To gather the aggregation values ofN = 100 continuous snapshots, the achievable capac-

ities of LAS and DPr-C in WSNs with different sizes and promising transmission threshold

probabilities are shown in Figure 5.5 and Figure 5.6, respectively. It shows in Figure 5.5

that the achievable capacities of LAS and DPr-C increase with the increase of the network

size. This is because first, as mentioned before, large WSNs imply more cells can conduct

aggregation operations concurrently. Second, the formed data aggregation pipelines in LAS

and DPr-C perform better in large WSNs, since large WSNs can be partitioned into more

segments, which are more suitable to form a pipeline to achieve higher concurrency.

From Figure 5.6, we can also see that due to the same reasons as discussed in the previous
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(b) CDA capacity (po = 0.75).
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(c) CDA capacity (po = 0.9).

Figure 5.5 CDA capacity vs. network size (the node density ρ = 5.0).
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(a) CDA capacity in a WSN of size 100× 100.
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(b) CDA capacity in a WSN of size 200× 200.
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(c) CDA capacity in a WSN of size 300× 300.

Figure 5.6 CDA capacity vs. po (the node density ρ = 5.0).
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subsection, with the increase of po, the achievable capacities of LAS and DPr-C have similar

increase and decrease trends as that of CAS and DPr-S. Furthermore, comparing Figure

5.6(a) with Figure 5.5, it is interesting to see that in some specific cases (e.g. in a WSN

with size 100 × 100, when po = 0.95), the capacities of LAS and DPr-C are smaller than

the capacities of CAS and DPr-S, respectively. This is because that the benefit of the data

aggregation pipelines formed in CAS and DPr-S is not significant in small WSNs, where a

pipeline is hard to form. This further validates that pipeline is more suitable for large scale

WSNs.

Similar to CAS, LAS achieves complete concurrency since it schedules all the cell-

levels within a cell-level class concurrently and all the cells within an equivalent color class

concurrently. This turns out that LAS always achieves a higher network capacity than DPr-

C as shown in Figure 5.5 and Figure 5.6. Particularly, LAS achieves 87.62% more capacity

than that of DPr-C on average.

5.7.3 Network Lifetime Evaluation for CAS and LAS

In this subsection, we evaluate the network lifetime performance of data aggregation

WSNs working with CAS/LAS. From the descriptions of CAS and LAS, we know that CAS

and LAS have the same energy-efficiency performance, i.e. they consume the same amount

of energy to gather the aggregation values of N snapshots, although LAS is much faster

than CAS due to its formed data aggregation pipeline. Therefore, we consider CAS and

LAS together when we evaluate their network lifetime performance. Similarly, DPr-S and

DPr-C can be considered together.

When deploy a WSN, we assume each sensor node has 1000 units of energy and the

sink node has unlimited energy supply. Transmitting a data packet consumes 1 unit of

energy and receiving a data packet consumes 0.5 units of energy. We further assume the

energy consumption of data aggregation processing is negligible compared with that of data

transmission and reception. The network lifetime is defined as the duration from the initial

network deployment to the time when the first node exhausts its energy. We let each algo-
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(c) Network lifetime of a WSN of size 300× 300.

Figure 5.7 Network lifetime vs. po (the node density ρ = 5.0).
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rithm continuously gather the aggregation values of snapshots until the network lifetime is

ended.

Under the aforementioned assumptions, the impacts of the threshold probability po

on the network lifetimes of CAS/LAS, DPr-S/DPr-C, Clu-DDAS, E-PAS, and DAS are

shown in Figure 5.7. From Figure 5.7, we can find that the network lifetimes of all the

algorithms are prolonged when po increases. The reason directly come from the fact that

large po corresponding to more reliable links implies fewer number of transmission failures

and retransmissions. This further implies that the energy of each node can be utilized more

effectively to extend network lifetime. By comparing Figure 5.7(a), (b), and (c), we can

see that network size has little impact on network lifetime. This is because we fix the node

density to be ρ = 5.0 and all the nodes are independent and identically distributed, which

implies the expected number of neighbors/children of the inner-nodes in an aggregation tree

remains unchanged no matter what the size of a network is. Therefore, the traffic load

of each single node in WSNs with different sizes keeps unchanged. From Figure 5.7, we

can also see that Clu-DDAS has the best network lifetime performance. This is because

Clu-DDAS constructs an energy-efficient cluster-based data aggregation tree. CAS/LAS

achieves longer network lifetime than DPr-S/DPr-C, E-PAS, and DAS. This is because first,

the data aggregation tree in CAS/LAS is balanced, while the data aggregation trees in E-PAS

and DAS are imbalanced which may induce skew energy consumptions decreasing network

lifetime; second, the routing structure of CAS/LAS is similar to a shortest path routing tree,

while DPr-S/DPr-C first gathers data vertically and then horizontally which may induce

unnecessary energy consumption.

We also examine the impact of node density ρ on network lifetime for CAS/LAS, DPr-

S/DPr-C, Clu-DDAS, E-PAS, and DAS as shown in Figure 5.8. From Figure 5.8, we can see

that the achievable network lifetime of all the algorithms decreases when ρ increases. This

is because that large ρ induces more potential workload to the inner nodes of an aggregation

tree. Therefore, each inner node consumes more energy to receive local aggregation values

of its children and thus the network lifetime may be decreased. From Figure 5.8, we can
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(c) Network lifetime (po = 0.9).

Figure 5.8 Network lifetime vs. node density ρ (the network size is 200× 200).
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also see that all the algorithms perform better in WSNs with large threshold value po and

CAS/LAS has longer network lifetime than DPr-S/DPr-C, E-PAS, and DAS. The reasons

are the same as the aforementioned ones.

5.8 Conclusion

Considering that there are no existing works studying the data aggregation problem

in probabilistic WSNs, we investigate the SDA and CDA problems under the PNM in this

work. First, we partition a WSN into cells and equivalent color classes. Then, based on the

partitioned cells and equivalent color classes, we propose a data aggregation algorithm for the

SDA problem, named Cell-based Aggregation Scheduling (CAS). The theoretical analysis of

CAS shows that its achievable network capacities are all Ω(po
√
en logn
2ω

·W ) in the worst case,

in the average case, and in the best case. Moreover, we study the upper bound capacity of

the SDA problem, which is O(po
√
en logn
3

·W ). This implies that CAS has successfully achieved

order optimal capacities in all the cases. For the CDA problem, we propose a Level-based

Aggregation Scheduling (LAS) algorithm. LAS achieves full concurrency by forming a data

aggregation/transmission pipeline and scheduling all the cell-levels within a cell-level class

simultaneously. The theoretical analysis of LAS and the CDA problem shows that LAS also

successfully achieves order optimal capacities in all the cases. To be more general, we analyze

the capacity performance of CAS and LAS under the non-i.i.d. node distribution model, e.g.

poisson point distribution model. It shows that CAS and LAS can achieve order optimal

capacities. The extensive simulation results further validate the effectiveness of CAS and

LAS.

The future work may involve the following directions. First, we will extend CAS and

LAS to more non-i.i.d. node distribution models and theoretically analyze their perfor-

mances. Second, to obtain more accurate and tighter SDA and CDA capacity bounds,

we may find some better stochastic functions to characterize the properties of lossy links.

Third, since large-scale WSNs as well as other large-scale wireless networks are more likely

to be distributed systems, we will design corresponding distributed and asynchronous SDA
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and CDA algorithms with order optimal capacity bounds. Finally, we would like to design

energy-efficient SDA and CDA algorithms which can also achieve order optimal capacities.
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PART 6

CONCLUSIONS

In this dissertation, we study the data collection and aggregation problems, as well as

their achievable network capacities, for WSNs.

First, we investigate the continuous data collection problem for dual-radio multi-channel

WSNs under the protocol interference model. We propose a multi-path scheduling algorith-

m for snapshot data collection in single-radio multi-channel WSNs and derive its network

capacity, which is a tighter lower bound compared with the previously best result. We sub-

sequently propose a novel CDC method for dual-radio multi-channel WSNs. It significantly

speeds up the data collection process, and achieves a capacity of nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ when

∆e ≤ 12 or nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12, where n is the number of the sensors, M is

a constant value and usually M ≪ n, ∆e is the maximum number of the leaf nodes having

a same parent in the data collection tree, W is the channel bandwidth, H is the number of

available orthogonal channels, ρ is the ratio of the interference radius over the transmission

radius, c3 =
8π√
3
+π+2, and c4 =

8π√
3
+2π+6. Extensive simulation results indicate that the

proposed algorithms improve network capacity significantly compared with existing works.

Second, considering that for most existing works studying the network capacity issue,

their designs and analysis are based on the deterministic network model, where any pair

of nodes in a network is either “connected” or “disconnected”. However, in real application

environments, this deterministic network model assumption is too ideal and not practical due

to the existence of the “transitional region phenomenon”. Actually, a more practical network

model for wireless networks is the probabilistic network model, where a transmission over a

link is conducted successfully with a probability instead of being determined. Unfortunately,

few of the existing works study the data collection capacity issue for wireless networks under

the practical probabilistic network model until now. To remedy this gap, we investigate
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the achievable snapshot/continuous data collection capacity for wireless networks under the

probabilistic network model. For snapshot data collection, we propose a novel Cell-based

Path Scheduling (CPS) algorithm which achieves capacity of Ω( 1
5ω lnn

·W ) in the sense of the

worst case and order-optimal capacity in the sense of expectation, where n is the number

of sensor nodes, ω is a constant, and W is the data transmitting rate. For continuous data

collection, we propose a Zone-based Pipeline Scheduling (ZPS) algorithm. ZPS significantly

speeds up the continuous data collection process by forming a data transmission pipeline,

and achieves a capacity gain of N
√
n√

logn lnn
or n

logn lnn
times better than the optimal capacity

of the snapshot data collection scenario in order in the sense of the worst case, where N is

the number of snapshots in a continuous data collection task. The simulation results also

validate that the proposed algorithms significantly improve network capacity compared with

the existing works.

Third, most of the existing works studying the data collection capacity issue have an

ideal assumption that the network time is synchronized explicitly or implicitly. Such an

assumption is mainly for centralized synchronous wireless networks. However, wireless net-

works are more likely to be distributed asynchronous systems. Thus, we investigate the

achievable data collection capacity of realistic distributed asynchronous WSNs. Our main

contributions include five aspects. Firstly, to avoid data transmission interference, we derive

an R0-Proper Carrier-sensing Range (R0-PCR) under the generalized physical interference

model, where R0 is the satisfied threshold of data receiving rate. Taking R0-PCR as its

carrier-sensing range, any sensor node can initiate a data transmission with a guaranteed

data receiving rate. Secondly, based on R0-PCR, we propose a Distributed Data Collec-

tion (DDC) algorithm with fairness consideration. Theoretical analysis of DDC surprisingly

shows that its achievable network capacity is order-optimal and independent of network size.

Thus, DDC is scalable. Thirdly, we discuss how to apply R0-PCR to the distributed data

aggregation problem, and propose a Distributed Data Aggregation (DDA) algorithm. The

delay performance of DDA is also analyzed. Fourthly, to be more general, we study the delay

and capacity of DDC and DDA under the Poisson node distribution model. The analysis
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demonstrates that DDC is also scalable and order-optimal under the Poisson distribution

model. Finally, we conduct extensive simulations to validate the performance of DDC and

DDA.

Fourth, we study the Snapshot Data Aggregation (SDA) problem, the Continuous Data

Aggregation (CDA) problem, and their achievable capacities for probabilistic WSNs under

both the independent and identically node distribution (i.i.d.) model and the Poisson point

distribution model in this dissertation. First, we partition a network into cells and use two

vectors to further partition these cells into equivalent color classes. Subsequently, based

on the partitioned cells and equivalent color classes, we propose a Cell-based Aggregation

Scheduling (CAS) algorithm for the SDA problem in probabilistic WSNs. Theoretical anal-

ysis of CAS and the upper bound capacity of the SDA problem show that the achievable

capacities of CAS are all order optimal in the worst case, the average case, and the best

case. For the CDA problem in probabilistic WSNs, we propose a Level-based Aggregation

Scheduling (LAS) algorithm. LAS gathers the aggregation values of continuous snapshots

by forming a data aggregation/transmission pipeline on the segments and scheduling all the

cell-levels in a cell-level class concurrently. By theoretical analysis of LAS and the upper

bound capacity of the CDA problem, we prove that LAS also successfully achieves order

optimal capacities in all the cases. The extensive simulation results further validate the

effectiveness of CAS and LAS. Specifically, compared with the most recently published algo-

rithm, CAS achieves 67.95% more capacity than that of DPr-S on average, and LAS achieves

90.45% more capacity than that of DPr-C on average.
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