
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

Summer 8-13-2013

Iteratively Regularized Methods for Inverse
Problems
Leslie J. Meadows

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State
University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Meadows, Leslie J., "Iteratively Regularized Methods for Inverse Problems." Dissertation, Georgia State University, 2013.
https://scholarworks.gsu.edu/math_diss/13

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

ITERATIVELY REGULARIZED METHODS FOR INVERSE PROBLEMS

by

LESLIE J. MEADOWS

Under the Direction of Dr. Alexandra Smirnova

ABSTRACT

We are examining iteratively regularized methods for solving nonlinear inverse problems.

Of particular interest for these types of methods are application problems which are unstable.

For these application problems, special methods of numerical analysis are necessary since

classical algorithms tend to be divergent.

INDEXWORDS: Inverse problems, Iteratively regularized methods, Iteratively Regular-
ized Newton, Iteratively Regularized Gauss-Newton

ITERATIVELY REGULARIZED METHODS FOR INVERSE PROBLEMS

by

LESLIE J. MEADOWS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2013

Copyright by
Leslie J. Meadows

2013

ITERATIVELY REGULARIZED METHODS FOR INVERSE PROBLEMS

by

LESLIE J. MEADOWS

Committee Chair: Dr. Alexandra Smirnova

Committee: Dr. Michael Stewart

Dr. Changyong Zhong

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2013

iv

DEDICATION

To my mother, Yvonne Harris Meadows: Mama, I tried to pinpoint when life blurred the

lines between mother and daughter and made you my best friend. But, I realize now, that

you have always been my best friend. I truly admire you. Thank you for your never-ending

support and for always being there to listen. You have “seen me through” from kindergarten

to doctorate. I love you.

To my brother, Terrence Neal Harris: Terry, life could not have provided me with a bet-

ter person as a brother. Your sense of duty to family is an inspiration to everyone. Thank

you for “stepping in” on some of my inevitable responsibilities, thus granting me the space to

pursue my education. Thank you, as well, for leading the way for me mathematically and for

sacrificing sleep to help me prepare. I am even more proud of you, than you of me. I love you.

To my husband, Kevin Michael Dalrymple, I could not have done this without you.

Thank you for providing both emotional and financial support. As I pursued my degree, you

helped me to stand when I thought I would fall and you stepped in, from time to time, as both

father and mother to our children. You ran late night simulations and listened to countless

math stories; your love is truly unconditional . My degree belongs partially to you. I love you.

To my children, Brenston Neal Dalrymple and Julianna Beverly Yvonne Dalrymple:

thank you for your patience and understanding and for keeping friends away when “Mommy

had to study”. Brenston, thank you, as well, for lending me your amazing brain and for

helping to run some of those late night simulations. Julianna, your talent and love for math-

ematics warms my heart . I am extremely proud of both of you. I love you.

To my grandmothers, Lillie Mae Harris (95 years old) and Anna Elizabeth Byrd Mead-

ows Peterson (97 years old). Thank you for being proud of me, always encouraging me to

v

continue and for helping me to keep my faith. You will see more of me now. I love you.

To my father, Winston Rudolph Meadows: Daddy, you were my biggest cheerleader.

I thought your illness and death would kill me, instead, your spirit gave me strength and

determination. I can feel the positive energy of your love and pride reaching out from Heaven.

Justice is ours; we won. Thank you for staying close and for helping to keep Jesus Christ

near me at all times. You kept your promise; your heart is safe with me. You can go now. I

love you. Godspeed .

vi

ACKNOWLEDGEMENTS

I will be forever grateful to my advisor, Dr. Alexandra Smirnova; you are brilliant, kind

and patient. Thank you for investing so much of your time and energy towards helping me

earn a doctorate in mathematics. You made this dissertation possible by introducing me to

the field of applied inverse problems and working, tirelessly, with me to see it through. I

could not have done this without you. Thank you for your enthusiasm, imbuing me with

some of your knowledge, helping me to gain financial support and for continuing to be a

champion in my corner.

Many thanks, as well, to the other members of my dissertation committee, Dr. Michael

Stewart and Dr. Changyong Zhong. I appreciate your guidance and suggestions for improve-

ment; I have included them all. I would be remiss in not thanking the rest of my professsors:

Dr. Mariana Montiel (you have a gentle kindness and a talent for teaching), Dr. Lifeng

Ding, Dr. Imre Patyi, Dr. Draga Vidakovic (your advice and encouragement mean the

world to me), Dr. Frank Hall (I love your stories), Dr. Vladimir Bondarenko (who served

on the committee for my candidacy exam and also serves as a source of encouragement), Dr.

Zhongshan Li, Dr. Valerie Miller (you saved me; I will never forget) and Dr. Yichuan Zhao.

All of you have been part of an incredible journey, helping me to gain the knowledge and

ability to conduct research in the fields of matrix analysis, collegiate mathematics education

and applied mathematics.

To the chair of the Mathematics and Statistics Department, Dr. Guantao Chen: from

the minute that I started the graduate program, I felt your support. Thank you for standing

up for me.

To the staff of the mathematics department: Sandra Ahuama-Jonas (thank you for

vii

going out of your way to be there for me), Yvonne Pierce, Earnestine Collier-Jones and

Matthew Reed. Each of you helped me to sustain a level of sanity; I thank you for that.

I would also like to thank some of my fellow graduate students for their help and support:

Tingli Xing (one of my favorite people of all time and a great LaTeX troubleshooter), Hui

Lui (my Ph.D. sister), Jeffrey McCammon (we had a simultaneous journey and many hours

of study and thoughtful discussion), Malcolm DeVoe (you are wonderful) Mary Hudachek-

Buswell (a former colleague and current friend), Douglas Carter, Jr. (wow, we did it), Dirk

Gilmore (thanks for taking an interest in my stories), Sajiya Jalil, MaryGeorge Whitney,

Nana Li, Linda DeCamp, Benham Aryafar, Annie Banks, Paula Mullins, Brent Woolridge,

Heather King, Mikhail Stroeve, Songling Shan, Rachid Marsli, Kelvin Rozier and Sara Malec.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS vi

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 THEORETICAL AND NUMERICAL STUDY OF NON-

LINEAR INVERSE PROBLEMS WITH MONOTONE OP-

ERATORS 3

2.1 Failure of Classical Newton’s Method 3

2.2 Introduction of Auxiliary Problem 5

2.3 Iteratively Regularized Newton Method (IRN) 7

2.4 Numerical Results for 1D Gravimetry Problem 9

2.5 Convergence Analysis for IRN . 15

2.6 Convergence Result for the Auxiliary Problem 15

2.6.1 Existence of zk . 16

2.6.2 Weak Convergence of zk to y . 17

2.7 Asymptotic Behavior of Iterations 19

2.7.1 The Main Convergence Theorem 20

2.7.2 IRN Assumption 4 and Logarithmic Sequence 21

2.7.3 IRN Assumption 4 and Power Sequence 22

2.7.4 IRN Assumption 4 and Exponential Sequence 23

2.7.5 Proof of IRN Convergence Theorem 23

2.7.6 Monotonicity Assumption . 26

ix

CHAPTER 3 THEORETICAL AND NUMERICAL STUDY OF GEN-

ERAL NONLINEAR INVERSE PROBLEMS 28

3.1 Main Convergence Theorem for IRGN 30

3.1.1 Proof of Theorem 10 . 31

3.2 Computation Algorithm for 2D Inverse Gravimetry Problem . . 35

3.2.1 IRGN Algorithm and Inverse 2D Gravimetry Problem 36

3.3 Noise-free Simulation Results . 39

CHAPTER 4 A POSTERIORI STOPPING RULE FOR NOISY DATA 44

4.1 Simulation Results with Noise Added to the Data 48

REFERENCES . 53

APPENDICES . 56

x

LIST OF TABLES

Table 2.1 Condition Number of Jacobian Using Classical Newton Method . 5

Table 2.2 Condition Number of Jacobian Using Newton Method with Regular-

ization . 6

Table 2.3 Condition Numbers and Relative Error for IRN and Log Regularization

Parameter . 10

Table 2.4 Condition Numbers and Relative Error for IRN and Logarithmic Reg-

ularization Parameter . 11

Table 2.5 Condition Numbers and Relative Error for IRN and Power Regular-

ization Parameter . 12

Table 2.6 Condition Numbers and Relative Error for IRN and Power Regular-

ization Parameter . 13

Table 2.7 Condition Numbers and Relative Error for IRN and Exponential Reg-

ularization Parameter . 14

Table 2.8 Condition Numbers and Relative Error for IRN and Exponential Reg-

ularization Parameter . 14

Table 3.1 Condition Numbers and Relative Error for IRGN and Exponential

Regularization Parameter . 40

Table 3.2 Comparison of Approximations for Different Regularization Parame-

ters . 42

Table 4.1 Increasing Levels of Noise Paired with Increasing Initial Regularization

Parameters . 50

xi

Table 4.2 Increasing Levels of Noise Paired with a Constant Initial Regulariza-

tion Parameter . 50

xii

LIST OF FIGURES

Figure 2.1 Newton’s Method, 1D Gravimetry, 4 and 6 Grid Points 4

Figure 2.2 Newton’s Method, 1D Gravimetry, 10 and 100 Grid Points 4

Figure 2.3 Iterative Approximations which Accompany Table 2.3, τk = τ0
ln(e+k)

10

Figure 2.4 Iterative Approximations which Accompany Table 2.4, τk = τ0
ln(e+k)

11

Figure 2.5 Iterative Approximations which Accompany Table 2.5, τk = τ0
k+1

. 12

Figure 2.6 Iterative Approximations which Accompany Table 2.6, τk = τ0
k+1

. 13

Figure 2.7 Iterative Approximations which Accompany Table 2.7, τk = τ0
ek

. . 14

Figure 2.8 Iterative Approximations which Accompany Table 2.8, τk = τ0
ek

. . 15

Figure 3.1 Exact/Model Solution and Data 36

Figure 3.2 Exact x(s, u) and Approximations which Accompany Table 3.1, τk =

τ0
ek
. 41

Figure 3.3 Comparison of Approximations for Differentτk, Accompanies Table

3.2 . 42

Figure 4.1 Graph of Relative Error and Discrepancy 49

Figure 4.2 Exact x(s, u) and Approximations which Accompany Table 4.1 . . 51

Figure 4.3 Cross-Sectional Comparison of x(s, u) Approximations and Noisy Data

which Accompany Table 4.1 . 52

1

CHAPTER 1

INTRODUCTION

In general, ill-posed and inverse problems have a wide range of applicability. They can be

used, for example, to detect geological anomalies given a set of measurements collected at the

surface, to identify the shape of a scattering object from electromagnetic wave scattering, to

design non-invasive biomedical imaging technologies, etc. From a mathematical standpoint,

they can be formulated as ill-conditioned linear systems, inverse Fourier and/ or Laplace

transforms, linear and nonlinear integral equations of the first kind and so on.

The problems mentioned above, as well as others, can be represented as solutions to an

operator equation of the form: F (x) = 0, where the operator F may be linear or nonlinear

between two metric spaces. Hadamard has imposed certain conditions on the above operator

equation for it to be well-posed [1], namely:

1. there exists a solution of the problem (existence),

2. there is at most one solution of the problem (uniqueness), and

3. the solution depends continuously on the data (stability).

In Chapter 2, our goal is to study numerical methods for solving ill-posed (due to the lack

of stability), non-linear operator equations in a real Hilbert space H:

F (x) = 0, F : H → H. (1.1)

We require that our operator F is Fréchet differentiable [2] and we assume that the following

inequality holds:

〈F ′ (h) g, g〉 ≥ 0, ∀h, g ∈ H. (1.2)

2

Assumption (1.2) guarantees that the operator F is monotone (which will be very important

as we carry out our convergence analysis), but it does not imply that the problem is stable

[3]. We consider a practically interesting 1D inverse gravimetry problem [4, 5] and show that,

due to its ill-posedness, the problem cannot be solved by classical Newton’s Method. Hence,

we introduce Iteratively Regularized Newton’s [3] procedure (IRN) and discuss theoretical

and numerical aspects of its application.

In Chapter 3, we focus our attention on a general class of nonlinear operator equations

(1.1), for which we can no longer demonstrate monotonocity; assumption (1.2) is not satisfied

for many important operators. Hence, the IRN method is no longer justified. As opposed

to the IRN algorithm, convergence of Iteratively Regularized Gauss-Newton [6–8] procedure

(IRGN) can be proven for the case where F is a general nonlinear operator under some special

assumption on the level of ill-posedness (the so-called source-type condition) [6, 9]. Note,

that another important advantage of utilizing the IRGN algorithm is that in this algorithm,

one may consider the nonlinear operator F acting on two different real Hilbert spaces, say

H1 and H2. In this case, the discretization would generally produce the Jacobian that is

m × n (m 6= n), i.e., no longer a square matrix and so Newton’s method (IRN in our case)

is not applicable.

3

CHAPTER 2

THEORETICAL AND NUMERICAL STUDY OF NONLINEAR INVERSE

PROBLEMS WITH MONOTONE OPERATORS

To show what the lack of stability means from a numerical standpoint, we consider the

nonlinear operator F in the following form:

F (x) :=

∫ b

a

K(t, s, x(s))ds− f(t), F : L2[a, b] → L2[a, b]. (2.1)

One of the applications of (1.1) with F defined by (2.1) is in gravitational sounding theory

[5]. In this application, the kernel K takes the form:

K(t, s, x(s)) :=
ρ

4π
ln

[
(t− s)2 +H2

(t− s)2 + (H − x(s))2

]
. (2.2)

In the resulting operator equation, f(t) represents the measured data (the vertical component

of the gravitational field), and x(s) is to be calculated (the interface between two media of

different densities). Here, ρ is the density of the sources of the gravitational field in the

domain D := {a ≤ t ≤ b, −H ≤ t ≤ −H + x (t)}, where a, b and H are parameters of the

domain; this is known as the 1D Gravimetry problem:

F (x) :=
ρ

4π

∫ b

a

ln

[
(t− s)2 +H2

(t− s)2 + (H − x(s))2

]
ds− f(t) = 0. (2.3)

2.1 Failure of Classical Newton’s Method

Initially we discretize and attempt to solve by the classical Newton method:

xk+1 = xk − [F ′(xk)]
−1

F (xk), x0 ∈ H. (2.4)

4

The graphical demonstrations presented in Figure 2.1 illustrate the stability of iterations

(2.4), utilizing 4 and 6 grid points, respectively, and how seemingly nice the classical Newton

Method appears to be for finding a stable solution.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

discr. approx.
known x(s)
initial approx.

(a) only 4 grid points

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

discr. approx.
known x(s)
initial approx.

(b) only 6 grid points

Figure 2.1. Newton’s Method, 1D Gravimetry, 4 and 6 Grid Points

Note: Using only a few grid points, we seem to have stability with the classical Newton Method

But, since we are approximating an infinite dimensional problem on such a coarse grid,

our accuracy suffers. We would expect that increasing the number of grid points will produce

stable solutions with better accuracy, so we proceed with a modest increase to 10 points.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9
x 10

9

discr. approx.
known x(s)
initial approx.

(a) 10 grid points

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

5
x 10

22

discr. approx.
known x(s)
initial approx.

(b) 100 grid points

Figure 2.2. Newton’s Method, 1D Gravimetry, 10 and 100 Grid Points

Note: Divergence with the classic Newton Method

5

The graph in Figure 2.1(a) illustrates the instability of (2.4) with this modest increase.

We may be tempted to believe that the instability with 10 points is an anomaly, so we test

this theory with 100 grid points as well. The accuracy and stability are much worse with an

increase to 100 grid points and the disastrous results are demonstrated in Figure 2.1(b).

Note, that at each step of the Newton method we have to solve a linear system with

the Jacobian matrix F ′(xk) so the accuracy of this step will depend on the conditioning of

this matrix.

Table 2.1. Condition Number of Jacobian Using Classical Newton Method

Dimension of F ′ Cond(F ′ (x4))

4 2.615441 · 102

6 8.664735 · 103

8 2.782761 · 105

10 8.579651 · 106

100 8.685722 · 1018

1000 6.445224 · 1020

The condition numbers for F ′(xk), shown in Table 2.1, indicate that for the original,

infinite dimensional equation, F ′(xk) is not invertible. But, by discretizing with only a few

grid points (originally, only 4 and 6), we actually make our problem artificially stable, i.e.,

we provide regularization by discretization. However, we can never expect to reasonably

approximate an infinite dimensional problem based on so few grid points.

2.2 Introduction of Auxiliary Problem

As a means of improving the conditioning of the subsequent Jacobian matrix for our

equation, we introduce an auxiliary problem:

Fτ (x) := F (x) + τ (x− ξ) = 0, τ > 0, ξ ∈ H. (2.5)

6

The Newton scheme for equation (2.5) is as follows:

xk+1 = xk − [F ′(xk) + τI]
−1

(F (xk) + τ (xk − ξ)) , x0 ∈ H. (2.6)

Why do we have hope for a stable solution of the auxiliary problem Fτ (x) = 0? The answer

lies in the condition number of the resulting Jacobians, F ′(xk) + τI, at each iteration of this

regularized Newton method. Table 2.2 displays the condition numbers as a result of allowing

the parameter τ to be 0 (no regularization), 0.01 and 0.1, respectively. For consistency in

our comparisons, we examine the results after four iterations of (2.6).

Table 2.2. Condition Number of Jacobian Using Newton Method with Regularization

Dimension of F ′ Cond(F ′ (x4)) Cond(F ′ (x4) + 0.01I) Cond(F ′ (x4) + 0.1I)

4 2.615441 · 102 1.140308 · 102 2.502910 · 101

6 8.664735 · 103 2.977130 · 102 2.566069 · 101

8 2.782761 · 105 2.857222 · 102 2.555857 · 101

10 8.579651 · 106 2.804867 · 102 2.543360 · 101

100 8.685722 · 1018 2.575277 · 102 2.450715 · 101

1000 6.445224 · 1020 2.548297 · 102 2.439423 · 101

As one can see, the condition numbers are improving as the values of τ go up. Theo-

retically, what makes the auxiliary operator equation (2.5) better than the original operator

equation (1.1)? It is clear from Table 2.2, that for the original infinite dimensional problem

(1.1), the Jacobian F ′(x) is not boundedly invertible at all. We granted a sort of “artificial

stability” when we discretized with only a few grid points; but it cannot provide reasonable

accuracy for an infinite problem. At the same time, the derivative F ′
τ (x) = F ′ (x) + τI,

under assumption (1.2) is boundedly invertible and the following estimate holds:

∥∥∥[F ′ (x) + τI]
−1
∥∥∥ ≤ 1

τ
. (2.7)

7

However, when we apply the Newton Method to the auxiliary/ regularized equation (2.5),

the process will converge to the solution of (2.5); which is different from the solution of the

original 1D Gravimetry problem (1.1). Clearly, for very small values of the parameter τ , the

solution to the auxiliary problem will be close to the solution of the original problem, but as

τ gets larger (to make our process stable), the solution to this problem will deviate from the

original problem. If, however, τ is “too small”, we fail to gain stability as we seek a solution.

With the following method we are able to resolve this dilemma, thus finding a solution to

the original operator equation.

2.3 Iteratively Regularized Newton Method (IRN)

In general, for any ill-posed operator equation of the first kind, we may try to utilize

the corresponding auxiliary equation (2.5), thus borrowing its stability, while simultaneously

finding a solution to the original operator equation (1.1). To overcome the problem of

the Newton scheme applied to the auxiliary problem (2.5) converging to a solution that is

different from the one of the original problem, we drive the regularization parameter τ to

zero as we iterate. To that end, we create a sequence {τk}, where τk → 0 as k → ∞. Hence

we arrive at a new scheme, which we refer to as the Iteratively Regularized Newton Method

(IRN) (see [3] and references therein):

xk+1 = xk − [F ′(xk) + τkI]
−1

[F (xk) + τk (xk − ξ)] , x0, ξ ∈ H. (2.8)

Now, we expect xk to converge to the solution of the original operator equation which, for

the remainder of the paper, will be referred to as y. To implement the IRN algorithm, we

begin by rewriting (2.8) as:

[F ′ (xk) + τkI] pk = −{F (xk) + τk (xk − ξ)} , x0, ξ ∈ H, (2.9)

8

where pk = xk+1 − xk. Consider the term F ′ (xk) pk on the left-hand side of (2.9):

F ′ (x) p =

∫ a

b

K′
x (t, s, x (s)) p (s) ds ≈

N∑

j=1

K′
x (ti, sj , xj) pjwj, i = 1, . . . , N,

where x (sj) is denoted as xj , and wj, j = 1, . . . , N are the weights associated with the choice

of a quadrature method. Denoting K′
x (ti, sj, xj)wj := Wij , we can write the linear system

representing the approximation of F ′ (x) p in matrix form as:

N∑

j=1

K′
x (ti, sj, xj) pjwj ≡

W11 W12 · · · W1N

W21 W22 · · · W2N

...
...

. . .
...

WN1 WM2 · · · WNN

p1

p2
...

pN

.

So, for each iteration, k, we can utilize IRN (2.9) to get:

W(k)
11 + τ (k) W(k)

12 · · · W(k)
1N

W(k)
21 W(k)

22 + τ (k) · · · W(k)
2N

...
...

. . .
...

W(k)
N1 W(k)

N2 · · · W(k)
NN + τ (k)

p
(k)
1

p
(k)
2

...

p
(k)
N

=

g
(k)
1

g
(k)
2

...

g
(k)
N

,

where we choose ξ = x0 and allow the notation: g
(k)
i := −

[
F
(
x
(k)
j

)
+ τ (k)

(
x
(k)
i − x

(0)
i

)]
,

where F
(
x
(k)
j

)
:=

∑N

j=1K
(
ti, sj, x

(k)
j

)
p
(k)
j wj − f (ti) for i = 1, . . . , N . Let us write:

(
W(k)

τ

) (
p(k)

)
= g(k), (2.10)

where W
(k)
τ := W(k) + τ (k)I. Therefore, our scheme becomes:

p(k) =
[
W(k)

τ

]−1
g(k), x(k+1) = p(k) − x(k+1).

We will present the convergence analysis for the IRN scheme, but before we do so,

9

let us examine some of the numerical results from applying the IRN algorithm to the 1D

Gravimetry problem (2.3) with a model solution of x(s) = (1− s2)
2
. Generally, x(s) will

be unknown (since this is the solution we seek). However, we first solve our problem with

simulated (rather than real) data to test the algorithm.

2.4 Numerical Results for 1D Gravimetry Problem

The numerical results are given for three regularization sequences with different rates

of convergence:

τk :=
τ0

ln(e+k)
, τk := τ0

k+1
and τk :=

τ0
ek
.

The sequences are listed from slowest to fastest convergence rates, respectively. Later, we

discuss the importance of the rates of convergence of the regularization sequences as related

to the properties of the IRN algorithm.

The results demonstrated in Tables 2.3 and 2.4 are obtained when we define the reg-

ularization sequence as τk := τ0
ln(e+k)

, where τ0 is the initial regularization parameter and

k := 0, 1, . . . , n, (for our demonstrations, we allow the number of iterations, n, to be 8).

We pair a particular initial regularization parameter, τ0, with an initial approximation, x0.

Results include: the relative error after 8 iterations of the IRN algorithm and the con-

dition numbers of the Jacobian for both k = 0 and k = 8, i.e., cond(F ′ (x0) + τ0I) and

cond(F ′ (x8) + τ8I). For comparison, we also include the condition numbers of the Jacobian

for the classic Newton Method, cond(F ′ (x4)). The figures which accompany Tables 2.3 and

2.4, are graphs which demonstrate the successive approximations after each iteration; this

allows a visual, per say, of the convergence.

Table 2.3 shows the results of utilizing the regularization sequence given above and

pairing the initial regularization parameter τ0 = 1 with the initial approximation x0 = −0.2

and of pairing τ0 = 10−1 with x0 = 0, while Table 2.4 utilizes the same regularization

sequence but pairs the initial regularization parameter τ0 = 10−2 with the initial approxi-

mation x0 = 0.5 and pairs τ0 = 10−1 with x0 = 1.5. The different pairings demonstrate the

balance between the initial approximation of x0 and the initial regularization parameter τ0.

10

An initial approximation which is “further away” from our model solution will require larger

values of the initial regularization parameter to achieve stabilty as we iterate. However, if x0

is “closer” to the model solution, then we are able to obtain stability with smaller values of τ0.

Table 2.3. Condition Numbers and Relative Error for IRN and Log Regularization

Parameter

Results for particular pairs of initial regularization parameter, τ0, and initial solution, x0.

τk τ0 x0 Rel. error cnd(F ′ (x4)) cnd(F ′ (x0) + τ0I) cnd(F ′ (x8) + τ8I)

τ0
ln(e+k)

1 −0.2 3.971 · 10−1 2.482 · 1019 2.634 · 100 5.932 · 100

10−1 0 1.178 · 10−1 2.285 · 1019 1.868 · 101 5.554 · 101

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/log(e+k)

tau
0
 = 1

x
0
 = −0.2

Iteratively Regularized Newton

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/log(e+k)

tau
0
 = 10−1

x
0
 = 0

Iteratively Regularized Newton

Figure 2.3. Iterative Approximations which Accompany Table 2.3, τk = τ0
ln(e+k)

11

Table 2.4. Condition Numbers and Relative Error for IRN and Logarithmic Regularization

Parameter

Results for particular pairs of initial regularization parameter, τ0, and initial solution, x0.

τk τ0 x0 Rel. error cnd(F ′ (x4)) cnd(F ′ (x0) + τ0I) cnd(F ′ (x8) + τ8I)

τ0
ln(e+k)

10−2 0.5 2.845 · 10−2 9.252 · 1018 2.200 · 102 6.038 · 102

10−1 1.5 1.929 · 10−1 4.167 · 1019 4.117 · 101 5.572 · 101

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/log(e+k)

tau
0
 = 10−2

x
0
 = 0.5

Iteratively Regularized Newton

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/log(e+k)

tau
0
 = 10−1

x
0
 = 1.5

Iteratively Regularized Newton

Figure 2.4. Iterative Approximations which Accompany Table 2.4, τk = τ0
ln(e+k)

Similar results are shown allowing the regularization sequence, {τk}, to be defined as

τk := τ0
k+1

. Table 2.5 shows the results of utilizing this regularization sequence and pairing

the initial regularization parameter τ0 = 1 with the initial approximation x0 = −0.2 and of

pairing τ0 = 10−1 with x0 = 0:

12

Table 2.5. Condition Numbers and Relative Error for IRN and Power Regularization

Parameter

Results for particular pairs of initial regularization parameter, τ0, and initial solution, x0.

τk τ0 x0 Rel. error cond(F ′ (x4)) cond(F ′ (x0) + τ0I) cond(F ′ (x8) + τ8I)

τ0
k+1

1 −0.2 2.259 · 10−1 1.761 · 1019 2.634 · 100 1.939 · 101

10−1 0 4.475 · 10−1 2.268 · 1019 1.868 · 101 2.028 · 102

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(k+1)

tau
0
 = 1

x
0
 = −0.2

Iteratively Regularized Newton

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(k+1)

tau
0
 = 10−1

x
0
 = 0

Iteratively Regularized Newton

Figure 2.5. Iterative Approximations which Accompany Table 2.5, τk = τ0
k+1

Table 2.6 shows the results of utilizing the regularization sequence above and pairing

the initial regularization parameter τ0 = 10−2 with the initial approximation x0 = 0.5 and

of pairing τ0 = 10−1 with x0 = 1.5.

13

Table 2.6. Condition Numbers and Relative Error for IRN and Power Regularization

Parameter

Results for particular pairs of initial regularization parameter,τ0, and initial solution, x0.

τk τ0 x0 Rel. error cond(F ′ (x4)) cond(F ′ (x0) + τ0I) cond(F ′ (x8) + τ8I)

τ0
k+1

10−2 0.5 2.289 · 10−2 6.811 · 1018 2.200 · 102 2.318 · 103

10−1 1.5 6.716 · 10−2 7.661 · 1018 4.117 · 101 2.028 · 102

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

Iteratively Regularized Newton

tau
k
 = tau

0
/(k+1)

tau
0
 = 10−2

x
0
 = 0.5

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(k+1)

tau
0
 = 10−1

x
0
 = 1.5

Iteratively Regularized Newton

Figure 2.6. Iterative Approximations which Accompany Table 2.6, τk = τ0
k+1

For our final regularization sequence, {τk}, defined as τk := τ0
ek

we obtain the results

shown in Tables 2.7 and 2.8. Table 2.7 shows the results of utilizing this regularization

sequence and pairing τ0 = 1 with x0 = −0.2 and of pairing τ0 = 10−1 with x0 = 0.

14

Table 2.7. Condition Numbers and Relative Error for IRN and Exponential Regularization

Parameter

Results for particular pairs of initial regularization parameter, τ0, and initial solution, x0.

τk τ0 x0 Rel. error cond(F ′ (x4)) cond(F ′ (x0) + τ0I) cond(F ′ (x8) + τ8I)

τ0
ek

1 −0.2 2.374 · 10−2 1.188 · 1019 2.634 · 100 3.234 · 103

10−1 0 1.172 · 10−2 6.239 · 1019 1.868 · 101 3.845 · 104

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(ek)

tau
0
 = 1

x
0
 = −0.2

Iteratively Regularized Newton

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(ek)

tau
0
 = 10−1

x
0
 = 0

Iteratively Regularized Newton

Figure 2.7. Iterative Approximations which Accompany Table 2.7, τk = τ0
ek

Table 2.8. Condition Numbers and Relative Error for IRN and Exponential Regularization

Parameter

Results for particular pairs of initial regularization parameter, τ0, and initial solution, x0.

τk τ0 x0 Rel. error cond(F ′ (x4)) cond(F ′ (x0) + τ0I) cond(F ′ (x8) + τ8I)

τ0
ek

10−2 0.5 2.374 · 10−3 1.188 · 1019 2.634 · 102 3.234 · 105

10−1 1.5 1.058 · 10−2 7.594 · 1019 4.117 · 101 3.859 · 104

15

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(ek)

tau
0
 = 10−2

x
0
 = 0.5

Iteratively Regularized Newton

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

x(
s)

EXACT and COMPUTED solution (at each iteration)

Exact
iter. 1
iter. 2
iter. 3
iter. 4
iter. 5
iter. 6
iter. 7
iter. 8

tau
k
 = tau

0
/(ek)

tau
0
 = 10−1

x
0
 = 1.5

Iteratively Regularized Newton

Figure 2.8. Iterative Approximations which Accompany Table 2.8, τk = τ0
ek

Table 2.8 also shows the results of utilizing the regularization sequence τk := τ0
ek

but

pairs the initial regularization parameter τ0 = 10−2 with the initial approximation x0 = 0.5

and pairs τ0 = 10−1 with x0 = 1.5.

2.5 Convergence Analysis for IRN

We have offered demonstrations of the numerical results, now to study the theoretical

convergence of our IRN method (2.8), i.e., to see under what assumptions lim
k→∞

‖xk − y‖ = 0,

we begin by estimating ‖xk − y‖ as follows:

‖xk − y‖ ≤ ‖xk − zk‖+ ‖zk − y‖ , (2.11)

where zk solves the auxiliary problem (2.5) with τ = τk. We wish to show that both norms

on the right-hand side of our inequality converge to zero as k → ∞ (see [3] and references

therein). In the continuous form, this approach was analyzed in [10].

2.6 Convergence Result for the Auxiliary Problem

In order to show that lim
k→∞

‖xk − y‖ = 0, we must first show that a solution zk to our

auxiliary problem exists. We know that the solution y to our original problem exists by

the very nature of the problem (it is the interface between two media of different densities).

16

However, we can make no such assumptions about the existence of a solution to our auxiliary

equation since it is an equation which we have introduced. Next, we show that our sequence

{zk} has a weakly convergent subsequence and that the element to which it converges must

be the solution y to our original operator equation. Finally we will show that our subsequence

is, in fact, strongly convergent to y.

2.6.1 Existence of zk

To prove the existence of a solution to our auxiliary equation, zk, we first introduce the

following definitions:

Definition 2.6.1. A sequence {vk} in a Hilbert space H is said to converge weakly to

v ∈ H if vk → v in the scalar product as k → ∞ (i.e., if 〈vk, w〉 → 〈v, w〉 for any w ∈ H).

To denote weak convergence, we use the notation: vk ⇀ v. [11]

Definition 2.6.2. Let X, Y be Hilbert spaces amd let T : X → Y . The mapping T is said

to be hemicontinuous at x ∈ X if and only if T (x+ ty) ⇀ T (x), as t → 0, i.e., in terms

of the inner product: 〈T (x+ ty) , z〉 → 〈T (x) , z〉as t → 0 for any z ∈ X [12].

Definition 2.6.3. F : D ⊂ H → H is said to be monotone if 〈F (x)− F (y) , x− y〉 ≥ 0

for all x, y ∈ D [3, 12].

We will need these definitions as we formulate and prove the following existence theorem:

Theorem 2.6.4. [10, 12] If 〈F ′ (h) g, g〉 ≥ 0 for all h, g ∈ H and F is hemicontinuous, then

our auxiliary equation (2.5),

Fτ (x) := F (x) + τ (x− ξ) = 0, τ > 0, ξ ∈ H

is uniquely solvable.

Proof. According to [12], our auxiliary equation (2.5) is solvable if Fτ is monotone, hemicon-

tinuos and ‖Fτ (x)‖ → ∞ as ‖x‖ → ∞. Note, since we assume hemicontinuity, it is enough

17

to show monotonicity and that ‖Fτ (x)‖ → ∞ as ‖x‖ → ∞. Monotonicity is an immediate

consequence of the variational inequality (1.2). Indeed,

〈F (u)− F (v), u− v〉 = 〈F ′(η)(u− v), u− v〉 ≥ 0.

To estimate ‖Fτ (x)‖2 from below, we use the fact that this norm has been introduced through

the scalar product. In our estimation, we utilize zero in the scalar product, monotonicity of

the operator (a direct result of (1.2)) and take advantage of basic “algebra tricks”:

‖Fτ (x)‖2 = 〈F (x) + τ (x− ξ) , F (x) + τ (x− ξ)〉

= ‖F (x)‖2 + τ 2 ‖x− ξ‖2 + 2τ 〈F (x)− F (ξ) , x− ξ〉+ 2τ 〈F (ξ) , x− ξ〉

≥ ‖F (x)‖2 + τ 2 ‖x− ξ‖2 + 2τ 〈F (ξ) , x− ξ〉

≥ ‖F (x)‖2 + τ 2 ‖x− ξ‖2 − 2τ ‖F (ξ)‖ ‖x− ξ‖ δ · 1
δ

≥ ‖F (x)‖2 + τ 2 ‖x− ξ‖2 −
(
τ ‖F (ξ)‖ · 1

δ

)2

− (δ ‖x− ξ‖)2

≥
(
τ 2 − δ2

)
‖x− ξ‖2 − τ 2

δ2
‖F (ξ)‖2 =

(
τ 2 − δ2

)
‖x− ξ‖2 − C,

where C = τ2

δ2
‖F (ξ)‖2. So for δ = τ

2
,

‖Fτ (x)‖2 ≥ τ2

2
‖x− ξ‖2 − C → ∞ as ‖x‖ → ∞.

Thus we have shown that (2.5) is solvable, which guarantees the existence of zτ .

2.6.2 Weak Convergence of zk to y

Now that we have proven the existence of zτ , we present another theorem to prove

that zτ → y as τ → 0. However, before introducing this theorem, we present the following

definition and lemma which will be utilized in the proof of the theorem. Note that xn ⇀ ξ

denotes the weak convergence of xn to ξ as n → ∞.

Definition 2.6.5. The operator F is called weakly closed if xn ⇀ ξ and F (xn) → η imply

η = F (ξ) [12].

18

Lemma 2.6.6. A monotone, hemicontinuous operator is weakly closed [12].

Theorem 2.6.7. Suppose the assumptions of Theorem 2.6.4 are satisfied and there exists a

unique solution, y, to F (x) = 0. Then

lim
τ→0

‖zτ − y‖ = 0,

where zτ solves (2.5).

Proof. Let us show that {zτ} is bounded. Indeed,

F (zτ)− F (y) + τ (zτ − ξ) = 0 =⇒ F (zτ)− F (y) + τ (zτ − y + y − ξ) = 0.

Therefore one concludes:

F (zτ)− F (y) + τ (zτ − y) = τ (ξ − y) .

Multiplication in the inner product by zτ − y produces:

〈F (zτ)− F (y) , zτ − y〉+ τ 〈zτ − y, zτ − y〉 = τ 〈ξ − y, zτ − y〉 .

By the monotonicity of F , it means

‖zτ − y‖2 ≤ 〈ξ − y, zτ − y〉 , (2.12)

and, hence, it follows from the Cauchy-Schwartz inequality that:

‖zτ − y‖2 ≤ ‖ξ − y‖ ‖zτ − y‖ ⇒ ‖zτ − y‖ ≤ ‖ξ − y‖ .

Thus, there exists a subsequence {zτk} such that: zτk ⇀ ỹ ∈ H as k → ∞. We have found

that our subsequence {zτk} was weakly convergent to ỹ ∈ H. Now we show that ỹ is, in

fact, the solution to our original operator equation F (x) = 0, i.e., ỹ = y. Indeed, from our

19

auxiliary equation (2.5) it follows:

‖F (zτk)‖ = τk ‖zτk − ξ‖ ≤ 2τk ‖ξ − y‖ as k → ∞.

Since F is weakly closed, zτk ⇀ ỹ and F (zτk) → 0 as k → ∞, yield F (ỹ) = 0, by the

uniqueness of the solution to our original operator equation (1.1), we may conclude: ỹ = y.

Now, as we show strong convergence of zk to y, note that by (2.12):

‖zτk − y‖2 ≤ 〈ξ − y, zτk − y〉 → 〈ξ − y, 0〉 = 0 as k → ∞,

since zτk converges weakly to y. Hence, lim
k→∞

‖zτk − y‖ = 0 as was to be shown.

2.7 Asymptotic Behavior of Iterations

As a reminder, by the triangle inequality presented in (2.11), to prove that lim
k→∞

‖xk − y‖ =

0, we need to show that ‖xk − zk‖ → 0 and ‖zk − y‖ → 0. So far, we have proven that

lim
k→∞

‖zk − y‖ = 0, which is a standard functional analysis result that does not depend on

our specific numerical method. The remainder of our analysis will involve the iterative

sequence {xk} generated through our IRN algorithm. We will concentrate on proving that:

lim
k→∞

‖xk − zk‖ = 0, (2.13)

and with this in mind, we introduce the following Lemma:

Lemma 2.7.1. If F is differentiable and its derivative is Lipschitz continuous, i.e.,

‖F ′ (y)− F ′ (x)‖ ≤ L ‖y − x‖ for any x, y ∈ H.

then,

‖F (y)− F (x)− F ′ (x) (y − x)‖ ≤ L

2
‖y − x‖2 . (2.14)

Lemma 2.7.1 allows us to continue without having to assume that our operator F is

twice differentiable. The proof is simply a result of the Fundamental Theorem of Calculus.

Indeed,

Proof. Fix x, y ∈ H and introduce

f (t) := F (x+ t (y − x)) .

20

Clearly, f (0) = F (x) and f (1) = F (y). One has

f ′ (t) = F ′ (x+ t (y − x)) (y − x) .

The Fundamental Theorem of Calculus gives,

f (1)− f (0) =

∫ 1

0

f ′ (t) dt =⇒ F (y)− F (x) =

∫ 1

0

F ′ (x+ t (y − x)) (y − x) dt. (2.15)

Now one can estimate as follows:

‖F (y)− F (x)− F ′ (x) (y − x)‖ =

∥∥∥∥
∫ 1

0

F ′ (x+ t (y − x)) (y − x) dt− F ′ (x) (y − x)

∥∥∥∥

=

∥∥∥∥
∫ 1

0

{F ′ (x+ t (y − x))− F ′ (x)} dt · (y − x)

∥∥∥∥

≤
∫ 1

0

‖F ′ (x+ t (y − x))− F ′ (x)‖ dt · ‖y − x‖ .

By the Lipschitz continuity of F ′, one concludes

‖F (y)− F (x)− F ′ (x) (y − x)‖ ≤
∫ 1

0

L ‖x+ t (y − x)− x‖ dt · ‖y − x‖

= L ‖y − x‖2
∫ 1

0

(t) dt =
L

2
‖y − x‖2 ,

so as a final result ‖F (x)− F (y)− F ′ (y) (x− y)‖ ≤ L
2
‖x− y‖2, as was to be shown.

2.7.1 The Main Convergence Theorem

Now, we proceed with the presention and proof of the Convergence Theorem for our

IRN method.

Theorem 2.7.2. Let the following conditions be fulfilled:

1. The sequence {xk} is generated by Iteratively Regularized Newton’s Method (IRN) [3]:

xk+1 = xk −
[
F ′ (xk) + τkI

]−1
(F (xk) + τk (xk − ξ)) ,

2. The exact nonlinear equation F (x) = 0 is uniquely solvable in a real Hilbert space H,

21

and all conditions of Theorem 7 hold,

3. The operator F is Fréchet differentiable and the conditions of Lemma 2.7.1 hold,

4. The regularization sequence, {τk}, satisfies the assumptions:

τk > 0, τk ց 0,
τk − τk+1

τkτk+1
≤ λ,

5. Assume that τ0 is chosen such that : ‖x0 − z0‖ ≤ lτ0, where l := 1
L(λτ0+1) ,

6. Let λ satisfy: 2L (λτ0 + 1)Cλ ≤ 1, where C = 2 ‖ξ − y‖,

Then ‖zk − xk‖ ≤ lτk, where zk is a solution to:

Fτk (x) := F (x) + τk (x− ξ) = 0, ξ ∈ H.

and lim
k→∞

‖xk − y‖ = 0, with y being a unique solution to F (x) = 0.

Remark 2.7.3. Before proceeding with a proof of the IRN Convergence Theorem, we will de-

termine whether Assumption 4 can be realistically satisfied. We will examine the three types

of regularization sequences utilized when we demonstrated our numerical results, namely:

τk := τ0
ln(e+k)

, τk := τ0
(1+k)p

, and τk := τ0
eαk , where τ0 > 0, α > 0 and 0 < p < ∞. These

regularization sequences were specifically chosen based on their rates of convergence (from

slowest to fastest, respectively). Later we will offer a discussion and demonstration on the

importance of the speed of convergence of the regularization sequences as it relates to the

stability of our approximations.

For each of our sequences it is obvious that τk > 0 and τk ց 0 so for Assumption 4 to

be satisfied we need to determine whether
τk−τk+1

τkτk+1
is bounded.

2.7.2 IRN Assumption 4 and Logarithmic Sequence

For the first sequence under examination: τk := τ0
log(e+k)

, one has

22

lim
k→∞

τk − τk+1

τkτk+1
= lim

k→∞

[
τ0

log (e+ k)
− τ0

log (e + k + 1)

]
·
[
log (e+ k) log (e+ k + 1)

τ 20

]

= lim
k→∞

[
log (e+ k + 1)− log (e + k)

log (e + k) log (e+ k + 1)

]
·
[
log (e + k) log (e+ k + 1)

τ0

]

=
1

τ0
lim
k→∞

[
log

(
e+ k + 1

e + k

)]
=

1

τ0
lim
k→∞

[
log

(
1 +

1

e+ k

)]
= 0.

Thus, for τk := τ0
ln(e+k)

, the sequence τk−τk+1

τkτk+1
is convergent and thus bounded and, therefore,

Assumption 4 can be realistically attained.

2.7.3 IRN Assumption 4 and Power Sequence

For our next sequence, τk := τ0
(1+k)p

:

τk − τk+1

τkτk+1

=

(
τ0

(1 + k)p
− τ0

(2 + k)p

)
·
(
(1 + k)p (2 + k)p

τ 20

)

=
(2 + k)p − (1 + k)p

(1 + k)p (1 + k)p
· (1 + k)p (1 + k)p

τ0
=

(2 + k)p − (1 + k)p

τ0
.

To determine boundedness, we restrict our attention to the convergence of the numerator

given above:

lim
k→∞

[(2 + k)p − (1 + k)p] = lim
k→∞

[(
2 + k

1 + k

)p

− 1

]
(1 + k)p

= lim
k→∞

[(
1 +

1

1 + k

)p

− 1

]
(1 + k)p = lim

k→∞

(
1 + 1

1+k

)p − 1
(

1
1+k

)p .

Let t := 1
1+k

, which implies,

lim
k→∞

(1+ 1

1+k)
p−1

(1

1+k)
p = lim

t→0+

(1+t)p−1
(t)p

.

Now, for p = 1 :

lim
t→0+

(1+t)p−1
(t)p

= lim
t→0

1+t−1
t

= 1.

23

While for p 6= 1 : we have the indeterminate form: 0
0
, so, by L’Hospital’s:

lim
t→0+

(1+t)p−1
(t)p

= lim
t→0+

p(1+t)p−1

p(t)p−1 .

So, the limit takes the form:

lim
t→0+

t1−p

(1+t)1−p =

0,

∞,

0 < p < 1

p > 1

.

Hence, for τk = τ0
(1+k)p

,
τk−τk+1

τkτk+1
is convergent for 0 < p ≤ 1, and therefore bounded. At the

same time, it is unbounded for p > 1.

2.7.4 IRN Assumption 4 and Exponential Sequence

The last sequence under examination, τk := τ0
eαk , has the fastest rate of convergence; we

consider:

lim
k→∞

τk − τk+1

τkτk+1

= lim
k→∞

[(τ0
eαk

− τ0
eα(k+1)

)
·
(
eαk · eα(k+1)

τ 20

)]

= lim
k→∞

1

eαk

(
1− 1

eα

)
· e

αkeα(k+1)

τ0
= lim

k→∞

(
1− 1

eα

)
eα(k+1)

τ0
−→ ∞.

Thus, we see that τk := τ0
eαk does not satisfy Assumption 4 (which emphasizes that Assump-

tion 4 is a sufficient but not necessary condition for convergence).

2.7.5 Proof of IRN Convergence Theorem

We shall prove that if the assumptions presented in Theorem 2.7.2 are satisfied, then

‖zk − xk‖ ≤ lτk, where zk is a solution to:

Fτk (x) := F (x) + τk (x− ξ) = 0, ξ ∈ H.

24

Proof. Consider, xk+1 − zk+1, where we utilize the fact that zk solves the auxiliary equation

(2.5) to introduce a special form of zero:

xk+1 − zk+1 = xk − [F ′ (xk) + τkI]
−1

(F (xk) + τk (xk − ξ)− F (zk)− τk(zk − ξ))− zk+1,

next, we add and subtract to introduce more zeros:

xk+1 − zk+1 = xk − [F ′ (xk) + τkI]
−1

× (F ′ (xk) (xk − zk)+τk (xk − zk)−F ′ (xk) (xk − zk)+F (xk)− F (zk))−zk + zk−zk+1.

So, factoring and utilizing matrix identity properties, we obtain:

xk+1 − zk+1 = − [F ′ (xk) + τkI]
−1
(F (xk)− F (zk)− F ′ (xk) (xk − zk)) + zk − zk+1.

By Lemma 2.7.1,

‖F (zk)− F (xk)− F ′ (xk) (xk − zk)‖ ≤ L

2
‖xk − zk‖2 ,

which implies,

‖xk+1 − zk+1‖ ≤ L

2τk
‖xk − zk‖2 + ‖zk − zk+1‖ .

As we try to find an upper bound for ‖zk − zk+1‖, recall:

F (zk) + τk (zk − ξ) = 0 =⇒ F (zk+1) + τk+1 (zk+1 − ξ) = 0.

So, we proceed by subtracting the left side of each equation above and adding zero as we

demonstrate below:

F (zk) − F (zk+1) + τk (zk − ξ) − τk+1 (zk+1 − ξ)+τk (zk+1 − ξ)− τk (zk+1 − ξ) = 0,

25

and by making the proper substitutions, distributing and then factoring, we obtain:

F ′ (ηk) (zk − zk+1) + τk (zk − zk+1) + (τk − τk+1) (zk+1 − ξ) = 0.

By the result above,

[F ′ (ηk) + τkI] (zk − zk+1) = (τk − τk+1) (ξ − zk+1) ,

which implies,

zk − zk+1 = [F ′ (ηk) + τkI]
−1

(τk − τk+1) (ξ − zk+1) .

So,

‖zk − zk+1‖ ≤ (τk − τk+1) ‖ξ − zk+1‖
τk

≤ 2 (τk − τk+1) ‖ξ − y‖
τk

.

Hence,

‖xk+1 − zk+1‖ ≤ L

2τk
‖xk − zk‖2 +

2 (τk − τk+1) ‖ξ − y‖
τk

. (2.16)

Proceeding by induction, we’ll verify ‖xk+1 − zk+1‖ ≤ lτk+1:

As we indicated in our assumptions, we have chosen τ0 such that ‖x0 − z0‖ ≤ lτ0, now

assume by induction:

‖xn − zn‖ ≤ lτn for n ≤ k.

Next, we will verify that it is true for n = k + 1. Allowing C := 2 ‖ξ − y‖, based on our

inductive step and (2.16), we have:

‖xk+1 − zk+1‖ ≤
[
L

2τk
l2τ 2k +

C (τk − τk+1)

τk

]
τk+1

τk+1
=

[
Ll2τk
2τk+1

τ 2k +
C (τk − τk+1)

τkτk+1

]
τk+1.

From our assumptions, note that:

τk−τk+1

τkτk+1
≤ λ implies τk

τk+1
≤ λτ0 + 1.

So,

‖xk+1 − zk+1‖ ≤
[
Ll2(λτ0+1)

2
+ Cλ

]
τk+1.

26

We will show that our choice of l guarantees:

Ll2(λτ0+1)
2

+ Cλ ≤ l.

According to Assumption 5 of Theorem 7,

l := 1
L(λτ0+1)

and 2CLλ (λτ0 + 1) ≤ 1.

Hence,

L (λτ0 + 1)

2
· 1

L2 (λτ0 + 1)2
+ Cλ− 1

L (λτ0 + 1)
= − 1

2L (λτ0 + 1)
+ Cλ

≤ − 1

2L (λτ0 + 1)
+

1

2L (λτ0 + 1)
= 0,

and, therefore,

‖xk+1 − zk+1‖ ≤ lτk+1,

as was to be shown.

2.7.6 Monotonicity Assumption

As it has been pointed out in [4], the operator:

F (x) :=
ρ

4π

∫ b

a

ln

[
(t− s)2 +H2

(t− s)2 + (H − x(s))2

]
ds− f(t) (2.17)

is not monotone in L2. Indeed, if one takes x1 (t) = 0 and x2 (t) = 3H , one concludes:

〈F (x2)− F (x1) , x2 − x1〉L2
=

3Hρ

4π

∫ b

a

∫ b

a

ln

[
(t− s)2 +H2

(t− s)2 + 4H2

]
ds dt < 0.

However, as suggested by numerical simulations, it is possible that operator (2.17) is mono-

tone in the domain:

D := {x (t) ∈ L2 [a, b] : x (t) ≤ H − ε} , ε > 0,

27

though to the best of our knowledge, theoretical justification of this claim is not available.

The above observation explains, at least partly, why the Iteratively Regularized Newton

algorithm is efficient for 1D Inverse Gravimetry problem.

28

CHAPTER 3

THEORETICAL AND NUMERICAL STUDY OF GENERAL NONLINEAR

INVERSE PROBLEMS

Now, as was mentioned in Chapter 1, we focus our attention on a general class of

nonlinear operators:

F : H1 → H2, (3.1)

where H1 and H2 are not necessarily the same Hilbert spaces and monotonicity can no

longer be demonstrated. For this class of operators, the IRN method is no longer justified

in solving the operator equation F (x) = 0 and we will define and investigate the use of

a different iteratively regularized procedure, specifically, the Iteratively Regularized Gauss-

Newton algorithm. When H1 and H2 are different, the equation F (x) = 0 is not, in general,

solvable. Therefore, it is natural to understand the solution in the sense of least squares

when one is trying to minimize the functional ‖F (x)‖2. As the result, in place of solving

F (x) = 0, one ends up dealing with the normal equation:

F ′∗ (x)F (x) = 0, F ′∗F : H1 → H1. (3.2)

If we attempt to implement the classical Newton method, then the Fréchet derivative will

take the following form:

F ′′∗ (x)F (x) + F ′∗ (x)F ′ (x) .

If the residual is small, the contribution of the first term will decrease as we iterate. Addi-

tionally, evaluating F ′′ (x) may not be an easy task for some nonlinear operators. Moreover,

the structure of F ′′∗F + F ′∗F ′ is not as beneficial as the structure of F ′∗F ′, which is always

nonnegative (in the sense of variational inequalities). Hence, the idea of the Gauss-Newton

method [13] is to remove the first term and to use the following iterative scheme, to approx-

29

imate the solution to (3.2):

xk+1 = xk − [F ′∗ (xk)F
′ (xk)]

−1
F ′∗ (xk)F (xk) , x0 ∈ H1. (3.3)

In the ill-posed case, F ′∗ (x)F ′ (x) is not boundedly invertible in any neighborhood for the

minimizer. Therefore, as in the previous chapter, one has to incorporate iterative regular-

ization into the numerical algorithm. To that end, we consider the iteratively regularized

version of the Gauss-Newton procedure (IRGN) [6, 9, 14]:

xk+1 = xk − [F ′∗ (xk)F
′ (xk) + τkI]

−1 {F ′∗ (xk)F (xk) + τk (xk − ξ)} , x0, ξ ∈ H1. (3.4)

One can think of (3.4) as the Gauss-Newton method being applied to the regularized mini-

mization problem:

‖F (x)‖2 + τ ‖x− ξ‖2 −→
x∈H1

min, τ > 0,

with τ being updated at every step. Alternatively, one can write (3.4) in the following form:

xk+1 = ξ − [F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk) {F (xk)− F ′ (xk) (xk − ξ)}. (3.5)

The above form has the advantage that the regularization is only contained in the inverse op-

erator, [F ′∗ (xk)F
′ (xk) + τkI]

−1. Hence, one can generalize further and investigate a family

of regularized Gauss-Newton algorithms [7]:

xk+1 = ξ − θ (F ′∗ (xk)F
′ (xk) , τk)F

′∗ (xk) {F (xk)− F ′ (xk) (xk − ξ)},

with θ = θ (λ, τ) being a function of a spectral parameter λ ∈ [0, N2] and a regularization

parameter τ ∈ (0,∞).

30

3.1 Main Convergence Theorem for IRGN

In this section, we provide convergence analysis for the Iteratively Regularized Gauss-

Newton procedure (IRGN):

xk+1 = ξ − [F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk) {F (xk)− F ′ (xk) (xk − ξ)} , (3.6)

where the general nonlinear operator, F , is under the level of ill-posedness as stated in

Assumption (5) of the following theorem. We will refer to this level of ill-posedness as the

“source-type” [6, 9, 14] condition.

Theorem 3.1.1. Let the following conditions be fulfilled:

1. The sequence {xk} is generated by Iteratively Regularized Gauss-Newton Method

(IRGN):

xk+1 = ξ − [F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk) {F (xk)− F ′ (xk) (xk − ξ)} .

2. The exact nonlinear equation F (x) = 0, F : H1 → H2, is solvable, not necessarily

uniquely.

3. F is Fréchet differentiable and its Fréchet derivative F ′ is Lipschitz continuous:

‖F ′ (x)− F ′ (y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ H1.

4. The regularization sequence {τk} satisfies the assumptions:

τk > 0, lim
k→∞

τk = 0,

√
τk
τk+1

≤ r,

5. For a solution x̂ and some ξ ∈ H1 and w ∈ H2

(x̂− ξ) ∈ F ′∗ (x̂)S, S := {w, ‖w‖ ≤ ε} ,

we assume:
Lε+

√
Lε

2
≤ 1

r
,

31

6. For the initial approximation x0, we require: ‖x0−x̂‖√
τ0

≤ l∗, where l∗ := 2(1−Lrε)
Lr

.

Then the sequence, as defined in Assumption (1), is well-defined and it converges to x̂ at the

following rate: ‖xk − x̂‖√
τk

≤ l∗, k = 0, 1, 2,

Before we begin the proof of the convergence of the IRGN method, we present the

following:

Lemma 3.1.2. Assume that F is a nonlinear, Frechet differentiable operator. Then

F ′∗ (x)F ′ (x) + τI is boundedly invertible for any x ∈ H1.

Proof. Since H1 and H2 are Hilbert spaces, for any h ∈ H1 and α > 0 one has:

〈(F ′∗ (x)F ′ (x) + τI) h, h〉 = 〈F ′∗ (x)F ′ (x) h, h〉+ τ 〈h, h〉

= 〈F ′ (x) h, F ′ (x) h〉+ τ 〈h, h〉

= ‖F ′ (x)h‖2 + τ ‖h‖2 ≥ τ ‖h‖2 .

Now, 〈(F ′∗ (x)F ′ (x) + τI) h, h〉 ≥ τ ‖h‖2 implies:

∥∥∥[F ′∗ (x)F ′ (x) + τI]
−1
∥∥∥ ≤ 1

τ
.

Hence, iterations (3.6) are well-defined.

We utilize this result as we prove the convergence of our IRGN method which is appli-

cable for a general nonlinear operator F .

3.1.1 Proof of Theorem 10

Proof. According to Assumption (1),

xk+1 − x̂ = ξ − x̂− [F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk) {F (xk)− F ′ (xk) (xk − ξ)}.

32

Define G (x̂, xk) := F (xk)−F ′ (xk) (xk − x̂). Since F (x̂) = 0, by Lemma 8 in Chapter 2 one

obtains:

‖G (x̂, xk)‖ = ‖F (xk)− F ′ (xk) (xk − x̂)‖ 6
L

2
‖xk − x̂‖2 , (3.7)

and

F (xk)− F ′ (xk) (xk − ξ) = G (x̂, xk) + F ′ (xk) (ξ − x̂) .

So, according to our scheme and properties of the inner product space,

‖xk+1 − x̂‖ =
∥∥∥ξ − x̂− [F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk) {G (x̂, xk) + F ′ (xk) (ξ − x̂)}
∥∥∥

≤
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk)G (x̂, xk)
∥∥∥

+
∥∥∥
{
I − [F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk)F
′ (xk)

}
(ξ − x̂)

∥∥∥ .

Clearly, we can state:

I − [F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk)F

′ (xk)

= [F ′∗ (xk)F
′ (xk) + τkI]

−1 {(F ′∗ (xk)F
′ (xk) + τkI)− F ′∗ (xk)F

′ (xk)}

= τk [F
′∗ (xk)F

′ (xk) + τkI]
−1

.

Based on the source condition, x̂− ξ = F ′∗ (x̂) v for some v ∈ S. Therefore, it follows from

the above that

‖xk+1 − x̂‖ ≤
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk)G (x̂, xk)
∥∥∥

+ τk

∥∥∥[F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (x̂)w

∥∥∥ .

33

Introduce the notations:

T1 :=
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk)G (x̂, xk)
∥∥∥ ,

T2 :=
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (x̂)w
∥∥∥ .

By polar decomposition F ′ (xk) = U (F ′∗ (xk)F
′ (xk))

1

2 , where U is a partial isometry. Thus

one derives:

∥∥∥[F ′∗ (xk)F
′ (xk) + τkI]

−1
F ′∗ (xk)

∥∥∥ =
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

{
U (F ′∗ (xk)F

′ (xk))
1

2

}∗∥∥∥

=
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

(F ′∗ (xk)F
′ (xk))

1

2 U∗
∥∥∥

≤
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

(F ′∗ (xk)F
′ (xk))

1

2

∥∥∥

= sup
λ∈σ(F ′∗F ′)

√
λ

λ+ τk
,

and we obtain:
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1
F ′∗ (xk)

∥∥∥ ≤ 1

2
√
τk
. (3.8)

According to (3.7) and (3.8), one estimates T1 as:

T1 ≤
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1
F ′∗ (xk)

∥∥∥ ‖G (x̂, xk)‖ =
L

4
√
τk

‖xk − x̂‖2 .

For T2 one has:

T2 ≤
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

(F ′ (x̂)− F ′ (xk))
∗
w
∥∥∥

+
∥∥∥[F ′∗ (xk)F

′ (xk) + τkI]
−1

F ′∗ (xk)w
∥∥∥ .

34

Since ‖F ′ (x̂)− F ′ (xk)‖ ≤ L ‖xk − x̂‖ and ‖w‖ ≤ ε, by Lemma 3.1.2 we can make the

following deduction:

T2 ≤
1

τk
L ‖xk − x̂‖ ε+ ε

2
√
τk
.

Now, from the above one concludes,

‖xk+1 − x̂‖ ≤ T1 + τkT2 ≤
L

4
√
τk

‖xk − x̂‖2 + L ‖xk − x̂‖ ε+
√
τk
2

ε.

Recall that ‖x0 − x̂‖ ≤ l∗
√
τ0; by induction hypothesis, let ‖xj − x̂‖ ≤ l∗

√
τj , for j =

1, 2, . . . , k. In what follows, we will verify that:

‖xj+1 − x̂‖ ≤ l∗
√
τj+1.

For ease of notation, introduce: γj :=
‖xj−x̂‖√

τj
; induction hypothesis implies: γj ≤ l. Now

γj+1 =
‖xj+1 − x̂‖

√
τj+1

≤
L
√
τj

4τj
√
τj+1

‖xj − x̂‖2 + L ‖xj − x̂‖ ε
√
τj+1

+

√
τj

2
√
τj+1

ε.

Recalling that lim
k→∞

τk = 0, that τk is monotonically decreasing, i.e.,
√

τk
τk+1

≤ r and our

induction hypothesis:

γj+1 ≤
Lr

4
γ2
j + Lγjrε+

rε

2
≤ Lr

4
l∗

2

+ Ll∗rε+
rε

2
.

Let us show that under Assumption (6) of Theorem 10, it follows that :

Lr

4
l∗

2 − (1− Lrε) l∗ +
rε

2
≤ 0.

Indeed, since l∗ = 2(1−Lrε)
Lr

, one derives:

γj+1 − l∗ ≤ Lr

4
l∗

2 − (1− Lrε) l∗ +
rε

2
= −(1− Lrε)2

Lr
+

rε

2
.

35

According to Assumption (5) of Theorem (10), one has: Lε+
√

Lε
2
≤ 1

r
, which yields:

√
Lε

2
≤ 1− Lrε

r
⇔

√
rε

2
≤ 1− Lrε√

Lr
⇒ rε

2
≤ (1− Lrε)2

Lr
.

Thus, we may conclude:

γk+1 − l∗ ≤ −(1− Lrε)2

Lr
+

rε

2
≤ 0,

as was to be shown.

3.2 Computation Algorithm for 2D Inverse Gravimetry Problem

As an example of the applicability of the IRGN method to a two-dimensional nonlinear

integral equation of the first kind, consider the following inverse Gravimetry problem: [4, 15]

A (x) := g△σ

∫ b

a

∫ d

c

K (t, v, s, u, x (s, u)) ds du = f (t, v) , t ∈
[
ã,b̃

]
, v ∈

[
c̃,d̃

]
, (3.9)

where F (x) := A (x)− f and the kernel, K, is defined as follows:

K (t, v, s, u, x (s, u)) :=

1

[
(s− t)2 + (u− v)2 + x2 (s, u)

] 1

2

− 1
[
(s− t)2 + (u− v)2 +H2

] 1

2

 .

Here, x (s, u) is the interface (which we wish to reconstruct) between two media of different

densities, g is the gravitational constant, △σ is the density jump on the interface, H is

an a priori information about the domain and f (t, v) is measured surface data. As was

explained in Chapter 2, in regards to the IRN method, it is necessary to test the accuracy

and stability of the IRGN algorithm using simulated data. To this end, we will solve the

forward two-dimensional Gravimetry problem (3.9) first by defining :

x (s, u) :=
1

4
cos

(
(4s− 2)2 + (4u− 2)2

)
+ 1. (3.10)

36

The solution to this forward problem will represent our simulated data for the inverse prob-

lem. After using the IRGN method to reconstruct (3.10) with this f (t, v), we will add

some random noise, δ, to the data. We will then attempt to reconstruct (3.10) using this

noise-contaminated data, fδ (t, v).

(a) exact solution x (s, u)

0 1 2 3 4 5 6 7 8

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t = 1.0

 Cross Section of Exact and Noisy Data, f(t,v)

noise−free right−hand side
10% relative noise

(b) cross-section of f and fδ

Figure 3.1. Exact/Model Solution and Data

We solve the corresponding forward problem for the 2D Gravimetry equation (3.9) with

x = x (s, u) defined by (3.10) using a very fine grid on
[
ã, b̃

]
×

[
c̃, d̃

]
. We implement the

two dimensional analog of the composite trapezoidal quadrature rule and this high accuracy

scheme allows us to consider the values that we obtain as the exact measurement data f (t, v).

3.2.1 IRGN Algorithm and Inverse 2D Gravimetry Problem

To implement the IRGN algorithm, we begin by rewriting (3.4) as:

[F ′∗ (xk)F
′ (xk) + τkI] pk = −{F ′∗ (xk)F (xk) + τk (xk − ξ)} , x0, ξ ∈ H1, (3.11)

where pk = xk+1 − xk.

At the first step, we partition the intervals [a, b], [c, d],
[
ã, b̃

]
and

[
c̃, d̃

]
with mesh points

{sj}J1 , {ul}L1 , {ti}
I

1 and {vn}N1 , respectively. We use a convergent quadrature formula such

37

that:

F (x) ≈
J∑

j=1

L∑

l=1

K (ti, vn, sj, ul, xj,l)wj,l − fδ (ti, vn) , i = 1, 2, . . . , I, n = 1, 2, . . . , N,

(3.12)

where wj,l are the weights of the quadrature rule. As the result, we have a system of

M = I × N nonlinear equations with K = J × L unknowns. Now, we solve (3.12) using

IRGN. Note that, in this case,

F ′ (x) p =

∫ b

a

∫ d

c

K′
x (t, v, s, u, x (s, u)) p (s, u) ds du ≈

J∑

j=1

L∑

l=1

K′
x (ti, vn, sj, ul, xj,l) pj,lwj,l,

where

K′
x (t, v, s, u, x (s, u)) := −g△σ

x (s, u)
[
(s− t)2 + (u− v)2 + x2 (s, u)

] 3

2

 .

In the 1D Gravimetry problem as mentioned earlier, this was described as a two-dimensional

array multiplied by a vector. However, in the 2D problem, F ′ (x) p is approximated by an

array of dimension I ×N × J ×L multiplied by an array of dimension J ×L. Let us denote

the 4D array as W and the 2D array, by p, respectively. Additionally, for (3.11), we have

2D arrays, F and (x− ξ). From this point, we choose ξ = x(0). Before we can solve (3.11)

numerically, we need to obtain an IRGN form that is dimensionally equivalent to (2.10).

Therefore, we proceed by compressing the 4D array, W(k), to an equivalent 2D array, W(k),

and also compressing the 2D arrays, p(k), F(k) and
(
x(k) − x(0)

)
to equivalent vector forms

P(k), F(k) and
(
X(k) − X(0)

)
, respectively.

The procedure for compressing a 2D array (matrix) to a 1D array (vector) is organized as

follows: consider, for example, AJ×L, a J by Lmatrix (for clarity, as we discuss compressions,

we reference the dimension of the matrix as subnotation), the first row of the matrix, which

coordinates with j = 1 and l = 1, . . . , L, becomes the first L elements of the vector AK , the

second row of the matrix (j = 2 and l = 1, . . . , L) becomes elements L + 1 through 2L of

AK . In general, the jth row becomes elements (j − 1)L+1 through jL of AK . We continue,

38

until finally, the last row of the matrix, AJ×L, becomes elements (J − 1)L + 1 through JL

of AK :

AJ×L :=

a1,1 a1,2 · · · a1,L

a2,1 a2,2 · · · a2,L
...

...
...

aJ,1 aJ,2 · · · aJ,L

AJ×L compress−−−−−−→ AK ,

where

AK :=

[︷ ︸︸ ︷
a1,1 a1,2 · · · a1,L

︷ ︸︸ ︷
a2,1 a2,2 · · · a2,L · · ·

︷ ︸︸ ︷
aJ,1 aJ,2 · · · aJ,L

]T

.

Similarly, we compress a 4D array to a 2D array. Indeed, consider a four-dimensional

array BI×N×J×L = [bi,n,j,l], if we fix i = 1 and n = 1, then we are reduced to a 2D array,

B1×1×J×L = [b1,1,j,l] which, when compressed, becomes the first row of our new 2D array,

BM×K . From fixing i = 1 and n = 1, . . . , N we obtain the first N rows of BM×K and from

fixing i = 2 and n = 1, . . . , N we obtain rows N+1 through 2N of BM×K , we continue until,

finally, we fix i = I and n = 1, . . . , N and obtain rows (I − 1)N + 1 through I ×N = M of

BM×K . In this manner, the four dimensional array BI×N×J×L, becomes the two dimensional

array BM×K , i.e.,

BI×N×J×L compress−−−−−−→ BM×K ,

39

where

BM×K :=

︷ ︸︸ ︷
b1,1,1,1 · · · b1,1,1,L

︷ ︸︸ ︷
b1,1,2,1 · · · b1,1,2,L · · ·

︷ ︸︸ ︷
b1,1,J,1 · · · b1,1,J,L

b1,2,1,1 · · · b1,2,1,L b1,2,2,1 · · · b1,2,2,L · · · b1,2,J,1 · · · b1,2,J,L

...
...

...
...

...
...

bi,n,1,1 · · · bi,n,1,L bi,n,2,1 · · · bi,n,2,L · · · bi,n,J,1 · · · bi,n,J,L
...

...
...

...
...

...

bI,N,1,1 · · · bI,N,1,L bI,N,2,1 · · · bI,N,2,L · · · bI,N,J,1 · · · bI,N,J,L

.

With the above notations for our new 2D and 1D arrays, we now have an IRGN form that

is dimensionally equivalent to (2.10) :

[(
W

(k)
M×K

)∗ (
W

(k)
M×K

)
+ τ (k)IK×K

]
P
(n)
K

= −
{(

W
(k)
M×K

)∗
F

(k)
M

+ τ (k)
(
X

(k) − X
(0)
)
K

}
.

(3.13)

We may proceed with the implementation of the IRGN algorithm. Since we have compressed

our arrays, the approximate solution, X, will be in the form of a vector. Once the itera-

tive process is complete, we uncompress X to return to the matrix form of x, so that our

approximate solution will represent a surface.

3.3 Noise-free Simulation Results

If one takes a very good initial approximation, say x0 = 0.5 or x0 = 1.0 for our par-

ticular model, the iterations converge with no regularization; discretization is enough, in

this case. However, for a more reasonable initial guess that is further away, say x0 = 1.9,

regularization is essential, even for the noise-free experiments. This is rather natural; the

less a priori information we have, the more regularization is required. After introducing τk,

both the relative error and the condition number of the Jacobian improve with increasing

values of the initial regularization parameter, τ0. Hence we gain the stability that we need

40

as demonstrated in Table 3.1 and Figure 3.3 (with τk = τ0
ek
).

Table 3.1. Condition Numbers and Relative Error for IRGN and Exponential

Regularization Parameter

Noise free results (δ = 0) for initial approximation x0 = 1.9 and increasing values of τ0.

τk x0 τ0 k Rel. error cond(F ′∗F ′ (x0) + τ0I)

τ0
ek

1.9 0 1 9.058 · 100 1.793 · 1016

1 · 10−3 1 1.132 · 100 3.854 · 104

1 · 10−2 2 8.224 · 10−1 3.586 · 103

2.5 · 10−2 3 6.942 · 10−1 1.435 · 103

5 · 10−2 6 5.161 · 10−1 7.180 · 102

5 · 10−1 15 2.858 · 10−2 7.270 · 101

1 16 2.866 · 10−2 3.685 · 101

1.6 17 2.893 · 10−2 2.341 · 101

2 17 2.880 · 10−2 1.892 · 101

2.5 17 2.870 · 10−2 1.534 · 101

41

Figure 3.2. Exact x(s, u) and Approximations which Accompany Table 3.1, τk = τ0
ek
.

For τ0 = 0; 10−3; 10−2; 2.5 · 10−2 and 5 · 10−2, the process is clearly under-regularized

and the desired accuracy is not achieved. The value τ0 = 5 · 10−1 is near optimal, as one can

see both from the table and from the accompanying picture. Table 3.1 also illustrates that

there is not much danger in over-regularizing since regularization is being done iteratively. In

the case where the process is over-regularized, one simply iterates longer before the stopping

criteria is met.

42

Table 3.2. Comparison of Approximations for Different Regularization Parameters

Noise free results (δ = 0) for initial approximation, x0 = 1.9, and τ0 = 5 · 10−1

τ0 τk k Rel. error cond(F ′∗F ′ (x0) + τ0I)

5 · 10−1 τ0
ln(e+k)

30 2.109 · 10−1 3.564 · 101

τ0
k+1

30 1.662 · 10−1 5.375 · 101

τ0
ek

15 2.858 · 10−2 7.270 · 101

τ0

ek
10 2 8.058 · 10−1 7.270 · 101

Figure 3.3. Comparison of Approximations for Differentτk, Accompanies Table 3.2

In chapter 2, for the 1D Gavimetry problem, we utilized three regularization parame-

ters with different rates of convergence, namely, τk := τ0
ln(e+k)

, τk := τ0
k+1

and τk := τ0
ek
, as we

compared the numerical results. In Table 3.2, we compare the effect of the speed of conver-

43

gence of these and one additional regularization parameter on our iterative results for the 2D

Gravimetry problem. For a valid comparison, we hold the initial approximation and initial

regularization parameters constant in each simulation; the results are shown in Table 3.2 and

the accompanying Figure 3.3. Obviously, our logarithmic parameter, τk := τ0
ln(e+k)

, has the

slowest rate of convergence and, indeed, the associated relative error of the corresponding

approximation is the highest with k = 30, the maximum number of iterations allowed. With

the same number of iterations involved, our power function, τk := τ0
k+1

, has a lower relative

error, however, our exponential parameter, τk := τ0
ek
, has the smallest associated relative

error with fewer iterations (k = 15). The additional sequence, τk := τ0

ek
10 , converges at a

faster rate than the exponential. This sequence converges so quickly, that stability is lost

before the desired accuracy is attained. This indicates that one cannot drive {τk} to zero too

fast for the process to remain stable. Note, that condition (4) of Theorem 10 is not satisfied

for τk := τ0
ek

10 .

44

CHAPTER 4

A POSTERIORI STOPPING RULE FOR NOISY DATA

In this chapter we consider the family of regularized Gauss-Newton type procedures

with F (x) := A (x)− f in the following form:

xk+1 = ξ − θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk) {A (xk)− fδ − A′ (xk) (xk − ξ)} , x0, ξ ∈ H1.

(4.1)

Here, A : H1 → H2 is a nonlinear operator (of a fairly general structure) between two

Hilbert spaces H1 and H2, and fδ is noise contaminated measured data such that:

‖f − fδ‖ ≤ δ, δ > 0.

Note that in the original Iteratively Regularized Gauss-Newton scheme [6],

θ (λ, τ) :=
1

λ+ τ
.

In the general case (4.1), as justified in [7, 16], we impose the following basic conditions on

the generating function θ = θ (λ, τ):

sup
λ∈[0,N2]

|θ (λ, τ)λ− 1| ≤ c, (4.2)

sup
λ∈[0,N2]

|θ (λ, τ)λ− 1|λ 1

2 ≤ cτ
1

2 , (4.3)

sup
λ∈[0,N2]

∣∣∣θ (λ, τ)
√
λ
∣∣∣ ≤ cτ−

1

2 . (4.4)

In (4.2) - (4.4), the constant c is assumed to be the same in order to simplify the presentation.

Conditions (4.2) - (4.4) cover three major types of generating functions. Specifically,

45

1. Functions constructed through Tikhonov regularizations such as, for example, M-times

iterated Tikhonov’s method:

θ (λ, τ) :=
M−1∑

k=0

τk

(λ+ τ)k+1
, M ∈ N.

2. Functions performing iterative truncation of the remainder of infinite series represent-

ing the inverse operator (F ′∗F ′)−1. As an example, one can take the Newton-Landweber

algorithm:

θ (λ, τ) :=

1− (1− µλ)
1

α , λ 6= 0

µ

τ
, λ = 0

, 0 < µ < 2
N2 .

3. Functions implementing iterative spectral truncation, for example:

θ (λ, τ) :=

1
λ
, λ ≥ τ

0, 0 ≤ λ < τ

.

In what follows, we introduce a modified Discrepancy Principle stopping rule. Note that the

classical Dicrepancy Principle, ‖Axα − fδ‖ = δ, was introduced and justified by Morozov

[17] for linear, ill-posed problems. A more general Discrepancy Principle, similar to (4.5)

below, was proposed in [18], where it was also applied to linear unstable models. For non-

linear problems, the Discrepancy Principle was analyzed in [19]. In this paper, we suggest

to terminate the generalized Gauss-Newton type iterations after the first transition of the

modified discrepancy through the level σδ:

∥∥√τkδθ (A
′∗ (xkδ)A

′ (xkδ) , τkδ)A
′∗ (xkδ) (A (xkδ)− fδ)

∥∥ ≤ σδ

< ‖√τkθ (A
′∗ (xk)A

′ (xk) , τk)A
′∗ (xk) (A (xk)− fδ)‖ ,

σ > 1, 0 ≤ k < kδ = kδ (δ, fδ) . (4.5)

46

We show that for the level of ill-posedness

x̂− ξ ∈ A′∗ (x̂)S, S := {v, ‖v‖ ≤ ε} , (4.6)

the convergence rate O
(√

τk
)
, k = 0, 1, . . . , kδ (δ, fδ) is attained under merely the Lipschitz

continuity assumption on A′, without further restrictions on the nonlinearity of the operator

A [20].

To illustrate the convergence rate of O
(√

τk
)
for regularization algorithm (4.1) - (4.5),

introduce the notation:

µk :=
‖xk − x̂‖√

τk
, k = 0, 1, (4.7)

From identities (4.1) and A (x̂) = f , one concludes the following: for any k < kδ (δ, fδ), one

gets:

xk+1 − x̂ = −θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk) {A (xk)− A (x̂)− A′ (xk) (xk − x̂)}

− [x̂− ξ − θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk)A
′ (xk) (x̂− ξ)]

− θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk) (f − fδ) . (4.8)

As it has been verified in Lemma 8 in Chapter 2, Lipschitz continuity of the Frchet derivative,

A′, yields:

‖A (xk)− A (x̂)− A′ (xk) (xk − x̂)‖ ≤ L

2
‖xk − x̂‖2 .

Taking into account source condition 4.6, one derives:

x̂− ξ − θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk)A
′ (xk) (x̂− ξ)

= [I − θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk)A
′ (xk)] (A

′ (x̂)− A′ (xk)) ∗ v

+ [I − θ (A′∗ (xk)A
′ (xk) , τk)A

′∗ (xk)A
′ (xk)]A

′∗ (xk) v. (4.9)

47

Combining (4.8) and (4.9) and using assumptions (4.2) - (4.4), one arrives at the estimate:

‖xk+1 − x̂‖ ≤ cL

2
√
τk

‖xk − x̂‖2 + cL ‖xk − x̂‖ ‖v‖+ c
√
τk ‖v‖+

cδ√
τk
. (4.10)

Since k < kδ (δ, fδ), according to (4.5) one has

σδ < ‖√τkθ (A
′∗ (xk)A

′ (xk) , τk)A
′∗ (xk) (A (xk)− fδ)‖ , σ > 1.

The above inequality implies

σδ < ‖√τkθ (A
′∗ (xk)A

′ (xk) , τk)A
′∗ (xk) [A (xk)− A (x̂) + f − fδ]‖

≤ ‖√τkθ (A
′∗ (xk)A

′ (xk) , τk)A
′∗ (xk) [A

′ (xk) (xk − x̂) + A (xk)− A (x̂)−A′ (xk) (xk − x̂)]‖

+ ‖√τkθ (A
′∗ (xk)A

′ (xk) , τk)A
′∗ (xk) (f − fδ)‖ ≤ √

τk (c+ 1) ‖xk − x̂‖

+
√
τk

c√
τk

L ‖xn − x̂‖2
2

+
√
τk

c√
τk
δ. (4.11)

From (4.11), it follows that,

(σ − c) δ <
√
τk (c+ 1) ‖xk − x̂‖+ L ‖xk − x̂‖2 c

2
. (4.12)

Substituting (4.12) into (4.10), one obtains

‖xk+1 − x̂‖ ≤ cL

2
√
τk

‖xk − x̂‖2 + cL ‖xk − x̂‖ ‖v‖+ c
√
τk ‖v‖

+
cδ√
τk

{√
τk (c + 1) ‖xk − x̂‖

σ − c
+

L ‖xk − x̂‖2 c
2 (σ − c)

}

≤ cL

2
√
τk

(
1 +

c

σ − c

)
‖xk − x̂‖2 + c ‖xk − x̂‖

(
L ‖v‖+ c+ 1

σ − c

)

+ c
√
τk ‖v‖ , k < kδ (δ, fδ) . (4.13)

48

By 4.7, one concludes from 4.13 that

µk+1 ≤
cL

2

(
1 +

c

σ − c

)(‖xk − x̂‖√
τk

)2√
τk
τk+1

+
‖xk − x̂‖√

τk

√
τk
τk+1

c

(
L ‖v‖+ c+ 1

σ − c

)
+ c

√
τk
τk+1

‖v‖ . (4.14)

If one assumes that lim
k→∞

τk = 0 and sup
k≥0

√
τk

τk+1
= d < ∞, then 4.14 yields

µk+1 ≤ µ2
k

cLd

2

(
1 +

c

σ − c

)
+ µkcd

(
L ‖v‖+ c+ 1

σ − c

)
+ cd ‖v‖ := aµ2

k + bµk + p. (4.15)

Now, using the argument that is similar to the one of Theorem 10, one can show that:

‖xk − x̂‖ = O (
√
τk) , k = 0, 1, . . . , kδ (δ, fδ) .

4.1 Simulation Results with Noise Added to the Data

To demonstrate the necessity of the stopping rule presented in the previous section,

Figure 4.1 shows a graph with a plot of the relative error of our approximations after each

iteration, and a plot of the discrepancy. The simulation which produced this figure was run

with the exponential regularization parameter, τk = τ0
ek
, the initial approximation, x0 = 1.9,

the initial regularization parameter, τ0 = 0.05 and a relative level of noise, δ = 15% was

added to the data, fδ. It is desirable for the relative error of the approximations to approach

zero. However, since our approximations are generated from noisy data, we run the risk of

converging to the solution of the noisy equation if we iterate too long. This would not be

an issue in the well-posed case. But when the problem is unstable, even for a small level of

noise in the data, the solution of the corresponding “noisy” problem may be very different

from the solution we are actually trying to approximate. That is exactly what happened in

the course of the experiment illustrated in Figure 4.1. While the discrepancy continues to

decrease and to approach zero, at some point during the iterative process, the relative error

of the approximations begin to approach the solution of the noisy problem (as demonstrated

49

by the “turn” of the plot for the relative error). This “turn” gives us a visual of k = kδ (δ, fδ).

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k − number of iterations

Relative Error & Discrepancy

Relative Error
Discrepancy

Figure 4.1. Graph of Relative Error and Discrepancy

The plots are produced from simulations with τk = τ0

ek
, x0 = 1.9, τ0 = 0.05 and δ = 15%. (The “turning”

point on the plot of relative error indicates kδ (δ, fδ).)

The comparison of Tables 4.1 and 4.2 shows that the simulation results can be improved

if the value of the initial regularization parameter and the amount of noise are properly bal-

anced. At the same time, one can observe that the relative error is not overly sensitive to

the choice of τ0. This advantage can also be attributed to the regularization being done it-

eratively; so that asymptotic behavior of iterations is not considerably affected by the value

of τ0 (as long as it is not too small).

50

Table 4.1. Increasing Levels of Noise Paired with Increasing Initial Regularization

Parameters

Results for x0 = 1.9, level of noise, δ, and initial regularization parameter, τ0.

τk x0 δ τ0 Rel. error Discrepancy

τ0
ek

1.9 0% 5 · 10−1 3.172 · 10−2 1.017 · 10−5

5% 1 · 100 1.513 · 10−1 4.613 · 10−3

10% 1.6 · 100 1.879 · 10−1 9.044 · 10−3

15% 2 · 100 2.054 · 10−1 1.476 · 10−2

20% 2.5 · 100 2.107 · 10−1 2.779 · 10−2

Table 4.2. Increasing Levels of Noise Paired with a Constant Initial Regularization

Parameter

Results for x0 = 1.9, level of noise, δ, and initial regularization parameter, τ0 = 5 · 10−1.

τk x0 δ τ0 Rel. error Discrepancy

τ0
ek

1.9 0% 5 · 10−1 3.172 · 10−2 1.017 · 10−5

5% 5 · 10−1 1.520 · 10−1 4.232 · 10−3

10% 5 · 10−1 1.900 · 10−1 8.480 · 10−3

15% 5 · 10−1 2.168 · 10−1 2.360 · 10−2

20% 5 · 10−1 2.233 · 10−1 2.725 · 10−2

51

Figure 4.2. Exact x(s, u) and Approximations which Accompany Table 4.1

In Figure 4.1, we see the visual effects of adding relative noise levels of 5%, 10%, 15% and

20% to our simulated data. We are also provided with a visual cross-sectional comparison

of the resulting approximations from pairing the levels of noise and initial approximations

from Table 4.1.

52

Figure 4.3. Cross-Sectional Comparison of x(s, u) Approximations and Noisy Data which

Accompany Table 4.1

0 1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s = 10.00

 Cross−Sectional Comparison

exact solution
noise−free reconstr
5% noise
10% noise
15% noise
20% noise
initial guess

0 1 2 3 4 5 6 7 8

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

s = 1.0

noise−free right−hand side
5% relative noise
10% relative noise
15% relative noise
20% relative noise

53

REFERENCES

[1] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Applied

Mathematical Sciences 120. Springer-Verlag. New York, 1996.

[2] V. Hutson and J. Pym, Applications of Functional Analysis and Operator Theory. Aca-

demic Press Inc., Ltd., London, 1980.

[3] A. Bakushinsky and A. Goncharsky, Ill-posed Problems: Theory and Applications. Dor-

drecht Kluwer, 1994.

[4] V. Vasin and A. Ageev, Ill-posed problems with a priori information. VNU, Utrecht,

1995.

[5] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems. Translated from the

Russian. Preface by translation editor Fritz John. Scripts Series in Mathematics. V. H.

Winston & Sons, Washington, D.C.: John Wiley & Sons, New York - Toronto, Ont. -

London, 1977.

[6] A. Bakushinsky, “On a convergence problem of the iterative-regularized gauss-newton

method,” Comput Math. Math phys N9, vol. 32, pp. 1353–1359, 1992.

[7] K. A. B. and M. Yu, Iterative Methods for Ill-Posed Operator Equations with Smooth

Operators. Springer Dordrecht, Great Britain, 2004.

[8] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative regularization methods for

nonlinear ill-posed problems. Radon Series on Computational and Applied Mathemat-

ics, Walter de Gruyter, Berlin, 2008.

[9] A. Bakushinsky, “Iterative methods without saturation for solving degenerate nonlinear

operator equations,” Dokl. Akad. Nauk N1, vol. 344, pp. 7–8, 1995.

54

[10] R. Airapetyan, A. Ramm, and A. Smirnova, “Operator theory and its applications,”

Fields Inst. Commun., 25, Amer. Math Soc., Providence, RI., vol. 1998, pp. 111–137,

2000.

[11] W. Rudin, Real and Complex Analysis, Third edition. McGraw-Hill Book Company,

1987.

[12] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag. New York, 1985.

[13] J. Ortega and W. Rheinboldt, Iterative solutions of nonlinear equations in several vari-

ables. Academic Press, New York - London, 1970.

[14] A. B. Bakushinsky, “Iterative methods for nonlinear operator equations without regu-

larity. new approach,” Dokl. Russian Acad. Sci., vol. 330, pp. 282–284, 1993.

[15] E. Akimova and V. Vasin, “Stable parallel algorithms for solving the inverse gravimetry

and magnitimetry problems,” CD Proceedings of the 9th International Conference on

Numerical Methods in Continuum Mechanics, Zilina, Slovakia, September 9-12, pp.

9–12, 2003.

[16] A. B. Bakushinsky and A. Smirnova, “On application of generalized discrepancy princi-

ple to iterative methods for nonlinear ill-posed problems,” Numerical Functional Anal-

ysis and Optimization, N1, vol. 26, pp. 35–48, 2005.

[17] V. Morozov, “Regularizing families of operators,” Computing Methods and Program-

ming, vol. VIII, pp. 63–95, 1967.

[18] U. Hamarik, R. Palm, and T. Raus, “A family of rules for the choice of the regularization

parameter in the larentiev method in the case of rough estimate of the noise level data,”

J. Inverse Ill-Posed Problems, vol. 20, pp. 831–854, 2012.

[19] Q. Jin and U. Tautenhahn, “On the discrepancy principle for some newton type methods

for solving nonlinear inverse problems,” Numer. Math., N4, vol. 111, pp. 43–62, 2009.

55

[20] S. Langer and T. Hohage, “Convergence analysis of an inexact iteratively regularized

gauss-newton method under general source conditions,” J. Inverse Ill-Posed Probl., N3,

vol. 15, pp. 311–327, 2007.

56

Appendix A

% Numerical Approximation Using Trapezoidal Rule

% Find the integral with respect to s of:

% exp(s)./((x.^2+t.^2).*(x.^2-t.^2)), where x(s)=exp(s)

function output = forward

format long;

% PARAMETERS

M=10; a=3; b=4; step=(b-a)/M; c=a; d=b;

% Compute the quadrature elements

[s, w, m] = quadrature(’trap’,a,b,step);

% [s, w, m] = quadrature(’simp’,a,b,step);

% [s, w, m] = quadrature(’midpt’,a,b,step);

% [s, w, m] = quadrature(’gauss’,a,b,step);

t=c:step:d;

% ---%

% DIRECT PROBLEM

% ---%

k = length(t);

rmod=model(s,m); %compute model solution

rhs=F(s,m,rmod,t,w,k);

% ---%

% ANALYTIC SOLUTION

% ---%

syms z

fa= inline((1/(4*z^3))*(-2*atan(exp(b)/z)+log(exp(b)-z)-log(exp(b)+z)+2*atan(exp(a)/z)-log(exp(a)-z)+log(exp(a)+z)))

%--%

% ---%

% TABLE OF OUTPUT VALUES

% ---%

disp(’___ ’)

disp(’ t f(t) fa(t) |fa(t)-f(t)|/|fa(t)| ’)

disp(’ numerical analytical rel. error ’)

disp(’___ ’)

for t=3:.1:4

disp([t F(s,m,rmod,t,w,1) fa(t) abs(F(s,m,rmod,t,w,1)-fa(t))/abs(fa(t))])

end

% ---%

% PLOTTING THE OUTPUT

% ---%

t=3:.1:4;

n=uint8((t-3)*(1e+001)+1); %return integer value for n to correspond with values of t

plot(t,fa(t),’b-’,t,rhs(n),’go’)

axis([3 4 .0000390 .0000395])

% title(’Integral of K(s,t)= (e^s)/[{e^2}^s+t^2][{e^2}^s-t^2]: Trapezoidal’);

57

% ---%

% FUNCTION DEFINITIONS

% ---%

function xmod = model(s,m)

for j=1:m

xmod(j,1)=exp(s(j));

end

% ---%

function vect = K(s,x,t)

vect = exp(s)./((x.^2+t.^2).*(x.^2-t.^2));

% ---%

function matr = Kprime(s,t,x)

matr = (exp(s).*(x.^4-t.^4)-(4*x.^3).*exp(s))./(x.^4-t.^4).^2;

% ---%

function f = F(s,m,x,t,w,k)

f = zeros(k,1);

for j = 1:m

f(:,1) = f(:,1) + (K(s(j),x(j),t).*w(j))’;

end;

% ---%

function fp = Fprime(s,t,x,m,w,k)

fp = zeros(k,m);

for j = 1:m

fp(:,j) = fp(:,j) + (Kprime(s(j),t,x(j)).*w(j))’;

end;

function [s,w,m] = quadrature(quadtype,a,b,step)

switch (quadtype)

case ’trap’

s = a:step:b;

m = length(s);

h = (b-a)/(m-1);

w = ones(1,m);

w(1) = 0.5;

w(m) = 0.5;

w = w*h;

case ’simp’

s = a:step:b;

m = length(s);

if (mod(m,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

end;

h = (b-a)/(m-1);

w = 2*ones(1,m);

for k = 2:2:m-1

w(k) = 4;

end;

w(1) = 1;

w(m) = 1;

w = w*h/3;

case ’midpt’

s = a+step/2:step:b-step/2;

58

m = length(s);

h = (b-a)/m;

w = h*ones(1,m);

case ’gauss’

s = a:step:b;

m = length(s);

u = 1:m-1;

u = u ./ sqrt(4*u.^2 - 1);

% Same as A = diag(u,-1) + diag(u,1), but faster (no addition).

A = zeros(m,m);

A(2:m+1:m*(m-1)) = u;

A(m+1:m+1:m^2-1) = u;

% Find the base points and weight factors for the interval [-1,1].

[v,s] = eig(A);

[s,k] = sort(diag(s));

w = 2 * v(1,k)’.^2;

% Linearly transform from [-1,1] to [a,b].

s = (b-a)/2 * s + (a+b)/2;

w = (b-a)/2 * w;

end;

59

Appendix B

% THIS FUNCTION APPLIES IRN METHOD

% TO AN INVERSE PROBLEM

% w/ simulated data

function output = irn

global H

format long;

% PARAMETERS

M=100; a=-1; b=1; step=(b-a)/M; c=a; d=b;

nmax=20; % number of iterations

tau0=10^(-2); % regularization parameters

%tau0=10^(-1); % regularization parameters

%tau0=1;

perc=0.00; % percentage of noise

H=2; % parameter of the model

% Compute the quadrature elements

[s, w, m] = quadrature(’trap’,a,b,step);

% [s, w, m] = quadrature(’simp’,a,b,step);

% [s, w, m] = quadrature(’midpt’,a,b,step);

% [s, w, m] = quadrature(’gauss’,a,b,step);

% ---%

% INVERSE PROBLEM

% ---%

% Initial guess

r0 = zeros(m,1);

%r0 =1.1*ones(m,1);

%r0 = ones(m,1);

%r0 = -0.2*ones(m,1);

t=c:step:d;

% ---%

% DIRECT PROBLEM

% ---%

k = length(t);

rmod=model(s,m); %compute model solution

rhs=F(s,m,rmod,t,w,k);

% %%load noise from the file ’ns’

noise_rhs = rhs;

% r0 = rmod;

relerr = norm(r0-rmod)/norm(rmod);

%disp(sprintf(’Relative Error=%1.4E’, relerr));

output(1,:) = [0 relerr];

rn=r0;

%disp(sprintf(’Percentage of noise=%6.2f’, perc));

% The beginning of ITERATIVE REGULARIZATION SCHEME

f=F(s,m,rn,t,w,k);

f=f-noise_rhs;

60

% The Frechet derivative F’(rn)

% The beginning of FOR - loop

for n=1:nmax

FP=Fprime(s,t,rn,m,w,k);

% Parameter for the convergence rate function

p=1;

%tau=tau0*(n^(-p));

tau=tau0*exp(-n*p);

%tau=tau0*(log(exp(1)+n))^(-p);

tau_iter(n)=tau;

condFP(n) = cond(FP);

condFP_reg(n) = cond(FP+tau*eye(m,m));

% The Newton step

sn = -(FP+tau*eye(m,m))\(f+tau*(rn-r0));

rn = rn + sn;

% The vector f=F(rk)-noise_rhs;

f=F(s,m,rn,t,w,k);

f=f-noise_rhs;

% COMPUTE THE RELATIVE ERROR (using Frobenius norm)

relerr = norm(rmod-rn,’fro’)/norm(rmod,’fro’);

output(n+1,:) = [n relerr];

%For output table

Relerror(n)=relerr;

% STOP IF CONVERGENCE OR DIVERGENCE DETECTED

if relerr < 0.01

disp(sprintf(’Convergence Detected!’));

break;

else

if relerr > 2

disp(sprintf(’Divergence Detected!’));

break;

end;

end;

discrep = norm(f,’fro’);

%For output table

Discrepancy(n)=discrep;

end; % End of For - loop

discrep = norm(f,’fro’);

Discrepancy(n)=discrep;

nlast=n;

str=fprintf(’Initial regularization parameter is: tau0=%8.0e\n’, tau0);

str=fprintf(’Initial approximation is: x0=%8.2e\n’, r0(1));

disp(’__’)

disp(’Iter # ... Rel. error ... Discrepancy ... Cond(F_prime) ... Cond(F_prime+reg_param) .. iter. tau’)

disp(’___’)

61

% Creation of matrix for output of TABLE VALUES

for n=1:nlast

str=fprintf(’%2.1f ... %8.6e ... %8.6e ... %8.6e ... %8.6e ...%8.6e\n’, n, Relerror(n), Discrepancy(n),

condFP(n),condFP_reg(n), tau_iter(n));

end

% PLOT THE OUTPUT

%hold on

plot(s,rmod,’k-’, s,rn,’ro’, s,r0,’b--’);

axis([-1 1 -2 4])

xlabel(’s’);

ylabel(’x(s)’);

title(’EXACT solution and COMPUTED solution’);

legend(’Exact’,’Computed’,’initial approx.’);

% ---%

% FUNCTION DEFINITIONS

% ---%

function xmod = model(s,m)

for j=1:m

xmod(j,1)=(1-s(j)*s(j))^2;

end;

% ---%

function vect = K(s,x,t)

global H

vect = log(((t-s).^2+H^2)./((t-s).^2+(H-x).^2));

% ---%

function matr = Kprime(s,t,x)

global H

matr = 2.*(H-x)./((H-x).^2+(t-s).^2);

% ---%

function f = F(s,m,x,t,w,k)

f = zeros(k,1);

for j = 1:m

f(:,1) = f(:,1) + (K(s(j),x(j),t).*w(j))’;

end;

% ---%

function fp = Fprime(s,t,x,m,w,k)

fp = zeros(k,m);

for j = 1:m

fp(:,j) = fp(:,j) + (Kprime(s(j),t,x(j)).*w(j))’;

end;

function [s,w,m] = quadrature(quadtype,a,b,step)

switch (quadtype)

case ’trap’

s = a:step:b;

m = length(s);

h = (b-a)/(m-1);

w = ones(1,m);

w(1) = 0.5;

w(m) = 0.5;

w = w*h;

case ’simp’

s = a:step:b;

m = length(s);

62

if (mod(m,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

end;

h = (b-a)/(m-1);

w = 2*ones(1,m);

for k = 2:2:m-1

w(k) = 4;

end;

w(1) = 1;

w(m) = 1;

w = w*h/3;

case ’midpt’

s = a+step/2:step:b-step/2;

m = length(s);

h = (b-a)/m;

w = h*ones(1,m);

case ’gauss’

s = a:step:b;

m = length(s);

u = 1:m-1;

u = u ./ sqrt(4*u.^2 - 1);

% Same as A = diag(u,-1) + diag(u,1), but faster (no addition).

A = zeros(m,m);

A(2:m+1:m*(m-1)) = u;

A(m+1:m+1:m^2-1) = u;

% Find the base points and weight factors for the interval [-1,1].

[v,s] = eig(A);

[s,k] = sort(diag(s));

w = 2 * v(1,k)’.^2;

% Linearly transform from [-1,1] to [a,b].

s = (b-a)/2 * s + (a+b)/2;

w = (b-a)/2 * w;

end;

63

Appendix C

% THIS FUNCTION TESTS THE ITERATIVELY REGULARIZED

% GAUSS-NEWTON METHOD ON THE NONLINEAR 2D GRAVIMETRY PROBLEM.

function output = irgn_2D_gravimetry

global H

format long;

warning off;

% PARAMETERS

a = 3.2; b = 20.0;

c = 0; d = 8.0;

m = 21; n = 41; %grid for inverse problem

md = 81; nd = 161; % grid for direct problem

H = 2.0;

kmax =30;

tauvector = [0.5 1.0 1.6 2.0 2.5]; % vect of init reg parameters

delta_set = [0 0.05 0.1 0.15 0.2]; % vect of perc. of noise to add to data

Relerror=zeros(5,kmax+1); %Initializing for speed (for table)

Discrepancy=zeros(5,kmax+1); %Initializing for speed (for table)

cond_adj=zeros(5,kmax+1); %Init condition vect for speed (for table)

cond_reg_adj=zeros(5,kmax+1);%Init reg cond vect for speed (for table)

minSV=zeros(5); %Init vect for min singular value for each delta

maxSV=zeros(5); %Init vect for max singular value for each delta

% ---%

% COMPUTE THE QUADRATURE ELEMENTS

% ---%

% 2D quadrature for direct problem

[sd,td,Sd,Td,wnd,wmd] = quadrature2d(’trap’,a,b,c,d,nd,md);

% 2D quadrature for inverse problem

[s,t,S,T,wn,wm] = quadrature2d(’trap’,a,b,c,d,n,m);

% ---%

% DIRECT PROBLEM

% ---%

% ---%

% SET Xd TO SOME KNOWN FUNCTION ON A FINE GRID

% Choice of Xd will become model sol., X, for Inverse Problem

% ---%

TTd = (Td-c)/(d-c); % domain normalization

SSd = (Sd-a)/(b-a); % domain normalization

Xd = cos((4*TTd-2).^2 + (4*SSd-2).^2)/4 + 1;

Xk_delta = ones(m,n,5);

Fk_delta = zeros(md,nd,5); %initialization of noisy RHS

kk = 0;

%tau0 = 1e0;

na=1;

fexact = F(Td,Sd,td,sd,wmd,wnd,Xd);

for delta = delta_set

tau0 = tauvector(na);

kk = kk+1;

% CALCULATE f DIRECTLY FROM X ON A FINE GRID

% F returns F(x_mod) in a vector form

64

fd = fexact+ delta*(rand(md*nd,1)-rand(md*nd,1));

Fd = VtoM(fd,md,nd);

Fk_delta(:,:,kk) = Fd;

abs_err_rhs = norm(delta*rand(md*nd,1),’fro’)*sqrt((b-a)/(n-1));

rel_err_rhs = norm(delta*rand(md*nd,1),’fro’)/norm(fexact,’fro’);

Discrepancy(na,1)=rel_err_rhs;

% compute f on a loose grid

Fm = zeros(m,n);

for i = 1:m

for j = 1:n

Fm(i,j) = Fd(4*i-3,4*j-3);

end

end

% ---%

% INVERSE PROBLEM

% ---%

f = MtoV(Fm,m,n); %data for inverse problem

% ---%

% X is the model solution (for computation of rel. error)

% X is the same as the Xd chosen for forward problem (from which

% we generated the data)

% ---%

TT = (T-c)/(d-c); % domain normalization

SS = (S-a)/(b-a); % domain normalization

X = cos((4*TT-2).^2 + (4*SS-2).^2)/4 + 1;

x = MtoV(X,m,n);

% INITIAL SOLUTION

X0 = 0.1*ones(m,n); % for graphing purpose

Xk = X0;

x0 = MtoV(X0,m,n); % for iterations

X00 = 0.1*ones(m,n); % for graphing purpose

x00 = MtoV(X00,m,n); % for iterations

xk=x0;

relerr = norm(x0-x,’fro’)/norm(x,’fro’);

Relerror(na,1)=relerr;

for k = 1:kmax

Xklast = xk;

discreplast = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

% ITERATIVE REGULARIZATION SCHEME

beta = 1;

tau = tau0*((k+1)^-beta);

% CALCULATE THE MATRIX G := F(Xk)-f

G = F(T,S,t,s,wm,wn,Xk) - f;

% APPLY THE LINEAR OPERATOR F’*(Xk) TO G

FP = Fprime(t,s,T,S,wm,wn,Xk);

% COMPUTE CONDITION NUMBERS

cond_adj(na,k)=cond(FP’*FP);

% FINISH THE ITERATION

% IRGN steps:

65

% reminder: pk = x(k+1) - x(k)

Pk = -(FP’*FP + tau*eye(m*n,m*n))\(FP’*G + tau*(xk - x00));

xk = xk + Pk;

Xk = VtoM(xk,m,n); %VECTOR to MATRIX transformation

% COMPUTE REG COND NUMBER

cond_reg_adj(na,k)=cond(FP’*FP + tau*eye(m*n,m*n));

% COMPUTE THE RELATIVE ERROR

relerr = norm(x-xk,’fro’)/norm(x,’fro’);

Relerror(na,k+1)=relerr; %Leslie added

output(k+1,:) = [k relerr];

% STOP IF CONVERGENCE OR DIVERGENCE DETECTED

if ((norm(xk-Xklast,’fro’) < 1E-5) || (relerr < 1E-10))

fprintf(’Convergence Detected!’);

break;

else

if ((norm(xk-Xklast,’fro’) > 100) || (relerr > 2))

fprintf(’Divergence Detected!’);

xk = Xklast; %vector

Xk = VtoM(xk,m,n); %VECTOR to MATRIX transformation

break;

end;

end;

discrep = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

%for output table

Discrepancy(na,k+1)=discrep;

if (discreplast<discrep)

xk = Xklast; %vector

Xk = VtoM(xk,m,n); %VECTOR to MATRIX transformation

discrep = discreplast;

break;

end

end;

Xk_delta(:,:,kk) = Xk;

discrep = norm(F(T,S,t,s,wm,wn,Xk) - f, ’fro’)/norm(f, ’fro’);

na=na+1; %move to next tau0 for higher level of noise.

end %delta

klast=k;

%Creation of Table for output

disp(’ ’)

str=fprintf(’Initial approximation/guess is a flat surface: x0=%8.2e\n’,...

X0(1,1));

disp(’ ’)

disp(’--’)

fprintf(’ | init. unreg cond# = %8.3e | init. unreg cond# = %8.3e | init. unreg cond# = %8.3e | init. unreg

cond# = %8.3e | init. unreg cond# = %8.3e \n’,cond_adj(1,1), cond_adj(2,1),

cond_adj(3,1),cond_adj(4,1), cond_adj(5,1));

fprintf(’ | init. reg cond# = %8.3e | init. reg cond# = %8.3e | init. reg cond# = %8.3e | init. reg

cond# = %8.3e | init. cond# = %8.3e \n’,cond_reg_adj(1,1), cond_reg_adj(2,1),

cond_reg_adj(3,1),cond_reg_adj(4,1), cond_reg_adj(5,1));

fprintf(’ | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f &

tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f)\n’, delta_set(1),

tauvector(1), delta_set(2), tauvector(2), delta_set(3), tauvector(3), delta_set(4), tauvector(4),

66

delta_set(5), tauvector(5));

disp(’---’)

disp(’k | Rel. error & Discrepancy | Rel. error & Discrepancy | Rel. error & Discrepancy | Rel.

error & Discrepancy | Rel. error & Discrepancy’)

fprintf(’ | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f &

tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f) | (delta=%1.2f & tau0=%1.2f)\n’, delta_set(1),

tauvector(1), delta_set(2), tauvector(2), delta_set(3), tauvector(3), delta_set(4), tauvector(4),

delta_set(5), tauvector(5));

disp(’---’)

%Creation of matrix for output of Table Values

for n=1:klast+1

str=fprintf(’%2.0d | %8.5e & %8.5e | %8.5e & %8.5e | %8.5e & %8.5e | %8.5e & %8.5e |

%8.5e & %8.5e\n’, n-1, Relerror(1,n),...

Discrepancy(1,n), Relerror(2,n), Discrepancy(2,n), Relerror(3,n), Discrepancy(3,n),Relerror(4,n),

Discrepancy(4,n),Relerror(5,n), Discrepancy(5,n));

end

disp(’---’)

disp(’ ’)

disp(’ ’)

% PLOT THE OUTPUT

wantInterp = 0;

transparency = .9;

fig1 = figure;

subplot(3,2,1);

surf(T,S,X,’FaceAlpha’,transparency,’FaceLighting’,’phong’);

hold on

surf(T,S,X0,’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’\bf Exact Solution and Initial Guess’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,2);

surf(T,S,Xk_delta(:,:,1),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’\bf Noise-free reconstruction’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,3);

surf(T,S,Xk_delta(:,:,2),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

67

title(’\bf Relative level of noise 5%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,4);

surf(T,S,Xk_delta(:,:,3),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’\bf Relative level of noise 10%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,5);

surf(T,S,Xk_delta(:,:,4),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’\bf Relative level of noise 15%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

subplot(3,2,6);

surf(T,S,Xk_delta(:,:,5),’FaceAlpha’,transparency,’FaceLighting’,’phong’);

if (wantInterp)

shading interp;

end;

axis([c d a b 0.0 H]);

xlabel(’t’);

ylabel(’s’);

title(’\bf Relative level of noise 20%’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

figure(fig1);

fig2 = figure;

axisName = ’sd’;

axisValue = 1.0;

switch (axisName)

case {’sd’, ’x’}

indx = find(abs(sd-axisValue) == min(abs(sd-axisValue)));

c=plot(td,Fk_delta(:,indx,1),’^-’,td,Fk_delta(:,indx,5),’o-’);

set(c,’linewidth’,[2]);

case {’td’, ’y’}

indx = find(abs(t-axisValue) == min(abs(t-axisValue)));

c=plot(s,X(indx,:),’s-’,s,Xk_delta(indx,:,1),’^-’,...

s,Xk_delta(indx,:,2),’*-’,s,Xk_delta(indx,:,3),’p-’,...

t,Xk_delta(indx,:,4),’d-’,t,Xk_delta(indx,:,5),’o-’,...

s,X0(indx,:),’k--’);

set(c,’linewidth’,[2]);

end;

xlabel(’t = 1.0’);

68

title(’\bf Cross Section of Exact and Noisy Data, f(t,v)’);

legend(’noise-free right-hand side’, ’10% relative noise’,0);

figure(fig2);

%Additional Figure for exact solution and noisy data

fig3 = figure;

surf(T,S,X,’FaceAlpha’,transparency,’FaceLighting’,’phong’);

axis([0 8 0 20 0.0 2.0]);

xlabel(’s’);

ylabel(’u’);

title(’\bf Exact/Model Solution x(s,u)’);

set(gca,’GridLineStyle’,’-’,’linewidth’,[1])

figure(fig3);

% end Additional figure

load gong;

sound(y,Fs);

fprintf(’Done! Press Any Key to Continue...\n’);

pause;

close all;

format;

%clear;

% ---%

% FUNCTION DEFINITIONS

% ---%

function vect = K(T,S,xsi,nu,x)

global H

vect = ((T-xsi).^2 + (S-nu).^2 + x^2).^(-0.5) - ...

((T-xsi).^2 + (S-nu).^2 + H^2).^(-0.5);

% ---%

function vect = Kprime(t,s,XSI,NU,X)

vect = -X.*(((t-XSI).^2 + (s-NU).^2 + X.^2).^(-1.5));

% ---%

function f = F(T,S,xsi,nu,wm,wn,X)

m = length(xsi);

n = length(nu);

f_matr = zeros(m,n);

for i = 1:m

sum = zeros(m,n);

for j = 1:n

sum = sum + K(T,S,xsi(i),nu(j),X(i,j)).*wn(j);

end;

f_matr = f_matr + sum.*wm(i);

end;

f=MtoV(f_matr,m,n);

% ---%

function fp = Fprime(t,s,XSI,NU,wm,wn,X)

m = length(t);

n = length(s);

fp = zeros(m*n,m*n);

w=wm’*wn;

for i = 1:m

for j = 1:n

g=Kprime(t(i),s(j),XSI,NU,X).*w;

69

fp((i-1)*n+j,:)=(MtoV(g,m,n))’;

end;

end;

% ---%

function vect = MtoV(A,m,n)

vect = zeros(m*n,1);

for i = 1:m

for j = 1:n

vect((i-1)*n+j,1)=A(i,j);

end

end

function matr = VtoM(x,m,n)

matr = zeros(m,n);

for i = 1:m

for j = 1:n

matr(i,j)=x((i-1)*n+j,1);

end

end

%---%

function map = makecolormap(c1, c2, n)

for i = 0:n-1

for j = 1:3

map(i+1,j) = c1(j) + i*(c2(j)-c1(j))/(n-1);

end;

end;

% ---%

function [x,w] = quadrature1d(quadtype,a,b,n)

switch (quadtype)

case ’trap’

h = (b-a)/(n-1);

x = linspace(a,b,n);

w = ones(1,n);

w(1) = 0.5;

w(n) = 0.5;

w = w*h;

case ’simp’

if (mod(n,2) == 0)

error(’Must have odd number of nodes for Simpson Quadrature’);

end;

h = (b-a)/(n-1);

x = linspace(a,b,n);

w = 2*ones(1,n);

for i = 2:2:n-1

w(i) = 4;

end;

w(1) = 1;

w(n) = 1;

w = w*h/3;

case ’midpt’

h = (b-a)/n;

x = linspace(a+h/2,b-h/2,n);

w = h*ones(1,n);

case ’gauss’

u = 1:n-1;

u = u ./ sqrt(4*u.^2 - 1);

% Same as A = diag(u,-1) + diag(u,1), but faster (no addition).

A = zeros(n,n);

70

A(2:n+1:n*(n-1)) = u;

A(n+1:n+1:n^2-1) = u;

% Find the base points and weight factors for the interval [-1,1].

[v,x] = eig(A);

[x,k] = sort(diag(x));

w = 2 * v(1,k)’.^2;

% Linearly transform from [-1,1] to [a,b].

x = (b-a)/2 * x + (a+b)/2;

w = (b-a)/2 * w;

end;

% ---%

function [x,y,X,Y,wx,wy] = quadrature2d(quadtype,a,b,c,d,m,n)

[x,wx] = quadrature1d(quadtype,a,b,m);

[y,wy] = quadrature1d(quadtype,c,d,n);

[X,Y] = meshgrid(x,y);

71

Appendix D

To demonstrate monotonicity, based on the variational inequality, (1.2), simply note:

〈F (u)− F (v), u− v〉 = 〈F ′(η)(u− v), u− v〉 ≥ 0.

Definition 1. A vector space H is called an inner product space if, for all x, y ∈ H,

there is an associated number 〈x, y〉 such that the following rules hold:

• 〈x, y〉 = 〈y, x〉

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• 〈αx, y〉 = α 〈x, y〉 , ∀x, y ∈ H,α ∈ R

• 〈x, x〉 ≥ 0, ∀x ∈ H

• 〈x, x〉 = 0 ⇔ x = 0

Note: If we define distance in our inner product space H as ‖x− y‖, such that:

‖x− y‖ ≤ ‖x− z‖ + ‖z − y‖, then

H becomes a metric space.

Definition 2. [11] A metric space H is a complete metric space if any Cauchy sequence

{xn} converges to some x ∈ H.

Definition 3. [11] If H is an inner product space defined on the reals and as a metric space

it is complete, then H is called a real Hilbert space.

Definition 4. [2] Suppose that B and C are Banach spaces. Let D be an open subset of B,

and let A be an operator mapping D into C. A is said to be Fréchet differentiable at the

point gǫD if there exists an operator LǫL (B,C) such that :

72

lim
‖h‖→0

‖A (g + h)− Ag − Lh‖ / ‖h‖ = 0,

the limit being required to exist as h → 0 in any manner. The operator L, often denoted by

A′ (g), is called the Fréchet derivative of A at g.

	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 8-13-2013

	Iteratively Regularized Methods for Inverse Problems
	Leslie J. Meadows
	Recommended Citation

	DISSERTATION.dvi

