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ABSTRACT 

Macromolecular interactions play very important roles in regulation of all levels of bio-

logical processes. Aberrant macromolecular interactions often result in diseases. By applying a 

combination of spectroscopy, calorimetry, computation and other techniques, the protein-protein 

interactions in the system of the Shaw2 Kv channel and the protein-RNA interactions in West 

Nile virus RNA-cellular protein TIAR complex were explored. In the former system, the results 

shed light on the local structures of the key channel components and their potential interaction 



mediated by butanol, a general anesthetic. In the later studies, the binding modes of TIAR RRM2 

to oligoU RNAs and West Nile virus RNAs were investigated. These findings provided insights 

into the basis of the specific cellular protein–viral RNA interaction and preliminary data for the 

development of strategies on how to interfere with virus replication.  
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1 INTRODUCTION 

The ability of one molecule to recognize another through binding interactions underlies 

all levels of biological processes in living cells. The binding partners include small molecule-

protein, protein-protein, protein-nucleic acids, small molecule-nucleic acids and so on. These 

interactions are specific and of high affinity; aberrant macromolecular interactions often result in 

diseases, including cancer (1). Recent technical advances have provided unprecedented insight 

into these interactions on a structural and thermodynamic basis. This has led to a better under-

standing of the biology mediated by these interactions and how their alteration causes diseases, 

therefore contributing to pharmaceutical science.  

1.1 Protein-Protein Interaction and its Modulation by Small Molecules 

Protein-protein interactions (PPIs) are of major importance to biological systems. They 

are involved in almost every biological process such as the transport machinery across the vari-

ous biological membranes, packaging of chromatin, signal transduction (2), regulation of gene 

expression, and so on.  

Intramolecular intereactions of proteins are also a widely recognized phenomenon. For 

example, the interactions of the side-chains on the protein surface (3-6) are important for protein 

conformational changes which occur upon binding (7-8). These intramolecular rearrangements 

often facilitate tight binding. Another type of intramolecular interaction occurs between protein 

domains (9-13). For example, an interaction exists between the serine protease motif in the pas-

senger domain and the β-helical domain of serine protease autotransporters of the family Entero-
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bacteriaceae (SPATE). The interaction is important for both the proteolytic and adhesive activi-

ties of SPATE. Disrupting the intramolecular interaction by mutation can result in an inactive 

protein (12). 

Conventional drug design has primarily focused on the inhibition of enzymes, since the 

ligand-binding site on the protein can be often utilized to guide the development of small mole-

cule drugs. However, due to the importance of PPIs in many biological processes, small mole-

cules capable of modulating PPIs have become more attractive in pharmaceutical science (14-

20).  

In the voltage gated potassium (Kv) channel, the intramolecular interaction between the 

voltage sensing domain and the pore domain is thought to be responsible for the opening and 

closing of channel (21-24). This interaction may also be responsible for inhibition of the channel 

by general anesthetics (25). Chapter 3 demonstrates the interaction of the S4-S5 linker peptide of 

the voltage sensing domain and S6 termini of the pore domain with butanol, respectively. In ad-

dition, a butanol mediated intramolecular interaction in the channel’s active site is proposed. 

1.2 Protein-RNA Interaction 

Interactions between proteins and RNAs (Protein–RNA interactions; PRIs) are essential 

events that control a variety of cellular processes. They are the major player in post-

transcriptional control of RNAs, such as: alternative splicing, RNA editing, polyadenylation, 

RNA export, mRNA stabilization, mRNA localization and translation (26-27). RNA binding pro-

teins (RBPs) achieve highly specific recognition of their RNA targets by recognizing both their 

sequences and structures (28). However, studies on PRIs are more challenging then protein-DNA 

interactions due to the complexity of RNA structure and recognition modes.  
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It has been generally accepted that the RBPs recognize their target RNAs using several 

known binding motifs, such as: RNA Recognition Motif (RRM), also known as RNA-binding 

domain (RBD) or ribonucleoprotein domain (RNP), K Homology (KH) domain, Zinc finger 

(mainly C-x8-C-x5-C-x3-H type), double-stranded RNA binding domain (DS-RBD), RGG box, 

DEAD/DEAH box, Pumilio/FBF (PUF) domain, Piwi/Argonaute/Zwille (PAZ) domain and Sm 

domain. Some RBPs may contain one or multiple copies of the same RNA binding domain, oth-

ers may contain several distinct domains (29). The presence of some RNA binding domains is 

suggestive of the protein function; for example, the existence of a DEAD/DEAH box is indica-

tive of RNA helicase activity of the protein. However, other domains may only predict an RNA 

binding property of the protein such as RRMs.   

RRM is one of the most abundant protein domains in eukaryotes. It also has been found 

in prokaryotes and viruses. Prokaryotic RRM proteins have only one single copy of the RRM 

domain while in eukaryotic protein, RRMs are often found as multiple copies (two to six). This 

protein domain is usually comprised of 90 amino acids and contains an eight amino acid consen-

sus sequence RNP-1 and a less well conserved six residue consensus sequence RNP-2 (30-31). 

The typical RRM topology consists of four anti-parallel β-strands and two α-helices arranged in 

a βαββαβ fold. The β sheet is most commonly used to interact with single-stranded RNA. How-

ever, in the case of proteins containing multiple RRMs, the N- and C-terminal extensions of the 

domain and the inter-domain linker are also involved in RNA binding (32-34), reflecting the re-

markable adaptability of this domain in order to achieve high affinity and specificity.  

Chapter 4 studies a case of a RRM containing cellular protein, T cell restricted intracellu-

lar antigen-1 related protein (TIAR), which interacts with a West Nile virus RNA segment. The 

findings provide insight into the binding mode and the basis for developing potential approaches 
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to interfere with the protein-viral RNA interaction, therefore contributing to designing anti-viral 

drugs or therapies.   

1.3 Thermodynamics of Macromolecular Interactions 

The thermodynamics of a macromolecular interaction describe the heat interchange that 

arises from the changes of structure and freedom of motion of the binding partners during a bind-

ing event. 

Molecular binding interactions are only favored when they are coupled with a negative 

Gibbs' free energy (ΔG) that consists of both enthalpic (∆H) and entropic (T∆S) components. 

The enthalpic contribution reflects the specificity and strength of the interactions between both 

partners. This includes ionic, hydrogen bonding, electrostatic, and van der Waals interactions and 

so on. The entropic contribution is related to the disorder/structure motion of the overall system. 

Solvation effects, such as solvent re-organization, or the displacement of tightly bound water or 

ions upon ligand binding can also contribute significantly to the entropic term of the binding free 

energy (35). 

Macromolecular binding interactions can be enthalpy-driven or entropy-driven processes. 

Understanding the forces driving partner recognition is very important for elucidation of the 

binding mechanism. In addition, because molecular activity is highly structure dependent, under-

standing the correlation of the thermodynamic parameters with the structures of interacting part-

ners provides valuable information for medicinal chemistry. 

Many experimental techniques have been developed to study various aspects of macro-

molecular binding thermodynamics. For example, X-ray crystallography depicts the static struc-

tures of ligand-receptor complexes. Thus, it provides very valuable information about the enthal-
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pic contribution (hydrogen bonds, electrostatic interactions, etc). Nuclear magnetic resonance 

(NMR) (36) and fluorescence (37) spectroscopy are both powerful techniques for studying lig-

and-receptor dynamics, thereby helping the understanding of entropic components. In addition, 

NMR spectroscopy assesses the enthalpic contribution by providing structural information. Sur-

face plasmon resonance (SPR) is also frequently used to study binding events and allows 

straightforward determination of equilibrium binding constants (38). Other widely used tech-

niques in macromolecular association studies are calorimetric techniques, which include differ-

ential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The later technique 

can provide all the relevant thermodynamics parameters of the binding events in a single experi-

ment (39). 

1.4 Chapter Outline 

In the following chapters, protein structure and inter- and intra-molecular interactions in 

various biological systems are studied by NMR combined with other physical or biological tech-

niques. Chapter 2 shows an example of the use of NMR to explore the thermodynamics and ki-

netics of peptide bond trans-cis isomerization in various peptide systems. This work provides 

insight into the effect of solvents and flanking sequences as well as structural constraints on 

trans-cis isomerization. Chapter 3 details the structure and the orientation of the linker peptide of 

S4 and S5 (L45) of the Shaw2 voltage gated potassium channel in a membrane-like environment. 

A possible intra-molecular interaction between L45 and the C-terminus of S6 mediated by gen-

eral anesthetic butanol is predicted. This study helps to understand the local conformation and 

the active site of the channel in response to anesthetics. In chapter 4, the specific interaction of 3′ 

terminus of the West Nile virus minus strand RNA and the cellular protein TIAR is investigated 
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to reveal the binding mode and the thermodynamics of this interaction. The results will shed light 

on the basis for the high affinity of the viral RNA-cellular protein, thus providing information for 

new therapeutic approaches for WNV infections. Chapter 5 presents a novel 2D NMR technique 

by which adenosine H2 and H8 resonances can be easily assigned for nucleic acid NMR struc-

ture determination.  
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2 CHARACTERIZATION OF SECONDARY AMIDE PEPTIDE BOND ISOMERIZA-

TION: THERMODYNAMICS AND KINETICS FROM 2D NMR SPECTROSCOPY 

2.1 Preface 

The initial assignments for Ac-IGGN-NH2 peptide were obtained by Darrien James. This 

work was published in Biopolymers (2011) 95: 755-762. 

2.2 Introduction 

2.2.1 The natural abundance of secondary and tertiary cis peptide bonds and their experi-

mental detection 

The planar peptide bond can adopt two conformations, cis and trans, that are separated by 

a large rotational barrier of approximately 54-84 kJ/mol (1-3). Examination of existing protein 

structures reveals that with the exception of proline all other natural amino acids nearly exclu-

sively occur as the trans isomer (99.95-99.97%) (4-6). In the cis isomer, the Cα positions (Cα 

and side chains) of preceding and following amino acids clash while the amide hydrogen offers 

much less steric repulsion rendering the trans conformation highly preferred. The tertiary amide 

peptide bond experiences clashes in both the cis and trans isomers which are energetically simi-

lar. Consequently, the proportion of the cis isomer in the population is significantly higher (5%-

9%) (4-6). 

Previous studies on the frequencies of cis peptide bonds vary widely (4-7). There is a dis-

crepancy between the fraction of cis conformation detected from structural analysis and what 
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would be expected from the free energy difference obtained from model systems (4).  For a ∆G 

of 10 kJ/mol, the cis population is estimated to be 1.5% at 293 K, which is 50 times larger than 

apparent in protein data bank (PDB) data (6). This discrepancy may be in part due to the difficul-

ty in detecting cis peptide bonds by lower resolution x-ray crystallography. Indeed, higher reso-

lution structures reveal a higher frequency of cis peptide bonds (5-6). Dominant cis peptide 

bonds in proteins are reliably detected by NMR from characteristic Nuclear-Overhauser Effect 

(NOE) proton-proton distances (8-11). However, if a cis peptide bond occurs only as a minor 

species or in unstructured peptides, then the NOE’s are not effective and the detection is clearly 

more difficult. It is also noted that the NMR coupling constants 3JCA-HN and 3JCA-CA depend on 

ω. Ηowever, the variations are very modest which limits their usefulness. In addition, 13C and 

15N-enriched samples are required for such experiments (12). 

The effect of flanking sequence on the stability of the cis conformation has been explored 

in a number of studies focusing on the role of local interactions within neighboring residues (13-

15). Specifically, aromatic residues were observed to be able to stabilize cis conformations by 

local interactions (4, 14, 16-17). In addition, protein folding constraints and distant residues can 

also be a source of stabilization. This is supported by mutational studies, where a cis peptide 

bond was retained even after the proline was replaced by a non-proline residue (10, 18-22). 

Structural statistics have shown that cis peptide bonds are located preferably in the region with 

strained backbones such as coils, bends and VI type turns (5, 16, 23). Interestingly, cis tertiary 

amide bonds are generally located on the protein surface while cis secondary amide bonds are 

frequently found in the protein interior (16). 
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2.2.2 Function of protein secondary cis peptide bonds and trans-cis isomerization in biologi-

cal systems 

Although rare, cis peptide bonds are functionally important. Secondary amide cis peptide 

bonds often occur near or at the active sites of proteins and are believed to engage in regulating 

biochemical properties and participate in metal binding (19, 24-28). For example, the Asp117-

Asp118 cis peptide bond (28) is involved in Zn2+ binding at the active site of Aeromonas Proteo-

lytica aminopeptidase. (PDB ID: 1amp). In addition, the strain inherent in a cis peptide bond can 

potentially serve as an energy reservoir which could be used to facilitate conformation changes 

or contribute to reactions (4). As a consequence of the large rotational barrier, the trans-cis isom-

erization of both tertiary and secondary amide bonds is a slow process in aqueous solution (5). 

For tertiary amide bonds, the cis to trans rate constant is 1-5·10-3 s-1 and the reverse process is 

slightly slower and depends on the flanking sequence (29-30). The cis to trans conversion is 

faster with 0.2-2.4 s-1 for secondary amide bonds while trans to cis reaction rate is 0.6-3.3·10-3 s-1 

(3, 31). As a result, the isomerization of both tertiary (32-34) and secondary amide (35-38) bonds 

contribute to rate-determining steps in protein folding, especially when the rarer cis form is pre-

sent in the folded protein. This is the case for the refolding of RNase T1 where a rapid initial 

folding step is followed by an extremely slow trans to cis conversion of the Tyr38-Ala39 bond 

(35). To facilitate folding, organisms possess both tertiary and secondary amide isomerases (32, 

39-40).  

2.2.3 Methods used for the detection of cis peptide bond and trans-cis isomerization 

Several experimental (18, 37, 41) and theoretical (42-46) studies have explored the role 

of tertiary amide bond isomerization in regulating the kinetics and thermodynamics of protein 
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folding and function. Secondary amide cis peptide bonds have received less attention in part due 

to the fact that their low frequency and low abundance greatly hampers direct experimental stud-

ies in peptides and proteins and necessitates indirect approaches. For example, fluorescence was 

used to monitor the cis-trans conversion of Ala39 in the refolding of a RNase T1 mutant (35). 

NMR was utilized early on to characterize cis-trans isomers of simple molecules containing N-

substituted amide bonds (47-48). In addition, UV/visible and UV Raman spectroscopy have been 

used to study the cis-trans conversion of a GG dipeptide exploiting the different spectral proper-

ties of the two isomers (49-50). Small peptides have been investigated by the Fischer and 

Rabenstein groups using NMR in aqueous solution (3, 31). In these studies, the target peptide 

bonds were flanked by aromatic residues which permitted the use of the alanine methyl group as 

a convenient monitor to study the low abundance of cis conformation. In addition, recent theoret-

ical calculations of simple dipetide model systems have provided information on thermodynamic 

properties of cis conformers (46, 51). Encouraged by these studies we investigated peptides 

without aromatic side chains but with multiple peptide bonds to probe for all possible confor-

mations. 

In the present work, the quantum mechanical calculations on the dipeptide Ac-G-G-NH-

Me were followed up by NMR experimental studies on tripeptides Ac-G-G-G-NH2, Ac-I-G-G-

NH2, and an extended tetrapeptide Ac-I-G-G-N-NH2. The formation of cis peptide bond con-

formers and the exchange process between two conformations were monitored with two-

dimensional exchange spectroscopy (EXSY) (52). This permits the identification and study of 

minor species (<1%) in the presence of impurities which would obscure resonances of minor 

conformations in 1D spectra. Thermodynamic properties were calculated based on temperature 

dependent population changes. The cis-trans isomerization rates and activation energies were 
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obtained using Perrin & Dwyer’s approach to extract exchange data from EXSY spectra (52). In 

addition, a cyclic peptide with the same sequence as the tetrapeptide IGGN was also investigated 

to explore whether the cyclization constraints would stabilize or inhibit cis conformer formation. 

2.3 Materials and Methods 

2.3.1 Chemicals 

All linear peptides are acetylated on the N-terminus and amidated on the C-terminus. 

Both linear and cyclic peptides (purity > 95%) were purchased from GenScript USA Inc. (NJ, 

USA). Dimethyl sulfoxide-d6 (DMSO-d6), Acetone-d6 and CDCl3 (isotopic purity > 99.6%) 

were purchased from Cambridge Isotope Laboratories (Andover, MA). N-methylacetamide 

(NMA, purity > 99%) was obtained from the Sigma Chemical Co. (St. Louis, MO). 

2.3.2 NMR samples preparation 

All linear peptides (20 mM) and the cyclic peptide (30 mM) were prepared in DMSO-d6. 

NMA samples (100 mM) were prepared in DMSO-d6, CDCl3 and Aceton-d6. 

2.3.3 Chemical shift quantum calculations 

All ab initio Hartree Fock and density functional calculations were carried out using the 

Gaussian 03 package. Local minima for the Ac-G-G-NHMe peptides were optimized at the den-

sity functional B3LYP/6-31G(d) level. NMR calculations were carried out using HF/6-311+g 

(2d,p) (53-54). All calculations were carried out in the gas phase and DMSO was used as a refer-

ence.  
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2.3.4 NMR experiments 

The NMR experiments were recorded on a Bruker Avance 600 MHz spectrometer with a 

5 mm QXI probe. Two-dimensional phase sensitive NOESY/EXCSY spectra (6K×1K) were rec-

orded with a series of mixing time from 15 ms to 250 ms, typically 16 scans were acquired. 

TOCSY (2K×400), COSY (2K×1400) and ROESY (1K×512) spectra were recorded with a 

sweep width of 10 ppm and 8 scans. 

2.3.5 Exchange rate calculation 

Impurities, satellite peaks and signal overlap limit the use 1D methods.  Chemical ex-

change rates were determined from 2D Exchange Spectroscopy (EXSY) which provides a map 

of the exchanging species (55). Considering the greatly unequal population between the two ex-

changing species, as well as a similar spin-lattice relaxation time T1 of the two species, (Supple-

mentary Material Table S2.1) we found the approach outlined by Perrin & Dwyer (52) conven-

ient. For a simple two site exchange, the total exchange rate k (k = kc t + kt c) is given by the 

equation: 

1 1ln (1)
1m

rk
t r

+
=

−  

The term r accounts for unequal populations and is defined as: 
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where Ic and It are the diagonal peak intensities of two exchangeable resonances in the EXCSY 

and Ic t and It c are the intensities of the exchange cross peaks, tm is the mixing time and Xc and 

Xt are the mole fractions of the cis and trans forms. 
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2.3.6 Temperature coefficients of amide protons 

The temperature coefficients Δδ/ΔT of amide protons were obtained from the slopes of 

plots of chemical shift against temperature. Intra-molecular hydrogen bonds form when Δδ/ΔT ≤ 

3 ppb/°C. Hydrogen bonds form with solvent when Δδ/ΔT > 5 ppb/°C. 

2.4 Results and Discussion 

2.4.1 Chemical shift calculations 

To assess the impact of cis peptide bonds on the chemical shift of the amide protons, a 

dipeptide model was evaluated (Figure 2.1A). In this model, we focused on the peptide bond be-

tween two glycines. GTG and GcG describe two models with either a trans or cis peptide bond 

(ω1); while cGG, GGc represent models with cis conformations adopted by the N (ω0) and C 

(ω2) terminal peptide-like bonds,respectively. The amide proton of G2 in the GcG model was 

upfield shifted by 3.31 ppm compared to the GTG control, indicating that the amide proton in cis 

conformation is more shielded (Table 2.1), which is consistent with previous experimental data 

(3). These calculations also predicted that a cis conformation can cause an upfield shift of an ad-

jacent trans peptide amide proton as predicted for both cGG and GGc. 

 

Figure 2.1 (A) Definition of torsion angles of the Ac-G-G-NH-Me dipeptide model. (B) N-
methyl acetamide.  
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Table 2.1 Torsion angles and Gly2 HN chemical shifts computed for Ac-G-G-NHMe.  

 

2.4.2 NMR assignment of 1H resonances 

Proton resonances of the peptides were assigned using standard two-dimensional 

TOCSY, NOESY and ROESY experiments. In addition to regular peptide amide protons which 

resonate around 8 ppm, we also observed several minor signals (7.3-7.8 ppm) at less than 1% of 

the main amide proton signals. At this low signal intensity, resonances of minor conformers were 

identified from EXSY and ROESY experiments which distinguish minor conformers from po-

tential impurities. As shown in Figure 2.2, exchange peaks clearly correlate with the major and 

minor amide proton (HN) resonances. Two minor resonances were observed to be associated with 

Gly1 and Gly2 of Ac-G-G-G-NH2, Gly2 of Ac-I-G-G-NH2 as well as Gly2 and Gly3 of Ac-I-G-

G-N-NH2 (Figure 2.3). It is highly unlikely that this indicates the presence of multiple simulta-

neous cis peptide conformations because this would be energetically strongly disfavored, espe-

cially in an unconstrained system. Therefore, only one of the two signals can be from the cis 

isomer, while the other is suspected to arise from the trans isomer that is affected by a neighbor-

ing cis peptide bond. This would be consistent with the chemical shift calculations. However, 

similar findings were also reported previously for peptides containing proline, which had a much 

higher percentage of cis isomers (56-60). Such an assignment would require that the kinetic and 

thermodynamic property of a minor trans form is the same as the neighboring cis conformer. As 

  ω0 φ1 ψ1 ω1 φ2 ψ2 ω2 G2δH(N) (ppm)  

GTG 177.6 81.2 -67.0 -178.1 -80.2 67.5 -178.6 8.2 

GcG -176.9 -120.7 45.0 7.5 -98.7 -11.6 -177.3 4.9 

cGG 11.1 -96.9 -2.1 -177.2 -81.2 65.1 -179.4 6.7 

GGc -175.6 -83.1 63.5 176.1 120.7 -65.7 2.0 7.7 
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shown in Table 2.2, the cis conformers (c) are characterized by a greater upfield shift which is 

consistent with reported data (3). In addition, the three bond coupling 3JHNαH of the minor and 

major conformers are different, signifying a difference in the backbone torsion angle φ and al-

lowing us to distinguish two minor conformers. Specifically, the cis forms exhibit a larger 3JHNαH 

coupling compared to the major trans forms in agreement with previously reported data (3).  

However, the other minor conformers (t) had similar 3JHNαH couplings to the major trans con-

formers (T) and were assigned as trans conformation coexisting with an adjacent cis peptide 

bond. For Ac-I1 in Ac-I-G-G-NH2 and Ac-I-G-G-N-NH2 only one minor conformer, the cis con-

former, could be detected (Table 2.2). 

 

Figure 2.2 HN region of 2D EXSY with corresponding 1D spectrum of Ac-GGG-NH2 at 303 K. 
A data matrix of 6 K ×1 K was recorded with relaxation delay of 3 s, mixing time of 100 ms. 
Minor conformers are labeled in the 1D spectrum. 
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Figure 2.3 HN region of 2D EXSY with corresponding 1D spectrum of Ac-I-G-G-N-NH2 at 303 
K. A data matrix of 6 K ×1 K was recorded with relaxation delay of 3 s and mixing time of 100 
ms.  

Table 2.2 Amide proton chemical shifts and 3JHNαH couplings for major (trans) and minor pep-
tide bond isomers recorded at 303K. T indicates major and m minor HN resonances. (m1: minor 
trans conformer. m2: cis conformer) ΔCS represents the chemical shift difference between major 
and minor forms. In all cases, the minor forms resonate upfield from the major forms. OL: cou-
pling data could not be extracted due to overlap. *: only one minor form could be detected. 

Pept. Seq. 
Gly1(Ile1) Gly2 Gly3 Asn4 

T t c T t c T t c T c 

Ac-G-G-G-NH2 
ΔCS - 0.27 1.0 - 0.35 0.76 - * 0.69   

3JNHaH 5.8 OL 6.7 5.6 OL 6.7 5.9 * 6.2   

Ac-I-G-G-NH2 
ΔCS - * 0.95 - 0.4 1.1 - * 0.66   

3JNHaH 6.5 * 9.5 5.6 OL 6.6 5.6 * 6.4   

Ac-I-G-G-N-NH2 
ΔCS - * 0.72 - 0.37 1.0 - 0.35 0.72 - 0.6 

3JNHaH 8.3 * 9.9 5.6 OL OL 5.6 4.9 6.6 8.3 9.8 
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2.4.3 Temperature dependence of the cis-trans isomerization 

An average population of 0.18% cis peptide bonds was found for Ac-G-G-G-NH2 at 296 

K (Table 2.3). Asn of Ac-I-G-G-N-NH2 shows a slightly higher percentage of 0.25% at 293 K. 

Due to signal overlap, no reliable data were obtained for other residues of Ac-I-G-G-N-NH2 and 

Ac-I-G-G-NH2. The equilibrium constants results in an average free energy difference of 16 

kJ/mol (Table 2.3). This value is in line with the previous results of computational and experi-

mental study on N-methylacetamide (NMA) (2, 61). Similar enthalpy changes of isomerization 

were obtained for the minor trans conformer of G1, (referred to as Ac-tG1) and the cis conform-

er of Gly2 (G1-cG2), as well as minor trans conformer G1-tG2 and cis conformer G2-cG3.  

These data are consistent with the presence of the following conformers for this peptide: Ac-TG-

TG-TG-NH2 (~99.3%), Ac-tG-cG-TG-NH2 (0.14%), Ac-TG-tG-cG-NH2 (0.22%) and Ac-cG-TG-TG 

(~0.3%). 

Table 2.3 Thermodynamic parameters for the peptide bonds trans/cis isomerization of Ac-G-G-
G-NH2 peptide at different temperatures. Data for cis Ac-cG1 could not be determined due to 
signal overlap. 

  T (K) % cis ΔGt-c (kJ/mol) ΔHt-c (kJ/mol) 

Ac-tG1 
296 0.13 ± 0.005 16.3 ± 0.1 

-14.7 ± 2.4 303 0.12 ± 0.020 16.9 ± 0.4 
310 0.10 ± 0.008 17.8 ± 0.2 

G1-tG2 
296 0.23 ± 0.015 14.9 ± 0.2 

-18.6 ± 0.8 303 0.18 ± 0.004 15.9 ± 0.1 
310 0.16 ± 0.012 16.5 ± 0.2 

G1-cG2 
296 0.15 ± 0.007 15.9 ± 0.3 

-14.0 ± 3.9 303 0.16 ± 0.013 16.3 ± 0.3 
310 0.12 ± 0.021 17.3 ± 0.5 

G2-cG3 
296 0.20 ± 0.012 15.3 ± 0.2 

-16.4 ± 6.0 303 0.16 ± 0.013 16.2 ± 0.2 
310 0.15 ± 0.027 16.7 ± 0.5 
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2.4.4 Solvent effects on the cis-trans isomerization 

Surprisingly, the percentage of cis conformer detected decreased upon increasing the 

temperature signifying that the trans to cis conversion in DMSO is exothermic, with the possible 

exception of G3-cN4 in Ac-I-G-G-N-NH2 for which we obtained an enthalpy of -0.4 kJ/mol. 

This is in contrast to previous studies which report that the trans to cis conversion is endothermic 

in aqueous solution (3). To further investigate this, NMA (Figure 2.1B) was examined in differ-

ent solvents to explore solvent effects on peptide bond isomerization.  We note that earlier stud-

ies concluded that both the isomerization equilibria and enthalpy of NMA are insensitive to sol-

vent changes (47). However, we observed a higher percentage of cis conformers in solvents with 

larger dipole moments (Table 2.4). In addition, a higher amount of cis isomers at higher tempera-

ture results in a positive enthalpy of 1.8 kJ/mol, 7.1 kJ/mol and 15.3 kJ/mol in DMSO, acetone 

and H2O, respectively. Therefore, the enthalpy of peptide bond isomerization is dependent on the 

solvent. This result also demonstrates that the thermochemistry of peptide bond isomerization 

depends on the local environment which will change upon protein folding. 
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Table 2.4 Thermodynamic parameters for the NMA trans/cis isomerization. 
solvent T (K) Kt-c ×102 ΔGt-c (kJ/mol) ΔH t-c (kJ/mol) 

 DMSO 
293 0.92 11.4 

1.8 303 0.95 11.7 
313 0.96 12.1 

Acetone 
283 0.85 11.2 

7.1 293 0.98 11.3 
303 1.03 11.5 

 H2O 
293 1.51 10.2 

15.3 303 2.01 9.8 
313 2.25 9.9 

 

2.4.5 Kinetics of the cis-trans isomerization 

Temperature-dependent exchange rates are shown in Table 2.5. At 296 K, the trans to cis 

rate constant is approximately 4-9·10-3 s-1, while the cis to trans conversion is about 1000 times 

faster. Both forward and reverse rates are faster than those reported previously for peptide bonds 

in an aqueous system (3, 31). This might be due to solvent effects considering the limited hydro-

gen bond capability of DMSO compared to H2O and also to the sequence context which could 

affect the kinetics of isomerization (discussed in the next section). The activation energies (Ea) of 

both forward and reverse processes were derived based on the Arrhenius equation. Similar kinet-

ics and activation energies were obtained for Ac-tG1 and G1-cG2, as well as for G1-tG2 and G2-

cG3 confirming our conclusion drawn from thermodynamic data. 
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Table 2.5 Isomerization rate constants and activation energies Ea t-c (trans-to-cis) and Eac-t (cis-
to-trans) for the Ac-G-G-G-NH2 peptide. kt-c (trans-to-cis) and kc-t (cis-to-trans) were obtained 
from: kt-c/ kc-t = K and kt-c + kc-t = k. 

  T (K) kt-c ×103 (s-1) kc-t   (s-1) Eat-c (kJ/mol) Eac-t (kJ/mol) 

Ac-tG1 
296 7.9 ± 1.0 6.0 ± 0.4 

86.5 ± 16.2 100.6 ± 23.5 303 15.2 ± 2.3 12.3 ± 5.0 
310 38.4 ± 1.3 38.0 ± 0.7 

G1-tG2 
296 4.9 ± 0.7 2.3 ± 0.5 

98.7 ± 6.1 113.6 ± 10.7 303 13.1 ± 1.3 7.3 ± 0.7 
310 29.9 ± 3.9 18.1 ± 2.1 

G1-cG2 
296 8.4 ± 0.8 5.5 ± 1.1 

81.3 ± 18.8 95.3 ± 3.7 303 21.7 ± 4.0 13.8 ± 0.7 
310 37.5 ± 6.5 31.4 ± 2.1 

G2-cG3 
296 4.8 ± 0.8 2.4 ± 0.8 

97.0 ± 2.1 113.1 ± 8.8 303 12.1 ± 2.8 7.4 ± 1.7 
310 28.3 ± 2.3 18.8 ± 5.8 

HN-CO in NMA 

293 1.6 ± 0.3 0.2 ± 0.09 
98.0 ± 10.9 96.2 ± 12.3 303 5.4 ± 1.5 0.6 ± 0.1 

313 22.3 ± 5.0 2.3 ± 0.3 
 

 

2.4.6 Effect of flanking sequence on isomerization 

To address potential flanking sequence effects, Ac-I-G-G-NH2 data were compared to 

Ac-G-G-G-NH2 data by plotting exchange crosspeaks intensities of each peptide bond against 

mixing times (Figure 2.4).  The exchange peaks between the trans and cis isomer of I1-G2 were 

of much lower intensity than for G1-cG2 of Ac-G-G-G-NH2 at all mixing times investigated.  

These results demonstrate that the Ile side chain slows down the trans-cis isomerization com-

pared to Gly at the same position and constitutes a specific sequence effect, which has not been 

addressed in previous studies. We also note that the cis-trans isomerization rate of NMA is slow-
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er than our peptides in DMSO (Table 2.5), which may indicate that longer sequences enhance the 

isomerization rate as was also suggested previously (3). 

 

Figure 2.4 Build-up of exchange peaks between major and minor conformers. Intensities are 
scaled based on the highest intensity crosspeak. Ac-G-G-G-NH2 (left panel):  Dashed black line: 
exchange between major conformer Ac-TG1and minor conformers Ac-cG1. Blue line: exchange 
between Ac-TG1 and minor conformer Ac-tG1. Dashed blue line: exchange between G1-TG2 
and G1-cG2.  Red line: exchange between G1-TG2 and G1-tG2; dashed red line: exchange be-
tween G2-TG3 and G2-cG3.  Ac-I-G-G-NH2 (right panel): Dashed black line: exchange between 
major conformer Ac-TI1 and minor conformers Ac-cI1. Dashed blue line: exchange between I1-
TG2 and I1-cG2. Red line: exchange between I1-TG2 and I1-tG2; dashed red line: exchange be-
tween G2-TG3 and G2-cG3. A dashed line indicates a cis conformer and solid line signifies (t). 
Residue 1 (circle), Residue 2 (open circle), Residue 3 (square). 
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Figure 2.5 The IGGN cyclic peptide 

2.4.7 Effect of constraints on isomerization 

Constraining a peptide could conceptually encourage or inhibit cis peptide bond for-

mation.  We have also investigated the cyclic peptide I-G-G-N (Figure 2.5). Similar to its linear 

counterpart, we observed several minor conformers in the exchange spectra. However, the inten-

sities of the exchange crosspeaks are much weaker at the same mixing times compared to the lin-

ear peptides, indicating that the trans-cis isomerization, while still possible, is significantly slow-

er.  

Further study on the amide proton temperature coefficient of cyclic IGGN in DMSO so-

lutions revealed the existence of an intramolecular hydrogen bond involving HN of Ile and Gly2 

(Table 2.6). This may further conformationally lock the cyclic peptide and explain the slower 

trans-cis isomerization. In addition to slowing the kinetics of the isomerization, cyclization also 

limits the appearance of minor conformers. An approximate occurrence of 0.03% was obtained 

for the minor conformer of the G2-G3 peptide bond, which is 5-8 times less than that for the lin-

ear forms (Ac-G-G-G-NH2 and Ac-I-G-G-N-NH2). Interestingly, using two cysteine residues to 
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cyclize a tetrapeptide was previously reported to have little effect on the population of cis iso-

mers compared to the linear form (31).  

Table 2.6 Cyclic IGGN amide proton chemical shifts at different temperatures and their tem-
perature coefficients in DMSO solutions. 
Temperature(K) Ile Δδ Gly2 Δδ Gly3 Δδ Asn Δδ 

298 7.667 0 7.743 0 8.668 0 8.33 0 
303 7.657 0.01 7.737 0.006 8.636 0.032 8.309 0.021 
308 7.647 0.02 7.733 0.01 8.6 0.068 8.285 0.045 
313 7.638 0.029 7.731 0.012 8.565 0.103 8.261 0.069 
318 7.63 0.037 7.728 0.015 8.531 0.137 8.238 0.092 

Temp Coeff. (ppb/°C) 
 

1.9 
 

0.8 
 

6.9 
 

4.6 
 

2.5 Conclusions 

Peptide bond isomerization is a fundamental property of natural peptides and proteins and 

is of importance in protein folding/refolding and biochemical activities. We examined the pep-

tide bond isomerization of several linear oligopeptides and a cyclic form. For linear peptides, 

0.13% - 0.23% cis conformer was found in DMSO at 296K. In the cyclic form, the occurrence is 

even lower, demonstrating that backbone constraints affect the cis to trans isomer ratio, in this 

case negatively. The observation of two minor conformers associated with the same peptide bond 

signifies the presence of an additional conformer in addition to the expected cis conformer. 

Thermodynamic and kinetic properties reveal that the minor conformer with smaller upfield shift 

and similar 3JHNαH to the major trans conformer is actually also a trans conformer that is impact-

ed by the cis peptide bond on the C terminal side.  

The cis-trans equilibrium and enthalpy were shown to be solvent dependent, suggesting 

that peptide bonds located in the interior of folded proteins experience a different thermochemis-
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try from those exposed to an aqueous environment. As a result, the thermodynamics of peptide 

bond isomerization will change upon protein folding.   

Also, higher isomerization rates were obtained in DMSO compared to aqueous solutions 

demonstrating solvent effects. Small residues also favor isomerization while neighboring bulky 

side chains may slow the trans-cis isomerization, as seen for the I1-cG2 of Ac-I-G-G-NH2. In 

addition, the isomerization was slowed upon backbone cyclization, demonstrating that local 

structural elements also affect the kinetics of trans-cis isomerization.  
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2.7 Supplementary Material 

Table S1. Spin-lattice relaxation time T1 of G3 amide proton in trans and cis conformation.  T: 
trans conformer; c: cis conformer. 

  G3(T) G3(c) 
T1(ms) 762 750 
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3 STRUCTURAL AND FUNCTIONAL STUDIES OF THE KV CHANNEL S4-S5 

LINKER PEPTIDES AND S6-C-TERMINUS PEPTIDES IN A MICELLULAR EN-

VIRONMENT 

3.1 Preface 

This project was collaboration with Dr. Covarrubias at Thomas Jefferson University, 2D 

NMR experiments including the assessment of the peptide proton relaxation properties using the 

paramagnetic reagent Gd-DTPA-BMA as well as the initial calculation of the 3D structure of S4-

S5 linker peptide in micelles using the DYANA package were carried out by Xiaoguang Qu. 

This work was published in Biochimica et Biophysica Acta, Biomembranes (2013) 1828: 595-

601. 

3.2 Overview and Background 

3.2.1 Biological importance of voltage-gated potassium (Kv) channel  

Voltage-gated potassium (Kv) channels comprise a large family of potassium channels, 

which are essential components of the nervous system. They occur in nerve cell (neuron) mem-

branes and are responsible for the generation and propagation of nerve impulses (or action poten-

tials). Open Kv channels stabilize the resting potential of membranes and dampen the effective-

ness of excitatory inputs to a cell; closure of Kv channels, on the other hand, enhances the excit-

ability. More specifically, the membranes of all nerve cells have a potential difference (resting 

membrane potential) across them when they are not being stimulated or conducting impulses. 

The interior of the cell is negative with respect to the exterior due to an unequal distribution of 
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two ions, sodium (Na+) and potassium (K+) on the two sides of a nerve cell membrane. In neu-

rons, stimuli (such as touch, sound, light, etc) can alter this potential difference by opening sodi-

um channels in the membrane and letting sodium ions flow into the cell, therefore reducing the 

voltage across the membrane and completely depolarizing the membrane. This opens more volt-

age-gated ion channels in the adjacent membrane, and results in a wave of depolarization (the 

action potential) along the cell. As the action potential nears its peak, the sodium gates close, and 

potassium gates open, allowing ions to flow out of the cell to restore the normal potential of the 

membrane (1). 

 Utilizing a combination of genomic and biophysical techniques, a growing number of dis-

coveries have linked Kv channel mutations with various diseases of heart, kidney, pancreas and 

central nervous system, such as myokymia, which was the first mutated mammalian Kv channel 

human disease (2-6). 

3.2.2 Structure-functional feature of Kv channel  

 Kv channels share a similar structural topology. They are tetramers formed from four iden-

tical subunits each having six transmembrane-helices (S1-S6). The first four helices (S1-S4) 

form a voltage sensing domain (VSD), that detects voltage difference across cell membranes via 

charged amino acids. The S5 and S6 segments of all four subunits form a pore domain where the 

S5-S6 linkers (P-loop) act as an extracellular selectivity filter while the S6 C-termini of all subu-

nits make up the intracellular pore portal (7).  Numerous studies suggest that opening and closing 

of the Kv channel are carried out by coupling the conformational changes of the VSD and S6 C-

termini through the S4-S5 linker (8-18). This necessitates conformational malleability and cor-
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rect positioning of the S4-S5 linker in order to transmit the coupling between the VSD and S6 C-

terminus. 

3.2.3 Drug binding sties on Kv channel    

 Their involvement in vital biological processes and disease states render Kv channels im-

portant targets for drug therapy (5, 19). Numerous small molecules and drugs have been found to 

interact with Kv channels. On the extracellular side, the P-loop and adjacent residues of S5 and 

S6 are binding sites for toxins and channel blockers (20-21). Binding sites for small molecules 

are also located on the intracellular side of S5 and S6 (22-23). 

3.2.4 Structure-function correlation of Shaw2 Kv channel in 1-alkanol inhibition   

 The Drosophila Shaw2 is a neuronal Kv channel that is closely related to the mammalian 

Kv3 channels (24). It is reported that the Shaw2 channel is selectively inhibited by 1-alkanols 

and halothane at pharmacologically relevant concentrations (25-27). The action of the inhibitors 

is consistent with binding to an intracellular site and the stabilization of the channel’s close state 

(28). The energetics and kinetics of this inhibition have been investigated by applying a combi-

nation of biochemical, electrophysiological and structural methods (29-30).  

It also has been demonstrated that the S4-S5 linker of Shaw2 is required for 1-alkanol in-

hibition. Transplanting just a thirteen amino acid segment from the Shaw2 S4-S5 linker into 

Kv3.4 causes this modified human channel to become 1-alkanol responsive (26). The Shaw2 S4-

S5 linker peptide (L45) was shown later on to readily adopt an α-helical structure in solution and 

in the membrane environment (phospholipid micelles), while the corresponding Kv3.4 peptide 

does not (29-30). This links the 1-alkanol response to the α-helical propensity of L45.  
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CD spectra revealed that in the absence of TFE, L45 is only partially structured. Upon in-

creasing the TFE concentration, the peptide gradually assumes an α-helical conformation (30). 

The three distinct sets of TOCSY cross peaks between Hα and side chain Hβ protons for both 

Gln320 and Phe322 in 44 ms TOCSY spectrum reveals the coexistence of 3 different confor-

mations (α helix, β sheet and random coil) of Shaw2 L45 in the presence of 20% TFE (31). 

 

Figure 3.1 Shaw2 L45 NMR structure in DPC micelles generated by DYANA. A total of 40 
structures were generated. The mean backbone RMSD is 0.96±0.33 Å, and 1.44±0.27 Å for the 
mean heavy atom.  The resulting structures were visualized with Pymol. A): The 20 conformers 
with the lowest target function (from 3.13*10-2 to 9.07*10-2). B): Top view of the lowest energy 
conformer in cartoon mode. Hydrophobic residues are shown in yellow and polar side chains are 
in red. C): Side view 

The NMR structure of the Shaw2 L45 in 30 mM DPC micelles was calculated with the 

DYANA macro anneal (32) using the distance and torsion angle information extracted from the 

NMR spectra (Supplementary Materials, Table S3.2). It is revealed that a regular α-helix is 

formed from residues Ile317 to Ser325 while the helix is less ordered at the C-terminus and is 

disrupted at the N-terminus (Figure 3.1). This is either due to dynamics or a consequence of few-



35 

er constraints at that location. In contrast to the structure of L45 in 20% TFE, no evidence NMR 

suggests the presence of more than one conformation of L45 in DPC micelles (Figure 3.2). 

 

 

Figure 3.2 Hα-Hβ region TOCSY spectrum (45 ms mixing time) of 1 mM Shaw2 L45 in 30 mM 
DPC,10 mM sodium phosphate, pH* = 5.8 at 302 K. The box marks the Hα-Hβ cross peaks of 
Gln320 and Phe322. The correlations of Gln320 α proton to δ and γ protons are also visible be-
low the box. 

3.2.5 Solvent exposure and orientation of Shaw2 L45 in DPC micelles  

The solvent accessibility of Shaw2 L45 residues in DPC micelles was probed by taking 

advantage of the differences in residue relaxation properties when paramagnetic reagents were 

present. These reagents effectively relax exposed NMR active nuclei, while nuclei that are buried 

in a micelle are protected. In the presence of the paramagnetic reagent Gd-DTPA-BMA, Gly314, 

Lys316, Ile317, Ile319, Gln320 and Arg323 showed a large decrease in the T1 value, indicative 

of solvent accessibility. In contrast, Leu315, Leu318, Phe322 and Ala326 were only marginally 
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affected, suggesting they are buried in the micelle (31) (Supplementary Materials  Figure S3.1). 

The solvent accessibility was further explored using the paramagnetic attenuation method pre-

sented previously (33-34). As expected the Hα of charged residues Lys316 and Arg323 are high-

ly accessible while the Hα of Leu315 is considered protected. All other residues with 1.39 ≥ Ai ≥ 

0.61 are intermediate (31) (Supplementary Materials  Figure S3.1).  

As described previously (35), the orientation of a regular α-helical peptide in the micelles 

can be defined by its immersion depth A, rotation ρ and tilt angle τ. The dependence of PRE on 

A, ρ and τ was simulated (Supplementary Materials  Figure S3.2). Fitting the PRE data from res-

idues Leu318 to Ser325 and the residue numbers n  gives the immersion depth A of 7.0 ± 1.5 Å 

for the Hα proton of Leu318, a rotation angle ρ of 206 ± 4.0° and a helix tilt angle τ of 6.9 ± 2.8°. 

Considering the surface curvature of a DPC micelle with a diameter of ~ 40Å (36), we can con-

clude that L45 is bound to the surface and nearly parallel to it as shown in Figure 3.4. According 

to the orientation and residue accessibility data, Leu315, Leu318, Phe322 and Ala326, are buried 

inside the micelle, while the charged residues, Lys316 and Arg323, and the polar residue Gln320 

face towards the solution and Thr321 and Ser325 are at the interface. 
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Figure 3.3 PRE analysis of Shaw2 L45 in DPC micelles. Data for residues L318 to S325 were 
used for fitting equation 4. Errors were derived from the nonlinear least squares fit. 

 

Figure 3.4 Orientation of Shaw2 L45 in micelles. The micelle is represented by the light-yellow 
shaded region. A, immersion depth; ρ, rotation; τ, helix tilt angle. Blue indicates polar peptide 
residues while yellow signifies hydrophobic amino acids. 
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3.2.6 1-Alkanol inhibition of Shaw2 Kv channel also requires S6 and the interaction of L45 

and S6c 

 In addition to L45, additional elements involved in 1-alkanol binding were identified by 

alanine scanning to be S5 and S6, as demonstrated by the observation that mutating the second 

Pro in the PVP motif of S6 resulted in suppression of the 1-alkanol inhibition (37). This was at-

tributed to the destabilization of the closed state. Furthermore, data from a recent study supports 

the presence of putative 1-alkanol and halothane binding pockets in interfaces involving the S4-

S5 linker, S5 and S6 (38).  

 Despite numerous functional studies, the precise molecular interactions governing 1-

alkanol binding and the mechanism of channel inhibition are not fully understood. In this study, 

we further investigated the participation of the S4-S5 linker and S6 C-terminus in the 1-alkanol 

modulation of Shaw2 channels by focusing on the structure of the S6 C-terminal peptide (S6c) in 

DPC micelles and the potential binding sites of 1-alkanols on both micelle bound peptides. 

3.3 Materials 

3.3.1 Chemicals 

The Shaw2 S4-S5 linker peptide (L45, GLKILIQTFRASA) and S6 C-terminal peptides 

(S6c, VIVSNFAMYYSHTQ) derived from the voltage-gated Shaw potassium channels were 

purchased from Biopeptide Co., Inc. (San Diego, CA). Deuterated dodecylphosphocholine, DPC-

d38 (D, 98%) was purchased from CDN isotopes Inc. (Quebec, Canada). 2, 2, 2-trifluoroethanol 

(TFE, 99.5%) was from Aldrich. TFE-d3 (D, 99.5%) and D2O (D, 99.9%) were from Cambridge 

Isotope Laboratories (Andover, MA). 1-butanol (99%) was from Fisher Scientific (Fair Lawn, 
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NJ). 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC, 99%) and 1,2-Dihexanoyl-sn-

Glycero-3-Phosphocholine (DHPC, 99%) were from Avanti polar lipid, Inc. (Alabaster, AL). 

Tetradecyltrimethylammonium bromide (TTAB, 99.5%) was from Sigma-Aldrich Co. (St. Louis, 

MO). 

3.3.2 DHPC/DMPC bicelles preparation 

Bicelles was prepared by mixing DMPC/DHPC (ratio: 3:1) and TTAB in 10 mM sodium 

phosphate buffer with pH 6.5 to a total lipid concentration of 15% w/v and TTAB of 2.4 mM. 

The mixture was then homogenized by 2 cooling-heating cycles (4°C - room temperature - 38 °C 

– room temperature - 4°C - room temperature - 38 °C ) with vortexing at room temperature. The 

observation of clear, transparent and fluid solution at low temperature and clear, transparent but 

viscous solution at 38 °C, but white and milky at 25 to 30 °C. 

3.4 Methods 

3.4.1 CD spectroscopy 

CD samples were prepared by dissolving peptides in 5 mM sodium phosphate buffer, pH 

6.0, to a final concentration of 50 uM unless described otherwise. A JA-810 spectropolarimeter 

(Jasco, Tokyo, Japan) and 5 mm sample cuvette were used to record all CD spectra at room tem-

perature. Each spectrum was the average of four scans. The resulting spectra were deconvoluted 

using CDPro (39-40).  
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3.4.2 NMR Spectroscopy 

The micellar NMR samples were prepared by co-dissolving peptides, typically 1 mM 

with 30 mM DPC-d38 in 10 mM sodium phosphate buffer (pH 5.8, unless described otherwise) 

containing 10% D2O. For D2O experiments, the samples were lyophilized and resuspended in 

100% D2O.  

All NMR spectra were collected on 500 and 600 MHz Bruker Avance systems using a 5 

mm triple resonances (QXI) Z-gradient probe head or TXI cryoprobe (Bruker). For assignments 

and structure determination, 1D spectra were recorded using presaturation or jump-and-return 

pulse sequences to suppress the solvent (water) signal (41). 2D NMR experiments: TOCSY, 

NOESY, and natural abundance 13C-1H-HSQC were recorded with presaturation as appropriate 

and using time proportional phase increment (TPPI) for quadrature detection in F1. The mixing 

times were set to 44 ms for TOCSY with data matrix of 2K x 512 and 32 scans) and 75 and 400 

ms for NOESY experiments with data matrix of 2K x 512 and 32 scans, respectively. NMR spec-

tra were assigned using Sparky (42) following standard methods (43). 

Diffusion measurements were carried out using Diffusion-Ordered Spectroscopy (DOSY) 

(44). A 1D setup (stegp1s1d) was run prior to DOSY experiments (stegp1s) to optimize parame-

ters: diffusion time Δ (d20), the spoil gradient (p19) and gradient length δ (p30). All gradients 

were applied as half sine shapes. Δ (d20) of 200 ms and p19 of 1.1ms (-9.8G/cm) were chosen 

for all 2D DOSY acquisitions, δ (p30) was set as 2.2ms and 3.5ms for peptide without and with 

micelles, respectively. The actual strength of the half sine shaped gradients was varied from 

0.735 to 34.9G/cm. Typically, 256 scans and a data matrix of 8K x 16 were recorded. The spec-

tra were processed using the Bruker au program (dosy2d) and data were fitted to the equation 

below with XWINNMR T1/T2 software: 
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𝐼 = 𝐼0 ∗ 𝑒−𝐷(𝛾𝛿𝐺)2(𝛥−𝛿/3)      (1) 

Where I0 is unattenuated signal intensity, D is the diffusion coefficient, γ is the gyromagnetic 

ratio of the observed nucleus, in this case γ(1H) = 4.258*103 Hz/G. 

3.5 Results and Discussion 

3.5.1 Structural features of S6c in TFE, DPC micelles and bicelles 

Unlike L45, the CD spectra of S6c upon TFE titration display a two-state transition from 

random coil to α-helix (Figure 3.5). It also requires more TFE (~ 80%) to obtain 50% α-helical 

conformation than is needed for L45, signifying a lower α-helical propensity of S6c. In both 

DPC micelles and DMPC/DHPC bicelles, S6c adopts a partial α-helix (Figure 3.6B and Figure 

3.7A). Specifically, the helical content plateaus at just 39.4% at 20 mM DPC, which is much 

lower than the 79.3% α-helical content of L45 at the same DPC concentration (Figure 3.6A and 

3.6B). The lower α-helicity is also manifest in the peptide dynamics in micelles. This is support-

ed by the line width and the small chemical dispersion of the peptide resonances (Figure 3.8). In 

addition, and in contrast to L45, no α-helical characteristics (3JNH-Hα, NOESY connectivity) were 

observed. Therefore, we conclude that this peptide adopts a more disordered and dynamic struc-

ture. 
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Figure 3.5 CD spectra of S6c in the presence of increasing TFE concentrations. (black: 0% TFE, 
green: 30%, red 50% and blue 80% TFE) 

 

Figure 3.6 CD spectra of A): L45 and B): S6c in the presence of increasing DPC concentrations. 
(black: 1.5 mM, green 3.0 mM, red 20 mM and blue 30 mM DPC) 
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Figure 3.7 A): CD spectra of L45 (red) and S6c (blue) in the presence of 4% DMPC/DHPC (mo-
lar ratio, 3:1), 2.4 mM TTAB, 10 mM sodium phosphate (pH 6.5). B): 92.1 MHz 2H NMR spec-
tra of the 4% DMPC/DHPC bicelles sample with 15% D2O at 303K. Solid line, freshly made bi-
celles; dotted line, the spectrum after 18 h. The observed splitting is indicative of stable bicelle 
formation. 

 

Figure 3.8 1D 1H NMR spectra of the HN region of S6c: A) in D2O; B) in H2O; C) with 30 mM 
DPC in H2O. Sample is in 10 mM sodium phosphate, pH 4. 
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3.5.2 Potential alkanol binding sites on Shaw2 L45 and S6c 

Upon the addition of a small amount of 1-butanol (1-5 mM) to Shaw2 L45 in micelles we 

observed HN chemical shift changes (~ 0.03 ppm) for Gln320, Thr321, Phe322 and Arg323 (Fig-

ure 3.9). This appears to be specific for 1-butanol since methanol did not produce any chemical 

shift changes in the range tested (up to 10 mM, data not shown). A related observation is that the 

addition of 10% TFE to Shaw2 L45 in micelles produced an additional NOE contact between HN 

of Gln320 and Thr321. This implies that Gln320 and Thr321 are sensing the presence of 1-

butanol and TFE and may act as a site of interaction for such molecules. Similarly, Cα and Hα 

chemical shift changes induced by high TFE concentrations again map to Thr321. The local 

chemical shift changes are quite small and this is consistent with only minor local structural 

changes but would not support helix disruption or unwinding. These results are in good agree-

ment with a recent mutagenesis study of L45 where mutating Thr321 to alanine had a negative 

effect on the modulation of the channel by 1-butanol (38).  
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Figure 3.9 Change of the 1D NMR HN region of L45 in micelles upon 1-butanol titration at 303 
K. A, L45 in micelles. B, L45 peptide in micelles with 1 mM 1-butanol. C, L45 peptide in mi-
celles with 5 mM 1-butanol. 

1-butanol titration of S6c in DPC micelles also revealed a small chemical shift change (~ 

0.02 ppm) of Thr423 and Gln424 amide protons in the presence of just 2 mM 1-butanol indicat-

ing that these residues may interact with 1-butanol while all other amide protons were insensitive 

(Figure 3.10). 
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Figure 3.10 Change of the HN region of S6c upon micelle addition and 1-butanol titration. A): 
S6c in 10 mM sodium phosphate buffer, pH 4. B): S6c in 30 mM DPC. C): S6c in 30 mM DPC 
with 2 mM 1-butanol. 

3.5.3 Organization of L45, S6c and 1-butanol on micelles  

Diffusion measurements using 2D DOSY can aid in exploring intermolecular interaction 

(45). The association of two binding partners is indicated by exhibiting the same diffusion and a 

slower diffusion compared to the free form (Figure 3.11). As shown in Table 3.1, L45 showed a 

58% decrease in the diffusion constant (15.6 *10-11 to 6.6*10-11 m2 s-1) in the presence of mi-

celles. Similarly, the diffusion constant of S6c is also greatly decreased in micelles. This further 

demonstrates that both L45 and S6c are micelle associated. Furthermore, the lower diffusion 

constant measured for L45 when S6c is added suggests that both the peptides can coexist on the 

same micelle. The slightly lower diffusion constant of 1-butanol (65.1 to 57.3*10-11 m2 s-1) also 
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indicates its association with the micelles part of the time. This property may facilitate the inter-

action of 1-butanol with peptide residues that are located at the interface or inside micelles. 

However, the interaction of 1-butanol with the L45-S6c peptide pair could not be observed in 

this system. We note that the peptides may distribute unevenly among the micelles, which may 

complicate an interpretation.   

 

Figure 3.11 2D DOSY spectra of S6c (A), S6c in 30 mM DPC (B) and both S6c and L45 in 30 
mM DPC (C) in 10 mM sodium phosphate, 99.96% D2O (pH*=4.0).  
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Table 3.1 Diffusion measurements of L45, S6c, micelles and 1-butanol at 293 K. Samples were 
prepared in 10 mM sodium phosphate, 99.96% D2O (pH*=4.0). The diffusion constant of HDO 
servers as an internal reference. 

Sample HDO(10-11) 1-butanol(10-11) L45(10-11) S6c(10-11) DPC(10-11) 
1-butanol (4 mM) 156 65.1±0.5    

DPC (30 mM) 154    7.8±0.2 
1-butanol+DPC 154 57.5±0.3   7.8±0.13 
L45 (~1 mM) 152  15.6±0.6   

L45+DPC 154  6.6±0.1  7.5±0.12 
L45+DPC+1-butanol 156 56.8±2 6.5±0.15  7.6±0.1 

S6c (~0.6 mM) 158   15.6±0.1  
S6c+DPC 158   7.6±0.05 7.9±0.25 

L45+S6c+DPC+1-butanol 159 59.6±0.2 6.2±0.1 NA 7.7±0.2 

3.6 Conclusions 

The response of Shaw2 K+ channels to 1-alkanols is dependent on the S4-S5 linker pep-

tide, as the binding for 1-butanol is coupled to the α-helix propensity of the linker region (28). 

Both CD and NMR experiments established that L45 adopts an α-helical conformation in DPC 

micelles. 

The solvent accessibility and angular orientation of Shaw2 L45 on micelles was deter-

mined using paramagnetic perturbation methods. The results substantiate that the linker peptide 

resides on the membrane surface and lies essentially parallel to it. Surface accessibility experi-

ments suggest that the hydrophobic residues (Leu315, Leu318, and Phe322) are located inside 

the micelle, while Lys316, Gln320, and Arg323 face towards the solution. The combination of 

the surface location of L45, its α-helical conformation and orientation as well as the fact that it is 

important for channel function make it an attractive and accessible molecular target. The other 

important component of the alkanol response, S6c, in contrast to L45, only forms a partial α-



49 

helix as observed by CD spectroscopy. Moreover NMR data reveal that the α-helix is not stable 

on the NMR time scale. 

Diffusion constant measurements confirmed that L45, S6c and 1-butanol can associate 

with micelles, which encourages an interaction among the components. Chemical shift perturba-

tions implicate residues Gln320, Thr321, Phe322 and Arg323 on L45 and Thr423 and Gln424 on 

S6c as potential 1-butanol binding candidates. This finding along with the fact that 1-butanol is 

capable of interacting with micelles suggests that membrane associated 1-butanol might perturb 

the interaction of S6c and L45.  

Two distinct scenarios based on canonical models of voltage-dependent gating can ex-

plain how this perturbation stabilizes the channel's closed state to produce inhibition (46). In 

Shaker-related Kv channels, such as Shaw2, the activation gate prefers its closed conformation 

(47). At hyperpolarized voltages, the voltage sensor is in its “down” position using L45 acting as 

the load that keeps the activation gate in its closed state. 1-Butanol might then stabilize the 

“down” position of the voltage sensor by promoting an interaction between L45 and S6c. In the 

second scenario, the voltage sensor adopts the “up” position upon depolarization of the trans-

membrane voltage, relieving the activation gate from its load. Consequently, the activation gate 

passively snaps into its more stable open state. The voltage sensors pull L45, which acts as the 

“handle” that actively opens the activation gate. 1-Butanol may in this case dislodge L45 from 

the activation gate and, consequently, the channel remains closed (27). However, the available 

data cannot discriminate between the two models of 1-butanol action. Measurements of gating 

currents outside the scope of this study will be necessary to tackle this problem more directly. 

The mechanism of the gating and inhibition of the Shaw2 Kv channel is complex and re-

quire the participation of all four monomers that must be embedded in a cell membrane for func-
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tion. Our results shed light on the local structure and interaction of key components of the Shaw2 

Kv channel, which govern the 1-alkanol sensitivity of the entire channel.  
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3.8 Supplementary Materials 

Table S3.2 Dyana angle constraints generated by HABAS 

Residues  Angle         Value(rad) Residues  Angle         Value(rad) 
   2 LEU   PHI     -65.0   -25.0    7 GLN   PHI     -75.0   -35.0 
   2 LEU   CHI1     15.0   345.0    7 GLN   CHI1   -165.0   -25.0 
   2 LEU   CHI1   -155.0   145.0    7 GLN   CHI1    -55.0   295.0 
   2 LEU   PSI    -285.0    -5.0    7 GLN   CHI2     25.0   335.0 
   3 LYS   PHI      25.0   315.0    7 GLN   CHI2   -115.0   115.0 
   3 LYS   PHI    -195.0    95.0    7 GLN   PSI     -85.0   -15.0 
   3 LYS   PHI     -85.0   205.0    8 THR   PHI    -325.0   -25.0 
   3 LYS   CHI1   -215.0   -15.0    8 THR   PHI    -195.0    85.0 
   3 LYS   CHI2     25.0   335.0    8 THR   CHI1   -145.0   -15.0 
   3 LYS   PSI    -115.0   115.0    8 THR   CHI21    25.0   325.0 
   4 ILE   PHI      35.0   325.0    8 THR   CHI21   -95.0   215.0 
   4 ILE   PHI    -155.0    45.0    8 THR   PSI    -195.0   -25.0 
   4 ILE   CHI1   -155.0   -15.0    8 THR   PSI    -115.0   235.0 
   4 ILE   CHI21    15.0   345.0    9 PHE   PHI      25.0   305.0 
   4 ILE   PSI    -155.0   125.0    9 PHE   PHI    -175.0    85.0 
   5 LEU   PHI     -75.0   -35.0    9 PHE   PHI     -95.0   215.0 
   5 LEU   CHI1   -335.0   -15.0    9 PHE   PSI    -105.0   105.0 
   5 LEU   CHI1   -285.0    35.0   10 ARG+  PHI     -75.0   -45.0 
   5 LEU   CHI1   -145.0   145.0   10 ARG+  CHI1   -195.0   -85.0 
   5 LEU   CHI1    -35.0   285.0   10 ARG+  CHI2     25.0   335.0 
   5 LEU   CHI2     35.0   325.0   10 ARG+  PSI    -105.0   -15.0 
   5 LEU   CHI2   -305.0    45.0   11 ALA   PHI      25.0   305.0 
   5 LEU   CHI2   -115.0   225.0   11 ALA   PHI    -185.0    95.0 
   5 LEU   PSI    -105.0     5.0   11 ALA   PHI     -85.0   215.0 
   6 ILE   PHI    -125.0   -35.0   11 ALA   PSI    -135.0   135.0 
   6 ILE   CHI1    -95.0   -25.0   12 SER   PHI      25.0   315.0 
   6 ILE   CHI21    85.0   225.0   12 SER   PHI    -215.0    95.0 
   6 ILE   CHI21  -185.0   125.0   12 SER   PSI     -25.0   125.0 
   6 ILE   PSI     -95.0    45.0   13 ALA   PHI      25.0   305.0 

 
  13 ALA   PHI    -185.0    95.0 

    13 ALA   PHI     -85.0   215.0 
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Figure S3.1 A): T1 ratio of L45 Hα protons. T1 (0) and T1 (2) are T1 of L45 Hα protons in absence 
or presence of 2mM of Gd-DTPA-BMA. B): Paramagnetic attenuation Ai of L45 Hα protons ver-
sus residue number. 

 

 

Figure S3.2: simulated PRE as a function of A, τ and ρ using a model α-helical system. All τ and 
ρ are in unit of rad. 
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4 INTERACTIONS AND STRUCTURAL STUDIES OF TIAR PROTEINS AND WEST 

NILE VIRAL RNA 

4.1 Preface 

This project was initiated in Dr. Brinton’s lab in the Department of Biology. The expres-

sion and initial purification of the proteins were carried out in her lab.  

4.2 Introduction 

4.2.1 Protein-RNA interactions and their role in biological systems 

Protein-RNA interactions (PRIs) play diverse roles in regulating many cellular events. 

They are essential in the structure of the spliceosome and ribosome, and important in alternative 

splicing, RNA editing, polyadenylation, mRNA export, mRNA stabilization, mRNA localization 

and mRNA translation (1-2). In addition, protein–RNA interactions are also very important for 

viral function where host proteins were found in the replicase complexes of several RNA viruses 

(3-6). 

4.2.2 Protein-RNA recognition modes 

RNA-binding proteins exhibit highly specific recognition of their RNA targets by recog-

nizing their sequences and/or structures. Sudies of protein-RNA interaction have lagged com-

pared to protein-DNA mainly because of the diversity in RNA structure and the more complex 

protein-RNA recognition patterns. Based on information obtained from recently available struc-
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tures of RNA-protein complexes (7-9), RNAs exhibit various conformations when they bind to 

proteins (10). Generally, the irregular secondary structure elements of RNA, such as hairpin 

loops and bulges where bases are more exposed are the usual binding targets for proteins (11-

14). This indicates a very different recognition strategy from the accessibility-controlled model 

of protein-DNA binding. In Draper’s review (15), protein-RNA recognition modes were catego-

rized into two groups: In group A, peptides and proteins place a secondary structure element into 

RNA helix grooves, recognizing both the specific sequence of RNA bases and the shape or di-

mensions of the RNA groove. In group B, the β-sheet surface of the proteins creates a binding 

pocket that reads single-stranded RNA in a sequence-specific mode. It also has been argued that 

protein-RNA binding is accompanied by a co-folding process, where both the protein and RNA 

experience conformational changes to form tight binding (16). 

4.2.3 RNA binding protein motifs 

Structural studies have revealed several protein domains exhibited by RNA binding pro-

teins, such as: the RNA Recognition Motif (RRM, also known as RBD or RNP domain), K Ho-

mology (KH) domain, Zinc finger (mainly C-x8-C-x5-C-x3-H type), double-stranded RNA bind-

ing domain (DS-RBD), RGG box, DEAD/DEAH box, Pumilio/FBF (PUF) domain, 

Piwi/Argonaute/Zwille (PAZ) domain and Sm domain, etc. RBPs have one or multiple copies of 

the same RNA binding domain, or they may have multiple distinct domains (17). Several RNA 

binding domains are suggestive of the molecular function of the protein; for example, the 

DEAD/DEAH box is indicative of RNA helicase activity, whereas the PAZ domain suggests the 

protein targets short single-stranded RNA such as RNAi or microRNAs (miRNA). However, 

other domains only predict RNA binding, such as RRMs. 
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4.2.4 Intermolecular forces involved in protein-RNA binding and interface residue propen-

sity 

Intermolecular forces involved in protein-RNA recognition are weighted slightly differ-

ent from those in protein-DNA recognition. Proteins prefer to bind to the wide major groove of 

DNA, where positively charged amino acid side chains take part in electrostatic interactions with 

the DNA phosphate backbone. However, in protein-RNA binding, van der Waals interactions 

and hydrophobic contacts dominate the binding interactions. Comparable numbers of contacts 

are made by the proteins to the backbone and to the bases (16, 18). A higher percentage of hy-

drogen bonds between the protein main chain and the RNA is another trait in protein-RNA inter-

actions, which facilitates close contacts (19). In the protein-RNA interface, in addition to posi-

tively charged amino acid residues, aromatic residues are frequently found (19-20). 

4.2.5 Methods used in detecting and studying protein-RNA interaction 

4.2.5.1 General methods  

(A) Spectroscopic methods: 

This group of techniques takes advantage of the fact that the formation of a complex may 

perturb the response to electromagnetic radiation, or respond to the input radiation by emitting its 

own characteristic signals. The methods include ultraviolet (UV), fluorescence, circular dichro-

sim (CD) and nuclear magnetic resonance (NMR) spectrophotometry. For each type of spectros-

copy, the changes in the spectroscopic signals can be used to determine the relative concentra-

tions of free and bound proteins; therefore, the affinity or Kd of an interaction can be determined. 

In general, the interpretations of the spectra fall into two categories according to the relative time 

scales of both the spectroscopy and the binding event. In a case where the spectroscopic tech-
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nique is rapid relative to the rate of exchange between free and bound species, the free and bound 

species can be resolved in the spectra and the intensity of the signal represents the concentration 

of each species. UV, fluorescence and CD usually fall in this category. In the second category, 

the spectroscopic techniques are slower than the association/dissociation event and the observed 

signal in spectra will be the population-weighted average of the two species and changes in the 

signals are proportional to the ratio of complex to free species. This is often the case for NMR.    

(B) Calorimetry: 

This technique measures the heat generated or absorbed when ligands bind to a receptor. 

More specifically, a receptor is titrated with a ligand in a calorimeter and the heat associated with 

the binding at each titration point is measured. The binding isotherms can be generated by plot-

ting the heat against free ligand concentration. The heat produced by dilution of the receptor or 

by non specific binding must be considered and subtracted.  

Other general binding detection methods include gel chromatography-based and affinity 

chromatography-based methods.  

4.2.5.2 Specific methods for detection of protein-RNA interactions 

(A) Gel Mobility Shift Assay:  

This technique is used to detect protein-RNA interactions through changes in RNA mi-

gration upon binding to protein during gel electrophoresis. Traditionally, RNA probes are radio-

actively labeled, or incorporate fluorescent or chemiluminescent groups. Specificity of the bind-

ing can be determined through a competition reaction where excess unlabeled RNA is incubated 

in the binding reaction as a competitor, resulting in a decrease in the shifted signal if the labeled 
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and unlabeled RNA sequences compete for binding to the same protein. This permits determina-

tion of the dissociation constant by examining the bound fraction as a function of protein concen-

tration. However, the technique may tend to be limited to fairly tight or slow binding, where the 

t1/2off is also on the order of seconds or longer. Alternatively, the protein-RNA complex may be 

cross-linked prior to a denaturing gel analysis.  

(B) RNA Pull-down Assay: 

The RNA pull-down assay utilizes high affinity tags, such as biotin or azido-phosphine. 

RNA probes are biotinylated and then allowed to bind to a protein in a cell lysate. The complex 

is purified using agarose or magnetic beads with an antibody against the protein of interest. The 

RNA is then detected by Northern blotting or through real time-PCR analysis and the proteins 

can be detected by Western blotting or mass spectrometry.  

(C) Oligonucleotide-Targeted RNase H Protection Assays: 

RNase protection assays can be used to map protein binding sites on the entire target 

RNA sequence. In this assay, a DNA probe is designed to hybridize to a specific site on the 

RNA, then RNase H is incubated with the protein-RNA reaction. If a protein is bound to the 

RNA at the target sequence, it will block the RNA-DNA hybridization and prevent the cleavage 

by RNase H, therefore indicating a site of interaction between protein and RNA (21-22).  
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4.2.6 West Nile virus RNA and its interaction with cellular proteins TIA-1 and TIAR 

4.2.6.1 West Nile virus and its genome 

West Nile virus belongs to the genus Flavivirus in the family Flaviviridae. It is a mosqui-

to-borne virus that was first identified in the West Nile subregion in the East African nation of 

Uganda in 1937. The most common symptom in infected humans is fever; about 3% of the cases 

are severe, resulting in neurological disease and even death. However, the virus has now spread 

globally and is considered a serious threat to public health. This brings urgency for the develop-

ment of specific antiviral treatments and vaccines against WNV infection for humans (23).  

The genome of WNV is a single-stranded, positive sense RNA with an approximate 

length of 11 kb. The genome contains a single, long open reading frame (ORF) of 10.3 kb 

flanked by 5' and 3' noncoding region (NCR) (24). The 5' end of the genome ORF encodes the 

structural proteins while the 3' end encodes the nonstructural proteins that serve multiple func-

tions during the virus life cycle. Unlike cellular mRNA, the WNV genome lacks a 3' polyadenyl-

ate tail (25).  

4.2.6.2 WNV replication cycle and the roles of genome RNA and its complementary negative 

strand  

The WNV replication cycle starts with viron attachment to and entry into the host cell. 

The genomic RNA is then released into the cytoplasm by fusion of the viral and cell endosome 

membranes and translated into a single polyprotein which is sequentially cleaved to generate the 

mature viral proteins. The genomic RNA also serves as a template for synthesis of complemen-

tary minus strands; these minus-strand RNAs in turn serve as templates for the production of 

more positive genomic RNAs. It has been reported that WNV RNA synthesis is semiconserva-
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tive and asymmetric, with plus strands accumulating in about a tenfold excess over minus strands 

(26). When a sufficient pool of endoplasmic reticulum membrane associated structural proteins 

is available, the nascent viron RNA will self-assemble into new virial particles and that are 

transported in vesicles to the cell plasma membrane where the virons are released by fusion of 

the vesicles and plasma membranes (27).  

During the replication cycle, the nascent genome RNAs function as templates for transla-

tion, transcription and as substrates for viron formation; while the negative strands are only 

found in the virus replication complexes serving as templates for genome RNA synthesis.  

4.2.6.3 Structural conservation of the terminal regions of the WNV genome 

As predicted by chemical digestion, stable stem loop (SL) structures are located at both 

the 3' and 5' termini of the WNV genome RNA (28-29) (Figure 4.1). These secondary structures 

are conserved at the termini of different flaviviruses genome even though the majority of the se-

quences are not well conserved (29-30). The existence of SL structures was subsequently pre-

dicted in the complementary region (3' termini) of the negative strand, and this was supported by 

CD spectroscopic, thermal melting curve and RNase probing studies (31). These structures are 

functionally important since mutation of the nucleotides forming the terminal SL structure has a 

negative effect on the efficiency of virus replication and deletion of the SL has been shown to be 

lethal for flavivirus infectious clones (32).  

4.2.6.4 Cellular protein TIA-1 and TIAR  

Cellular protein TIA-1 (T cell restricted intracellular antigen-1) and TIAR (TIA-1 related 

protein) are evolutionarily conserved RNA binding proteins of the RNA recognition motif 
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(RRM)/ribonucleoprotein (RNP) family (33-35). They are found in the cytoplasm and nucleus of 

most cells and tissues, and shuttle between these two compartments (36). They are both multi-

functional RNA-binding proteins. In the nucleus, they have been shown to regulate transcription 

by binding to single stranded T-rich DNA and alternative pre-mRNA splicing by binding to U 

rich RNA targets and promoting the recognition of atypical 5' splice sites (37-43). In the cyto-

plasm, they are involved in silencing translation when cells are under stress by binding to the 

polyA of target mRNAs and sequestering the bound mRNAs into cytoplasmic stress granules 

(44-46). They have been also reported to regulate Fas-mediated apoptosis (47) and to provide 

critical functions during embryonic development (48). Recently, they have been found to arrest 

translation at the initiation step by binding to 5'-oligopyrimidine elements under stress (49). 

TIA-1 and TIAR both possess three RRMs composed of 90 to 100 amino acids in the N 

terminus (33, 50), that form the RNA binding domain. The C-terminus is an auxiliary domain 

rich in glutamine and structurally related to prion proteins (36, 51). TIA-1 and TIAR share more 

than 90% amino acid identity in their RRM regions with most of the differences found in the C-

terminus. A conserved peptide octamer (K/R-G-F/Y-G/A-F/Y-V/I/L-X-F/Y) and a hexamer 

(I/V/L-F/Y-I/V/L-X-N-L), referred to as the (ribonucleoprotein) RNP1 and RNP2, respectively, 

are located in each RRM (52). In addition, each RNP contains three conserved aromatic residues, 

which accommodate two bound nucleotides via ring stacking interactions and specific hydrogen 

bonding networks. It was argued that these interactions are the determinants for the RNA binding 

specificity (53-54). 

Structures of individual RRMs have revealed that the RRMs of TIA-1 and TIAR consist 

of four anti-parallel β-strands packed against two α-helices with the canonical βαββαβ topology 

(55-56) ( PDB: TIAR RRM1, 2CQI; RRM2, 2DH7; RRM3,1X4G). The surface of the four β-
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strands has been shown to recognize single stranded RNA, specifically short stretches of uridine 

(55, 57). Among the three RRMs, the second domain, RRM2 has been shown to be necessary 

and sufficient for tight RNA binding, but RRM2 together with RRM1 and RRM3 shows in-

creased affinity for U-rich or AU-rich RNA (57-58). The inter-domain linker, the loops between 

secondary structure components and the C-terminal extension also contribute to RNA-binding 

specificity and affinity (55, 59-63). Recently, TIAR was reported to also bind to C-rich sequenc-

es (64).   

4.2.6.5 TIA-1 and TIAR interact with the 3′ stem loop of WNV complementary negtive strand 

RNA 

TIAR and TIA-1 were reported to colocalize with the viral replication complexes in fla-

vivirus infected cells (65). Specifically, they bind to the stem loop region at the 3' terminus of 

WNV complementary negative-strand (WNV 3' (-) SL) (66), which serves as a site for initiating 

positive strand synthesis during RNA replication. This result together with the observation that 

WNV growth was less efficient in murine TIAR knockout cell line suggests the interaction of 

TIAR and TIA-1 with the WNV 3'(-) SL facilitates viral replication (66).  

Data obtained from a binding study of the truncated proteins and WNV 3'(-) SL RNA 

have also shown that RRM2 domain of TIA-1 and TIAR is responsible for the major interaction 

to WNV 3' (-) SL with high affinity (66). This is in agreement with previous findings showing 

the interaction of TIAR and TIA-1 with AU-rich sequence (57-58). By truncation and mutation 

of the WNV 3' (-) SL, the binding sites of RRM2 on the WNV 3' (-) SL has been mapped to two 

UUAAU sequences located on two adjacent single strand loops (67), loop 1 and 2 as shown in 

Figure 4.2. Deletion or mutation of loop 3 (L3) had neglectable effect on binding affinity. This 

target sequence differs from the ARE class I sequences which consist of one to three copies of 
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scattered AUUUA motifs or the class II ARE sequences consisting of at least two overlapping 

UUAUUUA(U/A)(U/A) nonamers (68-69). However, the viral sequence is thought to be capable 

of outcompeting the cellular RNAs which are most abundant in host cells.  

In this chapter, we focus on the interaction of the TIAR protein and its RRM2 with WNV 

3' (-) SL (WNV SL75) and different truncated versions of WNV SL75, as well as oligoU se-

quences of different lengths. By applying a combination of calorimetry, spectroscopy, computa-

tional and other techniques, the biophysical and structural properties of the binding partners were 

explored. The findings provide insights into the basis of the specific cellular protein–viral RNA 

binding interaction and preliminary data for the development of strategies on how to interfere 

with virus replication.  

4.3 Materials and Methods 

4.3.1 Protein expression and purification 

In this study, all of the recombinant proteins (hTIAR RRM2 and hTIAR wild type) were 

fused to N-terminal Glutathione-S-transferase (GST) tags and expressed in Escherichia coli 

strain Rosetta 2(DE3) pLysS cells (Novagen). Cells were incubated at 37 °C until an optical den-

sity of 0.6-0.7 at 600 nm was reached. Protein expression was induced by addition of 1 mM iso-

propyl β-D-thiogalactopyranoside (IPTG). After overnight post-induction at 20°C, cells were 

harvested by centrifugation. Cell pellets were lysed upon thawing at room temperature with 

phosphate buffered saline (PBS) buffer containing CelLytic Express (Sigma-Aldrich Co. LLC) 

and 1 mM dithiothreitol (DTT) and 1 tablet/ml complete EDTA-free protease inhibitor cocktail 

(Roche). The lysate was clarified by centrifuge at 4°C, 10,000 × g. The resulting supernatant was 

purified with Glutathione Sepharose 4B (GE Healthcare) matrix following the manufacturer’s 
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protocol.  The GST tag was then removed by addition of the site-specific protease PreScission 

protease (GE Healthcare) to the sepharose bound fusion protein at a concentration of 80 units/ml. 

After overnight incubation, the tag-free protein was collected in the flow-through and multiple 

elutions. Gel filtration purification using a Superdex 75 column (Phamacia Biotech) was then 

carried out to ensure the purity of the protein and buffer-exchange to a typical sample buffer con-

taining 20 mM sodium phosphate buffer (pH 7.0) and 100 mM KCl was done.  

4.3.2 RNA sample preparation 

The RNA sequences rU5 (5'-UUUUU-3'), rC5 (5'-CCCCC-3'), rA5 (5'-AAAAA-3') used in 

this study were purchased from Integrated DNA Technologies, Inc. (Coralville, IA). The rU12 (5'-

UUUUUUUUUUUU-3'), rU15 (5'-UUUUUUUUUUUUUUU-3'), rU20 (5'-

UUUUUUUUUUUUUUUUUUUU-3') and 5' fluorescein labeled rU20 (F-rU20)   as well as trun-

cated WNV RNA sequences, SL40 (5'-

GGCUAAUUGUUGUUAAUCCUCGCGGAGACGCCAGCUCGCC-3') (Figure 4.2B) and 

SL20 (5'-UUAAUUGUUGUUAAUCCUCA-3') were purchased from Dharmacon, Thermo Sci-

entific, (Pittsburgh, PA) as the 2-hydroxyl protected form. The RNA samples were deprotected 

in house following the manufacturer’s protocol and desalted afterwards using a HiTrapTM desalt-

ing column (GE Healthcare). The dsDNA template for SL75 (5'-

CAGCUCGCACCGUGUUAAUUGUUGUUAAUCCUCACAAACACUACU-

AAGUUUGUCAGCUCACACAGGCGAACUACU-3') (Figure 4.2A) was amplified by PCR 

using pWNV75NCR as the template and primers 5'-[T7]-

CAGCTCGCACCGTGTTAATTGTTG-3' and 5'-AGTAGTTCGCCTGTGTGAGC-3'. T7 pol-

ymerase was used to in vitro synthesize SL75 from the PCR template. The SL75 RNA transcript 
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was isolated from the reaction mixture using a cation exchange column, Mono Q (GE 

Healthcare). The purity of all the longer RNA sequences was confirmed by urea polyacrylamide 

gel electrophoresis.    

4.3.3 Electrophoresis 

4.3.3.1 Tris nondenaturing acrylamide gels 

Tris nondenaturing 14% acrylamide gels were prepared using 4 × Tris gel buffer contain-

ing 200 mM Tris.Cl , pH 7.1 and 30% acrylamide/Bis (29:1) solution. The protein was solubil-

ized in 25 mM Tris∙Cl, pH 7.0 and 75 mM NaCl with 5% sucrose from which 20 μg was loaded 

for analysis. For protein/RNA complex samples, short RNA oligos were mixed with the protein 

in a 1:1 molar ratio. Cytochrome (10 μg) dissolved in the same sample buffer was used as a 

marker. The gel was prerun at 4 °C with a voltage of 30 V/cm for 30 min. Then, a voltage of 5 

V/cm was applied to the gel with the electrode reversed at the power supply to drive positively 

charged protein migration to the cathode. After electrophoresis, the proteins in the gel were 

stained using GelCode Blue stain reagent (Thermo Scientific). 

4.3.3.2 SDS polyacrylamide gels 

To analyze RRM2 and its multimers, 13.5 % SDS polyacrylamide gels (SDS PAG) were 

made from 30% acrylamide/Bis (29:1) solution following the standard protocol.  
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4.3.3.3 Electrophoretic mobility shift assay  

Nondenaturing polyacrylamide gels (8%-12%) made from 40% acrylamide/Bis (19:1) so-

lution were used for gel shift assays. Typically, 50 pmol of RNA was incubated with 50 to 150 

pmol of RRM2 in 10 μl of sample buffer (20 mM sodium phosphate buffer, pH 7.0 and 100 mM 

KCl) on ice for 10 min prior to electrophoresis. A voltage of 10 V/cm was applied and the gels 

run for ~3 h at 4 °C. After electrophoresis, RNA on the gel was stained with SYBR Green II and 

visualized using Typhoon9400 (GE Healthcare).  

4.3.4 Protein crosslinking 

The protein crosslinker dithiodis[succinimidypropionate] (DSP) was dissolved in dry 

DMSO at a concentration of 50 mM. Proteins (50 μM) were prepared with or without WNV 

SL20 RNA in a reaction of 50 μl with sample buffer. Then, 50 fold excess of the crosslinker was 

added to the protein or the protein-RNA mixture. The reaction was incubated for 2 h on ice. The 

mixture was loaded directly onto 13.5% SDS PAG and subjected to electrophoresis to separate 

the RRM2 monomer and multimers.  

4.3.5 CD spectroscopy 

TIAR RRM2 was dialyzed against 10 mM sodium phosphate buffer (pH 7.0) with 50 

mM Na2SO4 and the concentration was adjusted to 50 μM. A 2 mm cuvette was used with a JA-

810 spectropolarimeter (Jasco, Tokyo, Japan) for recording all CD spectra at room temperature. 

Each spectrum was recorded from 260 to 180 nm at a scan rate of 10 nm/min for a total of eight 

scans. The resulting spectra were deconvolved using the online server, DichroWeb (70). 
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4.3.6 Steady-state fluorescence anisotropy measurement 

Fluorescence anisotropy experiments were carried out on a Perkin Elmer LS55 fluores-

cence spectrometer (Waltham, MA) using an excitation and emission wavelength of 495 nm and 

521 nm, slit widths of 10 mm and 3 mm, respectively. F-rU20 (100-150 nM) was prepared in 600 

μl of sample buffer or low salt buffer (4 mM sodium phosphate, 20 mM KCl with pH 7.0) using 

a 5 × 5 mm fluorimeter quartz cuvette. Anisotropy of F-rU20 was measured after each addition of 

0.5-2 μl protein sample. The data were analyzed with Graphpad Prism.  

4.3.7 Isothermal titration calorimetry (ITC) experiments 

All the ITC experiments were carried out on a VP-ITC microcalorimeter (MicroCal, 

LLC, Northampton, MA) at 25 °C with reference power of 18 μcal/sec and a stirring speed of 

351 rpm. Prior to each experiment, both the RNA and the protein samples were dialyzed over-

night against the same buffer (20 mM sodium phosphate, pH 7.0, 100 mM KCl) and adjusted to 

the desired concentration. Samples were degassed before loading into the sample cell or the auto-

pipette. The titration was performed by adding 8-10 μl aliquots of the RNA to protein every 300 

s for a total of 25 injections. The normalized heat signals were calculated using the bundled 

Origin software and the data was fitted using a one site binding model.  

4.3.8 NMR experiments 

All NMR spectra were recorded on a Bruker 600MHz instrument equipped with a 5 mm 

triple resonances (QXI) Z-gradient probe head. Pre-saturation was used in 1D 1H and 2D NOE-

SY spectra to suppress the solvent (H2O) signal. The 2D NOESY was collected with a data ma-

trix of 2k × 512, 32 scans and mixing time of 250 ms.  
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4.3.9 Electrostatic potential map calculation 

The electrostatic potential maps of TIAR RRM1, 2 and 3 were calculated using the online 

server PDB2PQR (71) to generate a PQR file from the protein PDB file. The PQR file was then 

calculated with an APBS package complied in the VMD program to assess the molecular electri-

cal potential surfaces. The resulting files were visualized with VMD (72).  

4.3.10   Molecular docking  

The interaction of TIAR RRM2 with short RNA sequences, rU5, rA5 and rC5 were evalu-

ated using AutoDockVina (The Scripps Research Institute) (73). The RNA molecular models 

were built and minimized with molecular mechanics force fields in Spartan (Wavefunction, Inc.). 

PDB files were also generated in Spartan. The protein and the RNA PDB files were then pre-

pared in AutoDockTools (73) to generate pdbqt files for molecular docking. The final results 

were visualized using AutoDockTools. 
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Figure 4.1 WNV genome and the complementary negative strand with predicted secondary 
structure at the NCR of the positive strand 5' terminus and negative strand 3' terminus.  
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Figure 4.2 SL75 and SL40 structure generated using Mfold (74). Loop1, 2 and 3 on SL75 are 
indicated with L1, 2, 3. 

4.4 Results and Discussion 

4.4.1   Predicting the interaction of RRM2 with short RNA substrate from molecular docking 

Molecular docking predicts the preferred orientation of ligands when bound to a receptor 

by searching for a minimum energy state. We performed molecular docking on RRM2 and vari-

ous short RNA sequences to probe the potential fits of different RNAs to RRM2 and evaluate the 

differences in their contact pattern. As shown in Figure 4.3, the RRM2-rU5 complex with the 

lowest binding energy shows that the rU5 binds at the second β strand (β2). The RNA was 

stretched to fit the accessible surface of the protein. This search also predicted other binding 

models where rU5 binds the loops regions (Figure 4.3 C and D). The binding sites of rA5 on 
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RRM2 were found to be similar to rU5 (Figure 4.4A). In the predicted model for RRM2-rC5, rC5 

lies on the β4 strand in addition to loop binding (Figure 4.4B). In all docking experiments, the 

phosphodiesters and the glycosidic bonds are fully rotatable, allowing the RNA to mold to the 

protein surface. However, the simulation provides limited information on the binding preference 

of RRM2 as judged from the calculated binding energy. Clearly, experiments need to be con-

ducted to analyze this interaction. 

 

Figure 4.3 The calculated models of TIAR RRM2 interacting with rU5, (A), (C) and ( D) with 
different binding patterns; (B) the accessible surface representation of the model in (A). Binding 
free energies are indicated. 
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Figure 4.4 Representative models of TIAR RRM2 interacting with rA5, (A) and rC5, (B). 

 

Figure 4.5 A): CD spectra of TIAR RRM2 in the far UV region; red, initial spectrum; green, 
spectrum of the sample containing 6 M guanidine HCl and spectrum of the refolded sample, 
black; B): near UV CD spectra. Protein sample is in 10 mM sodium phosphate buffer (pH 7.0) 
with 50 mM Na2SO4.   

4.4.2   The folding status of hTIAR RRM2 

The wild type TIAR protein contains three RRM domains. We first focused on the bind-

ing properties of RRM2, this single domain was fused to an N terminal GST tag, which was re-

moved during purification. To ensure proper folding of the protein, the purified protein was 
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characterized by CD spectroscopy. The existence of α-helix and β-strand components is indicat-

ed by the negative peak in the range of 208-220 nm and the positive peak around 195 nm in far 

UV spectra, respectively. The negative peak in the range of 190-200 nm indicates β turns and 

random coil (Figure 4.5A). The protein was denatured by 6 M Guanidine HCl and refolded by 

dialysis against the sample buffer. The CD spectra of the refolded protein showed the same pro-

file as the initial protein sample. Deconvolving the CD spectra using the online server Di-

chroWeb reveals about 10% α-helix, 40% β-strand and 20% turns. These results together with 

the positive peak in the near UV region are indicative of proper folding of the protein (Figure 

4.5B). In addition, RRM2 NMR resonances are well dispersed in 1D 1H spectrum, specially three 

sets of peaks in the range of 5-6 ppm characterizing the β strand components. The 2D NOESY 

spectra also showed connection of HN to HN and HN to side chain Hs (Figure 4.6). These data 

further confirmed the folding of the protein. 
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Figure 4.6 2D NOESY spectrum of hTIAR RRM2 with 1D projection (A) and (B) side chain to 
HN region. Red arrows indicate the resonances of residues in β sheet conformation. Protein is in 
20 mM sodium phosphate buffer (pH 7.0) containing 100 mM KCl, 1 mM DSS. 

4.4.3   The binding preferences of RRM2 to short RNA substrates  

The initial screening for the binding preferences of TIAR RRM2 to short RNA sequences 

was performed utilizing a Tris nondenaturing acrylamide gel (Figure 4.7). In this system, the mi-

gration of the protein is driven by the protein intrinsic positive charges in the applied buffer and 

gel condition. The disappearance of the protein band in the RRM2-rU20 pair sample indicates the 

mobility pattern changes upon binding, specifically due to the neutralization of the protein 

charges by the negatively charged RNA molecule. The protein band did not show any changes in 

other lanes containing RRM2 with rU5, rA5 and rC5. This indicates either weak interaction or no 

interaction. TIA-1a RRM2 also showed the same mobility pattern suggesting they share similar 

binding preference for the tested RNA substrates.    
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Figure 4.7 Tris nondenaturing 14% PAGE of TIAR and TIA-1a RRM2 with rU5, rA5, rC5 and 
rU20. 

 

The application of nondenaturing gels for studying molecular association is limited by the 

fact that the formation of the complex is accompanied by the charge neutralization, so that the 

complex may not enter the gel. This can complicate the interpretation of the experimental data. 

The problem can be avoided using ITC, because the calorimetric measurements of ITC can be 

done in solution and so do not require separation of the free and bound molecules.    

ITC experiments of TIAR RRM2 with various short RNA sequences showed that the pro-

tein binds specifically to rU5, has weak interaction with rC5 but does not bind to rA5 (Figure 4.8). 

These results differentiate the affinity of RRM2 towards different RNA sequences which were 

not evident from the gel experiment. The TIAR RRM2-rU5 binding event is exothermic as 

shown by the heat released upon addition of rU5. Analysis of the titration plot resulted in a disso-

ciate constant Kd of 8.7 μM and n of 0.87, which suggests a 1:1 binding stoichiometry. The re-

sults are in agreement with a previous report (55). 
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Figure 4.8 ITC isotherm from experiment for rU5 (left), rC5 (middle) and rA5 (right) titrated into 
TIAR RRM2.  

 

4.4.4   The length of oligoU sequence determines the binding ratio  

The affinity of RRM2 and rU20 is much higher based on the ITC isotherm (Figure 4.9A). 

A Kd of 250 nM and more interestingly three identical binding sites on rU20 were observed. This 

indicates each RRM2 domain requires 6-7 nucleotides as a binding site. To verify this finding, 

we performed ITC experiments on oligoU RNA with difference lengths. The isotherm of rU15 

titrated into RRM2 yielded an n of 0.52 ± 0.01, corresponding to a binding ratio of 2:1 (RRM2: 

rU15) (Figure 4.9B). For the titration of RRM2 with rU12 (Figure 4.9C), fitting the titration with a 

one binding site mode produced an n of 0.73 ± 0.02, suggesting an average of 1.3 binding sites 

was provided by the 12 nucleotides. Two scenarios are proposed to explain this result. In the first 

model, one or two RRM2s can bind to the RNA sequence dependent of the position of the con-

tact. In the second model, one RRM2 binds to the RNA sequence and a second RRM2 only par-
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tially binds to the RNA with a lower affinity. However, both models need to be rationalized by 

more experimental data. 

 The β sheet surface of a single RRM has been reported previously to bind to variable 

numbers of nucleotides dependent on the sequence and accessibility of the RNA segment (75-

79). Analysis of the complex of nucleolin RRM12 with a target stem-loop RNA showed that 

RRM1 contacts three and RRM2 contacts two nucleotides on each side of the loop. While in the 

complex of the spliceosomal U2B'' protein associated with its cognate RNA, eight nucleotides 

are involved in the binding. In our study, the results from titration of RRM2 with rU20, rU15 and 

rU12 showed that the oligoU sequences allow the binding of two or three RRM2s with each 

RRM2 requiring 5-7 nucleotides. These results inspired us to investigate the binding stoichiome-

try of RRM2 and its target viral RNA sequence, WNV 3' (-) SL RNA. 

 

Figure 4.9 Isotherm from ITC experiment for rU20 (A), rU15 (B) and rU12 (C) titrated into TIAR 
RRM2. Titration was fitted using a one binding site mode (bottom panel). 
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In this study, in addition to the full length RNA target SL75, a 40 bases sequence (SL40) 

was designed to include the two loop region sequences and maintain the loop conformation. A 20 

base single stranded RNA substrate containing the two loop sequences was also selected (Figure 

4.2). 

The ITC experiment on RRM2_SL20 (Figure 4.10) yielded a Kd of 410 nM which indi-

cates a slightly lower affinity compared to the RRM2-rU20 pair. This result agrees with the no-

tion that TIAR has a higher affinity for U-rich than AU-rich sequences (80). The binding site n is 

0.3 per protein molecule, equivalent to the result in RRM2- rU20. This again suggests that the 20 

RNA bases can provide three binding sites. Alternatively, RRM2 may trimerize via protein-

protein contacts when bound to an RNA sequence of 20 bases.  

To verify if RRM2 can exist as a trimer when bound to rU20 or SL20, the protein was 

chemically crosslinked in the presence of SL20 prior to SDS PAGE analysis. As shown in Figure 

4.11, RRM2 showed evidence of dimer formation when no RNA in present, but a trimer and 

even higher order oligomers are detected when bound to SL20. A gel shift assay was also applied 

to SL20 incubated with increasing amounts of RRM2. The migration of SL20 was altered upon 

adding RRM2, and a thinner band was observed.  At a 3-fold excess of RRM2, the binding was 

near completion. This result supports the hypothesis that three RRM2s bind to a single molecule 

of SL20. 
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Figure 4.10 Isotherm from ITC experiment for SL20 titrated by RRM2, Titration was fitted us-
ing a one set of binding site mode (bottom panel).  

 

 

 

Figure 4.11 (A) A 13.5% SDS PAGE analysis of RRM2 crosslinked by DSP: Lane 1, RRM2 
without crosslinking; Lane 2, RRM with crosslinking; Lane 3, Crosslinked RRM2 with equal 
molar of SL20; Lane 4, Crosslinked RRM2 with SL20 in molar ratio of 3 to 1. SYBR green 
stained 12% nondenaturing acrylamide gel for WNV SL20, (B) and SL40, (C) with increasing 
amount of TIAR RRM2. Lane 1: free SL20 (B1) or SL40 (C1), SL20 (B2) and SL40 (C2) with 
equal molar of RRM2; SL20 (B3) and SL40 (C3) with 3-fold excess of RRM2 (B3). 
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4.4.5   The binding of TIAR RRM2 to SL40 and SL75 

The titration of RRM2 with SL40 surprisingly showed no significant heat release, which 

suggests there is no binding between these two partners. A gel shift assay was conducted to veri-

fy this result. The SL40 exhibited two bands in its free form. The band at the higher position cor-

responds to a dimer. When titrating with increasing amounts of RRM2, the bottom band stayed 

unshifted, but the top band disappeared and a smeared band appeared at a higher position (Figure 

4.11C). This result suggested the dimer is capable of binding RRM2 while the monomer does not 

bind to RRM2. To confirm this, the sample was denatured and refolded with heat-chill cycle pri-

or to a native acrylamide gel. This resulted in the disappearance of the dimer band. Reevaluating 

the SL40 sequence with M-fold (74), four possible conformations were predicted with similar 

free energies (Figure 4.12), where three of the predicted conformations have no exposed loops 

with a UUAAU sequence. Therefore, this sequence was not further utilized.  

The interaction of RRM2-WNV SL75 probed by ITC titration displayed an apparent en-

dothermic profile (Figure 4.13B). This is likely due to the heat absorption of RNA refolding up-

on binding and dilution (Figure 4.13B), which renders the overall reaction to become entropy 

driven. The fitting of the final net heat associated with this protein-RNA interaction produced 

binding sites n of 0.33, consistent with that of the RRM2-rU20 or RRM2-SL20 binding pairs. 

This result combined with the fact that RRM is a single stranded RNA binding protein, partially 

supports the hypothesis that the active binding sites on this large sequence are the loop regions 

that can spatially hold three RRMs.  
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Figure 4.12 Other possible 2D structures of SL40 generated using Mfold (74). 

 

Figure 4.13 Isotherm from an ITC experiment for SL75 titrated with RRM2. The titration was 
fitted by a one set of binding site mode (bottom panel).  
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With the exception of RRM2-SL75, the binding interactions are all enthalpy driven. The 

RRM2-rU20 complex exhibits the largest enthalpy of -5.4 × 104 kcal/mol and also shows the 

greatest entropy penalty of -150 kcal/mol∙K. The large negative entropy reflects the loss of con-

formational freedom. SL75 experiences large conformational change upon binding to RRM2, 

which requires large heat input; however, the complex formation is entropy favored (Table 4.1). 

Table 4.1 Thermodynamic parameters from ITC experiments for RRM2 with all the RNA sub-
strates. 

system   Kd (nM)   n  Ratio ΔH (kcal/mol)  ΔS (cal/mol∙K) 
      (RRM2:RNA)     

RRM2_rU5   8700±150  0.89±0.01  1:1  -24.0±0.3
  -59.3  

RRM2_ rU12  478±34  0.75±0.02  1.3: 1  -32.7±0.9
  -80.7  

RRM2_rU15  341±40  0.52±0.01  2:1  -45.0±1.6
  -121  

RRM2_rU20  250±12  0.34±0.003  3:1  -53.6±0.7
  -150  

RRM2_SL20  410±51  0.30±0.01  3:1  -12.7±0.5
  -13.4  

RRM2_SL75   45±25   0.31±0.02  3:1  6.1±1.2  54.3  
 

4.4.6   RRM2-RNA binding followed with fluorescence anisotropy    

RRMs have been observed to be cooperative when interacting with target RNA in pro-

teins containing multiple copies of RRMs. Our system focuses on a single RRM2 that contrib-

utes most to the binding affinity. However, multiple identical binding sites are present in the 

longer RNA sequences. Fluorescence experiments were carried out to further investigate the 

binding interaction. 

Fluorescence anisotropy (r) is a measurement of fluorescence depolarization caused by 

rotational diffusion of the fluorophore during the excited life time. Briefly, when the fluorophore 
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is irradiated with plane-polarized light, only molecules that are properly aligned can be excited to 

emit fluorescence. If, during the fluorescence life time, the molecule rotates, the emitted radia-

tion will be depolarized to a degree that depends on the extent of rotation. Therefore a decrease 

in the rotational diffusion results in an increase in anisotropy. In practice, anisotropy is calculated 

by measuring the vertical and horizontal fluorescence emission components (IVV and IVH) when 

the sample is excited with vertically polarized light based on the following equation: 

r =
Ivv − GIVH

Ivv − 2GIVH
 

Where G is the G factor, G = IHV/IHH. IVV is the light intensity with the excitation and 

emission polarizers mounted vertically. IHH is the intensity with the excitation and emission po-

larizers mounted horizontally. IHV when a horizontal excitation polarizer and a vertical emission 

polarizer are used; IVH is the intensity when a vertical excitation polarizer and horizontal emis-

sion polarizer are used.  

Fluorescence anisotropy has been widely used in studying molecular associations, where 

the measured anisotropy represents a weighted average anisotropy of the free and bound fluoro-

phore. When the relative quantum yields of the free and bound fluorophores are identical, the 

fraction of bound fluorophore α can be calculated using the equation: 

α =
A − Af

Ab − Af 
 

When the yields are not identical, α can be corrected as follows: 

A − Af

(A − Af) + (Fb Fc )(Ab − A)⁄  
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Where A is the observed anisotropy; Af  is the free and Ab is the bound fluorophore; Fb and Fc are 

the fluorescence intensities of the bound and free fluorophore, respectively (81).  

We measured the fluorescence anisotropy under high and low salt conditions. Under both 

conditions, the addition of RRM2 to labeled rU20 produces an increase in anisotropy. Under low 

salt conditions, the appearance of the titration curve indicates cooperative binding (82). In addi-

tion, half saturation appears at lower RRM2 concentrations indicating a higher binding affinity 

compared to the binding under high salt conditions. Applying Hill analysis to both titrations, we 

obtained a Hill coefficient h of 0.75±0.2 for the titration in high salt buffer but a h of 2.1±0.2 for 

the titration under low salt conditions. These results suggest the binding is cooperative. 

 
Figure 4.14 Fluorescence anisotropy titration of F-rU20 with TIAR RRM2 under typical buffer 
conditions (A) and low salt buffer conditions (B). The calculated fraction of bound F-rU20 was 
plotted against the total RRM2 concentration and the data were fitted using specific binding with 
hill plot (bottom panel) in Graphpad Prism.   

4.4.7   Electrostatic potential properties of the three RRMs of TIAR 

In a protein that contains multiple RRMs, the RRMs can form a larger platform or cleft 

during the recognition to their target DNA or RNA sequence. In TIAR, the three RRMs share 
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similar structures, but contribute differently when binding to U rich or AU-rich RNA sequences, 

with RRM2 possessing the highest affinity (57). This suggests that RRM2 has unique properties. 

Bauer’s ab initio model based on SAXS data suggested a “V” shape of RRM123 (83). However, 

the precise arrangement of the three RRMs is not clear because the structure of the wild type pro-

tein in not known. Sequence alignment reveals that these RRMs have only about 40% sequence 

similarity. Electrostatic potential calculations were carried out to examine the charge distribution 

on each RRM to understand their different contributions to RNA binding. In addition, this analy-

sis may also provide insights about protein-protein contacts. 

 

Figure 4.15 Sequence alignments of RRM1, RRM2 and RRM3. Identical, strong similar and 
weak similar residues are in green. Secondary structure elements are depicted with blue arrows 
(β strand) and red cylinders (α helix). Red boxes highlight the two known conserved peptide se-
quences. 

The potential maps show that positive and negative charges are almost equally distributed 

on the α-helical surfaces and the loops that connect secondary structure elements of all three 

RRMs (Figure 4. 15). However, the charge distribution on the β sheet surface differs with the 
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RRM2 surface being more positive than those of RRM1 and RRM3. This result suggests electro-

static forces contribute significantly to RRM2-RNA recognition and emphasize the major role of 

RRM2 in RNA bindings. The result also suggests that in high salt conditions, protein-protein in-

teractions can be facilitated. This allows multiple RRM2s to bind simultaneously to identical 

binding sites on longer oligoU RNAs as observed in ITC study.  

 

Figure 4.16 Electrostatic potential maps of TIAR RRM1 (1a and 1b); RRM2 (2a and 2b) and 
RRM3 (3a and 3b). a and b indicate the surface of the α helix and the β sheet of each RRM, re-
spectively. Only the cores of the surfaces are shown. 

 

In addition, repulsion may exist between the three RRMs in the wild type hTIAR due to 

the relatively positive charges on their β sheets. As a result of this, the three domains might face 

in opposite directions which would place RRM2 toward the target RNA. To test this hypothesis, 

investigation of the wild type protein must be conducted.   
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4.5 Conclusion 

Applying a combination of computational and experimental techniques including electro-

phoresis, calorimetry and spectroscopy, we evaluated the binding interaction of hTIAR RRM2 to 

various RNA sequences.  

RRM2 was shown to bind U rich sequences with higher affinity than AU rich sequences 

based on comparising the binding to oligoU and to a single stranded AU rich RNA target. The 

longer oligoU allowed simultaneous binding of multiple RRM2s. The results of the studies with 

rU5, rU12, rU15 and rU20 demonstrated that a single RRM recognizes 5-7 nucleotides. 

Fluorescence anisotropy experiments conducted in buffers with different salt concentra-

tions revealed cooperation between multiple RRM2s when bound to oligoU. 

Electrostatic potential maps revealed that the β sheet surface of RRM2 is highly positive-

ly charged. This may account for its dominant role in RNA binding. A hypothesis on the ar-

rangement of three RRM domains based on electrostatics was also proposed. 

4.6 Future Work 

The binding isotherm of wild type hTIAR and various RNA sequences must be investi-

gated using ITC to explore the biologically relevant binding affinity, stoichiometry and thermo-

dynamic parameters.  

To map the binding sites on SL20, NMR spectroscopy can be applied to 15N or/and 13C 

labeled RRM2. Titration of labeled RRM2 with unlabeled SL20 is expected to verify the binding 

stoichiometry.  
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A model of the arrangement of the RRMs of TIAR is needed to rationalize the data. 

The binding of RRM2 to SL75 will be evaluated by molecular docking using Haddock, a 

program suitable for protein-RNA interactions. A predicted tertiary structure of the RNA will be 

used. 
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5 APPLICATION OF 2D SELECTIVE TOCSY IN ASSIGNMENT OF ADENINE H2 

AND H8 RESONANCES IN OLIGONUCLEOTIDES USING HOMONUCLEAR 

LONG-RANGE COUPLING CONSTANTS 

5.1 Preface 

The DFT shielding and spin-spin coupling calculations on 2-endo deoxyadenosine were 

carried out by Alexander Spring. This work was published in J. AM. CHEM. SOC. (2009) 131: 

5380–5381. 

5.2 Introduction 

NMR structural studies of nucleic acids require a nearly complete and unambiguous as-

signment of the proton resonances. This includes the adenine H2 protons, which, especially in B-

type DNA, are generally far from other protons, rendering their assignment cumbersome. In both 

A- and B-type nucleic acid helices, the H2 protons are located in the minor grooves, where they 

serve as useful monitors for binding in or near adenines in the DNA minor groove (1).  

The conventional assignment method, which relies on Nuclear-Overhauser effects (NOEs) 

recorded in D2O solution, generally does not allow complete assignment of the H2 resonances.  

In practice, these resonances are often assigned from their NOEs to the imino protons of A·U or 

A·T base pairs (2-3). This requires performing experiments in H2O and the presence of detecta-

ble imino protons whose exchange with the solvent is sufficiently slow. For adenine residues in 

unpaired regions, other strategies are needed. Oligonucleotides that are 13C-labeled allow mag-

netization transfer between the H2 and H8 protons via common couplings to intervening 13C nu-
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clei (4-5). However, this approach is hampered by rapidly relaxing carbons. Subsequently, triple 

resonance experiments using [13C, 15N]-labeled oligonucleotides were developed to correlate the 

H2 and H8 protons (H → 15N → 13C → H) (6-7). Such schemes feature increased sensitivity but 

require labeled oligonucleotides and use of H2O as the solvent. The development of higher-

sensitivity NMR probes and the use of low-artifact gradient-enhanced experiments enabled the 

assignments of H2 and H8 protons at natural abundance using Heteronuclear Multiple Bond Cor-

relation (HMBC) experiments in D2O (8). These experiments rely on a common heteronuclear 

long-range coupling of both H2 and H8 to C4. However, the inherently low sensitivity requires 

very long acquisition times and/or high sample concentrations.  

The adenine H2 resonances are readily identified in D2O solution, since they appear as 

narrow singlets with long longitudinal (T1) and transverse (T2) relaxation times due to their iso-

lated location. The long T1 is often a nuisance because it limits the repetition rate in many NMR 

experiments. However, the long T2 permits the use of pulse sequences with longer durations, 

which aid in the detection of even small couplings.   

Long-range six-bond homonuclear coupling constants have been reported previously for 

polycyclic aromatic systems (9). This encouraged us to explore whether there is an adenine H2-

H8 homonuclear coupling that could be utilized to track H2 using H8.   

5.3 Materials and Methods 

5.3.1   NMR sample preparation 

Adenosine 5' monophosphate (AMP) was prepared as 50 mM and 200 mM in 10 mM so-

dium phosphate buffer containing 0.5 mM EDTA in 99.996% D2O, at pH* 6.6, 298 K for selec-

tive TOCSY and COSYLRQF experiments and for the XLOC experiment. A 0.5 mM DNA 
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decamer duplex with the sequence 5'-GTTCGAGACG-3', 5'-CGTCTCGAAC-3' and  a 0.75 mM 

DNA hairpin with sequence 5'-ACTGCTACCCCTAGCAGT-3' were dissolved in the above 

mentioned NMR buffer containing 100 mM NaCl at pH* 6.6 and 50 mM NaCl at pH* of 6.84, 

respectively.   

5.3.2 NMR experiments 

NMR experiments were obtained on Bruker Avance 600 MHz (5 mm QXI probe) and 

500 MHz (5 mm TBI, 5 mm TXI cryo probe) instruments.  T1 and T2 relaxation times were de-

termined using inversion recovery (10-11) and CPMG (12) experiments, respectively. Selective 

TOCSY experiments were acquired using a 4.5 - 6 ms E-burp excitation pulse centered in the 

aromatic region. Long-range COSY and XLOC experiments were recorded as described previ-

ously (8, 13-14).  

5.3.3 NMR simulations 

Simulation were carried out with NMR-SIM 3.1 (Bruker) for the AMP spin system using H2 

= 8.17 ppm, T1 = 6.0 s, T2 = 1.6 s; H8 = 8.54 ppm, T1 = 2.1 s, T2 = 1.1 s. 

5.3.4 DFT shielding and spin-spin calculations  

2-endo deoxyadenosine was optimized with the HF/6-31G in Gaussian03 package (15). 

NMR shielding and spin-spin calculations were obtained using the B3LYP and 6-31G** basis 

set with the polarizable continuum model and the UA0 cavity for water effects (16-17). 
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5.4 Results and Discussion 

5.4.1 Quantum-mechanical calculations of the 2-endo deoxyadenosine H2-H8 coupling 

Small coupling constants, particularly when they are on the order of the line widths, are dif-

ficult to measure (18-20). Inspection of adenosine NMR spectra does not provide any obvious 

support for long-range H2-H8 couplings. Therefore, quantum-mechanical calculations were ini-

tially performed to predict the magnitude of the small long-range coupling, which was estimated 

to be -0.18 Hz (15-17).  However, these calculations also forecasted several other nonvanishing 

couplings of H2 (to H3', H5', and H5'') (Figure 5.1).  In view of these results, experimental veri-

fication was clearly needed.  

 

Figure 5.1 Coupling constants of 2-endo deoxyadenosine H2 to H8, H3' and H5' were calculated 
using B3LYP and 6-31G** basis set in Gaussian03. Coupling constant values are indicated in 
red. 
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5.4.2 Assessment of the amplitude of the AMP H2-H8 long-range coupling constant using 

NMR experiments and NMR sim simulation 

The H2-H8 coupling was assessed using a long-range optimized COSY experiment on 

adenosine 5' monophosphate (AMP) (21). The coupling became apparent for long-range evolu-

tion delays larger than 0.10 s. We also noted a long-range COSY correlation for the H8 and H1' 

protons (Figure 5.2). The maximum cross-peak intensity was obtained when a delay of 0.75 s 

was applied, from which a coupling constant around 0.6 Hz is predicted using J = 1/(2τ).  

NMR-SIM simulations of this experiment taking into account the relaxation were carried 

out with a coupling constant of 0.3 Hz and 0.5 Hz. The maximum cross-peak intensity appeared 

at a 0.75 s long-range delay when a 0.5 Hz coupling was simulated. This was consistent with 

NMR long-range optimized COSY result that indicated a H2-H8 coupling of ~0.5 Hz (Figure 

5.3). Sørensen and co-workers introduced an innovative pulse program named XLOC that allows 

a direct measurement of small homonuclear couplings (10, 13). This approach disentangles small 

homonuclear JHH couplings in the F2 dimension by the large one-bond JCH coupling in F1. Using 

XLOC on the AMP sample yielded a coupling constant of 0.5 ± 0.2 Hz, in agreement with our 

previous results (Figure 5.4). 
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Figure 5.2 The 500 MHz long-range optimized COSY (cosylrqf) spectrum of a 50 mM 5' AMP 
sample recorded at 298 K with long-range evolution delay of 300 ms and a 10 s relaxation delay. 
A 1024 × 128 data point matrix was acquired in a spectral window of 3.0 × 3.0 ppm using 8 
scans. 

 

Figure 5.3 Dependence of the cross-peak intensity of 5'-AMP on the long-range evolution delay 
in the NMR cosylrqf experiments (solid line with dots). NMR sim simulation on 5'-AMP using 
pulse program cosylrqf for a coupling constant of 0.5 Hz (dotted line) and simulation for a cou-
pling constant of 0.3 Hz (dashed line). 
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Figure 5.4 The 500 MHz expansion of the XLOC spectrum for the 200 mM AMP sample. The 
spectrum was recorded at 298 K using a first order low-pass J filter with a 1.5 s relaxation delay 
and an excitation delay of 0.343 s [10]. A 2K × 512 matrix was acquired in a spectral window of 
4 × 90 ppm with 16 scans per increment. For processing, the window functions were cosine in T1 
and sine in T2. 

5.4.3 Application of the H2-H8 long-range coupling in DNA oligos  

In addition to the apparent cross-peak of 5' AMP H2-H8 coupling in long-range opti-

mized COSY experiment, a H2-H8 cross-peak in the total correlation spectroscopy (TOCSY) 

experiment also appeared at long mixing times (0.20 to 1.25 s). Such long durations are possible 

because of the slow relaxation behavior of the A H2 proton. This also permits the use of a selec-

tive TOCSY experiment that focuses the base region to probe the correlation of H2-H8 of A in 

DNA oligos. The selective TOCSY incorporating an E-Burp pulse for excitation of the base re-

gion limits the appearance of unwanted signals and permits the use of large receiver gains. For a 

10-mer DNA duplex at mixing times larger than 0.25 s, a clear correlation of all of the H2 and 

H8 protons was observed (Figure 5.5). The cross-peak intensity remained nearly constant for 

mixing times between 0.40 and 1.0 s (Figure 5. 6). 
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An unambiguous assignment was also obtained for a 0.75 mM 18-mer DNA hairpin in 

just 45 min using a mixing time of 0.30 s (Figure 5.7). 

 

Figure 5.5 The 600 MHz selective TOCSY spectrum of a 0.5 mM decamer DNA duplex sample, 
recorded at 298K with a 5 s relaxation delay and a mixing time of 500 ms. The carrier was set at 
7.6 ppm and an E-Burp pulse of 4.5 ms was used for excitation. A 1024 × 100 data matrix was 
acquired in a spectral window of 2.4×2.4 ppm with 64 scans per increment resulting in an exper-
iment time of 5 h. 
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Figure 5.6 Dependence of the cross peak intensity on TOCSY mixing time for the A6 of the 
decamer DNA duplex. 

Depending on sequence and structural peculiarities, H2 protons can be assigned from 

regular NOESY experiments, particularly for RNA (22). However, the relevant cross-peaks are 

often missing, weak, ambiguous, or appear in overlapped regions (Figure 5.8), especially in non-

helical segments. Although not observed for the DNA decamer and 18-mer hairpin shown previ-

ously, a rotational NOE (ROE) artifact could potentially also arise if H2 is close to another pro-

ton. However, a direct ROE has the opposite sign compared to a TOCSY cross-peak, and a 

through-space correlation is also readily recognized from a companion NOESY experiment. 

However, the through-bonds correlations are unambiguous. 
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Figure 5.7 The 600 MHz selective TOCSY spectrum of a DNA hairpin (0.75 mM), recorded at 
298 K with relaxation time of 3.5 s and mixing time of 300 ms. The carrier was set at 7.6 ppm 
and an E-Burp pulse of 6.0 ms was used for excitation The spectrum was required using a 3.0 × 
3.0 ppm spectral window. A 1024 × 128 data point matrix was acquired using 4 scans per incre-
ment resulting in an experiment time of 45 minutes. 
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Figure 5.8 The 2′, 2′′-Base region of a 600 MHz NOESY spectrum of the 0.75 mM DNA hairpin 
recorded at 298 K (99.99% D2O,10 mM sodium phosphate buffer, 0.1 mM EDTA 50 mM NaCl, 
pH*6.84) with a mixing time of 200 ms and a relaxation delay of 8 s. Only the adenine 7 H2 pro-
tons next to the harpin loop show weak NOEs to H2', H2'' protons of hairpin loop residues 
(marked with arrows). 

5.5 Conclusion 

A long-range homonuclear coupling of adenine H2-H8 proton was observed in long-

range optimized COSY and TOCSY experiments with long duration elements. The amplitude of 

the coupling constant was estimated by NMR sim simulation and experimentally measured by an 

XLOC pulse program, yielding a value of 0.5 +/- 0.2 Hz.  

Using a selective TOCSY experiment with an E-Burp shape pulse to selectively excite 

the base region, we evaluated the application of the 6/7 bond homonuclear coupling to identify 

H2 by the H2-H8 correlation in different DNA sequences. The successful use of the optimized 
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selective TOCSY to explore H2-H8 coupling identified a rapid and unambiguous method for as-

signing A H2 resonances in unlabeled oligonucleotides.   
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APPENDIX 
 

Abbreviations 

Ai: paramagnetic attenuation 

AMP: Adenosine 5' monophosphate   

CD: circular dichrosim 

COSY: correlation spectroscopy  

COSYLRQF: Magnitude-mode Long-Range optimized 2D COSY 

DHPC: 1, 2-dihexanoyl-sn-Glycero-3-Phosphocholine  

DMPC: 1, 2-dimyristoyl-sn-Glycero-3-Phosphocholine  

DMSO:Dimethyl sulfoxide 

DOSY: diffusion-ordered Spectroscopy 

DPC: deuterated dodecylphosphocholine 

DSC: differential scanning calorimetry  

DSP: dithiodis[succinimidypropionate]   

DTT: dithiothreitol   

EXSY: Exchange Spectroscopy 

Gd-DTPA-BMA: gadolinium-diethylenetriaminepentaacetic acid bismethylamide 

GST: Glutathione-S-transferase  

HMBC: Heteronuclear Multiple Bond Correlation 

HSQC: heteronuclear single-quantum correlation spectroscopy 

IPTG: isopropyl β-D-thiogalactopyranoside  

 ITC: isothermal titration calorimetry  

ITC: Isothermal titration calorimetry   

L45: peptide derived from the S4-S5 linker of Shaw2 Kv 

NCR: noncoding region   

NMA: N-methylacetamide  

NMR: Nuclear magnetic resonance   

NOE: Nuclear-Overhauser effect 

NOESY: Nuclear Overhauser effect spectroscopy 

ORF: open reading frame  
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PBS: phosphate buffered saline 

PDB: protein data bank 

PPIs: Protein-protein interactions 

PRE: paramagnetic relaxation enhancement 

PRIs: protein–RNA interactions 

RBD: RNA-binding domain 

RBPs: RNA binding proteins 

RNP: ribonucleoprotein domain 

RRM: RNA Recognition Motif  

S6c: peptide derived from the S6 C-terminus of Shaw2 Kv 

SDS PAGE: SDS polyacrylamide gels electrophoresis 

SL: stem loop 

SPR: surface plasmon resonance 

TFE: 2, 2, 2-trifluoroethanol  

TOCSY: total Correlation Spectroscopy 

TTAB: tetradecyltrimethylammonium bromide  

UV: ultraviolet 

VSD: voltage sensing domain 

XLOC: X Nucleus for Long-range Coupling Experiment 
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