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ABSTRACT 

The recently identified causative agent of White-Nose Syndrome (WNS), Geomyces destructans, 

has been responsible for the mortality of an estimated 5.7 million North American bats since its emer-

gence in 2006. A primary focus of the National Response Plan, established by US Fish and Wildlife in 

2011, was the identification of biological and chemical control options. In an effort to identify potential 

biological and chemical control options for WNS, six previously described bacterially produced volatile 

organic compounds (VOCs) and multiply induced Rhodococcus rhodochrous DAP96253 were screened 

for anti-Geomyces destructans activity. Geomyces destructans conidia and mycelial plugs were exposed 

to the VOCs and induced Rhodococcus in a closed air space at 15°C and 4°C and evaluated for inhibition 

of conidia germination and mycelial extension. Additionally, in situ application methods for induced 

Rhodococcus, such as fixed cell catalyst and fermentation cell paste in non-growth conditions, were 

screened with positive results. Rhodococcus was assayed for ex vivo activity via exposure to bat tissue ex-



plants inoculated with G. destructans conidia.  All VOCs inhibited radial growth of mycelial plugs and 

growth from conidia at both temperatures, with the greatest effect at low temperature (4°C). Induced 

Rhodococcus completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. 

Induced Rhodococcus inhibited Geomyces destructans growth from conidia when cultured in a shared air 

space with bat tissue explants inoculated with Geomyces destructans conidia. During the evaluation dif-

fusible brown pigment was observed in G. destructans cultures exposed to induced Rhodococcus or select 

VOCs. The pigment was induced by light and oxidative challenge and hypothesized to be melanin. Tradi-

tional microbiological methods, as well as copper sulfide-silver staining and ultraviolet-visible spectros-

copy, were utilized to confirm this hypothesis. This was a noteworthy result as melanin is a known viru-

lence factor in other pathogenic fungi and may play a significant role in WNS. The identification of bacte-

rially produced VOCs and inducible biological agents with anti-Geomyces destructans activity expands 

the pool of potential biological and chemical control options for WNS and provides wildlife management 

personnel with tools to combat this devastating disease. 
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1 INTRODUCTION 

 

1.1 History of White-Nose Syndrome and potential impacts 

 

White-nose syndrome (WNS) was first identified near Albany, New York,  in 2006 [21]. Since its 

discovery WNS has been responsible for severe declines in bat populations in the Eastern United States 

and Canada, with estimates of more than 5 million deaths from the disease since 2006 (Fig. 1.1) [6, 19 ]. 

Although the exact ecological and economic impact of this disease has yet to be determined, many re-

searchers agree that continued declines in insectivorous bat populations will have a significant impact on 

forest management, agriculture, and insect borne disease [6, 9].   

  

Figure 1.1 The spread of WNS in North America since emergence in 2006. Map courtesy of Bat 

Conservation International. 
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The biodiversity2 of bats has noteworthy inherent value as they are the most diverse order (Chi-

roptera) of mammals, representing 20% of known mammalian species [6, 7]. This high diversity may 

provide significant evolutionary insight and represents the most significant speciation observed in mam-

mals. Despite the tremendous value associated with the biodiversity of bats, many scientists and legisla-

tors seek an economic value to associate with WNS in order to gain support for continued efforts to com-

bat this rapidly spreading wildlife epidemic. 

In 2010, the economic contributions of bats to North American agriculture were estimated at $50 

billion annually [7] and may represent a significant contribution to pest control and zoophily20 of region-

ally significant agricultural and forest products [7, 17]. During peak summer feeding, a small brown bat 

(Myotis lucifugus) can consume its body weight equivalent (~10 g) of insects in a single night [6, 7]. This 

level of insectivorous activity may serve as a critical ecosystem service in regions with significant agri-

cultural industries such as the Midwestern United States. Accordingly, if WNS continues to spread as 

predicted and mortality rates in WNS positive hibernacula10 are not reduced, significant economic im-

pacts may be seen on North American agricultural efforts [17].   

In addition to pest control, many species of bats serve as pollinators for nocturnally blooming 

plants and trees that may have limited natural pollinators [17, 36]. Although scientific studies on the im-

pact of chiropteraphily3 in temperate North America are lacking, findings from studies in tropical regions 

indicate that bat-mediated nocturnal pollination serves a critical role in these ecosystems, particularly for 

fruit bearing vegetation [36].  Continued declines in bat populations could result in major impacts to for-

est services, as the combined impact of increased pest insects and reduced pollination success may result 

in synergistic effects compounding the broader ecological impact of WNS in North America.  

Although current hypotheses support the idea that G. destructans is endemic to Northern Europe 

and was inadvertently transported to North America by recreational cavers in 2005, European bat popula-

tions do not suffer the extreme mortality rates associated with WNS in North American bats. While recent 
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studies are attempting to understand the difference in susceptibility of North American and European 

bats, many questions remain regarding this discrepancy. Due to the dormant immune function associated 

with torpor18, immunological adaptations are inadequate at explaining this difference in mortality. A hy-

pothesis is emerging from the scientific community that suggests this discrepancy may be due to social 

behaviors in these two populations as distinct differences have been observed in their hibernation-

associated behaviors [12, 40]. 

The colonial hibernation patterns of many North American bat species increase susceptibility to 

WNS as densely clustered colonies accentuate disease transmission, particularly for fungal diseases that 

depend on airborne conidia4 for propagation. Current reports from field surveys indicate that impacted 

North American hibernacula are beginning to show behavioral adaptations to WNS by forming smaller, 

less condensed colonies [12, 40]. These behaviors have been observed in European bats that show signifi-

cantly reduced susceptibility to WNS [12, 40]. 

 The reproductive nature of most Chiroptera increases population susceptibility as females birth 

two or fewer pups in a year and without appropriate post-arousal fat reserves may be unable to reproduce 

in a given year. This ensures that population losses to WNS will take considerable time to recover and 

underscores the importance of protecting and maintaining currently unaffected bat hibernacula. The rapid 

spread of WNS and the high mortality rates associated with the disease [19], necessitate the rapid devel-

opment of disease management tools. Recently the fungus Geomyces destructans has been identified as 

the causative agent of WNS [26].  

 Geomyces destructans is a psychrophilic Ascomycete with optimal growth at 7-15°C and an up-

per thermal tolerance of 20°C [21]. Other members of the Geomycota are common in soils in temperate 

regions around the planet and represent several plant pathogens but no vertebrate pathogens other than G. 

destructans. G. destructans has significant low temperature keratinalytic activity which may play an im-

portant role in disease manifestation and progression. G. destructans’ psychrophilic nature makes it ideal-
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ly suited for colonization of bats in torpor, which have greatly depressed body temperatures (2-10°C), and 

a greatly diminished immune response [6, 21].   The clinical manifestation of G. destructans is character-

ized by fuzzy white growth on the muzzle, ears, tail, and wings of hibernating bats and results in severe 

physical damage to bat wing tissues [12]. The destruction of wing tissues is hypothesized to inhibit the 

host’s ability to regulate body temperature and water retention and results in death due to starvation, de-

hydration, and exposure. Due to the recent identification of G. destructans, many ecological and physio-

logical traits and their influence on virulence are yet to be elucidated.  

 The rapid spread and high mortality rates associated with WNS make the development of in situ 

treatment options for G. destructans a significant objective for wildlife management agencies. According-

ly, the development of biologically derived treatment options is preferred over chemical or physical 

treatments, since classic examples of chemical treatments in karst12 environments are now a cautionary 

tale [2]. To this end, the US Department of the Interior and the US Fish and Wildlife Service (USFWS) 

released “A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose 

Syndrome in Bats” (Appendix B) in May 2011. In this plan, significant focus was placed on the identifi-

cation and development of biological and chemical control options for WNS. Accordingly, goals 3, 4, and 

5  in element D as well as goal 4 in element E were directly addressed in this work (Appendix B). 

1.2 Investigation of Rhodococcus rhodochrous DAP 96253 as a biological control agent for 

WNS  

  Rhodococcus rhodochrous is a soil associated Actinomycete with tremendous metabolic and 

physiological diversity [32]. R. rhodochrous has been used extensively in bioremediation of nitrile con-

taining compounds [27] and has demonstrated delayed fruit ripening activity when cultured with climac-

teric6 fruits and vegetables [32]. Additional analysis of R. rhodochrous has demonstrated that it is able to 

inhibit the growth of select fungi associated with fresh fruits and vegetables [Pierce personal communica-

tion]. Several enzymes have been shown to increase in activity and prevalence in cells induced to delay 
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fruit ripening and may play a role in the observed antifungal activity [32]. Initial investigation of the po-

tential antagonism of G. destructans by Rhodococcus indicated that, when induced under the protocol 

outlined in US patents 7,531,343, and 7,531,344 [30, 31],  Rhodococcus rhodochrous DAP 96253 com-

pletely inhibited G. destructans growth from conidia when cultured with a shared air-space at 15°C (Fig. 

1.2). Accordingly, the principal objective of this project is the evaluation of Rhodococcus rhodochrous 

DAP 96253 induced with urea for potential in situ application as a biological control agent for 

G.destructans. 

 

Figure 1.2 Shared air-space inhibition of Geomyces destructans conidia by Rhodococcus rhodochrous 

DAP 96253. G. destructans control (a), Uninduced Rhodococcus (b, - urea), and induced Rhodococcus (c, 

+ urea at 7.5g L-1) and at 15°C. 

  

 Due to the nature of the inhibition demonstrated in the shared air-space co-culture experiments, 

and previous documentation of volatile based fungal inhibition by rhodococci [16, 22], the observed  in-

hibition was hypothesized to be mediated by one or more bacterially produced volatile organic com-

pounds19 (VOCs) and/or the degradation of a fungal VOC signal. To confirm this hypothesis the identifi-

cation of volatiles by mass spectral (MS) analysis of pure and co-cultures as specific volatile signatures 

potentially responsible for the observed inhibition of G. destructans conidia germination8 was attempted 

with little success.  The volatile agents elaborated are hypothesized to be similar to those detected from 
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other fungi, such as fatty acid esters, alcohols, and hydrocarbons, all of which are readily detected by 

GS/MS analysis [3, 4, 11, 14-16, 20, 23, 28, 35, 38]. The lack of separation associated with gas chroma-

tography produces highly complex and difficult to deconvolute spectra. Subsequent analyses with soft-

ware and libraries designed for GC/MS profiles are also of little use when applying strictly MS derived 

data. The availability of deconvolution software for exclusively MS derived data is currently limited. Fu-

ture attempts to identify the VOCs involved in the observed microbial antagonism15 of induced Rhodo-

coccus should rely on established techniques and instrumentation in order to avoid the challenges associ-

ated with pioneering a method for reliable chemical identification in highly complex biological systems. 

The identification of the VOCs responsible for the observed antagonism must be elaborated in order to 

fully appreciate the potential impacts of applying this biological control agent in the field. 

In addition to the strong evidence established via in vitro analysis of the observed antagonism the 

evaluation of the efficacy of induced Rhodococcus was pursued in order to establish in vivo efficacy at 

preventing fungal invasion of bat tissue. This goal was accomplished using a recently developed co-

culture technique, a bat-skin explant assay, developed by Dr. Kevin Keel at the University of Georgia’s  

(UGA) Southeastern Cooperative Wildlife Disease Study (SCWDS, Keel personal communication). The 

evaluation of the in vivo efficacy of induced Rhodococcus in preventing or reducing the infective poten-

tial of G. destructans conidia demonstrated induced Rhodococcus could completely inhibit the growth of 

G. destructans on living bat tissue. This is the first example of ex vivo efficacy for any biological control 

agent of WNS and represents a major milestone in this effort.  

In order to optimize biocontrol efficacy and reduce potential cross contamination of karst envi-

ronments various whole and fixed cell applications were investigated. The evaluation of various applica-

tion methods of Rhodococcus induced for potential in situ application including whole cell application, 

non-growth fermentation cell paste, and fixed cell catalyst [30-32] were conducted. Non-living applica-

tions showed little inhibitory activity in all trials and were determined not to be the ideal delivery method 

for this biological control agent. However, non-growth fermentation cell paste demonstrated persistent 
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inhibitory activity and represents the most promising application method evaluated. The associated cell 

paste activity is a significant development as it represents multiple hallmarks of ideal biocontrol agents. 

The efficacy of fermentation cell paste was also evaluated using the bat tissue explant assay with tremen-

dous success. The availability of a biological control agent that can be applied in the absence of growth 

media supplementation is a significant step towards in situ application. This contact-independent activity 

reduces the risk of cross contamination of Rhodococcus applications with native karst microflora, as well 

as reduces the cost associated with, and the potential for, long-term augmentation of karst ecosystems 

from in situ application 

The evaluation of Rhodococcus rhodochrous DAP 96253 has demonstrated the tremendous po-

tential of this organism for application as a biological control agent of G. destructans. This is the first and 

only demonstration of contact-independent antagonism of G. destructans and represents the most signifi-

cant step towards the development of treatment tools since the emergence of WNS in 2006. 

1.3 Evaluation of Bacterially derived Volatile Organic Compounds for management of 

WNS 

In addition to the evaluation of induced Rhodococcus as a biocontrol1 agent of G. destructans, 

previously described bacterially produced antifungal volatiles [11, 16] were assayed for their in vitro po-

tential to inhibit the growth and proliferation of G. destructans. The volatiles include benzothaizole; non-

anal; decanal; 2-ethyl-1-hexanol; N,N-dimethyloctylamine; and benzaldehyde. Previous investigations of 

fungistatic soils were able to identify bacteria that produced anti-fungal VOCs which were later identified 

via SPME/GC/MS of cultures and soils. The VOCs were produced by Pseudmonads and Bacillus spp. 

and demonstrated broad spectrum antifungal activity [11, 16]. Volatile-based fungistasis7 in soils has been 

observed in terrestrial environments around the globe. Due to the biological and chemical complexity of 

these environments the ultimate source of the active VOCs is often unknown but typically attributed to 

bacteria. The geology and ecology of soil make the presence of inhibitory volatiles of particular interest, 
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as low levels of VOCs are able to inhibit fungal growth in a dense, compartmentalized, and diverse eco-

system. Using this ecosystem as an ideal example of naturally occurring biological control of fungal pro-

liferation I began to investigate biologically derived VOCs with known anti-fungal activity. 

The influence of the VOCs on the germination and mycelial extension of G. destructans was 

evaluated using microscopic imaging techniques. In an effort to optimize the efficacy of the VOCs for 

potential field applications formulations of VOCs were evaluated for potential synergistic effects.  Com-

binations of two VOCs at a total relative concentration of 4µM revealed several potentially synergistic 

blends. Accordingly, these synergistic blends were used to establish formulations of three VOCs ultimate-

ly yielding highly effective formulations with greatly increased anti-Geomyces activity at 4µM relative 

concentrations. The identification of biologically produced inhibitory volatiles expands the pool of poten-

tial biocontrol agents of G. destructans and the development of chemical formulations with significant 

anti-Geomyces activity at low concentrations provides promising chemical control options for in situ 

management of WNS. 

 

1.4 Physiological variants of Geomyces destructans in response to control agent exposure 

During the evaluation of biological and chemical control options for G. destructans the produc-

tion of diffusible brown pigment was detected in several exposed cultures. To further understand this 

physiological variation and its potential impact on control efforts, the pigment was investigated to deter-

mine its physiological role. Initial evaluation indicated the pigment may be melanin. Due to the role of 

melanin as a virulence factor in other pathogenic fungi such as Cryptococcus neoformans  and Wangiella 

dermatitidis [8, 42] significant effort was made to determine if the observed pigmentation was melanin.  

The production of melanin has not been previously described in Geomyces spp. and the production of 

melanin in Geomyces destructans may be significant in the emergence of this previously unrecognized 
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vertebrate pathogen. Traditional microbiological and more recently developed analytical methods of de-

tection were used to confirm this hypothesis. 

 

1.5 Forecasting the ecological impact of biocontrol agents for WNS 

A primary concern of wildlife management agencies, as outlined in the National Response Plan, 

was the preservation of natural cave ecosystems in the application of control agents. Karst environments 

are considered “biological islands” and may harbor endemic species of plants, animals, and microbes. The 

resilience of these unique ecosystems to control efforts is unknown but unfavorable outcomes from chem-

ical treatment of karst environments validate these concerns [2]. In order to forecast the potential ecologi-

cal effects of control agent application six common cave associated fungi were used as a model of cave 

associated fungal resilience. The organisms used were; Rhizopus microsporus var. rhizopodiformis,  Rhi-

zopus oryzae,  Absidia corymbifera, Eupenicillium lassenii, Mycelia sterilia, and Phycomyces blakeslean-

nus.  
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2 MATERIALS AND METHODS 

 

2.1 Culture acquisition and maintenance 

All G. destructans isolates used in the proposed project were provided by Dr. Kevin Keel through 

his WNS diagnostic work at UGA’s SCWDS. Initial investigation has shown very low genetic and physi-

ological variability amongst G. destructans isolates [43]. Accordingly, all assays were conducted with a 

small sample set of isolates (n ≤ 3). G. destructans cultures were maintained on Sabouraud Dextrose Agar 

(SDA, Difco) or in Sabouraud Dextrose Broth (SDB, Difco) at 4-15°C. G. destructans conidia are har-

vested from fungal lawns on SDA plates by adding 10 mL of conidia harvesting solution (CHS; 0.05% 

Tween 80, 0.9% NaCl) to the surface of the plate and gently scrapping with a sterile loop to dislodge co-

nidia. The resulting solution is filtered through glass wool and centrifuged at 5000 rpm for 10 minutes. 

The resulting supernatant is removed and the spore pellet washed with 5 mL phosphate buffered saline 

(PBS, pH= 7), re-suspended, and filtered through glass wool. Conidia are stored in PBS at -20°C. Conidia 

are stored no longer than six weeks prior to use. Rhodococcus rhodochrous DAP 96253 cells are main-

tained as glycerol stock aliquots from 10 L fermentations carried out at GSU. Renewed glycerol stocks 

were used at the onset of each assay. The induction process was performed using the addition of urea or 

urea and cobalt as described in US patents 7,531,343, and 7,531,344 [30, 31].  

 

2.2 Evaluation of previously described bacterially produced volatile organic compounds and In-

duced Rhodococcus for anti-G. destructans activity 

Bacterially produced volatiles, previously described by Fernando et al. and Chuankun et al. [11, 

16] were screened for anti-G. destructans activity via volatile exposure to conidia and mycelial plugs. The 

volatiles included cylohexanol; decanal; 2-ethyl-1-hexanol; nonanal; benzothaizole; dimethyltrisulfide; 
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trimethylamine; benzaldehyde; and N,N-dimethyloctylamine. Anti-G. destructans activity was scored on 

a plus/minus scale for conidia inoculated plates, and radial growth from mycelial plugs will be used to 

determine percent inhibition as compared to unexposed controls. All experiments were conducted at 15°C 

or 4°C. 

2.2.1 Co-culture assays with Rhodococcus and VOC exposure assays 

A single-compartment Petri plate (150mm x 15mm) was used for a contained air-space to assess G. de-

structans growth characteristics in the presence of induced Rhodocuccus or bacterially produced VOCs. A 

10 μl of G. destructans conidia (106 conidia/mL) in a phosphate buffer solution were spread onto SDA in 

Petri plates (35mm x 10mm). Multiply induced cells of Rhodococcus are inoculated onto Petri plates 

(35mm x 10mm) containing YEMEA + urea, or just YEMEA,  and cultured in the contained air-space for 

up to 30 days.  For the VOC exposure assay 30μl, 3.0 μl, and 0.3 μl of each volatile organic compound 

were pipetted onto a sterile filter paper disk (12.7mm) on a watch glass (75mm). These volumes represent 

a relative concentrations range from 0.2 mM to 1.5 µM depending on the compound and volume (Table 

2.1).  Each volatile, at each volume, was sealed with parafilm inside a 150mm Petri plate with a G. de-

structans -inoculated SDA. All assays were done in triplicate. Subsequent evaluations were carried out at 

4 µM relative concentrations for all VOCs.  
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Table 2.1 Relative concentrations of VOCs used in shared air-space experiments. Concentrations repre-

sent complete volatilization of VOC in the contained headspace of a 150mm x 15mm petri plate. 

 

 

VOC 

 

Volume (µL) 

 

Relative Concentration(µM) 

Benzothiazole 0.3 2.75 
3 27.52 
30 275.18 

Nonanal 0.3 1.74 
3 17.44 
30 174.42 

Decanal 0.3 1.59 
3 15.94 
30 159.41 

2-ethyl-1-hexanol 0.3 1.91 
3 19.12 
30 191.20 

N,N-dimethyloctylamine 0.3 1.46 
3 14.59 
30 145.90 

benzaldehyde 0.3 2.94 
3 29.40 
30 294.00 
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2.2.2 Induced Rhodococcus and VOC germule suppression assay 

    Thin layers (~ 750 µL) of 10% SDA were applied to standard microscope slides and 100 µL of 

G. destructans conidia (10-6 mL) were spread across the agar surface. Volumes producing 4 µM relative 

concentrations of each VOC were placed on an absorbent disk on a watch glass and then placed with an 

inoculated slide into a Petri plate (90 mm x 15 mm), sealed with parafilm, and incubated at 4 ºC. For 

Rhodococcus assays  small petri plates (35mm x 10mm) inoculated with Rhodococcus were used in place 

of the VOC. Controls were set up with no VOC or Rhodococcus exposure. All trials were conducted in 

duplicate. At 4 and 7 days post-inoculation, conidia were observed in a light microscope at 200X magni-

fication for the presence of germule9 formation. Germules were defined as single mycelial extensions em-

anating from conidia with a length equal to or greater than the intact conidia. Slides were retained and 

examined daily for up to 21 days after germule formation was first observed on control slides. Recovery 

of conidia was determined by removing the control agent (Rhodococcus or VOCs) after 24 hours, 72 

hours, and 7 days. Slides were observed for 21 days after removal of control agent to assess recovery. 

2.2.3 VOC formulation assay for anti-G. destructans activity 

 VOC formulations utilizing mixtures of two pure VOCs were created with all fifteen possible 

combinations of the six VOCs by applying volumes corresponding to 2 µM relative concentrations of 

each VOC to an absorbent disk and arranging combinations of two disks of different VOCs on a single 

watch glass. Volumes corresponding to 4 µM relative concentrations of each pure VOC were used as syn-

ergism controls. G. destructans mycelial plugs cut from the leading edge of actively growing colonies 

were inserted into fresh SDA plates (35mm x 10mm)  and sealed with parafilm in  large Petri plates (150 

mm x 15 mm) with each formulation or pure VOC. Plates were then incubated at 15 ºC for 21 days. Each 

test was conducted in triplicate. Area measurements were conducted with the use of digital photography 

and computer analysis, every two days post inoculation. 
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  2.2.4 Preparation and evaluation of fixed cell catalyst and Fermentation cell paste in non-

growth conditions 

Immobilization of whole bacteria was carried out based on the methods of DeFilippi [13] and 

Lopez-Gallego et al. [25] by Pierce lab personnel. Refinement of immobilized cells to produce active cat-

alyst was carried out according to the methods of Pierce et al. [30-32] by Pierce lab personnel. Evaluation 

of anti-G. destructans activity of fixed-cell catalyst and fermentation cell paste was determined in co-

culture assays with G. destructans conidia and mycelial plugs with various amounts of control agents (< 

1g) as described previously. Efficacy was determined by observation of germination and mycelial exten-

sion as compared to unexposed controls for growth from conidia, and as percent reduction in radial 

growth of mycelial plugs.   

2.2.5 Ex vivo anti-infectivity assay 

In vivo efficacy of induced Rhodococcus was evaluated using an ex vivo model of WNS devel-

oped by Dr. Kevin Keel. Living samples of bat skin, maintained in tissue culture media, were inoculated 

with G. destructans conidia. Infected explants were incubated in a shared air-space with induced Rhodo-

coccus. Uninoculated control explants were incubated alone, or with uninduced Rhodococcus. Initial ex-

periments were conducted at 7°C. Anti-infective efficacy was determined by visual and microscopic 

evaluation of bat wing membrane tissue cultures exposed to induced Rhodococcus as compared to unex-

posed, and uninduced controls. 

 

2.3 Resilience of cave-associated fungi to WNS control agents 

In order to forecast the potential ecological impacts of control agent application six common cave 

associated fungi were selected as a model of cave associated fungal resilience. The organisms used were; 

Rhizopus microsporus var. rhizopodiformis,  Rhizopus oryzae,  Absidia corymbifera, Eupenicillium lasse-
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nii, Mycelia sterilia (Aspergillus flavus),  and Phycomyces blakesleannus. All cultures were obtained from 

the US Department of Agriculture’s Agricultural Research Service (ARS) culture collection. Mycelial 

plugs and conidia were exposed to induced Rhodococcus in a shared air-space and monitored for radial 

growth inhibition and inhibition of conidia germination. Recovery of conidia was evaluated by removing 

conidia inoculated slides at given time points and comparing germination and mycelial extension to unex-

posed controls. 

 

2.4 Melanin production in Geomyces destructans 

2.4.1 L-DOPA melanin induction 

 SDA supplemented with 0.2g/L L-3,4-dihydroxyphenylalanine (L-DOPA, Sigma) were inoculat-

ed with 100 µL of G. destructans conidia suspension (~106 conidia/mL) and incubated at 15°C for 14 

days. After 14 days significant melanin production was observed and cultures were processed for addi-

tional analyses. 

2.4.2 Copper sulfide-silver staining of control agent induced pigmented cultures 

Melanin production in Geomyces destructans was determined using a modified version of the 

method of Butler et al [9].  G. destructans conidia (~104 conidia/mL) were inoculated onto SDA and al-

lowed to grow until mycelial were visible (~5 DPI) and then exposed to benzothiazole (27.5 µM) or in-

duced Rhodococcus in a closed air-space at 15°C for greater than 21 days. Exposed cultures with observ-

able diffused pigment or increased reverse side mycelial pigmentation as well as unexposed controls were 

further analyzed. For initial evaluation light microscopy was used. Small slices of agar were excised and 

stained in 1.5 mL volumes of all solutions unless otherwise indicated. In between staining steps the agar 

slices were washed with de-ionized (DI) water. Agar slices were incubated overnight in 10mM copper 

sulfate in DI. Agar slices were then rinsed  twice with DI water and pretreated in a 1.0% sodium sulfide 
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solution in DI water at 25 ºC for 60 minutes in the absence of light. Agar slices were then washed with DI 

water, dried, and developed in a 5 mL solution of 22mg silver lactate and 170 mg hydroquinone in a cit-

rate buffer (1.0 M, pH 3.7) solution for 60 minutes at 25ºC in the absence of light. Staining controls 

lacked either the sulfide or silver treatment, and melanin induction controls were not exposed to benzothi-

azole or induced Rhodococcus. Images were captured at 200X magnification. 

 

2.4.3 Spectral analysis of control agent induced pigmentation 

 Control agent exposed (benzothiazole or induced Rhodococcus) cultures producing visible pig-

mentation were cut into sections and submerged in 10 mL of Tris-EDTA (TE) buffer for 24 hours. Brown 

pigment was observed to diffuse into the buffer from the agar. Negative control extracts were prepared by 

submerging non-control agent exposed hyaline11 culture slices in TE buffer for 24 hours. All extracts 

were filtered twice with 0.45 µm syringe filters (Pall). Positive controls were generated by suspending 

synthetic melanin17 (Sigma-Aldrich) in TE buffer at concentrations ranging from 1mg/mL to 1µg/mL as 

well as extracting diffusible melanin from L-DOPA supplemented cultures as described above. The re-

sulting extracts were used for Ultra Violet Visible (UV VIS) spectrophotometric analysis (Nanodrop, 

Thermo Scientific).  

2.5 Mass Spectral analysis of antagonistic Volatiles 

 A single SDA plate (35mm x 10mm) inoculated with G. destructans conidia (~104 conidia/mL) 

was placed into a modified 250mL carrier flasks with two plates (35mm x 10mm) of induced Rhodococ-

cus and incubated at 15°C for 14 days. Control flasks contained either a single SDA plate inoculated with 

G. destructans conidia or two plates of induced Rhodococcus. All trials were conducted in triplicate. After 

14 days mass spectral analysis was conducted using a Quantitative Gas Analyzer Quadrupole Mass Spec-

trophotometer (QGA-MS, Hiden Analytical) as specified by the manufacturer. The QGA-MS probe was 

inserted into a hole bored into a single cap of the carrier flask and sealed with parafilm. Analyses were 
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conducted under a variety of settings and multiple detectors and with varying scan lengths as well as with 

and without background subtraction of atmospheric gas. Mass spectra generated were exported to the Na-

tional Institue of Standards and Technology/Environmental Protection Agency/National Institute of 

Health Mass Spectral Database (NIST 11) for evaluation. Spectra were compared to the ionization pat-

terns contained in the NIST library and Match Factor and Probabilities of potential matches were generat-

ed and their quality was determined based on the guidelines for interpretation of results provided in NIST 

11 user guide. Match factors less than 600 and probabilities less than 20% were considered unresolved. 

 

3 RESULTS 

  

3.1 Anti-G. destructans activity of induced Rhodococcus 

 Initial experiments with urea induced Rhodococcus demonstrated complete inhibition of growth 

from conidia of G. destructans when cultured with a shared air space at 15°C (Fig. 1.2). Uninduced Rho-

dococcus showed no signs of inhibition compared to unexposed controls.  Subsequent testing at 7°C and 

4°C demonstrated fungistatic activity of induced Rhodococcus and resulted in slower germination and 

reduced total mycelial growth as compared to uninduced and unexposed controls (Fig 3.1). Microscope 

slide agar overlays inoculated with G. destructans spores failed to form germules when exposed to in-

duced Rhodococcus (Fig. 3.2). Microscopic evaluation of G. destructans cultures from conidia exposed to 

induced Rhodococcus at 4°C revealed an abnormal mycelial phenotype. Further analyses revealed that 

abnormally curly mycelia were consistently formed in G. destructans colonies from conidia exposed to 

induced Rhodococcus at 4°C (Fig. 3.3). Additionally, tape mounts of G. destructans cultures grown for 

conidia exposed to induced Rhodococcus at 7°C and 4°C indicated less conidiation5 than uninduced and 

unexposed controls.  
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Figure 3.1 Shared air-space co-culture of Geomyces destructans spores (104 mL-1) with Rhodococcus 

rhodochrous DAP 96253, uninduced (b, - urea) induced (C, + urea at 7.5g L-1) and a G. destructans con-

trol (a) at 4°C. Results representative of exposure at 7°C. 
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Figure 3.2 Inhibition of Geomyces destructans germule formation by shared air-space co-culture 

with induced Rhodococcus rhodochrous DAP96253 at 15°C. Typical germule formation 5 days post in-

oculation in unexposed controls (a and b). Exposed spores 10 days post inoculation (c) and exposed 

spores showing early signs of germination (arrows) but no germule formation (d). All images captured at 

200X magnification. Scale bar is 10µm. 
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Figure 3.3 Exposure to benzothiazole produced abnormal mycelial formation in G. destructans. 

Typical mycelial formation and conidiation of G. destructans exposed to benzothiazole in the presence of 

activated carbon (a).  Abnormally curly mycelia and reduced conidiation of G. destructans exposed to 

benzothiazole (b). All images captured at 200x magnification. 

 

 

3.1.1 Induced Rhodococcus permanently and irreversibly inhibits conidia germination 

 Slide agar overlays inoculated with G. destructans conidia and exposed to induced Rhodococcus 

failed to produce germules 21 days after removal of Rhodococcus (Fig. 3.4). Conidia exposed to induced 

Rhodococcus for 24 hours revealed no signs of germule formation, whereas conidia exposed for 4 and 7 

days exhibited early signs of germination but no obvious germules (Fig. 3.4). Conidia exposed to previ-

ously described VOCs failed to prevent conidia germination, but delayed germination by up to 5 days 

(Data not shown). 

 

a b 
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Figure 3.4 G. destructans conidia are unable to recover after 24 hour exposure to induced Rho-

dococcus. G. destructans control slide (a) produced significant mycelia growth and conidiation (white 

arrow) after 5 days. G. destructans conidia exposed to induced Rhodococcus for 24 hours (b), 72 hours (c) 

and 7 days (d) failed to form germules 21 days after removal of induced Rhodococcus. Halted germina-

tion was observed in 72 hour and 7 day exposures (black arrows). All images captured at 200X magnifi-

cation. 

 

 

 

 

a b 

c d 
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3.1.2 Ex vivo anti-infectivity assay 

 Induced Rhodococcus rhodochrous DAP96253 completely inhibited the colonization of bat wing 

explants by G. destructans conidia in all replicates (n=9) when incubated in a shared air space for 21 days 

at 7°C (Fig. 3.6). Explants exposed to uninduced Rhodococcus and unexposed explants were fully colo-

nized at 14 days post inoculation.  

 

 

Figure 3.5 Bat wing tissue explants in a shared air-space with induced Rhodococcus rhodochrous 

DAP96253 14 days post-inoculation with Geomyces destructans conidia. 
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3.1.3 Evaluation of fixed cell catalyst and fermentation cell paste 

 Fixed cell catalyst [30-32] failed to inhibit or slow growth from conidia of G. destructans when 

grown in a shared air-space. Fermentation cell paste in quantities as low as 0.25g completely inhibited 

growth from spores of G. destructans for greater than 80 days (Fig. 3.7). 

 

 

Figure 3.6 Fermentation cell paste of induced Rhodococcus rhodochrous DAP96253 in a shared air-space 

with Geomyces destructans conidia inoculated plates. Image taken 21 days post inoculation. 
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3.2 Anti-G. destructans activity of previously described bacterially produced volatiles 

 Initial investigation demonstrated inhibitory activity for most VOCs at relative concentrations 

less than 4µM.  Decanal; 2-ethyl-1-hexanol; nonanal; benzothaizole; dimethyltrisulfide; benzaldehyde; 

and N,N-dimethoctylamine  all demonstrated anti-G. destructans activity when 30µL of the respective 

compound were placed adjacent to SDA plates inoculated with G. destructans conidia in a closed system 

at 15°C (Table 3.1). Control plates containing 1g activated carbon showed no inhibition for decanal; 2-

ethyl-1-hexanol; and benzaldehyde; while the remaining compounds inhibitory activity persisted in the 

presence of activated carbon (Table 3.1). Subsequent assays with 3µL of each compound demonstrated 

similar results with only N,N-dimethoctylamine unable to completely inhibit G. destructans growth from 

conidia at 7 days (Table 3.1).  The addition of activated carbon abolished all inhibitory activity of the as-

sayed compounds at 3 µL (Table 3.1).  At 11 days of exposure to 3 µL of each respective compound only 

2-ethyl-1-hexanol, decanal, and nonanal demonstrated inhibitory activity, with all activated carbon con-

trols abolishing the inhibitory activity (Table 3.1). Additionally, G. destructans cultures from conidia ex-

posed to 3 µL benzothiazole without activated carbon revealed unique colony morphology characterized 

by increased pigmentation of the underside of the culture and diffused into the growth media as compared 

to unexposed cultures and cultures exposed to benzothiazole in the presence of activated carbon (Fig. 

3.8).  

 Assays using mycelial plugs cut from the leading edge of actively growing G. destructans colo-

nies on SDA were exposed to the previously described bacterially produced volatiles at 30 µL, 3 µL, and 

0.3 µL of each respective compound and incubated in a contained air-space at 15°C.  At 30 µL all com-

pounds completely inhibited the growth of G. destructans mycelia for up to 9 days (Fig.  3.9a). At 14 

days of exposure only G. destructans plugs exposed to decanal showed any radial growth,  with 83% re-

duction in growth as compared to unexposed controls (Fig.  3.9a). At 3 µL of each respective compound 

decanal and N,N-dimethoctylamine yielded only  minor reductions in radial growth, whereas the remain-

ing compounds completely inhibited radial mycelial growth of G. destructans for up to 14 days (Fig. 



25 

3.9b). At 0.3 µL of each compound only benzothiazole demonstrated significant inhibitory activity with a 

60% reduction in radial growth at 14 days of exposure (Fig. 3.9c). Interestingly, at 0.3 µL N,N-

dimethoctylamine induced growth as compared to unexposed controls (Fig. 3.9c). This result may be due 

to hormesis [37].  

In order to forecast the in situ efficacy of the VOCs additional in vitro evaluation was conducted 

at 4°C to more accurately represent the environmental conditions of North American hibernacula. Expo-

sure to30 µL or 3 µL of each respective VOC completely inhibited radial growth of G. destructans for 

greater than 21 days (data not shown). Exposure to 0.3 µL of each respective VOC inhibited radial growth 

for all VOCs except benzaldehyde (Fig. 3.9d). The greatest degree of inhibition was observed with deca-

nal which demonstrated a greater than 99% reduction in growth area at 35 days post inoculation (Fig. 

3.9d). Based on these initial results VOC exposure was standardized to 4µM relative concentrations for 

subsequent evaluations. 
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Table 3.1 Evaluation of anti-G. destructans activity of bacterially produced antifungal VOCs with G. de-

structans conidia. + indicates growth from spores. – indicates no visible growth. ** Incubated with activat-

ed carbon, d =7 day exposure,  dd =10 day exposure 

 

VOC Chemical Structure 30 μl 30 μl ** 3 μld 3 μl d** 3 
μldd 

3 μl 
dd** 

2-ethyl-1-hexanol ‐  +  ‐  +  ‐  + 

Benzaldehyde 

 

‐  +  ‐  +  +  + 

Benzothiazole ‐  ‐  ‐  +  +  + 

Decanal ‐  +  ‐  +  ‐  + 

Nonanal   ‐  ‐  ‐  +  ‐  + 

N,N-dimethyloctylamine 
 

‐  ‐  +  +  +  + 

              Control +  +  +  +  +  + 
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Figure 3.7 Benzothiazole induces pigment production in G. destructans. Changes in reverse side pigmen-

tation of G. destructans cultures from spores exposed to 0.3 µL benzothiazole without (a) and with (b) 

activated carbon. Time lapse photography of benzothiazole induced G. destructans pigment production on 

SDA. 2 to 14 days (L to R) growth in the shared air-space of 4 µM benzothiazole (c). 2 to 14 days (L to 

R) growth of control (d). 

a b

c

d
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Figure 3.8 Growth areas of G. destructans mycelial plugs exposed to bacterially produced VOCs at 15°C 

at 30 µL (a), 3 µL (b), and 0.3 µL (c), respectively. Growth area of mycelial plugs exposed at 4°C to 0.3 

µL (d) of bacterially produced VOCs. VOCs not shown completely inhibited radial growth for the dura-

tion of the experiment. 
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3.2.1 VOC formulation assay for anti-G. destructans activity 

    In addition to evaluating individual VOCs, formulations were investigated for potential synergistic ef-

fects. Three VOC formulations comprised of two VOCs were observed to synergistically inhibit the 

growth of G. destructans mycelial plugs; more than the combined inhibition of each of the pure VOCs 

alone. Those include 2-ethyl-1-hexanol & benzaldehyde; 2-ethyl-1-hexanol & nonanal; 2-ethyl-1-hexanol 

& decanal; and 2-ethyl-1-hexanol & N,N-dimethoctylamine (Figures 3.10a, 3.10b, and 3.10c respective-

ly). The greatest inhibition by the formulation occurred with 2-ethyl-1-hexanol& nonanal, which demon-

strated greater than 95% reduction in growth as compared to unexposed controls 14 days post inoculation 

(Fig. 3.10c).     

 Two VOC formulations comprised of three VOCs with a total relative concentration of 4 µM 

were observed to synergistically inhibit the growth of G. destructans mycelial plugs; more than the com-

bined inhibition of each of the pure VOCs alone at a relative concentration of 4 µM. Those include 2-

ethyl-1-hexanol; benzaldehyde; and decanal; and 2-ethyl-1-hexanol; nonanal; and decanal with the prior 

completely inhibiting radial growth at 14 days post inoculation (Fig. 3.11). 
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Figure 3.9 Growth areas of G. destructans mycelial plugs exposed to each individual VOC as well as 

formulations at 15ºC. Measurements taken every two days for 14 days. (a) 2-ethyl-1-hexanol & benzalde-

hyde, (b) 2-ethyl-1-hexanol and decanal, and (c) 2-ethyl-1-hexanol and nonanal. 
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Figure 3.10 Percent inhibition of radial growth of G. destructans exposed to pure VOCs and VOC formu-

lations. Percent inhibition was determined by comparing the growth area of G. destructans mycelial plugs 

exposed to VOC formulations and the pure VOCs comprising those formulations to unexposed control 

plugs at 15ºC. Each pure VOC was exposed at a relative concentration of 4 μM and each formulation was 

comprised of each VOC at a relative concentration of 1.3 μM. Formulations of 2-ethyl-1-hexanol, benzal-

dehyde, and decanal (a), as well as 2-ethyl-1-hexanol, nonanal, and decanal (b) were found to have syner-

gistic effects, yielding greater inhibition combined than the sum of the inhibitions observed with each in-

dividual VOC. 
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3.3 Mass Spectral analysis of antagonistic Volatiles 

 Representative pure and co-cultures of Geomyces destructans and Rhodococcus rhodochrous 

DAP96253 failed to produce consistent, reproducible, and interpretable spectra when analyzed using ex-

clusively mass spectrometry. Samples were analyzed with both SEM and faraday detectors and under a 

wide range of settings recommended by the manufacturer in an attempt to resolve a trend in the VOC 

composition of the respective microbial headspaces. In all attempts identification of chemical species us-

ing the NIST library failed to generate hits above the required identification threshold. 

 

3.4 Fungal resilience to control agent exposure 

 Induced Rhodococcus rhodochrous DAP 96253 significantly inhibited radial growth of Eupeni-

cillium lassenii,  Rhizopus oryzae, and Mycelia sterilia (Aspergillus flavus) at 15°C (Fig. 3.12). Subse-

quent evaluation of the potential for recovery after 24 hour exposure to induced Rhodococcus indicated 

that Rhizopus oryzae, Rhizopus microspora, Mycelia sterilia (Aspergillus flavus) and Absidia corymbifera 

mycelial convalesce to vegetative growth after removal of induced Rhodococcus while Eupenicillium las-

senii did not (Table 3.2).  
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Figure 3.11 Growth areas of select fungal plugs exposed to induced R. rhodochrous DAP 96253. (a) Eu-

penicillium lassenii, (b) Rhizopus oryzae, and (c) Mycelial sterilia (Aspergillus flavus) failed to grow in a 

shared air-space with induced Rhodococcus. All trials conducted at 15°C. 
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Table 3.2 Recovery of mycelial plugs after 24 hour exposure to induced Rhodococcus rhodochrous 

DAP96253. + indicates growth, - indicates permanent inhibition. Cultures were evaluated for 14 days af-

ter removal of induced Rhodococcus. All trials conducted at 25°C.*Slowed growth after removal of con-

trol agent 

 

 Control 1 Control 2 Experimental 1 Experimental 2 

R. microspora + + +* +* 

R. oryzae + + +* +* 

A. corymbifera + + +* +* 

E. lassenii + + - - 

M. sterilia + + +* +* 

 

 

3.5 Melanin production in G. destructans 

 G. destructans cultures incubated in the absence of light have revealed distinct colony morpholo-

gy as compared to cultures grown under ambient white light. Light grown colonies at 15°C on SDA pro-

duced a brown diffusible pigment and demonstrated a greater degree of reverse side mycelial pigmenta-

tion when compared to cultures grown in the absence of ambient white light (Fig 3.13).  

Subsequent evaluation of cultures from mycelial plugs exposed to induced Rhodococcus or ben-

zothiazole revealed increased reverse side pigmentation as well as significant diffusible pigment produc-

tion (Fig. 3.8, Fig. 3.14). In order to determine whether the observed pigment was melanin a copper sul-

fide-silver staining method [9] was employed. Samples from visibly pigmented exposed cultures and un-

exposed control cultures produced significantly different stains localizations when evaluated microscopi-

cally (Fig. 3.15) Exposed samples had increased staining of conidia and significant pigment associated 
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with agar as compared to hyaline control samples (Fig. 3.15) No pigment was observed to be localized to 

the mycelia as all samples produced hyaline mycelia regardless of preparation.  

UV Vis spectroscopy of filtered diffusible pigment extracts showed strong absorption in the 200-

250 nm range corresponding with synthetic melanin standards and previous studies for fungal melanin 

(Fig. 3.16a) [24, 42]. The log absorbance plotted for the visible spectrum (400-600nm) of control agent 

exposed culture extracts and synthetic melanin standards produced a negative slope characteristic of mel-

anin while hyaline culture extracts produced a positive slope in the same region (Fig. 3.16b). The melanin 

standard corresponding to 0.1 mg/mL produced and highly similar absorption maxima to the 10 -2 diluted 

control agent exposed culture extract indicating an estimated melanin concentration of 1 µg/mL in the 

original fungal extract (Fig. 3.16c).  

Growth on L-DOPA supplemented media produced significant melanization of G. destructans 

(Fig. 3.17). The induced melanization was observed to be secreted into the media as well as localized to 

the mycelia and conidia (Fig. 3.17).  
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Figure 3.12 Production of a brown diffusible pigment in G. destructans cultures grown from spores in 

ambient white light. Cultures grown in the absence of light lack the diffusible pigment. 

 

 

 

 

 

 

 

 

 

Figure 3.13 Exposure to induced Rhodococcus induces diffusible pigment production in G. destructans 

(a). Unexposed cultures lack diffusible pigment (b). 

a b
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Figure 3.14 Copper sulfide-silver staining of hyaline and pigmented culture of G. destructans. Unex-

posed cultures produced hyaline conidia (a) and no diffusible or localized pigment (c, white arrow). Con-

trol-agent exposed cultures produced pigmented conidia (b) and diffusible and localized pigment (d, black 

arrow). All Images taken at 200X magnification. Images corrected for white balance. Scale bar is 5µm. 
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Figure 3.15 UV-Vis spectra of pigmented fungal extracts and synthetic melanin standards. UV-Vis spec-

tra (a, 195-600 nm) of fungal extracts from control agent exposed and unexposed hyaline cultures of Ge-

omyces destructans as well as synthetic melanin standards. Slope of linear regression (b) of log absorb-

ance versus wave length in the visible spectrum (400–600 nm). (c) A synthetic melanin standard of 

0.1mg/mL produced identical absorption maxima to the 10-2 diluted control agent exposed extract indicat-

ing a melanin concentration of 1mg/mL for the original extract. 
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Figure 3.16 SDA supplemented with L-DOPA (0.2g/L) induces significant melanin production in Geo-

myces destructans. Increased melanin is excreted into the media as seen on the reverse side of the plate (a, 

image right) as we as localized in the mycelia and conidia (b, image right). 
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4 DISCUSSION 

Since its initial discovery in 2006 G. destructans has spread to twenty-four states and four Cana-

dian providences and is implicated in the mortality of 5.7 million bats [19]. Cave closures and culling of 

infected individuals appears to have little to no impact on the spread and mortality associated with this 

devastating disease. Classic disease management practices applied in agriculture such as vaccination and 

broad spectrum dissemination of antibiotics are not realistic options for management of disease in wild, 

highly disseminated, and migratory animal populations. Accordingly, the development of novel treatment 

options are needed to avert the spread of this disease, and reduce the mortality associated with currently 

infected hibernacula. To this end the development of biologically based control tools is the preferred op-

tion for application in karst environments.  

Since the publication of the National Response Plan (Apendix B) several groups have initiated 

investigations to identify potential biological control agent for Geomyces destructans [1, 10, 18]. Several 

of the investigations have relied on traditional sources of biocontrol agents or probiotics such as bacilli 

and lactobacilli or competitive exclusion fungi such as a-toxigenic Aspergillus spp. and Trichodema sp. as 

well as attempts to isolate bat-skin-associated microbes with anti-G. destructans activity [1, 10, 18]. 

While these approaches have proven successful in agricultural and human health applications [29, 33, 41] 

their application in the attempted remediation of WNS in bats has not been demonstrated. The require-

ment for contact with G. destructans and the bat hosts is a major hurdle for any agents reliant on competi-

tive exclusion or non-volatile antimicrobial compound production. These potential control agents may 

prove to have limited efficacy against G. desrucatns in situ and potentially be harmful to the bat hosts. In 

contrast, my evaluation of induced Rhodococcus rhodochrous DAP 96253 for application as a biological 

control agent of G. destructans aligns ideally with the needs of wildlife management agencies tasked with 

combatting WNS and is the first documented contact-independent microbial antagonism of Geomyces 

destructans.  
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The evolutionary lineage of Rhodococcus lends itself to VOC based fungistasis due to its terres-

trial ancestry. The global prevalence of fungistatic soils is a measure of the natural antagonisms that exists 

in the complex environments. Due to the ubiquity of Rhodococcus in soils it can be expected that Rhodo-

coccus contribute to VOC based fungistasis observed in these environments. Leveraging these natural 

antagonisms for control efforts has many benefits particularly in the case of WNS. The complexity of soil 

ecology selects for antagonisms that are effective in diverse, compartmentalized environments where sol-

uble diffusion maybe limited. Accordingly the production of antagonistic VOCs provide a viable means 

for soil dwelling bacteria to complete with soil dwelling fungi for resources. The ability of Rhodococcus 

to detect and interfere with volatile signals has also been demonstrated in its delayed fruit ripening activi-

ty [32] and can be anticipated to mediate the observed anti-Geomyces destructans activity. 

While the efficacy of urea induced Rhodococcus under growth conditions is promising for in situ 

management of WNS, the need for growth media supplementation poses problems for field application. 

The long term in vitro efficacy of non-growth condition cell paste at 4°C allows for increased confidence 

in forecasting the efficacy of this biocontrol agent in managing WNS in the field. The lack of growth me-

dia reduces the costs associated with application as well as reduces the likelihood of cross contamination 

of control agent media with native cave flora. In addition, the contact-independent basis of the non-

growth antagonism will allow for in situ application methods that will reduce the potential for ecological 

impacts associated with introducing exogenous organisms to karst environments. The ecological impacts 

of any potential control agent are of significant concern for wildlife management agencies, and the evalu-

ation of potential ecological impacts must be assessed in order to circumvent ecological disaster associat-

ed with augmenting cave microflora14 (i.e. Lascaux cave) [2].  

The evaluation of Rhodococcus using ex vivo bat tissue explants as an indicator of anti-infective 

activity was paramount to establishing Rhodococcus as a viable biocontrol agent of G. destructans. This 

was the first demonstration of inhibition of fungal colonization of bat tissue by a biological control agent 

and further more is the only demonstration of biologically mediated contact-independent antagonism of 
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G. destructans. This ex vivo efficacy justifies further in vivo studies with live bats and should be pursued 

vigorously by federal agencies tasked with the management of this wildlife epidemic. 

The ability of dormant conidia to remain viable in host-free environments increases long term 

impacts of fungal pathogens and renders infected environments inhospitable to re-colonization. The im-

pact of WNS in locations such as New York has been tremendous rendering entire geographical areas 

vacant of insectvoracious bats. In order to restore ecological balance to these devastated communities in-

activation of viable G.destructans conidia must occur. The permanent and irreversible inhibition of conid-

ia germination is a promising result and indicates that treatment of previously decimated hibernacula to 

inactivate resident conidia prior to re-colonization attempts may be feasible by applying induced Rhodo-

coccus in these environments. 

Attempts to determine the microbial VOCs involved in the observed antagonism using mass spec-

tral analysis failed to produce consistent and reproducible results. Consultation with the manufacturer 

confirmed my concerns that in the absence of separation afforded by gas chromatography/ mass spec-

trometry (GC/MS) the identification of unknown VOCs in a complex headspace would not be obtainable. 

The small molecular mass and high diversity of microbially produced VOCs expounds this issue, and ion-

ization of these chemical species creates significant molecular overlap and exceeds the capacity of decon-

volution software [23, 35]. Future attempts to resolve the VOCs involved in this antagonism should rely 

on well-established techniques such as thermal desorption/gas chromatography/mass spectrometry 

(TD/GC/MS) that have proven successful in this endeavor and generate data compatible with the more 

refined deconvolution software [23, 35]. 

In addition to Rhodococcus, soil based fungistatisis was investigated on a broader scale to deter-

mine the potential of this environment to harbor additional biocontrol agents as well as to identify poten-

tial chemical control agents. The co-evolution of soil microbiota has produced antagonisms ideally suited 

for the complex ecology of soil. Harnessing these natural antagonisms can be a powerful tool in combat-
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ing WNS as many of the traits of these antagonisms yoke favorably with the ecology of hibernacula and 

the terrestrial heritage of the Geomycota warrants their susceptibility. Accordingly, the evaluation of pre-

viously described bacterially produced antifungal volatiles was investigated with great success. The long 

term efficacy of low relative concentration VOCs unveils the potential of these compounds for in situ ap-

plication in the treatment of WNS. Additionally, the development of synergistic blends serves to bolster 

the appeal of soil based fungistasis as a source of potential control agents as VOC blends are likely re-

sponsible for the observed fungistatic activity of repressive soils [11, 20, 38]. While several pure VOCs 

and blends produced significant growth inhibition, compounds and/or concentrations unable to signifi-

cantly inhibit growth caused noteworthy stress to G. destructans as determined by the abnormal pheno-

types observed under these conditions. The evaluation of bacterially derived VOCs has expanded the pool 

of potential biological control agents as well produced several VOC formulations with excellent anti-

Geomyces activity at low relative concentrations. The availability of volatile formulations for control of 

G. destructans growth could prove to be a powerful tool for wildlife management agencies.  

My evaluation of the resilience of resident fungi in response to induced Rhodococcus indicates 

that impacts on the resident flora other than Geomyces spp. may be significant. Mycelial plugs exposed to 

induced Rhodococcus for 28 days at 15 °C and then removed from the presence of induced Rhodococcus 

failed to return to typical growth patterns although growth was restored when Rhodococcus was removed 

after 24 hours. Initial analysis of conidia recovery will need to take place before impacts on the native 

mycoflora16 can be accurately forecast. The potential concern of this broad spectrum anti-fungal activity 

should not be overstated as limited growth of fungi in North American caves during winter is expected. In 

this case the application of induced Rhodococcus during the winter hibernation season may inhibit the 

growth of fungi including G. destructans but the long term (seasonal) impact has yet to be determined. 

The evaluation of resident mycoflora conidia susceptibility and recovery will be significant to understand-

ing the potential long term ecological impacts of applying Rhodococcus to these environments. Permanent 

and irreversible inhibition of resident mycoflora conidia would be of significant concern but may be man-
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ageable due to the ubiquitous distribution of resident mycoflora in the karst environment and the colonial 

hibernation patterns of several susceptible North American bat species. 

The identification of diffusible pigment, further characterized as melanin, is significant for future 

investigation into the virulence of Geomyces destructans as well as for determining the efficacy of poten-

tial control agents. Melanin is a known virulence factor in pathogenic fungi such as Cryptococcus 

neoformans and Wangiella dermatitidis which increases hyphal invasiveness and reduces the host’s abil-

ity to clear sub-cutaneous infection [8, 24]. In addition, melanin reduces environmental oxidative damage 

to fungal cellular components and may influence the efficacy of control efforts and antifungal treatments 

[8, 24, 39]. The absorbance maxima between 190 and 250 produced via UV VIS spectral analysis, as well 

as the negative slope of the log absorbance in the visible spectrum compare favorably to previous studies 

of fungal melanin [8, 24] as well as synthetic melanin standards. The results all indicate that the pigment 

is melanin, however the application of more refined analytical techniques will allow for the complete res-

olution of the chemical structure of the observed pigment. Nevertheless, the heavily pigmented phenotype 

produced by cultivation of G. destructans on SDA supplemented with L-DOPA demonstrated the mela-

nogenic13 potential of this vertebrate pathogen. The resulting L-DOPA induced pigmentation shows simi-

lar characteristics to the pigment produced in response to control agent exposure but withstanding more 

refined chemical characterization a definitive connection cannot be resolved.  

The increased pigmentation of conidia from cultures exposed to control agents may be significant 

for recurrent applications in heavily colonized hibernacula. The increased pigmentation associated with 

these conidia may serve to reduce the impact of the control agents and select for resistant propagules in 

these environments. Further analysis of the viability and susceptibility of pigmented conidia will need to 

be conducted to address these concerns. 

I anticipate that this project will revolutionize the way WNS is managed in the field. The data I 

have presented in this dissertation has direct implication on disease management, and to the authors un-
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derstanding, it is the first documented case of contact-independent biological antagonism of G. de-

structans. Until recently, the prognosis for susceptible North American bat populations was bleak at best. 

The development biological and chemical treatment options provide wildlife management agencies with 

the first potential tools for control of G. destructans transmission and infectivity. 

This project involved collaboration with Georgia State University faculty, other University Sys-

tem of Georgia institutions, University of California- Davis faculty, the U.S. Forest Service, and the non-

profit organization Bat Conservation International. Cumulatively this project represents a significant in-

terdisciplinary collaborative effort in response to a national crisis and has produced the first tangible bio-

logical tool for management of WNS in bats. A summary of the investigation of the anti-G. destructans 

activity of induced Rhodococcus was published in the Summer 2013 edition of BATS magazine under the 

title “The Enemy of My Enemy is My Friend: A new hope in the battle against WNS” (Appendix C). 

Based on the results presented in this dissertation the USFS has initiated a series of field trials with Rho-

dococcus that are scheduled to begin in Fall 2013. 
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APPENDICES  

Appendix A  

Glossary of terms 

1. Biocontrol – The application of biological entities to reduce or eliminate unwanted organism in-
cluding exotic species, pests and pathogens. 

2. Biodiversity – 1) The number and variety of organisms found within a specified geographic re-
gion. 2) The variability among living organisms on the earth, including the variability within and 
between species and within and between ecosystems. 

3. Chiropteraphily – A designation within pollination syndrome used to describe obligate bat-
mediated pollination. 

4. Conidia – Asexual, haploid, non-motile spores produced externally by fungi. In Ascomycetes 
conidia are produced by specialized structures termed conidiophores and typically dispersed in air 
currents. Also termed spores. 

5. Conidiation - The biological process in which filamentous fungi reproduce asexually from conid-
ia. Also termed sporulation. 

6. Climacteric (Botany) - A stage of fruit ripening associated with ethylene production and cellular 
respiration rise. Climacteric is the final physiological process that marks the end of fruit matura-
tion and the beginning of fruit senescence. 

7. Fungistasis – Non-lethal inhibition of fungal growth and germination.  
8. Germination – In filamentous fungi, germination is the process by which hyphae emerge from 

conidia. 
9. Germule – The initial mycelial extension emanating from conidia that is longer than the length of 

the conidia from which it emerged. 
10. Hibernacula – A zoological term to describe a shelter or abode used by animals for over winter-

ing. Typically associated with torpor. 
11. Hyaline – Denotes a material with a glass-like appearance, free of pigmentation. 
12. Karst – A landscape formed from the dissolution of soluble rocks characterized by sinkholes, 

caves, and underground drainage systems. 
13. Melanogenic – Capable of producing melanin or melanin containing compounds. 
14. Microflora – A group or consortia of microorganisms present in a specific, localized location or 

environemt. 
15. Microbial antagonism – A type of symbioses of microorganisms which describe one microor-

ganism’s ability to kill, injure, or inhibit the growth of another microorganism. 
16. Mycoflora - The fungi characteristic of a region or specific environment or ecosystem. 
17. Synthetic Melanin – Laboratory synthesized melanin involving an air oxidation of tyrosine or L-

DOPA in the presence of tyrosinase enzymes (extracted from fungi). The pigment obtained from 
the enzymatic oxidation readily precipitates. 

18. Torpor – A state of decreased physiological activity in an animal, usually by a reduced body 
temperature and rate of metabolism. Torpor is used to enable animals to survive periods of re-
duced food availability. 
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19. Volatile organic compound (VOC) – Organic chemicals that have a high vapor pressure at ordi-
nary, room-temperature conditions. Their high vapor pressure results from a low boiling point, 
which causes large numbers of molecules to evaporate or sublimate from the liquid or solid form 
of the compound and enter the surrounding air. 

20. Zoophily – A form of pollination whereby pollen is transferred by vertebrates, particularly by 
hummingbirds and other birds, and bats. 
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Appendix B  

Excerpts from the WNS National Response Plan. Courtesy of the WNS National Plan Writing 

Team and the Steering Committee to Develop the WNS National Plan. 
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Appendix C 

BATS magazine article, “THE ENEMY OF MY ENEMY IS MY FRIEND: A new hope in 

the battle against WNS?” Courtesy of Bats Conservation International and BATS Magazine. 
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