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EFFECTS OF ESCAPIN INTERMEDIATE PRODUCTS (EIP-K) ON 

 BIOFILMS OF Pseudomonas aeruginosa 

by 

MARWA NABIL ABDELAZIZ AHMED 

Under the Direction of Eric Gilbert 

ABSTRACT 

Escapin is an L-amino acid oxidase that produces antimicrobial metabolites collectively called 

“Escapin Intermediate Products” (EIP-K). EIP-K and H2O2 together were previously shown to be 

bactericidal towards diverse planktonic bacteria. The present work investigates the ability of 

EIP-K and H2O2 to antagonize bacterial biofilms, using Pseudomonas aeruginosa as a model. The 

project had three aims: 1) determine the most effective concentrations of EIP-K and H2O2 

necessary to break down existing P. aeruginosa biofilms, using a crystal violet assay; 2) examine 

the ability of EIP-K + H2O2 to inhibit biofilm formation, using triphenyl tetrazolium chloride dye; 

and 3) determine the effect of EIP-K + H2O2 on the viability, biomass and structure of biofilms 

cultivated in flow cells using confocal laser scanning microscopy (CLSM). Results showed that 

EIP-K + H2O2 significantly reduced biofilm biomass relative to controls and that the compounds 

are effective at nanomolar concentrations.                                                                                                

  

INDEX WORDS: Biofilm, Pseudomonas aeruginosa, Escapin, EIP-K, L-amino acid oxidase, Crystal  
    violet assay, Triphenyl tetrazolium chloride, Confocal laser scanning microscopy 
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1 INTRODUCTION 

1.1 Microbial Biofilms 

Biofilms are microbial communities encased in a matrix of extracellular polymeric substance 

(EPS) composed of extracellular DNA, proteins, lipids, and polysaccharides, and they adhere to 

and grow on biotic and abiotic surfaces [1, 2]. Bacteria form biofilms in response to 

environmental stress, nutritional starvation, oxygen depletion, or exposure to chemicals 

including antibiotics. Cells grown in biofilm are greatly different from the planktonic cells of the 

same organism in terms of gene expression, cellular physiology, and resistance to antibiotics [3-

5]. Biofilm formation was shown early in the fossil record ( 3.25 billion years ago) and a wide 

range of organisms in both the Archaea and Bacteria lineages, including the 'living fossils' in the 

most deeply dividing branches of the phylogenetic tree were shown to be biofilm forming 

bacteria [1]. It is evident that biofilm formation is an ancient and essential component of the 

microbial life cycle, and is a key factor for survival in diverse environments. Recent advances 

show that biofilms may be structurally complex, dynamic systems that can comprise 

multispecies and inhabit different ecosystems. Generally, biofilms are formed by different 

microorganisms as a protected mode of growth that allows cells to survive in hostile 

environments and also disperse to colonize new niches [1]. 

1.1.1 Biofilm Formation 

Biofilm formation initiates when microorganisms switch their lifestyle from free swimming cells 

(planktonic cells) to a lifestyle in which cells are firmly adhered to biotic or abiotic surfaces in 

response to a variety of environmental signals. Cells are irreversibly attached to the substratum 
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forming monolayer of cells followed by proliferation of cells attached to the surface leading to 

the formation of microcolonies and extensive network of extracellular polymeric substances. 

The microcolony matures into a more complex three dimensional structure of biofilm [3, 6, 7]. 

Cells start to disperse from the biofilm due to nutrient starvation. Dispersal of cells from biofilm 

is an essential stage of the biofilm life cycle as dispersal enables the bacteria to spread and form 

new biofilm on other biotic or abiotic surfaces.  Biofilm formation involves many regulatory 

genes and factors that control initial cell-surface interactions, cell-cell communication (quorum 

sensing), biofilm maturation, and the dispersal of cells from biofilm.    

 

 

Figure 1.Stages of biofilm development [8] 

 
1.1.2 Significance of Biofilms 

Biofilm formation has serious health and environmental impacts. For instance, formation of 

biofilms on medical devices, such as catheters or implants, often results in chronic infections 

that are difficult to be targeted by therapeutic drugs [9, 10]. Moreover, nosocomial infections 
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have been associated with biofilm formation on human surfaces such as teeth, skin, and the 

urinary tract [11]. However, not all biofilms formed on surfaces are considered harmful. Some 

of them are beneficial. Cells within biofilm can interact together more collaboratively than 

individual cells, and this interaction can be exploited for industrial purposes. For example, 

biofilms can help eliminate petroleum oil from contaminated oceans or marine systems by the 

hydrocarbon degrading activities of microbial communities [12]. Biofilms are used in microbial 

fuel cells (MFCs) to generate electricity from a variety of starting materials, including complex 

organic waste and renewable biomass [13]. Additionally, biofilms grown on skin comprise 

beneficial species that can prevent colonization of pathogens [9]. Biofilm formation by some 

bacterial species such as B. subtilis prevents infection caused by some plant pathogens, reduces 

mild steel corrosion, produces novel compounds, and often allows beneficial mutualistic 

symbiosis [14]. For instance, Actinobacteria often grows on ants, allowing the ants to prevent 

the growth of pathogen fungi in gardens [15]. Thus, biofilms impact human health and 

environment in many ways; for that reason biofilms are receiving significant attention. 

  1.1.3 Resistance of Biofilms to Antimicrobial Agents 

 Biofilms are more resistant to antimicrobial agents such as antibiotics than their planktonic 

counterparts [2, 16]. Cells grown in biofilm can be up to 1000 fold more resistant to 

antibacterial agents than planktonic cells and they are protected from even intensive treatment 

regimens [2, 17-19]. Moreover, biofilms contain persister cells, cells that neither grow nor die in 

the presence of antimicrobial agents, and thus conferring on them multidrug resistance [20]. 

This resistance can be due to the thickness of biofilm matrix so the antimicrobials penetrate 

poorly into the matrix, and the cells are protected from external treatment by reacting or 
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binding with biocides [21]. Additionally, bacteria living in biofilms adopt an altered metabolic 

state. This includes increasing extracellular enzymatic activity inside the biofilms which confers 

on them more resistance to antimicrobials [22].  Extracellular polymeric substances (EPS) may 

form barriers or make complexes with the antimicrobials, thus preventing or reducing the 

antimicrobial action. Moreover, biofilms can generate different microenvironments within their 

layers with altered pH, CO2 concentrations, oxygen concentrations, cation concentrations, and 

other variables, which may affect the activity of antimicrobials [23]. For these reasons, biofilms 

represent an important issue for public health necessitating the development of novel 

antimicrobial and therapeutic agents. 

 

Figure 2.Mechanisms of resistance of P. aeruginosa biofilms to antimicrobial agents [24] 

 

1.1.4 Pseudomonas aeruginosa Biofilms 

Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections such as 

cystic fibrosis [22, 25]. Cystic fibrosis (CF) destroys lung function which makes it a major cause 
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of morbidity and mortality. In the chronically infected CF lung, P. aeruginosa grows as a biofilm 

and is hard to be eradicated [26, 27]. In addition, extracellular polymeric substances (EPS) 

produced by P. aeruginosa biofilms can inhibit phagocytosis by cells of the immune system. 

1.2 Effect of Antimicrobial Agents on Biofilm Matrix and Viability 

Recent studies showed that antibiotics alone cannot destroy the biofilm matrix [6] as they have 

been shown to be effective against biofilm viable mass more than that the biofilm matrix which 

is mainly responsible for biofilm persistence. Biofilm matrix and viability of cells grown in 

biofilm are essential for the development of biofilms. Therefore, an effective antimicrobial or 

biocide should be effective against both biofilm viable mass and matrix [22]. Most biocides 

show a greater effect on biofilm viability than on matrix. For instance, isopropanol and 

peractetic acid markedly reduce the biofilm viability of P. aeruginosa with a lower effect on 

biofilm matrix [22]. Hydrogen peroxide has been extensively studied previously for its 

bactericidal and anti-biofilm activity. Hydrogen peroxide is a powerful antimicrobial agent 

against both planktonic cells and biofilm of P. aeruginosa [6, 22]. Hydrogen peroxide is a 

powerful anti-biofilm agent because it is active on both biofilm matrix and viable mass, and it 

can result in a significant eradication of P. aeruginosa biofilm at a concentration of 5% after one 

hour [6, 22]. Also, sodium hypochlorite is  effective against both biofilm matrix and viability 

[22]. Some antimicrobial agents can only affect biofilm matrix and trigger biofilm dispersal. For 

example, nitric oxide induces dispersal of P. aeruginosa biofilm bacteria at low, sublethal 

concentrations (25 to 500 nM)[28].  

.  
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1.3 Bactericidal Effect of Escapin 

Escapin is an effective inhibitor of many microbes and it is normally produced by sea hares 

(Aplysia californica) as an antipredatory chemical defense[29]. It has both bacteriostatic and 

bactericidal activities [29]. Escapin uses L-lysine as a substrate to produce α-amino-ε-caproic 

acid, H2O2, and ammonia [29, 30]. α-Amino-ε-caproic acid forms an equilibrium mixture of 

several compounds, which are collectively called escapin intermediate products of L-lysine (EIP-

K)[31]. EIP-K reacts with H2O2 to produce a mixture of compounds called escapin end products 

of lysine (EEP-K). EIP-K plus H2O2, but not EIP-K, EEP-K, H2O2, or EEP-K plus H2O2 show rapid, 

powerful, and long lasting bactericidal activity[31]. EIP-K + H2O2 together, but neither alone, is a 

powerful bactericidal agent with a greatest effect against P. aeruginosa planktonic cells[32]. 

EIP-K + H2O2 cause long and lasting DNA condensation in bacteria. Therefore, EIP-K + H2O2 could 

be potentially used as antimicrobial agent for biofilm eradication, which can affect either 

biofilm cells viability or biofilm matrix or can affect biofilm formation.   

 

Figure 3.The ink of Aplysia californica containing escapin, a 60 kDa protein [32] 
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1.4 Objectives 

1.4.1 Effect of EIP-K + H2O2 on Disrupting Existing Biofilms of P. aeruginosa 

A goal of this study was to determine the effect of EIP-K + H2O2 on disrupting established 

biofilms. The rationale for this objective is the bactericidal effect of EIP-K + H2O2 against 

planktonic cells of P. aeruginosa. 

1.4.2 Effect of EIP-K + H2O2 on Killing Cells within Existing Biofilms of P. aeruginosa 

A second line of investigation was to determine the effect of EIP-K + H2O2 on biofilm viability, 

biomass and structure. This hypothesis was tested using biofilm cultivation in flow cell model 

and imaging using CLSM, and plate counts were used to measure the effect of compounds on 

bacterial cells viability within the biofilm. 

1.4.3 Effect of EIP-K + H2O2 on Biofilms Formation by P. aeruginosa 

This study also hypothesized that EIP-K + H2O 2 can prevent initial biofilm formation by 

assuming that both compounds can disrupt quorum sensing, genes, or signals required for 

biofilm formation. This assumption is based on previous results showing that EIP-K + H2O 2 

caused DNA condensation within cells lasting for at least 70 hr [32]. This hypothesis was tested 

with biofilms grown in microtiter plates followed by staining with TTC, an indicator of cellular 

metabolic activity. 
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2 MATERIALS AND METHODS 

2.1 Cultures and Media 

Pseudomonas aeruginosa strain PAO1 was used in this study. Pseudomonas aeruginosa was 

stored as frozen stock in 20% glycerol at -80 °C and was cultured on Luria Bertani (LB) agar. 

Plates were incubated at 37°C overnight (16-18hr). For biofilm formation, the overnight culture 

was diluted in Pseudomonas basal mineral (PBM) media (the amounts are grams per liter of 

distilled water) (K2HPO4, 12.5g; KH2PO4, 3.8g; (NH4)2SO4, 1.0g; MgSO4·7H2O, 0.1g; trace 

elements solution, 5 ml) with glucose (144 g/liter) as the sole carbon source (pH 7.2) [41] to 

OD600 of 0.01, and then 100 µl of diluted culture was pipetted into each well in 96-well flat-

bottom polystyrene microtiter plate and incubated at 37°C for 24 hr.  

2.2 Animals 

Sea hares (Aplysia californica Cooper 1863) were collected in California by Marinus Scientific 

(Garden Grove, CA) [32].  

2.3 Collection of Ink and Isolation of Escapin 

Ink glands were dissected from anesthetized animals and frozen at -80°C until they were used. 

Purple ink was collected by gently squeezing dissected ink glands in a Petri dish with the blunt 

end of a scalpel handle. Escapin (ATCC accession no. AY615888) was isolated and purified by 

using an ÄKTA 100 automated fast protein liquid chromatography system [32]. 
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2.4 Preparation of the Products of Oxidation of L-amino Acids by Escapin. 

 To produce EIP-K, 55 mM L-lysine or L-arginine monohydrochloride, 1x 10-3 mg/ml escapin, 

and 0.13 mg/ml catalase were incubated in deionized water at 30°C on a shaker for up to 24 

hours. This solution was filtered using an Amicon Ultra-4 centrifugal filter device (Millipore 

Corp., Billerica, MA) to remove escapin and catalase and then stored it at -80°C until it was used 

further [32].  

2.5 Biocides Preparation 

Hydrogen peroxide solutions were prepared from 30% (w/w) stock solution stored at 4°C and 

serially diluted in a sterile 50 mM KCl-NaCl solution (pH 7.0). Escapin intermediate products 

(EIP-K) solutions were prepared from 1 M (w/v) stock solution stored at -80°C and serially 

diluted in KCl-NaCl solution. 

2.6 Assessment of the Effect of EIP-K + H2O2 on Biofilm Removal and Viability of P. aeruginosa 

2.6.1 Crystal Violet (CV) Biofilm Assay 

After 24 hr of biofilm growth in microtiter plate, media with planktonic cells were aspirated 

with a micropipette, and wells were washed three times with 300 µl of KCl-NaCl solution and 

the plates were left to dry at room temperature for 15 min by placing them face down on 

tissue. EIP-K and H2O2 (1 M, 30% respectively) were then applied to the wells. All six wells in a 

column receive the same treatment, and each experiment was conducted in at least duplicate. 

The plates were incubated at 37°C for 30 min. After 30 min, the biocides were discarded and 

the wells were washed twice with 300 µl of KCl-NaCl solution as described before [6, 22]. After 

washing, crystal violet staining was performed as described before [3] with some modifications 
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to assess the effect of EIP-K + H2O2 to remove biofilm. These include staining with 150 µl of 

0.3% crystal violet for 20 min and afterwards aspirating with a pipette. Excess stain was rinsed 

off by placing the microtiter plate under running tap water until washings were free of the 

stain. Excess stain was rinsed off by placing the microtiter plate under running tap water until 

rinses were free of the stain. Plates were subsequently dried by flipping them on tissue for 15 

min. The remaining stain was then solubilized by the addition of 150 µl of 95% ethanol for 30 

min standing on bench. Absorbance of the stain was measured using microtiter plate reader at 

wavelength 590 nm. The efficacy of EIP-K + H2O2 (i.e. the percentage reduction in stain) was 

calculated from the blank (wells containing broth only), control and treated absorbance values 

in plate using the following equation [6, 22]:                                                                                                                               

Percentage reduction = [(C-B)-(T-B)/(C-B)]*100 

where B stands for the average absorbance for blank wells, C stands for the average 

absorbance for control wells and T stands for the average absorbance for treated wells.                                                                                                         

2.6.2 Cultivation of Biofilm in Flow Cells Model and Imaging using Confocal Laser Scanning 

Microscopy (CLSM) 

Biofilms were cultivated in flow cells as described before [19, 33, 34] except with PBM as a 

growth medium. After growing the biofilms of P. aeruginosa PAO1 in the flow cell for 24 hr, the 

biofilm was rinsed with a sterile 50 mM KCl-NaCl solution (pH 7.0) for 20 min. After rinsing, EIP-

K + H2O2was pumped for 30 min through the flow cell, and then the biofilms were rinsed for 10 

min.  After rinsing, 1 ml of a 1:1,000-diluted LIVE/DEAD® Baclight™ nucleic acid stain (SYTO 9 

dye, 3.34 mM; propidium iodide, 20 mM) was pumped into the flow cell. The stain was left 
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inside the flow cell for 15 min, and then the biofilms were rinsed with KCl-NaCl solution for 

another 5 min and examined by confocal laser scanning microscope (CLSM). Argon and helium 

lasers were used with excitation/emission of 480/500 nm for SYTO 9 stain and 490/635 nm for 

propidium iodide.  Longpass and dual emission filters were used for simultaneous viewing of 

SYTO 9 and propidium iodide stains. At least four image stacks were collected from each biofilm 

and at least three independent biofilms were cultivated for each of the tested conditions.                                                                                                                                             

2.6.3 Plate Count 

Biofilms grown in flow cells were harvested by pumping the liquid and cells out of flow cells into 

sterile 1.5 ml microcentrifuge tube.  The recovered cells were centrifuged at 8000 rpm for 2 

min. Supernatant was discarded and pellet was resuspended in 1 ml of with KCl-NaCl solution. 

The suspended bacterial culture was serially diluted and plated on LB agar media. Viable cell 

counts were determined by enumeration of CFU with appropriate dilutions on LB agar media 

after 24 hours of bacterial growth. 

2.7 Assessment of the Effect of EIP-K + H2O2 on Biofilm Formation by P. aeruginosa using 

Triphenyl Tetrazolium Chloride (TTC) Dye 

After diluting the overnight culture of P. aeruginosa  with PBM media to give an OD600 

0.01, 95µl of diluted culture with  5 µl of EIP-K/H2O2  were added to each well of 96-well 

microtiter plate and then the plates were incubated at 37°C for 24 hr. After 24 hr, media with 

planktonic cells were aspirated with a pipette and the wells were washed twice with KCl-NaCl 

solution. After washing, 100 μl of fresh PBM media were added to each well plus 5 μl of TTC 

(1% v/v ) resulting in a final TTC concentration of 0.05%, and then the plates were sealed with 

parafilm and wrapped in foil to prevent oxidation of TTC dye and incubated for further 24 hr. 
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After 24 hr, the absorbance of TTC was measured at 540 nm using a microtiter plate reader [18, 

26, 35] 

2.7 Statistical Analysis 

Image stacks collected by CLSM were evaluated by using the digital image analysis program 

COMSTAT [36], for quantifying features of biofilm structure. Results were analyzed by ANOVA 

assuming that (P<0.05) is considered significant. 
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3 RESULTS 

3.1 The Effect of EIP-K + H2O2 on Disrupting Existing Biofilms of P. aeruginosa 

Crystal violet assays were used to measure the ability of EIP-K + H2O2 to remove P. aeruginosa 

biofilms. To determine the most effective concentrations of each compound for achieving a 

synergistic interaction, a cross-sectional design was used. First, the H2O2 concentration was 

held constant at 300 µM and a range of EIP-K concentrations were tried in combination with it. 

The assay indicated that 0.5 mM EIP-K was the most effective concentration of the initial 

concentrations that were tested (Fig. 4.1). Subsequently, CV assays were carried out with 0.5 

mM EIP-K and varying concentrations of H2O2 (Fig. 4.2). These experiments indicated that 300 

µM H2O2 resulted in a small but significant increase in biofilm removal.                                             
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Figure 4.1.Crystal violet assay measuring removal of existing biofilms following treatment 
with EIP-K,H2O2 or EIP-K + 300 µM H2O2.Values are means ± standard deviation for six 
replicates from a representative experiment. An asterisk indicates that the effect of EIP-K + 
H2O2 is significantly higher than that of H2O2 alone (P<0.005; paired t test). 

 

 

Figure 4.2.Crystal violet assay measuring removal of existing biofilms following treatment 
with EIP-K, H2O2 or 0.5 mM EIP-K + H2O2.Values are means ± standard deviation for six 
replicates from a representative experiment. An asterisk indicates that the effect of EIP-K + 
H2O2 is significantly higher than that of EIP-K alone (P<0.02; paired t test). 
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3.2 Flow Cell Assessment of EIP-K + H2O2 Activity 

Biofilm cultivation in flow cells and imaging using confocal laser scanning microscopy (CLSM) 

were used to determine the effect of EIP-K + H2O2 on both biomass reduction and cell viability 

of P. aeruginosa biofilms. Three concentrations of H2O2 ranging from 0.3 nM to 30 nM in 

combination with 50 µM EIP-K were compared to determine the most effective treatment at 

this range; these are referred to as the low concentration treatments in the following sections. 

Additionally, 5 mM EIP-K + 300 µM H2O2 was tested and is referred to as the high concentration 

in the following sections. At each concentration, four conditions were compared: an untreated 

control, treatment with either EIP-K alone or H2O2 alone and treatment with EIP-K and H2O2 

simultaneously. Representative images for the low and high concentration treatments are 

shown in Figs. 5.1 and 5.2. 30 nM was found to be the most effective H2O2 concentration for 

reducing biofilm biomass (Fig. 5.3a). 30 nM H2O2 resulted in nearly 68% reduction in biomass 

relative to an untreated control (Fig. 5.3b). The high concentration treatment resulted in 

approximately a 39% reduction (Fig. 5.3c). Viability staining indicated similar ratios of red and 

green cells for the low concentration treatment (Fig. 5.4a) In contrast; there was an increase in 

the number of red cells in biofilms treated with EIP-K + H2O2 at high concentration (Fig. 5.4b). 

Enumeration of cells in biofilms by serial dilution and plate count determined a significant 

reduction in cell number following treatment with both EIP-K and H2O2 at the low 

concentration compared to the untreated control as well as an increase in cell density following 

treatment with H2O2 only (Fig. 5.5). Plate counts indicated that the high concentration also 

caused a significant reduction in cell number compared to the untreated control, although to a 

lower extent than for the low concentration of EIP-K + H2O2 (Fig. 5.5).                                                 
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Figure 5.1.Confocal microscopy images of P. aeruginosa biofilms grown for 24 h following 
treatment with 50 µM EIP-K+ 30 nM H2O2, EIP-K or H2O2 alone for 30 min. Note the increase in 
black, indicating unoccupied space in the upper right hand panel. Live cells have green or yellow 
color while dead cells have red color. 
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Figure 5.2.Confocal microscopy of P. aeruginosa biofilms grown for 24 hr following treatment 

with 5 mM EIP-K + 300 µM H2O2, EIP-K and H2O2 alone for 30 min. Live cells have green or 

yellow color while dead cells have red color. 
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Figure 5.3.Effect of EIP-K + H2O2 on P. aeruginosa biofilm removal  for biofilms grown in flow 
cells for 24 hr.(a) biofilm treatment with 50 µM EIP-K+ 30, 0.3 and 3 nM H2O2.(b) biofilm 
treatment with 50 µM EIP-K+ 30 nM H2O2, EIP-K and H2O2 alone.(c) biofilm treatment with 5 
mM EIP-K + 300 µM H2O2, EIP-K and H2O2 alone. Experiment was carried out in quadruplicate. 
Values are means ± standard error of means for 16-20 replicates from a representative 
experiment. Columns labeled with different letters are significantly different from one another 
(p<0.02; paired t test). 
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Figure 5.4.Effect of  EIP-K + H2O2 on P. aeruginosa biofilm cells viability after 30 min. of 
treatment.(a) Biofilm treatment with 50 µM EIP-K+ 30 nM H2O2, EIP-K and H2O2 alone.(b) 
Biofilm treatment with 5 mM EIP-K + 300 µM H2O2, EIP-K and H2O2 alone. Values are means ± 
standard error of means for 16-20 replicates from a representative experiment. 
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Figure 5.5.Percent of cells in P. aeruginosa biofilm enumerated by serial dilution and plate 
count. (a)  Biofilm treatment with 50 µM EIP-K+ 30 nM H2O2, EIP-K and H2O2 alone. (b) Biofilm 
treatment with 5 mM EIP-K + 300 µM H2O2, EIP-K and H2O2 alone. Values are means ± standard 
deviation of means for 3 replicates from a representative experiment. Columns labeled with 
different letters are significantly different from one another (p<0.05; paired t test). 
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3.3 The Effect of EIP-K + H2O2 on Biofilms Formation by P. aeruginosa using TTC Dye 

Triphenyl tetrazolium chloride (TTC) dye was used to measure the effect of EIP-K + H2O2 on 

preventing biofilm formation by measuring the metabolic activity of cells following treatment 

with EIP-K + H2O2. Each experiment was performed in duplicate with six replicates being tested 

per treatment. Different concentration of both EIP-K and H2O2 were investigated.  The effect of 

EIP-K + H2O2 decreased with increasing concentration. EIP-K + H2O2 showed a significant effect 

on preventing biofilm formation compared to negative control (P<0.007) but it is not significant 

compared to the corresponding EIP-K and H2O2 alone.  As the concentration of H2O2 increased, 

biofilm formation was stimulated until 5 mM, a concentration which completely prevented 

biofilm formation.                                                                                                                                            

 

Figure 6.1.Effect of EIP-K, H2O2 or EIP-K + 300 µM H2O2 on P. aeruginosa cells viability during 
biofilm formation after 30 min of treatment. Values are means ± standard deviation for six 
replicates from a representative experiment.  
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Figure 6.2.Effect of EIP-K, H2O2 or 13.75 mM EIP-K + H2O2 on P. aeruginosa cells viability 
during biofilm formation after 30 min of treatment. Values are means ± standard deviation for 
six replicates from a representative experiment.  
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4 DISCUSSION 

EIP-K and H2O2 showed promise as an antimicrobial agent for targeting P. aeruginosa biofilms. 

A crystal violet staining technique was used as a screen to identify the range of concentrations 

where EIP-K and H2O2 would work together most effectively. The crystal violet assay results 

showed that EIP-K + H2O2 had a significant effect on biofilm removal of P. aeruginosa compared 

to the negative control, EIP-K or H2O2 alone. EIP-K + H2O2 was more effective at low 

concentrations than at high concentrations, suggesting the occurrence of an Eagle effect 

previously reported for EIP-K + H2O2 with E. coli [31, 32] and for some antibiotics such as 

penicillin against streptococci and Staphylococcus aureus [37]. As a result, flow cell experiments 

were carried out to address the effect of EIP-K + H2O2 at low concentrations. 
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Flow cell analysis is a technique that facilitates non-destructive imaging of biofilms and is 

effective for measuring changes in biofilm parameters in response to antimicrobial agents. The 

flow cell data presented herein indicated that treatment with EIP-K + H2O2 significantly reduced 

the biomass of P. aeruginosa from established biofilms. This result was supported by image 

analysis data as well as enumeration by serial dilution and plate count. LIVE/DEAD staining 

revealed no significant differences in the proportion of viable cells among treatments and 

suggested that EIP-K + H2O2 acted by stimulating cellular detachment.  Several factors have 

been reported to promote P. aeruginosa detachment, including enzymatic disruption of the 

surrounding EPS matrix, oxygen radical-dependent killing of bacteria[38], prophage-mediated 

bacterial death that enhances dispersal of cells from biofilm [25] or the release of amyloid 

fibers linking cells in the biofilm together, a process regulated by d-amino acids [39].  EIP-K + 

H2O2 may act by stimulating one or more of these mechanisms. If the detachment seen in the 

flow cell experiments can be replicated in vivo, EIP-K + H2O2 could potentially be a useful as part 

of therapies to control P. aeruginosa infections. The effectiveness of EIP-K + H2O2 could possibly 

be enhanced by working in combination with antimicrobial agents shown elsewhere to be 

effective against P. aeruginosa. 

 

Another way that EIP-K + H2O2 could be an effective antimicrobial treatment is by preventing 

the formation of mature biofilms. Using a TTC assay, it was observed that EIP-K + H2O2 reduced 

biofilm formation by P. aeruginosa.  These data suggest that EIP-K + H2O2 inhibited the growth 

of bacteria that attached to the substratum, leading to reduced biomass relative to controls 

following 24 h of growth. Generally, the collected data indicate that the potential of EIP-K + 
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H2O2 to prevent biofilm formation was lower than that to remove biofilm.  The reduced effect 

may be due to the neutralization of H2O2 by bacterial cells over the course of the experiment. 

Overall, EIP-K + H2O2  promoted biofilm detachment at nanomolar concentration, similarly to 

the activity of d-amino acids [40] and nitric oxide [28]. Further investigation into the mechanism 

of action of EIP-K+ H2O2 is warranted.  
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