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EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR ROC CURVES

WITH MISSING DATA

by

YUEHENG AN

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

The receiver operating characteristic, or the ROC curve, is widely utilized to evaluate

the diagnostic performance of a test, in other words, the accuracy of a test to discrim-

inate normal cases from diseased cases. In the biomedical studies, we often meet with

missing data, which the regular inference procedures cannot be applied to directly.

In this thesis, the random hot deck imputation is used to obtain a ’complete’ sample.

Then empirical likelihood (EL) confidence intervals are constructed for ROC curves.

The empirical log-likelihood ratio statistic is derived whose asymptotic distribution is

proved to be a weighted chi-square distribution. The results of simulation study show

that the EL confidence intervals perform well in terms of the coverage probability and

the average length for various sample sizes and response rates.

INDEX WORDS: Confidence interval, Missing data, ROC curve, Empirical likeli-
hood
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Chapter 1

INTRODUCTION

1.1 ROC Curve

The receiver operating characteristic, or the ROC curve simply, has been ex-

tensively used to evaluate the diagnostic tests and is currently the best-developed

statistical tool for describing the performance of such tests. ROC curves provide a

comprehensive and visually attractive way to summarize the accuracy of predictions.

Generally speaking, the ROC curve is a graphical plot of the sensitivity, or true

positives, versus (1 − specificity), or false positives. It has been in use for years,

which was first developed during World War II for signal detection. Its potential for

medical diagnostic testing was recognized as early as 1960, although it was in the

early 1980s that it became popular, especially in radiology (Pepe, 2003). Nowadays,

ROC curves enjoy broader applications in medicine (Shapiro, 1999).

In a medical test resulting in a continuous measurement T , the disease is diag-

nosed if T > t, for a given threshold t. Let D denote the disease status with

D =

 1, diseased,

0, non-diseased

and the corresponding true and false positive fractions at t be TPF (t) and FPF (t),
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respectively, where TPF (t) = Pr(T ≥ t|D = 1), FPF (t) = Pr(T ≥ t|D = 0). The

ROC curve is the entire set of possible true and false positive fractions attained by

dichotomizing T with different thresholds (Pepe, 2003). That is, the ROC curve is

ROC(·) = {(FPF (t), TPF (t)), t ∈ (−∞,∞)}.

When t increases, both FPF (t) and TPF (t) decrease. For extreme cases, when

t→∞, we can get lim
t→∞

TPF (t) = 0 and lim
t→∞

FPF (t) = 0. On the other hand, when

t→ −∞, we have lim
t→−∞

TPF (t) = 1 and lim
t→−∞

FPF (t) = 1. Thus, the ROC curve is

actually a monotone increasing function in the positive quadrant.

On the other hand, considering the results of a certain test in two populations,

diseased against non-disease, we will rarely observe a perfect separation between the

two groups.

Suppose the distribution function of T is F conditional on disease and G condi-

tional on non-disease. The ROC curve is defined as the graph (1−G(t); 1−F (t)) for

various values of the threshold t, or in other words, sensitivity versus (1−specificity),

power versus size for a test with critical region {T > t}.

Now we consider a specific test in two populations, one with disease and the

other without disease. At a fixed cut-off point or threshold t, the sensitivity and

specificity are defined as Se = Pr(X ≥ t) and Sp = Pr(Y < t), respectively. If

F (·) is the distribution function of X and G(·) is the distribution function of Y , the

sensitivity and specificity can then be written as Se = 1−F (t) and Sp = G(t). Then

the ROC curve is actually a plot of 1− F (t) versus 1−G(t), for −∞ < t <∞. At a
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given level q = (1− specificity), the ROC curve can be represented by

∆ = 1− F (G−1(1− q)), for 0 < q < 1,

where G−1 is the inverse function of G, i.e., G−1(q) = inf{t : G(t) ≥ q}.

1.2 Missing Data and Random Hot Deck Imputation

It is typically to assume that all the responses in the sample are available for

statistical inferences. In practical applications, however, this may not be true. Some

of the responses may not be obtained for many reasons such as that some sampled

units are not willing to provide certain information, some of the investigators failed

to gather the correct information, uncontrollable factors leaded loss of information

and so forth. As a matter of fact, missing responses happen in a regular base in mail

enquiries, medical studies, opinion polls, market research surveys and other scientific

experiments (Wang and Rao, 2002).

Consider the following simple random samples of incomplete data associated with

populations (x, δx) and (y, δy):

(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n,

where

δxi =

 0 if xi is missing,

1 otherwise,

δyj =

 0 if yj is missing,

1 otherwise.
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Let rx =
m∑
1

δxi , ry =
n∑
1

δyj , mx = m − rx and my = n − ry. Denote the sets of

respondents with respect to x and y as srx and sry, and the sets of non-respondents

with respect to x and y as smx and smy , thus the means of respondents with respect

to x and y as

xr =
1

rx

∑
i∈srx

xi, yr =
1

ry

∑
i∈sry

yi.

Throughout this thesis, we assume that x, y are missing completely at random (M-

CAR), i.e., P (δx = 1|x) = P1(constant) and P (δy = 1|y) = P2(constant). We also

assume that (x, δx) and (y, δy) are independent.

Imputation-based procedure is one of the most common methods or treatments

dealing with missing data (Little and Rubin, 2002). Standard statistics methods to

the complete data are applied after imputation, that is, to impute a value for each

missing datum. Deterministic imputation and random imputation are commonly used

imputation methods.

Here random hot deck imputation method is utilized to impute the missing val-

ues, since the deterministic imputation is not proper in making inference for distri-

bution functions.

Let x∗i and y∗j be the imputed values for the missing data with respect to x

and y. Random hot deck imputation selects a simple random sample of size mx with

replacement from srx and then uses the associated x-values as donors, that is, x∗i = xk

for some k ∈ srx . Similarly, we obtain y∗j . Let

xI,i = δxixi + (1− δxi)x∗i , yI,j = δyjyj + (1− δyj)y∗j ,

i = 1, ...,m, j = 1, ..., n, which represent the ’complete’ data after imputation.

In this thesis, we explore the asymptotic properties of the empirical likelihood
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ratio statistic for ∆ based on xI,i, i = 1, ...,m, yI,j, j = 1, ..., n. The results are used

to build asymptotic confidence intervals for ∆.

1.3 Empirical Likelihood

Empirical likelihood, a nonparametric method of statistical inference, use like-

lihood methods without having to assume that the data come from a known family

of distributions (Owen, 2001). Thus, empirical likelihood can be thought of as a

likelihood without parametric assumptions, and as a bootstrap without resampling.

Among many of the advantages over competitors, improvement of the confidence re-

gion and increase of accuracy in coverage are the most appealing features resulting

from using auxiliary information and easy implementation.

For a random variable X ∈ <, the cumulative distribution function (CDF) is

defined as

F (x) = Pr(X ≤ x),

where −∞ < x <∞.

Denote

F (x−) = Pr(X < x),

then

Pr(X = x) = F (x)− F (x−).

Let X1, ..., Xn be n independent samples follow the common CDF of F0, the empirical

likelihood cumulative distribution function (ECDF) of X1, ..., Xn is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x, −∞ < x <∞,
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where IXi≤x is the indicator function.

For X1, ..., Xn, Xi i.i.d. ∼ F0, i = 1, ..., n, the nonparametric likelihood of the CDF F

is

L(F ) =
n∏
i=1

(F (xi)− F (xi−)).

For a distribution F , ratios of the nonparametric likelihood for hypothesis testings

and confidence intervals is

R(F ) =
L(F )

L(Fn)
.

When F is continuous, the likelihood of F , L(F ) ≡ 0. Owen (2001) also proves that

given F (x) 6= Fn(x),

L(F ) < L(Fn),

which means the ECDF is the nonparametric maximum likelihood estimate (NPMLE)

of F .

Suppose Γ is the space of a distribution function G defined on [0,∞). For F ∈ Γ, let

θ = G(F ), the profile likelihood ratio is defined as:

R(θ) = sup{R(F )|G(F ) = θ, F ∈ Γ}.

Then Owen (1990) gives a remarkable result similar to the Wilk’s theorem (Owen,

1988, 1990, 2001), that is, the empirical likelihood ratio has a limiting chi-square

distribution, as following:

−2 logR(θ0)→ χ2
m, as n→∞,

where m is the degrees of freedom d.f. = dimension(θ), θ0 is the true value of θ.

Based on this fact, we can construct the confidence intervals for θ.
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1.4 Structure

The rest of the thesis is organized as follows. In chapter 2, the empirical likelihood

ratio statistic is constructed, the limiting distribution of the statistic is given, and the

empirical likelihood based confidence interval for the cut-off points on the ROC curve

is constructed. In chapter 3, we report that the results of a simulation study on the

finite sample performance of empirical likelihood based confidence interval on ∆’s.

The conclusion is given in chapter 4, and all the technical derivations are provided in

the appendices.
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Chapter 2

INFERENCE PROCEDURE

In this chapter, we construct the empirical likelihood ratio statistic, develop the

limiting distribution of the statistic, and give the empirical likelihood based confidence

interval for the ROC curve ∆.

Take the bandwidth a = am > 0, b = bn > 0 and the kernels K1 and K2, where

am → 0 as m→∞ and bn → 0 as n→∞. Define

F (t) =

∫ t/a

−∞
K1(u)du, G(t) =

∫ t/b

−∞
K2(u)du.

Similar to Qin and Zhao (1997) and Chen and Hall (1993), the empirical likelihood

function is defined as
m∏
i=1

pi

n∏
j=1

qj, (2.1)

where pi > 0, i=1,...,m,
∑
i

pi = 1, and qj > 0, j=1,...,n,
∑
j

qj = 1. Define the

log-empirical likelihood ratio statistic:

R(∆) = sup
pi,i=1,...,m,qj ,j=1,...,n,θ

{
m∑
i=1

log(mpi) +
n∑
j=1

log(nqj)} = sup
θ
R(∆, θ), (2.2)
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where

R(∆, θ) = sup
pi,i=1,...,m,qj ,j=1,...,n,

{
m∑
i=1

log(mpi) +
n∑
j=1

log(nqj)}, (2.3)

and pi, qj are subject to restrictions:

m∑
i=1

pi = 1,
m∑
i=1

piF (θ − xI,i) = 1−∆, pi > 0, i = 1, ...,m, (2.4)

and
n∑
j=1

qj = 1,
n∑
j=1

qjG(θ − yI,j) = 1− q, qj > 0, j = 1, ..., n. (2.5)

Denote

ω1(xI,i, θ,∆) = F (θ − xI,i)− 1 + ∆, i = 1, ...,m,

ω2(yI,j, θ,∆) = G(θ − yI,j)− 1 + q, j = 1, ..., n.

From Lagrange multipliers, we can show that

R(∆, θ) = −
m∑
i=1

log{1 + λ1(θ)ω1(xI,i, θ,∆)}−
n∑
j=1

log{1 + λ2(θ)ω2(yI,j, θ,∆)}, (2.6)

where λj(θ), j = 1, 2, are determined by the following two equations:

1

m

m∑
i=1

ω1(xI,i, θ,∆)

1 + λ1(θ)ω1(xI,i, θ,∆)
= 0, (2.7)

1

n

n∑
j=1

ω2(yI,j, θ,∆)

1 + λ2(θ)ω2(yI,j, θ,∆)
= 0. (2.8)

Let ∂R(θ,∆)/∂θ = 0.We can obtain the empirical likelihood equation:

1

m
λ1(θ)

m∑
i=1

α1(xI,i, θ,∆)

1 + λ1(θ)ω1(xI,i, θ,∆)
+

1

m
λ2(θ)

n∑
j=1

α2(yI,j, θ,∆)

1 + λ2(θ)ω2(yI,j, θ,∆)
= 0, (2.9)
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where α1(xI,i, θ,∆) =
1

a
K1((θ − xI,i)/a) and α2(yI,j, θ,∆) =

1

b
K2((θ − yI,j)/b).

Use θ0 to denote the true value of θ, we have the following assumptions:

(i) θ0 ∈ Ω and Ω is an open interval.

(ii) Denote f(t) = ∂F (t)/∂t and g(t) = ∂G(t)/∂t. For some t0 ≥ 2, suppose that

f (t0−1)(t) and g(t0−1)(t) exist and are uniformly continuous and bounded in a neigh-

borhood of θ0. Assume that f(θ0)g(θ0) > 0.

(iii) n/m→ k (0 < k <∞) as m,n→∞.

(iv) For Ki’s, i = 1, 2, are bounded and satisfy Lipschitz condition of order 1 and

K
(2)
i exists and is bounded. For i = 1, 2, assume that for some C > 0,

∫
|u|>C/at0

K1(u)du = O(at0),

∫
|u|>C/bt0

K2(u)du = O(bt0),

∫
|ut0Ki(u)|du <∞,

∫
ujKi(u)du =

 1 j = 0,

0 1 ≤ j ≤ t0 − 1.

(v) There exists r (1/3 < r < 1/2) such that nrat0 → 0, nrbt0 → 0, nra → ∞, and

nrb→∞ as m,n→∞.

Theorem 1 gives the asymptotic distribution of the log-empirical likelihood ratio

statistic. The proof of Theorem 1 is given in the Appendix A.

Theorem 1. Suppose that assumptions (i) through (v) are satisfied, then there exists

a root θm,n of equation (2.9) such that R(∆, θ) attains its local maximum at θm,n and
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as m,n→∞,

√
m(θm,n − θ0)

d−→

N

(
0, q(1− q)∆(1−∆)

{q(1− q)(1− P1 + P−11 )f 2(θ0) + k∆(1−∆)(1− P2 + P−12 )g2(θ0)}
c20

)
,

−R(∆, θm,n)
d−→ k∆(1−∆)(1− P1 + P−11 )g2(θ0) + q(1− q)(1− P2 + P−12 )f 2(θ0)

c0
χ2
1,

where

c0 = q(1− q)f 2(θ0) + k∆(1−∆)g2(θ0).

It is interesting to notice that the empirical likelihood ratio under imputation

is asymptotically distributed as a scaled chi-square variable. The reason for this

deviation from the standard results is that the ’complete’ data after imputation are

dependent.

Denote

a0(∆) = {k∆(1−∆)(1− P1 + P−11 )g2(θ0) + q(1− q)(1− P2 + P−12 )f 2(θ0)}/c0.

To construct a confidence interval for ∆ using the above result, we need to get a

consistent estimator of a0(∆). P1 and P2 can be consistently estimated by

P̂1 =
1

m

m∑
i=1

δxi

and

P̂2 =
1

n

n∑
j=1

δyj ,

respectively, and k is estimated by n/m. Similar to the proof of Lemma 2 in the

Appendix A and the standard methods in nonparametric density estimation, it can
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be shown that,

f̂(θ0) =
1

ma

m∑
i=1

K1((θm,n − xI,i)/a)

and

ĝ(θ0) =
1

nb

n∑
j=1

K2((θm,n − yI,j)/b)

are consistent estimators of f(θ0) and g(θ0), respectively. In this case, we can get a

consistent estimator â0(∆) of a0(∆).

Let tα satisfy that P (χ2
1 < tα) = 1 − α. Thus, it follows from Theorem 1 that

the empirical likelihood based confidence interval for ∆ can be constructed as

{∆ : −2â−10 (∆)R(∆, θm,n) ≤ tα},

where the asymptotically correct coverage probability is 1− α.

We also notice that the result can apply to the complete data settings. In the

complete data situation, P1 = P2 = 1. Thus we can see that the asymptotic distri-

bution of the EL statistic is found to be a χ2
1 distribution. The empirical likelihood

based confidence interval for ∆ for the complete data is constructed as

{∆ : −2R(∆, θm,n) ≤ tα}.
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Chapter 3

NUMERICAL STUDIES

3.1 Monte Carlo Simulation

Based on the results in the inference procedure, extensive simulation studies are

conducted to explore the performance of the empirical likelihood confidence intervals

for the ROC curve ∆, with different response rates and sample sizes.

In the simulation studies, the diseased population X is distributed as normal

distribution with mean 1 and variance 1, while the non-diseased population Y follows

the standard normal distribution. Random samples x and y are independently drawn

from the population X and Y . The response rates for x and y are chosen as, (p1, p2) =

(0.7, 0.6), (0.8, 0.7), (0.9, 0.8), combined with the sample sizes for x and y of (m,n) =

(50, 50), (75, 75), (100, 100), (200, 150). For a certain response rate and sample size,

1000 independent random samples of data {(xi, δxi), i = 1, ...,m; (yj, δyj), j = 1, ..., n}

are generated. Without loss of generality, the proposed empirical likelihood confidence

intervals are constructed for the ROC curve at q = 0.1, 0.3, 0.5, and 0.7. The nominal

level of the confidence intervals is 1− α = 95%.

Tables 1 to 4 reveal the following results:

1. For each response rate and sample size, the coverage probability is close to the

nominal level 95%, and the average lengths of the confidence intervals are short.

2. In almost all the scenarios, as the respondence rates or the sample sizes increase,
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the coverage probabilities get closer to 95%, and the average lengths of the intervals

decreases respectively. This is reasonable since either bigger response rates or bigger

sample sizes provide more information of the data under study.
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Table 3.1. Empirical likelihood confidence intervals for the ROC curve at
q = 0.1 (∆ = 0.3891).

(p1, p2) (c1, c2) (m,n) CP(%) LE RE AL

(0.7, 0.6) (1.3, 1.3) (50, 50) 95.6 0.2205 0.6042 0.3837
(75, 75) 94.7 0.2442 0.5724 0.3281

(100, 100) 95.3 0.2570 0.5469 0.2899
(200, 150) 95.3 0.2832 0.5075 0.2242

(0.8, 0.7) (1.5, 1.5) (50, 50) 93.5 0.1214 0.5276 0.4062
(75, 75) 94.7 0.1335 0.5071 0.3736

(100, 100) 94.5 0.1503 0.4999 0.3496
(200, 150) 95.5 0.1701 0.4761 0.3060

(0.9, 0.8) (1.2, 1.2) (50, 50) 93.4 0.1274 0.5320 0.4046
(75, 75) 94.7 0.1429 0.5097 0.3668

(100, 100) 94.2 0.1584 0.4991 0.3407
(200, 150) 94.9 0.1756 0.4735 0.2980

NOTE:
CP(%): coverage probability,
LE: the average left endpoint,
RE: the average right endpoint
AL: the average length of the interval.
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Table 3.2. Empirical likelihood confidence intervals for the ROC curve at
q = 0.3 (∆ = 0.6828).

(p1, p2) (c1, c2) (m,n) CP(%) LE RE AL

(0.7, 0.6) (1.3, 1.3) (50, 50) 94.8 0.3031 0.8237 0.5206
(75, 75) 96.2 0.3295 0.8055 0.4760

(100, 100) 94.8 0.3374 0.8133 0.4758
(200, 150) 94.8 0.3412 0.7897 0.4484

(0.8, 0.7) (1.5, 1.5) (50, 50) 94.4 0.3207 0.8092 0.4885
(75, 75) 96.2 0.3359 0.8002 0.4643

(100, 100) 94.8 0.3409 0.7960 0.4552
(200, 150) 95.9 0.3414 0.7857 0.4443

(0.9, 0.8) (1.2, 1.2) (50, 50) 95.7 0.3271 0.8133 0.4862
(75, 75) 95.0 0.3384 0.7986 0.4603

(100, 100) 95.4 0.3409 0.7910 0.4501
(200, 150) 94.6 0.3414 0.7836 0.4422

NOTE:
CP(%): coverage probability,
LE: the average left endpoint,
RE: the average right endpoint
AL: the average length of the interval.
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Table 3.3. Empirical likelihood confidence intervals for the ROC curve at
q = 0.5 (∆ = 0.8413).

(p1, p2) (c1, c2) (m,n) CP(%) LE RE AL

(0.7, 0.6) (1.3, 1.3) (50, 50) 95.5 0.4167 0.9285 0.5118
(75, 75) 95.2 0.4202 0.9166 0.4964

(100, 100) 94.4 0.4207 0.9110 0.4903
(200, 150) 95.0 0.4207 0.8986 0.4780

(0.8, 0.7) (1.5, 1.5) (50, 50) 94.5 0.4204 0.9213 0.5009
(75, 75) 94.5 0.4207 0.9110 0.4903

(100, 100) 95.3 0.4207 0.9037 0.4831
(200, 150) 96.4 0.4207 0.8917 0.4710

(0.9, 0.8) (1.2, 1.2) (50, 50) 95.8 0.4205 0.9186 0.4981
(75, 75) 94.1 0.4207 0.9092 0.4885

(100, 100) 95.0 0.4207 0.9043 0.4836
(200, 150) 95.1 0.4207 0.8933 0.4726

NOTE:
CP(%): coverage probability,
LE: the average left endpoint,
RE: the average right endpoint
AL: the average length of the interval.
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Table 3.4. Empirical likelihood confidence intervals for the ROC curve at
q = 0.7 (∆ = 0.9363).

(p1, p2) (c1, c2) (m,n) CP(%) LE RE AL

(0.7, 0.6) (1.3, 1.3) (50, 50) 93.9 0.4679 0.9758 0.5079
(75, 75) 95.2 0.4681 0.9697 0.5016

(100, 100) 95.8 0.4681 0.9669 0.4988
(200, 150) 94.5 0.4681 0.9627 0.4945

(0.8, 0.7) (1.5, 1.5) (50, 50) 93.3 0.4681 0.9703 0.5021
(75, 75) 94.6 0.4681 0.9652 0.4971

(100, 100) 96.0 0.4681 0.9628 0.4946
(200, 150) 93.7 0.4681 0.9615 0.4933

(0.9, 0.8) (1.2, 1.2) (50, 50) 93.7 0.4681 0.9702 0.5021
(75, 75) 95.0 0.4681 0.9654 0.4973

(100, 100) 94.3 0.4681 0.9632 0.4951
(200, 150) 94.9 0.4681 0.9611 0.4930

NOTE:
CP(%): coverage probability,
LE: the average left endpoint,
RE: the average right endpoint
AL: the average length of the interval.
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Chapter 4

SUMMARY AND FUTURE WORK

4.1 Summary

In this thesis, a smoothed empirical likelihood method is proposed to construct

the confidence intervals for ROC curves with missing data in both populations.

First, random hot deck imputation is applied to deal with data missing complete-

ly at random (MCAR). Then the empirical likelihood ratio statistic under imputation

can be proved to converge to a weighted chi-square distribution asymptotically. Then

the simulation studies evaluate the finite sample numerical performance of the in-

ference. All coverage probabilities are close to the nominal level of 95%, and larger

sample sizes lead to more accurate coverage probabilities, that is, closer to 95%,

and smaller average length of the confidence intervals as well. Moreover, when the

response rates are P1 = P2 = 1, which means both populations are complete, the

asymptotic limit distribution is reduced to χ2
1 distribution.

4.2 Future Work

In the future, we can continue the study in more than one way.

First, real data sets can be applied to testify the performance of the proposed

method. Second, to obtain a more efficient confidence interval, we can try the boot-
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strap method to explore better bandwidths for the kernel functions. Third, other

than the hot deck imputation used in the this thesis, we can try other imputation

methods, in order to utilize more information in the data.

In summary, the comparison of ROC curves can be further investigated in many

different aspects.
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APPENDICES

Appendix A: Lemmas and Proofs

The following lemma of Chen and Rao (2007) will be used later.

Lemma 1. Let Un, Vn be two sequences of random variables and let Bn be a σ-algebra.

Assume that

1. There exists σ1n > 0 such that

σ−11n Vn
d−→ N(0, 1),

as n→∞, where Vn is Bn measurable.

2. E[Un|Bn] = 0 and V ar(Un|Bn) = σ2
2n such that

sup
t
|P (σ−12nUn ≤ t|Bn)− Φ(t)| = op(1),

where Φ(.) is the distribution function of the standard normal random variable.

3. γ2n = σ2
1n/σ

2
2n = γ2 + op(1)

Then, as n→∞,

Un + Vn√
σ2
1n + σ2

2n

d−→ N(0, 1).

To prove the main results, we need some additional lemmas.
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Lemma 2. Under the conditions of Theorem 1, as m,n→∞, we have

1√
m

m∑
i=1

ω1(xI,i, θ0,∆)
d−→ N(0, σ2

1),

1√
n

n∑
i=1

ω2(xI,i, θ0,∆)
d−→ N(0, σ2

2),

and

1

m

m∑
i=1

ω2
1(xI,i, θ0,∆) = ∆(1−∆) + op(1),

1

n

n∑
i=1

ω2
2(yI,j, θ0,∆) = q(1− q) + op(1),

where

σ2
1 = (1− P1 + P−11 )∆(1−∆), σ2

2 = (1− P2 + P−12 )q(1− q).

Proof of Lemma 2. Let ω1r =
1

rx

∑
i∈Srx

ω1(xi, θ0,∆) and Bm = σ((δxi, xi), i = 1, ...,m).

Then

E(ω1(x
∗
i , θ0,∆)|Bm) = ω1r,

V ar(ω1(x
∗
i , θ0,∆)|Bm) =

1

rx

∑
i∈Srx

{ω1(xi, θ0,∆)− ω1r}2.

It follows that

1√
m

m∑
i=1

ω1(xI,i, θ0,∆) =
√
mω1r +

1√
m

∑
i∈Smx

{ω1(x
∗
i , θ0,∆)− E(ω1(x

∗
i , θ0,∆)|Bm)}

= Vm + Um.

(1)
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Vm is Bm measurable and

Vm =
√
m

1

rx

∑
i∈Srx

{ω1(xi, θ0,∆)− Eω1(xi, θ0,∆)}+
√
mEω1(xi, θ0,∆).

It can be shown that Eω1(xi, θ0,∆) = O(at0). Thus from Assumption (iii) and (v), it

follows that
√
mEω1(xi, θ0,∆) = o(1). Combining with the MCAR assumption and

the Central Limit Theorem (CLT), it gives,

Vm
d−→ N(0, P−11 ∆(1−∆)).

From Berry-Esseen’s Central Limit Theorem for independent random variables, we

have

sup
t
|P (σ−12mUm ≤ t|Bm)− Φ(t)| = op(1),

where σ2
2m = (1 − P1)Eω1(x, θ0,∆) = (1 − P1)∆(1 −∆). Hence, from Lemma 1, we

have

1√
m

∑
i

ω1(xI,i, θ0,∆)
d−→ N(0, σ2

1).

On the other hand, denote the conditional probability given Bm as P ∗. Then by the

Law of Large Numbers and MCAR assumption,

1

mx

∑
i∈smx

ω2
1(x∗i , θ0,∆) =

1

rx

∑
i∈srx

ω2
1(xi, θ0,∆) + oP ∗(1) = Eω2

1(x, θ0,∆) + op(1).
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It follows that

1

m

m∑
i=1

ω2
1(xI,i, θ0,∆) =

1

m

m∑
i=1

{δxiω2
1(xi, θ0,∆) + (1− δxi)ω2

1(x∗i , θ0,∆)}

= P1Eω
2
1(x, θ0,∆) + op(1) +

mx

m

1

mx

∑
i∈smx

ω2
1(x∗i , θ0,∆)

=
1

m

m∑
i=1

{δxiω2
1(xi, θ0,∆) + (1− δxi)ω2

1(x∗i , θ0,∆)}

= P1Eω
2
1(x, θ0,∆) + op(1) + (1− P1)Eω

2
1(x, θ0,∆) + op(1)

= Eω2
1(x, θ0,∆) + op(1)

= ∆(1−∆) + op(1).

The rest of Lemma 2 can be proved similarly. So the proof of Lemma 2 is complete.

Lemma 3. Suppose that 1/3 < η < 1/2 and the conditions of Theorem 1 are satisfied.

Then, as m,n→∞,

λ1(θ) = Op(n
−ηa−1 + at0),

and

λ2(θ) = Op(n
−ηb−1 + bt0),

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is a positive constant.

Proof of Lemma 3. It can be shown that

|ω1(xI,i, θ,∆)− ω1(xI,i, θ0,∆)| ≤ ca−1n−η

for some constant c as θ ∈ {θ : |θ − θ0| ≤ cn−η}. Combining with Lemma 2 we have

1

m

m∑
i=1

ω1(xI,i, θ,∆) = Op(n
−ηa−1 + at0),
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1

m

m∑
i=1

ω2
1(xI,i, θ,∆) = ∆(1−∆) + op(1).

Denote Zm = max
1≤i≤m

|ω1(xI,i, θ,∆)|. Then Zm ≤ c, a.s. Thus equation (2.7) gives that

|λ1(θ)|
1 + Zm|λ1(θ)|

{∆(1−∆) +OP (1)} = Op(n
−ηa−1 + at0).

Therefore λ1(θ) = Op(n
−ηa−1+at0). The rest of Lemma 2 can be proved similarly.

Lemma 4. Suppose that 1/3 < η < 1/2 and the conditions of Theorem 1 are satisfied.

Then with probability tending to 1 there exists a root θm,n of equation (2.9) such that,

as m, n→∞,

|θm,n − θ0| = Op(n
−η),

and R(∆, θ) attains its local maximum value at θm,n.

Proof of Lemma 4. Take |θ − θ0| = n−η. Denote ω1j(θ) =
1

m

m∑
i=1

ωj1(xI,i, θ,∆) for

j = 1, 2 and

R1(∆, θ) = −
m∑
i=1

log{1 + λ1(θ)ω1(xI,i, θ,∆)},

R2(∆, θ) = −
n∑
j=1

log{1 + λ2(θ)ω2(yI,j, θ,∆)}.

From equation (2.7), we obtain that

ω11(θ)− λ1(θ)ω12(θ) +
1

m
λ21(θ)

m∑
i=1

ω3
1(xI,i, θ,∆)

1 + λ1ω1(xI,i, θ,∆)
= 0.

Using Lemma 3, we have

λ1(θ) = ω11(θ){ω12(θ)}−1 +Op{λ21(θ)}.
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By the Taylor expansion we have

−R1(∆, θ) =
m∑
i=1

λ1(θ)ω1(xI,i, θ,∆)− 1

2

m∑
i=1

λ21(θ)ω
2
1(xI,i, θ,∆) +Op{mλ31(θ)}

= mλ1(θ)ω11(θ)−
1

2
mλ21(θ)ω12(θ) +Op{mλ31(θ)}

=
m

2
{ω12(θ)}−1{ω11(θ)}2 +Op{mλ31(θ)}

=
m

2
{ω12(θ0) + 0p(1)}−1{ω11(θ0) + γ11(θ0)n

−η +Op(n
−2η)}2 +Op{mλ31(θ)}

=
m

2
{q(1− q) + 0p(1)}−1{ω11(θ0) + f(θ0)n

−η + op(n
−η)}2 + op(mm

−2η),

where γ11(θ0) = 1
ma

∑
i

K((θ0 − xI,i)/a). From Assumptions (iii), (v), Lemma 3 and

its proof, it follows that ω11(θ0) = Op(a
t0 +m−1/2) = op(m

−η). Thus,

−R1(∆, θ) =
m

2
{q(1− q)}−1 + f 2(θ0)n

−2η + op(mn
−2η).

On the other hand, from the above derivations, we can see that

−R1(∆, θ) = op(mn
−2η).

It follows that, when |θ − θ0| = n−η, with probability tending to 1,

−R1(∆, θ) > −R1(∆, θ0).

Similarly,

−R2(∆, θ) > −R2(∆, θ0).

Thus,

R(∆, θ) < R(∆, θ0).
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From the continuity of R(∆, θ), we have Lemma 4.

Lemma 5. Suppose that the conditions of Theorem 1 are satisfied and that θm,n is

as in Lemma 4. Then, as m,n→∞,

√
m(θm,n − θ0)

d−→ N(0, (f 2(θ0)σ
2
1 + kg2(θ0 + ∆)σ2

2)/c20),

λ1(θm,n) = −kg(θ0 + ∆)

f(θ0)
λ29θm,n) + op(n

−1/2),

√
mλ2(θm,n)

d−→ N(0, σ2),

where

σ2 = {q(1− q)}−1f 2(θ0)
(1− P1 + P−11 )g2(θ0 + ∆) + k−1(1− P2 + P−12 )f 2(θ0)

c20
,

and σ2
j , j = 1, 2 and c0 are defined as in Lemma 2 and Theorem 1.

Proof of Lemma 5. Let λ1 = λ1(θ), λE1 = λ1(θm,n), λ2 = λ2(θ), λE2 = λ2(θm,n) and

Q1,m,n(θ, λ1, λ2) =
1

m

m∑
i=1

ω1(xI,i, θ,∆)

1 + λ1ω1(xI,i, θ,∆)
,

Q2,m,n(θ, λ1, λ2) =
1

n

n∑
j=1

ω2(yI,j, θ,∆)

1 + λ2ω2(yI,j, θ,∆)
,

Q3,m,n(θ, λ1, λ2) =
λ1
ma

m∑
i=1

K1((θ − xI,i)/a)

1 + λ1ω1(xI,i, θ,∆)
+
λ2
mb

n∑
j=1

K2((θ − yI,j)/b)
1 + λ2ω2(yI,j, θ,∆)

.

From Lemma 4, we have

Qi,m,n(θm,n, λE1, λE2) = 0, i = 1, 2, 3.
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From the Taylor expansion and Lemma 3 and Lemma 4, we have

0 = Qi,m,n(θm,n, λE1, λE2)

= Qi,m,n(θ0, 0, 0) +
∂Qi,m,n(θ0, 0, 0)

∂θ
(θm,n − θ0)

+
∂Qi,m,n(θ0, 0, 0)

∂λ1
λE1 +

∂Qi,m,n(θ0, 0, 0)

∂λ2
λE2 + op(εn), i = 1, 2, 3,

where εn = |θm,n − θ0|+ |λE1|+ |λE2|. Hence

Qi,m,n(θ0, 0, 0) +
∂Qi,m,n(θ0, 0, 0)

∂θ
(θm,n − θ0)

+
∂Qi,m,n(θ0, 0, 0)

∂λ1
λE1 +

∂Qi,m,n(θ0, 0, 0)

∂λ2
λE2 = op(εn), i = 1, 2, 3.

(2)

Similar to the proof of Lemma 2, it can be shown that

∂Q1,m,n(θ0, 0, 0)

∂θ
= f(θ0) + op(1),

∂Q1,m,n(θ0, 0, 0)

∂λ1
= −∆(1−∆) + op(1),

∂Q1,m,n(θ0, 0, 0)

∂λ2
= 0,

∂Q2,m,n(θ0, 0, 0)

∂θ
= g(θ0) + op(1),

∂Q2,m,n(θ0, 0, 0)

∂λ1
= 0,

∂Q2,m,n(θ0, 0, 0)

∂λ2
= −q(1− q) + op(1),

∂Q3,m,n(θ0, 0, 0)

∂θ
= 0,

∂Q3,m,n(θ0, 0, 0)

∂λ1
= f(θ0) + op(1),

∂Q3,m,n(θ0, 0, 0)

∂λ2
= kg(θ0) + op(1).
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Thus 
θm,n − θ0

λE1

λE2

 = S−1


−Q1,m,n(θ0, 0, 0)

−Q2,m,n(θ0, 0, 0)

0

+ op(εn),

where

S =


f(θ0) −∆(1−∆) 0

g(θ0) 0 −q(1− q)

0 f(θ0) kg(θ0)

 .

Combining with
√
nQj,m,n(θ0, 0, 0) = Op(1), j = 1, 2, we have εn = Op(n

−1/2). It

follows that

θm,n−θ0 = − 1

c0
{q(1−q)f(θ0)Q1,m,n(θ0, 0, 0)+k∆(1−∆)g(θ0)Q2,m,n(θ0, 0, 0)}+op(n−1/2),

λE1 =
kg(θ0)

c0
{g(θ0)Q1,m,n(θ0, 0, 0)− f(θ0)Q2,m,n(θ0, 0, 0)}+ op(n

−1/2),

λE2 = −f(θ0)

c0
{g(θ0)Q1,m,n(θ0, 0, 0)− f(θ0)Q2,m,n(θ0, 0, 0)}+ op(n

−1/2).

From Lemma 2, we have

√
m

 Q1,m,n(θ0, 0, 0)

Q2,m,n(θ0, 0, 0)

 d−→ N

0,

 σ2
1 0

0 k−1σ2
2


 .

Thus Lemma 5 is proved.

Proof of Theorem 1. Similar to the proof of Theorem 1 in Owen (1990), it can be
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shown that

− 2R(∆, θm,n)

=mλ21(θm,n)× 1

m

m∑
i=1

ω2
1(xI,i, θ,∆) + nλ22(θm,n)× 1

n

n∑
j=1

ω2
2(yI,j, θ,∆) + op(1).

Combining with Lemma 2 and Lemma 5, Theorem 1 is proved.
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