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ABSTRACT 

The clinical trial is the most import study for the development of successful novel drugs. 

The aim of this dissertation is to develop innovative statistical methods to overcome the three 

main obstacles in clinical trials: (1) lengthy trial duration and inaccurate maximum tolerated dose 

(MTD) in phase I trials; (2) heterogeneity in drug effect when patients are given the same 

prescription and same dose; and (3) high failure rates of expensive phase III confirmatory trials 

due to the discrepancy in the endpoints adopted in phase II and III trials. Towards overcoming 

the first obstacle, we originally develop a hybrid design for the time-to-event dose escalation 

method with overdose control using a normalized equivalent toxicity score (NETS) system. This 

hybrid design can substantially reduce sample size, shorten study length, and estimate accurate 

MTD by employing a parametric model and adaptive Bayesian approach. Toward overcoming 

the second obstacle, we propose a new approach to incorporate patients’ characteristic using our 



 

 

proposed design in phase I clinical trials which considers the personalized information for 

patients who participant in the trials.  To conquer the third obstacle, we propose a novel two-

stage screening design for phase II trials whereby the endpoint of percent change in of tumor size 

is used in an initial screening to select potentially effective agents within a short time interval 

followed by a second screening stage where progression free survival is estimated to confirm the 

efficacy of agents. These research projects will substantially benefit both cancer patients and 

researchers by improving clinical trial efficiency and reducing cost and trial duration. Moreover, 

they are of great practical meaning since cancer medicine development is of paramount 

importance to human health care. 
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1     INTRODUCTION  

This dissertation consists of a series of studies conducted as part of cancer phase I and 

phase II clinical trial designs. The first part of this dissertation sought to determine how and to 

what extent the proposed hybrid phase I design reduces the trial duration and improve the dosage 

accuracy. The second part of the dissertation sought to adjust the current phase I design with 

respect to patients’ individualized characteristic among the population. The third part of the 

dissertation sought to measure the improvement to the success rate and model sensitivity of 

proposed two-stage phase II trial design.  

1.1 Statement of Need 

Healthcare is a global topic. It is the common expectation for people to live a prolonged 

and high quality of life, regardless of where we inhabit, what we eat or how we live. In one way 

or another, people are connected by many of the same health issues, such as deaths from non-

communicable diseases — cancer, cardiovascular disease, diabetes and so forth. Today, the 

purpose of medical research thus is to turn biomedical discoveries into practice to improve 

human health. It worth unremitting study via the help of clinical trial researches and is of 

paramount importance for the society as a whole. 

Medical research has provided benefits for everyone with a longer and healthier life in 

the United States — a world leader in the field. However, challenges are still exists. Tremendous 

efforts have been made towards life-threatening diseases, such as cancer and AIDS on decades; 

but little has been known to these persistent unsolved problems. Hence, continuous studies are 

indispensable. Now, it has been the essential objectives of medical research to discover curative 

treatment for the life-threatening diseases, such as cancer. 
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Throughout the United States, cancer is the second leading cause of death, exceeded only 

by heart disease, accounting for nearly one in every four deaths (Siegel, et al., 2012). In 2012, 

about 1,638,910 new cancer cases would be diagnosed, and 577,190 Americans are expected to 

die of this disease, more than 1,500 people per day (ACS, 2012). Cancer causes severe pain and 

suffering for patients, as well as their families and friends. Moreover, the financial costs of 

cancer are high for both cancer patients and the society as a whole. According to National 

Institutes of Health estimates, direct cancer care costs $124.6 billion in the United States in 2010. 

It is expected that the expenditures will increase at a faster rate as cancer prevalence increases. 

Total costs will double if indirect costs are included, such as expenditure of cancer-related illness 

and death (NIH, 2012). Today, forty years after President Richard Nixon signed the National 

Cancer Act in 1971, with unremitting effort from all cancer researchers, the five-year relative 

survival rate — an important standard to compare the effectiveness of treatments for all cancers 

diagnosed between 2001 and 2007 grew to 67%, from 49% in the period 1975-1977 (Siegel, et 

al., 2012). This improvement in survival reflects both progresses in diagnosing certain cancers at 

an earlier stage and advance in medical treatment.  

 On the way of seeking effective therapeutic regimens for cancer, researchers have taken 

big step forward in both diagnosing and treating the disease by using mechanisms of advanced 

methods. Notably improvements in cancer treatment and relative survival rate have been made 

through the help of clinical trials since 1975 (Jemal, et al., 2008), which is the prevailing 

approach to develop candidate therapies.   

1.2 Background Introduction 

Cancer clinical trials are investigations that conducted in human beings intended to 

evaluate the safety and effects of new anti-cancer drug or drug combinations.  Requirements to 
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regulate the conduction of such trials are provided by FDA nationally, or international 

organizations, such as EU.  

 

Figure 1-1 Cancer Clinical Trial Process 

These studies apply the gold standard conveying biomedical theory and laboratory result 

into practical therapeutic regimens. There are several steps—called “phases” that conducted 

consecutively, with approval before performing each phase. Figure 1-1 illustrates the process of 

a complete cancer trial which lasts more than 10 years. Patients who participate in a cancer 

clinical trial, take part in only one phase most of the time.  Phases are designed according to 

different purposes.  

Phase 0 trials are conducted before initiating traditional phase I dose escalation, which 

primary goal is to evaluate pharmacodynamics and/or pharmacokinetic properties of the new 

drug or the drug combination (Gupta, et al., 2011). In response to Investigational New Drug 

(IND) guidance of FDA and European Medicines Agency, a phase 0 trial is an exploratory study 

(Robinson, 2008). It is conducted only on a small number of patients (approximately 10-15) by 

very small doses of the new drug or drug combinations as the safety or effectiveness of the new 

drug or the drug combinations is unknown. It is used to investigate whether the drug approaches 

the tumor, how the drug affects human body, and how cancer cells in the human body respond to 
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the drug. A significant difference between phase 0 trials and later phases of cancer trials is that 

phase 0 trials have no therapeutic intent (Kummar, et al., 2008). Because drug doses are low, 

there’s also less risk to the patient in phase 0 studies compared to phase I studies. The patients 

who take part in these trials usually have advanced disease, and no known effective treatment 

options are available to them. Phase 0 studies help researchers find out whether the drugs do 

what they are expected to do. This process may help avoid the delay and expense of finding out 

years later in phase II or even phase III clinical trials that the drug doesn’t act as it was expected 

to base on lab studies.  

The principal purpose of cancer phase I clinical trials is to evaluate the safety of the new 

anticancer drug, and determine the recommended dose and/or schedule of an experimental drug 

or drug combination for efficacy testing in subsequent phase II trials (Lin, et al., 2001).  A cancer 

phase I trial may involve new drugs or drug combinations under development or new 

combinations of already available drugs. It is usually conducted to small numbers of people (15 

to 30), who are at advanced cancer stage that have progressed in spite of standard  treatments 

(Tourneau, et al., 2009). Since little is known with the new drugs or the drug combinations under 

testing, it is essential to conduct a phase I trial carefully and thoughtfully. Usually the study 

begins at a low dose and move forward if the treatment is considered to be safe. A distinction 

between cancer phase I trials and other phase I trials is that the former ones have therapeutic aim.  

The primary assumption underlying an anticancer drug is that toxicity is a prerequisite for 

optimal antitumor activity. Therefore, cancer phase I designs should minimize exposures to 

unnecessary non-therapeutic doses while preserve safety by minimize the number of patients 

given severely toxic overdoses (Babb, et al., 1998). Investigation result — optimal recommended 



5 

  

dose level or so called maximum tolerated dose (MTD) will be recommended in the subsequent 

phase II and phase III trials. 

Phase II studies play a pivotal role in anticancer drug development, which are conducted 

to assess whether a new drug or a drug combination has sufficient the efficacy to warrant further 

investigation. A cancer phase II trial usually involves fewer than 100 patients who have a 

specific type of cancer or related cancers. Adopting information of MTD from preceding phase I 

trials, these phase II studies aim to obtain a preliminary estimate of the effectiveness of antitumor 

activities of new drugs or drug combinations (Brown, et al., 2011). Patients who take part in 

phase II trials may or may not have been treated previously with standard treatment.  In cancer 

phase II trials effectiveness is usually measured by tumor response (shrinkage) that a 50% or 

more shrinkage in tumor size is considered to be a successful treatment. Various alternate 

endpoints have been proposed to assess the efficacy of treatment such as progression-free 

survival (PFS), overall survival, biomarkers, and more recently, evaluation of tumor size as a 

continuous variable (Dhani, et al., 2009). New drugs or drug combinations showing sufficient 

activity in the phase II setting might be evaluated subsequently in a phase III comparative trial. 

Phase III trials are the last step before approval, which primary goal is to compare the 

effectiveness and side effects of the new drugs or drug combinations with the current standard 

treatment for specific type of cancer. Phase III trials take one step forward than phase II trials 

that only assess the effectiveness without comparing with standard treatment. If a new drug or a 

drug combination is proven to be effective but shows no significant benefits over the current 

used treatment; it is still considered as “failed”, and will not be approved for production. If a new 

drug or a drug combination is more effective than the standard treatment and/or is easier to 

tolerate, it may become the new standard of treatment. A large number of patients (100s to 
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1000s) are included in a phase III trial. A phase III trial usually designs as a randomized two 

arms experiment; because patients who participate in phase III trials may or may not have been 

treated previously as in proceeding phase II trials. New drugs or drug combinations that 

identified as “success” in phase III studies will be approved for market and also be observed for 

post-marketing surveillance trials to follow up safety and effectiveness issues (NCI, 2013). In 

Table 1.1 we summarize the characteristics of phase I through phase III trials in the process of 

anticancer drug development. 

Table 1.1Characteristic of cancer phase I, phase II, and phase III trials. 

Category Phase I Phase II Phase III 

Objective Estimate MTD, 

determine toxicity 

spectrum, and 

evaluate 

pharmacokinetics. 

Evaluate new drug or 

treatment 

effectiveness. 

Compare with 

standard drug or 

treatment, assess 

efficacy (clinical 

benefit). 

Cancer Type All types of cancer. Specific type of 

cancer, or related 

cancers. 

Specific type of 

cancer. 

Dose Escalated. MTD MTD 

Endpoint Toxicity. Tumor response, 

event-free survival. 

Overall survival. 

Design  Dose escalation in 

small cohorts of 

patients. 

Two-stage or 

multistage design 

(early stopping rule). 

Randomized design 

(  blinded). 

A phase IV trials — also called a post-marketing surveillance trial is the stage after a new 

drug or drug combination has been approved by the FDA or other regulatory agencies for 

standard use. The purpose of cancer phase IV studies is to continue investigating the new drugs 

or drug combinations with the treatment effects and long-term safety. Phase IV trials usually 

involves large number of patients from several hundred to as many as several thousand people. 

These studies play a more and more important role in oncology drug development as it is 

necessary to continual assess new drugs or drug combinations base on large population. Finally, 
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investigators will determine further research plans with the data collected during the trials (NCI, 

2013).  

1.3 Purpose of the Study 

In developing new anti-cancer drugs, statistics is an indispensable and crucial element 

since clinical trial is a process that applies statistical inference theory into pharmaceutical 

research. In this dissertation, we will focus on improving statistical designs of phase I and II 

trials to find solutions to several major obstacles in cancer clinical studies.   

In cancer phase I trials researchers determine the dose toxicity relation by observing how 

the new drugs or drug combinations affect patients within a predefined time frame. A new 

patient will not be enrolled in the trial until all current observations obtain their information 

completely for majority of dose-escalation methods. In some other trials, new accrual is made 

with simply omitting the most recent incomplete observations; and assessment of the toxicity is 

based on all acquired information.  However, both accrual methods raise some issues. The 

former accrual plan complicates accesses of the patients. The repeated accrual suspensions will 

also lead to longer trial duration and higher administrative cost. The reduced trial duration in the 

later accrual plan causes a loss of dose-toxicity information.  

Moreover, in most of all phase I trials the toxicity response is represented by a binary 

indicator — dose limiting toxicity (DLT), which is defined as the toxic effects that are 

considered to be severe enough to prevent further dose escalation. However, using the binary 

indicator DLT may cause a loss in valuable information of the dose toxicity effect. For example, 

the actual grade 4 non-reversible renal toxicity and grade 3 reversible neutropenia as both 

classified as DLT, but the former one is much more severe than later one (Chen, et al., 2012). 

Similarly, for non-DLTs, grade 0, 1 and 2 toxicities are not equal.  Because cancer phase I trials 
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are relatively small and designed with very limited number of patients, all toxicity information is 

very precious and should be fully used to maximize the trial efficacy.  

In recent years, more and more concerns are raised towards the assumption of population 

homogeneity. Usually, in a cancer phase I trial, patients from the population are assumed to have 

the same MTD. However, this assumption is considered to be violated as recent knowledge 

obtained by the pharmacokinetics and the genetics of drug metabolism. For example, impaired 

renal function can result in reduced clearance of carboplatin and a dosing formulae based on 

renal function was developed (Newell, 1994). Taking patients individual characteristics into 

account is a new direction in cancer phase I trial designs.  

Additionally, in the conventional phase II trials, researchers assess the effectiveness of 

the new drugs or drug combinations by investigating how and to what extent the tumor sizes 

change. Usually, tumor shrinkages more than 50% is considered to be an objective response 

(Julka, et al., 2008). The response rate is defined as the proportion of objective responses to all 

responses, and is utilized as the primary endpoint to evaluate effectiveness of the anti-tumor 

activity for the new drug or treatment. But concerns over the choice of response rate as the 

primary endpoint in cancer phase II trials have been raised (Karrison, et al., 2007). First, loss of 

information is the direct result of using the categorized variable tumor response. For example, a 

tumor size shrinks of 40% and a tumor size increases of 80% are both identified as a non-

objective response, however, the treatment effects might be significantly distinct. Additionally, 

the high failure rate in subsequent phase III trials also dues to the discrepancy of endpoints 

between phase II and phase III trials.  

In this dissertation, therefore, we will focus on the above concerns that have been well 

discussed lately and seek for solutions to conquer these obstacles. To improve phase I trial 
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efficiency, we will propose a hybrid design that considers four main competing interests: (1) 

preserve the safety of patients take part in the trial; (2) take into account of time factor allowing 

incomplete observations; (3) fully utilize all toxicity information; (4) incorporate patient’s 

characteristics in the dose-toxicity model. For phase II trials, we proposed a novel two-stage 

design with double screening stages to improve the conventional phase II trial designs from the 

following aspects: (1) use continuous tumor size changes as endpoint in first screening stage; (2) 

utilize PFS as endpoint in second screening stage enhance subsequent phase III trial success rate; 

(3) double screening allows early termination which reduces the trial duration when no 

promising results present in stage I. 

1.4 A Outline Structure 

The rest part of this dissertation will follow the structure listed below. 

In section 2.1 we will review two major methodologies — adaptive and sequential 

methods that are frequently used in clinical trials. Additionally, section 2.2 explores statistical 

methods adopted in phase I clinical trials with particular attention given to rule based designs 

and model based designs. We will also review some commonly used statistical methods in phase 

II clinical trials in section 2.3, where different types of phase II designs will also be introduced 

and discussed.  

In chapter 3 we will describe the first part of our research that had been done in the 

program. We will propose a hybrid design for cancer phase I clinical trials. In section 3.1, we 

will discuss the challenges for current phase I designs and the motivation to develop a new 

design method. In section 3.2, we will provide a detailed description of our base model, dose 

escalation method with overdose control, time to event method and the novel toxicity scoring 

system to treat toxicity response as a quasi-continuous variable; as well as the theoretical 
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foundation for this design. In the last section of this chapter — section 3.3, we will provide a 

description of how we set up the simulation scheme. Finally, we will summarize and discuss our 

simulation results. 

In chapter 4 we will discuss the second part of this dissertation. In section 4.1 we will 

propose a design base on EWOC-NETS-TITE to incorporate patients’ characteristics. And in 

section 4.2, we will provide a description of the simulation plan to assess the performance of the 

model. In section 4.3 and section 4.4 are the simulation results and conclusion. 

In chapter 5 we will describe the third part of research that had been done in the program. 

In the first section — section 5.1, we will propose a novel two-stage phase II design with double 

screening stages, and will provide an introduction to the research motivation. In section 5.2, we 

will provide a detailed description of the design scheme that how do we set up the simulation 

model. In the subsequent section — section 5.3, we will apply our proposed design to a 

simulated trial to construct a comparison with the most popular used design—Simon’s two-stage 

design for phase II clinical trials. This simulation study examines the performance of our 

proposed phase II design by comparing success rate and model sensitivities to Simon’s design. 

Finally in chapter 6, we will conclude our proposed designs, summarize the research we 

have done for cancer clinical trial topic. In addition, we will explore possible directions and 

challenges for further research. 
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2     A REVIEW OF PHASE I AND PHASE II CLINICAL TRIALS 

2.1 Adaptive and Sequential Methods in Clinical Trials 

As we know, sample size in classical clinical trial designs is usually fixed and schedule is 

set up without using ongoing information during the trials. However, there is an increasing 

pressure on pharmaceutical companies and clinicians to re-examine the classical designs because 

of the fact that increasing spending in biomedical research didn’t result in an increase of success 

rate (Chow, et al., 2008). Therefore, adaptive and sequential designs have been increasingly 

popular in clinical studies in recent years, which make the studies more efficient, more 

informative and more flexible.  

Both adaptive and sequential designs allow changes of one or more specified aspects in 

the design or statistical procedure after initiation without impairing the validity and integrity of 

the trial (FDA, 2010). The goal of using such methods is not only to be more efficient to identify 

clinical benefits of the new drug under investigation, but also to improve the success rate of 

process of drug development. Statistical procedures that allowed changing can be the criteria to 

select and evaluate eligible patients, dose level of the testing drug or treatment, and schedule of 

the study. Other modifiable aspects include, but not limited to: study endpoints, measurement 

of clinical response, formulation of study objectives into statistical hypotheses, calculation of 

minimum sample size, participant randomization, study monitoring with interim/futility analysis, 

statistical data analysis plan, and so forth. Modifications are made to improve the performance of 

a trial with prompt use accumulated data from ongoing trial as well as upcoming related 

information from the literature (Chen, et al., 2012).  
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 Adaptive Design 2.1.1

Adaptive design has been well discussed recently. An adaptive design is a clinical trial 

design that allows clinicians to modify some aspects of the study using accumulating data while 

it continues, without compromising the scientific method (Gallo, et al., 2006). This method is 

commonly adopted by adaptive randomization design, group sequential design, sample size re-

estimation design, play-the-winner-and-drop-the-loser design, adaptive dose-finding design, 

adaptive treatment-switching design, hypothesis-adaptive design, and adaptive seamless phase 

II/III trial design to modify some aspects, such as sample size re-estimation, addition or removal 

of a study arm, treatment switch, and so on. All these designs can be classified into two 

categories — Bayesian and frequentist approaches. The frequentist approach performs the 

modification of trials while controlling for type I and type II errors. The Bayesian approach 

allows adaption according to the predicted probability. Recently, Bayesian approaches are 

increasingly popular in clinical trial designs. 

As we discussed in chapter 1, we focus only on the early phases trial designs in this 

dissertation. An early phase I trial is conducted to determine MTD that dose levels are chosen 

adaptively based on the response to the most recent dose. A phase II trial, which is conducted to 

assess the new drug or treatment efficacy, is often done in two or more stages. It is also 

considered to be an adaptive method, because the decision in later stage is made based on the 

response in the previous stage (Cook, et al., 2010).  

In phase I clinical trials an ongoing trial can be formulated by a function that logistic 

function is often used to model many different dose toxicity response relationships. Here, we use 

EWOC approach as an example, which is an adaptive design for dose finding based on a binary 
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indicator of DLT. The logistic dose-toxicity model is defined by the probability of toxicity 

response   : 

  (       )  
   (      )

     (      )
 

where we assume that      so that the probability of DLT is an increasing function of dose, 

and update is made when new response data become available (Chen, et al., 2012).  

As we mentioned above, a phase II design with multi-stages is also considered to be 

adaptive. Early stop feature is desired to reduce the trial duration and cost when the efficacy or 

futility of the testing drug or treatment becomes obvious. In most phase II cancer clinical trials, 

primary endpoint in one of the multi-stages (usually two-stages) is tumor response rate (Kramar, 

et al., 1995). Then the hypothesis is usually stated as: 

                   

where true response rate is denoted by  ,    is the uninteresting response rate, and    is chosen 

to be new drug or treatment’s target response rate.   

A predefined type I error rate is utilized to control the null hypothesis. If the null 

hypothesis is true, then stage II is preceded and a statistical power should be specified in 

alternative hypothesis (Lin, et al., 2004). In a clinical trial,    is easily to be identified but in 

contrast,     is not. In the early 1960’s, when anticancer treatment is not as efficient as of today, 

Gehan (Gehan, 1960) proposed to use     , and it is widely used for decades. Then in 1989, 

Simon’s two-stage design was proposed, which generalize    and initiate the idea “optimal” and 

“minimax” design (Simon, 1989). There are many designs proposed later extend Simon’s two-

stage design, such as planned versus attained design (Green, et al., 1992), optimal three-stage 

design (Chen, 1997), and optimal two-stage design for single-arm trial (Shuster, 2002), and so 
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on. Additionally, some Bayesian designs have also been proposed recently, for example, 

Bayesian two-stage designs for phase II clinical trials (Tan, et al., 2002).  

2.1.2 Sequential Design 

Sequential designs in clinical trials have some common characteristics with adaptive 

design. They both allow modifications during the conduct of trial to design or statistical 

procedures according to the accumulated data. But it is required to have a choice of a primary 

patient response and of corresponding test statistics, a choice of stopping rule and a framework 

for the analysis to perform a sequential clinical trial. In other words, a sequential method mainly 

refers to the sequentially monitoring of stopping criteria for futility and efficacy (Todd, 1999).  

When a clinical trial design is sequential, then infinite repetitions of the same sequential 

scheme must be contemplated. This raises the issue of lack in valid analysis that results in the 

design is not formally organized. But minor distinctions from the rule will only lead to negligible 

inaccuracies of analysis. Therefore, it is common to establish a safety monitoring mechanism 

(usually a committee) for major studies of life-threatening diseases. Recently, an unavoidable 

conflict in all clinical trials between the welfare of patients in the study and the scientific goals of 

the investigators attracts researchers’ attention. This conflict can be minimized if the stopping 

rule is designed to cease the trial when it is predictable that the study has harmful impact on 

patients’ safety or benefit. Therefore, a sequential design has the advantage of less likely to be in 

conflict with ethical requirements than a fixed-sample design. The sample size of a sequential 

study will be a random variable, with a distribution depending on the true treatment difference 

and the stopping rule used. Therefore, a sequential design has the benefit of reduction in sample 

size (Whitehead, 1997). 
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However, disadvantages also exist in a sequential design. The major drawback of a 

sequential design is that if the therapies under investigation are similar in their efficacies, the trial 

may require more patients than fixed-sample analysis (Thompson, 1980). It is also stated by 

researchers that a reliable statistical model need to be formulated before conducting the trial 

which is sometimes impossible.  

To conquer the above stated issues, considerable novel statistical researches have been 

conducted in the development of adaptive and sequential approaches, especially for early phase’s 

clinical trials — phase I and II trials. However, only limited numbers of the newly proposed 

methods have actually been applied to the daily practice of real clinical trials (Chen, et al., 2012). 

In section 2.2 and section 2.3, we will review significant and popularly used adaptive and 

sequential methods that have been applied to phase I and phase II clinical trials and have had a 

high impact on the field of clinical trials. 

2.2 Statistical Methodology of Phase I Clinical Trials 

It must be agreed by investigators participant in clinical trial studies that designing a 

clinical trial is when the researchers are struggling or are caught in the middle of two-front war. 

One front of designing a clinical trial is driven by the requirement that the research effort should 

be productive; the other is driven by statistical concerns. 

There are two goals in conducting a phase I trial in cancer research: (1) determine an 

optimal dose (recommended for phase II trial), and (2) preserve the safety of the treatment for 

each individual patient as well as avoid too many cases to be treated at a conservative dose level. 

The two goals are proposed because unlike researches conducted in most therapeutic areas, a 

phase I trial is usually the first step to test the new drug or treatment in human beings 

(Eisenhauer, et al., 2000).  
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It is usually considered that a phase I trial is one of the most important steps in a drug 

development process after laboratory and animal studies that confirm a therapeutic agent has 

potential curative effect. Usually, the number of subjects in a phase I clinical trial is relatively 

small, fifteen to thirty, sometime sample size can varies in the range of twenty to eighty. Dose-

toxicity response is used to model and determine the optimal dose which is set up by the widely 

accepted assumption that the therapeutic effect of a drug depends on its toxicity and increases 

monotonically with its dosage level (Tourneau, et al., 2009). Higher doses are associated with 

both severe toxicity and better therapeutic effect. Therefore, a balance is to be achieved between 

toxicity level and therapeutic benefit (Fanouriakis, et al., 2011). Seeking for the balance of 

toxicity level and therapeutic effect is equivalent to searching for a maximum dosage of the new 

drug under development. A patient should be treated with this maximum dose in the proceeding 

phase II and phase III trials, at which level the patient can tolerate its associated toxicities but 

should be with close monitoring.  

Among all toxicities patients experience, some are so severe that to escalate the dose 

level. When the side effects developed are severe enough during the study, investigators should 

prevent for further dose escalation; and these toxicities are called dose limiting toxicity (DLT). 

National Cancer Institute (NCI, 2010) published their fourth version of Common Toxicity 

Criteria; DLT is defined as a group of grade 3 or higher non-hematologic toxicities and grade 4 

hematologic non-transient toxicities. Table 2.1 lists the grade levels of all toxicities classified 

based on clinical descriptions of severity. 

Designs for phase I cancer clinical trials have changed little in past decades. As 

mentioned above, the assumption is made that the higher the dose, the greater the likelihood of 
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efficacy. Therefore, in practical clinical studies dose-related toxicity is considered to be a 

surrogate for measurement of efficacy. Hence, the logic becomes  

Table 2.1 Grade level for toxicity defined by CTCAE 

Grade level Toxicity Clinical Description of Severity 

Grade 0 No toxicity. —  

Grade 1 Mild toxicity. 

Asymptomatic or mild symptoms; clinical or 

diagnostic observations only; intervention 

not indicated. 

Grade 2 Moderate toxicity. 

Minimal, local or noninvasive intervention 

indicated; limiting age-appropriate 

instrumental activities of daily living. 

Grade 3 Severe toxicity. 

Server or medically significant but not 

immediately life-threatening; hospitalization 

or prolongation of hospitalization indicated; 

disabling; limiting self-care activities of 

daily living. 

Grade 4 

Life-threatening 

toxicity. 

Life-threatening consequences; urgent 

intervention indicated. 

Grade 5 Death. Death related to adverse event. 

the highest safe dose represents the most efficacious treatment effect. To estimate the maximum 

tolerated dose (MTD) of a new drug, a specific tolerable toxicity level needed to predefine. The 

highest acceptable DLT level is usually defined as a target toxicity level (TTL) (Parulekar, et al., 

2004). The choice of the TTL is based on the preliminary knowledge of the new drug or 

treatment under investigation. If a new drug tends to have more server toxicity, then TTL 

selection should be more conservative. In other word, the choice of TTL determines the MTD of 

the new drug. Therefore, a careful and thoughtful approach to design phase I clinical trials and 

determine more accurate MTD is critical for the fate of the new drug in subsequent trials (Chen, 

et al., 2012). 

For a cancer phase I trial, the guiding principle for dose escalation is to treat as many 

patients as possible at the therapeutic dose level to avoid unnecessary exposure of patients at the 

low doses of the new drug as well as preserve the safety. Thus, when prepare a dose escalation 
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scheme, we use the assumption that the probability of toxicity increases monotonically with 

increasing drug dose to establish the dose-toxicity relationship. Here in Table 2.2 we listed 

definitions of basic concepts used in phase I trials models from Tourneau et al., (Tourneau, et al., 

2009), which will help us better understand the terminologies used later in this dissertation.  

Table 2.2 Terms in common phase I clinical trial designs 

Term Definition 

Cohort Group of patients treated at a dose level. 

Starting dose The dose chosen to treat the first cohort of patients in a phase I trial. 

Does increment 

(decrement) 

The percent increase (or decrease) between dose levels. 

Dose-limiting 

toxicity (DLT) 

Toxic effects that are presumably related to the drug that are considered 

unacceptable (because of their severity and/or irreversibility) and that 

limit further dose escalation. DLTs are defined before beginning the trial 

and are protocol specific. They are typically defined based on toxic 

effects seen in the first cycle and specified using a standardized grading 

criteria, for example, CTCAE. 

Dose-toxicity 

curve 

The dose-toxicity curve reflects the relationship between dose and 

probability of toxicity for an anticancer agent. A logistic function is 

commonly assumed to describe the dose-toxicity curve for cytotoxic 

agents and is characterized by a parameter,  , which represents the slope 

of the dose-toxicity curve. Small values of   indicate that the probability 

of toxicity increase very slowly with increasing dose levels, whereas 

large values of   indicate a sharp increase in toxicity with increasing 

dose levels. 

Target toxicity 

level 

The maximum probability of DLT that is considered acceptable in the 

trial. The TTL in phase I trials is typically between 20% and 33%. 

Maximum 

tolerated dose 

(MTD) 

Phase I trials conducted in the US: the highest dose level at which   

33% of patients experience DLT. Phase I trials that use model-based 

methods: the dose that produces the target toxicity level (TTL). 

Optimal biological 

dose (OBD) 

Dose associated with a prespecified most desirable effect on a biomarker 

among all doses studied. 

Recommended 

phase II dose 

Phase I trials with a toxicity endpoint MTD. 

Pharmacokinetics Pharmacologic effects of the body on the drug, such as the time course 

of drug absorption, distribution, metabolism, and excretion. 

Pharmacodynamics Pharmacologic effects of the drug on the body, such as nadir neutrophil 

or platelet count, non-hematologic toxicity, molecular correlates, 

imaging endpoints. 

Therapeutic index The dosage or range of dosages of a drug that is required to produce a 

given level of damage to critical normal tissues (toxicity) divided by the 

dosage or range of dosages that yields a defined level of antitumor effect 

(efficacy). 
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Although it is popular to use an increasing relationship to describe the probability of 

toxicity, sometimes a decrease in the probability of toxicity at high dose levels could happen in 

some special cases. Since this type of cases is rare in practice, we will only focus on the common 

scenario in this dissertation. Dose escalation approaches for phase I cancer clinical trials can be 

divided in to broad classes: one uses nonparametric manner and is called rule-based design, 

including the traditional 3+3 design and its variations (Storer, 1989); the other is in the 

parametric way and called model-based design including CRM, EWOC, and their extensions. 

When the nonparametric design is adopted, the only assumption used to describe the dose-

toxicity relationship is that toxicity is non-decreasing with dose. The rule-based designs assign 

patients to dose levels according to pre-specified rules based on actual observations of target 

events from the clinical data.  

Sometimes the MTD or recommended dose for the subsequent phase II trial is also 

determined by the predefined rules. In contrary, the parametric method uses a model that adapts 

a distribution with some parameters to formulate the toxicity-dose curve. We can explain the 

mechanism of a dose-toxicity response biologically, that is the human body has stabilization and 

self-salvage systems to defend toxic invasion. The body will protect the person him/herself from 

mild toxicity when a drug dose is at a low level below a certain threshold level, but the 

probability of toxicity increases at an accelerated speed once the stabilization and self-salvage 

systems have been overcome, and reaches rapidly the worst condition, death, and then levels off. 

Therefore a sigmoid-shaped distribution is an appropriate model to describe the relationship 

between toxicity probability and dose. Many statistical designs have been proposed base on 

above considerations for phase I clinical trials; the most commonly used are summarized and 

compared in Table 2.3 (Chen, et al., 2012).  



20 

  

Table 2.3 Commonly used rule-based designs and model-based designs 

Design class Design Advantages Disadvantages 

Rule-based 

designs 

Standard 3+3 

design 

Robust. 

Simple. 

Easy to implement and safe. 

Many patients treated at 

lower subtherapeutic doses.  

Slow dose escalation. 

MTD is not a dose with 

any particular probability 

of DLT, but in the range 

from 20% to 25% DLT. 

Cannot estimate MTD with 

target probability of DLT < 

20% OR 33%. 

Not all toxicity data of all 

patients are used to 

determine the MTD. 

Isotonic 

design (ID) 

Only assumes a 

monotonically increasing 

relationship between dose and 

toxicity.  

Semiparametric. 

Can estimate MTD with 

different TTL (0-100%). 

Robust and easy to 

implement. 

Good for combination of 

multiple drugs and treatments. 

The accuracy of MTD may 

not be as good as CRM or 

EWOC. 

The trial efficiency may 

not be as good as CRM or 

EWOC. 

Model-based 

designs 

Continual 

reassessment 

method 

(CRM) 

Fit parametric model for dose-

toxicity relationship. 

Adaptive optimal design. 

Accurate estimation of MTD. 

Improved trial efficiency. 

Allow flexible MTD with 

different TTL. 

High risk of patients being 

treated with over toxic 

dosages. 

If the parametric model is 

not reliable, the result 

could be questionable. 

May fail to find MTD. 

Escalation 

with overdose 

control 

(EWOC) 

Includes all advantages of 

CRM. 

Controls the probability of 

overdosing a patient to toxic 

doses. 

Further improves MTD 

accuracy and trial efficiency. 

If the parametric model is 

not reliable, the result 

could be questionable. 

May fail to find MTD. 

2.2.1 Rule Based Designs 

All the rule-based designs are considered to follow a sequential approach. It is very 

practical to make the assumption that there exists a non-decreasing dose-toxicity relationship, 
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which is the only assumption for a rule-based design. Although considerable new designs have 

been proposed by researchers in the past 20 years, rule-based designs are still playing a very 

important part (more than half of the clinical studies conducted) in cancer clinical study because 

of its feature — easy to implement. The most frequently used designs is standard 3+3 design 

(traditional 3+3 design) (Korn, et al., 1994), and isotonic design (ID) which was proposed 

(Leung, et al., 2001) to adjust the toxicity estimates using isotonic regression. Other popularly 

used rule-based designs include: standard A+B design, up-and-down design (Storer, 1989), and 

accelerated titration design (Simon, et al., 1997), and so on. In this section, we will review some 

of the commonly utilized rule-based designs.  

The standard 3+3 design is used in phase I protocol templates of the cancer therapy 

evaluation program (CTEP), which primary goal is to improve the quality of lives of cancer 

patients by sponsoring clinical trials that investigate new anticancer drug or treatment with a 

particular emphasis on translational research to elucidate molecular targets and mechanisms of 

drug effects (Chen, et al., 2012). The standard 3+3 design can be described as follow. Assume a 

predefined dose range with ordinal dose levels         and the corresponding probabilities 

of toxicity are  r(toxicity)             . The design is named 3+3 indicates the 

cohort size in the clinical trial is 3. The first cohort of 3 patients begins the trial at the starting 

lowest dose. Then simple version of dose escalation (without de-escalation) follows the scheme 

in Figure 2-1 with the following descriptions: for the     dose level,  

1. Evaluate all 3 patients at   , when 0 out of 3 patients experience toxic event, then 

escalate to     . Otherwise, if no more than 1 patients experience toxic events, then 

go to step 2, if more than 1 patients experience toxic event, then terminate the trial, 

and recommend the proceeding dose      as the MTD. 
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Figure 2-1 3+3 dose escalation scheme (Chen et al., 2012) 
2. Evaluate an additional 3 patients at   , if no more than 1 toxic events are seen in total, 

then escalate; otherwise terminate the trial and recommend      as the MTD.  

Although 3+3 design has been used as the protocol template in cancer phase I clinical 

trials, the MTD is not a dose with any particular probability of DLT. They are designed to screen 

drugs quickly and identify a dose level that does not exhibit too much toxicity in a very small 

group of patients. There are two types of 3+3 designs, the one we described above is 3+3 design 

without de-escalation, and there is another version with de-escalation that allows three new 

patients to be treated at a previous dose level. We will not discuss it here in this dissertation. 

The isotonic design improves the standard designs in two ways. When summarizing 

toxicity risk at a dose, the method uses information at other doses in contrary to a standard 

design. And the design adopts isotonic regression which makes use of the monotonic character of 
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the dose-toxicity relationship. The design scheme adjusts 3+3 design is described by Leung et 

al., as follow (Leung, et al., 2001), for dose level   , 

1. Treat a cohort of 3 patients at   . 

2. Evaluate toxicity at different doses, and choose the dose at which  ̂  is closest to the 

tolerable toxicity 0.33, where   is the dose last used. When  ̂  0.  , then the dose 

escalates if smaller difference detected with next dose level      with  ̂    than 

with  ̂ . That is 0.    ̂   ̂    0.  , otherwise continue at the same dose level. 

When  ̂  0.  , then de-escalate the dose if 0.    ̂     ̂  0.  , otherwise 

continue at the same dose. 

Many researchers have applied the isotonic designs to their clinical studies (Stylianou, et 

al., 2002) (Yuan, et al., 2004), the pool-adjacent-violators algorithm (PAVA) and isotonic 

regression are used in the method to update the probability of DLT of each dose level after 

obtaining the information that patients experience the toxic events. Because of its feature of 

model-free, it is suitable to cases where the parametric dose-toxicity relationship is not well 

understood (Chen, et al., 2012). However, simulation studies shows that using one-parameter 

model of isotonic design tends to overestimate the dose, and a very careful and thoughtful choice 

on the parameter should be made based on Markov chain theory to ensure more frequent 

assignments to the MTD and nearby doses (Ivanova, et al., 2009).  

Rule-based designs, in practice, are still popular although many model-based designs 

have been proposed to cancer phase I trials. The simplicity of operating process is the reason to 

adopt these designs. There are many other rule-based designs have not been mentioned in this 

dissertation. All these rule-based designs can be used to determine a reasonable MTD using a 

stopping rule based either on observed DLTs or on convergence criteria. Ad hoc additional dose 
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levels can also be added when needed without any impact on their robustness. Rule-based 

designs thus are well suited for first in human clinical trials in which the dose-toxicity 

relationship is not well understood (Chen, et al., 2012).  

2.2.2 Model Based Designs 

In this section, we will provide an introduction to phase I model-based designs and a 

specific example will give to CRM (O'Quigley, et al., 1990) because in the later chapter 3, we 

will propose our hybrid design based on EWOC and provide a detailed description of it. As 

mentioned above, the body will defend the toxicity when initiating a drug dose then there is a 

steep increase in the probability of toxicity once the stabilization and self-salvage systems have 

been overcome. Thus a sigmoid-shape distribution is a very practical choice to build the dose-

toxicity relationship. Among the model-based designs, three parametric dose-toxicity functions 

(logistic model, hyperbolic model, and power function) are frequently used to describe the 

relationship between dose and toxicity (Kang, et al., 2001).  

A model-based design is a statistical model used to determine a dose level which could 

produce a prespecified probability of dose-limiting toxicity by using all enrolled patients in 

computing a more accurate dose-toxicity cure. The design is an alternative choice for the dose 

escalation method in cancer phase I trials. Recently, many multi-stage model-based designs have 

been proposed, for example two-stage design to optimize cancer phase I trials (Zandvliet, et al., 

2010). But CRM (O'Quigley, et al., 1990) and EWOC (Babb, et al., 1998) are the ones that used 

most frequently. These two designs both use Bayesian approach to fully and efficiently utilize all 

available data and prior information in the phase I study. To use the CRM design, initial estimate 

of   — TTL is required to set up before the clinical study. This will need inputs from experts 

who are familiar with the preclinical data or who have experience with similar drugs. Sometime, 
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the estimate may not be very accurate, but it provides a guidance for the dose escalation 

(Tourneau, et al., 2009).  

We can describe the CRM design scheme as follows: 

1. Establish a dose-toxicity model  (    ), where    the predefined dose is levels;   is a 

model parameter, and a prior distribution for parameter   (exponential distribution is 

often used) is assumed. Then define the target probability of   (usually 20-33%). 

2. At the dose level   , using the indicator    denotes the toxic event, and the posterior 

distribution of   is updated by Bayesian rule shown as follows: 

 (      )  
 ( )∏ [ (    )]

  [   (    )]
      

   

∫  ( )
 

 
∏ [ (    )]  [   (    )]       

   

 

However, there is a controversial issue has been discussed in the CRM design. The CRM 

has a higher probability to overdose a patient comparing with the standard designs (Ratain, et al., 

1993). Therefore, modified versions of CRM were proposed to avoid the overdosing problem. 

EWOC is the design that also can be considered as a translation from CRM. The advantage of 

this design is that it prevents patients from overdosing by controlling the probability of toxicity 

at a feasible bound. We will use the EWOC as a base model to implement our idea for the cancer 

phase I trial. 

2.3 Statistical Methodology of Phase II Clinical Trials 

There are large numbers of new cancer therapies emerge over recent years, but only a 

small number of the new drugs or treatments can be approved for market. Comparing with 20% 

success rate in cardiovascular new drug development, cancer drug attrition rates are significantly 

higher, only 5 out of 100 anticancer drugs under development would be approved (DiMasi, et al., 

2007) (Walker, et al., 2009). These depressing statistics have led to increasing attention on the 
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drug development process, aiming to identify ways of reducing the failure rate. In reviewing the 

whole process, researchers found phase II trials act as screening tools before entering the most 

costly phase III trials (Brown, et al., 2011). Therefore, it is crucial for researchers to design the 

trail to give more accurate predict for the subsequent phase III trials. A phase II clinical trial is 

conducted to assess the new drug or treatment therapeutic effects using MTD recommended 

from proceeding phase I trial (Seymour, et al., 2010). The result provides critical information to 

determine whether conducting the large confirmatory phase III trials or not.  

There are two types of phase II trials grouped by design method: single-arm designs and 

randomized designs; both can be easily understood from the names of category (Seymour, et al., 

2010). In this chapter, we will review these two types of designs and construct a comparison of 

popularly used phase II designs which is described in Table 2.4 adopted from Chen et al., (Chen, 

et al., 2012). On the other hand, there is another way to specify a phase II trial by its ultimate 

aim, although the classification method is not quite popular. Divided by goals of the designs, 

phase II trials can be grouped as phase IIa (concept screening) and phase IIb studies (decision-

making). Phase IIa trials aim to screen out the promising novel experimental agent with 

significant antitumor activity and phase IIb trials are conducted for seeking sufficient robustness 

to support progression to phase III studies. 

The essential topic for designing a phase II trial is how to choose the most appropriate 

primary endpoint. Usually, response rate is chosen as the primary endpoint in a phase II trial. It 

was considered appropriate when unambiguous and clinically relevant antitumor activity is 

hypothesized. But recently, more and more surrogate endpoints have been proposed to evaluate 

the clinical benefit and treatment effects. Progression-free survival (PFS) of treated patients is 

one of the often used endpoints among all.  
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Table 2.4Common designs of phase II clinical trials 

Design Advantages Disadvantages 

Gehan’s two-stage 

design 

With interim monitoring. 

Rule out ineffective drug with 

minimized sample size. 

No testing on agents showing 

some promise. 

Only suitable for binary outcome. 

The endpoint is different from 

that in following phase III trial. 

Simon’s two-stage 

design 

The samples in two stages are 

optimized.  

Quickly screen out agents 

without effectiveness while 

testing further agents with 

some promise.  

Two choices: optimal vs. 

minimax. 

Only suitable for binary outcome. 

The endpoint is different from 

that in the following phase III 

trials. 

Randomized phase II 

design 

Use of randomization. 

Reliable control and less bias. 

More similar to phase III trials. 

Sample size increases. 

Length of trial increases. 

Cost increases 

Phase II pick the 

winner design 

Efficient and effective way of 

comparing two or multiple 

experimental regimens. 

Each experimental regimen 

compared with historical 

controls. 

Not appropriate for comparison 

of adding an experimental agent 

to standard regimen. 

2.3.1 Standard Single-Arm Designs 

The standard single-arm designs are most commonly used in phase II clinical trials. 

Single-arm is utilized to compare the new drug or treatment with the standard response rate 

reported by historical data. As we mentioned before, the null hypothesis of such a design tests of 

insufficient efficacy while the alternative hypothesis test whether the new drug or treatment has 

sufficient activity to warrant further investigation. The type I error thus defines the chance that 

an ineffective agent will be studied further, and the type II error specifies the chance that an 

effective agent will not be studied further, which is usually regarded as the more serious error in 

phase II testing. In a study of mono-therapy, an agent might be considered uninteresting if the 

true response rate is  5% and interesting if the response rate is at least 20%; this criterion varies 

according to studies (Gray, et al., 2006).  
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A single-arm phase II trial design can have two or more stages, with the purpose to 

improve the trial efficiency and save resources by the early termination decision. Gehan first 

proposed a two-stage phase II design allowing early termination when no patients enrolled in 

stage I show any objective response. Otherwise, the trial continues to stage II which provides a 

more accurate response rate with additionally recruited patients (Gehan, 1960). However, there is 

no statistical testing on agents in Gehan’s two-stage design and is not optimized. Simon (Simon, 

1989) thus proposed an optimized two stage phase II design that controls both type I and type II 

errors as well as optimizes the sample sizes in both stages. The benchmark mentioned in 

previous paragraph is often tested with Simon’s two-stage design. This design can quickly filter 

out ineffective drugs or treatments while further test more promising ones. The design has two 

subtypes, optimal and minimax. The optimal subtype minimizes the expected overall sample size 

with the probability to stop the trial after the first stage. It is appropriate to model experimental 

drugs efficacy which ones with a high probability to fail after the first stage (Chen, et al., 2012). 

Researches interests have been attracted to how to determine appropriate endpoint and 

levels of activity for single-arm studies. PFS has been used as a surrogate endpoint in some 

recent phase II trials because of its advantages of short follow-up time and best estimate for 

overall survival (OS). Another commonly used surrogate endpoint is the continuous tumor 

change percentage. Traditionally, the categorical variable — tumor response is the most common 

endpoint in the phase II clinical trial designs. However, from a statistical point of view, 

categorizing a continuous tumor change percentage into a categorical tumor response with 4 

levels results in a loss of statistical power by not fully utilizing all available data. We will focus 

on these well discussed topics in chapter 4 and propose a two-stage to overcome the above stated 
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problems, also compare the performance of our design with the standard protocol of most cancer 

phase II trials — Simon’s two-stage design. 

2.3.2 Randomized Phase II Design 

There are several types of randomized phase II designs, include randomized control 

phase II design, randomized selection phase II design, and randomized discontinuation design, 

and so on. A randomize-controlled phase II study design typically compares an experimental 

regimen to a control arm (with or without a placebo) (Korn, et al., 2001). Comparison to a 

control arm is very useful when there is little prior information on expected efficacy rates in a 

population; and also when endpoints that are heavily influenced by patient selection, for example 

when PFS is used as an endpoint (Simon, et al., 2001). The endpoint could be a standard measure 

of tumor status, such as response rate or PFS which allows the study to be completed with fewer 

patients than required in a phase III study of survival. Type I and type II error rates are different 

as in other phase II designs. And the type I error can generally be larger than the one used in 

phase III studies; Korn et al. (Korn, et al., 2001) suggests considering one-sided type I error rates 

as large as 20%. The magnitude of the difference between the null and alternative hypotheses 

may also be larger than an appropriate value for a phase III study. 

A randomized phase II selection design allows multiple single-arm studies to be 

conducted in the same time frame and with the same entry criterion (Lee, et al., 2005). The 

advantages of a randomized study over separate studies include decreasing the effects of patient 

selection bias, population drift and stage migration, and the ability to ensure that uniform 

evaluation criteria are used (Simon, et al., 1985). Although these studies are often designed to 

evaluate each arm separately and there is generally not adequate power for formal testing to 

compare arms, a predetermined plan for selection of arms for future study can still be made in 
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such a design (Scher, et al., 2002). Typically, this design randomizes between two or more 

experimental arms without a control arm. The advantage of the design is less selection bias due 

to changing natural history. A weakness of this design is the reduced likelihood of being able to 

select the best arm with increasing number of arms in the study or if there is a small difference in 

activity among arms (Gray, et al., 2006). There are many other designs, such as randomized 

discontinuation designs, factorial designs, and Bayesian designs, proposed by researchers for 

phase II clinical trials. Still, the main obstacle in front of current phase II trial designs is how to 

improve the follow up phase III trial success rate, which will be further discussed in chapter 4. 
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3     HYBRID PHASE I DESIGN — EWOC-NETS-TITE 

The development of new anticancer drugs is a very complicated, extremely expensive 

and time-consuming process which includes discovery of agents that demonstrate antitumor 

activity in preclinical models and evaluation of normal tissue toxicity and application and 

confirmation on human beings in clinical trials (Ratain, et al., 1993). The primary goal of the 

initial cancer clinical trials step — phase I clinical trials is to determine the dose-toxicity 

relationship and recommend/schedule a maximum tolerate dose (MTD) for the subsequent phase 

II trials (Ho, et al., 2006). Most of the new drugs or treatment regimens that studied in phase I 

trials continue to phase II studies, which are conducted to evaluate the new drugs or treatments’ 

antitumor activity. Drugs proceeded in phase I trials are rarely withdrawn at the completion of 

the testing (Joffe, et al., 2006).   

In traditional cancer clinical studies, a phase I trial is the first step that a new drug or 

treatment under investigation applies to human beings. Since information about the bodies’ 

reaction to the drug is very limited, the safety and ethical issues is in the highest priority. The 

purpose of conducting a phase I trial is to seek for new drug’s toxic effect on patients as well as 

looking for an optimal dose that could balancing the maximum treatment effect and a tolerable 

toxic effect (Ishizuka, et al., 2001). Because the general assumption behind is the higher the 

dose, the better the treatment effect. But everything has its two sides; the opposite side of a 

higher dose is the probability of more severe toxic effect.  Therefore, one of the well discussed 

and also the essential topic in cancer phase I trial designs is how to determine the dose-toxicity 

effect fast and accurately.  

Patients who take part into a cancer phase I trial are usually the ones could not find 

promising effect on standard treatment. Rarely have patients volunteered to participate in the 
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phase I trials due to the treatment effects have not been proven. The sample size thus is small 

among all three phases, usually less than 30 patients. Therefore, another research area in phase I 

trial design is how to use such limited number of patients figure out the MTD effectively. This 

requires clinicians to quickly escalate the dose level to avoid assigning many patients to 

subtherapeutic dose levels as well as control too fast escalation which may result in overdosing 

patients. 

The last but not the least important topic is how to reduce the trial duration. It seems less 

important than the above two topics. However, in practice, cancer patients especially patients 

participant in phase I trials with advanced cancer types cannot bear a long waiting in the trial 

without given any treatment intervention. There are two common methods to assign the new 

recruiting patients. One is directly assigning the new patient to a waiting list until completely 

observed all current patients, and then updating the patient dose level using all previous 

information. This method definitely has advantage at estimating a more accurate MTD, but 

sometimes the patients’ waiting time is too long to hold them stay in the trial. The other 

commonly used method is simply omitting the incomplete observations, using only complete 

follow-ups to update the dose level. The advantage of this method is a reduced waiting time and 

trial duration, but may lead to an inaccurate MTD by repeating low conservative dose levels. 

All above discussed topics motivate us searching for a method that could improve a phase 

I trial from these three areas: fast dose escalation, accurate MTD estimate, and short waiting 

time. Actually, these are also the universal goals for cancer phase I trial designs. We will apply 

the current optimal resources to it. But definitely, there is still long way to go in the further. 
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3.1 Introduction 

In this section, we will review some current advanced designs in cancer phase I trials. 

And later, in the next section we will propose a hybrid design based on them. As mentioned 

previously, a phase I clinical trial is a key step in anticancer drug development, aiming at 

identifying the dose to be recommended for further phase II clinical trials. The primary purpose 

of cancer phase I clinical trial which is a critical step in development of new drug against cancer 

is to determine the maximum tolerated dose (MTD) and schedule of new drug. It is usually a 

small study with limited data so that fully utilizations of all toxicities and time to toxicity data 

are essential to improve the trial efficiency and accuracy of MTD estimation. A novel 

normalized the equivalent toxicity score (NETS) system has been proposed which can fully 

utilize multiple toxicities per patient instead of a binary indicator of dose limiting toxicity (DLT) 

(Chen, et al., 2010). The time of event (TITE) approach has developed to incorporate time to 

toxicity data (Cheung, et al., 2000). Escalation with Overdose Control (EWOC) is an adaptive 

Bayesian phase I design which allows rapid dose escalation as well as control the probability of 

overdosing patients (Babb, et al., 1998). In this study, we use EWOC as a framework and 

integrate it with the NETS system and TITE approach to develop an advanced phase I design 

entitled EWOC-NETS-TITE. This hybrid design can not only improve the trial efficiency and 

MTD accuracy substantially, but also allow patients to be entered in a staggered fashion and 

shorten trial length.  

3.1.1 Dose Escalation with Overdose Control 

Cancer phase I trials are carried out sequentially, assigning dose levels to subjects based 

on the observed side effects of the previously treated patients (Cheung, 2005). From a safety and 

therapeutic perspective, these trials should be designed to minimize the number of unacceptable 
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toxic events and maximize the number of patients treated at an optimal dose (Tighiouart, et al., 

2006). Therefore, the design should control the probability of overdosing patients at each stage 

of the trial, produce a sequence of doses that converge to the MTD, and should take into account 

the heterogeneous nature of cancer phase I trial patients. There are several proposed designs for 

phase I trials that estimate MTD with a pre-specified probability, such as the continual 

reassessment method (O'Quigley, et al., 1990), the biased coin design (Durham, et al., 1997) and 

escalation with overdose control (Babb, et al., 1998). The basic ideas of these methods can be 

described in general as: 

Let    be a binary random variable of toxicity observation (equal to 1 if DLT, 0 

otherwise) and    be the dose level administered to the     patient, where      and   

                      denote a pre-specified spaces dose levels that would be used in 

the escalation. Therefore, the pair (     )  be the sequential dual dose levels and toxicity 

observations in the trial for      patient. The trial dose range is also pre-defined 

within [         ] with preliminary information obtained of the drug toxicity effect. Then the 

estimated MTD ( ) is defined as the dose associated with a specified proportion of patients 

experiencing a DLT, ( )  

  (         )    

where   depends on the context of the trial and the nature of the expected toxicities, usually the 

more severe toxicities are, the lower the   is. The EWOC method is established on the basic idea 

mentioned above. The dose escalation starts after the first cohort of patients, if patients did not 

develop DLT at the first dose     . Decision to escalate or de-escalate dose level is made after 

each cycle of therapy to a cohort of patients. The length of an observation cycle or time window 

is usually between 3 and 6 weeks (Roberts, et al., 2004) (Rogatko, et al., 2008).  Each subsequent 
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dose to be assigned is determined via an estimate of the dose-toxicity relationship conditionally 

to the known information  . That is the dose assigned to the     patient, the posterior cumulative 

distribution function of MTD (  ) will be 

  ( )   r( T      ) 

As discussed in previous chapters, the dose-toxicity relationship is often modeled with logistic 

model, which is also used in EWOC. The probability of patient to develop DLT is 

  (           )   (       )  
   (       )

     (       )
 

where    is a non-negative value according to the assumption toxicity is monotonically 

increasing with dose level. Hence the likelihood function can be derived as follow given the 

observed    

 (        )  ∏  (       )
  [   (       )]

    

 

   
 

 In section 3.2, we will improve this model by adding TITE and NETS features. 

3.1.2 Time-to-Event Approach in Dose-Finding Studies 

As we discussed above, traditional phase I trials require complete observation of each 

patient or a cohort of patients followed up by the entire observation time window. The need of a 

waiting list complicates access of the patients to the phase I trial. Moreover, repeated accrual 

suspensions impose very excessive administrative burdens and inconvenient long trial duration. 

Usually, one way to solve the timeliness problem is to replicate dose levels when patients are 

accrued before the acquisition of new complete data. But this method will allocate the same dose 

level for several patients without any dose escalation and updating estimate of MTD when the 

accrual rate is high. The newly recruited patients may also be accrued at dose level 

recommended on the basis of all complete available information ignoring data of the last patients 
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if not completed. In both scenarios, a high proportion of patients can be included at inefficient 

dose levels. Moreover, as the number of patients in a phase I trial is very limited, these may lead 

to a poor estimate of MTD.  

Another solution to overcome the problem stated above is the time-to-event approach 

(Cheung, et al., 2000). This approach was first applied to the CRM design in which it uses a 

weight function in dose-escalation decision during the trial. We will adopt this idea to the EWOC 

design in this dissertation.  

The weight is a function of the actual assessment time of the patient, is defined to 1 for a 

complete observation, for example, a patient with observation time completed or with occurrence 

of a DLT. It is assumed that the times until toxicity, as a proportion of the planned assessment 

time window, have a Beta distribution that can reflect the occurrence of early- or late-onset 

toxicities without correctly specifying the actual distribution of toxicity times (Braun, 2006). The 

weight function is as follow 

 (    )  {
   

  

 
if     

      if     
 

where the    is the actual duration of assessment for     patient when a new patient enters the 

trial, and   is the predefined observation window. This weight function might appear to be an 

oversimplified choice but has been shown of adequate in many cases through simulation studies 

(Cheung, et al., 2000). 

3.1.3 Novel Toxicity Scoring System  

In most cancer phase I clinical trials, toxicity response is reduced to be a binary indicator 

as 1 for DLT and 0 for non DLT. As introduced in section 2.2, DLT is defined as a group of 

grade 3 or 4 non-hematologic and grade 4 hematologic toxicities or more severe toxicity (death) 
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(Rosenberger, et al., 2002) (Potter, 2006). However, using this binary indicator is hard to model 

the complicated scenarios when patients experience multiple toxicities and when there are 

correlations exist between different toxicities. Moreover, even though patients’ toxic effects 

identified with the same DLT level may not be equally severe. For example, a grade 4 non-

reversible renal toxicity is much more severe than a grade 3 reversible neutropenia, although 

both identified as DLT (Bekele, et al., 2004). Consider the way binary indicator classifies the 

toxic effects on patients; it may conduct to poor estimates of the toxicity reactions. As it is 

known to all, cancer phase I trials are small, so all the information obtained is very precious 

including the toxicities should be fully utilized (Yuan, et al., 2007). 

The toxicity scoring system (NETS) is a solution to the dichotomized DLT indicator 

(Chen, et al., 2010). NETS is a comprehensive toxicity scoring system calculate an equivalent 

score measuring the composite severity of multiple toxicities experienced by each patient for 

phase I clinical trials. A logistic function to model the toxicity scores because the range of the 

values (range from 0 to 1) fits the gap between two consecutive adjusted toxicity grades.  

Calculation of the NETS can be formulated as follow: 

Let        be the     toxicity grade by NCI toxicity criteria for the     patient who receives 

dose    , where      and                        denotes a predefined space of 

dose levels for escalation. To avoid confounding of NCI toxicity criteria of grade 3 or 4 non-

DLT and grade 3 or 4 DLT,        can be adjusted to a new grade       
 ranging from 0 to 6. 

Table 3.1Adjusted toxicity grade 

NCT toxicity 

grade 

Grade 0 Grade 1 Grade 2 Grade 3 

non-DLT 

Grade 4 

non-DLT 

Grade 3 

DLT 

Grade 4 

DLT 

Adjusted grade 0 1 2 3 4 5 6 

The maximum adjusted grade among all toxicities of the     patient given dose    is 

denoted by         
           

 . An equivalent toxicity score is defined as 
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While the normalized equivalent toxicity score goes one step further 
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where    ranges from 0 to 1 is a weight, which represents the correlation between     toxicity 

and all other toxicities the     patient experienced. The choice of the weight needs the input from 

experts who well understand the drug under development.   is the impact distinction between the 

worst and other toxicities that have imposed on the patient, and   usually assumed to -2.   is 

nonnegative reflecting the increment in ETS by additional toxicity. Since a patient could only be 

given a single dose level during phase I clinical trials, so we can simplify the notation     
  to   . 

Now, the NETS    is a value between 0 and 1. A summary of toxicity scoring system (Table 4.2) 

has been provided by Chen et al. shows the range of the NETS (Chen, et al., 2010). 

Table 3.2 Summary of toxicity score system 

Most severe toxicity NCI 

toxicity grade 

Maximum 

adjusted grade 

      
  

Range of 

NETS    
Mid-range 

NETS 

Grade 0 0 0 0 

Grade 1 1 [1 60-1 6)  0.092 

Grade 2 2 [1 6-1  ) 0.25 

Grade 3 non-DLT 3 [1  -1  ) 0.417 

Grade 4 non-DLT 4 [1  -1  ) 0.583 

Grade 3 DLT 5 [   -  6) 0.75 

Grade 4 DLT 6 [  6-1) 0.917 
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As discussed previously, target toxicity level — TTL ( )  is a prespecified value 

represents the probability of a patient that experiences DLT when given the MTD ( ). As DLT is 

not available, a new variable target normalized equivalent toxicity score — TNETS is used. 

Similar as TTL, the TNETS is also based on researchers’ prior understanding about the new drug 

or treatment.  

3.2 A Hybrid Design for Phase I Clinical Trials — EWOC-NETS-TITE 

In this section, we propose a hybrid phase I design dose escalation method with overdose 

control using a normalized equivalent toxicity score system and time-to-event approach. The aim 

of design is to decrease the dose-finding trial duration, without impairing the characteristics of 

the EWOC design, especially the overdose control ability, as well as fully utilize all toxicity 

information to estimate MTD more accurately. 

3.2.1 EWOC 

The proposed design adopts EWOC method to model the dose escalation scheme. We 

will start from the EWOC method and still use DLT here to demonstrate the process, then apply 

NETS and TITE step by step. Suppose    is the indicator of DLT for the     patient given dose 

level at   . The probability of DLT is usually formulated with logistic model,  

  (           )   (       )  
   (       )

     (       )
 

We can re-parameterize this relationship in terms of MTD ( ) and probability of DLT at 

initial dose (  ) to get this equation more practice meaning.  That is, 

   (      )  
   (      )

     (      )
 

Hence, the estimated MTD   and    can be derived as 
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Then the previously used intercept    and slope    can be written as follow: 

   
          ( )         (  )

      
 

   
     (  )       ( )

      
 

The second equation shows that the assumption of non-decreasing dose-toxicity 

relationship that      implying       . Thus, The likelihood function can be updated by 

using the two parameters   and   , which is 

 (    |  )  ∏ (       )
  [   (       )]

    

 

   

 

Expand the function  (       ) that is, 

 (       )   (
          ( )         (  )

      
 

     (  )       ( )

      
  ) 

The likelihood function can be written as 

 (    |  )  ∏(   {
(    )       (  )  (       )       ( )
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 (     {
(    )       (  )  (       )       ( )
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After specifying the prior distribution  (    ) for the pair of parameters (    ), we 

denote   ( )  as the marginal posterior cumulative density function of   given   , then the 
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EWOC method can be described as follow: The first patient receives the dose         and 

conditional on the event       , the (   )   patient receives the dose 

        
  ( ) 

so that the posterior probability of exceeding the MTD is equal to the feasibility bound  . While 

   1, the trial should terminate in purpose of safety. 

3.2.2 EWOC-TITE 

 Now, we apply the time-to-event approach in the EWOC design. The proposed TITE 

method introduces a weight   first in the CRM design (Cheung, et al., 2000) based on a logistic 

model taking into account time factor in terms of time until toxicity. With TITE, a weighted 

dose-toxicity relationship is denoted by  (        ) is monotone increasing in   with marginal 

constraints  (       )    and  (       )   (     )  for all    . The weight   is linearly 

defined, and impose into  ,  (        )    (     ), where       .  

The weight function can be selected from various relations; however, this relation should 

be chosen accommodate to the toxicity profile with respect to the drug under investigation and in 

accordance with the planned assessment time window. Considering the nature of a cancer phase I 

trial, when a patient experiences DLT, the observation is identified as a complete observation. 

The assessment time ends at the time of the emergence of DLT and the weight for this 

observation equals 1.  

Incorporating the weight function into the dose escalation study allows us to take into 

account all available information, including incomplete information in the process of estimating 

dose-toxicity relationship. Therefore, a new patient is recruited when evaluation of the last 

patients is not completed, the patient can still enter the trial rather than stay in the waiting list; 

the allocated dose is estimated using all complete and incomplete information. With this method, 
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waiting lists can be avoided and all eligible patients can benefit from the clinical trial. And the 

likelihood function incorporates the TITE shown as follow: 

 (      |  )  ∏[    (       )]
  [      (       )]

    

 

   

 

which can be further expanded as 
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3.2.3 EWOC-NETS-TITE 

Before adopting NETS into EWOC-TITE method, we need to construct the target 

normalized equivalent toxicity score (TNETS) at first. As mentioned above, determination of 

TNETS depends on the target toxicity profile which relies heavily on clinician’s input (Chen, et 

al., 2010). Four related questions should be specified in order to define the target toxicity profile. 

It consists of proportion of patients who experience DLT when treated at the MTD and the target 

probability that adjusted grade   toxicity is the expected worst toxicity when a patient is given 

MTD. Then the target normalized equivalent toxicity score is defined as 

 ̃  ∑     
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where    is the mid-range of NETS (can be find in Table 3,2) and    is the target probability 

according to the maximum adjusted grade   toxicity.  Then the MTD   is defined as a dose 

corresponding to a prespecified target normalized equivalent toxicity score (TNETS)   ̃ 

                   ̃ 

For the dose-toxicity relationship, a logistic function is also appropriate (Figure 3-1).  

 

Figure 3-1Dose-toxicity relationship 

Thus, the dose-toxicity model can be described as: 

    (       )  
   (       )

     (     )
 

where      implies the toxicity score NETS is monotonically increasing with toxicity. We can 

also re-parameterize the model with respect to MTD   and   , so that the interpretation of the 

model is explicit.  

 ̃   (      )  
   (      )

     (      )
 

Thus, the estimated MTD   and    can be derived as 
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The two parameters    and    can be written as follow: 
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It can be shown that  
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Thus, the likelihood function can be updated by using the two parameters   and   , 

which is 
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where ∫     (  )     
 

 
. With expansions and transformations, the likelihood function can be 

written as 
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Using  (    ) denote the prior distribution on[   ̃]  [         ], then the posterior 

distribution of (    ) is 

 (    |  )  
 (    |  )   (    )

∬  (    |  ) (    )     [   ̃] [         ]

 

Thus,   ( ) is the marginal posterior c.d.f. of   given   . We will conduct a simulation 

study using MCMC to update posterior distribution. The Metropolis–Hastings algorithm is 

implemented. 

3.3 Simulation Study 

A simulation study is conducted to evaluate the performance of our proposed hybrid 

phase I design EWOC-NETS-TITE. Since our design adopts the popularly used phase I trial 

design EWOC as a basic model, the result will mainly be used to compare with EWOC method. 

There are two major parts in the simulation study. First part of our simulation study is used to 

compare the accuracy in finding MTD, as the primary goal of a phase I clinical trial is to find an 

optimal dose. The comparison will be made with a series of designs include EWOC with 

complete observation of follow up, EWOC omit incomplete observation, EWOC-NETS, and 

EWOC-TITE. The second part of our simulation study is used to compare the trial durations with 

the above mentioned series of designs and evaluate whether the proposed design could effective 

reduce the trial duration as well as maintain a relatively accurate estimate of MTD. A replicate of 

5,000 trials was done for both part of the simulation.  
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3.3.1 Simulation Plan 

For the first part of our simulation, we conducted a simulation study to compare the 

model performance with a series of designs derived from EWOC method. The motivation to 

propose such a hybrid phase I design is to seek for a method that could effectively improve the a 

phase I clinical trial from two aspects: improve the MTD estimation accuracy by fully utilize the 

toxicity information, as well as reduce the trial duration trials avoiding long waiting list or 

simply dropping incomplete observations. With these purposes, we have done the following 

simulation:   

(1) Comparison of accuracy in MTD estimation. Before the start of simulation study, 

specifying the target toxicity scenarios and predetermine a true MTD, so that the estimation 

could be compared with the true value of MTD. To set up a predefined MTD, there are several 

steps to complete. First, the TTL — probability of DLT of the estimated MTD needs to be 

determined. For example, a TTL is predefined as 33% in the design when treat toxicity response 

as a binary variable. Then the corresponding highest acceptable probability of DLT when treat 

toxicity response as a continuous variable, is also defined as 33%. We assume the probabilities 

of experiencing a grade 3 and grade 4 DLT are equal — chances are 1:1; and the probabilities of 

experiencing non-DLT grade 1 through grade 4 are also equal (1:1:1:1). The probability of 

experiencing a nontoxic effect would be set up lower than other probabilities according to 

reality. Therefore, corresponding to the 33% TTL, the target toxicity profile for each adjusted 

toxicity grade can be calculated. Furthermore, using both mid-range of the NETS and the target 

toxicity profile. The TNETS could be derived. Table 3.3 demonstrates the result of the scenario 

that is described above. The largest TNETS thus corresponds to the true MTD when trace back 

to the adjusted toxicity grade. 
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Table 3.3 TNETS calculation with sample target toxicity profile 

Toxicity Grade 

TTL 

Allocation 

Ratio of 

Probability 

Allocation 

Target 

Toxicity 

Profile 

Mid-Range 

NETS 

Contribution 

      

Grade 0 67% -        7.0%     0.000      0.0000 

Grade 1 1      15.0%     0.092      0.0138 

Grade 2 1      15.0%     0.250      0.0375 

Grade 3 non-DLT 1      15.0%     0.417      0.0626 

Grade 4 non-DLT 1      15.0%     0.583      0.0875 

Grade 3 DLT 33% 1 16.5%     0.750      0.1238 

Grade 4 DLT 1 16.5%     0.917      0.1513 

Then the TNETS is  ̃  ∑      
 
         . After obtaining the TNETS, we can get 

the true MTD by going through all average NETS (ANETS) at each dose level. The ANETS is 

calculated by  

  
  

 

  
∑     

  

   
 

For different scenario setups, the ANETS varies. Then the MTD is the adjusted dose level 

with a minimum difference from the TNETS and ANETS.  

In the simulation study, we used small sample sizes 1) 30 patients — a common phase I 

trial sample size, and 2) 60 patients to get more stable estimate of MTD; because large sample 

properties are not appropriate for assessing a phase I trial design. In addition, we compared 

different scenarios of target toxicity profiles. The simulation study was conducted to compare a 

series of EWOC derived designs with respect to the accuracy of MTD estimation. 

Another aspect needs to be compared with is the trial duration. As discussed above, it is 

not practical to hold a cancer patient on a waiting list for long, especially for patients participant 

in phase I trials with advanced cancers. Moreover, it will burden the administrative system of the 

trials. So the goal of the simulation study is to seek for evidence that the hybrid design could 

effective reduce the trial duration.  
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3.3.2 Simulation Setup 

Five different scenarios of target toxicity profiles are considered, with the probability of 

DLT being 33% that is commonly used in phase I trials. The target toxicity profiles can be found 

in Table 3.4-3.8 with different true MTD assumptions. These scenarios were adopted from Chen 

et al. The first scenario is considered to be “ideal”, with an equal ratio for all non-DLT toxicities, 

and both DLT toxicities; and is called target toxicity scenario. With skewness to the lower 

toxicity grade, the second scenario can be described as under-toxicity scenario; in contrary the 

third over-toxicity scenario means the toxicity profile skews to higher toxicity grade with larger 

ANETS values. The true MTD and ANETS are highlighted in the tables. 

Table 3.4 Target scenario for toxicity profile 

Max. Adj. 

Grade 

Probability the allocate a dose specific maximum 

adjusted grade 

Mid-Range 

NETS 

 1 2 3 4 5 6  

0 0.110 0.090 0.070 0.050 0.030 0.010 0.000 

1 0.200 0.160 0.150 0.120 0.100 0.050 0.092 

2 0.200 0.170 0.150 0.130 0.100 0.060 0.250 

3 0.200 0.170 0.150 0.130 0.100 0.060 0.417 

4 0.210 0.170 0.150 0.130 0.110 0.060 0.583 

5 0.040 0.120 0.165 0.220 0.280 0.380 0.750 

6 0.040 0.120 0.165 0.220 0.280 0.380 0.917 

ANETS 0.341 0.427 0.476 0.540 0.607 0.713  

 

Table 3.5 Under-toxicity scenario for toxicity profile 

Max. Adj. 

Grade 

Probability the allocate a dose specific maximum 

adjusted grade 

Mid-Range 

NETS 

 1 2 3 4 5 6  

0 0.110 0.090 0.070 0.050 0.030 0.010 0.000 

1 0.324 0.268 0.240 0.204 0.164 0.092 0.092 

2 0.243 0.201 0.180 0.153 0.123 0.069 0.250 

3 0.162 0.134 0.120 0.102 0.082 0.046 0.417 

4 0.081 0.067 0.060 0.051 0.041 0.023 0.583 

5 0.060 0.160 0.220 0.300 0.370 0.510 0.750 

6 0.020 0.080 0.110 0.140 0.190 0.250 0.917 

ANETS 0.269 0.636 0.410 0.483 0.556 0.670  
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Table 3.6 Over-toxicity scenario for toxicity profile 

Max. Adj. 

Grade 

Probability the allocate a dose specific maximum 

adjusted grade 

Mid-Range 

NETS 

 1 2 3 4 5 6  

0 0.110 0.090 0.070 0.050 0.030 0.010 0.000 

1 0.081 0.067 0.060 0.051 0.041 0.023 0.092 

2 0.162 0.134 0.120 0.102 0.082 0.046 0.250 

3 0.243 0.201 0.180 0.153 0.123 0.069 0.417 

4 0.324 0.268 0.240 0.204 0.164 0.092 0.583 

5 0.020 0.080 0.110 0.140 0.190 0.250 0.750 

6 0.060 0.160 0.220 0.300 0.370 0.510 0.917 

ANETS 0.408 0.486 0.526 0.593 0.653 0.751  

 

Table 3.7 Over-toxicity scenario of 33% TTL and grade 3 true MTD  

Max. Adj. 

Grade 

Probability the allocate a dose specific maximum 

adjusted grade 

Mid-Range 

NETS 

 1 2 3 4 5 6  

0 0.110 0.090 0.070 0.050 0.030 0.010 0.000 

1 0.324 0.268 0.240 0.204 0.164 0.092 0.092 

2 0.243 0.201 0.180 0.153 0.123 0.069 0.250 

3 0.162 0.134 0.120 0.102 0.082 0.046 0.417 

4 0.081 0.067 0.060 0.051 0.041 0.023 0.583 

5 0.060 0.160 0.220 0.300 0.370 0.510 0.750 

6 0.020 0.080 0.110 0.140 0.190 0.250 0.917 

Prob. of DLT 0.080 0.240 0.330 0.440 0.560 0.760  

ANETS 0.110 0.090 0.410 0.483 0.556 0.670  

 

Table 3.8 Under-toxicity scenario for 33% TTL and grade 3 true MTD 

Max. Adj. 

Grade 

Probability the allocate a dose specific maximum 

adjusted grade 

Mid-Range 

NETS 

 1 2 3 4 5 6  

0 0.00 0.00 0.00 0.00 0.000 0.000 0.000 

1 0.00 0.00 0.00 0.00 0.000 0.000 0.092 

2 0.00 0.00 0.00 0.00 0.000 0.000 0.250 

3 0.00 0.00 0.00 0.00 0.000 0.000 0.417 

4 0.92 0.76 0.67 0.56 0.446 0.240 0.583 

5 0.00 0.00 0.00 0.00 0.000 0.000 0.750 

6 0.08 0.24 0.33 0.44 0.554 0.760 0.917 

Prob. of DLT 0.08 0.24 0.33 0.44 0.560 0.760  

ANETS 0.61 0.66 0.69 0.73 0.770 0.840  
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We use the MCMC sampling method to simulate the Bayesian framework of the two 

parameters (    ) of interest. The assessment time window was set up to 28 days, which is set 

up according to common clinical trials observation time (usually four weeks or one month). 

Time and events were simulated using an exponential distribution. We investigated different 

means of patient arrival time: 7, 28, and 100 days.  

3.4 Simulation Results 

In the first part of this section, we will demonstrate the performance of our two-stage 

design by comparing a series of EWOC derived methods that include EWOC-NETS (wait, 

cohort size 1), EWOC-NETS (wait, cohort size 3), EWOC-NETS (no wait), TITE-EWOC, 

EWOC (wait, cohort size 1) and EWOC (wait, cohort size 3). The later part of this section is the 

simulated trial duration comparing to these designs by different sample sizes.  

3.4.1 Estimation of MTD 

The purpose of conducting a phase I trial is to find the MTD and recommend for further 

phase II trial investigation. So the accuracy of the MTD estimation is an essential criterion for 

evaluation of the design performance. As we mentioned above, there were several EWOC 

derived methods used to construct the comparison. The reason to choose only EWOC derived 

methods, not CRM, not ID is: it has been well discussed that EWOC has its unique benefit 

superior to the other two popular used designs. Table 3.9 - Table 3.12 illustrates the 

recommended MTD in different scenarios for sample size 30 and 60, respectively. The toxicity 

profile is selected equals to 33% for target toxicity level (TTL), and then all target NETS 

(TNETS) are solved as 47.6%. Hence, for the three different scenarios, the MTD recommended 

is considered more accurate if the recommendation falls into the dose level with ANETS closes 

to 47.6%. 
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Table 3.9 Percent of MTD recommended according to ANETS = 47.6% 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE 0 9 67 24 0 0 

EWOC-NETS (wait, cohort size 1) 0 7 69 24 0 0 

EWOC_NETS (wait, cohort size 3) 0 5 73 22 0 0 

EWOC-NETS (no wait, cohort size 1) 0 5 64 31 0 0 

EWOC-TITE 22 13 42 23 0 0 

EWOC (wait, cohort size =1) 1 16 63 20 0 0 

EWOC (wait, cohort size =3) 1 18 58 23 0 0 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE 0 0 20 77 3 0 

EWOC-NETS (wait, cohort size 1) 0 0 22 76 2 0 

EWOC_NETS (wait, cohort size 3) 0 0 16 79 5 0 

EWOC-NETS (no wait, cohort size 1) 0 0 24 69 7 0 

EWOC-TITE 30 5 19 36 10 0 

EWOC (wait, cohort size =1) 1 2 25 63 9 0 

EWOC (wait, cohort size =3) 0 2 16 69 13 0 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE 0 43 55 2 0 0 

EWOC-NETS (wait, cohort size 1) 0 46 54 0 0 0 

EWOC_NETS (wait, cohort size 3) 0 47 51 2 0 0 

EWOC-NETS (no wait, cohort size 1) 0 41 56 3 0 0 

EWOC-TITE 28 45 26 1 0 0 

EWOC (wait, cohort size =1) 3 56 38 3 0 0 

EWOC (wait, cohort size =3) 5 60 33 2 0 0 

As we discussed above, the guiding principle for phase I clinical trials is to treat as many 

patients as possible to the maximum tolerate dose level to avoid giving patients the 

subtherapeutic dose (lower) levels while preserve safety. Hence, another important standard to 

assess a phase I design is how patients were allocated to the dose levels. The more patients were 
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treated at the optimal doses, the more efficient the trial is. Table 3.10 illustrates the how patients 

distribute for each dose level. 

Table 3.10 Percent of patients treated at each dose level 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE   2.82 17.25 52.53 26.57 0.83 0.00 

EWOC-NETS (wait, cohort size 1)   4.27 18.07 47.58 28.08 2.00 0.00 

EWOC_NETS (wait, cohort size 3)   5.15 16.80 50.85 26.10 1.10 0.00 

EWOC-NETS (no wait, cohort size 1)   3.27 10.92 60.72 24.97 0.13 0.00 

EWOC-TITE 31.82 12.67 26.97 24.03 4.52 0.00 

EWOC (wait, cohort size =1)   6.80 25.37 44.33 21.37 2.13 0.00 

EWOC (wait, cohort size =3)   8.75 28.35 37.50 22.05 3.35 0.00 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE   1.68 5.15 34.45 53.35   5.37 0.00 

EWOC-NETS (wait, cohort size 1)   1.67 3.53 33.90 55.40   5.50 0.00 

EWOC_NETS (wait, cohort size 3)   5.00 2.15 31.50 53.90   7.45 0.00 

EWOC-NETS (no wait, cohort size 1)   1.72 2.60 43.05 47.22   5.42 0.00 

EWOC-TITE 27.00 4.81 21.85 31.08 15.07 0.18 

EWOC (wait, cohort size =1)   3.73 8.68 33.77 42.70 10.97 0.15 

EWOC (wait, cohort size =3)  5.35 6.10 26.30 45.45 16.65 0.15 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE   5.27 40.92 42.02 9.70 0.1 0 

EWOC-NETS (wait, cohort size 1)   9.53 46.35 37.73 6.37 1.67 0 

EWOC_NETS (wait, cohort size 3) 12.40 41.60 37.85 8.15 0 0 

EWOC-NETS (no wait, cohort size 1)   3.55 38.48 48.18 9.78 0 0 

EWOC-TITE 31.70 34.00 21.27 12.18 0.85 0 

EWOC (wait, cohort size =1) 22.83 42.97 24.50 9.22 0.48 0 

EWOC (wait, cohort size =3) 24.20 42.20 23.95 9.10 0.55 0 

Table 3.11 and Table 3.12 use other toxicity scenarios. In these two comparisons, we 

fixed the true MTD to dose level three with target toxicity level 33%. However, the TNETS 
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varies according to different toxicity profile. The toxicity profiles were described in previous 

section 3.4.2 in scenario 4 and scenario 5. 

Table 3.11 MTD recommended for toxicity profile scenario 4 and scenario 5 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE 0 10 65 25 0 0 

EWOC-NETS (wait, cohort size 1) 0 5 67 28 0 0 

EWOC_NETS (wait, cohort size 3) 0 4 75 21 0 0 

EWOC-NETS (no wait, cohort size 1) 0 5 64 31 0 0 

EWOC-TITE 22 13 42 23 0 0 

EWOC (wait, cohort size =1) 1 14 65 20 0 0 

EWOC (wait, cohort size =3) 1 18 58 23 0 0 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE 0 9 69 22 0 0 

EWOC-NETS (wait, cohort size 1) 0 5 73 22 0 0 

EWOC_NETS (wait, cohort size 3) 0 8 61 31 0 0 

EWOC-NETS (no wait, cohort size 1) 0 12 63 25 0 0 

EWOC-TITE 22 13 42 23 0 0 

EWOC (wait, cohort size =1) 1 14 65 20 0 0 

EWOC (wait, cohort size =3) 1 18 58 23 0 0 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE 0 8 67 24 1 0 

EWOC-NETS (wait, cohort size 1) 0 3 75 22 0 0 

EWOC_NETS (wait, cohort size 3) 0 12 63 25 0 0 

EWOC-NETS (no wait, cohort size 1) 0 6 65 29 0 0 

EWOC-TITE 22 13 42 23 0 0 

EWOC (wait, cohort size =1) 1 14 65 20 0 0 

EWOC (wait, cohort size =3) 1 18 58 23 0 0 
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Table 3.12 Patients' distribution in dose levels for scenario 4 and scenario 5 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE   2.82 17.25 52.53 26.57 0.83 0.00 

EWOC-NETS (wait, cohort size 1)   4.27 18.07 47.58 28.08 2.00 0.00 

EWOC_NETS (wait, cohort size 3)   5.15 16.80 50.85 26.10 1.10 0.00 

EWOC-NETS (no wait, cohort size 1)   3.27 10.92 60.72 24.97 0.13 0.00 

EWOC-TITE 31.82 12.67 26.97 24.03 4.52 0.00 

EWOC (wait, cohort size =1)   6.80 25.37 44.33 21.37 2.13 0.00 

EWOC (wait, cohort size =3)   8.75 28.35 37.50 22.05 3.35 0.00 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE   2.75 17.80 55.07 23.58 0.80 0 

EWOC-NETS (wait, cohort size 1)   3.17 17.30 58.02 21.03 0.48 0 

EWOC_NETS (wait, cohort size 3)   6.05 14.10 51.00 27.60 1.25 0 

EWOC-NETS (no wait, cohort size 1)   1.85 15.62 58.13 24.37 3.33 0 

EWOC-TITE 31.82 12.67 26.97 24.03 4.52 0 

EWOC (wait, cohort size =1)   6.80 25.37 44.33 21.37 2.13 0 

EWOC (wait, cohort size =3)   8.75 28.35 37.50 22.05 3.35 0 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE   2.52 17.37 53.50 25.42 1.20 0 

EWOC-NETS (wait, cohort size 1)   1.82 21.50 56.45 19.03 1.20 0 

EWOC_NETS (wait, cohort size 3)   6.05 23.20 49.55 20.55 0.65 0 

EWOC-NETS (no wait, cohort size 1)   1.83 22.18 54.75 21.08 0.15 0 

EWOC-TITE 31.82 12.67 26.97 24.03 4.52 0 

EWOC (wait, cohort size =1)   6.80 25.37 44.33 21.37 2.13 0 

EWOC (wait, cohort size =3)   8.75 28.35 37.50 22.05 3.35 0 

The following listed tables (Table 3.13 – Table 3.16) are the simulation results using 

sample size 30. Sample size 30 is usually the practical scenario for phase I clinical trials. We will 

also discuss the result in the subsequent section 3.5. 
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Table 3.13  Percent of MTD recommended according to ANETS = 47.6% sample of 30 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE 0 3 49 47 1 0 

EWOC-NETS (wait, cohort size 1) 0 6 63 31 0 0 

EWOC_NETS (wait, cohort size 3) 0 5 57 38 1 0 

EWOC-NETS (no wait, cohort size 1) 0 3 52 45 0 0 

EWOC-TITE 31 10 31 25 3 0 

EWOC (wait, cohort size =1) 0 16 55 27 1 0 

EWOC (wait, cohort size =3) 1 18 51 27 2 0 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE 0 0 16 74 9 0 

EWOC-NETS (wait, cohort size 1) 0 1 28 67 5 0 

EWOC_NETS (wait, cohort size 3) 0 1 26 67 6 0 

EWOC-NETS (no wait, cohort size 1) 0 0 24 72 4 0 

EWOC-TITE 32 2 13 38 15 0 

EWOC (wait, cohort size =1) 0 2 25 62 11 0 

EWOC (wait, cohort size =3) 0 2 30 56 12 0 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE 0 42 48 10 0 0 

EWOC-NETS (wait, cohort size 1) 0 47 46 7 0 0 

EWOC_NETS (wait, cohort size 3) 0 42 48 10 0 0 

EWOC-NETS (no wait, cohort size 1) 0 34 57 9 0 0 

EWOC-TITE 30 26 34 9 2 0 

EWOC (wait, cohort size =1) 1 50 46 3 2 0 

EWOC (wait, cohort size =3) 7 41 45 7 0 0 
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Table 3.14 Percent of patients treated at each dose level sample of 30 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE   3.37   5.97 36.71 48.63 3.37   5.97 

EWOC-NETS (wait, cohort size 1)   4.63 15.51 51.27 27.96 4.63 15.51 

EWOC_NETS (wait, cohort size 3) 10.42 12.44 49.10 27.46 10.42 12.44 

EWOC-NETS (no wait, cohort size 1)   3.47   5.91 63.37 26.75 0.50   0.00 

EWOC-TITE 33.75   8.59 24.04 26.65 6.95   2.00 

EWOC (wait, cohort size =1) 10.05 23.51 38.36 24.11 3.96   0.00 

EWOC (wait, cohort size =3) 14.58 17.22 32.84 29.20 6.16   0.00 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE   3.35 1.35 21.77 57.47 16.04 0.00 

EWOC-NETS (wait, cohort size 1)   3.51 5.85 35.01 49.69   5.95 0.00 

EWOC_NETS (wait, cohort size 3) 10.02 4.02 32.50 46.88   6.58 0.00 

EWOC-NETS (no wait, cohort size 1)   3.42 2.61 43.39 46.46   4.12 0.00 

EWOC-TITE 34.61 3.17 13.47 27.95 20.38 0.43 

EWOC (wait, cohort size =1)   5.71 9.87 27.59 42.29 14.37 0.17 

EWOC (wait, cohort size =3) 10.40 7.26 25.98 43.26 12.80 0.30 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE   4.39 14.21 46.86 33.25 1.30 0.00 

EWOC-NETS (wait, cohort size 1)   8.83 28.94 48.90 13.08 0.25 0.00 

EWOC_NETS (wait, cohort size 3) 12.48 23.24 50.18 13.96 0.14 0.00 

EWOC-NETS (no wait, cohort size 1)   5.33 21.74 61.00 11.80 0.13 0.00 

EWOC-TITE 35.93 14.95 24.77 22.36 1.98 0.00 

EWOC (wait, cohort size =1) 22.54 33.49 29.81 13.25 0.91 0.00 

EWOC (wait, cohort size =3) 22.50 27.66 32.88 15.76 1.20 0.00 
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Table 3.15 MTD recommended for toxicity profile scenario 4 and scenario 5 sample of 30 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE 0 3 49 47 1 0 

EWOC-NETS (wait, cohort size 1) 0 6 63 31 0 0 

EWOC_NETS (wait, cohort size 3) 0 5 57 38 1 0 

EWOC-NETS (no wait, cohort size 1) 0 3 52 45 0 0 

EWOC-TITE 31 10 31 25 3 0 

EWOC (wait, cohort size =1) 0 16 55 27 1 0 

EWOC (wait, cohort size =3) 1 18 51 27 2 0 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE 0 4 53 42 1 0 

EWOC-NETS (wait, cohort size 1) 0 7 61 32 0 0 

EWOC_NETS (wait, cohort size 3) 0 6 62 31 0 0 

EWOC-NETS (no wait, cohort size 1) 0 5 55 39 1 0 

EWOC-TITE 31 10 31 25 3 0 

EWOC (wait, cohort size =1) 0 16 55 27 1 0 

EWOC (wait, cohort size =3) 1 18 51 27 2 0 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE 0 2 49 47 1 0 

EWOC-NETS (wait, cohort size 1) 0 7 66 28 0 0 

EWOC_NETS (wait, cohort size 3) 0 4 62 34 1 0 

EWOC-NETS (no wait, cohort size 1) 0 7 56 36 0 0 

EWOC-TITE 31 10 31 25 3 0 

EWOC (wait, cohort size =1) 0 16 55 27 1 0 

EWOC (wait, cohort size =3) 1 18 51 27 2 0 
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Table 3.16 Patients' distribution in dose levels for scenario 4 and scenario 5 sample of 30 

Target Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.34 0.43 0.48 0.54 0.61 0.71 

EWOC-NETS-TITE   3.37   5.97 36.71 48.63 3.37   5.97 

EWOC-NETS (wait, cohort size 1)   4.63 15.51 51.27 27.96 4.63 15.51 

EWOC_NETS (wait, cohort size 3) 10.42 12.44 49.10 27.46 10.42 12.44 

EWOC-NETS (no wait, cohort size 1)   3.47   5.91 63.37 26.75 0.50   0.00 

EWOC-TITE 33.75   8.59 24.04 26.65 6.95   2.00 

EWOC (wait, cohort size =1) 10.05 23.51 38.36 24.11 3.96   0.00 

EWOC (wait, cohort size =3) 14.58 17.22 32.84 29.20 6.16   0.00 

Under-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.27 0.36 0.41 0.48 0.56 0.67 

EWOC-NETS-TITE 3.37 5.79 37.40 49.09 4.35 0.00 

EWOC-NETS (wait, cohort size 1) 4.99 16.37 49.97 27.71 0.96 0.00 

EWOC_NETS (wait, cohort size 3) 10.82 12.62 49.40 26.68 0.48 0.00 

EWOC-NETS (no wait, cohort size 1) 3.71 7.65 62.93 25.23 0.47 0.00 

EWOC-TITE 33.75 8.59 24.04 26.65 6.95 2.00 

EWOC (wait, cohort size =1) 10.05 23.51 38.36 24.11 3.96 0.00 

EWOC (wait, cohort size =3) 14.58 17.22 32.84 29.20 6.16 0.00 

Over-Toxicity Scenario 

Dose Level 

1 2 3 4 5 6 

Probability of DLT 0.08 0.24 0.33 0.44 0.56 0.76 

ANETS 0.41 0.49 0.53 0.59 0.65 0.75 

EWOC-NETS-TITE   3.41   4.23 39.97 47.50 4.89 0.00 

EWOC-NETS (wait, cohort size 1)   4.53 16.79 51.51 26.59 0.57 0.00 

EWOC_NETS (wait, cohort size 3) 10.92 11.56 49.82 26.82 0.88 0.00 

EWOC-NETS (no wait, cohort size 1)   3.89   9.00 60.35 26.35 0.40 0.00 

EWOC-TITE 33.75   8.59 24.04 26.65 6.95 2.00 

EWOC (wait, cohort size =1) 10.05 23.51 38.36 24.11 3.96 0.00 

EWOC (wait, cohort size =3) 14.58 17.22 32.84 29.20 6.16 0.00 

3.4.2 Comparison of Trial Duration 

Trial duration is the other area of interest and also the motivation for this part of research 

study. We construct two comparison scenarios: (1) We use different inter-patient mean arrival 

time, which represents the average time to recruit a new patient. An exponential distribution was 

used to generate the arrival time. The reason we chose to use exponential distribution rather than 
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Poisson is: arrival time generated by exponential distribution is more spread than the one 

generated by Poisson, which is more appropriate and closer to the scenarios of practical clinical 

trial experiment. (2) We use different sample sizes for simulating the trial durations, because also 

interested in how the sample size affects the trial duration. Table 3.17 and Table 3.18 displays 

the simulated phase I trial durations. 

Table 3.17 Simulated trial durations by different sample size 

Design of Phase I Trials 

Sample Size 

15 30 60 

EWOC-NETS-TITE 139 254    477 

EWOC-TITE 138 261    469 

EWOC-NETS (no wait) 141 249    476 

EWOC-NETS (wait, cohort size 1) 428 848 1,688 

EWOC (wait, cohort size 1) 416 854 1,653 

EWOC-NETS (wait, cohort size 3) 177 322    603 

EWOC (wait, cohort size 3) 184 316    612 

 

Table 3.18 Simulated trial duration by mean arrival time 

Design of Phase I Trials 

Mean Inter-Patient Arrival Time 

7 28 100 

EWOC-NETS-TITE 254 882 2,999 

EWOC-TITE 260 877 3,000 

EWOC-NETS (no wait) 254 875 3,000 

EWOC-NETS (wait, cohort size 1) 848 979 3,005 

EWOC (wait, cohort size 1) 852 977 3,001 

EWOC-NETS (wait, cohort size 3) 322 883 3,000 

EWOC (wait, cohort size 3) 329 884 2,999 

3.5 Conclusion and Discussion 

We will discuss the above listed results regarding (1) accuracy of MTD estimation, (2) 

simulated total days to complete the trial, (3) model performance with different toxicity 

information. When we first initialize the idea to design a new phase trial, it is actually the second 

topic we discussed motivated us to seek for a solution. We then looked for a solution for the 

practice that cancer patients cannot bear to stay in an experiment without any treatment 

intervention. As long as we started the research study, more issues have been raise out, such as 
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how to fully utilize all information, since every piece of information in a cancer clinical trial is 

quite precious. Many concerns were proposed first, and then is the process of seeking solutions. 

After comparing many popularly used designs for cancer phase I trials, we decided to choose 

EWOC as our primary model. The essential thinking is: EWOC has a mechanism to control the 

probability of overdosing a patient. Our way of thinking is somehow down to the earth; the 

safety issue is crucial and needs to be put into the highest priority.  Therefore, the hybrid design 

comes out with all these concerns. 

Now, let’s examine the performance of the hybrid design, and explore whether this 

design is appropriate and what is the further research direction starts from here. 

3.5.1 Comparison of MTD Accuracy 

The design performance is quite solid for MTD estimation when we examine the results 

from Table 3.9 – Table 3.12.  In most scenarios, the proposed hybrid design can accurately detect 

the true MTD, especially when the dose is predefined to a moderate level with an equal ratio in 

both non-DLT and DLT categories. Use Table 3.9 as an example, and examine the designs in a 

pairwise manner.  

(1) We review the results of the basic EWOC design. Both of them provide accurate 

MTD estimations while a better estimation is given if the cohort size is 1. From the design 

scheme, we know that the new MTD estimation is updated after complete observation (in an 

assessment window) of each cohort. When the sample size is fixed, a smaller cohort size means 

more frequent update. This would be a possibility that explains the percentage in target scenario. 

But in under-toxicity and over toxicity scenario, the result is opposite. So there may be another 

underlying reason. A possible explanation could be: when using larger cohort, the dose-toxicity 

relationship tends to more stable, because more patients were observed, and the random variation 
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decreased. Therefore, when cohort size is 1, the estimate result at some extend depends on how 

“normal” the patient’s reaction is. Furthermore, we check all EWOC results in the following 

tables. It is really random that which estimate is better—cohort size 1 or 3. Hence, the difference 

in estimation accuracy according to cohort size can be offset. There is no significant distinction 

between it.  

(2) We go a step further; compare the result of EWOC and EWOC-TITE. Because the 

characteristic of time-to-event approach is to enroll a patient in a staggered fashion, we will 

compare it with EWOC with cohort size 1. Although EWOC-TITE could identify the true MTD, 

simulation results show that there is more than half chance that the true MTD would not be 

identified. The advantage of “completeness” is of great impression in this result. But there is 

another possibility that the lower percent dues to the selection of mean arrival time. In these 

tables, the mean arrival time we used is 7 days, which means the assessment interval between 

patients is very small that conducts to a very small weight induced in the model. When weight 

and information obtained sometimes is too small, it may confound the results by leading the 

results to another direction. So in further research, we would like to explore more scenarios in 

inter-patient arrival time.  

(3) We compare EWOC and EWOC-NETS. It can be easily concluded that the EWOC-

NETS is superior to EWOC. With the same waiting fashion, EWOC-NETS has a higher 

probability to detect the true MTD. This result is under our expectation, because EWOC-NETS 

takes advantage of both “completeness” and “more informative”. Suppose the difference in 

percentage dues to the adoption of NETS, it accounts for as many as 10% differences in MTD 

estimation. It made us reflect the goal of the phase I clinical trial, which is to establish the dose-

toxicity relationship as well as seek for an optimal dose. It at some extends shows how important 



62 

  

and how precious toxicity information is in phase I trials. So it is definitely crucial to use as 

much toxicity information as possible.  

(4) In addition, we compare EWOC-NETS between waiting and no-waiting fashion. The 

result shows that omitting incomplete observation does not affect the estimation result as much 

as we expected. From the other point of view, it confirms the conclusion of (3) that, toxicity 

information could a key for further improvement in effectiveness in phase I trials. 

(5) Finally, we compare accuracy of MTD estimation of our proposed hybrid design with 

EWOC, EWOC-NETS, and EWOC-TITE. Without any doubt, EWOC-NETS has the highest 

accuracy, followed closely by our proposed hybrid design — EWOC-NETS-TITE. If expressed 

in an inequality, it can be considered that the accuracy in MTD estimation is: EWOC-NETS   

EWOC-NETS-TITE > EWOC. The “incompleteness” in observation is partially made up by the 

time-to-event approach and partially replenished by using more toxicity information. However, 

in the overall evaluation, EWOC-NETS-TITE has a unique advantage that the trial duration is 

significantly reduced.  

(6) However, when encounter the over-toxicity scenario all EWOC-NETS derived 

designs tend to overestimate the MTD, which could be considered a little aggressive in contrary 

to the basic conservative design EWOC. One of the possibilities is that the overestimating may 

due to the choice of toxicity profile. In phase I clinical trials, expert inputs from clinicians with 

abundant experience and well understanding of the testing drug is an essential component. And 

this issue would need further investigation in the later research.  

Another factor to evaluate the model performance is the percent of patients treated at 

each dose level. Since the guiding principle in phase I clinical trials is to treat as many patients as 

possible to therapeutic dose levels and avoiding exposures to lower dose levels. The results 
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shown were pretty promising that most patients were treated at the target dose levels. The only 

outlier is EWOC-TITE methods. The reason leads to the result is: when the accrual rate is 

relative high, many patients were enrolled in the trial during the first couple of days. Then all 

observations are incomplete, although a time-to-event approach was used. But too little 

information can be used to update the dose level. 

3.5.2 Comparison of Trial Length 

Table 3.17 and Table 3.18 illustrate the trial durations using different sample sizes and by 

different mean arrival time. In these two tables, we can consider the nature of EWOC-NETS-

TITE, EWOC-TITE, and EWOC-NETS no-waiting fashion is same with respect to trial duration. 

Since all three designs allow newly recruited patients to enter the trial immediately. The EWOC-

NETS-TITE can effectively reduce the trial duration comparing to cohort size 1 EWOC derived 

designs, and even cohort size 3 EWOC derived designs. As is the common scenario that patients 

are treated in a small group, like 3 patients per group. The EWOC-NETS-TITE could 

dramatically reduce the length by more than 20% without sacrificing any accuracy in MTD 

estimation. Therefore, EWOC-NETS-TITE could be considered as an effective design for phase 

I cancer trials.  
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4 PERSONALIZED MTD FOR PHASE I CLINICAL TRIALS 

The recent development in technology improves our understanding in cancer biology and 

drug metabolism that prompts the emergence of personalized medicine. Personalized medicine 

accommodates individual patients’ needs and differences in drug tolerance. This method could 

estimate the dose level given to patients with respect to patients’ characteristics. In this chapter, 

we will extend our proposed phase I design — EWOC-NETS-TITE to take into account patients’ 

baseline covariates in order to recommend a dose for subsequent phase II trial. We will provide a 

description of the approach that utilizes patient pretreatment characteristics in terms of covariate 

factor to improve the efficiency with the estimation of MTD. The design of the trial permitted a 

continual adjustment of the model used to tailor the dose to each patient’s individual need. The 

performance of the design will be evaluated with extensive simulations by comparing models 

with respect to the accuracy and efficiency of the estimate of the conditional MTD. We will also 

discuss the potential applications of the design to incorporate patient genomic information and 

associations with toxicity profiles.  

4.1 Introduction 

One of the primary goals of early-phase cancer clinical trials is to determine the optimal 

dose of a new drug to take forward into subsequent, outcome-oriented clinical trials. Usually, 

once a dose is scheduled for follow up phase II and phase III trials, we rarely go back to explore 

alternatives. Throughout history, the practice of medicine has largely been reactive. Even today, 

we have to wait until the onset of diseases and then try to treat or cure them due to only little was 

known to the genetic and environmental factors. However, these factors have caused major 

diseases such as cancer, Alzheimer’s and diabetes, and so on; but our efforts to treat them are 

often imprecise, unpredictable and ineffective (Offit, 2011). Without taking into account of these 
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factors, the same dose is then allocated all patients, adjustments only according to the traditional 

mg/kg or similar dosage approaches. In other words, the new drugs or treatments we devise are 

tested on broad populations and are prescribed using statistical averages, for example, a group of 

patients with same the disease usually receive the same average dosage (Zhao, et al., 2013). 

However, the drugs on the market only work for half of those who take it (Figure 4-1 

demonstrate the heterogeneity of drug effects among patient group). It is extremely low for anti-

cancer drugs, about 25% (Arienti, et al., 2011). It is the time to refine our understanding of how 

to choose the right dose and schedule for a given patient with specific covariate. The motivation 

behind is: because in today’s world, finding a small benefit among a large patient population is 

often a big step forward as drug development is such a complicated process. And the small 

benefit is often enough to obtain regulatory approval and to influence equally important practice 

guidelines. Usually, MTD estimation is based on the assumption that more is better. Higher dose 

intensity means more chances to be able to cure the patient. Most cancer treatments are dosed 

according to this principle, however more and more variations in treatment effects were found 

among patients with the same dose levels.  

 
Figure 4-1Heterogeneity among patients 
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The reason for this heterogeneity is that these patients have different genetics and 

environmental profiles that include demographic characteristics, concomitant diseases, and 

genetics, and so on. Both genetic factors and environmental factors interplay to affect therapeutic 

effect of treatment or drug (Chan, et al., 2011). With recent experience and understanding of 

cancer biology, we have learned that cancer is a much more complex disease than we previously 

thought. Each patient is distinct from other patients with respect to clinical activity, prognosis, 

tumor response and tolerance to treatment in addition to differences in risk of recurrence, second 

malignancy and long-term complications of treatment (Fleck, et al., 2012). Therefore, 

development of personalized medicine is more important for cancer patients than for those other 

disease due to its heterogeneity among patients. Personalized medicine has emerged as an 

advance approach to achieve optimal medical outcomes in context of patient’s genetic and 

environmental profile. At present, personalized medicine has become a trend and a direction for 

future endeavor in the field of medicine. 

The primary goal of a phase I trial is to estimate the MTD under safe administration of 

the new drug or treatment under development. Normally, a cohort of patients is treated at the 

same dose of a drug, some may experience toxicities, or even experience of DLT, but the others 

may experience none. The question is often asked: why the responses differ so much? The main 

reason is the heterogeneity of patients.  atients’ genetics and environmental profiles have been 

found to affect their acceptability to drug in term of dosage. Known reasons include patient’s 

vulnerability to an exaggerated pharmacodynamics, differences in genetic susceptibility, and 

drug-to-drug interactions (Babb, et al., 2001). In order to achieve an optimal therapeutic effect of 

a drug for every patient, a personalized MTD of the drug for individual patient may be the 

answer.  
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Since rule based phase I designs or nonparametric phase I designs cannot estimate the 

MTD with in terms of covariates due to their algorithms. Hence, we choose to use parametric 

model to incorporate patients’ characteristics. In order to use as much information as possible, 

we will use our proposed hybrid design to accommodate the covariate information. A binary 

covariate approach has been proposed for EWOC by Tighiouart et al. shows that improvement in 

probability of overdosing a patient when there is a significant baseline binary covariate 

(Tighiouart, et al., 2012). In this dissertation, we will use our proposed hybrid design EWOC-

NETS-TITE as a base model, and incorporate a binary covariate into the model. In addition, we 

will compare for more general scenario by using a continuous covariate for patient’s 

characteristics. 

4.2 Personalized MTD for Phase I Clinical Trials 

In chapter 3, we have provided a description of our hybrid design — EWOC-NETS-TITE 

for estimation of MTD which allows us to fully utilize all toxicity information and take into 

account of time factor for dose finding with overdose control. In this chapter, we will 

accommodate this design to the patient’s covariate information through dose-toxicity 

relationship. Follows the assumption of previous chapter, a logistic model is adopted for the 

basic dose-toxicity relationship. But within the new dose-toxicity relationship, we assume the 

probability of  LT is a function of both factors: dose level allocated to patient and patient’s self-

characteristics.   is used to represent the patient’s own characteristics which measures the 

physical differences between patients by integrate information from specific aspects. Other 

notations have the same meaning as used in previous chapter. 
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4.2.1 Binary Covariate Effect 

Binary variables are often used to describe patients’ characteristics and classify patients 

into subgroups. These variables cannot be replaced with continuous values as their practical 

meanings will be missing. Such patients’ characteristics include gender, ethnicity, diabetes (Yes 

or No), and source of primary care — hospital versus home, and so on. Hence, in this section, we 

will incorporate patients’ binary characteristics as a source of effect for the toxicity response. 

EWOC-NETS-TITE will be our base model. It is obvious that using the binary characteristic 

patients are divided into two groups. Here we will provide a description on how to derive the 

MTD for each group of patients. 

Assume       are the MTD for the patients in different groups divided by the binary 

characteristic. We use   denote the covariate, then       and  

    T        

    T        

The NETS for both groups of patients are defined as: 

  ( )  NETS    ose        

  ( )  NETS    ose        

where standardized dose level   [         ]  [   ] . A logistic model is also used to 

establish the dose-toxicity relationship: 

  ( )   (        )  
   (    )

     (    )
 

  ( )   (        )  
   (      )

     (      )
 

Thus the initial probabilities of getting target NETS can also be specified with respect to the 

covariate effect as: 
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     (    )  
   (       )

     (       )
 

     (    )  
   (         )

     (         )
 

Then the target NETS is associated with    and    and can be expanded as: 

 ̃  
   (     )

     (     )
 

   (       )

     (       )
  

Here     that implies the non-decreasing dose-toxicity relationship. This model also implies a 

constant odds ratio of toxicity between the two groups of patients in the sense that this odds ratio 

does not depend on the dose level.  

  (    )⁄

  (    )⁄
 

   (       )

   (         )
    (  ) 

We can derive the parameters in the model in terms of       ̃     and    as: 

  
       (  )           ( ̃)

       
 

  
     ( ̃)       (  )

       
 

       (  )       (  ) 

After specifying the prior distribution that (     )    [   ̃]   [   ̃]  and 

      [         ] for parameters       and   , we denote     ( ) as the marginal posterior 

cumulative density function of   given   with different covariate effects     or    , then 

the (   )   patient receives the dose 

            
  (  ) 

so that the posterior probability of exceeding the MTD is equal to the feasibility bound   . Let 

  (     )            
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       (  )           ( ̃)

       
 

     ( ̃)       (  )

       
   [     (  )       (  )]   

Thus, the likelihood taking into account time factor    of the data     (        )          

in terms of parameters          is   

 (         |  ) 

 ∏   
   

   [{       (  (     ))}
  

  ]

(     )     (  (     ))   

 

   
 

 [   (  (     ))]
  

 [  (    )     (  (     ))]
    

 

Using  (        )  denote the prior distribution on [   ̃]  [   ̃]  [         ] , then the 

posterior distribution of (        ) is 

 (          |  )  
 (        |  )   (        )

∭  (        |  ) (        )         [   ̃] [   ̃] [         ]

 

Once the posterior  (        |  ) has been obtained, the relationship 

   
     ( ̃)   

 
 

 

 
   

where 

 

 
   [

  (    )

  (    )
]   [

 ̃(    )

  (   ̃)
]

  

   

can be used to derive   ( |  ), the marginal posterior distribution of the MTD       (  

   ) given   .  

4.2.2 Continuous Covariate Effect 

In other occasions, it is more convenient to describe patients’ characteristics using 

continuous variables which allow us to use as much information as possible. The advantage of 
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using binary variables is its simplicity, however, the cutoff criteria to define the binary variable 

is subjective at some extent; for example, a patient is considered to have high blood pressure. 

Instead, it is more informative to use his/her blood pressure directly other than the high/low 

result. And the MTD estimated based on the continuous covariate could be more accurate and 

targeted for individual patient. 

Assume    is the MTD for the patient with a continuous covariate  . 

    T        

The NETS for patient is defined as: 

  ( )  NETS    ose        

where   and dose level   are both standardized;   is bounded with [     ]  [   ], and dose 

level   [         ]  [   ] A logistic model is also used to establish the dose-toxicity 

relationship: 

  ( )   (       ) 

 
   (       )

     (       )
 

We use      to denote the  T  when patient’s maximum covariate effect is identified, that is: 

        
  T        

        
  T        

And initial probabilities of getting target NETS can also be specified with respect to the 

covariate effect as: 

      
(    ) 

      
(    ) 

Then the target NETS is associated with      and expanded as: 
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     (           )
 

In addition,    and    are: 

   
   (           )

     (           )
 

   
   (           )

     (           )
 

Here     that implies the non-decreasing dose-toxicity relationship. This model also implies a 

constant odds ratio of toxicity between the two patients in the sense that this odds ratio does not 

depend on the dose level.  

  (    )⁄

  (    )⁄
 

   (           )

   (           )
    ( (     )) 

We can derive the parameters in the model in terms of     ,   ̃,    and    as: 

       (  )      

     ( ̃)       (  )

         
   

     (  )       (  )

     
 

  
     ( ̃)       (  )

         
 

  
     (  )       (  )

     
 

After specifying the prior distribution that (     )    [   ̃]   [   ̃]  and 

        [         ]  for parameters       and      , we denote     ( )  as the marginal 

posterior cumulative density function of   given   , then the (   )   patient receives the dose 

            
  (  ) 

so that the posterior probability of exceeding the MTD is equal to the feasibility bound   . Let 

  (     )            
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Thus, the likelihood taking into account of time factor    of the data     (        )   
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can be used to derive   ( |  ), the marginal posterior distribution of the MTD    given   .  
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4.3 Simulation Study 

A simulation study is conducted to evaluate the performance of our proposed phase I 

design for personalized MTD. The performance of the model can be evaluated from two aspects: 

the accuracy of MTD estimation, and the probability of overdosing a patient. The comparison 

will be made between model with consideration of patients’ covariates and model without 

consideration of patients’ covariates. A replicate of 1,000 trials was done for both part of the 

simulation study.  

4.3.1 Simulation Plan 

As discussed above, we proposed a very simple linear model to formulate the patient’s 

covariate effect either binary or continuous. The estimations of the personalized MTD can be 

derived from the dose-toxicity relationship which is a function of the patient’s covariate. That is, 

a larger absolute value of covariate coefficient   
 

 
 relates to stronger effect, while values close 

or equal to zero implies patient’s characteristic has little or even no impact on the toxicity 

response.  

Simulation study will help us find evidence that include covariate effect will improve 

accuracy of MTD estimation. Hence, with the above assumption, we will plan the simulation 

study with two scenarios: (1) suppose patient’s characteristics have impact on the toxicity 

response, which implies a nonzero value of   
 

 
; (2) assume no covariate effect exists, which 

means   
 

 
 is zero. 

As shown above, the personalized MTD can be derived from the relationship 

   
     ( ̃)   
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once the posterior   ( |  )  is obtained and all parameters have been updated. Therefore, 

simulation study of the first scenario is used to answer the questions: whether our model can 

correctly identify the covariate effect, as well as how accurate the estimations of both MTD and 

covariate effects are. When the covariate effect exists, it is easy to derive a range for the MTD 

according to different covariate effects. In contrary, a point estimate of MTD is the result for no 

effect assumption. Simulation study will be conducted to model both proposed covariate — 

binary and continuous variable. 

(1) Using binary covariate assumption: for the first scenario,   
 

 
 is predefined with 

a value in [   ] represents the linear effect that standardized patient’s covariate has on  T  

before we start the simulation study. Meanwhile, we will provide a pre-specified value of   , 

which is the probability of TNETS for one group of patients with covariate    . MTD    that 

associates with zero covariate group patients is also given. With all three parameters, we can 

derive an initial value for   . Using the initial guesses of (        ), the equation of    in terms 

of   (     )can be expressed with estimates of      and   after all patients finished their 

follow ups in the trial. For the second scenario,   
 

 
 is predefined as zero meaning no covariate 

effect in reality. Similar to previous scenario, pre-specify        before starting the trial. Since no 

covariate effect is assumes, then    and    actually have the same clinical meaning and value. 

The personalized MTD could be established with parameters updated after completion of the 

designed simulation. 

(2) Using continuous covariate assumption: for the first scenario, we will provide a 

predefined value for   
 

 
 that ranges on [   ]  implies the linear effect that standardized 

patient’s covariate has on MTD. Expert input of the probability of getting a target NETS for 
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patient with maximum covariate    who is given the minimum dose is also determined. This    

is set up as the initial value in the Bayesian process. Whereas the MTD associates with 

maximum covariate      is also pre-specified. With all three parameters, we can derive an initial 

guess for   . Using the initial guesses of (          ), the equation of    in terms of   can be 

expressed with estimates of      and   after all patients finished their follow ups in the trial. For 

the second scenario,   
 

 
 is predefined as zero represents no linear effect that standardized 

patient’s covariate has on  T  before we start the simulation study. Similar to previous 

scenario, pre-specify    before starting the trial. Since no covariate effect is assumes, then    and 

   actually have the same clinical meaning. The personalized MTD could be established with 

parameters updated after completion of the designed simulation. 

 In order to detect the accuracy of our MTD estimation, two separate trial designs will be 

utilized. Other than the phase I design considering covariate effect, we will use EWOC-NETS-

TITE as a “control design” ignoring the covariate effect. In addition to solely estimate the MTD, 

we will provide a comparison of the probability of overdosing a patient for each design, which is 

a very important criterion for evaluating the design. We will provide a detailed description of the 

simulation setup and process in section 4.3.2. 

4.3.2 Simulation Setup 

For simplicity and without loss of generality,    — patient’s covariate,    — personalized 

MTD, and    — dose level are standardized and bounded on [   ]. Then we use the equation 

   
     ( ̃)  

 
 

 

 
   as a general basis for the simulation study for both binary and continuous 

covariate. To keep consistency, the target NETS   ̃ is still set up as 0.476 in all simulated trials. 
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(1) For the binary covariate assumption: with predefined       and covariate 

coefficient   
 

 
, we can easily derive    with as follows: given               , then 

       (  ) 

  
     ( ̃)       (  )

  
 

       (  )       (  ) 

Hence,    which represents the MTD of patient group with covariate     is: 

   
     ( ̃)       (  )

     ( ̃)       (  )
 

Whereas the MTD of patient group with covariate (   ) is similarly derived as: 

   
     ( ̃)       (  )

     ( ̃)       (  )
   

The initial guesses for parameters (        )  and other pre-specified model properties for 

different scenarios are listed below. 

 The first scenario assumes that covariate has impact on toxicity response: 

Table 4.1 Model setup for MTD estimation with covariate effect 

Intercept 

 

Slope 

 

Target NETS 

(%) 

MTD  

at max. Cov. 

Proportion 

of TNETS 

for min. 

Cov. 

Proportion 

of TNETS 

for max. 

Cov. 

     ( ̃)   

 
   

 

 
 

 ̃          

0.5879 0.1879 47.60 0.5879 0.12 0.20 

0.6875 0.2875 47.60 0.6875 0.09 0.20 

0.7995 0.1995 47.60 0.7995 0.14 0.20 

0.8007 0.2007 47.60 0.8007 0.25 0.30 

0.8883 0.2883 47.60 0.8883 0.23 0.30 

0.8819 0.2818 47.60 0.8819 0.12 0.20 

 While for the second scenario we assume there is no covariate effect in the model of 

dose-toxicity relationship: 
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Table 4.2 Model setup for MTD estimation without covariate effect 

TNETS 

(%) 

MTD  

for patient 

group with 

    

MTD 

for patient 

group with 

    

Proportion 

of TNETS 

for     

Proportion 

of TNETS 

for     

 

 ̃             

47.60 0.40 0.40 0.20 0.20 

47.60 0.40 0.40 0.30 0.30 

47.60 0.60 0.60 0.20 0.20 

47.60 0.60 0.60 0.30 0.30 

 We use the MCMC sampling method to simulate the Bayesian framework of the three 

parameters (        ) of interest. The assessment time window was set up to 28 days. Time and 

events were simulated using an exponential distribution with mean patient’s arrival time of 7 

days. 

(2) For the continuous covariate assumption: with predefined     ,    and covariate 

coefficient   
 

 
, we can easily derive    with as follows: given                

        , then 

       (  ) 

  
     ( ̃)       (  )

    
 

       (  )       (  ) 

Hence,      which represents the  T  of maximum patient’s covariate is: 

     
     ( ̃)       (  )

     ( ̃)       (  )
   

Whereas the  T  of minimum patient’s covariate is similarly derived as: 

     
     ( ̃)       (  )

     ( ̃)       (  )
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   thus can be derived as: 

   
   [     ( ̃)  (     (  )       ( ̃))  (      )]

     [     ( ̃)  (     (  )       ( ̃))  (      )]
 

The initial guesses for parameters (          ) and other pre-specified model properties for 

different scenarios are listed below. 

 The first scenario assumes that covariate has impact on toxicity response: 

Table 4.3 Model setup for MTD estimation with covariate effect 

Intercept 

 

Slope 

 

Target NETS 

(%) 

MTD  

at max. Cov. 

Proportion 

of TNETS 

for min. 

Cov. 

Proportion 

of TNETS 

for max. 

Cov. 

     ( ̃)   

 
   

 

 
 

 ̃            

0.5879 0.1879 47.60 0.40 0.12 0.20 

0.6875 0.2875 47.60 0.40 0.09 0.20 

0.7995 0.1995 47.60 0.60 0.14 0.20 

0.8007 0.2007 47.60 0.60 0.25 0.30 

0.8883 0.2883 47.60 0.60 0.23 0.30 

0.8819 0.2818 47.60 0.60 0.12 0.20 

 While for the second scenario we assume there is no covariate effect in the model of 

dose-toxicity relationship: 

Table 4.4 Model setup for MTD estimation without covariate effect 

TNETS 

(%) 

MTD  

at max. Cov. 

MTD 

 at min. Cov. 

Proportion 

of TNETS 

for min. 

Cov. 

Proportion 

of TNETS 

for max. 

Cov. 

 ̃                 

47.60 0.40 0.40 0.20 0.20 

47.60 0.40 0.40 0.30 0.30 

47.60 0.60 0.60 0.20 0.20 

47.60 0.60 0.60 0.30 0.30 
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 We use the MCMC sampling method to simulate the Bayesian framework of the three 

parameters (          ) of interest. The assessment time window was set up to 28 days. Time 

and events were simulated using an exponential distribution with mean patient’s arrival time of 7 

days. 

4.4 Simulation Results 

Simulation study was conducted with a replicate of 1,000 trials. It shows a promising 

result that our proposed EWOC-NETS-TITE with covariate effect could correctly identify the 

covariate effect and successfully suggest a range of MTD for patients with various 

characteristics. Moreover, as the principle concern of phase I clinical trial designs is the safety of 

the trial, we also compare the probability of overdosing a patient between our model and basic 

EWOC-NETS-TITE. The comparison confirms that considering covariate effect in the dose-

toxicity relationship could effectively control the overdose probability. In this section, we will 

display our results by different scenarios: assumption of existing covariate effect and assumption 

of no covariate effect. 

4.4.1 Assumption of Existing Covariate Effect  

Since both binary and continuous covariates share the same MTD equation    

     ( ̃)  

 
 

 

 
  , we defined the general equation without considering the format of covariate 

effect (binary or continuous). Table 4.5 displays the simulation result of MTD estimation with 

the model considering binary covariate effect and the model ignoring binary covariate effect. 

And table 4.6 illustrates the estimation of MTD by considering/ignoring the continuous covariate 

effect.  
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Overall, our proposed model EWOC-NETS-TITE with covariate could effectively 

identify the patients’ covariate impact, and suggests a reasonable coefficient to adjust the  T . 

For binary covariate assumption, when the true MTD pair (     ) is set up with higher values, 

such as (0.8, 0.6), (0.6, 0.5), and (0.8, 0.2), the estimated covariate effects are very close to the 

true value with a small fluctuation. The estimated optimal dose is closer to the true value when 

MTD is also predefined with higher values. The estimated MTDs for these scenarios are very 

preferable because they are lower than the true values meaning there is lower risk for patients to 

be overdosed in the trial. The model without covariate effect tends to be more aggressive, which 

recommends dose levels approximate to upper bound of the true range of MTD. 

Table 4.5 Comparison of MTD estimation with/without  binary covariate 

True Parameters Estimated MTD Equation 

with Covariate Effect 

      

Estimated MTD 

Ignoring Covariate 
              

0.30 0.36 0.60 0.40 0.20    0.       0.      0.6040 

0.10 0.14 0.80 0.60 0.12    0. 10    0.10 6  0.7422 

0.10 0.12 0.60 0.50 0.06    0.       0.0 14  0.6411 

0.10 0.28 0.80 0.20 0.48       1 9   0.40 0  0.4728 

 

Table 4.6 Comparison of MTD estimation using model with /ignoring covariate 

True Parameters True MTD Equation 

with Covariate Effect 

Estimated MTD Equation 

with Covariate Effect 

Estimated MTD 

Ignoring Covariate            

0.12 0.20 0.40         9    .1  9     0.6      0.164   0.6205 

0.09 0.20 0.40    0.6      0.         0.  9    0.1     0.6515 

0.23 0.30 0.40    0.6 0    0.1 9      0.6 0    0.11    0.6153 

0.20 0.30 0.40    0.6 49   0.16 1     0.  11   0.1 66  0.6388 

0.14 0.20 0.60    0. 99    0.199           1   0.1 91  0.7532 

0.25 0.30 0.60    0. 00    0. 00      0. 4     0. 069  0.7739 

0.23 0.30 0.60    0.       0.         0. 6 6   0.  6   0.6905 

0.12 0.20 0.60    0.  19   0.  1      0.906    0. 4    0.7111 

Table 4.7 shows the performance of our estimation for the parameters (     )  with 

respects to bias and MSE, according to binary covariate effect. The estimation of MTD is very 

accurate, especially for the MTD for the baseline group —      that assures the safety of the trial. 
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And table 4.8 shows the accuracy of the estimation for the parameters (          ) in terms of 

continuous covariate effect. The bias and MSE are higher when a lower or non-significant 

covariate is used in the model, the same trend also found when the true MTD is more 

conservative. 

Table 4.7 Accuracy of estimation for (          ) with binary covariate 

True Parameters Considering Covariate Ignoring Covariate 

Bias MSE Bias MSE 

 ̂   ̂   ̂   ̂   ̂   ̂   ̂  ̂ 

0.6000 0.4000  0.0242 0.0623 0.4019 0.2013  0.0040 0.3040 

0.8000 0.6000 -0.0892 0.0185 0.4631 0.3625 -0.0578 0.4422 

0.6000 0.5000 -0.0123 0.0162 0.3600 0.3000  0.0411 0.3411 

0.8000 0.2000 -0.0841 0.1867 0.4471 0.1451 -0.3272 0.2728 

Table 4.8 Accuracy of estimation for  (           ) 

True Values Bias MSE 

            ̂   ̂   ̂     ̂   ̂   ̂    

0.1200 0.2000 0.4000  0.0431  0.0419 0.0709 0.0139 0.0071 0.0271 

0.0900 0.2000 0.4000  0.0606  0.0483 0.1458 0.0221 0.0085 0.0388 

0.2300 0.3000 0.4000  0.0068 -0.0289 0.1571 0.0001 0.0010 0.0259 

0.2000 0.3000 0.4000  0.0381 -0.0181 0.1746 0.0015 0.0005 0.0310 

0.1400 0.2000 0.6000 -0.0016  0.0594 0.0490 0.0094 0.0078 0.0040 

0.2500 0.3000 0.6000 -0.0123 -0.0163 0.0358 0.0140 0.0091 0.0042 

0.2300 0.3000 0.6000  0.0063 -0.0089 0.0391 0.0002 0.0002 0.0034 

0.1200 0.2000 0.6000  0.0094  0.0879 0.0608 0.0001 0.0004 0.0035 

Table 4.9 through table 4.10 show the probability of patients being overdosed. Both 

models EWOC-NETS-TITE with/without covariate have well controlled the overdose 

probability. As all simulated trials are pre-specified with a target NETS 0.476, and no more than 

this proportion of patients by both methods have been overdosed. The proportions of overdose 

are very close with/without consideration of covariate in the model, but overall most proportions 

are lower if take covariate into account. 

Table 4.9 Proportion of overdosing with/without continuous covariate in the model 

Predefined Parameters TNETS Prob. of Overdosing  

with Covariate 

Prob. of Overdosing  

No Covariate (          )  ̃ 

( .1 ,  .  ,  .4 ) 0.4760 0.3767 0.3867 

( .09,  .  ,  .4 ) 0.4760 0.4417 0.3983 
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( .  ,  .  ,  .6 ) 0.4760 0.1132 0.2783 

( .  ,  .  ,  .6 ) 0.4760 0.1566 0.3200 

( .14,  .  ,  .  ) 0.4760 0.1017 0.1117 

( .  ,  . 0,  .  ) 0.4760 0.0117 0.1283 

( .  ,  .  ,  .  ) 0.4760 0.0267 0.0100 

( .  ,  .  ,  .  ) 0.4760 0.0250 0.0150 

 

Table 4.10 Proportion of overdosing with/without continuous covariate in the model 

True Parameters Considering Covariate Ignoring Covariate 

                      

0.6000 0.4000 0.3167 0.1567 0.4967 0.2315 

0.8000 0.6000 0.1556 0.1111 0.3833 0.1042 

0.6000 0.5000 0.2053 0.1334 0.3303 0.1286 

0.8000 0.2000 0.1028 0.0093 0.4280 0.0600 

4.4.2 Assumption of No Covariate Effect  

Using the result from the assumption that no covariate effect is truly applied, we could 

answer the following questions: is the estimated covariate coefficient small enough by our model 

with consideration of covariate effect so that the impact of covariate could be ignored; and as 

well as what is the proportion of overdose in the model. Table 4.11 displays the result of MTD 

estimation with model considering binary covariate effect and model ignoring binary covariate 

effect. And table 4.12 illustrates the estimation of MTD by considering/ignoring the continuous 

covariate effect.  

Overall, our proposed model EWOC-NETS-TITE with covariate could effectively 

identify the patients’ covariate impact, and suggests a reasonable coefficient to adjust the  T . 

For binary covariate assumption, when the true MTD is set up above 0.6, the estimated MTD 

very close to the true value. And the results are very satisfactory by both binary and continuous 

covariate model. The coefficient estimations are very low, which could correctly reflect the 

reality. The model without covariate effect tends to be more aggressive, which recommends dose 

levels approximate to upper bound of the true range of MTD. 
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Table 4.11Comparison of MTD estimation no binary covariate assumption 

True Parameters Estimated MTD Equation 

with Covariate Effect 

Estimated MTD 

Ignoring Covariate      

0.10 0.20    0        0.016   0.3700 

0.10 0.40    0.       0.04    0.5332 

0.10 0.60             0.01 4  0.6679 

0.10 0.80    0.       0.00 6  0.7380 

 

Table 4.12 Comparison of MTD estimation no continuous covariate assumption 

True Parameters Estimated MTD Equation 

with Covariate Effect 

Estimated MTD 

Ignoring Covariate      

0.20 0.40    0        0.0 99  0.5344 

0.30 0.40    0.       0.0 9   0.5575 

0.20 0.60             0.1199  0.6871 

0.30 0.60    0.       0.1194  0.7739 

Table 4.13 shows the performance of our estimation for the parameters (        ) with 

respects to bias and MSE, and table 4.14 shows the estimation accuracy according to continuous 

covariate. The bias and MSE for model considering covariate is lower than those in the model 

without considering covariate effect. 

Table 4.13Accuracy of estimation for parameters no binary covariate assumption 

True 

Parameters 

Considering Covariate Ignoring Covariate 

Bias MSE Bias MSE 

   ̂   ̂   ̂   ̂   ̂  ̂ 

0.20  0.1050  0.0638 0.0429 0.0538  0.1700 0.0294 

0.40  0.0798  0.0393 0.0331 0.1254  0.1332 0.0182 

0.60  0.0385  0.0250 0.0048 0.0933  0.0795 0.0068 

0.80 -0.0173 -0.0204 0.0025 0.0105 -0.0220 0.0015 

 

Table 4.14Accuracy of estimation for parameters no continuous covariate assumption 

True Values Bias MSE 

         ̂   ̂   ̂     ̂   ̂   ̂    

0.2000 0.4000  0.0397  0.0537 0.1193 0.0016 0.0032 0.0152 

0.3000 0.4000 -0.0618 -0.0345 0.1076 0.0038 0.0015 0.0122 

0.2000 0.6000  0.0385  0.0710 0.0264 0.0015 0.0052 0.0011 

0.3000 0.6000 -0.0628 -0.0292 0.0012 0.0039 0.0011 0.0014 

Table 4.15 through table 4.16 show that the probability of patients being overdosed. Both 

models EWOC-NETS-TITE with/without covariate have well controlled the overdose 
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probability. As all simulated trials are pre-specified with a target NETS 0.476, and no more than 

this proportion of patients by both methods have been overdosed. The proportions of overdose 

are very close with/without consideration of covariate in the model, but overall most proportions 

are lower if take covariate into account. The result of overdose probability control may due to the 

contribution of EWOC idea. 

Table 4.15Proportion of overdosing no binary covariate assumption 

Predefined Parameters TNETS Prob. of Overdosing  

with Covariate 

Prob. of Overdosing  

No Covariate (    )  ̃ 

( 0.10, 0. 0) 0.4760 0.4333 0.2400 

(0.10, 0.40) 0.4760 0.2133 0.1067 

(0.10, 0.60) 0.4760 0.0133 0.0300 

(0.10, 0. 0) 0.4760 0.0001 0.0020 

 

Table 4.16 Proportion of overdosing no continuous covariate assumption 

Predefined Parameters TNETS Prob. of Overdosing  

with Covariate 

Prob. of Overdosing  

No Covariate (    )  ̃ 

( 0. 0, 0.40) 0.4760 0.5700 0.5217 

(0. 0, 0.40) 0.4760 0.4667 0.4783 

(0. 0, 0.60) 0.4760 0.1217 0.0450 

(0. 0, 0.60) 0.4760 0.0433 0.0150 

4.5 Conclusion and Discussion 

The advantage of our proposed model is quite explicit that it suggests a range of dose (in 

binary covariate cases, it suggests different dose for each subgroup of patients) for according to 

patient’s characteristics. The flexibility is beneficial for patients who are sensitive to toxicity and 

a conservative level of dose could protect them from the risk of overdosing; it is also beneficial 

for patients who are able to tolerate a higher dose because the treatment effect could be 

optimized. 

The principle guidance for a cancer phase I trial is to preserve the safety as well as to 

estimate a  T . Now we give this goal another condition: patient’s covariate effect. Using the 

EWOC-NETS-TITE with binary covariate model could accurately estimate the MTD for patients 



86 

  

in different groups. And the EWOC-NETS-TITE with continuous covariate model, which is 

more general, could help clinicians allocate dosage with more flexibility and more accuracy.  

The other advantage of the proposed model is that it prevents more patients from being 

overdosed. The adjustment according to patients’ heterogeneity provides a broader range that 

allows patients with different health conditions could be treated to their optimal benefit. This 

conclusion could be easily seen from the probability of overdosing a patient. We compare 

different scenarios; one assumes that the patients’ heterogeneity has true impact on patients’ 

dose-toxicity reaction. Then under this condition, the model considering covariate effect is 

definitely superior to the model without the covariate. And the simulation results shows that the 

impact could be accurately identified by the EWOC-NETS-TITE with covariate design. When 

the true MTD is relatively low, such 0.2, or 0.4, our estimation tends to be higher than the true 

value. The possible reason is when the true MTD is too low, it is really hard to apply treatment to 

patients without any escalation in the trial, especially when the initial dose is very close to the 

true MTD. In other conditions, our estimation is not only accurate, but also slightly conservative 

to ensure the patients’ safety. We also compare the results using models with or without 

considering the covariate effect when the assumption is patients’ heterogeneities have no impact 

on the dose-toxicity reaction. We got very satisfactory results from the simulation study. The 

model returns very small coefficient that will cost very little loss to the estimation of MTD.  We 

also compare our results to a published method — EWOC with binary covariate (Tighiouart, et 

al., 2012). Our proposed design is more precise, with smaller bias and MSE which dues to the 

advantages in the method of NETS. In the further research direction, we would like to propose 

more complex model considering multiple patients’ characteristics with binary and continuous 

covariate incorporated.  
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5     NOVEL TWO-STAGE PHASE II DESIGN 

A phase II trial is an expeditious and low cost trial with the primary goal of screening 

potentially effective agents prior to confirmatory phase III trial. However, the success rate of 

phase III oncology trials remains very low despite the success demonstrated in the preceding 

phase II trials. This discordance is mainly due to the different endpoints used in phase II (tumor 

response) and phase III (survival) trials. While a robust disease response is expected to translate 

into survival improvement, this is not guaranteed. Moreover, tumor response can be determined 

quickly whereas survival estimate requires a long period of follow up. We propose a novel two-

stage screening design for phase II trials in this dissertation whereby percent of tumor size 

change endpoint is used as an initial screening to select potentially effective agents within a short 

time interval followed by a second screening stage where progression free survival is estimated 

to confirm the efficacy of agents. This design can improve trial efficiency and reduce cost by 

early stopping the evaluation of an ineffective agent based on low percent of tumor size change. 

The second survival endpoint screening will substantially increase the success rate of follow-up 

phase III trial by using the similar outcomes. We conducted simulation studies to investigate the 
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underlying statistical considerations to optimize the significant levels of the two screening stages 

in the design. 

5.1 Introduction 

 The main purpose of a cancer phase II clinical trial is to evaluate the preliminary 

anticancer efficacy of new drug or treatment administered at the MTD and schedule estimated in 

proceeding phase I clinical trial. The successful drug or treatment that screened out from the 

phase II trial will be further confirmed for effectiveness and long term adverse effect in a large 

phase III trial. As a screening trial of subsequent phase III trial, phase II trial usually enrolls 

fewer than a hundred participants. Some randomized phase II trial or phase II/III trial may 

enrolled up to hundreds (Rubinstein, et al., 2005).  

The tumor response rate has been widely adopted as the primary endpoint in phase II 

clinical trial, assuming that higher response rate in phase II trials associates with longer survival 

time which is the gold standard endpoint of the following phase III trial. In conventional phase II 

trials, tumor shrinkage between the baseline and the measurement after treatment is measured 

and categorized into four categories (complete response (CR), partial response (PR), stable 

disease (SD), and progression disease (PD) according to the Response Evaluation Criteria in 

Solid Tumors (RECIST 1.1) (Eisenhauer, et al., 2009) or World Health Organization (WHO) 

criteria (WHO, 1979). The proportion of patients that have objective responses who achieve CR 

or PR is defined as response rate. Later in this chapter, we will compare the performance of our 

design with a popularly used design — Simon’s two-stage design. Simon’s two-stage design 

(Simon, 1989) uses WHO criteria for response rate calculation; to keep consistency, we adopt 

WHO criteria for our simulation study as well. 
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Today, cancer is the still the leading cause of death worldwide after 40 years of 

unremitting study, accounting about 13% of all death in 2008 (WHO, 2013). Any new anticancer 

drug and treatment must be proved to be significantly effective in the confirmative phase III 

clinical trial before they can be administered to patients. At present, the failure rate of phase III 

in oncology trials remains very high (e.g. 50-60%) despite the success demonstrated in the 

preceding phase II trials (An MW, 2011).   The high failure rate is mainly due to the different 

endpoints used in phase II (tumor response) and phase III (survival) trials. While a robust tumor 

response is expected to translate into survival improvement, this is not guaranteed (An MW, 

2011). Some study has confirmed significant relationship of  response rate with progression free 

survival and overall survival (10% and 11.4% response rate increments correspond to 1 month 

increase in PFS and OS, respectively)  (Louvet, et al., 2001).  

Apprehensions about adopting response rate as a primary endpoint are recently well 

discussed. First, the simplicity achieved by creating only two response groups via WHO or 

RECIST criteria has a cost: categorize of continuous data may be consequent with a loss of 

information (Pivot, et al., 2009). More fundamentally, the ultimate goal of a new drug under 

development is to prolong survival rather than to raise response rate. These concerns prompted 

us to propose a new two-stage phase II design, which evaluates percent in tumor size changes as 

a continuous endpoint in Stage I and estimates PFS in stage II. Our approach that includes a 

screening stage of survival time in order to improve phase III success rate is beneficial to both 

pharmaceutical companies and patients. 

Previously researches on tumor size changes as a continuous variable have been proposed 

to evaluate antitumor activity  (Lavin, 1981) (Wang, et al., 2009). We adopt the idea by Wang et 

al., to model the tumor size, but go one further step by modifying it assuming treatment effect 
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also prevent tumor cells’ self-progression. And a simple t test is applied to compare tumor size 

data in different treatment groups in stage I. Recently many researches in oncology confirm PFS 

as the best estimate of overall survival (OS) (Buyse, et al., 2000). Although OS remains 

regulatory gold standard and is more reliable in classifying event status; PFS has the advantage 

of short median survival and more informative within the protocol (Halabi, et al., 2009) (Yothers, 

2007). PFS is a more sensitive indicator of treatment effect and is adopted in stage II screening in 

our design (Buyse, et al., 2007) (Buyse, et al., 2000).  

Before we propose the new two-stage design, a brief review of Simon’s two-stage design 

and criteria of tumor response is made. Table 5.1 shows the current WHO criteria and RECIST 

criteria for tumor responses. As shown below, 50% of tumor shrinkage will be used as a standard 

for objective response. 

Table 5.1WHO and RECIST criteria for tumor response 

Term RECIST Criteria WHO Criteria 

Target lesions Measurable lesions to a 

maximum of five (two per 

organ) 

All measurable lesions 

Type of measurement Unidimensional Bidimensional 

Tumor burden 

assessment 

Sum of greatest diameter of 

target lesions 

Sum of products of 

maximum  perpendicular 

diameters 

Response   

Complete response 

(CR) 

Disappearance of all known 

lesion(s); confirmed at four 

weeks. 

Disappearance of all known 

lesion(s); confirmed at four 

weeks. 

Partial response (PR) At least 30% decrease; 

confirmed at four weeks. 

At least 50% decrease; 

confirmed at four weeks. 

Stable disease (SD) Neither PR nor PD criteria 

met 

Neither PR nor PD criteria 

met 

Progressive disease 

(PD) 

20% increase; no CR, PR, or 

SD documented before 

increased disease, or new 

lesion(s) 

25% increase; no CR, PR, or 

SD documented before 

increased disease, or new 

lesion(s) 
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The hypotheses of a Simon’s design are similar as the general hypotheses of phase II 

clinical trials that we described in chapter 2. The hypotheses can be stated as: 

                   

   is the largest response proportion which if true, clearly implies that the treatment does not 

warrant further study. It is sometimes called the response rate of a poor treatment.    is the 

smallest response proportion which, if true, indicates the treatment does warrant further study. It 

is sometimes called the response rate of a good treatment.   is defined as the probability of 

rejecting the null hypothesis when it is true (type I error), and   denotes the probability of 

rejecting the alternative hypothesis when it is true (type II error). Then the Simon’s two-stage 

design scheme is as follow: the design can be represented by four numbers —          .    is 

the sample size in the first stage, while    is the critical value in the first stage;   is the combined 

sample size for both stages, and   is the critical value in the combined sample. If   or fewer of   

patients respond, the new drug or treatment is rejected. 

The expected sample size of Simon’s two-stage design is 

 (  )     (     )(    ) 

where     is the probability of early termination of the study. Probability of rejecting the tested 

drug with true response proportion   can be calculated using binomial distribution with 

  (reject            )   (       )  ∑  (      ) (          )

   (    )

      

 

where  (     )  
  

  (   ) 
  (   ) , and  (     )  ∑  (     ) 

   .  
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5.2 Two-Stage Double Screening Phase II Design 

5.2.1 Design Scheme 

Although many designs have been proposed for phase II clinical trial, the success rates 

have changed little. The success rate of phase III oncology trials remains very low despite the 

success demonstrated in the preceding Phase II trials. This discordance is mainly due to the 

different endpoints used in Phase II (tumor response) and III (survival) trials. While a robust 

disease response is expected to translate into survival improvement, this is NOT guaranteed. 

Moreover, disease response can be determined quickly whereas survival estimation requires a 

long period of follow up. We propose a novel two-stage screening design for phase II trials 

whereby percent of tumor size change endpoint is used as an initial screening to select 

potentially effective agents within a short time interval followed by a second screening stage 

where progression free survival is estimated to confirm the efficacy of agents. Figure 5-1 gives a 

schematic of our proposed design, which we will describe in this section. This design can 

improve trial efficiency and reduce cost by early stopping the evaluation of an ineffective agent 

based on low percent of tumor size change. The second survival endpoint screening will 

substantially increase the success rate of follow-up Phase III trial by using the similar outcomes. 
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Figure 5-1Two-stage double screening design 

The two-stage double screening design can be described as follow: patients who meet the 

trial “inclusion criteria” with baseline tumor size measurement are given the targeted new 

treatment. After a predefined period of time, we calculate percent of tumor size change (PTSC) 

according to both baseline and current tumor size. Stage I screening is taken to the experimental 

group with new treatment, and to the control group or historical data. A decision will be made to 

early terminate the trial, if there is no significant result found. Otherwise, the experiment 

continues to second stage, in which we will investigate difference of PFS. Similarly, the trial will 

be terminated when no significant difference found, or we will proceed to subsequent phase III 

trial if the result is significant.  
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5.2.2 Advantages of Proposed Phase II Design 

There are 3 major advantages in the proposed design: 1) The continuous tumor size 

change percentage is used instead of the categorical tumor response, which will fully utilize 

tumor change information; 2) The PFS is used as the endpoint in the second stage of the design 

which could better predict the success of follow up phase III trials; 3) A screening is used in the 

middle between first stage and second stage. Therefore, the power and length of the trial has 

been substantially improved, so does the trial efficiency. 

5.2.3 Model of Changes in Tumor Sizes 

To model the changes in tumor sizes, we adopt an exponential model as a basic 

distribution for tumor growth at first, and then modify it to accommodate the clinical meanings. 

The reason to choose exponential model is in clinical studies, it is believed an exponential model 

is very close to the biological foundation of how cells growth (Skipper, et al., 1982). Then the 

tumor size is formulated as 

  ̂ ( )    ( )      (    )  

where   ( ) is the     patient’s tumor size at time point  ,   ( ) is baseline tumor size at the 

starting point of the patient, and    is the tumor growth rate. The exponential growth pattern is 

based on the assumption that no death or treatment intervention, and is considered to be 

appropriate (Sachs, et al., 2001). To simulate data with external agent, Wang et al. proposed a 

mixed exponential-decay and linear-growth model (Wang, et al., 2009) 

  ̂ ( )    ( )     (    )        

The above model includes treatment effect by an exponential tumor shrinkage rate   and 

a linear tumor progression effect with rate  . However, considering that a patient’s tumor 

progression could be inhibited when a treatment intervention is got involved in. We thus 
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modified the above equation to simulate our data with the considertation that the treatment effect 

applies to tumor’s self-progression as well.  

  ̂ ( )  (  ( )      )     (    )  

Random variability is attributed to two sources: interpatient variability and residual 

variability. The residual variability captures error caused by model misspecification and/or in 

tumor measurements. The population is assumed to follow a log-normal distribution.  

  ( )        (  ) 

In this equation,    is the population median baseline tumor size and    is the difference 

between the individual and population median baseline values on a log scale that is assumed to 

follow a normal distribution with a mean of zero and variance of   
 . The individual parameters 

of tumor self-progression    and treatment effect    are also described using similar equations. 

An exponential error model is used for residual variability.  

  ( )   ̂ ( )     (  ) 

As denoted above   ̂ ( ) is the observed tumor size at time   for the     individual, while 

  ( ) is the expected tumor size at time   for the     individual, and    is the difference between 

the observed and expected values on a log scale.    is assumed to follow a normal distribution 

with a mean of zero and variance of   
 . 

Therefore, the continuous tumor size modeled with the equation would result in the tumor 

size asymptotically reducing toward zero. In our model,    — the rate for tumor shrinkage and   

— the progression rate are both restricted to be non-negative. Considering tumor growth kinetics, 

inidividual patient’s tumor size is generated from exponential distribution (Friberg, et al., 1997). 

PTSC is calculated as: 
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  ( )  

(  ( )    ( ))

  ( )
     

 

5.3 Simulation Study 

A simulation study is conducted to assess the performance of our proposed two-stage 

phase II design. There are two major parts in the simulation study. First part of our simulation 

study is used to compare the model performance and characteristics with a famous and most 

commonly utilized phase II design — Simon’s two-stage design; the second part of our 

simulation study is used to compare the results with conventional test for stage I screening, 

evaluate and suggest a cut-off point for the stage I screening. A replicate of 10,000 trials was 

done for both part of the simulation. Response rates were generated according to WHO criteria 

(Table 5.1), percent changes in tumor sizes were generated with respect to tumor size model 

describe above in section 5.2.3. 

5.3.1 Simulation Plan 

For the first part of our simulation, we conducted a simulation study to compare the 

model performance with Simon’s two-stage design. The motivation of this dissertation research 

is to seek for a design that could effectively improve the success rate of subsequent cancer phase 

III trials. Hence, one of our most important missions is to test whether this proposed design raise 

the follow up phase III trials’ success rates.  

With this purpose, we have done the following simulation:   

(1) Comparison of success rates in follow up phase III trials. In order to estimate the 

success rate in subsequent phase III trials, we assign each subject in a single trial with a true 

overall survival. The OS consists of two parts of survival time: progression-free survival time 

and post-progression survival time. The post-progression survival time is universal, follows a 

general exponential distribution for all patients. Progression-free survival time, on the other 
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hand, varies from patient to patient, although for the general population we assume the baseline 

progression-free survival time is a random variable from an exponential distribution. Whereas 

we consider a patient’s progression-free survival time is also affected by the percent change in 

tumor size with treatment intervention. We connect the patient final progression-free survival 

time with PTSC by using a prespecified variable — marginal increment progression-free survival 

time. For example, 1% tumor shrinkage will result in, for example 0.05 day increment in the 

mean of the exponential distribution of the progression-free survival time. Figure 4-2 

demonstrates this process. 

 
Figure 5-2 Progression-free survival time generation 

Therefore, the overall survival time in subsequent phase III trial is the sum of 

progression-free survival time and post-progression survival time, with percent censored being 

10%. Then we use overall survival as a golden standard to estimate the true outcome in the 

follow up phase III trial. Using a contingency table, we thus can specify both designs 

performance by inputting the numbers of true positive, false positive, true negative and false 

negative counted in the simulated data, then the success rate can be estimated. 

(2) A comparison between the model efficacies has also been made. Because of the 

complexity of our tumor size model. It is very hard to derive the sample size requirement of the 

design. Hence, to contrast the efficacy of both Simon’s and our two-stage design, a comparison 

between model sensitivity, specificity, and accuracy is made instead by using Simon’s two-stage 

design sample size for each stage in both designs. 
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The second part of our simulation study examines the performance of the proposed two-

stage design over the conventional test (   test) on response rate. In this part of simulation, we 

construct a pseudo two-stage design which uses conventional    test on tumor responses in first 

screening stage. PFS is the primary endpoint in second stage of both designs in comparison. We 

tested different scenarios of tumor responses, and examines how these scenarios affects the P-

values of the design tests. Moreover, we explore what is the impact of a selection of   level in 

first screening stage on the final outcome after second screening done. 

5.3.2 Simulation Setup 

As mentioned above, when comparing the model performance with Simon’s two-stage 

design, sample sizes used in the simulation study were calculated using Simon’s optimal two-

stage design. The sample sizes in each stage are shown in Table 5.2 for different scenarios. 

Notations are adopted in previous section 5.1, but made some modification to make simulation 

setup more straightforward.  

Table 5.2 Sample size setup for simulation study 

                 

0.10 0.20 24 41  2  9 

0.15 0.25 29 55  4 16 

0.20 0.30 39 60  8 24 

0.25 0.35 43 69 11 33 

0.05 0.20  9 15  0  2 

0.10 0.25 13 21  1  5 

0.15 0.30 19 20  3  8 

0.20 0.35 13 33  2 12 

0.05 0.25  6 17  0  2 

0.10 0.30  7 11  0  3 

0.15 0.35  9 14  1  5 

0.20 0.40 12 13  2  7 

Notations used in Table 5.2 include           .    is the sample size in the first stage, 

while    is the critical value in the first stage;    is the sample size for second stage, and   is the 
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critical value in the combined sample. If   or fewer of   patients respond, the new drug or 

treatment is rejected. 

In order to obtain the simulated data with a desired proportion in tumor responses (for 

example, set up a desired true response rate as 10%, then 10% of patients in all 10,000 trials 

should have at least 50% tumor shrinkages), we use the proposed model for tumor size change in 

section 5.2.3. We assume the general population shares the same baseline tumor size distribution, 

self-progression rate. When comparing the model performance, the random values of tumor sizes 

were generated from the tumor size model with the same parameter values except treatment 

effect factor   . Table 5.3 illustrates the parameters used to generate the tumor sizes in the 

simulation study. 

Table 5.3 Parameter estimate for tumor size model 

                       

0.05 9.60 1.20 0.02782 0.68 0.67 0.53 0.13 

0.10 9.60 1.20 0.03313 0.68 0.67 0.53 0.13 

0.15 9.60 1.20 0.03734 0.68 0.67 0.53 0.13 

0.20 9.60 1.20 0.04104 0.68 0.67 0.53 0.13 

0.25 9.60 1.20 0.04450 0.68 0.67 0.53 0.13 

0.30 9.60 1.20 0.04787 0.68 0.67 0.53 0.13 

0.35 9.60 1.20 0.05125 0.68 0.67 0.53 0.13 

0.40 9.60 1.20 0.05450 0.68 0.67 0.53 0.13 

5.4 Simulation Result 

In the first part of this section, we will demonstrate the performance of our two-stage 

design by comparing one of the most commonly used phase II trial designs — Simon’s two-stage 

design. While the later part of this section is the simulation result of our proposed design contrast 

to conventional phase II clinical trial design.  
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5.4.1 Success Rate in Follow Up Phase III Trials 

As we know, the null and alternative hypotheses of Simon’s two-stage design are used to 

compare the true response rate with an uninteresting and a target response rate, which is 

described as follow: 

                   

In order to evaluate the performance of our proposed design, we need to construct the equivalent 

hypotheses. Considering the endpoints selected in the first and second screening stages are PTSC 

and PFS, respectively. We tested the hypotheses as follow:  

         
         ( )     

( ) 

 In Simon’s design the first screening stage determines whether the new drug or treatment 

is better or have a higher response rate using a prespecified criteria (  ); and a condition should 

be emphasized here is: Simon’s two-stage design is a single-arm design for phase II clinical 

trials. Therefore, when we did the simulation study in stage I, it should meet the above two 

requirements. In other words, there was no control group, only one treatment group in the 

experiment. We use an example here to break down the steps: 

(1) For Simon’s design, we choose a series of three response rates: uninteresting 

response rate   , target response rate    and true response rate  . Use the combination of the first 

two rates; we could get sample size needed for the simulation setup.  

(2) Use the sample size and parameters estimated table to generate 10,000 trials.  

Since the true response rate is the mean response rate based on large quantity of experiments, the 

response rate in the generated dataset is very close to  . Then the mean percent change in tumor 

size could be estimated. Repeat this step for about 10 times to confirm the stabilization of the   .  
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(3) Use large enough sample size (e.g. 50 patients, or 100 patients) and the 

parameters estimated table to generate 10,000 trials of response rate   .  Solve for the mean 

PTSC by adopting the method described in step 2.  

Therefore, the first screening stage null hypothesis can be tested using a one sample   

test. Similarly, we use the same steps to solve survival time in the second stage. However, the 

problematic issue we encountered in stage II is we fail to find a method to do one sample Log-

rank test. So we use a pseudo control group with response rate    in the second screening stage. 

This problem will leave us as one the further research area. Yang & Zhao has proposed to use 

weighted log rank test for testing treatment effect which directs us a very promising alternative 

solution to it (Yang, et al., 2007).  

Table 5.4 illustrates subsequent phase III trials’ estimated success rates followed by the 

above hypotheses.  

Table 5.4Comparison of success rates of phase III trials Simon's and proposed two-stage 

design 

        
Simon's Two-Stage  

Design 

Proposed Two-Stage  

Design 

0.10 0.20 0.15 16.96% 68.57% 

0.10 0.20 0.25   7.16% 24.14% 

0.20 0.30 0.25   5.55% 29.63% 

0.25 0.35 0.30   5.51% 83.33% 

0.05 0.20 0.25 15.86% 67.59% 

0.10 0.25 0.20   2.56% 56.25% 

0.15 0.30 0.25   3.12% 54.55% 

0.20 0.35 0.30   2.69% 51.72% 

0.05 0.25 0.20   4.45% 45.28% 

0.10 0.30 0.35 16.18% 74.81% 

0.10 0.30 0.25 16.34% 73.68% 

0.15 0.35 0.25   2.99% 46.67% 

0.15 0.35 0.30   3.29% 67.74% 

0.15 0.35 0.40   2.83% 51.43% 

0.20 0.40 0.35   2.38% 46.67% 

0.20 0.40 0.45   2.60% 66.67% 
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The results shown in the above table illustrates the main advantage of our phase II two-

stage design. Success rates in follow up phase III trials estimated by our proposed two-stage 

design vary from 24.14% to as high as 83.33%.  Majority of the success rates calculated are 

above 50%, which performs better than all general methods for cancer phase II trials (50 – 60% 

of all phase III trials under investigation fail). On the other hand, success rates of Simon’s two-

stage ranges from 2.38% to 16.96%, which are much lower than the results of the proposed new 

two-stage design. 

There are several reasons that may lead to the difference between success rates in the two 

methods. We analyze the most possible ones as follow:  

(1) First and foremost, improvement in success rates using the proposed two-stage 

phase II design is that the assumption of overall survival time. We generated the overall survival 

in phase III trials based on the assumption that patients’ overall survival time is the summation of 

progression-free survival time and post-progression survival time. The first screening stage 

results have not been affected very much by this assumption. Because for both designs’ first 

stage, the interest is on tumor size changes, although our design used continuous percent of 

changes and Simon’s design used categorical tumor responses as primary endpoint. It is the stage 

II screening determined the comparison result eventually. Using PFS as endpoint made our 

proposed design superior than Simon’s design without doubt, although we assume a connection 

between tumor size change and progression-free survival as well. But the later assumption is not 

as direct as the former one.  

(2) The other reason underlying is the motivation of the two designs. The purpose of 

Simon’s two-stage design is to evaluate the new drug or treatment efficacy while by using the 
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optimal sample size. In the other word, during the process of pursuing an optimal or minimal 

sample size, it may sacrifice the capability to detect or filter out the confounding results. 

Except the above analysis of the significant difference between these two designs. We 

also notice that the success rates that estimated from our simulation study have a relatively large 

range. Therefore, we go through our simulation plan and model set up. The potential reason is 

the changes in tumor sizes vary very much in distributions when different parameter estimates 

were implemented. For example, when the response rate are low meaning that observations 

spread all over the range from -100 to   , then both first and second screening stage would 

probably recognize the trial as promising as they are associated.  However, when testing overall 

survival in follow up phase III trials, the result is opposite. Overall survival consists of two parts 

— progression-free survival time and post-progression survival time. Since response rate are low, 

the improvement in progression-free sometimes can be neglected. But post-progression survival 

time is generated based on common population. Hence, the success rate decreases below 50%. 

5.4.2 Model Sensitivity 

In clinical trials, an important element to evaluate a testing method for treatment effect is 

model sensitivity. Specifically, we could use sensitivity, specificity, and accuracy as indicators to 

compare two designs’ performance. On the other hand, statistical power and sample size are also 

very important components to assess a design. However, since the model we used to generate 

tumor sizes for patients is complicated at some extend, it is hard to derive the sample size and 

calculate the statistical power directly. Therefore, all the simulations had been done for both 

designs (Simon’s two-stage design and our proposed two-stage design) uses the same sample 

size according to different scenarios of Simon’s two-stage design. The logic here is: if same 

sample size is used in both designs, then the one with better statistical measures of the 
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performance (sensitivity, specificity, and accuracy) is the more efficient and powerful design. It 

should also have the advantage of using fewer samples to gain the same statistical power.  

The steps of how we simulate the clinical trials were described in section 5.5.1, and we 

adopt the same procedure to generate and compare our data. Table 5.5 illustrates the simulated 

results. 

Table 5.5 Comparison of sensitivity, specificity, and accuracy in Simon’s two-stage design 

and our proposed two-stage design 

        
Simon’s two-stage design Novel two-stage design 

sensitivity specificity Accuracy sensitivity specificity Accuracy 

0.10 0.20 0.15 87.42% 16.96% 27.60% 47.68% 96.11% 88.80% 

0.10 0.20 0.25 97.73%   3.64% 20.20% 64.20% 94.54% 89.20% 

0.15 0.25 0.20 97.43% 13.27% 26.40% 64.10% 95.60% 90.10% 

0.20 0.30 0.25 30.00% 46.63% 45.80% 24.00% 98.52% 94.80% 

0.20 0.30 0.35 92.11%   1.56%   5.00% 51.35% 98.13% 96.40% 

0.05 0.20 0.25 95.54%   5.58%   5.60% 62.42% 94.42% 94.80% 

0.10 0.25 0.20 43.24% 36.66% 10.10% 24.32% 99.27% 91.70% 

0.15 0.30 0.25 56.41% 32.57%   7.70% 30.77% 98.02% 93.00% 

0.20 0.35 0.30 96.30%   3.39% 33.50% 55.56% 98.56% 95.40% 

0.05 0.25 0.20 71.70% 13.83%   7.10% 45.28% 96.94% 94.30% 

0.10 0.30 0.35 99.38%   0.48%   7.30% 62.35% 95.94% 92.20% 

0.10 0.30 0.25 92.86%   3.97% 10.70% 41.67% 97.00% 92.40% 

0.15 0.35 0.25 61.90% 28.71% 30.10% 35.71% 98.64% 96.00% 

0.15 0.35 0.30 92.00% 28.84%   7.10% 42.00% 98.95% 95.10% 

0.15 0.35 0.40 90.00%   4.54% 27.60% 60.00% 98.25% 88.80% 

0.20 0.40 0.35 47.06% 32.09% 20.20% 20.59% 99.17% 89.20% 

0.20 0.40 0.45 92.59%   3.80% 26.40% 66.67% 99.08% 90.10% 

Our proposed two-stage design has shown a series of very promising specificity and 

accuracy using simulation study. The estimated specificities, which are the proportion of the true 

negatives that correctly identified by our proposed design are all above 90%. This specificity 

suggests how good our design is at identifying the normal (negative) condition. A high 

specificity indicates that our proposed two-stage design could properly identify the invalid drugs 

or treatments, and prevent a further large phase III trials from huge spends and time on research 

of inefficient drugs or treatments.  The accuracy which represents the proportion of true results, 
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either true positive or true negative measure the degree of veracity of a design on certain scenario. 

Table 5.5 shows that the proportions of true results that were successful detected by our proposed 

design were as high as 96.40%, and majority of the accuracies calculated were around 90%. 

However, the sensitivity which represents the probability of the design identifies candidate drugs 

which are effective is relative low comparing to Simon’s two-stage design. Most sensitivity was 

around 40- 0%, but some of them can be as low as  0%. While Simon’s two-stage tends to have 

the opposite results.  

Comparing results from both designs, Simon’s two-stage tends to allow more possible 

candidate drugs take part into the follow up phase III trials. The advantage of it is this design 

gives opportunities to more potential drugs for further investigation. However, these 

opportunities can also be considered as a waste of resource, because the proportion of false 

positive results is high, meaning that large numbers of tested new drugs entering phase III would 

not have a confirmatory results.  As phase III trials are the most expensive and prolonged trial 

among the all three. A high false positive rate is definitely should be avoid. Considering both 

Simon’s and our two-stage designs, because of the distinctions between the design purposes, the 

result of interests are very much different. Simon’s two-stage design aims to “pick out” as many 

potential treatments as possible for further investigation, while our proposed two-stage design 

aims to “avoid” selecting inefficient agents so that improve the success rates of follow up phase 

III trials. If balancing all measures, our proposed design is superior to Simon’s design. But in 

further research plan, our goal could be modified from focusing on success rate only to balancing 

sensitivity and success rate. 

5.4.3 Comparison with Conventional Design 

A comparison between the two-stage phase II trials has also been done via simulation 
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study with different measurements of tumor shrinkages (continuous measurement of percent 

change in tumor size vs. grouped tumor response rate). Figure 5-3 demonstrates success rate in 

the second stage by various significant level in first stage. It shows the success rate of the method 

that uses continuous endpoint (PTSC) directly is superior to the method that uses categorical 

endpoint (response rate) in the first screening stage.  

 
Figure 5-3Success rate in second stage by various significant level in first stage 

The half bath-tube shaped curve in Figure 5-3 implies a very sharply decreasing at first 

and then very smooth trend for the success rate. From 0 to 0.025 the success rate declines more 

than 30%, while another 10% decrease happened between the range of 0.025 and 0.2. In contrary, 

the cumulative decrease can be ignored starting from 0.2 till 1.With this result, we would like to 

suggest a rigorous significant level for first screening stage (e.g.        ). It is the general 

belief that if we set up loose criteria when filtering the potential treatments, then there is a better 

chance to find more promising results in later phase III trials. However, this assumption is not 

true from interpretation of our simulation result. Therefore, a restricted significant level should 

be set up to improve the success rate of the overall phase II trials.  



107 

  

5.5 Conclusion and Discussion 

In this section, we will discuss and conclude our propose two-stage phase II design using 

the above results. We will discuss the following topic in this section: selection of endpoint, 

double screening design scheme, and critical values setup. 

5.5.1 Percent Changes in Tumor Sizes as Endpoint in First Stage 

In clinical studies, categorization is quite commonly adopted by grouping continuous 

values into    categories (Naggara, et al., 2011), not only limited to cancer phase II trials. The 

primary reason according to the approach is the need to label patients with an attribute for 

diagnostic or therapeutic procedures determination (e.g. ‘hypertensive’, ‘obese’) (Royston, et al., 

2006). However, the disadvantage of grouping continuous variables is obvious. A serious loss of 

power (Lagakos, 1988) and higher sample size requirements (Wason, et al., 2011) in effectively 

detecting possible relationships is the cost of simplicity. At least one third, even higher 

proportion if the predictor is exponentially distributed of the data is discarded while 

dichotomizing (Lagakos, 1988). Additionally, cutoff point selection of the categories is 

controversial when concerning about clinical benefit behind it. For example, a patient with 25% 

tumor shrinks usually has more clinical benefit than one with 10% tumor increases, but both are 

labeled by WHO criteria (WHO, 1979) as having stable disease. In contrary, a patient is 

identified as an objective responder with 55% shrinkage may not has much difference with the 

one with 45% shrinkage, but the latter is not (Karrison, et al., 2007). Therefore, it is not 

surprising that more and more researchers choose to use tumor size changes directly instead of 

response rate.From a statistical standpoint, categorizing a continuous tumor change percentage 

into a categorical tumor response with 4 levels results in a loss of study power by not fully 

utilizing all available data. Several publications have studied extensively the direct utilization of 
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continuous tumor shrinkage as the primary endpoint for the measurement of drug efficacy in 

phase II clinical trials (Wang, et al., 2009) (Karrison, et al., 2007) (Lavin, 1981).  

5.5.2 PFS as Surrogate Endpoint of OS in Second Stage 

Overall survival is the traditional and the objectively measured endpoint that is adopted 

to assess new cancer drugs. However, it requires prolonged follow-up and so may not be optimal 

for a fast assessment of therapeutic advances (Burzykowski, et al., 2004). Moreover, many 

clinical trials now include sequential therapies, and overall survival as a primary endpoint would 

not accurately reflect the effect of the investigational drug with multiple lines of treatment (Hotte, 

et al., 2011). So many researchers proposed surrogate endpoints for overall survival to evaluate 

the clinical benefits of new drugs in oncology, where PFS is frequently adopted. For example, 

Gill et al. used PFS in clinical trials of metastatic colorectal cancer (Gill, et al., 2011), and Saad 

et al. reviewed PFS as a surrogate endpoint in breast and colorectal cancer treatment (Saad, et al., 

2010). So far, the success rate of phase III oncology trials remains very low (e.g. 50-60%) 

despite the success demonstrated in the preceding phase II trials. The relationship between tumor 

response/tumor shrinkage percentage and overall survival as the gold standard for drug efficacy 

has been revisited (An MW, 2011). PFS has the advantage of short follow up time (Yothers, 

2007) and has been confirmed as the best estimate of overall survival (Buyse, et al., 2000). We 

thus choose to use PFS as the primary endpoint in the second stage in our phase II design.   

5.5.3 Double Screening 

The advantage of bouble screening is to allow a prestop of the trial if the new drug or 

treatment is not effective in order to save time and resources. The probability of prestopping is 

high since most of the drugs currently being tested are high. So in our proposed two-stage 

screening design for phase II trials, percent of tumor size change endpoint is used as an initial 
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screening to select potentially effective agents within a short time interval followed by a second 

screening stage where PFS is estimated to confirm the efficacy of agents. This design can 

improve trial efficiency and reduce cost by early stopping the evaluation of an ineffective agent 

based on low percent of tumor size change. The second survival endpoint screening will 

substantially increase the success rate of follow up phase III trial by using the similar outcomes. 

5.5.4 Critical Value in First Stage 

We compared the two-stage phase II trials with different measurements of tumor 

shrinkages (continuous measurement of tumor size change vs. grouped tumor response rate). 

Moreover, we also use the simulation result to discuss the choice of primary test criterion in the 

first screening stage. As shown in section 4.4.3, the second stage success rate changes according 

to the selection of stage I significant levels decreasing according to significant level in first stage. 

This result may lead us to reflect the common idea for selection of candidate treatments. It is 

generally expected that a phase II trial with a relax criteria could increase the possibility of new 

drug discovery and avoid the omission from the phase II trial rejection, this assumption is not 

supported by our simulation result. A strict criterion in stage I screening in our phase II trial is 

considered to be more significant in practice, and tends to lead more satisfactory results in the 

further study.  
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6     CONCLUSION & FURTHER RESEARCH 

It is the practical meaning that attracts our attention to start a research study in clinical 

trial study, with special interest in cancer clinical trial designs. As we know, cancer is one of the 

critical health issues in the world, even if the United States — a world leader in healthcare.   

After forty years of unremitting researches, the effective curative treatments for cancer patients 

are still in urgent need. 

In developing new anti-cancer drugs, statistics is an indispensable and crucial element 

since clinical trial is a process that applies statistical inference theory into pharmaceutical 

research. This motivated us to focus on improving statistical designs of phase I and II trials to 

find solutions to several major obstacles in cancer clinical studies.   

In this dissertation, to improve phase I trial efficiency, we proposed a hybrid design that 

considers three main competing interests: (1) preserve the safety of patients take part in the trial; 

(2) take into account of time factor allowing incomplete observations; and (3) fully utilize all 

toxicity information. We thus proposed a hybrid design for cancer phase I clinical trials — dose   

escalation method with overdose control using a normalized equivalent toxicity score system and 

time-to-event approach. The aim of design is to decrease the dose-finding trial duration, without 

impairing the characteristics of the EWOC design, especially the overdose control ability, as well 

as fully utilize all toxicity information to estimate MTD more accurately. Comparing with 

EWOC, EWOC-NETS, and EWOC-TITE, EWOC-NETS has the highest accuracy, followed 

closely by our proposed hybrid design — EWOC-NETS-TITE. If expressed in an inequality, it 

can be considered that the accuracy in MTD estimation is: EWOC-NETS   EWOC-NETS-TITE 

> EWOC. The “incompleteness” in observation is partially made up by the time-to-event 

approach and partially replenished by using more toxicity information. However, in the overall 
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evaluation, EWOC-NETS-TITE has a unique advantage that the trial duration is significantly 

reduced. There is one issue attracts our attention that in over-toxicity scenario EWOC-NETS 

derived designs tend to overestimate the MTD. One of the possible reasons could be the choice 

of toxicity profile. Therefore, expert inputs from preliminary experience and understanding of 

the testing drug is critical for phase I trials. And this issue would need further investigation in the 

later research.  

For phase II trials, we proposed a novel two-stage design with double screening those 

improves the conventional phase II trial designs from the following aspects: (1) use continuous 

tumor size changes as endpoint in first screening stage; (2) utilize PFS as endpoint in second 

screening stage enhance subsequent phase III trial success rate; (3) double screening allows early 

termination which reduces the trial duration when no promising results present in stage I. The 

main advantage of our phase II two-stage design has shown in the result: Success rates in follow 

up phase III trials estimated by our proposed two-stage design vary from 24.14% to as high as 

83.33%.  Majority of the success rates calculated are above 50%, which performs better than all 

general methods for cancer phase II trials (50 – 60% of all phase III trials under investigation 

fail). Additionally, our proposed two-stage design has shown a series of very promising 

specificity and accuracy using simulation study. Simulation result shows that the proportions of 

true results that were successful detected by our proposed design were as high as 96.40%, and 

majority of the accuracies calculated were around 90%. However, the sensitivity which 

represents the probability of the design identifies candidate drugs which are effective is relative 

low comparing to Simon’s two-stage design. Most sensitivity was around 40-50%, but some of 

them can be as low as  0%. While Simon’s two-stage tends to have the opposite results. Our 

further research would focus on how to balance the relationship on “picking out” the candidate 
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treatment as wells as “avoiding” selection of inefficient agents and preventing waste of resource 

in follow up phase III trials. Moreover, Bayesian methodology implementation in phase II 

clinical trial designs is also our further research plan as it plays an increasingly prominent role in 

clinical trials. There are several topics that attract our attention for further research, such as 

sample size improvement, selection of appropriate prior informative distribution for Bayesian 

inferences, and choice of endpoints. Now the idea for next step study is to incorporate the 

Bayesian method to our proposed two-stage design. 

Another well discussed topic in cancer clinical trials is the emergence of personalized 

anti-cancer drugs. Although progressions have been made to both diagnosis and treatment for 

cancers, there is still a long way to go. Today, forty years since the Nixon Administration 

declared the war on cancer; modern anti-cancer medications have saved millions of lives. 

However, a fact should be admitted that any one drug or treatment may not work for certain 

patients, even if it works for others. Or it may cause severe side effects on some people while not 

on the rest people. With better understanding of cancer biology today, it has been figured out that 

both genetics and environmental factors influence patients’ responses to anti-cancer treatments. 

It is the new trend in cancer drug development to tailor treatments to individuals. In this 

dissertation, we also proposed a phase I trial design that incorporates patient’s binary or 

continuous covariate effect in finding the dose-toxicity relationship. The advantage of our 

proposed model is it suggests a range of dose for according to patient’s characteristics. It could 

also accurately estimate the MTD for patients in different groups. Meanwhile the adjustment 

according to patients’ heterogeneity well controls the probability of overdosing a patient. In the 

further research direction, we would like to propose more complex model considering multiple 

patients’ characteristics with binary and continuous covariate incorporated.  
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