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ABSTRACT 

A process such as locomotion requires a well-connected cellular network that is assembled by a 

gene network. Caenorhabditis elegans offers a tractable model system allowing integrative studies of 

gene and cellular networks. We have combined bioinformatics and cellular approaches to investigate 

such networks.  The D motorneurons compose a cross – inhibitory network essential for sinuous loco-

motion. Its terminal selector gene, unc-30 establishes the anatomical and neurochemical fates in these 

neurons. Three genes: unc-5, flp-11 and unc-104 are expressed in the D mns as well as other 

motorneuron classes.  Using transcriptional reporters, we found that UNC-30 influenced the expression 

of each of these genes; however, in the most broadly expressed of the genes, unc-104, the impact of 

UNC-30 was less obvious.  The bioinformatics analysis identified the cis-element for alr-1, in the pro-

moters of all three genes. unc-30;alr-1 double mutant studies suggested that the two transcription fac-

tors act synergistically in regulating unc-104. 

INDEX WORDS: Class specific, UNC-30, ALR-1, gene network, cellular network, neuromuscular junction, 

Caenorhabditis elegans. 
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1 INTRODUCTION 

The human body orchestrates various processes necessary for its survival. Breathing, ingestion 

and locomotion are some of the basic processes that require well-organized cellular networks of nerves 

and muscles. The assembly of cellular networks is regulated by gene networks. Based upon emergent 

results from nematode to mammals, it has become apparent that many of these gene networks have 

been conserved evolutionarily.  Due to the ease of genetic manipulations, Caenorhabditis elegans, pro-

vides a model system that allows researchers to investigate the relationships between gene networks 

and cellular networks.  

A number of key genes play central roles in organizing multicellular animals. The best example is 

the homeobox gene cluster.  This gene complex is critical for regional specification and patterning along 

the longitudinal axis during embryonic development. It has been shown to be conserved across fungi 

(Kim et al., 2009), sponges (Degnan et al., 1995), insects (Akin and Nazarali, 2005), plants (Williams, 

1998) and humans (Lappin et al., 2006) (Wang et al., 1993, Gehring et al., 1994, Heffer et al., 2010) .  The 

central question here is the extent to which the associated gene networks are conserved among differ-

ent species.  Beginning with a selected transcription factor it is possible to identify downstream genes in 

the network using the bioinformatics approach of phylogenetic footprinting. Using closely related 

Caenorhabditis species (C. elegans, C. briggsae and C. remanei), phylogenetic conservation analysis on 

the promoters can be performed (Kuntz et al., 2008). Transcription factor binding sites or clusters can be 

indentified in these conserved promoter regions in the orthologous species. 

In the mammalian cortex, projection neurons from primary visual, motor and somatosensory 

cortex initially send identical projections to a variety of regions outside of the cortex.  Subsequently dif-

ferential pruning and branching sculpts neurons to achieve their final morphology (O'Leary and 

Nakagawa, 2002). This suggests that the same gene network regulates process guidance in the entire 
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class of layer 5 projection neurons.  We propose that related classes of mns in C. elegans are generated 

from the same or similar genetic programs that are controlled by terminal selector genes that regulate 

the expression of many if, if not all genes within the network.  An important question is to understand, is 

the relationship between terminal selector genes and genes that are expressed in multiple gene net-

works.  

C. elegans moves in a sinusoidal wavelike motion. This sinusoidal wave is created by a network 

of nerves and muscles located along the dorsal and ventral side of the animal. There are eight classes of 

mns involved in locomotion. Of the eight classes, six are excitatory and two are inhibitory.  These two 

classes, along with the muscles they innervate, form a cross inhibitory network that contribute to the 

sinuous pattern of locomotion (Figure 1.1). The excitatory motor neurons release acetylcholine (ACh) 

onto the muscles causing them to contract. At the same time, they activate the inhibitory motor neu-

rons to release GABA on the opposite muscle cells causing relaxation. These alternate contractions on 

one side and relaxation on the other propels the nematode forward and backward.  

 

Figure 1.1 : Cross-inhibitory cell network includes the excitatory and inhibitory mns responsible for lo-
comotion in C. elegans. 
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The cell bodies of the eight classes of mns assume predictable positions in the ventral nerve 

cord (VNC). They are generated at different developmental times and from different cellular lineages. 

The embryonic mns include the DA, DB and the DD classes, and the VA, VB, AS and VC motorneuron 

classes are generated postembryonically (Figure 1.2, Figure 1.4; (Sulston and Horvitz, 1977, Sulston et 

al., 1983))  

In nematodes, insects and annelids, the mns are arranged in a segmented or segment-like re-

peats in the VNC.  The Hox gene cluster plays a key role in creating repeated cellular patterns  along the 

longitudinal axis of an animal (Wang et al., 1993). A classical example of patterning of this kind is seen in 

Drosophila and has been also observed in mammals. In Drosophila, 14 segments are observed in the 

embryo. This portioning is achieved by an interplay of segmentation genes : gap genes, pair ruled genes 

and segment polarity genes (Rivera-Pomar and Jackle, 1996). However in nematodes, an autonomous 

lineal mechanism generates the embryonic mns, no repeating pattern of blast cell lineages is seen in 

these embryonic cells (Hedgecock et al., 1985, Walthall, 1995). Conversely, post embryonic motor neu-

rons are generated by 12 blasts cells located sublaterally in newly hatched animals and distributed along 

the length of the animal. These blast cells migrate towards the VNC and follow identical patterns of divi-

sion to create five different classes of motor neurons and hypodermal cells (Figure 1.3). The fate of the-

se mn classes vary according to their positions along the longitudinal axis. What is observed is that these 

postembryonic mns form periodic repeats having clusters of closely related cells. Eight such repeats can 

be observed in the region between the retro-vesicular ganglion to the pre-anal ganglion (Figure 1.4).  

In insects, ventral ectodermal cells, recruit CNS neuroblasts in a pattern that is repeated along 

the anterior posterior axis (Doe and Goodman, 1985). These cells continue to divide in identical lineages 

and form segmental ganglia along the VNC.  In annelids, individual founder cells along the anterior pos-

terior axis, form germ bands through symmetrical divisions, which give rise to segmental ganglia along 

the VNC (Shankland, 1991).   
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Figure 1.2 : The positions of the embryonic mns in the VNC. (Sulston et al., 1983) 
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Table 1.1: The lineages of the embryonic cells derived from one of the six founder cell AB. a, p represent 
the anterior and posterior counterpart of the subsequent divisions while r, l represent the 
perpendicularly divided cell  (Sulston et al., 1983). 

 

DD1            AB.plppappap DA1               AB.prppapaap DB 1/3            AB.plpaaaapp 

DD3            AB.plppapppa DA3               AB.prppapapa DB5                  AB.plpapappp 

DD5            AB.plppapppp DA5               AB.prppapapp DB6                  AB.plppaappp 

 DA7               AB.prpppaaap  

DD2            AB.prppappap DA8               AB.prpapappp DB2                  AB.arappappa 

DD4            AB.prppapppa   

DD6            AB.prppapppp DA2               AB.plppapapa DB3/1              AB.prpaaaapp      

 DA4               AB.plppapapp DB4                  AB.prpappapp 

 DA6               AB.plpppaaap DB7                  AB.prppaappp 

 DA9               AB.plpppaaaa  
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Figure 1.3 : (A) Positions of the embryonic mns along the VNC and the postembryonic blast cells as they 
migrate towards the nerve cord. (B) Postembryonic cell division pattern (Walthall, 1995). 
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Figure 1.4 : Segmental repeats in the post embryonic cells in the VNC in C. elegans. Adapted from 
wormatlas.org. 
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This research focuses on the two inhibitory classes of motor neurons, VD and DD. A key gene 

expressed in these neurons that regulates the expression of a battery of genes is unc-30. UNC-30 is the 

master control gene in the differentiation of type D mns, which are GABAergic (Jin et al., 1994). This 

gene belongs to the bicoid-like transcription factor family and is homologous to mammalian pitx-1, 2, 3, 

genes; known to be responsible for left-right symmetry.  It is a homeobox transcription factor. UNC-30 

directly regulates the expression of three genes responsible for the GABAergic fate. These include the 

enzyme Glutamic Acid Decarboxylase (unc-25), the two vesicular GABA transporters (unc-46 and unc-

47).  It also directly regulates the expression of neuropeptide flp-13 (Eastman et al., 1999, Cinar et al., 

2005, Shan et al., 2005).   

Bioinformatics analysis of the promoters of the direct downstream targets of UNC-30 (unc-25, 

unc-46, unc-47 and flp-13) revealed, UNC-30 binds to the promoters at TAATCH (H=T/C/A) (Cinar et al., 

2005). Transcriptional reporter analysis using mutations in unc-30(e191), show no expression of punc-

25::gfp, punc-47::gfp  or pflp-13::gfp in the D type mns in these animals. When UNC-30 is mis-expressed 

in the sensory neurons in the head, UNC-30 causes ectopic expression of unc-25, unc-46 and unc-47 in 

those neurons (Eastman et al., 1999). Hence, UNC-30 is both necessary and sufficient to induce expres-

sion of unc-25, unc-46 and unc-47 in the D mns.  

A neuropeptide gene, flp-13 is directly regulated by UNC-30.  pflp-13::gfp is expressed only in 

the DD because in the VDs, UNC-55 turns it off (Shan et al., 2005). When unc-30 is taken away, little to 

no expression of pflp-13::gfp is seen in the VNC. Bioinformatics analysis revealed a putative UNC-30 

binding site TAATCC is located 154 bp upstream of the +1 TSS in the flp-13 promoter. When this site was 

mutated, the expression of pflp-13::gfp was completely lost in the DDs (Figure 1.5) (Shan et al., 2005) . 
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Transcription factors were known to act as molecular switches. Terminal selector gene is a rela-

tively new term given to transcription factors. Hobert in 2008 redefined the term terminal selector.  The 

criterion for a terminal selector gene is: it is required to specify specific identity to a class of cells. It does 

so by direclty regulating the expression of terminally differentiated genes. Secondly, it is expressed 

throughout the life of a cell. Thirdly, it is required to maintain the differentiated state. Loss of such a 

gene, results in loss of specific identity but the pan neuronal features along with the gross morphology 

and position remain intact (Hobert, 2008). UNC-30 fulfills this criterion of being a terminal selector gene. 

It is expressed throughout the life of the D mns where it regulates the expression of unc-25, unc-47 and 

unc-49 which specify identity to the GABAergic mns (Jin et al., 1994). Loss of UNC-30 does not alter the 

gross morphology and position of the neurons to a large extent. These neurons show defects in axonal 

path finding and connections with synapse (Jin et al., 1994). 

Neuropeptide gene, flp-13 and transcription factor, unc-30 are expressed in a small subset of 

mns, namely the DDs and DDs and VDs respectively. But other genes such as neuro-peptide, flp-11, 

Figure 1.5 : (A, B) Change in expression of pflp-13::gfp reporter in wt and unc-30 (e191) background. (C, 
D) Expression when the UNC-30 binding site has been mutated (Shan et al., 2005). 
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guidance gene, unc-5 and a cytoskeletal motor gene, unc-104 are expressed in multiple classes of mns. 

FLP-11 is a FMRFamide like peptide (FLP) expressed in three distinct classes of motor neurons, namely 

the embryonic DA and DDs and post embryonic VDs.  UNC-5 is a trans-membrane protein in the 

immunoglobin super gene family is involved in process guidance from the ventral to the dorsal nerve 

cord and is expressed in five of the eight classes of motor neurons: DA, DB, DD, VD and ASs. The last 

gene unc-104, a kinesin motor protein required for anterograde transport of cargo and is expressed in 

all motor neurons located in the VNC (WS230).  

The central questions driving this research are: how are gene such as unc-5, flp-11 and unc-104 

that are expressed in multiple classes of mns regulated? Are they regulated in a class specific manner, 

where terminal selector specific for that class, regulates their expression in that specific class of mns? Or 

are there common transcription factor(s) responsible for the regulation of these genes in all the mn clas-

ses? One hypothesis is that, UNC-30 is necessary for the specific expression of these reporter genes, on-

ly in the D mns.  An alternate hypothesis would be that a non-class specific transcription factor(s) is nec-

essary for the expression of these genes in multiple classes of mns.  

Genes such as unc-5 and unc-104 in addition to UNC-30 are also conserved through evolution 

both by homology and function. There are three different isoforms of UNC-5 present in humans, UNC-

5A, UNC-5B and UNC-5C. These are transmembrane proteins that guide growing axon extensions and 

cell migration during development. UNC-104, on the other hand is anterograde motor protein required 

for transport of membraneous molecules across the microtubules. The protein KIF-1A represents the 

human homolog of UNC-104/KIN-3.  Neuropeptides and their receptors are also conserved. In this study, 

using a combination of a bioinformatics and microscopic approaches, the regulation of these well con-

served gene reporters in the D mns has been studied. 

In our study we conclude that UNC-30 is necessary for the expression of the three reporters: 

pflp-11::gfp, punc-5::gfp and punc-104::gfp  only in the D mns. The role of UNC-30 in regulation of punc-
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104::gfp seems to be also influence by other factors in addition to UNC-30.  We conclude that genes in 

these multiple classes are regulated in a class specific manner. This study shows that ALR-1 may act as a 

cofactor in directly regulating the expression of punc-104::gfp in both the D mns  and is involved in the 

regulation of punc-5::gfp and  punc-104::gfp in the cholinergic mns.  
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2 MATERIALS AND METHODS 

2.1 C. elegans worm maintenance, reporter strains, phenotype and genetics  

  Wild type and transgenic C. elegans were grown and maintained at 22˚C (Brenner, 1974) on a 

lawn of OP50 Escherichia coli seeded on NGM. Transgenic worms with green fluorescent protein (GFP) 

were obtained from Caenorhabditis Genetics Center. These were introduced into desired mutant back-

grounds as follows. In each step 5-6 males were allowed to mate with 2 L4/ young adult hermaphro-

dites. Transgenic males obtained by crossing homozygous transgenic worms with N2 bristol strain or 

high incidence of males (him-5) strains were mated with hermaphrodite worms of the desired mutant 

background. Transgenic worms were selected by the presence of GFP under a fluorescence microscope 

and the presence of the mutant phenotype in the subsequent steps. This was done for each reporter 

construct mentioned in Table 2.1. 

  Mutations included unc-30 (e191), unc-30(ok613) and alr-1 (oy42). unc-30 (e191) is a single base 

pair substitution from C to G in the first exon leading to the formation of a premature stop codon. unc-

30 (ok613) is a deletion in the homeobox domain. unc-30 animals are uncoordinated showing shrinker 

phenotype when touched on the head (Brenner, 1974). The mutation alr-1 (oy42) includes a rearrange-

ment and deletion of the alr-1 as well as its flanking region making it a null allele (Melkman and 

Sengupta, 2005). alr-1 animals showed a touch insensitive phenotype that was highly variable. Touch 

insensitivity was measured based on if each animal moved if it was gently touched 10 times alternately 

on the head and the tail (Chalfie and Sulston, 1981). It varied ranging from some that were indistin-

guishable from wild type (responsive 7-8 times of 10 touches) as opposed to completely touch insensi-

tive (responsive to 1-2 touches of 10 touches) (Topalidou et al., 2011).  
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Table 2.1: Reporter strains 

Reporter Locomotion Phenotype GFP expressed in 

pflp-11::gfp Wild type DA, DD, VD 

punc-5::gfp Wild type DA, DB, DD, VD, AS 

punc-104::gfp Wild type All mns in VNC 

punc-129::gfp Wild type DA, DB 

punc-25::gfp Wild type DD, VD 

pflp-11::gfp; unc-30 (e191) Shrinker   - 

punc-5::gfp; unc-30 (e191) Shrinker DA, DB, AS 

punc-104::gfp; unc-30 (e191) Shrinker All except D mns 

punc-25::gfp; unc-30 (e191) Shrinker - 

pflp-11::gfp; unc-30 (ok613) Mild shrinker - 

punc-5::gfp; unc-30 (ok613) Mild shrinker DA, DB, AS 

punc-104::gfp; unc-30 (ok613) Mild shrinker All except D mns 

punc-25::gfp; unc-30 (ok613) Mild shrinker - 

pflp-11::gfp; alr-1(oy42) Moderately touch insensitive DD, VD 

punc-5::gfp; alr-1(oy42) Moderately touch insensitive DD, VD 

punc-104::gfp; alr-1 (oy42) Moderately touch insensitive DD, VD 

pflp-11::gfp; unc-30(e191); alr-1(oy42) Mild shinker and moderately 
touch insensitive 

- 

punc-5::gfp; unc-30(e191); alr-1(oy42) Mild shinker and moderately 
touch insensitive 

- 

punc-104::gfp; unc-30(e191); alr-1(oy42) Mild shinker and moderately 
touch insensitive 

All except DD, VD, 
DA,DB, AS 
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2.2 Analysis of the transgenic worms 

  Transgenic worm preparations were mounted on 4 % agar pad glass slides containing 1 mM So-

dium azide for immobilization and viewed under the Zeiss LSM 500 Confocal Microscope. The image 

stacks were collected using the Zeiss 510 software (version 2.8) and hardware.  Z-stacks were made ana-

lyzed and collapsed onto a single plane to make a projection for presentation. Images were exported to 

Adobe Photoshop for final modifications.  

2.3  Intensity Measures and Statistical analysis   

  The position of each motor neuron on the projection was compared to the previously mapped 

positions to annotate each motor neuron (Sulston et al., 1983, McIntire et al., 1997) . In addition to ex-

pression in the motor neurons, all of the reporters were expressed in neurons in either the head or tail 

ganglia.  This expression was independent of unc-30 and served as fiducial markers in allowing us to 

measuring relative changes in intensity. Intensity measures were made for each worm as follows: the 

intensity of a single head neuron in the anterior ganglion was normalized to the highest intensity by 

changing the brightness and the contrast settings. The intensity of each neuron was then measured and 

the change in intensity with respect to the head neuron was calculated. The average change in intensity 

of a particular neuron was calculated and compared to the average change in intensity of the same neu-

ron in the wild type background. This was plotted on graph. The significance was calculated using Stu-

dent’s t-test (* p<0.05, ** p<0.005, *** p<0.001) (Price, 2011). 

 

2.4 Bioinformatics analysis 

2.4.1 Sequence Isolation and inter-species conservation 

The upstream regulatory regions (2000 bp from the +1 TSS) as well as the first exon and intron of 

the reporters were copied from WormBase (WS230). A comparative bioinformatics approach was used 
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which entailed the use of various softwares.  MUltiple Species Sequence Allignment (MUSSA ) was used 

to isolate the evolutionary conserved regions  within the upstream promoter of reporters copied from 

three different species of Caenorhabditis (C. elegans, C. briggsae and C. remanei) 

(http://mussa.caltech.edu). Using a standard window size of 30 nucleotides, each species was compared 

in an N way transitivity (all against all) to highlight these conserved regions. Only those windows that 

passed a certain selected threshold were shown as alignments. The threshold was selected so that verti-

cal (mostly parallel lines) with lowest noise could be selected.  This program had the advantage of de-

termining conserved regions in both the same direction (+ strand) and the reverse complement (– 

strand).  These were highlighted in red and blue color respectively (Figure 3.11) (Kuntz et al., 2008). 

  

2.4.2 Transcription factor analysis 

Putative transcription factor binding sites within these conserved regions were predicted using Tran-

scription Element Search Site (TESS, (Schug, 2008)) and MatInspector program (Genomatix). Both pro-

grams scan the copied conserved upstream region for potential binding sites to generate a position 

weight matrices and compare it to the known transcription factor databases for hits. Transcription fac-

tors having p value <0.05 were selected. Similarly, transcription factors in C. briggsae and C. remanei 

were also analyzed. The common transcription factors in the three species were then selected. 

MatInspector uses a common transcription factor finder program that generates a list of transcription 

factors present in the three species. Using this program, we selected those transcription factors that 

were statistically significant in the binding capacity based on p-values.  

Another program modENCODE, model Encyclopedia for DNA Elements 

(http://www.modENCODE.org; (Celniker et al., 2009)) was used. This predicts potential transcription 

factors binding to within 500 bps of the TSS using Chromatin Immunoprecipitation (ChIP) data (Gerstein 

http://mussa.caltech.edu/
http://www.modencode.org/
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et al., 2010). The set of common transcription factors from these three programs provided the most like-

ly candidate transcription factor that would be necessary for the regulation of the three reporter genes.  
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3 RESULTS 

3.1 unc-30 is the master control gene for the D type GABAergic mns 

Three genes that are more broadly expressed in the VNC are the netrin receptor unc-5, the neu-

ropeptide flp-11 and the kinesin motor unc-104. To test for the role of UNC-30 in the transcriptional ex-

pression of these genes, a bioinformatics approach of phlylogenetic footprinting was used to detect the 

potential UNC-30 binding sites. Bioinformatics was complemented with a microscopy approach to see 

whether the loss of unc-30 had any effect on the change in GFP expression in the D type mns in the VNC.  

 

 

Figure 3.1: Consesus binding site for UNC-30 (Cinar et al., 2005) 
 

UNC-30 recognizes a six base pair consensus sequence TAATCC in the promoter of genes 

(Eastman et al., 1999, Shan et al., 2005). Computational predictions of UNC-30 target genes from micro-

array analysis data suggested that only the first five base pairs within the consensus binding site en-

riched the target binding (Figure 3.1)(Cinar et al., 2005). The sixth base pair could be either C, T or A. 

Using this approach each of the three reporters (netrin receptor, punc-5::gfp, neuropeptide, pflp-11::gfp 

and kinesin motor, punc-104::gfp) showed the presence of UNC-30 consensus elements in their promot-

ers. Both alleles of unc-30 (e191 and ok613) were used to test the role of UNC-30 in the regulation of 

these reporters.  
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3.1.1 Positive control: punc-25::gfp 

The punc-25::gfp reporter is expressed in all 26 GABAergic mns including the D mns.  This re-

porter was selected as a positive control to determine the extent of the loss of UNC-30 (e191 and ok613) 

on the expression pattern. The change of expression in the three reporters can was evaluated relative to 

the control expression. 

3.1.1.1 Control: punc-25::gfp 

Analysis with punc-25::gfp reporter showed six DDs in each of the twenty seven control animals 

at the L1 stage (Figure 3.2 A).   In the L2 stage, punc-25::gfp expressed in the 13 VDs in addition to the 6 

DDs in each of the eleven animals analyzed (Figure 3.3 A). For our study, in the L2 stage, we restricted 

our analysis to the 4 DDs and the 9 VDs located in the region between the retro-vesicular ganglion and 

the pre-anal ganglion.  This was followed in each of the reporters that we analyzed. 

3.1.1.2 punc-25::gfp; unc-30 (e191) 

In unc-30 (e191) mutant backgrounds, punc-25::gfp expression was decreased substantially as 

compared to wild type. In the absence of unc-30 (e191), the expression was completely lost in DD3-DD6 

in twenty animals but only partially reduced in the other DD mns. The other eleven animals showed pat-

terns more reminiscent of the wild-type. This set of nematodes was observed to be milder shrinkers 

than the other e191 mutant animals, which could be the reason of the more wild type like expression 

pattern. Figure 3.2 B shows one such animal with a loss of expression in all DDs except DD1. Overall, the 

intensities were significantly reduced in all the DDs (Figure 3.2 D). 

In the L2 stage, the expression of punc-25::gfp; unc-30 (e191) in the DDs was reduced as de-

scribed for the L1 stage. Six out of the nine animals showed a complete loss of punc-25::gfp expression 

in the e191 allele, whereas the others showed more variability (Figure 3.3 B, D). Additionally, the expres-

sion in the VDs was completely lost in five of nine animals in the e191 background. The others showed 
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occasional expression in some VDs as seen in Figure 3.3 B.  The loss in intensity was significant in each of 

the VDs except for VD9 (Figure 3.3 E). 

3.1.1.3 punc-25::gfp; unc-30 (ok613) 

In the absence of unc-30 (ok613), the loss of expression was more variable.  Each of the twenty 

animals showed low expression in most DDs and a complete loss in others. DD5 lacked expression in al-

most all the worms.  Figure 3.2C shows a loss of expression in the DD5-6 and a substantially lower ex-

pression in DD3-4. The expression in DD1-2 was similar to wild type. The intensities of DDs in the ok613 

background significantly reduced in each of the DDs (Figure 3.2D).  

In the L2 stage, the expression in the DDs in punc-25::gfp; unc-30 (ok613) allele was also varia-

ble. Five of the sixteen animals showed a complete loss whereas partial losses were observed in the 

other eleven (Figure 3.3 C). The intensity decreased significantly for the DDs in both alleles of unc-30 

except for DD2 in the ok613 allele, which was reduced but was not significant (Figure 3.3 D). In the VDs, 

the expression was highly variable ranging from no expression to the complete complement of VDs in 

the sixteen worms observed (Figure 3.3C). The intensity for these worms reduced but it was not signifi-

cant (Figure 3.3 E).   

Thus, this variability in expression was consistent in the control punc-25::gfp.  Such expression 

could be due to a read-through of the stop codon in the case of e191 or a requirement of a cofactor 

along with unc-30 in the regulation of these genes in case of both alleles.   
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Figure 3.2 : (A, B, C) Comparison of expression in wild type punc-25::gfp and in both unc-30 alleles (e191 
and ok613)  in  L1 stage. Left is anterior, right is posterior, dorsal is up and ventral is down in all the 
preps.Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 stage with re-
spect to the head neuron. n=27, 31 and 20 for wt, e191 and ok613 mutant backgrounds. Significance 
calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001 
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Figure 3.3 :(A, B, C) Comparison of expression in wild type punc-25::gfp and in both unc-30 alleles 
(e191 and ok613)  in  L2 stage.Left is anterior, right is posterior, dorsal is up and ventral is down in all 
the preps. Scale is 50 µm.(D, E) Graphs represent the change in the intensity in the DDs and VDs at L2 
stage with respect to the head neuron. n=11, 9 and 16 for wt, e191 and ok613 mutant backgrounds. 
Significance calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001. 
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3.1.2 Neuropeptide: flp-11  

Bioinformatics analysis of the flp-11 promoter was performed using two approaches. First, po-

tential UNC-30 binding sites were identified in the promoter region of the pflp-11::gfp using the consen-

sus five base pair binding site sequence TAATC and its reverse complement GATTA described in Figure 

3.1. This revealed consensus UNC-30 binding sites at positions 982, 1382, 1628bp upstream in the pflp-

11::gfp reporter. Next, using MUSSA, promoter and first exon and intron regions for the flp-11 reporter 

in C. elegans, C. briggsae and C. remanei were aligned to reveal conserved regions. The transcription 

factors binding to these conserved regions were found using MatInspector or TESS. This analysis re-

vealed UNC-30 binding regions in three conserved areas (Figure 3.4, Figure 3.5). 

 

Figure 3.4 : Alligment of the flp-11 gene promoter and the first exon and introns to identify regions of 
conservation within C. elegans, C. briggsae and C. remanei using MUSSA. 2000 base-pairs from the +1 
TSS was used. Black bars indicate the DNA sequence, Red regions indicate the areas of conservation in 
the plus strand of the DNA.  Blue box indicates the location of the UNC-30 binding sites within these 
conserved areas using the consensus five base pair binding sites. Maroon represents TAATC while yellow 
represent the GATTA sites. 

 

Window = 30; threshold = 77 %

Promoter region of flp-11

C. elegans

C. briggsae
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MUSSA Analysis
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Figure 3.5 : Transcription factor binding site analysis on the flp-11 gene promoter using TESS and 
MatInspector.  

 

To confirm this, microscopic analysis was performed to examine the expression in of the 

pflp11::gfp reporter in the D motor neurons in the two unc-30 mutant alleles.  

3.1.2.1 Control: pflp-11::gfp 

In the L1 stage, wild type pflp-11::gfp animals, four DDs were observed in each of the twenty four ani-

mals. No DAs were observed (Figure 3.6 A).  

In the L2 stage, the expression of pflp-11::gfp is observed in the VDs in addition to the DDs. 

Nineteen pflp-11::gfp animals were observed. Just as in the L1 stage, the 4 DDs were seen in the body 

region of the animal. In addition, nine VDs were seen in each animal (Figure 3.7 A). DA3, 4, 5 was GFP 

positive in one animal whereas DA6 had GFP expression in two animals. In addition to DA6 an additional 

unidentified cell was seen in one animal in the VNC. 
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3.1.2.2 pflp-11::gfp; unc-30 (e191) 

In the unc-30 (e191) mutant background, zero to six DDs were seen in the VNC (Figure 3.6 B). 

Each of the thirty nine animals observed, showed either a complete or partial loss of expression in most 

DDs. Hence intensity measures were performed to determine whether the partial loss was significant. 

The expression of pflp-11::gfp in the DD motor neurons showed a significant decrease in each of the mo-

tor neurons except DD1 (Figure 3.6 D). 

But in the L2 stage, one to four DDs were observed in that region in pflp-11::gfp; unc-30 (e191). 

Twenty-one animals in the e191.were observed. Figure 3.7 B shows animals with two of the four DDs 

expressing pflp-11::gfp in e191. The expression was significantly reduced in most of the DDs in unc-30 

(e191) allele (Figure 3.7 D).  In addition to the DDs, zero to nine VDs were observed in the e191 back-

ground (Figure 3.7 B). The pattern of expression was variable, however, a significant decrease in GFP 

intensity of the VDs in e191 background was observed except the most posterior VD (Figure 3.7 E). In 

the e191 background, two nematodes showed additional unidentified cell bodies. DA4 was GFP positive 

in one animal and ectopic expression was observed in a mid body region in the VNC in the other animal. 

3.1.2.3 pflp-11::gfp; unc-30 (ok613) 

The role of a deletion mutant unc-30(ok613) in the pflp-11::gfp reporter was tested to under-

stand the variability of expression amongst the D mns. pflp-11::gfp in an ok613 background yielded simi-

lar results as in the e191 background. Each of the twenty three animals showed zero to five DDs in the 

VNC. The expression was significantly reduced in all DDs except DD1 (Figure 3.6 C, D). 

In the L2 stage, there was a loss of GFP in one to four DDs in pflp-11::gfp; ok613. Twenty animals 

in the unc-30 (ok613) mutant backgrounds were analyzed. Expression in the DDs significantly reduced 

except in DD4 (Figure 3.7 D). Figure 3.7 C shows an animal with two of the 4 DDs in ok613 background. 

One to nine VDs were seen in the ok613 background (Figure 3.7 C). The expression in the VDs in the unc-

30 (ok613) background was reduced, but the decrease was not significant. Few animals showed expres-
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sion in the DAs. DA3 and DA4 were expressing GFP in one animal each. DA7 was GFP positive in two an-

imals whereas DA5 and DA6 expressed GFP in 4 and 3 animals respectively. Along with DA5 and DA6, 

ectopic expression in one additional cell in the VNC was seen. 

 

Figure 3.6 : (A, B, C) Change of expression in wild type pflp-11::gfp in two unc-30 alleles (e191 and 
ok613)  in  L1 stage. Both worms are placed ventral up. Scale is 50 µm. (D) Graph represents the change 
in the intensity in the DDs at L1 stage with respect to the head neuron. n=24, 39 and 23 for wt, e191 and 
ok613 mutant backgrounds. Significance was calculated using the student’s t test where * p<0.05, ** 
p<0.005, *** p<0.001. 
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Figure 3.7 : (A, B, C) Comparison of expression in wild type pflp-11::gfp and in both unc-30 alleles (e191 
and ok613)  in the L2 stage. Left is anterior, and dorsal is up in all the preps. Scale is 50 µm. (D, E) Graphs 
represent the change in the intensity in the DDs and VDs at L2 stage with respect to the head neuron. 
n=19, 21 and 20 for wt, e191 and ok613 mutant backgrounds. Significance calculated using the student’s 
t test where * p<0.05, ** p<0.005, *** p<0.001. 
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3.1.3 Netrin receptor:  unc-5  

The bioinformatics analysis of the unc-5 promoter and the first exon-intron region showed three 

potential consensus UNC-30 binding sites 18, 505, 1782 bp upstream and two in the first intron at 372, 

485 bp.  Phylogenetic foot printing revealed UNC-30 transcription factor binding sites in the conserved 

regions of the promoter and the first exon and intron of the gene in C. elegans, C. briggsae and C. 

remanei (Figure 3.8, Figure 3.9) 

 

 

Figure 3.8 : Comparison of the unc-5 gene promoter and the first exon and introns to isolate regions of 
conservation within C. elegans, C. briggsae and C. remanei using MUSSA. 2000 base pairs from the +1 
TSS were used. Black bars indicate the DNA sequence, Red regions indicate the areas of conservation in 
the plus strand of the DNA while the blue region represents the alignment in the reverse complement 
strand. Blue box indicates the location of the UNC-30 binding sites within these conserved areas using 
the consensus five base pair binding sites. Maroon represents TAATC while yellow represent the GATTA 
sites. 
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A microscopic analysis was performed on the punc-5::gfp promoter to test for changes of punc-

5::gfp expression in the unc-30 mutants. 

3.1.3.1 Control: punc-5::gfp 

Seventeen punc-5::gfp animals were observed.  Each of the wild type animals showed gfp ex-

pression in the four DDs and also in six DAs and five DBs in the region between the retro-vesicular gan-

glia and the pre-anal ganglion (Figure 3.10 A).  

In the L2 stage, punc-5::gfp expression was observed in four animals. These animals could not be 

projected onto a single Z plane due to the high background fluorescence but the analysis was done by 

counting the cell bodies in each case. Two animals showed expression in four DDs and nine VDs. In addi-

tion to these thirteen cells, an additional cell was seen in each case. These cells could be AS7 and AS10 

Figure 3.9 : Transcription factor binding site analysis on the unc-5 promoter using TESS and 
MatInspector. 
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in either case based upon the position. The third animal expressed gfp in ten cells (DD2-3, DD5 and VD3-

VD6, VD9-11). Expression was not seen in the mid body region due to auto fluorescence.  The fourth 

animal was a younger animal and showed expression in all the VDs except VD4-5 which could not be 

observed because of the background and in DD2. The other DDs were also not seen. 

3.1.3.2 punc-5::gfp; unc-30(e191) 

In the L1 stage, in the e191 mutant, five out of eighteen animals showed a complete loss of ex-

pression in the DD mns in the VNC. The loss of expression in the other DDs was variable. Figure 3.10 B 

shows one animal with loss of expression in all DDs except DD2. The change in intensity was significant 

for each DD (Figure 3.10 D).  

In the L2 stage, punc-5::gfp in the  e191 background, the number of cell bodies as well as the in-

tensity of expression was seen to be significantly reduced. Out of the four animals analyzed, one showed 

complete loss of expression, another showed nine neurons presumably two DDs (DD2 and DD5) and 

seven VDs (VD2-4, VD6-9), the third animal had expression in each of the nine VDs and DD2 and DD4 

and an additional AS3 in the anterior. In the fourth animal, expression could be seen only in the region 

around and posterior to the gonadal primordium in the VD6-11 and in AS6, 8-11. 

3.1.3.3 punc-5::gfp; unc-30(ok613) 

In the ok613 allele, eight of the nine animals showed a complete loss of expression in DD2-5 

(Figure 3.10 C). Only one worm showed expression in the DD2 while losing expression in all other DDs. 

The intensities were significantly decreased in all of the DDs in the VNC in both the unc-30 alleles (Figure 

3.10D). There was no substantial change in the expression of the DAs and DBs as expected. 

In the L2 stage, in punc-5::gfp; unc-30 (ok613), more variable expression was observed. Only a 

few cells could be seen in each animal. Four animals showed the following expression pattern. The first 

showed expression only in the two posterior VDs, VD7 and VD8. The second animal showed expression 
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in DD3 and two VDs, VD6 and VD7. The third showed GFP expression in the posterior VD and AS pairs 

(VD 9-11 and AS 9-10). The expression in the ASs was brighter than the expression in the VDs. The last 

animal showed no expression in the VNC but expression was observed in the head.  

 

Figure 3.10: (A, B, C) Comparison of expression in wild type punc-5::gfp and in both unc-30 alleles (e191 
and ok613)  in  L1 stage. Left is anterior, right is posterior, dorsal is up and ventral is down in all the 
preps. Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 stage with re-
spect to the head neuron. n=17, 18 and 9 for wt, e191 and ok613 mutant backgrounds. Significance cal-
culated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001 
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3.1.4 Kinesin motor : unc-104 

Promoter and first exon-intron analysis on the unc-104 gene using bioinformatics, revealed four 

consensus UNC-30 binding sites 156, 172, 463, 1277 bp upstream from the +1 TSS (Figure 3.11). Addi-

tional analysis using the areas of conservation among C. elegans, C. briggsae and C. remanei (using 

MUSSA) did not yield an UNC-30 transcription factor binding sites (Figure 3.11 and Figure 3.12). Areas 

conserved within the first exon and introns were also considered as in the two other reporters.  

 

Figure 3.11 : Comparison of the unc-104 gene promoter and the first exon and introns to isolate regions 
of conservation within C. elegans, C. briggsae and C. remanei using MUSSA. 2000 base pairs from the +1 
TSS was used. Black bars indicate the DNA sequence; Red regions indicate the areas of conservation in 
the plus strand of the DNA while the blue region represents the alignment in the reverse complement 
strand. Black box indicates the location of the UNC-30 binding sites (TAATC) (in maroon) within these 
conserved areas using the consensus five base pair binding sites.  
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Figure 3.12 : Comparison of the unc-104 gene promoter and the first exon and introns to isolate regions 
of conservation within C. elegans, C. briggsae and C. remanei using MUSSA. 2000 base pairs from the +1 
TSS were used. 

 

Microscopic analysis was performed to analyze the effect of unc-30 mutants on the expression 

of punc-104::gfp reporter.  

3.1.4.1 Control: punc-104::gfp 

In the L1 stage, in the wild type animals, expression was seen in fifteen cells: four DDs, six DAs 

and five DBs in each of the twenty one animals (Figure 3.13 A).   

In the L2 stage, a more variable expression pattern was observed. Fourteen controls were ana-

lyzed.  In six control animals, one to three DDs were absent and up to 7 VDs were missing (Figure 3.14 

A). But in most animals cells corresponding to the positions of the ASs were observed. AS2 was on in 14 

%, AS3 was on 36%, AS4, AS 8 and AS 10 were on 21% and AS5 was on 36% of the time. 
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3.1.4.2  punc-104::gfp; unc-30 (e191) 

In L1 stage, punc-104::gfp; unc-30 (e191) mutant background, the DDs showed a reduction in 

the intensity of expression and the number of cells as compared to the wild type (Figure 3.13 B, D). 

Twenty worms were analyzed. DD2 lacked GFP expresssion 65% of the time whereas the other DDs 

failed to express GFP less than 25 % of the time. The expression in the cholinergic mns (DAs and DBs) 

was not affected.  

In the L2 stage, in the sixteen animals in the e191 background, zero to four DDs and zero to five 

VDs were missing in some preps. There was loss of intensity of expression in some of the D mns (Figure 

3.14 B, C, D, E). Additional cells: ASs were also observed as in the wild type. AS 2 and AS5 were seen in 

25%, AS4 and AS9 in 12.5%, AS8 in 62% and AS10 in 44% of preps observed.  In addition to the ASs, one 

or two additional cells were observed along with AS10 in three worms. 

3.1.4.3  punc-104::gfp; unc-30 (ok613) 

In the punc-104::gfp; ok613 strain nineteen animals were observed. Expression in each of the 

DDs for punc-5::gfp; ok613 was significantly reduced but completely undetectable in only 15 % of the 

animals (Figure 3.13 C). DD2, DD3 and DD5 showed a significant decrease in intensity (Figure 3.13 D). 

Expression in DD4 decreased but was not seen to be significant. The expression in the cholinergic mns 

(DAs and DBs) was not affected.  

In the ok613 mutant background, in the L2 stage, eight animals were observed. Most worms showed all D mns but in some 
showed all D mns but in some cases a couple of DDs and one to three VDs were missing (Figure 3.14 

Figure 3.14 C).  In addition to these one to five extra cells were identified as ASs.  AS3 and AS 5 

and AS8 were on 38% of the times, AS 4 in 50% of the worms and AS10 in six of the eight worms ana-

lyzed. The intensity measures of the worms showed that the expression of punc-104::gfp was reduced in 

some but not all of the D mns. Some even showed an increase in intensity (Figure 3.14 D, E). 
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Figure 3.13 :(A, B, C) Comparison of expression in wild type punc-104::gfp and in both unc-30 alleles 
(e191 and ok613)  in  L1 stage. Left is anterior, right is posterior, dorsal is up and ventral is down in all 
the preps. Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 stage with 
respect to the head neuron. n=21, 20 and 19 for wt, e191 and ok613 mutant backgrounds. Significance 
calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001. 
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Figure 3.14 :(A, B, C) Comparison of expression in wild type punc-104::gfp and in both unc-30 alleles 
(e191 and ok613)  in  L2 stage. Left is anterior and dorsal is up in all the preps. Scale is 50 µm. (D, E) 
Graph represents the intensity in the DDs at L2 stage with respect to the head neuron. n=14, 16 and 8 
for wt, e191 and ok613 mutant backgrounds. Significance calculated using the student’s t test where * 
p<0.05, ** p<0.005, *** p<0.001 
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This suggests that UNC-30 plays a lesser role in regulating punc-104::gfp reporter in the D mns 

than it does for the other two reporters.  Other co-factors may influence the regulation of this reporter 

to a greater degree. 

 

3.2 ALR-1 is necessary for the regulation of reporters in the cholinergic motor neurons 

Bioinformatics analysis using modENCODE revealed a common transcription factor, ALR-1, bind-

ing to the upstream promoter region of each reporter (Table 3.1). ALR-1 is expressed in 24 of the 26 

GABAergic cells (Melkman and Sengupta, 2005). ALR-1 regulates the expression of punc-30::gfp by bind-

ing to the promoter and also associates with some UNC-30 downstream targets, unc-25, unc-46 and unc-

47 (Vermeirssen et al., 2007, Niu et al., 2011). ALR-1 ensures the proper differentiation of the D mns by 

facilitating the regulation of unc-30 specific genes and downstream targets to certain specific classes of 

neuron thus decreasing variablility (Topalidou et al., 2011). Therefore, ALR-1 was tested for its role in 

the regulation of these three reporters.  
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Table 3.1 : modENCODE analysis of the promoters of the three gene reporters. 

unc-5 flp-11 unc-104 

EOR-1_L3  EOR-1_L3 

PHA-4_EMB_FEDL1_LEMB   

ALR-1_L2 ALR-1_L2 ALR-1_L2 

MEP-1_EMB  MEP-1_emb 

BLMP-1_L1   

HLH-1_EMB   

LIN-39_L3  LIN-39_L3 

MAB-5_L3  MAB-5_L3 

UNC-62_L1  UNC_62_L2_L3 

ZAG-1_L1  ZAG_1_L1_L2_L3 

EGL-5_L3  EGL_5_L3 

  CEH_30_lemb 

  CES_1_L1_L3_L4 

  GEI_11_L3 

  HLH_8_L3 

  NHR_6v2_L2 

  PES_1_L4 

  SKN_1_L1 

 

We tested the role of ALR-1 in the regulation of punc-5::gfp, punc-104::gfp and pflp-11::gfp. 
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3.2.1 unc-5 gene reporter 

3.2.1.1 Control: punc-5::gfp  

In the L1 stage, seventeen punc-5::gfp animals were observed.  Each of the wild type animals 

showed gfp expression in the four DDs and also in six DAs and five DBs. (Figure 3.15 A). 

Four punc-5::gfp worms were analyzed in L2 and older animals. Two animals showed expression 

in four DDs and nine VDs. In addition to these thirteen cells, an additional cell was seen in each case. 

These cells could be AS7 and AS10 in either case based upon the position. The third animal expressed 

gfp in ten cells (DD2-3, DD5 and VD3-VD6, VD9-11). Expression was not seen in the mid body region due 

to auto fluorescence.  The fourth animal was a younger animal and showed expression in all the VDs 

except VD4-5 which could not be observed because of the background and in DD2. The other DDs were 

also not seen. 

 

3.2.1.2  punc-5::gfp; alr-1 (oy42) 

In the alr-1 mutant background, the punc-5::gfp reporter, showed a loss of  expression in the 

DAs and DBs in the L1 stage and in the ASs in the L2 stage. In these animals the D mn expression re-

mained. This pattern was observed in each of the twenty three punc-5::gfp; alr-1 L1 animals observed 

(Figure 3.15 B).  

In the L2 stage, thirteen worms in the punc-5::gfp; alr-1 mutant backgrounds showed expression 

in the Dmns. No expression was seen in the AS mns. Figure 3.15 C shows the mn pattern observed in 

most of the punc-5::gfp; alr-1 worms. Images of the controls could not be obtained due to high back-

ground fluorescence. These images were analyzed the cell bodies identified.  Two punc-5::gfp; alr-1 an-

imals showed some variation in the pattern. One L2 worm showed eleven cell bodies. VD10 and 11 were 
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missing whereas in another adult worm, two additional cell bodies were seen. These were in the posi-

tion of the AS2 and 3. This can be due to variability reported in alr-1 mutants (Topalidou et al., 2011). 

 

Figure 3.15 : (A, B)Comparison of expression in wild type punc-5::gfp and in alr-1 (oy42)  in  L1 
stage.n=17and 23 for wt and alr-1 mutant backgrounds respectively.(C)Expression of punc-5::gfp in the 
alr-1 mutant background in the L2 stage.  Left is anterior, right is posterior, dorsal is up and ventral is 
down in all the preps. Scale is 50 µm. n=4 and 13 for wt and alr-1 mutant backgrounds respectively. 
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3.2.2 unc-104 gene reporter 

3.2.2.1 Control: punc-104::gfp  

In the L1 stage, in the wild type animals, expression was seen in fifteen cells: four DDs, six DAs 

and five DBs in each of the twenty one animals (Figure 3.16 A). 

In the L2 stage, a more variable expression pattern was observed. Fourteen controls were ana-

lyzed.  In six control animals, one to three DDs were absent and up to seven VDs were missing. But in 

most animals cells corresponding to the positions of the ASs were observed. AS2 was on in 14 %, AS3 

was on 36%, AS4, AS 8 and AS 10 were on 21% and AS5 was on 36% of the time (Figure 3.16 C).  

3.2.2.2 punc-104::gfp; alr-1 (oy42) 

In the alr-1 mutant background, the punc-104::gfp reporter, showed a loss of  expression in the 

DAs and DBs in the L1 stage and in the ASs in the L2 stage. In these animals the D mn expression re-

mained. This pattern was observed in each of the twenty four punc-104::gfp L1 animals observed (Figure 

3.16 B).  

Each of the twenty three worms in the L2 stage in punc-104::gfp, alr-1 mutant background 

showed the same expression as that of the control. One particular punc-104::gfp; alr-1worm shown in 

Figure 3.16 D was unusual as it showed a loss of expression in the D mns posterior to the gonadal 

primordium.  
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Figure 3.16 :(A, B) Comparison of expression in wild type punc-104::gfp and in alr-1 (oy42)  in  L1 stage. 
n=21 and 24 for wt and alr-1 mutant backgrounds respectively. (C, D)  Comparison of expression in wild 
type pflp-11::gfp and in alr-1 (oy42)  in  L2 stage.  n=14 and 23 for wt and alr-1 mutant backgrounds re-
spectively. Left is anterior, right is posterior, dorsal is up and ventral is down in all the preps. Scale is 50 
µm. 

 

 

3.2.3 flp-11 gene reporter 

3.2.3.1 Control: pflp-11::gfp  

In the L1 stage, wild type pflp-11::gfp animals, 6 DDs were observed in each of the twenty four 

animals. No DAs were observed (Figure 3.17A).  

In the L2 stage, the expression of pflp-11::gfp is observed in the VDs in addition to the DDs. 

Nineteen pflp-11::gfp animals were observed. Just as in the L1 stage, the 4 DDs were seen in the body 

region of the animal and in addition to the nine VDs (Figure 3.17 C). DA3, 4, 5 was GFP positive in one 
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animal whereas DA6 had GFP expression in two animals. In addition to DA6, an additional unidentified 

cell was seen in one animal in the VNC. 

3.2.3.2 pflp-11::gfp; alr-1 (oy42) 

No change in expression was observed in the pflp-11::gfp in the L1stage. Each of the eleven alr-1 

mutants showed six DDmns (Figure 3.17 B).  

In the L2 stage, each of the nine mutants showed thirteen cells representing the four DDs and 

the nine VDs between the retro-vesicular and the pre-anal ganglia. Figure 3.17 D shows one animal ex-

pressing pflp-11::gfp in four DDs and nine VDs. Three older animals showed an additional 1, 3 and 4 cells 

representing the DAs based upon their positions in the VNC. DA 2 was seen in one animal, DA3 and 4 

were seen in two and DA6 was seen in three older animals. This is likely due to the variability in alr-1 

mutant phenotype (Topalidou et al., 2011). 
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Figure 3.17 : (A, B) Comparison of expression in wild type pflp-11::gfp and in alr-1 (oy42)  in  L1 stage. 
n=24 and 11 for wt and alr-1 mutant backgrounds respectively. (C, D)  Comparison of expression in wild 
type pflp-11::gfp and in alr-1 (oy42)  in  L2 stage.  n=19 and 12 for wt and alr-1 mutant backgrounds re-
spectively. Left is anterior, right is posterior, dorsal is up and ventral is down in all the preps. Scale is 50 
µm. 

 

These results suggest that ALR-1 is necessary for the expression of punc-5::gfp and punc-

104::gfp in the cholinergic motor neurons, DAs, DBs and postembryonic AS mns, whereas ALR-1 was not 

necessary for the expression in the Dmns (pflp-11::gfp; punc-5::gfp, punc-104::gfp). 
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3.3 unc-30, alr-1 double mutants show loss of both GABAergic and cholinergic expression 

The bioinformatics analysis suggest that alr-1 and unc-30 act together in the regulation of the 

reporters in the D mns. To test this possibility, the expression of the reporters was analyzed in the unc-

30(e191); alr-1(oy42) double mutant backgrounds.   

 

3.3.1 pflp-11::gfp reporter 

3.3.1.1 Control pflp-11::gfp 

In the L1 stage, wild type pflp-11::gfp animals, 6 DDs were observed in each of the twenty four 

animals. No DAs were observed (Figure 3.18 A).  

In the L2 stage, the expression of pflp-11::gfp is observed in the VDs in addition to the DDs. 

Nineteen pflp-11::gfp animals were observed. Just as in the L1 stage, the 4 DDs were seen in the body 

region of the animal. In addition, nine VDs were also seen (Figure 3.19 A). DA3, 4, 5 was GFP positive in 

one animal whereas DA6 had GFP expression in two animals. In addition to DA6 an additional unidenti-

fied cell was seen in one animal in the VNC. 

3.3.1.2 pflp-11::gfp; unc-30 (e191) 

In the unc-30 (e191) mutant background, zero to six DDs were seen in the VNC in the L1 stage 

(Figure 3.18 B). Each of the thirty nine animals observed, showed either a complete or partial loss of ex-

pression in most DDs. Hence intensity measures were performed to determine whether the partial loss 

was significant. The expression of pflp-11::gfp in the DD motor neurons showed a significant decrease in 

each of the motor neurons except DD1 (Figure 3.18 D). 

But in the L2 stage, one to four DDs were observed in that region in pflp-11::gfp; unc-30 (e191). 

Twenty-one animals in the e191 were observed. Figure 3.19B shows animals with two of the four DDs 

expressing pflp-11::gfp in e191. The expression was significantly reduced in most of the DDs in unc-30 
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(e191) allele (Figure 3.19 D).  In addition to the DDs, zero to nine VDs were observed in the e191 back-

ground (Figure 3.19B). The pattern of expression was variable, however, a significant decrease in GFP 

intensity of the VDs in e191 background was observed except the most posterior VD (Figure 3.19 E). In 

the e191 background, two nematodes showed additional unidentified cell bodies. DA4 was GFP positive 

in one animal and ectopic expression was observed in a mid body region in the VNC in the other animal. 

3.3.1.3 pflp-11::gfp; unc-30 (e191); alr-1 (oy42) 

In the double mutant e191; alr-1, the expression of the pflp-11::gfp reporter was significantly 

reduced in the DD mns as was pflp-11::gfp in the absence of unc-30(e191) at the L1 stage (Figure 3.18 B, 

C). Fourteen out of the twenty-five worms showed a complete loss of expression in DD3- DD6, DD1-2 

were either intact or faint in some worms. In the remaining eleven worms, the DD mns showed variable 

but reduced expression. Figure 3.18 C shows one such worm showing complete loss of expression in 

DD3 and DD5 while a decrease in DD1-2, DD5 and DD6. The intensities showed a significant reduction in 

all DDs except DD1 suggesting that the expression in DD1 is controlled independently (Figure 3.18 D). 

At the L2 stage, the expression of DDs was variable but significantly reduced similar to the L1 

(Figure 3.19 D). Each of the sixteen worms showed a loss in either one or all the D mns. The expression 

in the newly born VDs was also variable. Figure 3.19 C shows one such worm that expresses pflp-11::gfp 

in only three VDs and two DDs in the VNC. The intensities in the VDs were also significantly reduced, as 

was described for the unc-30 (e191) allele (Figure 3.19 C, E). 
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Figure 3.18: (A, B, C) Comparison of expression in wild type pflp-11::gfp and in the absence of unc-30 
(e191) and in the absence of both unc-30 (e191) and alr-1 in L1 stage. All worms are placed ventral up. 
Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 stage with respect to 
the head neuron. n= 24, 40 and 25 for wt, e191 and e191, alr-1 mutant backgrounds. Significance calcu-
lated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001. 
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Figure 3.19 : (A, B, C) Comparison of expression in wild type pflp-11::gfp, unc-30 (e191) and double mu-
tants, unc-30 (e191); alr-1  in  L2 stage. Left is anterior, right is posterior, dorsal is up and ventral is down 
in all the preps. Scale is 50 µm. (D, E) Graphs represent the change in the intensity in the DDs and VDs at 
L2 stage with respect to the head neuron. n=19, 21 and 16 for wt, e191 and e191; alr-1 double mutant 
backgrounds. Significance calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001. 
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3.3.2 punc-5::gfp reporter 

3.3.2.1 Control punc-5::gfp 

In the L1 stage, Seventeen punc-5::gfp animals were observed.  Each of the wild type animals 

showed gfp expression in the four DDs and also in six DAs and five DBs (Figure 3.20 A).  

Four punc-5::gfp worms were analyzed in L2 and older animals. Two animals showed expression 

in four DDs and nine VDs. In addition to these thirteen cells, an additional cell was seen in each case. 

These cells could be AS7 and AS10 in either case based upon the position. The third animal expressed 

gfp in ten cells (DD2-3, DD5 and VD3-VD6, VD9-11). Expression was not seen in the mid body region due 

to auto fluorescence.  The fourth animal was a younger animal and showed expression in all the VDs 

except VD4-5 which could not be observed because of the background and in DD2. The other DDs were 

also not seen. 

 

3.3.2.2 punc-5::gfp; unc-30(e191) 

In the L1 stage, in the e191 mutant, five out of eighteen animals showed a complete loss of ex-

pression in the DD mns in the VNC. The loss of expression in the other DDs was variable. Figure 3.20B 

shows one animal with loss of expression in all DDs except DD2. The loss in intensity was found to be 

significant in each of the DDs (Figure 3.20 D).  

In the L2 stage, punc-5::gfp in the  e191 background, the number of cell bodies as well as the in-

tensity of expression was seen to be significantly reduced. Out of the four animals analyzed, one showed 

complete loss of expression, another showed nine neurons presumably two DDs (DD2 and DD5) and 

seven VDs (VD2-4, VD6-9), the third animal had expression in each of the nine VDs and DD2 and DD4 

and an additional AS3 in the anterior. In the fourth animal, expression could be seen only in the region 

around and posterior to the gonadal primordium in the VD6-11 and in AS6, 8-11. 
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3.3.2.3 punc-5::gfp; unc-30 (e191); alr-1 (oy42) 

The punc-5::gfp reporter showed a decrease in expression  in both the GABAergic and choliner-

gic mns in the L1 stage just as observed in the single mutant backgrounds (Figure 3.20 C). The decrease 

in expression in the DD mns ranged from partial to complete as shown in Figure 3.21 D. Twenty eight 

double mutant animals were observed. A reduction was seen in the intensities of the DD mns (Figure 

3.20 C, D) however the intensities were generally higher in the double mutants.  This result suggests that 

the presence of the ALR-1 amplifies the absence of e191 (Figure 3.20D). 

In the older stages punc-5::gfp expression was seen in the DDs and VDs in each of the fourteen  

preps in the double mutant. No expression was observed in the ASs suggesting that ALR-1 is necessary 

for expression in the AS mns (Figure 3.21).  
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Figure 3.20 : (A, B, C) Comparison of expression in wild type punc-5::gfp, unc-30 (e191) and  in double 
mutants unc-30 (e191); alr-1  in  L1 stage. Left is anterior, right is posterior, dorsal is up and ventral is 
down in all the preps. Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 
stage with respect to the head neuron. n=17, 18 and 28 for wt and e191, alr-1 double mutant back-
grounds. Significance calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001 
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3.3.3 punc-104::gfp reporter 

3.3.3.1 Control punc-104::gfp 

In the L1 stage, in the wild type animals, expression was seen in fifteen cells: four DDs, six DAs 

and five DBs in each of the twenty one animals (Figure 3.22 A).   

In the L2 stage, a more variable expression pattern was observed. Fourteen controls were ana-

lyzed.  In six control animals, one to three DDs were absent and up to 7 VDs were missing (Figure 3.23 

A). But in most animals cells corresponding to the positions of the ASs were observed. AS2 was on in 14 

%, AS3 was on 36%, AS4, AS 8 and AS 10 were on 21% and AS5 was on 36% of the time. 

3.3.3.2 punc-104::gfp; unc-30 (e191) 

In L1 stage, punc-104::gfp; unc-30 (e191) mutant background, the DDs showed a reduction in 

the intensity of expression and the number of cells as compared to the wild type. Twenty worms were 

analyzed. DD2 lacked GFP expresssion 65% of the time whereas the other DDs failed to express GFP less 

Figure 3.21 : Expression in punc-5::gfp double mutants unc-30 (e191); alr-1  in  L2 stage. Left is anteri-
or, right is posterior, dorsal is up and ventral is down. Scale is 50 µm. n= 14. 

s 
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than 25 % of the time (Figure 3.22 B, D). The expression in the cholinergic mns (DAs and DBs) was not 

affected.  

In the L2 stage, in the sixteen animals in the e191 background, zero to four DDs and zero to five 

VDs were missing in some preps. There was loss of intensity of expression in some of the D mns (Figure 

3.23 B, D, E). Additional cells: ASs were also observed as in the wild type. AS 2 and AS5 were seen in 

25%, AS4 and AS9 in 12.5%, AS8 in 62% and AS10 in 44% of preps observed.  In addition to the ASs, one 

or two additional cells were observed along with AS10 in three worms. 

3.3.3.3 punc-104::gfp; unc-30 (e191); alr-1 (oy42) 

The reporter punc-104::gfp in the double mutant background in the L1 stage too showed the 

loss of expression in the cholinergic mns and a loss of expression in most DDs as seen in the single mu-

tant backgrounds in each of the twenty five worms analyzed (Figure 3.22 C and D). Figure 3.22  C shows 

one such double mutant worm in which the expression is lost in DD2-6 and all the cholinergic mns. The 

decrease in intensity in each mn was found to be highly significant (Figure 3.22 D). 

In the L2 stage in the punc-104::gfp worms, the D mns as well as the AS mns expressed the re-

porter. But in the doubles, expression observed in some of D mns but was completely lost in the AS mns. 

Four out of the twelve animals showed a complete loss of expression in the D mns as well. The other 

eight showed partial loss (Figure 3.23 C). There was also a decrease in intensities in some of D mns, 

which was more significant than it was in e191 background (Figure 3.23 D, E).  
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Figure 3.22 : (A, B, C) Comparison of expression in wild type punc-104::gfp, unc-30 (e191) and in double 
mutants unc-30 (allele e191); alr-1  in  L1 stage. Left is anterior, right is posterior, dorsal is up and ventral 
is down in all the preps. Scale is 50 µm. (D) Graph represents the change in the intensity in the DDs at L1 
stage with respect to the head neuron. n=21, 20 and 25 for wt, e191 and e191, alr-1 double mutant 
backgrounds. Significance calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001 
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 Figure 3.23: (A, B, C) Comparison of expression in wild type punc-104::gfp, unc-30(e191) and in double 
mutants unc-30 (e191); alr-1  in  L2 stage. Left is anterior, right is posterior, dorsal is up and ventral is 
down in all the preps. Scale is 50 µm. (D, E) Graph represents the change in the intensity in the DDs at L2 
stage with respect to the head neuron. n=14, 16 and 12 for wt, e191 and e191, alr-1 double mutant 
backgrounds. Significance calculated using the student’s t test where * p<0.05, ** p<0.005, *** p<0.001 
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These results suggest that ALR-1 acts synergistically with UNC-30 to regulate the expression of 

punc-104::gfp in the D mns but not in the punc-5::gfp and pflp-11::gfp. 
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4     DISCUSSION 

The analysis of the role of a terminal selector UNC-30 in the regulation of genes expressed in 

multiple classes of neurons revealed that UNC-30 contributed to the activation in the D mns. However, 

the importance of the contribution of UNC-30 for expression in the D mns varied. Mutations in both al-

leles of unc-30, based upon the lesions, would be expected to make little if any functional protein. Nev-

ertheless in both mutants, pflp-11::gfp and punc-5::gfp reporters showed occasional expression in the D 

mns neurons, regulated by the terminal selector gene, unc-30.  pflp-11:: gfp, normally expressed in 

three of the eight mn classes showed dramatic decrease in intensity and the number of detectable D 

mns.  In punc-5::gfp, expressed in five of eight mn classes, a significant decrease in the intensity and 

number of D mns was noted as well.  

The effect of the mutated form of UNC-30 appeared to have the least impact on the expression 

of the pan-neuronal gene unc-104 where the comparisons showed subtle differences.  Interestingly, the 

expression of punc-104::gfp in the unc-30;alr-1 double mutant was decreased more than it was in a sin-

gle mutant of unc-30 suggesting that UNC-30 and ALR-1 may act together to regulate this gene reporter. 

Another possibility is that ALR-1 would regulate the expression of unc-30 in the DD mns. In the absence 

of alr-1, the expression of punc-30::gfp was variable. In some animals, all the D mns were positive for 

punc-30::gfp while in the others, the GFP expression was diminished (Topalidou et al., 2011).  ALR-1 has 

been implicated in the expression of chemosensory, mechanosensory and mns to play regulatory roles. 

 In the mechanosensory neurons, it appears to play an important role in the maintenance of the differ-

entiated state (Topalidou and Chalfie, 2011). Our result suggests that ALR-1 acts as a modulator of gene 

transcription enabling some genes to be greatly expressed whereas, suppressing levels of gene expres-

sion for other genes. ALR-1 thus decreases variability of expression by assisting the terminal selector 

UNC-30 to define characteristics to the D mns (Topalidou et al., 2011).  
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Our analysis with unc-25, flp-11 and unc-5 revealed that these genes are spatially regulated in 

the embryonic mns from the anterior to posterior of the animal in both L1 and L2 stages (more distinctly 

in the L1 than in L2). The DDs near the head are regulated by UNC-30 to a lesser degree than the poste-

rior DDs as seen by the decrease in intensity of GFP expression in the absence of unc-30 (both e191 and 

ok613) or the alr-1, unc-30 (e191) doubles, along the length of the animal.  

The spatial regulation of the embryonic mns can be attributed to either one or a combination of 

the three possibilities.  The first possibility being, differences in developmental origins among the DDs 

cause the DDs to be more strongly regulated in the posterior than the anterior of the animal by UNC-30. 

DDs originate from different l/r divisions of the founder cell AB.p .  The anterior DDs, DD1 and DD2, are 

distant cousins originating from the anterior division of symmetric l/r founder cell whereas DD 3-6 are 

from the posterior divisions of these symmetric divisions of posterior l/r AB.p cells. Another possibility 

could be the involvement of heterochronic genes in the regulation of these genes. Heterochronic genes 

are known to regulate temporal expression. One such heterochronic transcription factor, Hunckback 

like-1 (HBL-1), is responsible for spatial patterning during DD remodeling. In the L1 stage, the DD inner-

vate ventral muscle. As the animal molts, these synapses are eliminated from the ventral side and trans-

ported to the dorsal side. hbl-1 is expressed in the DDs but its expression is suppressed in the VDs by 

UNC-55. In an hbl-1 mutant background, newly translocated dorsal synapses form near the commissures 

first, and then proceeded towards the distal axon. This suggests that remodeling in the DDs occurs in a 

spatial pattern from proximal to distal (Thompson-Peer et al., 2012). Another heterochronic gene lin-14 

determines the timing of DD remodeling.  In the absence of lin-14, DD remodeling occurs early, initiating   

during embryogenesis instead of being initiated during late L1 (Hallam and Jin, 1998, Thompson-Peer et 

al., 2012). 

A third possibility would include the involvement of TCF/LEF1-like transcription factor POP-1 and 

its cofactor β-catenin /SYS-1(Phillips et al., 2007). POP-1 is expressed in higher levels in anterior nuclei 



58 

than the posterior nuclei in each cell division in the early embryo(Lin et al., 1998) while β-catenin /SYS-1 

is distributed in a mirror-image asymmetric pattern (Phillips et al., 2007). Thus each cell experiences a 

specific distribution of POP-1/SYS-1 regulatory signals in addition to defined transcription factors as it 

undergoes a/p divisions. The interations between these need further investigation. But changes in the 

activity of pop-1 at different stages of embryonic development and lineages have shown the ubiquitous 

involvement of the POP-1 system in embryonic neuronal development (Bertrand and Hobert, 2009). 

The postembryonic VD mns do not show such trends in the expression along the anterior-

posterior axis of the animal. Expression of UNC-30 is strongest in the early L1 and L2 stages, after which 

it starts to decrease (WS210). This may attribute to the near constant expression observed in the later 

stages.  

Expression in DDs for the pan neuronal gene, unc-104, did not follow the spatial trend in the L1 

stage. In fact, the intensities showed an opposite (increasing) trend in e191 allele or remained almost 

the same in the ok613 allele. In the L2, the intensity of expression in the DDs seemed to be showing a 

similar decreasing trend but to a lesser degree in both mutant backgrounds.  The expression in each VDs 

remained almost equal.  But in the double mutants of alr-1 and unc-30 (e191), the unc-104 gene intensi-

ties in both D mns showed similar trends like the other reporters in both L1 and L2 stages. This suggests 

that the regulation of genes occur not only in a class specific manner, but their expression is seen to be 

graded along the length of the animal.    

Transcription factors such as UNC-30 and ALR-1 and their cis regulatory elements are conserved 

across species. UNC-30 has vertebrate and invertebrate orthologues. Included in the verterbrates are 

Ptx1 (Lamonerie et al., 1996), RIEG/Ptx2/Brx1 (Semina et al., 1996, Gage and Camper, 1997, Kitamura et 

al., 1997), Pitx2 (Logan et al., 1998, Piedra et al., 1998, Yoshioka et al., 1998) and Crx (Chen et al., 1997, 

Furukawa et al., 1997) family of homeodomain proteins. Among the invertebrates is the bicod family of 

transcription factors. The studied transcription factor binds to the core DNA at a site TAATCC (Lamonerie 
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et al., 1996, Chen et al., 1997, Eastman et al., 1999). An orthologue of the transcription factor ALR-1, 

aristaless is expressed in Drosophila (Schneitz et al., 1993, Topalidou et al., 2011), Arx in mouse and hu-

mans (Bienvenu et al., 2002, Kitamura et al., 2002, Yoshihara et al., 2005, Topalidou et al., 2011).   

Mutations within functional cis elements interfere with gene regulation. Ge Shan altered the 

unc-30 binding site in pflp-13::gfp animals and the expression was abolished in each of the animal (Shan 

et al., 2005).  Expression of genes may be thought of a probabilistic function.  If so the terminal selector 

genes change the likelihood of activation of the selected targets.  The effect of such transcription factor 

cannot be considered as all or none function.   

A single transcription factor binds to a given cis-element. An exception to this rule are 

mechanosensory neurons in which heterodimers composed of MEC-3 and UNC-86 bind synergistically to 

control genes regulating touch reception (Xue et al., 1992, Duggan et al., 1998, Hobert, 2008).  In AIY 

neurons two terminal selector genes regulate differentiated gene expression: TTX-3 LIM homeodomain 

protein and the CEH-10 Paired-type homeodomain protein (Wenick and Hobert, 2004). Loss of either of 

the homeodomain proteins causes a loss of their identity but the pan neuronal genes are still expressed. 

Position of cell bodies and morphology are not affected (Hobert, 2008).  

Our analysis on the three reporters revealed a number of transcription factors apart from ALR-1 

that would possibly be involved in the regulation the three reporters in the D mns network. A consorti-

um of laboratories working under the NIH called model system encyclopedia of DNA (modENCODE) have 

performed chromatin immunoprecipitation experiments on the recognized transcription factors and 

deposited the data in a publicly accessible database.  This analysis revealed EOR-1, PHA-1, MEP-1, BLMP-

1, HLH-1, LIN-39, MAB-5, UNC-62, ZAG-1 and EGL-5 to be involved in the regulation of unc-5, EOR-1,  

MEP-1, LIN-39; MAB-5; UNC-62; ZAG-1; EGL-5; CEH-30; CES-1; GEI-11; HLH-8; NHR-62; PES-1 and SKN-1 

for unc-104 while flp-11 is regulated by ALR-1 alone. This analysis suggests that a complex of transcrip-

tion factors may be involved in gene regulation and increase the complexity.  
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In addition, ALR-1 regulates the expression of unc-5 and unc-104 genes and their reporters in 

the cholinergic mns. ALR-1 is expressed in the 24 of 26 GABAergic neurons (Melkman and Sengupta, 

2005) and has not been reported to be expressed in the cholinergic mns. This throws light on cell-cell 

interactions and their possibly roles in the regulation of genes in classes where they are not expressed.  

Within D mns, neuropeptides are expressed. These may serve as cell signaling molecules initiating the 

expression of genes within the adjacent cholinergic motor neurons. Further investigation needs to be 

done to support this idea.  

We can conclude that transcriptional regulatory pathways are surprisingly complex.  First, the 

MUSSA analysis showed a great deal of similarity among the promoters, regions of DNA that are neither 

transcribed nor translated. Within these regions we find a surprisingly large number and variety of con-

served cis-elements.  This offers, a potential to a variety of combinations of transcription factors in a 

variety of contexts.  The analysis of unc-5, flp-11 and unc-104 gene reporters, expressed in multiple clas-

ses of mns, revealed that all of the targeted promoters are regulated to varying degrees by the class 

specific transcription factor UNC-30. Moreover, the regulation of these genes is spatially regulated in the 

embryonic mns but not in the post embryonic mns. Future studies could be performed on terminal se-

lector genes such as mec-3 and unc-86, terminal selector genes for the mechanosensory neurons 

(Duggan et al., 1998, Zhang et al., 2002), unc-3, the terminal selector gene for the cholinergic mn classes, 

DA and DB (Von Stetina et al., 2006). As well as the chemosensory terminal selector gene, che-1(Uchida 

et al., 2003).   
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