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SEMI-EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR THE ROC

CURVE WITH MISSING DATA

by

XIAOXIA LIU

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

The receiver operating characteristic (ROC) curve is one of the most commonly used

methods to compare the diagnostic performances of two or more laboratory or di-

agnostic tests. In this thesis, we propose semi-empirical likelihood based confidence

intervals for ROC curves of two populations, where one population is parametric while

the other one is non-parametric and both populations have missing data. After im-

puting missing values, we derive the semi-empirical likelihood ratio statistic and the

corresponding likelihood equations. It has been shown that the log-semi-empirical

likelihood ratio statistic is asymptotically chi-square distributed. The estimating

equations are solved simultaneously to obtain the estimated lower and upper bounds

of semi-empirical likelihood confidence intervals. Simulation studies are conducted to

evaluate the finite sample performance of the proposed empirical likelihood confidence

intervals with various sample sizes and different missing rates.

INDEX WORDS: Confidence interval, Empirical likelihood, Estimating equation,
Missing data, ROC curve
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Chapter 1

INTRODUCTION

1.1 ROC Curve

In medical researches, the receiver operating characteristic (ROC) curve analysis

has been extensively used in the evaluation of diagnostic tests and is currently the

best-developed statistical tool for describing the performance of such test. ROC

curves provide a comprehensive and visually attractive way to summarize the accuracy

of predictions. Generally speaking, ROC curve is a graphical plot of the sensitivity, or

true positives, versus (1− specificity), or false positives. It has been in use for years,

which was first developed during World War II for signal detection. Its potential for

medical diagnostic testing was recognized as early as 1960, although it was in the

early 1980s that it became popular, especially in radiology (Pepe, 2003). Nowadays,

ROC curves enjoy broader applications in medicine (Shapiro, 1999).

Define a binary test from the continuous test result T as positive if T ≥ c,

negative if T < c using a threshold c. Let D denote the disease status with

D =


1, if diseased,

0, if non-diseased.

Define the corresponding true and false positive fractions at c to be TPF(c) and
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Figure 1.1. An example of ROC curve.

FPF(c), respectively, where TPF(c) = Pr(T ≥ c | D = 1), FPF(c) = Pr(T ≥ c |

D = 0). The ROC curve is the entire set of possible true and false positive fractions

attained by dichotomizing T with different thresholds (Pepe, 2003). That is, the ROC

curve is

ROC(·) = { (FPF(c),TPF(c)), c ∈ (−∞,∞) }.

As seen, when c increases, both FPF(c) and TPF(c) decrease. For extreme case,

when c = ∞, we can get limc→∞TPF(c) = 0 and limc→∞FPF(c) = 0. On the other

hand, if c = −∞, we have limc→−∞TPF(c) = 1 and limc→−∞FPF(c) = 1. Thus, the

ROC curve is actually a monotone increasing function in the positive quadrant. See

Figure 1.1 for an illustration.

Now, we discuss an alternative way to represent ROC curve. When considering
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the results of a particular test in two populations, one population with disease, the

other population without disease (well population), we will rarely observe a perfect

separation between the two groups. In fact, the distributions of the test results will

overlap, as shown later in Figures 4.1 and 4.2. For every possible cut-off value or cri-

terion value selected to discriminate between the two populations, there will be some

cases with the disease correctly classified as positive (TPF = True Positive fraction),

but some cases with the disease will be classified negative (FNF = False Negative

fraction). It is known that if we decrease the false positives, the true positives also

decrease. If the threshold is very high, then there will be almost no false positives,

but we will not really identify many true positives either. For a continuous-scale

diagnostic test, let X be the test results from diseased subjects, and let Y be the test

results from non-diseased subjects. At a given cutoff point or threshold c, the sensi-

tivity and specificity are defined as Se = Pr(X ≥ c) and Sp = Pr(Y < c) respectively.

If F (·) is the distribution function of X and G(·) is the distribution function of Y ,

the sensitivity and specificity can then be written as Se = 1 − F (c) and Sp = G(c).

Then the ROC curve is actually a plot of 1−F (c) versus 1−G(c), for −∞ < c <∞.

At a fixed level q = (1− specificity), the ROC curve can be represented by

∆q = 1− F{G−1(1− q)}, for 0 < q < 1, (1.1)

where G−1 is the inverse function of G, i.e., G−1(q) = inf{c : G(c) ≥ q}.

The ROC curves have been studied for decades. Varieties of approaches regarding

estimation of ROC curve have been developed, both parametric and non-parametric.

Tosteson and Begg (1988) as well as Goddard and Hinberg (1990) propose ways to

model F and G parametrically. Zweig and Campbell (1993) later on provide an ex-

tensive review of parametric methods for the ROC curve. The parametric methods
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use standard statistical approaches such as maximum likelihood to make inference.

To avoid the misspecification problem, non-parametric methods have also been devel-

oped to estimate the ROC curve. Refer to Gastwirth and Wang (1988), Hollander and

Korwar (1982) and Li, Tiwari and Wells (1996) for examples of comparing two un-

known continuous distributions based on independent samples. Especially, for small

or moderate sample sizes, the normal approximation may not be applicable because

the covariance of the proposed estimator is hard to get or complicated to implement

(Liang and Zhou, 2008). To avoid these deficiencies, the empirical likelihood (EL)

based method can be used for inference of ∆q as introduced in the above paragraph.

1.2 Empirical Likelihood

Empirical Likelihood is a nonparametric way of inference based on a data-driven

likelihood ratio function. The inference made by EL method does not require the

data come from a known family of distributions. Empirical likelihood can be thought

of as a bootstrap that does not resample, and as a likelihood without parametric

assumptions (Owen, 2001). The original idea of empirical likelihood can date back to

Hartley and Rao (1968) in sample survey context and to the nonparametric likelihood

ratio inferences for the survival function as described in Thomas and Grunkemeier

(1975). Empirical likelihood has been developed by many researchers, and is still

undergoing active development. Owen (1988, 1990, 2001) has made systematic studies

of the empirical likelihood approach in complete data settings. Hall and La Scala

(1990) and DiCiccio et al. (1991) develop the empirical likelihood regions. Qin (1994,

1999) also contribute systematically to the empirical likelihood ratio principle. Qin

and Lawless (1994) propose an empirical likelihood for parameter defined by general

estimating equations and established the Wilks theorem for the empirical likelihood
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ratio.

The empirical likelihood approach has many advantages over competitors. The

most appealing features include improvement of the confidence region, an increase of

accuracy of coverage because of using auxiliary information (Owen, 2001) and easy

implementation. The empirical likelihood combines the reliability of the nonparamet-

ric methods with the flexibility and effectiveness of the likelihood approach.

We first outline empirical likelihood and related theorem as discussed by Owen

(1988, 1990, 2001).

For a random variable X ∈ R, the cumulative distribution function (CDF) is

defined as the function F (x) = Pr(X 6 x), for −∞ < x < ∞. We use F (x−) to

represent Pr(X < x), so that Pr(X = x) = F (x)− F (x−). Let I(·) be the indicator

function, the empirical cumulative distribution function (ECDF) of X1, ..., Xn is

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), for −∞ < x <∞.

It is known that the parametric likelihood function for a set of n independent

observations X1, ..., Xn ∼ f(x) is

`(X) =
n∏
i=1

f(Xi).

Refer to the theorem in Owen (2001), let X1, ..., Xn ∈ R be independent random

variables with a common CDF F0, and let Fn be their ECDF and F be any CDF, `(F )

is the nonparametric likelihood of the CDF F. If F 6= Fn, then `(F ) < `(Fn), which

means the ECDF is the nonparametric maximum likelihood estimate (NPMLE) of F.

The empirical likelihood function of the CDF F is
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`(F ) =
n∏
i=1

(F (Xi)− F (Xi−)) =
∏

Pi

In parametric inference, Wilks’s theorem proves that −2 log(L(η0)/L(η̂)) tends

to a chi-squared distribution as n → ∞, which allows us to decide how small L(η)

must be in order to for η to get rejected. The degree of freedom in the chi-squared

distribution usually takes the value of the dimension of the set of η. If we want to

get a confidence region for θ we take the image of a confidence region for η, which is

{θ(η)|L(η) > cL(
_
η)},

where the threshold c is chosen according to Wilks’s theorem, with degree of freedom

equals the dimension of the set of θ values.

Similarly, we may also use ratios of the nonparametric likelihood for hypothesis

test and confidence intervals. For a distribution F , we can define a likelihood ratio

R(F ) =
`(F )

`(Fn)
,

through the nonparametric likelihood `(F ) defined above. When there are no ties in

the data, the likelihood ratio is

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi.

When there are some ties, the likelihood ratio is

R(F ) =
k∏
j=1

(
pj
p̂j

)nj
=

k∏
j=1

(
npj
nj

)nj
,

where k is the number of distinct values in the data set. Suppose we are interested
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in a parameter θ = T (F ) for some function T of distributions. Define the profile

likelihood ratio function as

R(θ) = sup{R(F ) | T (F ) = θ, F ∈ F}.

For some threshold value r0, the empirical likelihood confidence regions are of

the form

{θ | R(θ) ≥ r0}.

Owen (1988) shows the analogue of Wilks theorem for convergence of the empir-

ical likelihood ratio for the population mean. Let X1, ..., Xn be independent random

variables with non-degenerate distribution function F0 with
∫
|x|3dF0 <∞. For pos-

itive c < 1, let

Fc,n = {F | R(F ) ≥ c, F � Fn},

and define XU,n = sup
∫
xdF and XL,n = inf

∫
xdF with both extreme take over

F ∈ Fc,n. Then as n→∞,

Pr{XL,n 6 E(X) 6 XU,n} → Pr(χ2
(1) 6 −2 log c).

Owen (1990,2001) proves a remarkable result similar to Wilks theorem,which is

known as the Empirical Likelihood Theorem(ELT). Let X1, ..., Xn be independent

random variables with common distribution F0, which has mean µ0 = E(Xi) and

variance 0 < V ar(Xi) <∞.

−2 log(R(µ0))→ χ2
(1)
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as n→∞, where the profile empirical likelihood ratio function for the mean is

R(µ0) = max

{
n∏
i=1

nwi|
n∑
i=1

wixi = µ0, wi > 0,
n∑
i=1

wi = 1

}
.

The resulting empirical likelihood confidence region of the mean with the form

{µ|R(µ) > r0} =

{
n∑
i=1

wiXi|
n∏
i=1

nwi > r0, wi > 0,
n∑
i=1

wi = 1

}
.

The fact that empirical likelihood ratio has a limiting chi-squared distribution,

leading to tests and confidence intervals for a variety of statistical problems. For

example, we may notice applications in linear models (Owen, 2001; Chen, 1993, 1994),

generalized linear models (Kolaczyk 1994) and general estimating equation (Qin and

Lawless (1994)). Chen and Hall (1993) introduced smoothed empirical likelihood

based confidence intervals for quantiles on one population. In the next chapter, we

are going to review the literatures using empirical likelihood ratio statistic to make

inference for ROC curves.

1.3 Missing Data and Hot Deck Imputation

When making statistical inference, it is usually assumed that all responses in

the sample are available. However, this may be violated in many practical situations.

The responses may be missing for various reasons, such as subject’s refusal to answer

an item, loss of information caused by uncontrollable factors, failure to collect correct

information and so on. In fact, missing data are very common in opinion polls,

marketing surveys, questionnaires, socioeconomic investigations, medical researches

and other scientific studies (Wang and Rao (2002)). In statistics, missing values

occur when no data value is stored for the variable in the current observation. Since
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missing values can badly distort the findings of research, when it occurs, the usual

inferential procedures for complete data sets cannot be applied directly. It is critical

to handel missing data properly. There are several useful distinctions we can make for

the types of missing data. If the data are Missing Completely At Random (MCAR),

then missing values cannot be predicted any better with the information in the data

matrix, observed or not. In another words, MCAR happens when the probability

that an observation Xi is missing is unrelated to the value of Xi or to the value of

any other variables. Often, data are not missing completely at random, they may be

classified as Missing At Random (MAR), if the probability that a cell is missing may

depend on the observed data, but after controlling for observed data, that probability

must be independent of unobserved data. For example, a group of people were asked

for their vote choice, but there are some missing values in this variable. At the same

time, there is another variable gender that was recorded. The process of missing in

vote choice is missing completely at random if, say, an individual’s decision whether

to answer the question is based on flipping a coin. On the other hand, the process

of missing in vote choice is missing at random if, say, female people are more likely

to refuse to answer the vote choice question than the male. If data are not missing

at random or completely at random then they are classed as Missing Not at Random

(MNAR).

In statistical analysis, we may define the complete data as Y=(yij) and the

missing-data indicator matrix M=(Mij). The underlying missing data mechanism is

characterized by the conditional distribution of M given Y , which is equivalent to

f(M | Y, φ), where φ denotes unknown parameters. If the data is MCAR, we have

f(M | Y, φ) = f(M | φ) for all Y, φ.
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Let Yobs denote the observed values of Y , and Ymis be the missing components. Then

MAR can be expressed by:

f(M | Y, φ) = f(M | Yobs, φ) for all Ymis, φ.

There are a number of ways or treatments dealing with missing data. Little and

Rubin (2002) summarized and grouped the current available methods into four cate-

gories, which are not mutually exclusive. The main methods proposed are procedures

based on completely recorded units, weighting procedure, imputation-based proce-

dure, and model-based procedure. For the imputation-based procedure, the missing

values are filled in and the resultant complete data are then analyzed using standard

statistical methods as if they were true observations. One commonly used imputation

procedures is hot deck imputation, where recorded units in the sample are used to

substitute values. The hot deck literally refers to the deck of matching computer

cards for the donors available for a nonrespondents (Little and Rubin, 2002). It goes

back over 50 years and was used quite successfully by the Census Bureau, survey and

others. With this specific imputation method, we replace missing values by values

from similar responding units in the sample.

Current available methods in analyzing ROC curves are limited to complete data

regardless of parametric or non-parametric settings. The empirical likelihood method

needs modifications when dealing with data with missing or imputed values. We want

to extend the previous study and concern the situation that one model is parametric

and another one is non-parametric, both with missing data in them. This leads to a

semi-parametric two-sample model. In this thesis, we are interested in constructing

the confidence intervals for the ROC curves, or ∆q with missing data under this

specific context by using empirical likelihood ratio methods.
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1.4 Structure

The structure of the remainder of thesis is as follows. Chapter 2 presents the

literature review of empirical and semi-empirical likelihood methods with applica-

tions to ROC curves. Chapter 3 shows inference procedure. We introduce the hot

deck imputation method first. Then the smoothed empirical likelihood is generated

for the ROC curve. Also, the semi-empirical likelihood based confidence interval is

constructed and the asymptotic results are established. The semi-empirical likeli-

hood ratio statistic and the corresponding likelihood equations are developed in this

chapter. In Chapter 4, simulation studies are conducted to evaluate the finite sample

performance of the proposed method. Finally, Chapter 5 gives a summary and dis-

cussion as well as the description for future studies. All technical details and proofs

are included in the Appendix A. R code for the simulation studies is attached in

Appendix B.
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Chapter 2

LITERATURE REVIEW

2.1 Empirical Likelihood Ratio Confidence Interval for the ROC Curve

The empirical likelihood principle has been widely used in statistical literature.

In this chapter, we look back to the previous work using empirical likelihood smooth-

ing strategy to obtain a confidence interval for the ROC curve ∆q. Development

of confidence intervals of an ROC curve has received much attention because it is

more important than point estimates and more useful for practitioners in making

diagnostic decisions (Su, Qin and Liang, 2009). The first use of empirical likelihood

ratio function to get confidence intervals appears to be Thomas and Grunkemeier

(1975). They show that empirical likelihood ratio confidence intervals for a survival

probability based on the χ2
(1) distribution have asymptotically correct coverage levels.

Later on, the empirical likelihood methods for constructing confidence regions for the

mean parameter of the population were developed systematically by Owen (1988)

and Owen (1990). In general, we can see it as a nonparametric or semi-parametric

version of Wilks’ Theorem and a multivariate generalization of the work by Owen

(1988). There are two advantages of this empirical likelihood formulation. One is

that the information contained in the zero observations is fully utilized. The other

is that the proposed confidence intervals are more reflective to the likely situation

that the non-zero value distribution is skewed (Chen and Qin, 2003). Comparing to
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normal approximation method and bootstrap method, EL method can improve the

confidence region, and increase the accuracy of the coverage (Hall and La Scala, 1990).

Hsieh and Turnbull (1996) estimate the ROC curve empirically or non-parametrically.

They show that the empirical ROC curve estimator shares the same good asymptotic

properties with standard maximum likelihood estimators. To further improve the

coverage of the empirical likelihood confidence interval, Chen and Qin (2003) pro-

posed an empirical Bartlett correction to the empirical likelihood confidence intervals

based on the bootstrap. Recently, much attention has been paid to semi-parametric

inference. Li, Tiwari and Wells (1999) show a semi-parametric way to estimate the

ROC curves. They study two sample inference through the quantile comparison func-

tion G{F−1(p)} assuming that G is known and F is unknown. Zhou, McClish and

Obuchowski (2002) give a comprehensive survey of the estimation methods for ROC

curves which gives us a summary of the currently popular methods. Also, smoothing

strategies or techniques are developed to correct the discontinuity of the ROC curves.

Chen and Hall (1993) first of all introduced smoothed empirical likelihood-based con-

fidence intervals for quantiles on one population. Zou, Hall and Shapiro (1997), Lloyd

(1998) and Ren, Zhou and Liang (2004) proposed various smoothed estimators for

ROC curves among others. They construct a smooth estimator of R(t) by considering

R̃(t) = 1− F̃1n1{F̃−1
2n2

(1− t)}, where the F̃ini are smooth versions of Fini , for example,

kernel distribution estimators. Zhou and Jing (2003) developed smoothed empirical

likelihood confidence intervals for the difference of quantiles. Claeskens et al. (2003)

proposed a smoothed empirical likelihood method for confidence intervals of ROC

curves. Two concerns with their approach are that bandwidths have to be selected

and the computation of their approach may be very expensive which may not be

feasible in practice. The principle of our smoothed empirical likelihood is similar to

that of Chen and Hall (1993) and Claeskens et al. (2003) in spirit.
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Current available methods in analyzing ROC curves are limited to complete data

regardless of parametric or non-parametric settings. The empirical likelihood method

needs modifications when dealing with data with missing or imputed values. Wang

and Rao (2002) employ the empirical likelihood method to construct confidence in-

tervals for the mean of the dependent variable in a nonparametric regression model

with missing data. Zhou and Liang (2005) extend the study to semi-parametric in-

ference for ROC curves with censoring. To remedy the deficiency of discontinuity of

the ROC curves, Liang and Zhou (2008) further propose a smoothed semiparametric

likelihood-based confidence intervals approach for ROC curves when the observations

are censored. They present combining smoothing technique and the approaches devel-

oped by Zhou and Liang (2005) to derive an appropriate estimating equation because

the naive estimating function is non-differentiable and the corresponding estimating

equation is inconsistent. Qin and Zhang (2009) investigate the semi-empirical likeli-

hood confidence intervals for the quantiles differences of two population with missing

data.

2.2 Contributions

The procedure in our context is different from that for usual situations. In this

thesis, we want to extend the previous studies and concern the situation that when one

model is parametric while the other one is non-parametric, both with missing data in

them. As a matter of fact, this is a very common case in medical research or related

fields. Say, when comparing a new treatment with control treatment, we tend to

have more if not enough information about the well developed treatment (i.e. control

treatment), while the new treatment is less known. This leads to a semi-parametric

two-sample model, which can reflect the difference of two samples of missing data. Let
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X and Y be the responses of two samples, for example, the diseased and non-diseased

subjects, and we assume F (.) and G(.) are the distribution functions of X and Y

respectively. Furthermore, we have the assumption that the population distribution

function F is non-parametric while G is parametric, and both X and Y with missing

data in them. In this thesis, we are interested in constructing the confidence intervals

for the ROC curves, or ∆q with missing data under this specific context by using

empirical likelihood ratio methods to avoid estimating the covariance matrix and using

normal approximation (Su et al., 2009). We are interested in establishing asymptotic

distribution of the resulting statistics and deriving the empirical likelihood-based

confidence intervals of the parameters of interest under mild assumptions. We also

prove that the resulting log likelihood ratio is still asymptotically scaled chi-square

distributed under such conditions.
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Chapter 3

INFERENCE PROCEDURE

3.1 Missing Data Imputation

Consider the following simple random samples of incomplete data associated with

populations (x, δx) and (y, δy):

(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n,

where missing data indictor

δxi =


0, if xi is missing,

1, otherwise.

δyj =


0, if yj is missing,

1, otherwise.

Throughout this thesis we assume MCAR, i.e. P (δx = 1|x) = P1(constant)

and P (δy = 1|y) = P2 (constant). Furthermore, we have the assumption that (x,δx)

and (y, δy) are independent. Let rx =
∑m

i=1 δxi, ry =
∑n

j=1 δyj, mx = m − rx and

my = n− ry. The respondents with respect to x and y can be written as srx and sry,

respectively, while the non-respondents are denoted as smx and smy corresponding to
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x and y respectively. The means of the respondents units with respect to x and y are

expressed as

x̄r =
1

rx

∑
i∈srx

xi,

ȳr =
1

ry

∑
i∈sry

yi.

In this thesis, we choose random hot deck imputation method to impute the

missing values. Let x∗i and y∗j denote the imputed value for the missing data with re-

spect to x and y, respectively. For the sample X, which comes from a non-parametric

population, we impute the missing values by selecting simple random samples from

the observed ones. We select a simple random sample of size mx with replacement

from srx and then use the associated x values as donors, that is, x∗i = xj for some

j ∈ srx. For the sample Y , which comes from a parametric population, we first get

Maximum Likelihood Estimator (MLE) of population parameter, then select simple

random samples from the population with this estimated population parameter. Let

θ̂ denote MLE of θ from the sample {yj, j ∈ sry}. Then we select a simple ran-

dom sample of size my with replacement from the population Gθ̂(·). Following this

procedure, we obtain y∗j . As shown, the ‘complete’ data set after imputation is:

xI,i = δxixi + (1− δxi)x∗i , yI,j = δyjyj + (1− δyj)y∗j ,

where i = 1, ...,m, j = 1, ..., n.

3.2 Smoothed Semi-empirical Likelihood

In this section, we develop a semi-empirical likelihood-based confidence interval

for the ROC Curve ∆q by using kernel smoothing technique (Chen and Hall, 1993),
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where ∆q = 1− F{G−1(1− q)} (0 < q < 1) as defined in equation (1.1).

Given the samples {(xI,i, δxi), i = 1, ...,m} and {(yI,j, δyj), j = 1, ..., n}, the cor-

responding semi-likelihood function can be written as

m∏
i=1

pi

n∏
j=1

gθ(yI,j) =
m∏
i=1

pi

n∏
j=1

{gδyjθ (yj)g
1−δyj
θ̂

(yI,j)}, (3.1)

where
m∑
i=1

pi = 1, pi > 0, i = 1, ...,m and θ ∈ Θ. (3.2)

To introduce the smoothed semi-empirical likelihood ratio statistic, we first define

H(t) =
∫ t/h
−∞K(u)du, where K(u) is kernel function satisfying some conditions stated

later in asymptotic studies, and h = hn > 0 is a sequence of bandwidths with hn → 0

and nhn → 0 as n→∞. We write

ω(xI,i, θ,∆q) = H{Gθ
−1(1− q)− xI,i} − (1−∆q).

Since the function (3.1) attains its maximum value over {pi, θ} satisfying (3.2)

when pi = m−1 (i = 1, ...,m) and θ = θ̂, it follows from Chen and Hall (1993), Qin

(1994) and Qin (1997) that the semi-empirical likelihood ratio statistic can be defined

as

R(∆q, θ) = sup
p1,...,pm,θ

∏m
i=1 pi

∏n
j=1 gθ(yI,j)

m−m
∏m

i=1 gθ̂(yI,j)

= sup
p1,...,pm,θ

m∏
i=1

mpi

n∏
j=1

g
δyj
θ (yj)

[
m∏
i=1

g
δyj

θ̂
(yj)

]−1

,
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where p1, ..., pm are subject to restrictions

m∑
i=1

pi = 1,
m∑
i=1

piω(xI,i, θ,∆q) = 0, pi > 0, i = 1, ...,m (3.3)

Following Qin (1994) and Qin (1997), we write

R(∆q, θ) = sup
θ

 sup
p1,...,pm

m∏
i=1

mpi

n∏
j=1

g
δyj
θ (yj)

[
m∏
i=1

g
δyj

θ̂
(yj)

]−1


and consider the following maximization problem at fixed θ,

H(∆q, θ) = max
p1,...,pm

{
m∑
i=1

logmpi +
n∑
j=1

log g
δyj
θ (yj)

∣∣∣∣ restrictions (3.3)

}
. (3.4)

By the method of Langrange multipliers, the maximization problem of (3.4) can be

formulated as

H =
m∑
i=1

logmpi +
n∑
j=1

log g
δyj
θ (yj) + γ

(
1−

m∑
i=1

pi

)
−mλ(θ)

m∑
i=1

piω(xI,i, θ,∆q).

Then,

∂H

∂pi
= p−1

i − γ −mλ(θ)ω(xI,i, θ,∆q) = 0

⇒ pi =
1

γ +mλ(θ)ω(xI,i, θ,∆q)
;

m∑
i=1

(
pi
∂H

∂pi

)
= m− γ

m∑
i=1

pi −mλ(θ)
m∑
i=1

piω(xI,i, θ,∆q) = 0

⇒ γ = m.



20

Thus,

pi =
1

m{1 + λ(θ)ω(xI,i, θ,∆q)}
,

and λ(θ) is determined by the following equation,

1

m

m∑
i=1

ω(xI,i, θ,∆q)

1 + λ(θ)ω(xI,i, θ,∆q)
= 0, (3.5)

and

H(∆q, θ) = −
m∑
i=1

log{1 + λ(θ)ω(xI,i, θ,∆q)}+
n∑
j=1

log g
δyj
θ (yj).

Let ∂H(∆q, θ)/∂θ = 0, we can obtain the semi-empirical likelihood equation as fol-

lows,

λ(θ)
m∑
i=1

h−1K[{G−1
θ (1− q)− xI,i}/h]

1 + λ(θ)ω(xI,i, θ,∆)
α(θ) =

n∑
j=1

δyj
∂ log gθ(yj)

∂θ
, (3.6)

where

α(θ) = − 1

gθ(Gθ
−1(1− q))

∫ Gθ
−1(1−q)

−∞

∂gθ(t)

∂θ
dt.

3.3 Asymptotic Studies

3.3.1 Assumptions

Let θ0 denote the true value of θ. We make the following assumptions (i) to (vi)

on the distribution of Gθ(y). Meanwhile, we make some additional assumptions.

(i) θ0 ∈ Θ and Θ is an open interval.

(ii) The distribution ofGθ(y) has a common support so that the setA = y : gθ(y) > 0

is independent of θ.

(iii) For every y ∈ A, the density function gθ(y) is three times differentiable with

respect to θ.
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(iv) The integral
∫
gθ(y)dy can be differentiated twice under the integral sign. For

any θ ∈ Θ, gθ(G
−1
θ (q)) 6= 0, α

′′
(θ) exists and is continuous in a neighborhood

of θ0, and α(θ0) 6= 0.

(v) The Fisher information matrix I(θ) with the entries I(θ) = Eθ{∂ log gθ(y)/∂θ}2 =

−Eθ {∂2 log gθ(y)/∂θ2} which is positive definite, 0 < I(θ) <∞.

(vi) |(∂3/∂θ3) log gθ(y)| < M(y), for all y ∈ A, θ0− c < θ < θ0 + c (for some c), with

Eθ0{M(y)} <∞.

(vii) There exists a constant t0 ≥ 2 such that f t0−1(·) exists and is continuous in

a neighborhood of F−1(1 − ∆q) with f{F−1(1 − ∆q)} > 0, where f is the

probability density function of X.

(viii) n
m
→ k(0 < k <∞) as m,n→∞.

(ix) The kernel function K(u) is bounded and satisfies Lipschitz condition of order

1; K(2)(u) exists and is bounded. Assume that for some C > 0,

∫
|u|>C/ht0

K(u)du = O(ht0),

∫
|ut0K(u)|du <∞,

and that K(u) has finite support satisfying

∫
ujK(u) du =

 1, if j = 0,

0, if 1 ≤ j ≤ t0 − 1.

(x) There exists an r (1/3 < r < 1/2) such that nrht0 → 0 and nrh→∞.

(xi)
√
n(θ̂ − θ0) = Op(1) and ∂l2(θ̂)/∂θ = 0, where l2(θ) = (1/n)

∑n
j=1 δyj log gθ(yj).
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3.3.2 A Wilks’ Theorem

Theorem 3.1. Suppose that assumptions (i) to (xi) are satisfied, then with probability

tending to 1, there exists a root ˆθEL of equation (3.6) such that R(∆q, θ) attains its

local minimum at θ̂EL and as m,n→∞,

−2ρ(∆q, θ0) logR(∆q, θ̂EL)
d→ χ2

(1),

where

ρ(∆q, θ) =
kP2I(θ)∆q(1−∆q) + β2

0(∆q, θ)

kP2I(θ)(1− P1 + P−1
1 )∆q(1−∆q) + β2

0(∆q, θ)
,

and

β0 = α(θ0)f(F−1(1−∆q)),

Theorem 3.1 implies that the asymptotic distribution of the log-semi-empirical

likelihood ratio statistic is scaled chi-square variable. According to Qin and Zhang

(2009), the reason for this deviation away from the standard chi-square is because

the complete data after imputation are dependent instead of independent.

To construct a confidence interval on ∆q using Theorem 3.1, we need to get a

consistent estimator of ρ(∆q, θ0). The response rates P1 and P2 can be consistently

estimated by P̂1 = 1
m

m∑
i=1

δxi and P̂2 = 1
n

n∑
j=1

δyj respectively. Also, k is estimated by

n/m. Similar to the proof of Lemma A.2 in Appendix A, we can obtain an estimator

for β0(∆q, θ0),

β̂(∆q, θ0) =
1

mh

m∑
i=1

K((G−1

θ̂EL
(1− q)− xI,i)/h)α(θ̂EL).

Moreover, Î(θ0) = I(θEL) are consistent estimator of β0(∆q, θ0) and I(θ0), re-

spectively. The resulting ρ(∆q, θ̂EL) is a consistent estimator of ρ(∆q, θ0).
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Let tα satisfy P (χ2
1 ≤ tα) = 1 − α. Following theorem , the semi-empirical

likelihood based confidence interval for the ROC curve ∆q with asymptotically correct

coverage probability 1− α can be established as:

{∆q : −2ρ̂(∆q, θ̂EL) logR(∆q, θ̂EL) ≤ tα}.
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Chapter 4

NUMERICAL STUDIES

4.1 Monte Carlo Simulation

In this chapter, we conducted extensive simulation studies to investigate the

finite sample performance of the proposed semi-empirical likelihood based confidence

intervals for the ROC curve ∆q, especially with small and moderate sample sizes.

Two setups were considered in the simulation studies. In setup (I), the dis-

eased population X followed a normal distribution with mean 1 and variance 1,

while the non-diseased population Y is distributed as the standard normal. Inde-

pendent random samples x and y are drawn from populations X and Y respectively.

We chose four combinations of different sample sizes for x and y, i.e., (m,n) =

(50, 50), (75, 75), (100, 100), and (200, 150). Meanwhile, under each combination of

sample sizes, we investigated the following response rates for x and y, (P1, P2) =

(0.6, 0.7), (0.8, 0.7) and (0.9, 0.8). Thus, we were able to perform a comprehensive

evaluation of the performance of semi-empirical likelihood confidence intervals. For

each scenario of certain missing rates and sample sizes, we generated 1,000 indepen-

dent random samples of data {(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n}, and then

constructed the proposed semi-empirical likelihood based confidence intervals on the

ROC curve ∆q at q = 0.1 and 0.3 for each sample. The nominal level of the confidence

intervals is 1− α = 0.95. The setup (II) is the same as the setup (I) except that the
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diseased and non-diseased populations are from exponential distribution instead of

the normal. We set the densities of X and Y as fX(x) = 0.5 exp(−0.5x) I(x ≥ 0),

and fY (y) = exp(y) I(y ≥ 0) respectively, where I(·) is the indicator function. The

proposed semi-empirical likelihood based confidence intervals for the ROC curve ∆q

at q = 0.5 and 0.7 are constructed for each sample.

As an illustration, Figure 4.1 and Figure 4.2 display the distributions of disease

and non-disease populations and the theoretical ROC curves for setups (I) and (II)

respectively. The area under the ROC curve in setup (I) equals 0.760, while the area

under the ROC curve in setup (II) is 0.667. It can be also seen from the Figures that

the area under the ROC curve in setup (I) is larger than that in setup (II), which

means it would be easier for a diagnostic test to discriminate those with and without

the disease under setup (I) than under setup (II). The points on the ROC curves

in the two figures are those that we will construct semi-empirical likelihood based

confidence intervals.

In setup (I), we set the Kernel function as K(u) = (
√

2π)−1 exp(−u2/2), and the

bandwidth h = (3/2)m−1/3. The same Kernel function was used in setup (II), but

the bandwidth was chosen as h = m−1/3.

The simulation study is coded in R software. One major difficulty in the simu-

lation is to solve the estimating equations to obtain the estimated lower and upper

bounds of semi-empirical likelihood confidence intervals. This involves solving three

estimating equations with three parameters simultaneously (one parameter is the up-

per or lower bound of confidence interval, the other two are nuisance parameters in

the semi-empirical likelihood equations). The R package “BB” (which is developed

to solve nonlinear system of equations) is used to do this. An example of R code is

attached in Appendix B.

Tables 4.1 and 4.2 display the results of the simulation study under setup (I).
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Figure 4.1. Setup (I): disease population (red curve), non-diseased population (blue
curve) and theoretical ROC curve (magenta curve).

Each value in the tables is based on the average of 1000 simulations. It can be

seen that the coverage probabilities of the semi-empirical likelihood based confidence

intervals are very close to the nominal confidence level 1−α = 0.95 for every response

rate and sample size. Meanwhile, the average lengths of the confidence intervals are

small. In both tables, we may notice that under the same response rate, the average

length (AL) decreases as the sample size increases. The average left endpoint (LE)

and right endpoint (RE) are getting closer to the true value of ∆q as the sample size

increases. On the other hand, under the same sample size, the average length (AL) of

confidence intervals is getting smaller as the response rate getting larger. The same

trend holds for the average left endpoint (LE) and right endpoint (RE) values as they

are getting closer to the true ∆q when response rate increases.

Table 4.3 and Table 4.4 show the results of the simulation corresponding to the
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Table 4.1. Semi-empirical likelihood confidence intervals for the ROC curve ∆q

under Setup (I) when q = 0.1 (∆q = 0.3891).

(P1, P2) (m,n) CP(%) LE RE AL

(0.6, 0.7) (50, 50) 95.6 0.2205 0.6042 0.3837

(75, 75) 94.7 0.2442 0.5724 0.3281

(100, 100) 95.3 0.2570 0.5469 0.2899

(200, 150) 95.3 0.2832 0.5075 0.2242

(0.8, 0.7) (50, 50) 95.3 0.2350 0.5813 0.3463

(75, 75) 95.3 0.2531 0.5449 0.2917

(100, 100) 95.0 0.2701 0.5275 0.2574

(200, 150) 95.8 0.2938 0.4947 0.2008

(0.9, 0.8) (50, 50) 95.3 0.2491 0.5694 0.3203

(75, 75) 94.9 0.2678 0.5366 0.2687

(100, 100) 94.7 0.2827 0.5205 0.2378

(200, 150) 94.9 0.3020 0.4876 0.1856

NOTE: : CP(%): coverage probability, LE: the average left endpoint, RE: the average right
endpoint and AL: the average length of the interval.
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Table 4.2. Semi-empirical likelihood confidence intervals for the ROC curve ∆q

under Setup (I) when q = 0.3 (∆q = 0.6828).

(P1, P2) (m,n) CP(%) LE RE AL

(0.6, 0.7) (50, 50) 95.6 0.4659 0.8329 0.3670

(75, 75) 94.5 0.5085 0.8186 0.3100

(100, 100) 95.0 0.5271 0.8027 0.2756

(200, 150) 94.9 0.5662 0.7781 0.2119

(0.8, 0.7) (50, 50) 95.1 0.4896 0.8184 0.3288

(75, 75) 95.3 0.5200 0.7982 0.2782

(100, 100) 95.0 0.5417 0.7863 0.2446

(200, 150) 94.7 0.5737 0.7649 0.1912

(0.9, 0.8) (50, 50) 94.9 0.4995 0.8035 0.3040

(75, 75) 94.7 0.5356 0.7906 0.2550

(100, 100) 95.2 0.5574 0.7825 0.2251

(200, 150) 94.8 0.5873 0.7628 0.1755

NOTE: : CP(%): coverage probability, LE: the average left endpoint, RE: the average right
endpoint and AL: the average length of the interval.
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Figure 4.2. Setup (II): disease population (red curve), non-diseased population (blue
curve) and theoretical ROC curve (magenta curve).

setup (II). Similar results as those Tables 4.1 and 4.2 can be observed. The coverage

probabilities of the confidence intervals based on semi-empirical likelihood are close

to the nominal confidence level 0.95 for each combination of the missing rate and

sample size. The proposed method works very well even for small sample sizes, such

as (m,n) = (50, 50). The average lengths are small and decrease as the sample sizes

increase for the same response rate. The consistent result holds for the average lengths

when the sample size is the same but the response rate goes up.
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Table 4.3. Semi-empirical likelihood confidence intervals for the ROC curve ∆q

under Setup (II) when q = 0.5 (∆q = 0.7071).

(P1, P2) (m,n) CP(%) LE RE AL

(0.6, 0.7) (50, 50) 95.4 0.4911 0.8668 0.3757

(75, 75) 95.7 0.5341 0.8489 0.3148

(100, 100) 95.1 0.5559 0.8312 0.2753

(200, 150) 95.6 0.5980 0.8016 0.2036

(0.8, 0.7) (50, 50) 94.9 0.5205 0.8490 0.3285

(75, 75) 95.0 0.5547 0.8290 0.2743

(100, 100) 95.6 0.5791 0.8183 0.2392

(200, 150) 95.4 0.6146 0.7920 0.1773

(0.9, 0.8) (50, 50) 95.3 0.5403 0.8427 0.3024

(75, 75) 95.0 0.5742 0.8246 0.2503

(100, 100) 94.9 0.5865 0.8068 0.2203

(200, 150) 95.4 0.6206 0.7841 0.1635

NOTE: : CP(%): coverage probability, LE: the average left endpoint, RE: the average right
endpoint and AL: the average length of the interval.
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Table 4.4. Semi-empirical likelihood confidence intervals for the ROC curve ∆q

under Setup (II) when q = 0.7 (∆q = 0.8366).

(P1, P2) (m,n) CP(%) LE RE AL

(0.6, 0.7) (50, 50) 95.7 0.6550 0.9409 0.2859

(75, 75) 94.8 0.6975 0.9333 0.2359

(100, 100) 95.7 0.7136 0.9226 0.2090

(200, 150) 95.6 0.7479 0.9030 0.1550

(0.8, 0.7) (50, 50) 94.8 0.6839 0.9306 0.2467

(75, 75) 94.7 0.7150 0.9208 0.2058

(100, 100) 95.8 0.7335 0.9134 0.1799

(200, 150) 95.1 0.7631 0.8964 0.1333

(0.9, 0.8) (50, 50) 95.0 0.7009 0.9267 0.2258

(75, 75) 96.0 0.7281 0.9161 0.1880

(100, 100) 95.4 0.7441 0.9089 0.1648

(200, 150) 95.7 0.7691 0.8916 0.1224

NOTE: : CP(%): coverage probability, LE: the average left endpoint, RE: the average right
endpoint and AL: the average length of the interval.
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Chapter 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we proposed a smoothed semi-empirical likelihood method to con-

struct the confidence intervals for ROC curves with missing data in both populations.

The approach is easy to understand, simple to implement, and efficient to compute.

We first presented an imputation method to deal with missing completely at random

data. Then it can be shown that the semi-empirical likelihood ratio under imputa-

tion is asymptotically distributed as a scaled chi-squared variable. The finite sample

numerical performance of the inference is evaluated. All empirical coverage levels are

close to the nominal levels 95%, even for small or moderate sample size. The cover-

age lengths of the confidence intervals are small. We may also notice that the result

can be applied to complete data setting. Under this scenario, the response rates are

P1 = P2 = 1. The asymptotic distribution of the semi-empirical likelihood statistic

is found to be a χ2
1 distribution. Thus the semi-empirical likelihood based confidence

interval for ∆q is constructed as

{∆q : −2 logR(∆, θm,n) ≤ tα}.

The main contribution of this thesis is that it extends the previous studies about
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application of empirical likelihood ratio principle to the ROC curve analysis. Fur-

thermore, the smoothed semi-empirical likelihood ratio statistic is established and

the limiting distribution is proved. Moreover, we consider special but common set-

tings such as semi-parametric distributions where missing data occur (MCAR) in this

thesis.

5.2 Future Work

In the future, we may compare the semi-empirical likelihood method to the nor-

mal approximation method and perhaps other non-parametric ways, such as bootstrap

percentile method. For example, Su et al. (2009) summarized the idea of bootstrap

confidence intervals for the ROC curve; Liang and Zhou (2008) examined the normal

approximation-based confidence intervals for censored ROC curves and established

the asymptotic result. Following their ideas, we may develop and investigate the per-

formance of those methods to semi-parametric setting with missing data. In addition,

we may apply the proposed approach to a real data application when we have a good

data set. Moreover, we may develop a better imputation method for the missing data

instead of the ad hoc hot deck imputation. We can also perform a simulation study

on the complete data setting. Extension of our approach to the comparison of ROC

curves needs further investigation.
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APPENDICES

Appendix A: Lemmas and Proofs

Following the idea of Qin and Zhang (2009), we have the following lemmas to

prove the main result. Lemma A.1 is from Chen and Rao (2007).

Lemma A.1. Let Un, Vn be two sequences of random variables and Bn be a σ-algebra.

Assume that

1. There exists σ1n > 0 such that

σ−1
1n Vn

d→ N(0, 1)

as n→∞, and Vn is Bn measurable;

2. E[Un|Bn] = 0 and V ar(Un|Bn) = σ2
2n such that

sup
t
|P (σ−1

2nUn ≤ t|Bn|)− Φ(t)| = op(1),

where Φ(.) is the distribution function of the standard normal random variables.

3. γ2
n = σ2

1n/σ
2
2n = γ2 + op(1). Then, as n→∞,

Un + Vn√
σ2

1n + σ2
2n

d→ N(0, 1).

To prove the main result, we need some additional lemmas.
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Lemma A.2. Under the conditions of Theorem 3.1, as m,n→∞,

1√
m

m∑
i=1

ω(xI,i, θ0,∆q)
d→ N(0, σ2

1)

and

1

m

m∑
i=1

ω2(xI,i, θ0,∆q) = β2
1 + op(1),

where

σ2
1 = (1− P1 + P−1

1 )∆q(1−∆q), β2
1 = ∆q(1−∆q).

Proof. Let ω̄r = 1
rx

∑
i∈srx ω(xi, θ0,∆q), and Bm = σ{(δxi, xi), i = 1, ...,m}. Then

E(ω(x∗i , θ0,∆q)|Bm) = ω̄r,Var(ω(x∗i , θ0,∆q)|Bm) =
1

rx

∑
i∈srx

{ω(xi, θ0,∆q)− ω̄r}2.

It follows that

1√
m

m∑
i=1

ω(xI,i, θ0,∆q) =
√
mω̄r +

1√
m

∑
i∈smx

[ω(x∗i , θ0,∆q)− E{ω(x∗i , θ0,∆q)|Bm}]

=: Vm + Um,

where Vm is Bm measurable, and

Vm =
√
m

1

rx

∑
i∈srx

{ω(xi, θ0,∆q)− Eω(xi, θ0,∆q)}+
√
mEω(xi, θ0,∆q).

It can be shown that Eω(xi, θ0,∆q) = O(ht0). Thus from Assumption (iii) and (v),

√
mEω(xi, θ0,∆q) = o(1). Combining with the MCAR assumption and the Central

Limit Theorem,

Vm
d→ N(0, P−1

1 ∆q(1−∆q)).
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From Berry-Esseen’s Central Limit Theorem for independent random variables, we

have supt |P (σ−1
2mUm ≤ t|Bm)− Φ(t)| = op(1), where σ2

2m = (1− P1)Eω
2(xi, θ0,∆q) =

(1− P1)∆q(1−∆q). Hence, from Lemma A1, we have

1√
m

∑
i

ω(xI,i, θ0,∆q)
d→ N(0, σ2

1).

On the other hand, denote the conditional probability given Bm as P ∗. Then by the

law of large numbers and MCAR assumption,

1√
mx

∑
i∈smx

ω2(x∗i , θ0,∆q) =
1

rx

∑
i∈srx

ω2(xi, θ0,∆q) + op∗(1) = Eω2(x, θ0,∆q) + op(1).

It follows that

1√
mx

m∑
i=1

ω2(xI,i, θ0,∆q) =
1

m

m∑
i=1

{δxiω2(xi, θ0,∆q) + (1− δxi)ω2(x∗i , θ0,∆q)}

= P1Eω
2(xi, θ0,∆q) + op(1) +

mx

m

1

mx

∑
i∈smx

ω2(x∗i , θ0,∆q)

= P1Eω
2(x, θ0,∆q) + op(1) + (1− P1)Eω

2(x, θ0,∆q) + op(1)

= Eω2(x, θ0,∆q) + op(1)

= ∆q(1−∆q) + op(1).

Lemma A.3. Suppose that 1/3 < η < 1/2 and the conditions of Theorem 3.1 are

satisfied. Then as m,n→∞,

λ(θ) = OP (n−ηh−1 + ht0),

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant.
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Proof. The proof of Lemma A.3 is omitted, which is in a similar way as the proof of

Lemma 4.3 in Qin and Zhang (2009).

Lemma A.4. Suppose that 1/3 < η < 1/2 and the conditions of Theorem 3.1 are

satisfied. Then with probability tending to 1, there exists a root θ̂EL of estimating

equation (3.6) such that, as m,n→∞,

|θ̂EL − θ0| = Op(n
−η),

and R(∆q, θ) attains its local maximum value at θ̂EL.

Proof. The proof of Lemma A.4 is omitted, which is essentially in a similar way as

the proof of Lemma 4.4 in Qin and Zhang (2009).

Lemma A.5. Suppose that the conditions of Theorem 3.1 are satisfied, and θ̂EL is

as that in Lemma A4. Then, as m,n→∞,

√
m

 θ̂EL − θ0

λ(θ̂EL)

 d→ N(0,Σ),

where

Σ =
1

c21

 β2
0σ

2
1 + kP2{∆q(1−∆q)}2I(θ0) kP2β0I(θ0){∆q(1−∆q)− σ2

1}

kP2β0I(θ0){∆q(1−∆q)− σ2
1} kP2I(θ0){β2

0 + kP2σ
2
1I(θ0)}

 ,

β0 = α(θ0)f(F−1(1−∆q)), σ2
1 = (1−P1 +P−1

1 )∆q(1−∆q), c1 = β2
0 + kP2∆q(1−

∆q)I(θ0).

Proof. The proof of Lemma A.5 follows the idea of the proof of Lemma 4.5 in Qin
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and Zhang (2009). Let λ = λ(θ), λEL = λ(θ̂EL), and

Q1,m,n(θ, λ) =
1

m

m∑
i=1

ω(xI,i, θ,∆q)

1 + λ(θ)ω(xI,i, θ,∆q)
,

Q2,m,n(θ, λ) =
λ

m

m∑
i=1

h−1K[{G−1
θ (1− q)− xI,i}/h]

1 + λω(xI,i, θ,∆)
α(θ)− 1

m

n∑
j=1

δyj
∂ log gθ(yj)

∂θ
.

From Lemma A.4, we have

Qi,m,n(θ̂EL, λEL) = 0, i = 1, 2.

Based on Taylor expansion, Lemmmas A.3 and A.4, we have

0 = Qi,m,n(θ̂EL, λEL) = Qi,m,n(θ0, 0) +
∂Qi,m,n(θ0, 0)

∂θ
(θ̂EL − θ0)

+
∂Qi,m,n(θ0, 0)

∂λ
λEL + op(ξn), i = 1, 2,

where ξn = |θ̂EL − θ0|+ |λEL|. Thus,

Qi,m,n(θ0, 0) +
∂Qi,m,n(θ0, 0)

∂θ
(θ̂EL − θ0) +

∂Qi,m,n(θ0, 0)

∂λ
λEL = op(ξn), i = 1, 2.

Similar to the proof of Lemma A.2, it can be shown that

∂Q1,m,n(θ0, 0)

∂θ
= α(θ0)f{F−1(1−∆q)}+ op(1),

∂Q1,m,n(θ0, 0)

∂λ
= −∆q(1−∆q)}+ op(1),

∂Q2,m,n(θ0, 0)

∂θ
= kP2I(θ0) + op(1),

∂Q2,m,n(θ0, 0)

∂λ
= α(θ0)f{F−1(1−∆q)}+ op(1).
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Hence,  θ̂EL − θ0

λ(θ̂EL)

 = S−1

−Q1,m,n(θ0, 0)

−Q2,m,n(θ0, 0)

+ op(ξn),

where

S =

 β0 −∆q(1−∆q)

kP2I(θ0) β0

 .

Then, Lemma A.2 and the central limit theorem lead to

√
m

Q1,m,n(θ0, 0)

Q2,m,n(θ0, 0)

 d→ N

0,

 σ2
1 0

0 kP2I(θ0)


 .

It follows from assumption (viii) that

√
nQj,m,n(θ0, 0) = Op(1), j = 1, 2,

and thus, ξn = Op(n
−1/2). This complete the proof of Lemma A.5.

The following Lemma can be proved using the method in the proof of Lemma

A.2. Denote ω̄j(θ) = m−1
∑m

i=1 ω
j(xI,i, θ,∆) for j = 1, 2.

Lemma A.6. Under the conditions of Theorem 3.1, as m,n→∞,

ω̄2(θ̂EL) = ∆q(1−∆q) + op(1), ∂2l2(θ̂EL)/∂2θ = −kP2I(θ0) + op(1),

∂2l2(θ̂)/∂
2θ = −kP2I(θ0) + op(1),

where ω̄2(θ) and l2(θ) are defined in the proof of Lemma A.4 and Assumption (xi),

respectively.

Proof of Theorem 3.1. Use the notations of ω̄j(θ) in the proof of Lemma A.4. From
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Taylor expansion, it follows that

−2 logR(∆, θ̂EL) (1)

= 2
m∑
i=1

log{1 + λ(θ̂EL)ω(xI,i, θ,∆q)} − 2m{l2(θ̂EL)− l2(θ̂)}

= 2mλ(θ̂EL)ω̄1(θ̂EL)−mλ2(θ̂EL)ω̄2(θ̂EL) + 2m{∂l2(θ̂EL)/∂θ}(θ̂ − θ̂EL)

+ m{∂2l2(θ̂EL)/∂θ2}(θ̂ − θ̂EL)2 + op(1).

Equation (3.5) gives that ω̄1(θ̂EL) = λ(θ̂EL)ω̄2(θ̂EL) + op(n
−1/2).

From ∂l2(θ̂)/∂θ = 0 and Taylor expansion, we have

∂l2(θ̂EL)/∂θ = {∂2l2(θ̂)/∂θ
2}(θ̂EL − θ̂) + op(n

−1/2).

Equation (3.6) leads to

λ(θ̂EL)
m∑
i=1

h−1K[{G−1

θ̂EL
(1− q)− xI,i}/h]

1 + λ(θ̂EL)ω(xI,i, θ̂EL,∆)
α(θ̂EL) =

n∑
j=1

δyj
∂ log gθ̂EL(yj)

∂θ
.

Thus combining with Lemma A.3, we have

∂l2(θ̂EL)/∂θ = λ(θ̂EL)α(θ0)f(F−1(1−∆q)) + op(n
−1/2).

Therefore,

θ̂EL − θ̂ = λ(θ̂EL)α(θ0)f(F−1(1−∆q)){∂2l2θ̂/∂θ
2}−1 + op(n

−1/2).

From the above derivations and Lemma A.5 and A.6, we have Theorem 3.1

proved.
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Appendix B: R Code for Simulation

########################################################

#Simulation Studies

#Semi-empirical-likelihood-ROC-with-missing-data

#written by Xiaoxia Liu

#05-20-2010

########################################################

###################### Step 1 ##########################

#Generate random samples with missing values

### set the random number generating method

RNGkind(kind="default", normal.kind="default")

###-----------------------------------------------

#random seed

set.seed(520)

library(BB)

begin.time<-proc.time()

m=100 #sample size of x

n=100 #sample size of y

p1=0.9 #response rate of x

p2=0.8 #response rate of y

N=1000 # number of repetition

sim=1

###-----------------------------------------------

###Create vectors and matrix to store the results

theta.est.vec=rep(0, N)

lambda.est.vec=rep(0, N)

lower.bound.vec=rep(0, N)

upper.bound.vec=rep(0, N)

ci.length.vec=rep(0, N)

coverage.prob=rep(0, N)

message1=rep(0,N)

message2=rep(0,N)

message3=rep(0,N)

iter1.vec=rep(0,N)

iter2.vec=rep(0,N)

iter3.vec=rep(0,N)
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temp2.mat=matrix(0, nrow=N, ncol=3)

temp3.mat=matrix(0, nrow=N, ncol=3)

#begin iteration

while (sim <=N){

###################### Step 2 ##########################

delta.x=as.numeric(runif(m)<=p1) #missing indictor

delta.y=as.numeric(runif(n)<=p2)

rx=sum(delta.x)

ry=sum(delta.y)

mx=m-rx #sets of nonrespondents

my=n-ry

x0=rnorm(m, mean=1, sd=1) #initial sample of complete data

y0=rnorm(n, mean=0, sd=1)

xr=x0[delta.x==1] #sets of respondents

yr=y0[delta.y==1]

hot.deck=runif(mx)#generate unif prob

x1=xr[ceiling(rx*hot.deck)] #hot deck imputation

#x1=sample(xr,mx, replace =T) #hot deck imputation

theta.mle=mean(yr)

y1=rnorm(my, mean=theta.mle, sd=1)

x=x0*delta.x

#’complete’ data after imputation

#(keep the original order of the observations)

x[delta.x==0]=x1

y=y0*delta.y

#’complete’ data after imputation

#(keep the original order of the observations)

y[delta.y==0]=y1

###################### Step 3 ##########################

#semi-EL based confidence interval for delta

k.fun=function(u){exp(-u^2/2)/sqrt(2*pi)} #define kernel K

hn=(m^(-1/3))*(3/2) #bandwidth

alpha=0.05 #correct coverage probability

q0=0.3 #q-th quantile
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delta0=1 - pnorm(qnorm((1-q0), mean=0, sd=1), mean=1, sd=1)#true delta

# empirical estimation of delta0

delta.est= 1- sum(xr <= qnorm((1-q0), mean=0, sd=1))/length(xr)

H.fun=function(t) {pnorm(t/hn, mean = 0, sd = 1)} #H(t)

omega.fun=function(xi, theta, Delta){

H.fun(qnorm((1-q0), mean=theta, sd=1)-xi)-(1-Delta)

} #omega

#alpha function under normal distribution

#which equals 1

alpha.fun=function(theta) {1}

k=n/m

beta0.est=function(theta){

sum(k.fun((qnorm((1-q0), mean=theta, sd=1) - x)/hn))

*alpha.fun(theta) /(m*hn)

} #beta0

sigma1.est=function(delta){

sqrt((1-sum(delta.x)/m + m/sum(delta.x))*delta*(1-delta))

} #sigma square

c1=function(delta, theta){

beta0.est(theta)^2 + k*(sum(delta.y)/n)*delta*(1-delta)

}#c1

rho0fun.est=function(delta, theta) {

c1(delta, theta)/(k*(sum(delta.y)/n)

*sigma1.est(delta)^2 + beta0.est(theta)^2)

} # the function a0

#loglik function

Rfun=function(delta, lambda, theta) {

-sum(log(1+ lambda*omega.fun(x, theta, delta)))

+ sum(delta.y*(-0.5*(y-theta)^2))

- sum(delta.y*(-0.5*(y-theta.mle)^2))

}
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Rfun2 = function(delta, lambda, theta) {

-2*rho0fun.est(delta, theta)* Rfun(delta, lambda, theta)

- qchisq(p=1-alpha, df=1)

}

est.fun2=function(para){

#para[1]: lambda; para[2]: delta; para[3]: theta

g=rep(NA, length(para))

g[1] = sum(omega.fun(x, para[3], para[2])

/(1 + para[1]*omega.fun(x, para[3], para[2])))

###

g[2] = -2* rho0fun.est(para[2], para[3])

* Rfun(para[2], para[1], para[3])

- qchisq(p=1-alpha, df=1)

###

g[3] = para[1] *sum((1/hn)

*k.fun((qnorm((1-q0), mean=para[3], sd=1)-x)/hn)/

(1+para[1]*omega.fun(x,para[3],para[2])))

-sum(delta.y*(y-para[3]))

###

g

}

# Now, we solve the equation using BBsolve.

#starting value for lower bound

v1=c(-0.3, -0.35, -0.4, -0.2, -0.25, -0.5, -0.45, -0.6)

v2=c(0.5, 0.45, 0.55, 0.4, 0.6)

v3=c(0.2, 0.1)

para2.mat = as.matrix(expand.grid(v1, v2, v3))

iter2=1

temp.mess2="Unsuccessful convergence"

while(iter2<=dim(para2.mat)[1] & temp.mess2!="Successful convergence"){

para2=para2.mat[iter2,]

eqn2=BBsolve(par=para2, fn=est.fun2, method=1)

temp2=eqn2$par

temp.mess2=eqn2$message

iter2=iter2+1

}

iter2.vec[sim]=iter2
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temp2.mat[sim,]=temp2

message2[sim]=(temp.mess2 == "Successful convergence")*1

#starting value for upper bound

v4=c(0.4, 0.5, 0.3, 0.45, 0.35, 0.6, 0.7, 0.8)

v5=c(0.75, 0.7, 0.8, 0.85, 0.9, 0.95)

v6=c(-0.1, -0.2, -0.3)

para3.mat = as.matrix(expand.grid(v4, v5, v6))

iter3=1

temp.mess3="Unsuccessful convergence"

while(iter3<=dim(para3.mat)[1] & temp.mess3!="Successful convergence"){

para3=para3.mat[iter3,]

eqn3=BBsolve(par=para3, fn=est.fun2)

temp3=eqn3$par

temp.mess3=eqn3$message

iter3=iter3+1

}

iter3.vec[sim]=iter3

temp3.mat[sim,]=temp3

message3[sim]=(temp.mess3 == "Successful convergence")*1

lower.bound.vec[sim] = min(temp2[2], temp3[2])

upper.bound.vec[sim] = max(temp2[2], temp3[2])

ci.length.vec[sim] = upper.bound.vec[sim]-lower.bound.vec[sim]

coverage.prob[sim] = (delta0 >= lower.bound.vec[sim])

* (delta0 <= upper.bound.vec[sim])

cat("iteration = ", sim, "\n")

sim = sim +1

}

end.time<-proc.time()-begin.time

save.image("/D:/simu/setup1/emp-lkhd-p1-09-p2-08-m100-n100-q-03.RData")
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################## summary of results ##################

#true delta_q

delta0

#CP

sum(coverage.prob)/N*100

#LE

#mean(lower.bound.vec)

round(mean(lower.bound.vec), digits=4)

#RE

#mean(upper.bound.vec)

round(mean(upper.bound.vec), digits=4)

#AL

#mean(ci.length.vec)

round(mean(ci.length.vec), digits=4)

#p1, p2

c(p1, p2)

#m, n

c(m, n)

########################################################

################### end of my R code ###################
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