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KATP CHANNEL ACTION IN VASCULAR TONE REGULATION DURING SEPTIC 

SHOCK: BEYOND PHYSIOLOGY 

 

by 

WEIWEI SHI 

Under the Direction of Chun Jiang 

 

ABSTRACT 

Septic shock is a major cause of deaths resulting from uncontrolled inflammation and 

circulatory failure. Recent studies suggest that the vascular isoform of ATP-sensitive K+ (KATP) 

channels is an important contributor to septic susceptibility. To understand the molecular 

mechanisms for channel regulation during sepsis, we performed studies in isolated endothelium-

denuded mesenteric rings. Lipopolysaccharides (LPS) induced vascular relaxation and 

hyporeactivity to phenylephrine. The LPS-treated aortic smooth muscle cells displayed 

hyperpolarization and augmentation of KATP channel activity. Both were due to an up-regulation 

of Kir6.1 and SUR2B surface expression. The up-regulation relied on transcriptional and 

translational mechanisms, in which nuclear factor-κB (NF-κB) and Protein kinase A (PKA) 

played a critical role. 

Oxidative stress occurs during sepsis and may act as another regulatory mechanism 

affecting KATP channel activity and vascular contractility. We found that micromolar 

concentrations of H2O2 impaired the pinacidil-induced vasodilation. The effect attributed to the 

suppression of KATP channel activity, which can be fully produced by reactivity oxidants. Unlike 



  

the Kir6.1/SUR2B channel, the Kir6.2/SUR2B channel was insensitive to 1mM H2O2, indicating 

that the modulation sites are located in Kir6.1. Site-directed mutational analysis showed that 

three cysteine residues located in N-terminus and the core region of Kir6.1 were likely to 

mediate the redox-dependent channel modulation. 

Arginine vasopressin (AVP) is a vasoconstrictor that is successfully applied to manage 

sepsis. However, the downstream target of AVP is uncertain. Our studies show that AVP-

induced vasoconstriction depended on V1a receptor, Protein kinase C (PKC) and KATP channel. 

Additionally, AVP decreased Kir6.1/SUR2B channel activity through V1a receptor. The 

inhibitory effect was caused by a suppression of the channel open state probability. The channel 

inhibition was mediated by phosphorylation of the channel protein by PKC.  

The widespread involvement of the vascular KATP channel in vascular responses to 

endotoxemia strongly suggests that the temporospatial control of channel activity may constitute 

an important intervention to vascular tone, blood pressure and organ-tissue perfusion in septic 

shock. Such a control appears feasible by targeting several modulatory mechanisms of 

intracellular signaling, Kir6.1/SUR2B expression, redox state and channel protein 

phosphorylation as demonstrated in this dissertation.  
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1. Specific Aims and Hypotheses 

Sepsis is a severe medical condition caused by several septic pathogens, especially 

bacterial lipopolysaccharides (LPS), leading to lethal cardiovascular dysfunction and death 

(Hotchkiss and Karl, 2003; Merx et al., 2007). Although systemic infection is a problem, most 

people die of circulation failure or septic shock. It is known that cardiovascular responses to 

sepsis are rather diverse and the prognosis can be very different between individuals. However, 

the underlying mechanisms for the sepsis susceptibility are unclear (Hotchkiss and Karl, 2003). 

Recent studies indicate that functional integrity of vascular ATP-sensitive K+ (KATP) channels is 

a crucial factor for sepsis susceptibility (Kane et al., 2006; Croker et al., 2007). The vascular 

KATP channels are members of the inward rectifier K+ channel family. The channels consist of 4 

pore-forming Kir6.x subunits and 4 sulfonylurea receptor (SUR) subunits. The major isoform in 

vascular smooth muscles (VSM) consists of Kir6.1 and SUR2B, although the Kir6.2/SUR2B 

may also exist in the tissue. The vascular KATP channel is a common target of several circulating 

hormones, neurotransmitters, and cellular metabolites. Channel modulation by these extracellular 

signaling molecules allows the channel to play an important role in regulating vascular tone. 

Genetic knockout of either Kir6.1 or SUR2B subunit leads to spontaneous coronary vasospasm 

and sudden death (Chutkow et al., 2002; Miki et al., 2002). The vascular KATP channel 

participates in septic responses. Genome-wide mutagenesis studies have led to the discovery of 

four strains of mice that are highly susceptible to various septic pathogens (Croker et al., 2007). 

All of these mice carry a null mutation in the locus of the Kir6.1 gene (Kcnj8). Consistently, 

mice with a Kcnj8 knockout exhibit cardiovascular abnormalities with a high mortality when 

exposed to a normally sub-lethal dose of LPS (Kane et al., 2006). Although these recent studies 

indicate that the Kir6.1/SUR2B channel is an important player in systemic responses to sepsis, 
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how the channel is affected by LPS remains unclear. Is the channel activated by LPS in VSM 

leading to vasodilation? Does the channel activation result from changes in channel protein 

expression or functional activity? Is the channel a direct target of LPS? How is the channel 

affected by oxidative stress occurring in sepsis? Can the resultant changes in K+ currents during 

septic shock be controlled by circulating hormones and neurotransmitters? What are the crucial 

intracellular signaling pathways involved in the channel modulation by LPS and circulating 

hormones? The understanding of these regulatory mechanisms will provide information for 

novel therapeutic approaches to manage septic shock, and improve the survival rate of the 

disease. Therefore, these are the questions I addressed in my dissertation work. More specially, I 

addressed the following hypotheses: 

A. The vascular KATP channel is activated with LPS exposure via activation of 

distinct intracellular signaling systems for Kir6.1/SUR2B gene expression. 

B. With the development of systemic oxidative stress, the channel activity is 

suppressed by reactive oxygen species through direct interaction with the channel protein. 

C. The vasodilation and vascular hyporeactivity to vasoconstrictors can be 

improved with AVP through phosphorylation modulation of the channel protein. 



 
 

3

2. General Introduction: Vascular KATP Channels in Septic Shock 

2.1. Septic shock  

Septic shock is a medical emergency due to uncontrolled systemic infection and 

circulation failure. Septic shock is caused by several septic pathogens following systemic 

inflammatory response syndrome (SIRS) (Bone et al., 1992. See Table 2-1 for detailed 

nomenclatures of sepsis-related diseases). Approximately 750,000 cases of sepsis occur every 

year in the United States, and 215,000 deaths are caused by septic shock (Parrillo, 2008). The 

incidence of the disease has been increasing over the past decade owing to the increase in aging 

populations and antibiotic-resistant bacteria (Martin et al., 2003). Although septic shock has been 

intensively studied for decades, it remains the major cause of death in intensive care units, with 

the mortality rate between 30-70% (Riedemann et al., 2003a). A number of infectious 

microorganisms and tissue derivatives can cause sepsis, while LPS are the most important septic 

pathogenic toxins. LPS are the major component of the outer cell wall in Gram-negative bacteria, 

and can remain active even after the bacteria are lysed (Baron, 1996). Currently, there is no 

effective antidote against LPS for therapeutical purposes. In addition, the outcome of septic 

shock is determined by the host inflammatory responses, especially the cardiovascular response 

(Hotchkiss and Karl, 2003).  
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Table 2-1. Nomenclatures of sepsis-related diseases (Riedemann et al., 2003b) 

SIRS 
 

Body temperature >38.3°C or <36°C 
Heart rate >90 beats/min 

Respiratory rate >20 breaths/min or PaCO2 <32 mmHg 
White blood cell count >12 ×109/l or <4 ×109/l, or >10% immature band forms 
 

Sepsis Systemic response to infection, with two or more of the conditions described in 
SIRS (SIRS + infectious evidence) 
 

Severe sepsis Sepsis together with organ dysfunction, hypoperfusion, or hypotension including 
lactic acidosis, oliguria, or acute alteration in mental state 
 

Septic shock Sepsis-induced hypotension (e.g., systolic blood pressure <90 mmHg or a 
reduction of >40 mmHg from base line) in spite of adequate fluid resuscitation, 
along with the presence of perfusion abnormalities that may contain lactic 
acidosis, oliguria, or an acute change in mental state. Vasopressor- or inotropic-
treated patients may not be hypotensive at the time of measurement 
 

MODS The appearance of altered organ function in an acutely ill patient such that 
homeostasis cannot be maintained without intervention 
 

 
PaCO2, arterial partial pressure of carbon dioxide; MODS, multiple organ dysfunction syndrome. 

 

2.1.1. Pathological characteristics of septic shock 

Excessive systemic inflammation, microcirculation dysfunction and myocardial 

depression are three major pathological characteristics of septic shock. Understanding these 

characteristics is helpful to develop more specific therpaeutic strategies to manage sepsis.  

2.1.1.1. Excessive systemic inflammation 

Innate immunity is activated in the early stage of infection, recruiting immune cells to 

build a defense wall. Mononuclear phagocytes are the central players in this process, releasing 

classic pro-inflammatory cytokines,e.g., interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor 

necrosis factor-α (TNF-α) (Cohen, 2002). In later 1980s, TNF-α was found to produce similar 

septic symptoms as LPS administration (Michie et al., 1988). Since then, more pro-inflammatory 

cytokines, e.g., IL-1, macrophage migration inhibitory factor (MIF), and high mobility group B-1 
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(HMGB1) that are secreted from neutrophils, macrophages, and other immune cells have been 

identified to mediate systemic inflammation (Bozza et al., 1999; Dinarello, 1997; Wang et al., 

1999). It is now generally accepted that host responses to systemic inflammation instead of the 

infection itself has a major impact on the outcome of sepsis (Cohen, 2002; Nystrom, 1998). The 

magnitude and duration of host responses influence the process of tissue damage, hypotension, 

multiple organ failure, and death (Tracey et al., 1986; Wang et al., 1999). 

2.1.1.2. Microcirculation dysfunction  

Microcirculation impairment was noticed in septic patients as early as in 1951. Some 

patients with severe infection are clammy, pale and hypotensive with low volume pulses 

(Waisbren, 1951). These symptoms are caused by a decreased peripheral vascular resistance and 

a re-distribution of blood flow to protect more important organs (heart, brain, etc.). The 

excessive low perfusion in microcirculation finally leads to shock, a lethal condition which is 

characterized by low blood pressure and insufficient blood perfusion to organs and tissues 

(Spronk et al., 2004). The hemodynamic changes are caused by peripheral vasodilation 

accompanied by high cardiac output. The consequential reduction in vascular resistance is 

thought to be a major cause of death in septic shock (Groeneveld et al., 1986; Parrillo, 1985). 

The cardiovascular dysfunction is partially due to over-production of nitric oxide (NO). 

Inhibition of nitirc oxide synthase (NOS) paritially reverses the contractile responses to 

norepinephrine (Julou-Schaeffer et al., 1990). The restoration can occur even after the 

endothelium is denuded, suggesting inducible NOS (iNOS) within vascular smooth muscle cells 

(VSMCs) is an important player. In addition, iNOS-null mice have been found to be resistant to 

LPS induced-vascular hypocontractility (Gunnett et al., 1998). Therefore, NO generated by 

iNOS is an important mediator that suppresses vascular contractility in sepsis. In comparison, 
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endothelial NOS (eNOS)-derived NO seems to serve for the protection of endothelial function 

(Cerwinka et al., 2002; Wiel et al., 2000), Chronic overexpression of eNOS in the mouse 

endothelium results in an increased resistance to LPS-induced hypotension and death (Yamashita 

et al., 2000), suggesting eNOS-derived NO has a beneficial effect on survival of sepsis. Although 

the use of NOS inhibitors was believed to be a novel therapeutic strategy to manage septic shock 

(Petros et al., 1991), several clinical trials in the middle and late 1990s that used non-selective 

NOS inhibitors were unsuccessful, due to serious and unpredicted complications (Cobb, 1999; 

Landry and Oliver, 2001; Petros et al., 1994). In addition, all NOS knockouts (eNOS, iNOS and 

neuronal NOS) failed to restore the impaired capillary blood flow in septic mice (Tyml et al., 

2008). Therefore, how NO acts in the disease remains uncertain although its impact on septic 

shock cannot be ignored. 

A remarkable finding in septic patients is that vascular contractile responses to 

vasoconstrictors are impaired during sepsis. Adrenergic stimulants fail to induce vasoconstriction 

despite increased levels of catecholamine (Chernow et al., 1982). Further studies show that the 

contractile response to angiotensin II and serotonin is also decreased (Umans et al., 1993). As an 

exception, AVP, a nanopeptide released from the posterior pituitary gland, produces effective 

vasoconstriction during sepsis and has been successfully used in therapy together with 

catecholamines recently (Dellinger et al., 2004). The molecular mechanisms for the 

vasoconstriction effect of AVP were investigated in this study and will be discussed below.  

2.1.1.3. Myocardial depression  

Myocardial depression is another important characteristic of sepsis. Both stroke volume 

and ejection fraction are compromised in septic patients despite normal or even higher cardiac 

output (Abel, 1989; Friedman et al., 1998; Parker et al., 1984). Septic patients with 
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cardiovascular dysfunction have significantly higher mortality by 70%- 90% in comparison to 

~20% in patients without cardiovascular disorders (Parrillo et al., 1990). The release of 

myocardial depressant substances, such as TNF-α (Sharma et al., 1997), IL-1 (Fisher et al., 

1994), IL-6 (Damas et al., 1992), prostanoids (Reines et al., 1982), endothelin-1 (ET-1) (Konrad 

et al., 2004), NO (Ullrich et al., 2000), contribute to the process of myocardial depression. A 

previous hypothesis that sepsis induced global myocardial ischemia is demonstrated to be 

incorrect at least in the early stage of endotoxemia. Instead, septic patients show a higher 

coronary blood flow and lower coronary artery– coronary sinus PO2 difference (Cunnion et al., 

1986). In addition, the levels of high energy phosphates in myocardium are sustained during 

septic shock, suggesting the myocardium depression is not mediated by metabolic stress 

(Hotchkiss and Karl, 1992; Solomon et al., 1994).  

2.1.2. TLR4 receptor and downstream transcriptional factors 

As mentioned above, septic process is initiated by several pathogens, especially LPS. 

These molecules are recognized by the innate immune system, and have been named pathogen-

associated molecular patterns (PAMPs) (Janeway and Medzhitov, 1998). LPS, a typical PAMP, 

are components of the outer cell wall from Gram-negative bacteria. In contrast, the septic 

pathogens in Gram-positive bacteria are peptidoglycan and lipoteichoic acid instead of LPS. All 

these PAMPs bind to cell-surface receptors, through which they activate downstream 

intracellular signaling cascades and produce cellular responses (Modlin et al., 1999; Wang et al., 

2000). 

Wright et al. found that activation of host cells required a LPS-binding protein (LBP) and 

an opsonic receptor CD14 (Wright et al., 1990). There are two isoforms of CD14. Besides a 

soluble CD14 (sCD14) that exists in circulation with a dynamic level according to the process of 
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sepsis, another CD14 (mCD14) is attached on the outer surface of cellular membranes 

(Landmann et al., 1995). Since mCD14 does not have an intracellular tail, the protein itself 

unlikely induces downstream signaling events after LPS stimulation. In other words, other 

proteins must exist to transduce the signal. Exploratory research soon led to the discovery of a 

Toll protein in Drosophila, which controls dorsal–ventral patterning in embryos and activates the 

transcription factor Dorsal upon binding to its ligand Spatzle (Anderson et al., 1985; Morisato 

and Anderson, 1994). Later studies indicate that the Toll/Dorsal signaling pathway contributes to 

an anti-fungal immune response in adult Drosophila (Lemaitre et al., 1996). Interestingly, the 

Toll/Dorsal signaling is highly homologous to the mammalian IL-1 signaling pathway. This 

observation later led to the identification of human Toll-like receptors (TLRs) and their functions 

in immune system (Medzhitov et al., 1997; Poltorak et al., 1998). Today, more than thirteen 

TLRs have been determined to be targets of various PAMPs from bacteria, fungi and host 

endogenous tissues (Kawai and Akira, 2007). Specially, TLR4 is the receptor of LPS. Upon 

ligand binding to the TLRs, intracellular signaling is provoked leading to activation of several 

transcriptional factors, especially nuclear factor kappa B (NF-κB).  

2.1.2.1. NF-κB 

NF-κB is a homo- or heterodimer of Rel family protein subunits p50, p52, p65 (RelA), c-

Rel, and RelB (Ghosh et al., 1998). The most prominent form of NF-κB is the p50/p65 

heterodimer (De Martin et al., 2000). The inactivated NF-κB is held in the cytoplasm with its 

activity suppressed by the inhibitors of NF-κB (IκBs). Upon ligand (e.g. LPS) binding to TLR4, 

a serial of intracellular signals is initiated causing degradation of IκBs (Figure 2-1). The active 

NF-κB is then translocated to the nucleus where it promotes transcription of several 

proinflammatory genes (Baeuerle and Baltimore, 1996).  
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Figure 2-1. TLR4 signaling pathway.  

After stimulation by ligands (e.g. LPS), TLR4 dimerizes and undergoes conformational changes 
to recruit downstream signaling proteins. The TLR4 dimer launches MyD88- and TRIF-dependent 
pathways through TIRAP and TRAM respectively. MyD88 mediates early phase activation of NF-κB. It 
phosphorylates IRAKs, which consequently interact with TRAF6, leading to activation of a TAK1 
complex. The activated TAK1 complex then acts on IKK complex consisting of IKKα, IKKβ and NEMO, 
which later phosphorylate IκBs. Without stimulation, NF-κB (p65–p50 heterodimer) is located in 
cytoplasm and inhibited by IκBs. When IκBs are phosphorylated and degraded in a proteasome, NF-κB 
becomes active and is then translocated into the nucleus. In addition to the MyD88-dependent pathway, 
NF-κB is alternatively activated through TRIF-dependent pathway in the late phase. TRIF interact with 
TRAF6 and RIP1. TRAF6 then activates TAK1 in a manner similar to that in the MyD88-dependent 
pathway. 
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2.1.2.2. PKA and CREB 

In addition to NF-κB, the cAMP-dependent protein kinase A (PKA)-dependent cAMP 

response element-binding protein (CREB) is another potentially important signaling pathway 

that has been noticed recently to contribute to sepsis. It is well known that PKA plays a role in 

vasodilating hormone-induced vasodilation. Upon stimulation by vasodilators, the Gs-coupled 

receptors are activated, followed by activation of adenylyl cyclase (AC) and production of 

adenosine 3’, 5’ cyclic monophosphate (cAMP) (Figure 2-2). Besides cyclic nucleotide gated ion 

channels (CNG channels) and guanine exchanging factors Epac (exchanging protein directly 

activated by cAMP), the major cAMP receptor is PKA (Skalhegg and Tasken, 2000; Walsh et 

al., 1968). An elevated cAMP activates PKA, which subsequently phosphorylates serine 

/threonine residue(s) of targeted proteins. In addition to vasodilation, PKA contributes to 

regulation of different kinds of cellular processes, such as gene transcription, cell differentiation, 

ion channel permeability, etc. (Skalhegg and Tasken, 2000). Acumulating evidence also suggests 

that the cAMP/ PKA signaling is up-regulated in several cell types during sepsis. For example, 

LPS up-regulate forskolin-induced adenylyl cyclase activity in a concentration- and time-

dependent manner in murine macrophages (Osawa et al., 2006). LPS elevates PKA activity in 

human monocytes (Mandrekar et al., 2007). Furthermore, a unique C subunit of PKA (cPKA) 

has been found to form a ternary complex with NF-κB and IκB instead of R subunit. It is 

activated when IκB is degraded in response to LPS stimulation and subsequently enhances p65 

transcriptional activity through Ser276 phosphorylation in p65 (Zhong et al., 1997).  
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Figure 2-2. PKA-CREB pathway. 

Following hormones and neurotransmitters bind to Gs protein-coupled receptors, adenylyl 
cyclase (AC) is activated and in turn converts ATP to cAMP. In the absence of cAMP, PKA is an inactive 
tetramer composing of two catalytic subunits (C) and two regulatory subunits (R). When intracellular 
cAMP level is elevated, the R subunit forms a dimer with four molecules of cAMP is dissociated from 
two C subunits, which become active and consequently phosphorylate serine and threonine residues of 
specific proteins. The catalytic subunit of PKA is translocated to nucleus, and activates CREB through 
phosphorylation at Ser133. The phosphorylated CREB then induces downstream transcriptional events. 

 

PKA modulates gene transcription through cAMP response element binding protein 

(CREB) (Gonzalez and Montminy, 1989), which forms a homodimer and binds to a conserved 

cAMP-responsive element (CRE), TGACGTCA, in targeted genes. Phosphorylation at Ser133 
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promotes recruitment of the transcriptional co-activator CREB-binding protein (CBP) or p300, 

resulting in activation of CREB (Mayr and Montminy, 2001). CREB activity is enhanced in 

multiple cell and tissue types during LPS exposure, such as rat aortic smooth muscle cells (Yang 

et al., 2002), mouse macrophages (Kang et al., 2008) , rat lung tissue (Ye and Liu, 2001), and 

human bladder epithelial cells (Song et al., 2007). Therefore, CREB is another important 

transcriptional factor involved in LPS signaling. 

2.1.2.3. Interaction between NF-κB and CREB 

How are the NF-κB and CREB pathways related to each other? CBP, or its homolog 

p300 that was originally found as a co-activator of CREB, is required for transcriptional 

activation of many transcriptional factors, including p65 (Sheppard et al., 1999). Because the 

total amount of CBP is limited in the nucleus, the competition between NF-κB and CREB to 

bind CBP becomes an important mechanism contributing to the transcriptional activity regulation 

related to these factors (Figure 2-3, A) (Ollivier et al., 1996; Parry and Mackman, 1997; Zhong et 

al., 1998). Inhibition of glycogen synthase kinase 3, a housekeeping kinase which is located to 

the downstream of the phosphatidyl inositol 3-OH kinase (PI3K) pathway that is activated upon 

LPS stimulation, increases the binding of CREB to CBP and decreases the CBP binding to p65 

(Martin et al., 2005). In an in vivo study, interactions between CBP and p65 or CREB are 

enhanced in a time-dependent manner (Shenkar et al., 2001). A significant binding of p65 to 

CBP is found only at 30 min after LPS exposure, while the CREB-CBP interaction increases as 

early as 15 min after endotoxemia, and returns to baseline in 60 min. NF-κB seems to interact 

with CREB in the promoter regions of several genes, such as IL-6 (Figure 2-3, B). Mutation in 

p65-binding residue attenuates the effects of CREB. In contrast, CRE mutation decreases the 

stimulatory effects of p65. Therefore, both p65 and CREB are required for the maximal 
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stimulation of angiotensin II (Ang II)-induced IL-6 expression (Sahar et al., 2007). In addition, 

NF-κB contributes to the inhibitory effect of TNF-α on renin transcription via binding to a CRE 

in the mouse renin promoter (Figure 2-3, C) (Todorov et al., 2004).  

NF-κB also can elevate PKA or CREB expression in some types of cells (Figure 2-3, D). 

Knockdown of neuronal NF-κB suppresses PKA α subunit (a catalytic subunit) expression in the 

hippocampus, down-regulating PKA-dependent CREB phosphorylation (Kaltschmidt et al., 

2006). Moreover, NF-κB increases CREB promoter activity in Sertoli and NIH 3T3 cells 

(Delfino and Walker, 1999). The interaction between NF-κB and CREB is complex, depending 

on the various stimulators and different cell types.  

2.1.3. KATP channel plays a role in sepsis 

The involvement of vascular KATP channels in sepsis has been shown by several groups 

using different animal models. Administration of KATP channel blocker, such as glibenclamide, 

attenuates LPS-induced hypotension through elevation of systemic resistance in dog, pig and 

sheep (Landry and Oliver, 1992; Lange et al., 2007; Vanelli et al., 1995). Because glibenclamide 

does not alter hemodynamic of vehicle-treated animals (Landry and Oliver, 1992; Vanelli et al., 

1995), it is likely KATP channel activity is enhanced during sepsis. Dexamethasone, a member of 

corticosteroid family, improves vascular reactivity that is suppressed by LPS in vivo possibly 

through inhibition of the KATP channel expression (d'Emmanuele di Villa Bianca et al., 2003). 

The participation of KATP channels in sepsis is further demonstrated by recent studies from 

transgenic mouse models. Kane et al. reported that Kir6.1-null mice have a high susceptibility to 

sepsis (Kane et al., 2006). Another group screened thousands of mice with random mutations 

induced by N-ethyl-N-nitrosourea, and found four strains of animals that are hypersensitive to 
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Figure 2-3. Linkages between NF-κB and CREB. 

A. NF-κB and CREB competes with each other to bind CBP (Ollivier et al., 1996; Parry and 
Mackman, 1997); B. NF-κB acts on CREB in promoter region of IL-6 (Sahar et al., 2007) ; C. NF-κB 
binds to a CRE in the mouse renin promoter (Todorov et al., 2004); D. NF-κB increases CREB or PKAc 
promoter activity (Delfino and Walker, 1999; Kaltschmidt et al., 2006). 

 

sub-lethal dose of LPS. All of these mice carry a null mutation of Kir6.1 gene (Kcnj8), which is 

caused by a deletion of exon 1, part of exon2, together with an inversion of intron 2 (Croker et 

al., 2007). Since some gene mutations (TNF-α, IFN-β, TRIF, MyD88, etc.) increase the survival 

ability from LPS exposure, Croker et al. also performed experiments in animals carrying 
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mutations in either of these genes together with Kir6.1 disruption. Surprisingly, the compound 

homozygosity renders a phenotype that is still highly sensitive to LPS. Therefore, the functional 

integrity of KATP channels is crucial for survival in sepsis.  

2.2. Molecular aspects of KATP channels  

The KATP channels refer to a group of K+ channels whose activity is inhibited by 

intracellular ATP at physiological concentrations. Such a channel inhibition is independent of the 

high energy phosphate as non-hydrolysable ATP analogs such as AMP-PNP inhibit these 

channels as potently as ATP. ADP activates the KATP channels, especially the vascular isoform. 

2.2.1. History  

In 1983, Noma recorded an ATP-sensitive K+ current in cardiac muscle, the characteristic 

of which is quite distinct from other inward rectifier K+ channels, since the current is inhibited 

when intracellular ATP concentration is greater than 1 mM (Noma, 1983). This is the first report 

to show the existence of KATP channel. Since then, the expression of KATP channels has been 

identified in skeletal muscle (Spruce et al., 1985) and pancreatic β cells (Trube et al., 1986). 

Because some chemicals (e.g., diazoxide), had been known to have vasodilating effect long time 

before (Andersson, 1973; Rhodes and Sutter, 1971), later studies demonstrated that they activate 

KATP channels (Escande et al., 1988; Trube et al., 1986).  

In 1989, Standen found a novel KATP current in rabbit mesenteric arterial smooth muscle 

cells. The current is activated by vasoactive intestinal polypeptide (VIP) and KATP channel 

opener cromakalim, and inhibited by glibenclamide, displaying the similar features as the KATP 

channel identified previously (Standen et al., 1989). Subsequently, KATP channels were found to 

be distributed ubiquitously in vasculatures (Nelson et al., 1990; Winquist et al., 1989). Because 
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the molecular basis of the channels was unknown, the studies relied heavily on pharmacological 

tools. Later, the understanding of channel biophysical properties and physiological functions 

were spurred after the successful cloning of Kir6.x and SUR subunits of KATP channels in the 

mid-1990s (Aguilar-Bryan et al., 1995; Inagaki et al., 1995; Isomoto et al., 1996), and the 

introduction of KATP channel transgenic mice in 2000s (Chutkow et al., 2002; Chutkow et al., 

2001; Kakkar et al., 2006; Malester et al., 2007; Miki et al., 2002).  

2.2.2. Molecular structures of vascular KATP channels 

KATP channels are an octameric complexes consisting of 4 pore-forming Kir6 subunits 

(inward rectifier K+ channel 6.x or Kir6.x) and 4 accessory sulfonylurea receptor (SUR) subunits 

(Figure 2-4). To date, two Kir6.x genes (KCNJ8 for Kir6.1, and KCNJ11 for Kir6.2) and two 

SUR genes (ABCC8 for SUR1 and ABCC9 for SUR2) have been identified. The Kir6.x shares 

40-50% homology in amino acid sequence with previously cloned Kir members. Further studies 

indicated it has 2 transmembrane helixes (M1 and M2), cytoplasmic N- and C-termini and a 

pore-forming loop containing the glycine-phenylalanine-glycine motif necessary for K+ 

selectivity in the H5 region. In symmetrical 140 mM K+ recording conditions, the unitary 

conductance of Kir6.1-containing channels is ~35 pS (Kir6.1/SUR2B) (Yamada et al., 1997), 

whereas Kir6.2-containing channels is ~80 pS (Kir6.2/SUR2B) (Isomoto et al., 1996).  

Functional expression of Kir6 requires SUR subunit (Ammala et al., 1996), which 

belongs to ATP-binding cassette transporter family. SUR1 is mainly expressed in pancreatic β 

cells. SUR2 has two variants: SUR2A and SUR2B. The only difference between them is the last 

42 amino acids in the C terminus, which is caused by alternative splicing of exon 38 in ABCC9 

(Chutkow et al., 1996; Isomoto et al., 1996). SUR2A is predominantly expressed in the heart and 

skeletal muscles (Inagaki et al., 1996; Isomoto et al., 1996), whereas SUR2B is generally 
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distributed in smooth muscle cells. SUR contains 2 transmembrane domains (TMD1 and TMD2) 

with each containing 6 transmembrane segments, plus an N-terminal transmembrane domain 

containing 5 transmembrane segments (TMD0). There are two large intracellular loops between 

the adjacent TMDs containing nucleotide binding domains (NBD1 and NBD2). Within the 

NBDs, three motifs are critical for nucleotide binding: a Walker A motif (WA), a Walker B motif 

(WB), and a linker region (Campbell et al., 2003).  

In a SUR2B model that was reported by our group, NBD1 and NBD2 form a dimer with 

two nucleotide-binding pockets at their interface. The TMD1 acts on NBDs through short 

intracellular linker 1 and 2 (ICL1 and ICL2, Figure 2-4) (Shi et al., 2008a). ICL1 interacts with 

both NBDs crossing the first nucleotide-binding region, whereas ICL2 is close to the center of 

NBD2. Therefore, TMD1 mainly interacts with NBD2. A similar interaction also exists in 

TMD2-NBD1. PKA phosphorylation changes the NBD2 interface, leading to movement of ICL2 

and enhances the interaction between these two protein domains (Shi et al., 2008a). 

 

2.2.3. Pharmacology of KATP channels  

Both activators and inhibitors of KATP channel have been used in clinical therapy for a 

long time. Some compounds, such as sulfonylureas, had been applied to treat type II diabetes 

even before they were known as blockers of KATP channel. Understanding the pharmacological 

properties is very important for us to study the channel’s function. 
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Figure 2-4. Schematic representation of KATP channel. 

KATP channels are octameric complex containing 4 pore-forming Kir6.x subunits and 4 accessory 
sulfonylurea receptor (SUR) subunits. Kir6.x has 2 transmembrane domains, cytoplasmic N- and C-
termini and a pore-forming loop. SUR contains 2 transmembrane domains with 6 transmembrane 
segments respectively (TMD1 and TMD2), plus an N-terminal transmembrane domain with 5 
transmembrane segments (TMD0). The nucleotide binding domain-1 (NBD1) is located between TMD1 
and TMD2, and NBD2 is located C-terminal to TMD2. The intracellular linkers (ICLs) between 
transmembrane helices are illuminated.  
 

2.2.3.1. KATP channel inhibitors 

Sulfonylureas, such as tolbutamide and glibenclamide (glyburide), have been widely used 

in anti-type II diabetes since 1950s (Patlak, 2002). The therapeutic effect is through stimulating 

insulin release by suppression of pancreatic KATP channels. Sulfonylurea binds to TMD2 of SUR 

subunit, especially the region between transmembrane segment (TM) 15 and 16 (Ashfield et al., 

1999; Babenko et al., 1999). A Ser1237, which is located in the intracellular loop between TM15 

and TM16, is a critical site for tolbutamide to display high-affinity inhibition. Glibenclamide has 

both sulfonylurea and benzamido groups. It binds to SUR1 at two regions: a sulfonylurea 
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binding site that is the same as tolbutamide, and a bezoamido binding site (Ashcroft and Gribble, 

2000b). SUR2 lacks the sulfonylurea binding site; however, tolbutamide still inhibits SUR2B-

containing channels (Isomoto et al., 1996), suggesting the C-terminal 42 amino acids of SUR2B 

comprise additional sulfonylurea binding regions. Since sulfonylurea has some nonspecific 

effects (Cocks et al., 1990), another type of inhibitor blocking the pore region of Kir6 subunit is 

developed. One example is PNU-37883A, which displays more potent inhibitory effect on 

Kir6.1/SUR2B than Kir6.2/SUR2B (Kovalev et al., 2004). 

2.2.3.2. KATP channel activators 

KATP channel openers (KCOs), such as diazoxide, cromakalim, pinacidil, and nicorandil, 

are a group of chemicals with diverse structures, and activate KATP channels via binding to SUR 

subunit (Ashcroft and Gribble, 2000a). Nicorandil has been used as an antianginal drug for 

several years, and significantly achieves a better outcome of stable angina by decreasing major 

coronary events (IONA Study Group, 2002). Different SUR subunits display distinct sensitivities 

to KCOs. For example, diazoxide stimulates all KATP channel containing SUR1, SUR2A (in the 

presence of MgADP), and SUR2B. However, Kir6.2/SUR2A channels are only weakly activated 

by diazoxide in the absence of ADP (D'Hahan et al., 1999). Pinacidil and cromakalim activate 

SUR2A and SUR2B instead of SUR1 (Seino and Miki, 2003). Recent studies show that KCOs 

such as pinacidil stimulate ATP hydrolysis at NBD2 and increase channel opening by stabilizing 

channels in a Mg-nucleotide bound state (Bienengraeber et al., 2000; Zingman et al., 2001). This 

phenomenon becomes more significant in Kir6.1/SUR2B channel because pinacidil barely 

activates the channel without nucleotide (Satoh et al., 1998). Therefore, the stimulatory effect of 

KCOs depends on the interaction with SUR subunit as well as the cellular nucleotide level. 
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2.2.4. Evidence of vascular KATP channel function from transgenic mouse models  

Transgenic mouse models provide new strategies to understand the roles of KATP 

channels in vasculature. A detailed comparison among these transgenic mice is listed in Table 2-

2. Generally, both Kir6.1 and SUR2-null mice exhibit frequently spontaneous ST segment 

elevation due to coronary arterial spasm and sudden early death, suggesting KATP channel is 

critical for vascular tone regulation (Chutkow et al., 2002; Miki et al., 2002). In addition, Kir6.1 

knockout mice display a high mortality during sepsis, indicating KATP channel has a protective 

role against sepsis or septic shock (Kane et al., 2006). Since KATP channel is expressed in 

vascular endothelium as well as smooth muscle cells, both of which contribute to vascular tone 

regulation, the function of endothelial KATP channel has been noticed recently. In a transgenic 

animal model, SUR2B expression is selectively restored in smooth muscle cells of SUR2-null 

mice. The new strain shows a similar coronary vasospasm as Kir6.1-null mice (Kakkar et al., 

2006). Another type of transgenic animals which express dominant negative Kir6.1 subunits in 

endothelium exhibit an elevated coronary perfusion pressure due to an increase in ET-1 release 

(Malester et al., 2007). All these observations suggest that endothelial KATP channel is important 

for coronary circulation.  

2.3. Distribution and regulation of vascular KATP channels 

2.3.1. Functional expression of vascular KATP channels 

The evidences cumulated in the last 20 years demonstrate that KATP channels universally 

exist in vasculatures and play an important role in regulation of vascular tone. The functions of 

the vascular KATP channels in major parts of circulatory system are described blow.  
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Table 2-2. Summary of vascular KATP channel transgenic mouse models  

 
Transgenic 
model 

Kir6.1 KO SUR2 KO SM22-SUR2B Tg[Tek-Kir6.1-
AAA] 

Genotype Kir6.1 -/- SUR2 -/- Rescued SUR2B 
in VSMC of 
SUR2 -/- mice

Dominant 
negative Kir6.1 
in endothelium 

Mortality 
 

50% in 5-6 
weeks 

65% male KO, 
and 35% female 
KO in 30 weeks

N/A N/A 

Blood Pressure 
under anesthesia 

 ↑ N/A N/A 

Heart rate  N/A 
Frequency of 
spontaneous 
elevation of ST 
segment 

↑ ↑ ↑  

Coronary artery N/A stenoses Vasospasm  
Coronary 
perfusion 
pressure 

↑ N/A ↑ ↑

LPS 
susceptibility 

↑ N/A N/A N/A 

Others  insulin 
responsiveness 
of skeletal 
muscle ↑ 

 ET-1 release ↑ 

References (Croker et al., 
2007; Kane et 
al., 2006; Miki et 
al., 2002) 

(Chutkow et al., 
2002; Chutkow 
et al., 2001) 

(Kakkar et al., 
2006) 

(Malester et al., 
2007) 

 
ECG, Electrocardiogram. ↑, increase. , no change. N/A, not reported. 

 

2.3.1.1. Coronary circulation 

Although coronary blood flow only accounts for less than 1% of cardiac stroke volume 

(Duncker and Bache, 2008), the coronary circulation is extremely important because coronary 

artery disease which is characterized as impairments of coronary circulation is responsible for 

52% death in cardiovascular diseases (American Heart Association, 2008). KATP channel plays a 

substantial role in coronary arterial tone regulation. Endothelium-denuded porcine and human 
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coronary arteries are relaxed by pinacidil, suggesting KATP channel are expressed in coronary 

arterial smooth muscle (Gollasch et al., 1995). In situ hybridization shows that both Kir6.1 and 

SUR2B mRNAs are present in coronary arteries (Li et al., 2003). An immunohistochemical 

study indicates both Kir6.1 and SUR2 proteins are distributed in the smooth muscle and 

endothelial cells of coronary resistance vessels. In addition, Kir6.1 protein is detected in 

endothelial capillaries, whereas Kir6.2 protein expression is found in endothelial cells instead of  

(Morrissey et al., 2005). Mice with genetic disruptions of either Kir6.1 or SUR2 subunit develop 

spontaneous coronary vascular spasm and sudden death (Chutkow et al., 2002; Miki et al., 2002), 

strongly suggesting that a functional KATP channel is critical for coronary circulation. In another 

transgenic mouse model using SUR2-null mice, SUR2 expression is selectively rescued in 

smooth muscle cells; however, the new transgenic animals still exhibits frequent episodes of 

spontaneous ST segment elevation, implying that coronary endothelial KATP channel is also 

important (Kakkar et al., 2006). In fact, Kir6.1, Kir6.2, and SUR2B are detected in human 

coronary endothelium by using Western blotting and immunoprecipitation assays, and these 

subunits form a heteromeric complex based on confocal microscopy images (Yoshida et al., 

2004). 

2.3.1.2. Cerebral circulation 

Patch clamp studies suggest the existence of KATP channels in cerebrovascular smooth 

muscle (Kleppisch and Nelson, 1995b) and endothelium (Janigro et al., 1993). The channel 

expression in rat basilar and middle cerebral artery is likely composed of SUR2B together with 

Kir6.1 or Kir6.2 by a reverse transcriptase PCR (RT-PCR) study (Jansen-Olesen et al., 2005). 

KATP channels in cerebral circulation are subjected to the regulation by endogenous 

vasoconstrictors (e.g. serotonin and histamine) and vasodilators (e.g. calcitonin gene-related 
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peptide (CGRP), adenosine) (Kleppisch and Nelson, 1995b). Additionally, either hypotension or 

hypoxia stimulates KATP channels through releases of prostaglandins and cAMP, or NO and 

opioids, respectively, leading to pial artery relaxation (Armstead, 1998, 1999). 

2.3.1.3. Pulmonary circulation 

The expression of Kir6.1 and SUR2B in human pulmonary arterial smooth muscle cells is 

confirmed by RT-PCR and patch clamp since a 28-29 pS channel is activated by levcromakalim 

(Cui et al., 2002). In addition, ET-1, an important vasoconstrictor in pulmonary circulation, 

reduces the KATP current in a concentration-dependent manner, and the inhibitory effect is more 

potent in rabbit pulmonary arterial smooth muscle cells (SMCs) than in coronary arterial SMCs 

(Park et al., 2005). On the contrary, a low level expression of Kir6.2 (both mRNA and protein) 

instead of Kir6.1 is detected in rat pulmonary microvascular endothelial cells. Kir6.2 expression 

and an inwardly rectified membrane current are increased significantly when the endothelial cells 

are adapted to flow or shear stress. Flow termination induces cellular membrane depolarization, 

which is inhibited by a KATP channel opener cromakalim. These studies suggest that the 

expression of KATP channels pulmonary vasculture is dynamic and underwent regulation by shear 

stress (Chatterjee et al., 2003). In a microarray study, Kir6.2 expression is enhanced in lung 

tissues from patients diagnosed with primary pulmonary hypertension, a rare lung disease caused 

by progressive pulmonary arterial constriction for unknown reasons, leading to pulmonary 

hypertension and right heart failure (Geraci et al., 2001). Besides pulmonary arteries, KATP 

channels also participate in vascular tone regulation of pulmonary veins, because levcromakalim 

induces an endothelium-dependent and glibenclamide-sensitive pulmonary vein relaxation (Roh 

et al., 2006). All these observations suggest that KATP channel plays an important role in 

pulmonary vasculature, and contributes to regulation of pulmonary vascular resistance. 
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2.3.1.4. Fetoplacental circulation  

Kir6.1 expression in placental vasculature is verified by RT-PCR and Western blot 

(Wareing et al., 2006a). Inhibiting KATP channels by glibenclamide attenuates CGRP-induced 

relaxation of chorionic artery (Dong et al., 2004) and increases perfusion pressure of placental 

cotyledons to a plateau level (Bisseling et al., 2005). Furthermore, pinacidil induces a significant 

relaxation of chorionic plate arteries and veins precontracted by U-46619, a stable thromboxane 

A2 analog (Wareing et al., 2006a). All this evidence indicates that KATP channels participate in 

vascular tone regulation in placental vessels. 

2.3.1.5. Other major vasculatures  

The expression of KATP channels is identified in aorta, mesenteric artery, renal artery, 

retinal arterioles and vasculatures in skeletal muscle (Bryan and Marshall, 1999; Hein et al., 

2006; Li et al., 2003). Both Kir6.1 and SUR2B are detected in aorta by RT-PCR, microarray or 

Western blot (Ren et al., 2003; Sampson et al., 2004; Tivesten et al., 2004). Glibenclamide 

induces a 24-mV depolarization in rat aortic SMCs (Mishra and Aaronson, 1999), and suppresses 

adenosine-induced NO release from aorta, suggesting KATP channel is functionally expressed in 

both aortic smooth muscle and endothelial cells (Ray and Marshall, 2006). The expression of 

KATP channel subunits could be altered in certain diseases. For example, aortic SMCs dissociated 

from diabetic rats displays a decreased SUR2B mRNA rather than Kir6.1 and Kir6.2 (Ren et al., 

2003). 
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2.3.2. Metabolites  

2.3.2.1. ATP/ADP 

It is not strange that vascular KATP channels are regulated by ATP; however, the 

inhibitory effects of ATP on these channels are variable in different reports (Quayle et al., 1997). 

Since intracellular ATP concentration in physiological condition is relatively high (1-11.7 mM) 

(Randak and Welsh, 2005), vascular KATP channels usually show a low activity without other 

stimuli. In comparison, intracellular ADP concentration ranges between 0.1 and 3 mM (Randak 

and Welsh, 2005), and exhibits stimulating effect on KATP channel. According to this 

characteristic, vascular KATP channel was also named as KNDP channel in early stage (Beech et 

al., 1993; Cole et al., 2000; Zhang and Bolton, 1996).  

2.3.2.2. pH 

pH controls regional blood flow in circulation, because increase in arterial carbon dioxide 

level (hypercapnia) and decrease in the extracellular pH result in acidosis, and sequentially relax 

blood vessels, especially cerebral arterioles (Kontos et al., 1977; Tian et al., 1995). Hypercapnic 

acidosis induces vasodilation through activation of KATP channels in vascular smooth muscles, 

with maximal effect at pH 6.5 to 6.8 (Wang et al., 2003). Blockade of KATP channels attenuated 

the vasodilation, which is observed in cerebral arterioles, basil artery, coronary artery, mesenteric 

artery or internal mammary artery (Ishizaka and Kuo, 1996; Kinoshita et al., 1997; Rohra et al., 

2005; Santa et al., 2003; Wang et al., 2003; Wei and Kontos, 1999).  

2.3.2.3. Reactive oxygen species (ROS) 

Increased production of ROS, such as superoxide (O2
-), hydrogen peroxide (H2O2), and 

hydroxyl radical (HO·), and impaired antioxidant defenses are two important features of 
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oxidative stress, which contributes to the development and progression of many types of 

diseases, such as diabetes, atherosclerosis and sepsis (A. C. Maritim, 2003; Cosentino et al., 

1997; Giugliano et al., 1996) . The effect of ROS on KATP channel has been noticed recently. 

Cerebral arterioles treated with superoxide show a less vasodilation to cromakalim (Ross and 

Armstead, 2003). Pinacidil-induced vasodilation in cerebral arterioles is impaired in insulin-

resistant rats fed with fructose, but is completely reversed by treatment with superoxide 

dismutase (SOD) and catalase (Erdos et al., 2004). Aprikalim-induced vasodilation in coronary 

arterioles is also attenuated in diabetic patients (Miura et al., 2003). Therefore, the ROS released 

in oxidative stress reduces vascular KATP activity.  

2.3.2.4. NO 

The effect of NO on vascular KATP channels is controversial. NO hyperpolarizes smooth 

muscle cells in rabbit mesenteric arteries through increasing cGMP and activating KATP channels 

(Murphy and Brayden, 1995). In addition, NO released from skeletal muscle vasculatures during 

excise may activate vascular KATP channels, and antagonizes sympathetic vasoconstriction, 

providing a delicate mechanism to regulate blood flow in exercising skeletal muscles (Thomas 

and Victor, 1998). Lactate, an important metabolic product in retina, relaxes retinal arterioles 

through activation of NOS and guanylyl cyclase, and KATP channel opening (Hein et al., 2006). 

However, the opposite observations show that NO donor sodium nitroprusside (SNP) fails to 

activate KATP currents isolated from rabbit mesenteric arterial smooth muscle cells and pig 

coronary arterial SMCs (Quayle et al., 1994; Wellman et al., 1998). Therefore, the exact role of 

NO in regulating vascular KATP channels is still unclear.   
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2.3.2.5. Eicosanoids 

Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 metabolites of arachidonic acid 

synthesized in endothelial cells (Rosolowsky and Campbell, 1996). Since EETs are participated 

in vasodilation by hyperpolarizing cell membrane, some groups classified them in endothelium-

derived hyperpolarizing factors (EDHFs) (Archer et al., 2003; Campbell and Harder, 1999). Both 

11, 12-EET and 14, 15-EET induce dose-dependent vasodilation in isolated small mesenteric 

arteries through activation of KATP channels (Bolon et al., 2007; Brueggemann et al., 2005), but 

the underlying mechanisms were different: 11, 12-EET extracellularly activates mesenteric SMC 

KATP channels through PKA (Bolon et al., 2007); whereas the stimulation of 14, 15-EET depends 

on ADP-ribosylation of Gs (Bolon et al., 2007).  

2.3.2.6. H2S 

Hydrogen sulfide (H2S) is a product from L-cysteine metabolism catalyzed by 

cystathionine-γ-lyase and cystathionine-β-synthase in mammalian tissues (Zhao and Wang, 2002; 

Zhao et al., 2001). Endogenous H2S has been detected in various vascular tissues (e.g. aorta, tail, 

and mesenteric arteries) (Cheng et al., 2004). H2S in physiological concentrations (nearly 45 

µM) induces vasodilation in rat aorta and transient reduction of blood pressure through activation 

of KATP channels (Zhao and Wang, 2002; Zhao et al., 2001). Another study shows that 

exogenous H2S activates KATP channels and hyperpolarizes cell membrane in rat mesenteric 

arterial SMC in a way independent of PKG (Tang et al., 2005).  

Recently, a slow-releasing hydrophilic H2S compound GYY4137 has been demonstrated 

to display vasorelaxing effect in rat endothelium-intact aortic rings and perfused rat renal 

vasculature through stimulation of vascular KATP channels (Li et al., 2008). Because GYY4137 
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reduces blood pressure in hypertensive rats without changing heart rate or contracting force in 

vitro, it could be a promising drug for anti-hypertension therapy in future.  

2.3.3. Hormones and neurotransmitters  

The effects of hormones and neurotransmitters on vascular KATP channels recently have 

been well studied (Table 2-3). An excellent review could be referred to the dissertation of Dr. 

Yun Shi from our group. Since their regulatory mechanisms are so significant, it is still worthy to 

provide a short summary. 

Hormones or neurotransmitters are classified into two groups based on vasoactive 

functions: vasoconstrictors and vasodilators. The receptors of these substances are coupled to Gq 

and Gs respectively (Sperelakis, 1998). Gq activation stimulates phospholipase C (PLC), which 

catalyzes membrane phospholipids to produce diacylglycerol (DAG) and inositol triphosphate 

(IP3). DAG in turn activates protein kinase C (PKC). Gs activation increases the activity of 

adenylyl cyclase, which converts ATP to cAMP. The elevated cAMP level results in the release 

of the catalytic subunits of PKA. Vascular KATP channels are substrates of both PKC and PKA, 

but the phosphorylation mechanisms are quite different: PKC targets distal C-terminus of Kir6.1 

subunit leading to channel inhibition (Shi et al., 2008b), whereas PKA acts on NBD2 of SUR2B 

subunit resulting in channel activation (Shi et al., 2008a; Shi et al., 2007b).  
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Table 2-3. Summary of hormones and neurotransmitters targeting vascular KATP channels 

Hormone/Neurotransmitter Receptor Tissues References 

V
as

oc
on

st
ri

ct
or

s 

noradrenaline α2 rat tail artery (Tan et al., 2007) 

ET-1 N/A rabbit coronary and 
pulmonary arteries 

(Park et al., 2005) 

Ang II N/A rat mesenteric artery (Kubo et al., 1997) 
AVP V1a rat mesenteric artery (Shi et al., 2007a) 

neuropeptide Y NPY rabbit mesenteric 
artery 

(Bonev and Nelson, 
1996) 

serotonin 5-HT2 rabbit mesenteric 
artery 

(Bonev and Nelson, 
1996) 

histamine H1 rabbit mesenteric 
artery 

(Bonev and Nelson, 
1996) 

V
as

od
ila

to
rs

 

adenosine A2 rat mesenteric artery, 
guinea pig coronary 
artery 

(Kleppisch and 
Nelson, 1995a; 
Mutafova-
Yambolieva and 
Keef, 1997) 

VIP VPAC1 rat mesenteric artery (Yang et al., 2008) 
CGRP N/A rabbit mesenteric 

artery, pig coronary 
artery 

(Quayle et al., 1994; 
Wellman et al., 
1998) 

 
N/A, Not reported. 
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3. Significance 

Despite the wide use of antibiotics, the incidence of sepsis has continued to increase in 

the past few decades. Indeed, sepsis is still a leading cause of death in the intensive care unit 

(ICU) and accounts for over $15 billion of medicare expenses annually in the United States 

(Martin et al., 2003). However, effective therapeutics are still unavailable, and the prognosis 

remains largely unpredictable. There are even controversies in antibiotics usage, as bacterial lysis 

tends to release more septic pathogens and worsen septic shock. Although the cytokine-directed 

immune response to sepsis has been intensively studied, accumulative evidence suggests that the 

cytokine response is an unsatisfactory index for the prognosis of sepsis. A similar stage of 

infection may be manageable in one individual but becomes deadly in another. The variable 

responses and vulnerabilities attribute to the genetic composition of individuals, in which the 

vascular KATP channel plays a role. KATP channels regulate resting membrane potentials and thus 

the activity of voltage-gated ion channels (Nichols, 2006). The voltage-gated Ca2+ channels are 

the chief mechanism for Ca2+ entry in VSMs, affecting vascular tones, blood pressure and local 

blood perfusion (Cribbs, 2006).  

Although the KATP channel plays an important role in systemic responses to sepsis, it is 

unclear how the channel changes its activity or expression during endotoxemia: What 

intracellular signaling systems are activated and determine the vascular SMC response to 

endotoxemia? Do LPS have direct effect on the channel activity? How does the channel activity 

change with oxidative stress, an important pathophysiologic event during sepsis? Can the 

channel activity be modulated by vasoconstrictors known to be useful in sepsis management? 

This dissertation is thus aimed at addressing these questions with an objective to understand the 

regulatory mechanisms of vascular KATP channel by LPS. A combination of electrophysiological, 
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molecular biological and pharmacological approaches was adopted. Our data from these studies 

demonstrated that the expression of vascular KATP channels was up-regulated by LPS through 

NF-κB and CREB dependent pathways, and contributed to LPS-induced vascular hyporeactivity. 

Anti-septic vasopressor AVP elevated vascular tone by targeting PKC and KATP channels. H2O2, 

one of ROS which are produced during septic oxidative stress, impaired vasodilation through 

inhibiting Kir6.1/SUR2B channel. The mechanisms of the channel regulation elucidated in this 

dissertation provide information on the function of KATP channel during sepsis, and perhaps the 

development of new anti-septic therapeutics.  
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4. Material and Methods 

4.1. Chemicals and cDNAs  

Chemicals used in my studies were purchased from Sigma (St. Louis, MO) unless otherwise 

stated. All chemicals were prepared as high concentration stocks in double distilled H2O or 

dimethyl sulfoxide (DMSO), and were diluted in the recording solution to experimental 

concentrations immediately before usage. In cases where DMSO was used, its concentration was 

maintained at less than 0.1% in the experimental solutions. AVP, glibenclamide and pinacidil were 

applied to cells using a perfusion system. To avoid ATP degradation, all ATP containing solutions 

were made immediately before experiments and used no longer than 4hrs. 

Rat Kir6.1 (GenBank accession # D42145) and mouse SUR2B (GenBank accession # 

D86038) were cloned in a eukaryotic expression vector, pcNDA3.1, and used for mammalian 

cell expression. Human TLR4 (GenBank accession # NM_138554) and CD14 were cloned in 

pcDNA3 (GenBank accession # NM_000591) by Dr. Golenbock at University of Massachusetts. 

Human MD-2 (GenBank accession # NM_015364) was cloned in a mammalian expression 

vector pEFBOS by Dr. Sachiko Akashi-Takamura at the University of Tokyo. Human AVP 

receptor 1A with NH2-terminal 3XHA tag (AVPR1A, GenBank accession no. AY322550) in 

pcNDA3.1 was purchased from http://www.cDNA.org (Rolla, MO).Wild-type V1a receptor was 

prepared by removing 3XHA-tag with PCR and was cloned into pcNDA3.1. Dynamin 2 wt -

GFP, and dynamin 2/K44A-GFP were kindly donated from Dr. Mark McNiven (Mayo Clinic, 

Rochester, MN).  
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4.2. Cell culture  

All types of cells were grown at 37 °C in a humidified atmosphere of 95% air and 

5%CO2, and were routinely split when cell density reached 90-100% confluence. Rat aortic 

SMCs (A10, CRL-1476, ATCC, Manassas, VA) were cultured as a monolayer in the DMEM 

with 10% fetal bovine serum. Human embryonic kidney cells (HEK293, CRL-1573, ATCC, 

Manassas, VA) were grown in the DMEM-F12 medium supplemented with 10% fetal bovine 

serum and penicillin/streptomycin.  

4.3. Transfection  

The HEK-293 cells were used to express the KATP channels. Transfection was performed 

by using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) in which 0.7 µg Kir6.1, 2.1 µg SUR2B, 

1.0 µg TLR4, 0.2µg MD2 and 0.2 µg CD14 were added to a 35-mm petri dish. To facilitate the 

identification of positively transfected cells, 0.4 µg pEGFP-N2 cDNA (Clontech, Palo Alto, CA) 

was added to the cDNA mixture. In AVP project, 1.8 µg vasopressin 1a (V1a) receptor cDNA 

was mixed with 0.7µg Kir6.1 and 2.1µg SUR2B per 35mm petri dish. Cells were dissociated 

from the monolayer using 0.25% trypsin ~24 h after transfection. A few drops of the cell 

suspension were added on to 5 x 5-mm coverslips in a 35-mm petri dish. The cells were then 

incubated in DMEM-F12 for 24–48 h before experiments.  

4.4. Molecular biology 

Site-specific mutations were performed using PCR. Pfu Ultra polymerase was purchased 

from Stratagene (La Jolla, CA). PCR cocktail preparation was shown in Table 9-1. Briefly, 

SUR2B cDNA (0.1µg) was denatured at 95 °C for 5 min followed by 18 cycles of 30 s at 95 °C, 

30 s at 55°C, 25 mins at 68 °C, and a final elongation for 10 mins at 70 °C. For Kir6.1 
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mutagenesis, the extension step was changed to 16 mins at 70 °C. XL-blue competent cells were 

transformed with the PCR products. Plasmid DNA was purified using mini prep kit (Qiagen, 

Valencia, CA). The correct mutants were confirmed by DNA sequencing.  

Table 4-1. PCR cocktail preparation 

PCR cocktail 
Components 

Volume (µl) 
 

Concentration 
 

Forward Primer 0.5 50 µM 
Reverse Primer 0.5 50 µM 
Plasmid DNA 1 0.1 µg/µl 
Pfu Ultra 2  
10X Pfu buffer 5  
DMSO 2.5  
dNTPs 1 10 mM 
H2O 37.5  
Total 50  
 

4.5. Mesenteric arterial rings  

Mesenteric arterial rings were obtained from Sprague-Dawley rats (250–350 g) in 

accordance with the guidelines for the care and use of laboratory animals by Georgia State 

University and Harbin Medical University. The rats were anesthetized by inhaling saturated 

halothane vapor followed by cervical dislocation. The mesenteric arteries were dissected free and 

transferred to ice-cold Krebs solution containing (in mM): 118.0 NaCl, 25.0 NaHCO3, 3.6 KCl, 

1.2 MgSO4, 1.2 KH2PO4, 11.0 glucose, and 2.5 CaCl2. The arteries were cut into 6–8 

endothelium-intact rings of 2 mm in length and stored in Krebs solution. Endothelium-denuded 

rings were also used in which the endothelium was removed by a rough plastic tube and tested by 

the loss of response to acetylcholine. During the experiment, a ring was mounted on a force-

electricity transducer (Model FT-302, iWorx/CBSciences, Dover, NH) in a tissue bath. With a 

0.5 g preload, the ring was allowed to equilibrate in the tissue bath for 30min when the tension 

was reduced to 0.3 g. The tissue bath was filled with Krebs solution and perfused with 5% CO2 
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at 36°C. Arterial tone was measured as changes in isometric force. Only rings that showed a clear 

vasoconstriction response to 1.0 µM phenylephrine were used in the study.  

4.6. Acute dissociation of vascular smooth myocytes  

All animal experiments complied with the Institutional Animal Care and Use Committee 

approval of the Georgia State University. Mice (15–20 g) were anesthetized by inhalation of 

saturated halothane vapor followed by cervical dislocation. The aorta was dissected free, cut into 

small segments (1 mm), and placed in 5-ml solution containing (in mM): 140 NaCl, 5.4 KCl, 1 

MgCl2, 0.1 CaCl2, 10 HEPES, and 10 D-glucose at room temperature for 10 min. The tissues 

were then placed in 1-ml solution with 20 units of papain (Worthington) and 1.25 mg DTT. After 

digestion for 15 min at 35°C, the tissue was washed once and then transferred to 1-ml solution 

containing 440 units of collagenase (CLS II; Worthington) and 1.25 mg trypsin inhibitor (Sigma) 

for 5-10 min. After being thoroughly washed, the tissue was moved to 1-ml solution containing 

20% fetal bovine serum and triturated with a fire-polished Pasteur pipette to obtain single smooth 

muscle cells. The cells were stored on ice and used within 8 h. A drop of cells was put in a 35-

mm tissue culture dish and the cells were allowed to attach to the surface in 15 min. The cells 

that had clear smooth muscle morphology and did not show evident swelling or shrinkage were 

used for patch studies. 

4.7. Patch clamping  

Patch-clamp experiments were performed at room temperature as described previously. In 

brief, fire-polished patch pipettes with resistance of 40-50 MΩ were made with 1.2-mm 

borosilicate glass capillaries. Whole cell recording was performed in single-cell voltage clamp. 

Current records were low-pass filtered (2 kHz, Bessel 4-pole filter, –3 dB), digitized (20 kHz, 16-

bit resolution), and stored on a computer hard drive for later analysis using the Clampfit 9 
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software (Axon Instruments). The bath solution contained (in mM): 10.0 KCl, 135.0 potassium 

gluconate, 5.0 EGTA, 5.0 glucose, and 10.0 HEPES (pH = 7.4). The pipette solution contained 

(in mM): 10.0 KCl, 133.0 potassium gluconate, 5.0 EGTA, 5.0 glucose, 1 K2ATP, 0.5 NaADP, 

and 10.0 HEPES (pH = 7.4), in which the free Mg2+ concentration was adjusted to 1 mM using a 

[Ca++]/[Mg++] calculation software. For membrane potential measurement from aortic smooth 

muscle cells, bath solution contained (in mM): 3.0 KCl, 140.0 NaCl, 1.0 CaCl2, 1.0 MgCl2, 10.0 

glucose, and 10.0 HEPES (pH = 7.4 with NaOH). Pipette solution is the same as that used in 

whole cell patch clamping.  

Single-channel conductance was measured with slope command potentials from 100 to –

100 mV. The open-state probability (Po) was calculated by first measuring the time tj spent at 

current levels corresponding to j = 0, 1, 2, ... N channels open, based on all obvious openings 

during the entire period of recording. Po was then obtained as 

 

where N is the number of channels active in the patch, and T is the duration of recordings. 

Po values were calculated from one to three stretches of data of 20 s each acquired with Clampex 

8 (Axon Instruments). In this study, we used NPo instead of Po to express overall channel activity 

in which the number of openings was not counted.  

4.8. Reverse transcription PCR  

Total RNA was extracted from mouse aortic tissues with an RNeasy Mini Kit (Qiagen) 

according to manufacturer’s protocol. cDNA was reversely transcribed from total RNA in a 20-µl 

reaction containing 200 U Superscript II Reverse Transcriptase (Invitrogen), 0.5 µg oligo(dT)12-
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18 primers, 0.5 mM dNTPs, 40 U RNaseOut and 10 mM DTT. The RT product was treated with 

5 U RNase H for 20 mins.  

For PCR analysis of KATP channel subunits, we designed primers targeting the mRNA 

sequence of KATP channel subunits (Table 4-2). PCR was performed in a Perkin Elmer GeneAmp 

2400 in a final volume of 50 μl including 1µl of the RT product, 1.25 units of GoTaq DNA 

polymerase (Promega, Madison, WI, USA), 250 μM dNTP, 2.5 μl DMSO and 0.5μM primers. 

RT product from aortic tissues was denatured at 95 °C for 5 min followed by 30 cycles of 45 s at 

95 °C, 45 s at 52 °C, 75 s at 72 °C, and a final elongation for 10 min at 72 °C. 5 μl of PCR 

products were separated by electrophoresis on a 2% agarose gel and visualized with ethidium 

bromide under UV fluorescence.  

Table 4-2. RT-PCR primers 

 
Target Gene Primers Accession No.  Size (bp) 
Kir6.1 Fw: TGGCTGCTCTTCGCTATC 

Re: GGGCTACGCTTGTCAATC 
NM_008428 
 

578 
 

Kir6.2 Fw: AGGGCATTATCCCTGAGG 
Re: GCGTTGATCATCAGCCC 

NM_010602 
 

569 
 

SUR2B Fw: GAAGTCCTCCTTATCCCTGG 
Re: ACGGACAAACGAGGCAAAC 

NM_011511 
 

592 
 

GAPDH Fw: TGCTGAGTATGTCGTGGAG 
Re: ACCAGGAAATGAGCTTGAC 

NM_008084 
 

668 
 

 
m, mouse; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. 

4.9. Real time PCR 

Real time PCR was performed with an Applied Biosystems 7500 Fast Real-Time PCR 

system. Primers were specifically designed by using Applied Biosystems Primer Express 3.0 and 

listed in Table 4-3. The specificity of the primers was confirmed with a BLAST program. Each 

20-µl reaction contained 1x Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen), 0.2 µM 
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forward and reverse primers, 0.04 µl ROX reference dye, and 0.4 µl of cDNA. Thermal cycling 

conditions included an initial UNG incubation at 50°C for 2 min, Platinum Taq DNA polymerase 

activation at 95°C for 2 min, 40 cycles of denaturing at 95°C for 3 s, and annealing and extension 

at 60°C for 30 s, followed by routine melting curve analysis. Relative quantitation (RQ) of target 

gene expression was calculated by 2 –ΔΔCt method (Livak and Schmittgen, 2001). The first step in 

the RQ analysis is to normalize target gene expression level to GAPDH (ΔCt). The second step is 

to compare the difference between the normalized target gene expression in LPS-treated and 

untreated samples (ΔΔCt). Each experiment was repeated 3-4 times in four samples.  

 

Table 4-3. Real time PCR primers 

 
Target Gene Primers Accession No.  Size (bp) 
Kir6.1 Fw: CGCAAACCCGAGTCTTCTAGGA 

Re: CCTGGCCAACATCTTCCTTTCAC 
NM_008428 
 

101 
 

Kir6.2 Fw: GCCCTGCGTCACAAGCA 
Re: GGACCTCGATGGAGAAAAGGA 

NM_010602 
 

39 
 

SUR2B Fw: CCATAGCTCATCGGGTTCACA 
Re: CGGACAAACGAGGCAAACAC 

NM_011511 
 

133 
 

GAPDH Fw: CCAGCCTCGTCCCGTAGA 
Re: TGCCGTGAGTGGAGTCATACTG 

NM_008084 
 

179 
 

 

 

4.10. Nuclear protein extraction and Western blotting 

A10 cells in 90-100% confluence were rendered quiescent in DMEM with 0.5% FBS for 

6 h before experiments. Nuclear proteins were extracted using Nuclear Extract kit (Active motif, 

Carlsbad, CA). Protein concentration was determined by BCA assay (Pierce, Rockford, IL). The 

nuclear proteins in Laemmli sample buffer were boiled in 95-100°C 5 minutes. The samples (50 
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µg) were loaded onto each well, separated on 10% SDS-PAGE and transferred onto PVDF 

membranes (Bio-RAD, Hercules, CA). Nonspecific binding sites were blocked by 1-h incubation 

of the membranes in TBST/5% nonfat milk, followed by blotting with primary antibodies diluted 

in TBST/5% BSA overnight. Most primary antibodies were purchased from Cell Signaling 

Technology (Boston, MA). Anti-p65 IgG was provided by Santa Cruz Biotechnology (Santa 

Cruz, CA). The membrane was then incubated in horseradish peroxidase (HRP)-conjugated 

secondary antibody (1:104, Jackson immunoresearch), and detected by SuperSignal ECL 

substrate (Thermo scientific, Rockford, IL) according to the manufacturer's instruction. 

4.11. PKC phosphorylation site prediction  

PKC phosphorylation sites were predicted using two online programs Kinasephos, (http: 

//kinasephos.mbc.nctu.edu.tw/) (Huang et al., 2005) and NetPhosK 

(http://www.cbs.dtu.dk/services/NetPhosK) (Blom et al., 2004). A serine or threonine was 

considered for further studies as a putative PKC site if there were basic amino acids at +2 or +3 

position.  

4.12. Data analysis 

Data are presented as the mean ± S.E. (Standard error) of each group. Differences in 

means were tested with single factor ANOVA or Student’s t test, and were accepted as 

significant if P≤0.05.  
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5. Result 1: Lipopolysaccharides Upregulate Kir6.1/SUR2B Channel 

Expression and Enhance Vascular KATP Channel Activity via NF-κB 

and PKA Dependent Signaling Pathway 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Ms. Shuang Zhang and Dr. Ningren Cui performed vascular ring studies. Dr. Ningren 

Cui, Mr. Yang Yang and Ms. Zhongying Wu conducted the patch clamping study. The rest of the 

work (estimated to be ~80%) was done by Weiwei Shi. Ms. Honyu Gai provided some technical 

assistance. 
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5.1. Abstract 

Sepsis is a major cause of deaths worldwide. Recent studies indicate that the septic 

susceptibility is attributable to the vascular KATP channel. However, the mechanisms underlying 

the channel modulation during sepsis are still unclear. Here we show how septic pathogen LPS 

elevate the KATP channel activity and expression. In isolated mesenteric arterial rings, 

phenylephrine (PE) induced concentration-dependent vasoconstriction that was relaxed by 

pinacidil, a selective KATP channel opener. The PE response was mostly eliminated after a 

pretreatment with LPS. In acutely dissociated aortic smooth myocytes the LPS treatment 

augmented KATP channel activity. Quantitative PCR analysis showed that LPS raised Kir6.1 and 

SUR2B transcripts in a concentration-dependent manner, which was suppressed by a 

transcriptional inhibitor actinomycin D and translational inhibitor actidione. The LPS effects 

were abolished with an exposure to either NF-κB inhibitors or PKA blockers. PKA was needed 

for the maintenance of basal phosphorylation of KATP channels and CREB, while the CREB 

expression was NF-κB-dependent. LPS had no direct effect on the Kir6.1/SUR2B channel 

transiently expressed in HEK-293 cells. Thus, the effect of LPS on vasodilation involves 

upregulation of KATP channel expression, in which a NF-κB and PKA dependent signaling plays 

a central role. 
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5.2. Introduction 

 Sepsis is a severe medical condition caused by several septic pathogens including LPS, 

leading to lethal cardiovascular dysfunction and death (Hotchkiss and Karl, 2003; Merx and 

Weber, 2007). Accumulating evidence indicates that cardiovascular responses to septic 

pathogens are rather diverse and the prognosis can be very different between individuals. 

However, the underlying mechanisms for the sepsis susceptibility are unclear (Hotchkiss and 

Karl, 2003). Recent studies indicate that functional integrity of vascular KATP channels is a 

crucial factor for the sepsis susceptibility (Croker et al., 2007; Kane et al., 2006). 

Vascular KATP channels are members of inward rectifier K+ channel (Kir) family. The 

Kir6.1/SUR2B is the major isoform in vascular smooth muscles (VSM). The VSM KATP channel 

is modulated by several vasoactive hormones and neurotransmitters, such as α and β adrenergic 

receptor agonists, anginotension II, arginine vasopressin, adenosine, calcitonin gene-related 

peptide, vasoactive intestinal polypeptide, etc. (Bonev and Nelson, 1996; Nelson et al., 1990; Shi 

et al., 2007a; Shi et al., 2008a; Yang et al., 2008). In addition, metabolites pH, ATP, ADP, EETs, 

H2S are important KATP channel regulators (Kamouchi and Kitamura, 1994; Tang et al., 2005; 

Wang et al., 2003; Ye et al., 2005). Genetic knockout of either subunit of the vascular KATP 

channel leads to spontaneous coronary vasospasm and sudden death, consistent with their 

function in vascular tone regulation (Chutkow et al., 2002; Miki et al., 2002).  

The vascular KATP channel plays a role in septic susceptibility. Studies with genome-wide 

chemical mutations have led to an identification of four strains of mice that are highly vulnerable 

to various septic pathogens (Croker et al., 2007). All of these mice carry a null mutation of 

Kir6.1 gene (Kcnj8), which is caused by a deletion of exon 1 and part of exon2, and an inversion 

of intron 2. Consistently, mice with Kir6.1-knockout exhibit cardiovascular abnormalities with a 
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high mortality when exposed to a sub-lethal dose of LPS (Kane et al., 2006). Although these 

recent studies indicate that the vascular KATP channel is an important player in systemic 

responses to sepsis, how the channel is affected by LPS remains unclear. Does the channel 

activation result from changes in channel protein expression or functional activity? Is the channel 

a direct target of LPS? What are the intracellular signaling pathways critical for the channel 

activation by LPS? To address these questions, we performed this study. 

 

5.3. Results 

5.3.1 KATP channels in the LPS-induced vascular hyporeactivity to vasoconstrictor  

Vascular responses to LPS exposure (from Escherichia coli 0127:B8) were studied in 

isolated perfused rings from mesenteric arteries. Endothelium was mechanically removed 

immediately before mounting. The endothelium elimination was confirmed as the ring failed to 

respond to 1µM acetylcholine (Yang et al. 2008). The ring was mounted on a force-electricity 

transducer with a 0.3g preload and allowed to equilibrate for a half of an hour before the 

experiment. Isometric contraction was produced by exposures to the adrenergic α-receptor 

agonist phenylephrine (PE). PE produced concentration-dependent constrictions of the rings with 

the maximum effect reached at ~10µM (Figure 5-1, A). At the peak constriction, pinacidil, a 

KATP channel opener, relaxed the vasoconstriction almost completely, suggesting that the KATP 

channel was involved (Figure 5-1, A). The PE-induced contraction was significantly suppressed 

following an exposure to LPS. The LPS effect had a clear concentration-dependent pattern. The 

vascular reactivity to 1µM PE was reduced ~60% with 0.1µg/ml LPS, and almost completely 

lost with an exposure to 1µg/ml LPS (Figure 5-1, B). These concentrations of LPS have been 

previously shown to be relavent to sepsis in vivo (Connelly et al., 2005; Fujita et al., 2006).  
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5.3.2. Activation of KATP channels with LPS exposure  

Membrane potentials of SMCs freshly dissociated from the mouse aorta were examined 

in whole-cell current clamp. With physiological concentration of K+ in the bath and pipette 

solutions, the SMCs had a resting membrane potential -56.4±3.8 mV (n=10). The effect of LPS 

on membrane potentials was studied in two groups of cells with one group treated with 1µg/ml 

LPS and the other with the solvent vehicle (Figure 5-1, C). Although no significant changes in 

membrane potentials were seen between these groups at 0, 2 and 6 hrs of exposures (P>0.05, n=9 

to 11 for each time point), the membrane potential at 16 hrs was more hyperpolaried in the LPS-

treated group than in the vehicle-treated (-60.1±3.5 mV, n=6, vs. -46.5±4.9 mV, n=6; P<0.05).  

Subsequently, K+ currents were studied in whole-cell voltage clamp. A high 

concentration of K+ (145mM) was applied to the bath and pipette solutions, and membrane 

potential of the cell was held at 0 mV with step hyperpolarizing pulses to -80mV applied to the 

cell (Shi et al., 2007a). Under this condition, the aortic SMCs exhibited small basal currents upon 

formation of the whole-cell configuration (72.1±10.5 pA, n=21, Figure 5-2, A, E). Pinacidil (10 

µM) augmented the currents by 44% (104.2±16.1 pA, n=21, Figure 5-2, A). The pinacidil-

activated currents were strongly inhibited by 10 µM glibenclamide (50.0±9.0 pA, n=18, Figure 

5-2, A, C), consistent with the expression of functional KATP channels in the SMCs. After a 

treatment of the SMCs with 1µg/ml LPS overnight, the basal currents increased by 43% 

(103.6±15.2 pA, n=17; Figure 5-2, B, E). The current amplitude was further activated by 

another45% (150.9± 29.5 pA, n=17; Figure 5-2, B, D) in the presence of pinacidil. These results 

therefore indicate that the SMC-endogenous KATP currents are augmented with LPS exposure. 
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Figure 5-1. KATP channels play a role in the vascular responses to LPS treatment.  

A. An isolated rat mesenteric arterial ring was exposured to graded concentrations of PE with 3 
mins for each dose. PE produced a concentration-dependent vasoconstriction. At the peak contraction, the 
KATP channel opener pinacidil relaxed the ring almost completely in the presence of 100µM PE within 5 
mins. The relationship was described using the Hill equation with EC50 2.2µM. B. The PE (10 µM) 
contractility was studied in endothelium-denuded rings. The contractility was calculated as a percentage 
by dividing the contractile force in LPS-treated rings to the force in control group. The vascular reactivity 
was decreased by 56.2% (from 0.16 ± 0.02 g, n=5, to 0.07 ± 0.03 g, n=7, P<0.05) after a pretreatment 
with LPS (0.1µg/ml) for 20 hrs. LPS (1µg/ml) further attenuated the vascular contraction by 85.2% (from 
0.17 ± 0.03 g, n=13, to 0.02 ± 0.01 g, n=11, P<0.001). Data are presented as means ± S.E. C. Membrane 
potentials (Vm) were studied in vascular smooth muscle cells (SMCs) freshly dissociated from the mouse 
aorta. The effect of LPS on membrane potentials was studied with different exposure time to 1µg/ml LPS 
in these SMCs. Significant hyperpolarization occurred with a 16 hr exposure (*, P<0.05, n=10). 
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Figure 5-2. Augmentation of KATP currents with LPS incubation.  
Whole-cell voltage clamp was performed in freshly dissociated aortic SMCs. The bath solutions 

contained 145 mM K+. The same solution was used in the recording pipette with addition of 1 mM ATP, 
0.5 mM ADP, and 1 mM free Mg++. A. In a control experiment, small inward currents were seen upon the 
formation of the whole-cell configuration. The currents were increased by pinacidil (10µM). The maximal 
activation was reached in 2 min, while glibenclamide (10µM) reduced the currents to a level even below 
the baseline. B. The pinacidil- and glibenclamide-sensitive currents were studied in another SMC that had 
been treated with LPS (1µg/ml) overnight. The current amplitude increased significantly after the whole-
cell patch formation, presumably produced by intracellular dialysis of ADP and Mg++. The currents were 
further augmented by pinacidil, reaching a peak that doubles that without LPS treatment in A. The 
pinacidil-activated currents were completely suppressed by glibenclamide. C. D. Individual currents 
produced by a single command pulse were displayed. The currents were taken from the areas indicated by 
arrows in A and B, respectively. E. The effect of LPS on basal currents. After LPS treatment (1µg/ml) 
overnight, the basal currents were increased from 72.1±10.5 pA to 103.6±15.2 pA (n=21 and 17, 
respectively. *, P<0.05). F. Enhancement of current density with LPS treatment. The current density was 
calculated by dividing the current amplitude by the whole-cell capacitance of each cell. The KATP currents 
were isolated by subtracting the currents with glibenclamide (10µM) treatment from the currents with 
pinacidil (10µM) treatment. After a LPS (1µg/ml) exposure overnight, the density of basal currents 
increased by 50% (n=21, * P<0.05), while the KATP current density was elevated by 69% (n=17, ** 
P<0.01). 
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5.3.3. LPS elevated surface expression of vascular KATP channel  

The augmentation of KATP channel activity may result from an upregulation of the 

channel expression, post-translational modulation of channel activity (e.g., channel protein 

phosphorylation by PKA) or both. We therefore undertook experiments to test these possibilities. 

To show the effect of LPS exposure on the surface expression of KATP channels, we analyzed the 

KATP channel density in dissociated aortic SMCs. In the experiment, the KATP currents were 

isolated first by subtracting the currents with the glibenclamide (10µM) treatment from the 

currents with the pinacidil (10µM) treatment. The isolated currents were then divided by whole-

cell capacitance to get the current density. The basal density of the pinacidil and glibenclamide-

sensitive currents was 11.4±1.4 pA/pS (n=21, Figure 5-2, F). After a treatment of the cells with 

LPS (1µg/ml) overnight, the current density was 19.3±3.1 pA/pS (n=17), which was 69% greater 

than that before LPS exposure (P<0.01; Figure 5-2, F).  

5.3.4. Concentration-dependent stimulation of Kir6.1/SUR2B transcription 

At the mRNA level, the expression of Kir6.1, Kir6.2 and SUR2B was studied in mouse 

aorta. RT-PCR with the mRNAs extracted from cultured endothelium-denuded aortic rings 

showed that the levels of Kir6.1 and SUR2B transcripts were significantly higher in the LPS-

treated groups than in the control group (Figure 5-3, A). In contrast, the Kir6.2 mRNA 

expression did not show any evident change (Figure 5-3, A).  

Quantitative PCR analysis showed that LPS (1 µg/ml, 20 hrs) enhanced Kir6.1 transcripts 

by ~2.9 fold, and SUR2B by 1.5 fold (P<0.001, n=47 and 49, respectively; Figure 5-3, B), 

whereas Kir6.2 transcripts did not show significant increase (P>0.05, n=32). The effect of LPS 

on Kir6.1 and SUR2B expressions had a clear concentration-dependence (Figure 5-3, C. D). LPS 
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Figure 5-3. Augmentation of KATP mRNA expression after LPS exposure.  
A. Total RNAs were extracted from dissociated SMCs from the mouse aorta after 20h incubation 

with or without LPS, and were subjected to RT-PCR. In the LPS-treated groups (LPS), transcripts of 
Kir6.1 and SUR2B were both enhanced in comparison with control (CTL), while the Kir6.2 expression 
did not change significantly. Note that the arrow indicated a size of 600bp. B. Real time PCR was 
performed to quantify KATP channel expression. The expression levels of target genes were normalized to 
the GAPDH mRNA level using the 2-ΔΔCt method (Livak and Schmittgen, 2001). LPS (1 µg/ml, 20 hrs) 
increased Kir6.1 transcripts by ~2.9-fold, and SU2B by ~ 1.5-fold (***, P<0.001, n=48 and 50, 
respectively), whereas Kir6.2 did not show a significant increase (P>0.05, n=33). Data were obtained 
from 14 independent experiments with 2-4 samples in each. C. LPS stimulated Kir6.1 expression in a 
concentration-dependent manner. Data were collected from 3 independent experiments with 3-4 samples 
in each. D. Time dependence. A clear upregulation of Kir6.1 and SUR2B mRNA expression was 
observed with LPS (1 µg/ml) exposure at 20 hrs but not at 1 and 6 hrs. E. The expression of KATP channel 
in LPS-treated groups was measured and normalized to the vehicle control. After a 20-h treatment with 
actinomycin D (2 μg/ml, added 1 h before applying 1 μg/ml LPS), the enhancement of Kir6.1 and SUR2B 
expression was totally eliminated. Data were obtained from 3 independent experiments with 3-4 samples 
in each. F. Similar results were obtained with a 20-h treatment with actidione (2 μg/ml). The data were 
collected from 2 independent experiments with 4 samples in each.  
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raised Kir6.1 mRNA expression by 1.8 fold in a concentration as low as 0.01µg/ml, and further 

stimulated the Kir6.1 expression by 2.5 and 3.0-fold in 0.1 and 1 µg/ml, respectively. In the 

concentration 0.01 µg/ml, LPS did not exhibit stimulatory effect on SUR2B. A small effect was 

seen with 0.1 µg/ml LPS, while LPS in 1 µg/ml increased SUR2B mRNA by 1.6-folds (Figure 5-

3, C). The upregulation of Kir6.1 and SUR2B expression occurred at ~20 hrs of LPS (1 µg/ml) 

exposure, while no significant increase in Kir6.1 and SUR2B expression was found at 1 hr and 6 

hrs (Figure 5-3, D). Therefore, a 20-h treatment with 1 µg/ml LPS was adopted in further studies. 

5.3.5. Involvement of both transcriptional and translational mechanisms 

Actinomycin D (2 µg/ml), an RNA polymerase II inhibitor that binds DNA at the 

transcription initiation complex and blocks RNA elongation (Sobell, 1985), totally eliminated the 

LPS-induced Kir6.1 and SUR2B expression (Figure 5-3, E). A pretreatment of aortic tissues with 

actidione (cycloheximide, 2 µg/ml), a protein synthesis inhibitor that binds specifically to the 

60S subunit of eukaryotic ribosome (Clotworthy and Traynor, 2006), also blocked the LPS-

inducted Kir6.1 and SUR2B expression (Figure 5-3, F). These suggest that both transcriptional 

and translational mechanisms are required for the LPS effects.  

5.3.6. Necessity of NF-κB 

Since NF-κB is a critical player in the TLR-4 signaling pathways activated by LPS, it is 

possible that LPS enhance the KATP channel expression via the NF-κB pathway. Indeed, we 

found that p65, a subunit of NF-κB, displayed a strong nuclear accumulation after a 30-min LPS 

treatment. The nuclear accumulation returned to nearly the basal level after 20 hrs (Figure 5-4, 

A). Then the NF-κB pathway was further studied using specific NF-κB inhibitors. We tested 

dimethyl fumarate (DMFR, 100 µM), a NF-κB inhibitor that blocked the nuclear entry of p65 

after its release from IκB (Loewe et al., 2002), and pyrrolidine dithiocarbamate (PDTC, 100 µM) 
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that prevents phosphorylation of IκB (Zhong et al., 1997). One of them was added to aortic 

tissues 1 h before LPS administration. After overnight incubation with either of the NF-κB 

inhibitors, the LPS-induced Kir6.1 and SUR2B expressions were strongly suppressed (Figure 5-

4, B-D), indicating that the NF-κB signaling is necessary for the KATP channel upregulation.  

 

 
Figure 5-4. Role of NF-κB in the LPS-induced KATP channel expression.  

A. The A10 aortic smooth muscle cells were cultured in the presence or absence of LPS (1µg/ml). 
Nuclear extracts from the A10 cells were separated on 10% SDS-PAGE and transferred to PVDF 
membrane. Western blot analysis was performed using anti-p65 antibody. Lamin A/C was used as a 
loading control. The p65 was accumulated in nucleus with 30-min LPS stimulation. The p65 nuclear 
accumulation returned to the basal level with a 20 h-LPS treatment. B. PDTC attenuated LPS-induced 
Kir6.1 and SUR2B mRNA expression. A representative RT-PCR was exhibited for the aortic tissues 
treated with LPS and PDTC. PDTC was applied 1 hour before LPS treatment. The upregulation of Kir6.1 
following a 20-h exposure of LPS (L, 1 µg/ml) was blocked by PDTC (P, 0.1 mM). Although SUR2B 
expression was slightly stimulated by LPS, the upregulation still can be inhibited by PDTC. C. D. Total 
RNAs were subject to real time PCR after 20-h incubation with or without LPS. PDTC (0.1 mM, Figure 
5-4, C) or DMFR (0.1 mM, Figure 5-4, D) was applied to the tissue 1 h before LPS administration. The 
expression of Kir6.1 and SUR2B in the LPS-treated groups was strongly suppressed with either PDTC or 
DMFR treatment. The data were collected from 3-4 independent experiments with 3 samples in each.  
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5.3.7. PKA and CREB signaling 

The enhanced Kir6.1 and SUR2B expression occurred with 20-h LPS exposure when the 

nuclear accumulation of NF-κB had declined significantly, suggesting that other intracellular 

signaling systems may also be involved. Previous studies have shown that LPS exposure 

augments adenylate cyclase activity in cultured macrophages (Osawa et al., 2006), and PKA 

plays a role in the LPS-induced suppression of L-type Ca++ currents in ventricular myocytes 

(Zhang et al., 2007). To determine whether PKA activity indeed changes with LPS exposure, we 

performed PKA activity assay. LPS (1µg/ml) did not increase PKA activity with either 30 min or 

20 hr incubation (Figure 5-5, A). However, LPS-induced vascular hyporeactivity was abolished 

in the presence of a PKA inhibitor Rp-adenosine 3′,5′-cyclic monophosphorothioate (Rp-cAMP, 

50 µM) (Figure 5-5, B). In addition, blockade of PKA with KT5720 (1 µM) or Rp-cAMP (100 

µM) suppressed the LPS effect on the Kir6.1 and SUR2B mRNA upregulation (Figure 5-5, C-E), 

suggesting the basal PKA activity is extremely important for the effect of LPS.   

Three potential mechanisms may allow PKA to enhance Kir6.1/SUR2B channel activity: 

1. the channel expression is upregulated by CREB, a well-known PKA-dependent transcriptional 

factor (Mayr and Montminy, 2001); 2. PKA phosphorylates NF-κB leading to a stronger NF-κB 

activity (Yoon et al., 2008; Zhong et al., 1997), which may occur during endotoxemia; and 3. 

Kir6.1/SUR2B channel activity may rise as a result of enhanced channel protein phosphorylation 

by PKA (Shi et al., 2007b). Experiments were carried out to test each of the possibilities. We 

found that LPS clearly enhanced the CREB level in the nuclear extracts of A10 aortic SMCs with 

a 20-hr incubation (Figure 5-6, A). Meanwhile, the level of phospho-CREB was also elevated 

with LPS exposure (Figure 5-6, A), which is likely due to phosphorylation of the excessive 

CREB by basal PKA activity. Thus, the enhanced CREB level appeared to be another major 
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Figure 5-5. Involvement of PKA in the LPS-induced upregulation of KATP channel  
expression.  

A. PKA assay. Whole cell lysates from A10 cells were collected with and without LPS treatment 
(1 µg/ml). Protein concentration was determined by the BCA assay. The whole cell extracts (10 µg) were 
incubated with the Peptag A1 peptide. The phosphorylated peptide migrated toward the anode labeled 
with an arrow, whereas the non-phosphorylated peptide moved in the opposite direction. PKA catalytic 
subunit (10 ng) was used as a positive control. LPS exposure (30 min or 20h) did not increase PKA 
activity in the A10 cells. B. Vascular contractility was studied as described in Figure 5-1. Rp-cAMP (50 
µM) was added 1 h before applying LPS (1 μg/ml). PE (1µM) increased the contractile force to 0.55±0.07 
g (n=10). A 20h LPS exposure strongly suppressed PE (1µM)-induced vasoconstriction (0.01±0.00 g, 
n=8. *** P<0.001). With the Rp-cAMP treatment, the effect of LPS was almost totally abolished 
(P>0.05, n=5). C. KT5720 decreased LPS-stimulated Kir6.1 and SUR2B mRNA expression. A 
representative RT-PCR was exhibited for the aortic tissues treated with LPS and KT5720. KT5720 was 
applied 1 hour before LPS treatment. The elevated Kir6.1 and SUR2B expression with a 20-h exposure of 
LPS (L, 1 µg/ml) was blocked by KT5720 (K, 1 µM). D. E. Real time PCR was performed in the total 
RNAs extracted from dissociated mouse aortic SMCs. Rp-cAMP (100 µM) or KT5720 (1 µM) was used 
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1 h before LPS administration. The expression of KATP channel in LPS-treated groups was normalized to 
the vehicle controls. The LPS + Rp-cAMP or KT5720-treated group was normalized to Rp-cAMP or 
KT5720-treated group, respectively. The upregulation of Kir6.1 and SUR2B was blocked by either Rp-
cAMP or KT5720. Data were collected from 2-4 independent experiments with 3 samples from each.  

 
 

event in vascular responses to endotoxemia. We also found that the LPS-induced CREB 

upregulation was blocked by PDTC, indicating that the enhanced CREB level is likely result 

from the NF-κB signaling (Figure 5-6, B).  

Since NF-κB activity can be enhanced by PKA phosphorylation at residue Ser276 of the 

p65 subunit (Yoon et al., 2008; Zhong et al., 1997), we examined the phosphorylated NF-κB. 

Our results showed that there was no detectable p65 phosphorylation in the A10 aortic SMCs 

after LPS treatment, suggesting that the PKA requirement does not seem to be related to NF-κB 

phosphorylation (Figure 5-6, C).  

5.3.8. Kir6.1/SUR2B channel was not subject to a direct modification by LPS 

Since direct channel modification was another possible mechanism that leads to up-

regulated KATP channel activity, we studied the effect of LPS on Kir6.1/SUR2B transiently 

expressed in HEK-293 cells. The cell line was chosen for several reasons: 1. the expression of 

Kir6.1 and SUR2B from plasmids is, to a large degree, independent of genomic regulation; 2. we 

have shown previously that the Kir6.1/SUR2B channel is phosphorylated by the endogenous 

PKA in the cells (Shi et al., 2007b; Yang et al., 2008); and 3. the intracellular signaling pathway 

for LPS is intact although the membrane expression of TLR4, MD2 and CD14 are absent (Chow 

et al., 1999; Divanovic et al., 2005). Therefore, TLR4, MD2 and CD14 were cotransfected to the 

cells. To our surprise, the basal current density of the LPS-treated cells did not increase at all in 
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Figure 5-6. The role of PKA in LPS-induced transcriptional regulation.  

Western blot was performed using nuclear protein extracted from A10 cells after the cells were 
incubated with LPS (1µg/ml). A. Both CREB and phospho-CREB (CREB Ser133) levels were augmented 
with a 20-h LPS exposure. B. PDTC (0.1 mM) was applied 1 hour before LPS administration. The LPS-
induced CREB expression was almost completely abolished in the presence of PDTC. C. p65 level was 
increased with 30-min LPS stimulation, and tended to decline after 20h. The phospho-p65 level (p65 
Ser276) remained undetectable with these periods of LPS treatment. 
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comparison to the vehicle-treated cells (9.8±2.7 pA/pS, n=13, vs. 12.8±3.3 pA/pS, n=15, 

respectively, P>0.05. Figure 5-7, A-C). The pinacidil-induced currents were not different 

between LPS and vehicle-treated cells either (104.6±29.0 pA/pS, n=13, vs. 138.7±35.8 pA/pS, 

n=15, respectively, P>0.05) (Figure 5-7, A-C). These were not due to a failure of activation of 

intracellular signaling systems by LPS, as our results indicated that LPS affected the HEK-293 

cells, resulting in a clear nuclear accumulation of p65 subunit after a 30 min treatment (Figure 5-

7, D). The different responses between native SMCs and HEK-293 cells to LPS suggest that a 

direct KATP channel modification does not contribute to the upregulation of the channel activity. 

 

 
Figure 5-7. LPS failed to raise Kir6.1/SUR2B channel activity in a heterologous expression system.  

A. Kir6.1/SUR2B were co-expressed with TLR4/MD2/CD14 in HEK-293 cells, and whole-cell 
currents were studied as shown in Figure 5-2. The current amplitude increased markedly in response to 
pinacidil (10 µM), and was inhibited by glibenclamide (Glib, 10 µM). B. Currents were recorded from 
another cell treated with LPS (1µg/ml) overnight. The currents showed a similar response to pinacidil and 
glibenclamide. C. Comparison of the current density between the control (n=15) and LPS (1µg/ml)-
treated cells (n=13). Both basal current density and pinacidil-induced current density were not 
significantly changed after overnight LPS incubation (P>0.05). D. Stimulation of NF-κB signaling with 
LPS exposure in HEK-293 cells. The HEK-293 cells were transfected with human TLR4/MD2/CD14 
cDNAs. Two days after transfection, Western blot analysis was performed on the nuclear extracts from 
the cells. The p65 accumulation was clearly seen 30 min after LPS stimulation.   
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5.4. Discussion 

The outcome of sepsis is determined by not only pathogens but also cardiovascular 

response (Hotchkiss and Karl, 2003). The major cause of death in sepsis is hypotension and 

hypoperfusion of several vital organs. Accounting for these are excessive vasodilation and 

hyporeactivity to vasoconstrictors, in which the vascular KATP channel plays a role (Kane et al., 

2006).  

A previous study indicates that administration of glibenclamide recovered blood pressure 

in dogs with hypotension induced by endotoxemia (Landry and Oliver, 1992). In contrast, 

glibenclamide did not show any effect in a control group, suggesting KATP channel’s activity is 

enhanced in LPS-treated animals. The up-regulated channel activity contribute to LPS-induced 

vascular hyporeactivity (d'Emmanuele di Villa Bianca et al., 2003; O'Brien et al., 2005) and 

smooth muscle cell hyperpolarization (Wu et al., 2004). Our results are consistent with these 

findings. By using patch clamp approaches, we demonstrated that whole-cell KATP currents were 

elevated after an overnight LPS exposure. The augmentation of whole-cell KATP currents is due 

to an increase in surface expression as the channel density increases significantly.  

There are a few reports regarding to the transcriptional regulation of KATP channel with 

the exposure of LPS. Kir6.1 mRNA is augmented by 4 fold and Kir6.1 protein by 9 fold in rat 

diaphragm with LPS treatment (24-48h) (Czaika et al., 2000). In experimental colitis, the Kir6.1 

mRNA expression in colonic smooth muscle is enhanced by ~22 fold, while SUR2B mRNA 

decreases by 3 fold (Jin et al., 2004). The increase in the KATP expression, especially Kir6.1 

subunit, is believed to contribute to the dysfunction of visceral smooth muscle contraction during 

inflammation (Czaika et al., 2000; Jin et al., 2004). In the present study, we have shown, for the 

first time, that both Kir6.1 and SUR2B mRNA are upregulated after LPS treatment in vascular 
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SMCs. The effect is related to the newly synthesized mRNAs rather than changes in stability, as 

a transcriptional inhibitor blocks the mRNA elevation.  

Our results also suggest that multiple intracellular signaling systems are involved in the 

Kir6.1 and SUR2B upregulation during endotoxemia. NF-κB is known to be a key player in the 

regulation of inflammatory gene expression (Baeuerle and Baltimore, 1996). Activation of NF-

κB increases the expression of genes encoding proinflammatory cytokines, such as TNFα, an 

early mediator of the vasodilatory septic shock (Tracey et al., 1986). In our studies, we have 

examined the causality between KATP and NF-κB. The results showed that p65 began to 

accumulate in the nucleus as soon as 30 min after LPS stimulation. A pretreatment with the NF-

κB inhibitor PDTC or DMFR significantly attenuated the LPS-induced KATP channel expression. 

Therefore, NF-κB is necessary for the upregulation of the vascular KATP channel during 

endotoxemia. 

The time course for the LPS-induced cellular membrane hyperpolarization and KATP 

channel upregulation suggests that intracellular signaling systems in addition to NF-κB are also 

important. PKA is one of them. After activation, the catalytic subunit of PKA directly 

phosphorylates vascular KATP channel leading to vasodilation (Shi et al., 2007b). In addition, the 

catalytic subunit is translocated to the nucleus and regulates gene transcription through 

phosphorylating CREB (Gonzalez and Montminy, 1989). A previous study indicates that LPS 

(100 µg/ml) activates PKA in primary culture of bovine aortic SMCs (Browner et al., 2004). 

Another group, however, has shown that LPS (10 µg/ml) inhibits PKA leading to a reduction of 

electrical coupling in microvascular endothelial cells (Bolon et al., 2007). In the present study, 

we did not find increased PKA activity with LPS (1µg/ml) exposure in rat aortic SMCs. 

Moreover, if LPS increased PKA activity, the activity of Kir6.1/SUR2B channel would be 



 
 

58

increased by phosphorylation (Shi et al., 2007b). Our patch clamp study showed that the 

Kir6.1/SUR2B current density in the transfected HEK cells was not changed after LPS exposure, 

indicating that LPS do not seem to upregulate PKA activity. Therefore, the effect of PKA on 

LPS-induced upregulated KATP channel activity appears to be mediated through a mechanism 

other than enhanced channel phosphorylation. 

CREB is a major target of PKA that contributes to gene transcription (Mayr and 

Montminy, 2001). Our studies suggest that Kir6.1 and SUR2B are likely subject to 

transcriptional regulation by CREB for the following reasons: 1. Both CREB and phosphor-

CREB were elevated 20 hours after LPS exposure; 2. Blocking PKA decreased LPS-induced 

Kir6.1 and SUR2B mRNA expression. In addition, the activity of NF-κB is important because 

LPS-induced CREB expression is strongly attenuated by PDTC. It is well accepted that CREB 

contributes to cardiovascular remodeling process, including VSMC hypertrophy, migration, 

vascular fibrosis, and possibly angiogenesis (Ichiki, 2006). Our study suggests that CREB also 

plays an important role in sepsis. 

Like CREB, the activity of NF-κB is enhanced by PKA (Yoon et al., 2008; Zhong et al., 

1997), which may be a mechanism underlying the NF-κB and PKA dependent KATP channel 

upregulation. However, we did not find clear evidence that LPS induce phosphorylation of p65 

Ser276, a unique residue that is targeted by PKA. The PKA that phosphorylates p65 upon LPS 

stimulation could be an atypical isoform,containing only a catalytic subunit which forms a 

ternary complex with NF-κB and IκB, and is not regulated by cAMP (Zhong et al., 1997). Our 

results, however, indicate that the LPS effect is blocked by Rp-cAMP, suggesting it is a cAMP-

sensitive PKA. Moreover, although a strong PKA stimulation (foskolin, etc.) is able to induce 

p65 Ser276 phosphorylation in Schwann cells (Yoon et al., 2008), the LPS-treated aortic SMCs 
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did not display an elevated PKA activity as shown in the present sudy. Thererfore, our data do 

not agree that NF-κB is a target of PKA. 

It is interesting that actidione, a nonselective protein synthesis blocker, suppressed the 

upregulation of Kir6.1 and SUR2B. The result suggests that some protein synthesis is crucial for 

the transcriptional regulation of Kir6.1 and SUR2B. Several steps of the intracellular signaling 

pathways may involve protein synthesis, such as PKA, CREB, NF-κB, protein for nuclear 

transports, etc. Further studies are needed to identify the proteins that play an important role in 

the upregulation of Kir6.1 and SUR2B.  

In summary, vascular KATP channel is involved in LPS-induced dysfunction of 

vasoconstriction. The upregulated vascular KATP channel activity during LPS exposure is caused 

by additional expression of Kir6.1 and SUR2B. A transcriptional mechanism which includes NF-

κB and CREB signaling contributes to elevation of Kir6.1 and SUR2B mRNA. Although PKA 

activity is not enhanced during LPS exposure, it plays a crucial role in LPS-induced vascular 

hyporeactivity and upregulation of Kir6.1 and SUR2B. 
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6. Result 2: Reactive Oxygen Species Suppressed Kir6.1/SUR2B 

Channel Activity through Direct Interaction with the Channel 

Protein 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Dr. Ningren Cui performed all vascular ring experiment. Mr. Yang Yang and Ms. 

Zhongying Wu conducted the study on the identification of intra- vs. extracellular redox 

sensitivity, while the rest of the work (estimated to be ~80%) was done by Weiwei Shi.  
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6.1. Abstract 

Overproduction of ROS during oxidative stress has an impact on the pathogenesis of 

several vascular diseases including sepsis, diabetes and atherosclerosis. The impaired vascular 

KATP channel function during oxidative stress has been revealed recently, but the underlying 

mechanism is elusive. Here we reported that H2O2 attenuated pinacidil-induced vasodilation in 

both endothelium-intact and endothelium-denuded mesenteric arterial rings. Patch clamp studies 

showed that H2O2 inhibited pinacidil-activated Kir6.1/SUR2B currents in a dose-dependent 

manner. Since cysteine residues are the most likely substrates of oxidative modulation, we 

applied thiol-modifying reagents (2,2′-dithiodipyridine, 2-PDS and 5, 5′-dithiobis-2-nitrobenzoic 

acid, DTNB) to determine whether thiol oxidation plays a role and identify the critical protein 

domains and residues that were targeted by oxidation. Kir6.2/SUR2B channel was far less 

sensitive to H2O2 and 2-PDS than the Kir6.1/SUR2B, indicating Kir6.1 is the major player. The 

membrane permeable 2-PDS suppressed Kir6.1/SUR2B channel in a manner similar to H2O2, 

while the membrane impermeable DTNB had a smaller effect when applied extracellularly, 

suggesting the major thiol modification occurs in the intracellular domains. Using Kir6.1-Kir6.2 

chimeras, two critical protein domains for the thiol modification were identified. Systematic 

mutational analysis showed that Cys43, Cys120, and Cys176 were critical for the 2-PDS 

sensitivity. Therefore, these results suggest that H2O2 modulates the Kir6.1 channel leading to 

vascular dysfunction, and such an effect seems to result from thiol oxidation involving Cys43, 

Cys120, and Cys176 located in the N-terminus and core region of Kir6.1.   
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6.2. Introduction 

Oxidative stress is characterized by an overproduction of reactive oxygen species (ROS), 

including superoxide (O2
-), hydrogen peroxide (H2O2), and hydroxyl radical (HO·), and impaired 

antioxidant defenses, leading to structural damages to proteins, nucleotides, and membrane lipids 

(Storz and Imlayt, 1999). The ROS production plays an important role in both the normal 

function of vascular systems and the pathogenesis of vascular diseases, such as diabetes, 

atherosclerosis, sepsis, Parkinson's disease, Alzheimer’s disease, etc. (Aruoma and Halliwell, 

1998).  

Almost all types of cells distributed in the vascular wall, including SMCs, endothelial 

cells and fibroblasts, can produce ROS, and are in turn modulated by ROS (Griendling et al., 

1994). However, the outcomes of the oxidative stress are controversial. In different studies H2O2 

is reported to be a vasoconstrictor (Suvorava et al., 2005), vasodilator (Hatoum et al., 2005), or 

both (Cseko et al., 2004). Since KATP channels play an important role in vascular tone regulation, 

the effect of ROS on the KATP channels may have a profound impact on vascular tone and 

regional blood flows. Accumulating evidence suggests that the function of vascular KATP 

channels is impaired with ROS exposure (Erdos et al., 2004; Miura et al., 2003; Ross and 

Armstead, 2003). However, the mechanism underlying the KATP channel modulation by ROS is 

poorly understood. In contrast to the vascular isoform of KATP channels, activity of KATP 

channels of myocardium and striatal neurons is enhanced by hydroxyl radicals, superoxide and 

H2O2 (Avshalumov and Rice, 2003; Ichinari et al., 1996). Since the disparate responses to ROS 

may be attributed to the different subunit composition of KATP channels, detailed studies of these 

Kir6.1 and Kir6.2 channels may lead to identification of protein domains and amino acid 

residues critical for the channel modulation by ROS. Therefore, we performed studies to 
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investigate the molecular basis of the vascular KATP channel modulation by H2O2 and thiol 

oxidants.  

 

6.3. Results 

6.3.1. H2O2 exposure resulted in dysfunction of mesenteric arteries, attributable to KATP 

channel inhibition  

Previous studies have shown that pinacidil exposure leads to relaxation of arterial rings 

that are pre-contracted by vasoconstrictors including PE and extracellular K+ (Shi et al., 2007a; 

Stojnic et al., 2007). In endothelium-intact (EI) mesenteric arterial rings, we also observed the 

vasorelaxing effect. After a contraction produced by extracellular K+ (30mM), pinacidil 

produced a dose-dependent relaxation with EC50 10 µM (Figure 6-1, A, C). Although H2O2 

produced a rather small vasoconstriction, the exposure of H2O2 markedly attenuated the 

pinacidil-induced vasodilation in a concentration-dependent manner (Figure 6-1, A, C). The 

effect relied on the concentrations of H2O2. The evident effect was seen with 30µM H2O2, and a 

great effect took place with 600µM (Figure 6-1C, D), concentrations that have previously been 

shown to be produced in vasculatures under different pathophysiological conditions (Colussi et 

al., 2000; Sandberg and Sayeski, 2004).  The attenuation of the pinacidil-induced vasodilation 

was also observed in endothelium-denuded (ED) rings (Figure 6-1, B, D), suggesting that KATP 

channel in smooth muscle cells is inhibited by H2O2 exposure. 
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Figure 6-1. Effects of H2O2 on the pinacidil-induced vasodilation. 
A. Vasoconstriction was studied in an endothelium-intact (EI) mesenteric arterial ring at 36°C in 

vitro. Isometric contraction was produced by exposures to 30 mM KCl (K+). The contractile force 
decreased dose-dependently with an increase in pinacidil (Pin) concentrations. Pre-exposure of H2O2 in 
300 µM and 600 µM 2 min before KCl impaired the pinacidil-induced vasodilation. B. A similar study 
was performed in an endothelium-denuded (ED) ring. The endothelium elimination was confirmed as the 
ring failed to respond to 1µM ACh. The pinacidil-induced vasodilation was also compromised with the 
exposure of H2O2. C. The contractile force was normalized between the pre-loaded force and the maximal 
force induced by 30 mM K+. The vasodilation in EI rings is a function of pinacidil concentrations, and 
their relationship can be described with the Hill equation (EC50 0.01 mM, h = 1.0). H2O2 (300 µM) 
increased EC50 to 0.1 mM. A higher concentration of H2O2 (600 µM) only further elevated EC50 to 0.2 
mM. Data were obtained from 4-5 rings, and shown as means ± SE. D. The dose-vasodilation curve was 
also plotted in ED rings, with EC50 0.008 mM. The exposure of H2O2 (30 µM, 300 µM and 600 µM) 
increased EC50 to 0.03, 0.1 and 0.2 mM, respectively. Data were obtained from 4-5 rings, and shown as 
means ± SE.  
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6.3.2. H2O2 inhibited Kir6.1/SUR2B currents  

To examine the molecular mechanism underlying vascular KATP channel inhibition, we 

need to know the effect of H2O2 on the cloned KATP channel expressed in HEK293 cells. Indeed, 

studies in our laboratory showed that the whole-cell Kir6.1/SURB currents were inhibited by 

extracellular H2O2 in a concentration-dependent manner with IC50 1.0 mM (Yang et al. personal 

communication). 

6.3.3. Redox-dependent inhibition of Kir6.1/SUR2B channel by thiol-modifying reagents 

It is known that ROS can interact with proteins, especially cysteine residues. Such a thiol 

oxidation can lead to dysfunction and structural damage of the proteins (Kiley and Storz, 2004). 

The thiol oxidation may be produced by a number of oxidants including 2-PDS. Thus, we 

applied 2-PDS, a membrane-permeable thiol modifying reagent, to the cloned KATP channel. The 

transfected cells exhibited small baseline currents upon the formation of whole cell configuration 

(Figure 6-2, A). An exposure to 10 µM pinacidil increased the currents markedly. The pinacidil-

activated currents were strongly inhibited by 2-PDS with an IC50 8 µM (Figure 6-2, A, B). To 

locate the modification sites, we also studied the KATP currents using DTNB, a membrane-

impermeable PDS. At 200 µM, DTNB had very little inhibitory effect. Then, we studied the 

effects of 2-PDS and DTNB in inside-out patches. Applied to the internal membranes, both 

reagents showed a similar inhibitory effect on KATP currents, with IC50 ~10 µM (Figure 6-2, C). 

These studies thus suggest that the redox sensitive site(s) is likely to be located in the 

intracellular domain of Kir6.1/SUR2B channel. 
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Figure 6-2. Inhibition of Kir6.1/SUR2B currents by thiol modification. 
A. Whole cell currents were recorded from a cell transfected with Kir6.1/SUR2B. Currents were 

strongly activated by pinacidil (Pin; 10 µM), and the maximum activation was reached within 4-5 min of 
the exposure. The currents were inhibited by 50 µM 2-PDS. Bottom. individual currents produced by a 
single command pulse. B. The normalized effect of 2-PDS on whole-cell Kir6.1/SUR2B currents was 
plotted against the concentration of 2-PDS. The concentration-response relationship was described using 
the Hill equation with IC50 ~8 µM and h = 1.0. C. The normalized effects of 2-PDS and DTNB in inside-
out patch were plotted against their concentrations, respectively. The dose-response relationship was 
described using the Hill equation with IC50 = 10 µM and h = 1.0. Data were collected from 4-6 cells, and 
shown as means ± SE. 
 

6.3.4. Kir6.2/SUR2B channel is not sensitive to H2O2 and 2-PDS 

To elucidate which subunit is targeted, we studied a KATP channel without the Kir6.1 

subunit. The KATP currents were recorded from HEK cells after a cotransfection of the 

Kir6.2/SUR2B subunits (Figure 6-3). No clear inhibition was found when the cells were exposed 

to either H2O2 (1 mM) or 2-PDS (50 µM) (-0.01%±0.5%, n=4, and 12.9%±0.5%, n=4, 
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respectively. Figure 6-3 A and B), suggesting that the SUR2B subunit is not critical for the redox 

modification, and the different response to H2O2 and 2-PDS between these two isoforms of KATP 

channels attributes to the Kir6.1 subunit. 

 

Figure 6-3. Effects of H2O2 and 2-PDS on Kir6.2/SUR2B channel expressed in HEK293 cells. 
Representative recordings of whole-cell Kir6.1/SUR2B currents were displayed for the cells 

treated with H2O2 and 2-PDS. A. shown was the time course for Kir6.2/SUR2B channel modulation by 
H2O2. The whole cell currents were strongly activated by pinacidil (10 µM). The currents were not 
sensitive to H2O2 (50 µM). B. In another cell, 2-PDS did not exhibit a clear inhibitory effect on the 
pinacidil-activated Kir6.2/SUR2B currents. 

 

6.3.5. Location of potential interaction sites 

To identify protein domains necessary for the redox sensitivity, we studied Kir6.1-Kir6.2 

chimeras as shown in our previous studies (Shi et al., 2008b). The Kir6.1 and Kir6.2 were 

separated into three parts: the N terminus, the C terminus, and the core domain containing two 

transmembrane segments and the pore loop (Figure 6-4, A). All six chimeras displayed 

functional currents that were sensitive to pinacidil and glibenclamide. When the C terminus was 

replaced (112), the 2-PDS sensitivity was not significantly changed, suggesting that the C 



 
 

68

terminus is not critical. When the N terminus of Kir6.1 was replaced with that of Kir6.2 (named 

211), the channel inhibition by 2-PDS was significantly diminished (Figure 6-4, A, B). A similar 

result was observed for the core domain (121). Consistently, construction of either the N terminus 

or core domain to the Kir6.2 frame (122 and 212, respectively) was able to retain the 2-PDS 

sensitivity by ~50%. Therefore, both the N terminus and core domain appear important for 2-

PDS-dependent channel inhibition (Figure 6-4, B). 

 
Figure 6-4. Exploration of critical protein domains contributing to 2-PDS-dependent channel 
inhibition. 

All chimerical Kir6.x subunits were expressed with SUR2B. A. shown is a summary of 2-PDS 
suppression of chimeras. N terminus, core, and C terminus in Kir6.1 refer to amino acid sequences 1–71, 
72–186, and 187–424, respectively. N terminus, core, and C terminus in Kir6.2 refer to residues 1–70, 
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71–176, and 177–390, respectively. B. Statistical anaylsis of the response of chimeric channels to 2-PDS. 
Data were collected from 4-5 cells in each chimera. 

 

There are totally eight cysteine residues in all intracellular domains of human Kir6.1 that 

were potentially modified by oxidants (Figure 6-5, A). We thus performed systemic mutation 

screening of all these residues. Mutation of Cys43 or Cys120 to s serine reduced mildly the 2-

PDS sensitivity (C43S, 88.0%±4.6%, n=5, * P<0.05, and C120S, 77.6%±5.1%, n=4, * P<0.05, 

respectively. Figure 6-5, B). Mutation of Cys176 dramatically inhibited the sensitivity (C176A, 

26.0%±6.5%, n=6, ** P<0.01, and C176S 67.5%±6.0%, n=5, respectively. *** P<0.001. Figure 

6-5, B). Mutation of any other cysteine residues did not significantly change the 2-PDS 

sensitivity. Consistent with our chimerical study, these cysteine residues are located in the N-

terminus and the core domain and seem to be the modulation sites by oxidants.  

 

Figure 6-5. Mutagenesis analysis of potential 2-PDS modification of cysteine sites in Kir6.1 subunit. 

A. Schematic representation of Kir6.1 subunit. The N and C terminus, as well as eight cysteine 
residues including Cys43, Cys120 and Cys176, are illustrated. B. Compared with wt, mutations of Cys43, 
Cys120 and Cys176 attenuated the inhibitory effect of 2-PDS. Data were collected from 4-6 cells for each 
mutation (*P < 0. 05, **P < 0. 01, ***P < 0. 001).  
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Based on homologous analysis of Kir6.x amino acid sequences, we noticed that the 

Cys176 corresponds to Cys166 in Kir6.2, a mutation that decreases ATP and pH sensitivities by 

disrupting the gating mechanism (Piao et al., 2001; Trapp et al., 1998a; Wang et al., 2007). We 

found that basal currents recorded from Kir6.1-C176A/SUR2B increased gradually upon a 

whole-cell patch configuration (Figure 6-6, A). The currents were further stimulated by pinacidil 

(10 µM), and subsequently inhibited by glibenclamide (10 µM), suggesting that the Cys176 may 

not be critical for Kir6.1 channel gating. H2O2 (3mM and 10mM, note the concentrations are far 

higher than those used in wild-type channel) failed to produce channel inhibition (0.6%±0.3%, 

n=5, and 7.6%±3.7%, n=5, respectively. Figure 6-6, B). Consistently, 2-PDS (50 µM) only 

displayed a weak inhibitory effect on the whole-cell currents (26.0%±6.5%, n=6. Figure 6-6, C).  

 

6.4. Discussion 

A major pathological event of inflammation is ROS production. When the cellular 

antioxidant defense mechanisms are overwhelmed, the excessive amount of ROS tends to react 

with a large number of macro-molecules including proteins, lipids and nucleotides, and causes 

damages to the cellular structure and function. In addition to their direct effects, ROS can 

activate other reactive species such as reactive lipids and reactive carbonyls, propagating 

oxidative stress within the cell and beyond. Such oxidative stress are seen in vasculatures during 

sepsis, diabetes, atherosclerosis, etc. (Galley et al., 1996; Macdonald et al., 2003).  

Previous studies have suggested that ROS are involved in vascular tone regulation. The 

pinacidil-induced vasodilation in cerebral arterioles is compromised in insulin-resistant rats fed 

with fructose, which is completely reversed by treatment with SOD and catalase (Erdos et al., 

2004). Superoxide impairs pial arterial dilation induced by KATP channel opening (Ross and 
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Armstead, 2003) . Similarly, diabetes reduces human coronary arteriolar dilation in response to 

KATP opening, leading to a reduced vasodilation to hypoxia (Miura et al., 2003). Consistent with 

these previous studies, our results have shown that by targeting at vascular smooth muscles, 

H2O2 induces dysfunction of vasodilation in a KATP channel dependent manner.  

 

 
Figure 6-6. Characterization of Cys176 in redox modification. 

Whole-cell patch was performed in HEK cells transfected with Kir6.1 C176A/SUR2B. 
Representative recordings of the whole-cell currents are shown. A. The basal current increased 
spontaneously upon whole cell configuration was formed. The currents were further activated by pinacidil 
(10µM), and suppressed by 10 µM glibenclamide. B. H2O2 (3mM and 10 mM) failed to suppress the 
whole cell currents. C. 2-PDS (50 µM) slightly inhibited the whole cell currents.  
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Since Kir6.1/SUR2B is the major isoform of KATP channel expressed in smooth muscle 

cells, we have further examined the effect of H2O2 on cloned KATP channels, and observed that 

H2O2 clearly suppresses the pinacidil-induced currents. Using thiol-modifying reagents with 

different membrane permeability, the redox sensitive sites are located in intracellular domains. 

These sites are likely to be in the Kir6.1 but not the SUR2B subunit, because Kir6.1/SUR2B 

instead of Kir6.2/SUR2B is sensitive to H2O2 and 2-PDS. With systematic chimerical 

construction, the redox sensitive sites are subsequently located in the N-terminus and core region 

of Kir6.1. In these protein domains, three cysteine residues of Cys176, Cys43 and Cys120 are 

identified to be most likely targets of the redox regulation. 

The Cys176 is an interesting residue. Both C176A and C176S mutations cause a major 

decrease in the channel response to H2O2 and 2-PDS dramatically. Its homologous residue in 

Kir6.2 (Cys166) contributes to a channel gating mechanism, as mutation of the Cys166 to any 

amino acids except valine dramatically decreases the ATP and pH sensitivities of the mutant 

channels, and robustly elevates Po (Trapp et al., 1998a; Wang et al., 2005). This raises a question 

as to whether the Cys176 in Kir6.1 is a gating site rather than a redox sensor, as its mutation may 

cause disruption of the channel gating and make the channel constitutively open. This idea 

however is not supported by our results. We have found that C176A or C176S mutation does not 

lead to complete opening of the channel, as the basal currents are small and increase 

spontaneously with intracellular dialysis of ADP. The C176A or C176S mutation does not 

prevent channel regulation by a KATP channel opener and inhibitor. At maximal basal channel 

activity, the channel activity can be further stimulated by pinacidil, and inhibited fully by 

glibenclamide, indicating that the channel gating is not disrupted. Alternatively, a 

straightforward interpretation of the decreased response to 2-PDS and H2O2 in the C176A or 
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C176S is that the Cys176 allows the wild-type but not the mutant channel to be modified by 

H2O2 and 2-PDS, leading to channel closure. Although the precise role of the Cys176 in the 

redox regulation of Kir6.1is still unclear, a differentiation of this site in redox sensing from 

channel gating helps future studies.  

The Cys43 is another redox sensitive site. The corresponding residue in Kir6.2 Cys42 is 

located in an ATP-binding motif and is subject to thiol modification (Trapp et al., 1998b). A 

reagent p-chloromercuriphenylsulphonate (pCMPS, 50 µM) eliminates Kir6.2/SUR1 currents 

when applied to an open channel in inside-out patches. The inhibitory effect is reversible since 

5mM DTT can partially restore the currents. When the channel is closed by ATP, the Cys42 is 

not modified by pCMPS, suggesting that it is inaccessible from the bath solution. The C43S in 

Kir6.1channel is sensitive to thiol modification in the open status as well.  

Cys120 in Kir6.1 is close to the pore region, a place that is not accessible from the 

intracellular side when the channel is in the closed state. A previous study suggested Cys110 in 

Kir6.2 at a position similar to Cys120 in Kir6.1 may form a disulfide bond with Cys142 

(Loussouarn et al., 2001). Our result shows that Kir6.1 C120S channel partially decreased the 

sensitivity to 2-PDS, consistent with the idea that it is another oxidation site when the channel is 

open. Kir6.1 Cys152 is a residue corresponding to Kir6.2 Cys142. Mutation of this residue did 

not change 2-PDS sensitivity, suggesting Cys152 is not important for thiol modification. 

In summary, the vascular KATP channel is inhibited by H2O2. The N-terminus and core 

domain are critical for redox modulation. Three cysteine residues, i.e., Cys43, Cys120 and 

Cys176, located in these regions are potentially oxidized with H2O2 exposure. Oxidation of these 
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residues appears to cause a suppression of vascular KATP channel activity during oxidative stress, 

leading to disruption of vascular responses to vasodilators.  
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7. Result 3: Arginine Vasopressin Constricts Mesenteric Artery 

through V1a Receptor, PKC and KATP Channel 

 

 

 

 

 

 

 

Publication: Weiwei Shi, Ningren Cui, Yun Shi, Xiaoli Zhang, Yang Yang, and Chun Jiang 

(2007) Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery 

via V1a receptor and protein kinase C. Am J Physiol Regul Integr Comp Physiol. 2007; 

293:R191-9.  

 

Note: The work was mostly done by Weiwei Shi (>90%). Dr. Ningren Cui performed most 

vascular ring study. Dr. Yun Shi helped to setup patch clamping. Mrs. Xiaoli Zhang and Mr. 

Yang Yang did some patch clamp experiments. 
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7.1. Abstract 

AVP is a peptide hormone released from the posterior pituitary gland. With strong 

vasoconstricting effect it has been used in the treatment of septic shock when α-adrenoceptor 

agonists are ineffective. To test the hypothesis that the Kir6.1/SUR2B channel is a target 

molecule of AVP, we performed studies on SMC-endogenous KATP
 channel and the cloned 

Kir6.1/SUR2B channel. In isolated mesenteric artery rings, AVP produced concentration-

dependent vasoconstrictions with EC50 6.5 nM. At the maximum effect, pinacidil completely 

relaxed vasoconstriction in the continuing presence of AVP. The magnitude of the AVP-induced 

vasoconstriction was significantly reduced after PKC inhibition. In acutely dissociated vascular 

smooth myocytes, AVP strongly inhibited the cell-endogenous KATP channel. In the HEK-293 

cells transfected with Kir6.1/SUR2B and V1a receptor, AVP produced a concentration-

dependent inhibition of the pinacidil-activated currents with IC50 2.0 nM. An exposure to 100 nM 

PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the 

channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A 

pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect 

of AVP. Furthermore, PKC inhibited Kir6.1/SUR2B channel in a way independent of 

endocytosis. Mutation of potential PKC phosphorylation sites in SUR2B did not affect the 

channel sensitivity to PKC activators. These results therefore indicate that the Kir6.1/SUR2B 

channel is a target molecule of AVP, the channel inhibition involves Gq-coupled V1a receptor 

and PKC, and the PKC-dependent KATP channel inhibition is mediated on Kir6.1 not SUR2B. 
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7.2. Introduction 

A major challenge in the treatment of septic shock is the control of excessive vasodilation 

and vascular hyporeactivity to α-adrenergic agonists. The limitation of the α-adrenoceptor 

agonist usage has led to great efforts to find other alternative vasoconstrictors. AVP is one and 

has been shown to remain effective in vasoconstriction during sepsis (Sands et al., 1997). 

AVP is a nanopeptide synthesized in the hypothalamus and then transported to the 

posterior pituitary gland where it is released to the systemic circulation. Its release increases with 

a drop in blood volume or systemic dehydration. AVP performs multiple tasks in blood pressure 

control, water reabsorption, gluconeogenesis, neurotransmission, and platelet aggregation, 

depending on cell types and receptor species (Birnbaumer, 2000; Holmes et al., 2003). Three 

subtypes of AVP receptors have been found: V1a, V2, and V1b. The V1a receptor is mainly 

expressed in vascular smooth muscle cells, while it is also found in hepatocytes and platelets. In 

these cells, AVP plays an important role in vasoconstriction, hepatic gluconeogenesis, and 

platelet aggregation through the V1a receptor (Holmes et al., 2003). The V2 receptor is expressed 

in the collecting duct principal cells of medullary nephrons, regulating water reabsorption 

(Bankir, 2001). The V1b receptor is mainly expressed in the pituitary gland (Folny et al., 2003). 

Acting on the V1a receptor, AVP is a potent vasoconstrictor and has been widely used for 

therapeutical purposes (Holmes et al., 2001a).  

Several Ca2+-permeable channels are activated by AVP, including the T-type Ca2+ 

channels, L-type Ca2+ channels, and the receptor-operated cation channels (Brueggemann et al., 

2005; Katori et al., 2001; Maruyama et al., 2006) . The opening of these channels contributes to 

the rise in cytosolic Ca2+ and constriction of vascular smooth muscles. Since some of these 

channels are voltage-dependent, their activation requires depolarization. Thus, the early 
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depolarization is crucial for the AVP-induced vasoconstriction. It is known that K+ and Cl– 

channels are important regulators of membrane potentials. Indeed, previous studies have 

suggested that the KATP channels are inhibited by AVP leading to depolarization of vascular 

smooth muscle cells (Wakatsuki et al., 1992).  

As the major vascular isoform, the Kir6.1/SUR2B channel plays an important role in 

vascular tone regulation. Kir6.1 knockout mice exhibited a high rate of sudden death associated 

with spontaneous electrocardiographic ST elevation followed by atrioventricular block, which 

resembles Prinzmetal angina in humans (Miki et al., 2002). Genetic disruption of the abcc9 

(SUR2) gene leads to coronary artery vasospasm and raises resting blood pressures (Chutkow et 

al., 2002). Vascular KATP channels are targeted by several vasoactive hormones and 

neurotransmitters (Bonev and Nelson, 1996). However, the modulation of the vascular KATP 

channels by AVP is still controversial (Dumont and Lamontagne, 1995; Wakatsuki et al., 1992). 

There is evidence that KATP
 channels in cardiac myocytes and the insulinoma cell line are also 

inhibited by AVP, suggesting that Kir6.2/SUR1 and Kir6.2/SUR2A channels are targeted 

(Martin et al., 1989; Tsuchiya et al., 2002) . Since functional vascular KATP
 channels are mainly 

made of Kir6.1 with SUR2B subunits, the understanding of KATP channel contribution to 

vascular tones relies on the demonstration of the precise signal network between 

neurotransmitters/hormones and KATP channels. To test the hypothesis that Kir6.1/SUR2B 

channel is one of the effectors of AVP, we performed these studies. Our results indicated that the 

Kir6.1/SUR2B channel was inhibited by AVP through the V1a receptor, and the channel 

inhibition relied on intracellular signal systems involving PKC.  
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7.3. Results 

7.3.1. Constriction of mesenteric artery by activation of V1a receptors  

AVP produced concentration-dependent constrictions of the isolated mesenteric artery 

rings with EC50 6.5 nM (Figure 7-1, A and B). At the maximum effect, pinacidil (Pin, 20 µM) 

relaxed the vasoconstriction almost completely in the continuing presence of AVP, strongly 

suggesting that the KATP channel is involved. A repetitive exposure of AVP in 45 min after the 

first treatment did not significantly change the reactivity of vascular ring (0.40 ± 0.05 and 0.37 ± 

0.05 g, respectively, n = 5 rings from two animals, P > 0.05, Figure 7-1, C). This effect did not 

seem to be mediated through endothelium, as AVP continued producing contractions in 

endothelium-denuded rings (0.52 ± 0.09 g, n = 3). The effect of AVP was blocked by 30 nM 

YM-AVP, a selective V1a receptor blocker (Figure 7-1, D and F) (0.260 ± 0.002 and 0.028 ± 

0.000 g, respectively, n = 4, P < 0.05). The V1a receptor is known to be coupled to G protein Gαq 

activation, which leads to activation of phospholipase C and PKC (Howl and Wheatley, 1995). 

Therefore, it is possible that AVP-induced vasoconstriction is mediated by activation of the PKC 

pathway. A pre-exposure to PKC inhibitor, calphostin-C (1 µM), attenuated the AVP-induced 

vasoconstriction (P < 0.05, n = 4; Figure 7-1, E and F). Similar to the effect of AVP, application 

of PMA (1 µM), a selective PKC activator, produced vasoconstriction (0.41 ± 0.16 g, n = 5) that 

was relaxed by 10 µM pinacidil (0.05 ± 0.03 g, n = 5 rings from 4 animals). 
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Figure 7-1. Effects of AVP on vascular tone. 

Vasoconstriction was studied in endothelium-intact mesenteric arterial rings at 36°C in vitro. A. 
contractile force increased dose-dependently with the increase in AVP concentrations. At the maximum 
effect, 20 µM pinacidil relaxed the vasoconstriction almost completely in the continuing presence of 1 
µM AVP. B. contractile force is a function of AVP concentrations, and their relationship can be described 
with the Hill equation (EC50 6.5 nM, h = 1.0, n = 4 rings from 2 animals). C. contractions were seen with 
repetitive exposures to AVP. D and E. in two different rings, the AVP effect was greatly diminished by 
30 nM [Deamino-Pen1, Tyr(Me)2, Arg8]-vasopressin (YM-AVP; D) and 1 µM calphostin-C (E). F. 
Summary of the effect of YM-AVP and calphostin-C on the contraction inhibition by AVP. Data are 
shown as means ± SE (n = 4 rings from 3 animals and 5 rings from 4 animals, respectively).  

 

7.3.2. Effects of AVP on endogenous currents of vascular smooth myocytes  

Since activation of KATP channel compromised AVP-induced vasoconstriction, we next 

investigated if AVP directly regulated vascular KATP channel. Vascular smooth myocytes 

(VSMs) were freshly dissociated from the mesenteric arteries (Figure 7-2, A). The bath solutions 

contained 145 mM K+ so that the reversal potential of K+ currents is near 0 mV. The recording 

pipette was filled with the same solution with the addition of 1 mM ATP, 0.5 mM ADP, and 1 

mM free Mg2+. The VSMs showed small baseline currents, and the current amplitude increased 
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markedly with an exposure to 10 µM pinacidil. For quantitative analysis, we normalized the 

affected currents between maximum channel inhibition by glibenclamide (Glib, 10 µM) and 

maximum activation by 10 µM pinacidil. The pinacidil-activated currents were strongly inhibited 

by 100 nM AVP in the presence of pinacidil (by 63.1 ± 5.3%, n = 6) (Figure 7-2, B and E). 

In cell-attached patches, a K+ current with unitary conductance of 35pS was observed in 

the acutely dissociated VSMs (Figure 7-2, C). The current had rather low baseline activity with 

NPo 0.004±0.002 (n=4), consistent with a previous report (Nelson et al., 1990). The channel 

activity increased with an exposure to 10 µM pinacidil and was inhibited with 100 nM AVP in 

the extracellular solution (Figure 7-2, D, E). The pinacidil-activated current had unitary 

conductance of 34.8±1.1 pS (n=4), which did not change significantly with AVP (35.3± 0.8 pS, 

n=4, P>0.05). Application of glibenclamide led to a further inhibition of this current. Therefore, 

these pharmacological properties of this 35-pS current were consistent with our observations in 

the whole cell recordings from the VSMs, suggesting that the VSM-endogenous KATP channel is 

inhibited by AVP. 

7.3.3. Expression of Kir6.1/SUR2B channels in HEK-293 cells 

We further identify the signaling pathway between AVP and KATP channel using 

mammalian expression system. Expression of AVP receptors in HEK-293 cells has been 

successfully used to identify signal pathways of AVP (Innamorati et al., 1998; Terrillon et al., 

2004). The Kir6.1/SUR2B channel was transiently expressed in HEK-293 cells. Whole cell patch 

clamp was performed on GFP-positive cells. Whole cell currents were recorded from these cells 

under the same condition as for the VSMs. The transfected cells exhibited small baseline currents 
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Figure 7-2. Effects of AVP on inward K+ currents in VSMCs. 
A. cells were acutely dissociated from the rat mesenteric artery and photographed before patch-

clamp experiments. Calibration = 30 µm. B. The whole cell currents were recorded with a holding 
potential at 0 mV and command pulses of –80 mV every 3 s. After whole cell configuration was formed, 
the SMC was perfused with extracellular solution for a 5-min baseline recording (shown partially). The 
whole cell K+ currents were strongly activated with 10 µM pinacidil. Application of 100 nM AVP 
suppressed the currents in the presence of pinacidil. The currents were further inhibited by 10 µM 
glibenclamide. Note that individual records are shown (bottom) with time expansion. C. single-channel 
currents were recorded in a cell-attached patch. Currents showed single-channel conductance of 35 pS 
with ramp voltages from –100 to 100 mV. D. with a membrane potential of –80 mV, the channel activity 
(C) was low at baseline. The single-channel currents were activated with 10 µM pinacidil. The pinacidil-
activated currents were strongly inhibited by 100 nM AVP in the presence of pinacidil. The lower trace in 
each panel is an expansion from the record of upper trace between arrow heads. E. summary of 
percentage inhibition of channel activity by 100 nM AVP in whole cell (WC; n = 6) and cell-attached 
patch (n = 4) configurations. No statistical difference was found (P>0.05). 
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upon the formation of whole cell configuration (Figure 7-3, A and B). An exposure to 10 µM 

pinacidil increased the currents markedly. The pinacidil-activated currents were strongly 

inhibited by 10 µM glibenclamide (Figure 7-3). These, as well as single-channel properties (see 

Biophysical mechanisms), were consistent with the characteristics of Kir6.1/SUR2B currents 

reported previously (Teramoto, 2006; Wang et al., 2003; Yamada et al., 1997). 

 

Figure 7-3. Kir6.1/SUR2B channel expressed in HEK-293 cells.  

A. whole cell currents were recorded from a HEK-293 cell transfected with Kir6.1/SUR2B/V1a 
receptor (V1aR) under the same condition as described in Fig. 7-2. Similar to the KATP channel expressed 
in SMCs, currents were strongly activated by pinacidil (10 µM), and the maximum activation was reached 
within 5–6 min of the exposure. The currents were inhibited by 100 nM AVP and further inhibited by 
glibenclamide (10 µM). Bottom: individual currents produced by a single command pulse. B. whole cell 
currents were recorded from a cell transfected with Kir6.1/SUR2B. Currents were strongly activated by 
pinacidil (10 µM) with the maximum activation reached in 4–5 min of the exposure. Currents did not 
respond to 100 nM AVP while they were still inhibited by glibenclamide (10 µM). 
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7.3.4. Inhibition of Kir6.1/SUR2B channels by AVP  

When the V1a receptor was cotransfected with Kir6.1/SUR2B in HEK-293 cells, the 

currents activated by 10 µM pinacidil were strongly inhibited with an exposure to 100 nM AVP 

plus 10 µM pinacidil (Figure 7-4, A). Evident channel inhibition was seen with 300 pM AVP 

(16.6 ± 8.1%, n = 8), and stronger inhibition occurred with higher concentrations, with 1 nM 

(26.4 ± 10.9%, n = 6) and 3 nM (52.2 ± 10.6%, n = 8). The concentration-response relationship 

can be described by using the Hill equation with IC50 2.0 nM, and (h) 1.0 (Figure 7-4, B). The 

maximal inhibition was reached with 10 nM AVP (62.9 ± 10.7%, n = 5). Higher concentration 

showed slightly further inhibitory effect, with 30 nM AVP (64.0 ± 9.6%, n = 11), 100 nM AVP 

(66.0 ± 5.4%, n = 8), and 300 nM AVP (66.8 ± 8.6%, n = 6). The Kir6.1/SUR2B currents were 

also studied in cells transfected without V1a receptor in which no evident inhibition of the 

Kir6.1/SUR2B currents was seen with 100 nM AVP (Figure 7-3, B).  

7.3.5. Biophysical mechanisms 

In whole cell recordings, the currents activated by pinacidil showed almost a linear 

conductance with no obvious rectification, which was consistent with previous reports (Figure 7-

5, A-D) (Yamada et al., 1997). The currents inhibited by AVP were isolated by subtracting the 

remaining currents from the maximum currents activated by pinacidil. When the current-voltage 

relationship of the currents was plotted with the pinacidil-activated currents, they superimposed 

almost completely (Figure 7-5, E-G), indicating that effect of AVP is not voltage dependent. 
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Figure 7-4. Concentration-dependent inhibitions of Kir6.1/SUR2B currents by AVP.  

A. clear inhibition of the pinacidil-activated currents occurred with 0.3 nM AVP, and a higher 
concentration (100 nM) of AVP further decreased the whole cell currents. B. effect of AVP was measured 
and normalized between the maximum channel inhibition by 10 µM glibenclamide and maximum channel 
activation by 10 µM pinacidil, and was plotted against AVP concentrations. The concentration-response 
relationship was described using the Hill equation with IC50 = 2.0 nM and Hill coefficient (h) = 1.0.  

 

In cell-attached patches, currents with single-channel conductance of 39.1 ± 3.3 pS (n = 

8) were observed. Exposure of the cells to 10 µM pinacidil increased NPo from 0.021 ± 0.030 to 

0.140 ± 0.072 (Figure 7-6). AVP subsequently reduced NPo to 0.037 ± 0.026 (P < 0.01, n = 5). In 
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contrast to NPo, single-channel conductance did not show any significant change in the presence 

of AVP (38.0 ± 4.7 pS, n = 8) (Figure 7-6). Therefore, these results suggest that the inhibition of 

whole cell Kir6.1/SUR2B currents by AVP is produced by the suppression of the NPo without 

affecting the unitary conductance. 

 

Figure 7-5. Voltage dependence. 

A–D. whole cell currents were recorded under the same condition as shown in Fig. 7-2. A series 
of command pulses were given from –120 mV to 120 mV with 20-mV increments. The voltage protocol 
did not produce evident currents in the baseline (A). The Kir6.1/SUR2B currents were strongly activated 
with 10 µM pinacidil (B). Pinacidil-activated currents were inhibited by 100 nM AVP (C) and 10 µM 
glibenclamide (D). When plotted against membrane potential (Vm), the pinacidil-activated currents 
showed almost a linear conductance (E). A similar current-voltage relationship was seen after the AVP 
exposure (F). When the currents inhibited by AVP were isolated with a subtraction of F from E, scaled to 
the maximum at 120 mV and plotted together with the pinacidil-activated currents, the currents were 
almost completely superimposed (G). 
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Figure 7-6. Effect of AVP on single-channel currents. 

A–D. single-channel currents were recorded in a cell-attached patch. The lower trace in each 
panel is an expansion from the record of upper trace between arrows. An active channel was seen at 
baseline (A). When the cell was exposed to 10 µM pinacidil, the single-channel current was activated 
with the appearance of a second active channel (B). The currents were strongly inhibited with 100 nM 
AVP (C). Glibenclamide (10 µM) further inhibited the currents (D). E and F. single-channel conductance 
was measured in the same cell with a ramp voltage from –100 to 100 mV. Two channels were active in E. 
Slope conductance of the currents was 38 pS with pinacidil (E) and AVP exposure (F). Note that leak 
currents were manually removed, and the slope conductance was not measured at baseline because of low 
appearance of the channel. AVP showed significant suppression of overall channel activity in which the 
number of openings was not counted (NPo; G) but not single-channel conductance (H). **P < 0.01. 

 

7.3.6. PKC dependence 

Previous studies have shown that Kir6.1/SUR2B channel activity is affected by both PKA 

and PKC (Quinn et al., 2004; Thorneloe et al., 2002), and the V1a receptor is coupled to Gαq 

which links to downstream PKC. Therefore, it is possible that the Kir6.1/SUR2B channel 

inhibition by AVP is mediated by activation of the PKC pathway. To test this hypothesis, we 

studied the Kir6.1/SUR2B channel by interference with the PKC signaling system. PMA is a 
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potent PKC agonist that anchors PKC to the cellular membrane and persistently exposes its 

catalytic site (Newton, 1995). Administration of 100 nM PMA reduced the pinacidil-activated 

currents by 84.5 ± 5.9% (n = 6) (Figure 7-7, A). In the presence of PMA, 100 nM AVP had no 

significant inhibitory effect on the currents (8.4 ± 5.1%, n = 6). In contrast, inactive phorbol ester, 

4α-phorbol 12,13-didecanoate (4α-PDD) had little inhibitory effect (13.3 ± 8.5%, n = 4), and the 

whole currents were further inhibited by 100 nM AVP (63.9 ± 9.9%, n = 4) after the cells were 

pretreated with 4α-PDD (Figure 7-7, D and E). With pretreatment with 100 nM calphostin-C for 

20 min, the inhibitory effect of AVP was significantly diminished (15.4 ± 1.7%, n = 5, P < 0.01).  

 

 

Figure 7-7. PKC dependence. 

A. pinacidil-activated currents were markedly inhibited by 100 nM PMA. B. inhibitory effect of 
AVP was diminished with a 20-min pretreatment of 100 nM calphostin-C. C. in the presence of 10 µM 
PKC 19–31 in pipette solution, the current response to AVP was also reduced. D. pinacidil-activated 
currents were not inhibited with a 5-min exposure to 100 nM 4α-phorbol 12,13-didecanoate (4α-PDD), 
and were inhibited by 100 nM AVP. E. Summary of effects of PKC activator on the Kir6.1/SUR2B 
currents. Data are shown as means ± SE (n = 4 to 8). PDD, 4α-PDD. 
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When the pipette solution contained PKC inhibitor peptide 19-31 (PKCi, 10 µM) (Figure 7-7, C and E), 

which acted as a pseudo-substrate by binding to the catalytic site of PKC, 100 nM AVP did not produce 

any significant channel inhibition (3.2 ± 5.1%, n = 5, P > 0.05) (Figure 7-7, C and E). Taken together, all 

of these results suggest that the Kir6.1/SUR2B channel inhibition by AVP is very likely to be mediated 

through the PKC system. 

7.3.7. Endocytosis did not contribute to PKC-dependent inhibitory effect 

Channel trafficking is an important mechanism for regulation of channel activity. Upon 

PKC activation, Kir6.2-containing KATP channel displayed internalization in a dynamin-

dependent way (Hu et al., 2003). We hypothesized that PKC inhibited Kir6.1/SUR2B through a 

similar trafficking mechanism. Since a dominant-negative dynamin-2 K44A blocked the process 

of endocytosis, we co-transfected the K44A mutant with Kir6.1 and SUR2B. Wild-type 

dynamin-2 was used as control. The two groups of cells did not displayed significantly different 

response to PMA (68.0 ± 3.3%, n=4, and 79.0 ± 9.6%, n=4, respectively, P>0.05. Figure 7-8), 

suggesting that the dynamin-dependent internalization is not critical.  

 

7.3.8. Mutational analysis on SUR2B subunit 

If the channel internalization was not a mechanism here, it was likely that PKC inhibited 

Kir6.1/SUR2B through a direct phosphorylation. Systematic mutational screening was 

performed on the SUB2B subunit first. Twenty-three PKC consensus residues were found in the 

intracellular domains of SUR2B. Each site was mutated to alanine or asparagine. All of these 

mutant SUR2B subunits together with Kir6.1 expressed functional currents similar to the wt 
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the pinacidil-induced KATP currents were strongly inhibited by AVP (76.1±7.1%, n=6). The 

inhibitory effect was not significantly altered in S898N and T1381A (81.7±5.7%, n=5, P>0.05, 

and 61.9±9.2%, n=6, P>0.05, respectively). Therefore, it is unlikely that Thr898, Thr972 and 

Thr1381 were phosphorylated by PKC.  

Since PKC phosphorylation sites do not seem to be in the SUR2B, the Kir6.1 subunit 

becomes the only logical target. Indeed, further studies on the Kir6.1 in our laboratory have led 

to the identification of several PKC sites in the subunit, to which I was a contributor (Shi et al. 

2008).  

 

7.4. Discussion 

Our results from the present study indicate that the VSM isoform of KATP channels is one 

of the major targets of AVP. We have found that AVP strongly inhibits the Kir6.1/SUR2B 

channel expressed in the HEK-293 cell line. The channel inhibition is mediated by selective 

suppression of NPo without effect on the single-channel conductance. Activation of the V1a 

receptor and PKC system is crucial for the channel inhibition. Similar effects are also observed in 

acutely dissociated VSMs. AVP constricts mesenteric arteries where Kir6.1/SUR2B channel is 

expressed (Sampson et al., 2004; Wang et al., 2003), and such a vasoconstriction also depends on 

the KATP channel, V1a receptor, and PKC pathway.  

As an effective vasoconstrictor, AVP is believed to modulate contractions of vascular 

smooth muscles through multiple ion channels. At physiological concentrations, AVP stimulates 

Ca2+ spiking in cultured aortic smooth myocytes, which can be abolished by mibefradil at 

submicromolar concentrations that do not inhibit L-type Ca2+ currents, suggesting that the T-type, 
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or low-threshold voltage-activated Ca2+ channels, are activated by AVP (Brueggemann et al., 

2005) . Another study showed that the L-type Ca2+ channel is also involved in the AVP-induced 

vasoconstriction (Katori et al., 2001) . In addition to the Ca2+ channels, AVP is known to produce 

Ca2+ influx through voltage-dependent and receptor-operated cation channels (Van Renterghem 

and Lazdunski, 1994) , which was recently demonstrated to be the heteromultimeric TRPC6-

TRPC7 channel (Maruyama et al., 2006). Activation of these voltage-independent Ca2+ channels 

and cation channels can raise intracellular Ca2+ and initiate contractile filament sliding, when 

depolarization also occurs simultaneously. The vasoconstriction effect of AVP depends on 

extracellular Ca2+ entry in male rat aorta, whereas female aorta depends more upon intracellular 

Ca2+ released from the sarcoplasmic reticulum. In this regard, gonadal steroid hormones may 

contribute to aortic vasoconstriction induced by AVP (Eatman et al., 1998). AVP also enhanced 

sympathetic vasoconstriction at a lower temperature (30°C) by activating V1a receptor (Garcia-

Villalon et al., 1999). However, intracellular signal pathways and target molecules of AVP are 

still not fully understood. Accumulating experimental evidence indicates that KATP channels are 

inhibited by AVP leading to depolarization. In guinea pig ventricular myocytes, AVP inhibits 

KATP channels through V1a receptors with an IC50 of 15 nM (Tsuchiya et al., 2002). In the 

RINm5F insulin-secreting cell line, AVP inhibits K+ channels that are closed by tolbutamide and 

opened by diazoxide (Martin et al., 1989) , suggesting that the Kir6.2/SUR1 channel is involved. 

In cultured coronary arterial smooth muscle cells, AVP inhibits a K+ current in both outside-out 

and cell-attached patches, and this effect can be reversed by a KATP channel opener nicorandil 

(Wakatsuki et al., 1992). Our results indicate that the vascular isoform of KATP channels 

Kir6.1/SUR2B is indeed targeted by AVP. The effect of AVP is not limited to the heterologous 
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expression system. We have found that the VSM-endogenous KATP current is inhibited by AVP 

to almost the same degree as the Kir6.1/SUR2B channel expressed in HEK-293 cells.  

Dumont and Lamontagne (Dumont and Lamontagne, 1995) reported that the AVP-

induced vasoconstriction of aortic rings cannot be blocked by glibenclamide and suggested that 

KATP channels do not play a role in the vasoconstrictive effect of AVP. Since the effect of the 

KATP channel blocker depends on the channel-open state, it may not have significant effect when 

the channels are closed. When the KATP channels are opened by lemakalim, the same study 

indeed showed a significant attenuation of the AVP-induced vasoconstriction, which is consistent 

with our observations in the present study. The evidence of glibenclamide alone may not be 

sufficient to overthrow the contribution of these K+ channels to the AVP effect, as glibenclamide 

also affects other channels, such as renal outer medullary K+ channel (ROMK) and cystic fibrosis 

transmembrane conductance regulator (CFTR) (Ishida-Takahashi et al., 1998; Konstas et al., 

2002) , and glibenclamide may act on thromboxane receptors attenuating indirectly the AVP-

induced vasoconstriction of placental chorionic plate arteries (Wareing et al., 2006b) . The 

observations that the KATP channel openers relax arterial rings in previous reports (Dumont and 

Lamontagne, 1995; Wakatsuki et al., 1992) and that AVP inhibits the Kir6.1/SUR2B and the 

tissue-endogenous KATP channels shown in our current studies strongly suggest that the 

Kir6.1/SUR2B channel plays, at least in part, a role in the AVP-induced vasoconstriction.  

Consistent with the idea that the V1a receptor is the AVP receptor in vascular smooth 

muscles (Holmes et al., 2003), our studies have shown that YM-AVP, a selective V1 receptor 

antagonist, blocks the vasoconstriction effect of AVP in mesenteric artery rings. In HEK cells, 

we have found that Kir6.1/SUR2B currents are inhibited by AVP only when the V1a receptor is 

coexpressed, indicating that the Kir6.1/SUR2B channel is a downstream effector of the V1a 
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receptor. The V1a receptor is linked to Gαq, which activates the PKC-dependent intracellular 

signaling system (Birnbaumer, 2000). Several vasoconstrictors, such as angiotensin II, serotonin, 

and histamine have been shown to inhibit vascular KATP channels through the PKC signal 

pathway (Bonev and Nelson, 1996; Kubo et al., 1997). Our results suggest that the inhibition of 

Kir6.1/SUR2B channels by AVP is also mediated via PKC: 1) PMA resembles the inhibitory 

effect of AVP, while 4α-PDD has no obvious effect on whole currents; 2) Kir6.1/SUR2B 

channel inhibition by AVP is abolished in the presence of selective PKC antagonists calphostin-

C or PKCi; 3) AVP has no further inhibitory effect when the Kir6.1/SUR2B currents were 

inhibited by PMA; and 4) PKC dependence is not limited in the HEK cells, as calphostin-C also 

blocks the vasoconstriction produce by AVP in mesenteric arteries. Furthermore, we have shown 

that the inhibition of Kir6.1/SUR2B currents by AVP is mediated via suppression of NPo instead 

of unitary conductance, consistent with the studies showing that PKC regulates KATP channels 

through gating mechanism (Shi et al., 2008b). In addition to direct phosphorylation of the 

channel protein, the internalization or endocytosis of the V1a receptor and/or Kir6.1/SUR2B 

channel may be another mechanism for the decrease in functional channel activity, as shown 

previously for the Kir6.2 channel (Hu et al., 2003).  

The SUR subunit is critical for functional expression of KATP channel (Zerangue et al., 

1999). Both Kir6.1 and Kir6.2 contain short sequence RKR that functions as ER retention and 

prevents their surface expression (Zerangue et al., 1999). The SUR subunit shields this sequence 

by coupling with Kir6 subunit and forming an octamer. Coexpression SUR with Kir6 

dramatically increases KATP channel surface expression. Noticeably, Kir6.2Δ36 without RKR 

sequence displayed inward rectifier K+ currents that were stimulated by metabolic inhibitor azide 

but not sensitive to glibenclamide, a SUR binding KATP channel blocker (Tucker et al., 1997). In 
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comparison, a similar truncated form of Kir6.1 (Kir6.1Δ45) cannot exhibit currents even with 

surface expression (Zerangue et al., 1999). Therefore, SUR subunit seems more important for 

Kir6.1-containing KATP channels.  

The SUR2B as an essential accessory subunit of Kir6.1 in vasculture is subject to various 

regulations. PKA, a key Ser/Thr kinase that contributes to vasodilation, phosphorylates Ser1387 

in SUR2B (Shi et al., 2008a). The SUR subunit is also targeted by most of pharmacological KATP 

channel modulators, including sulfonyurea that is applied in anti-diabetic therapy (Seino and 

Miki, 2003), and nicorandil that is used to treat angina (IONA Study Group, 2002). Although the 

potential PKC sites may be theoretically located in SUR2B, our studies do not support the idea. 

Our systematic mutational analysis of all candicate PKC sites failed to prove any in the SUR2B 

subunit. The negative finding is useful, as it helped our later studies and identified the PKC sites 

in Kir6.1 (Shi et al. 2008).  

Dynamin is a 100-kDa GTPase that is involved in many kinds of endocytosis processes 

such as clathrin-coated pit endocytosis and caveolar endocytosis (Nichols, 2003). The protein 

consists of multiple C-terminal SH3 binding proline motifs, a central pleckstrin homology (PH) 

domain, and an N-terminal GTPase domain. PKC stimulates dynamin by acting on the PH 

domain (Scaife and Margolis, 1997). Compared to neuronal isoform dynamin 1 and testis 

isoform dynamin 3, dynamin 2 is widely expressed in different cell types, including vascular 

SMCs (Kashiwakura et al., 2004). Dynamin contributed to PKC activation-induced KATP channel 

internalization in cardiac myocytes (Kir6.2/SUR2A) and CA1 neurons (Kir6.2/SUR1). The 

internalization prevents extra channel activity which is caused by the direct stimulatory effect of 

PKC on Kir6.2-containing channels (Zerangue et al., 1999). We did not find that dynamin 2 was 

involved in PKC regulation on Kir6.1/SUR2B. This could be related to the opposite response of 
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Kir6.1/SUR2B to PKC. The channel inhibition plus internalization by PKC would lead to excess 

channel suppression.  

In conclusion, AVP is a potent vasoconstrictor that has been known to be useful when 

systemic circulation loses its reactivity to traditional anti-shock drugs, such as epinephrine and 

dopamine during septic shock (Friedman et al., 1998). The rationale for the application of AVP is 

its relative lower plasma concentration (1 pg/ml, 10–12 M) and hypersensitivity to its 

vasoconstrictor effects during such a pathological condition (Mutlu and Factor, 2004). 

Therapeutic application of AVP can be even more effective if its target molecules and critical 

intracellular signal pathways are known. In this regard, our current studies appear to constitute a 

significant step toward the understanding of vascular regulation by AVP and KATP
 channels.  
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8. General Discussion 

8.1. KATP channel in a regulatory matrix  

The KATP channel is critical for vascular tone regulation and a delicate regulatory network 

was developed during evolution (Figure 8-1). Regulation of KATP channel actually actually has 

acute and chronic phases. The fast regulation is through a channel gating mechanism, whereas 

the slow regulation is operated by a transcriptional mechanism. 

8.1.1. Acute regulation  

KATP channels are subject to a direct and fast regulation by intracellular ATP, ADP, pH 

and phospholipids. Such modulations link the cellular metabolic states to membrane electric 

activities (Aguilar-Bryan and Bryan, 1999). pH changes in local tissues are very common in 

heavy exercise, hypoxia, ischemia, and severe diabetes. Previous studies in our group have 

demonstrated that KATP channels in pancreatic and cardiac tissues are stimulated by hypercapnia 

and intracellular acidosis (Li et al., 2005; Piao et al., ; Wu et al., 2002; Xu et al., 2001). The 

modulations of KATP channel activity by H+, ATP and ADP are mediated via directly proton 

binding to Kir6.x or SUR, leading to alternation in the channel gating mechanism (Dabrowski et 

al., 2004; Matsuo et al., 2000; Xu et al., 2001). Products during oxidative stress also change 

vascular KATP channel activity. H2O2 suppresses Kir6.1/SUR2B channel by direct targeting 

cysteine residues located in the Kir6.1 subunit. In addition to the modulation by the metabolites, 

KATP channel activity is regulated by multiple protein kinases (e.g., PKA, PKC). The vasoactive 

substances bind to their receptors that are coupled to different types of G proteins, leading to 

activation of PKA and PKC. The phosphorylation sites that are targeted by these two protein 

kinases are well demonstrated in the vascular KATP channel (Shi et al., 2008b; Shi et al., 2007b). 
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The phosphorylation together with ligand-binding (e.g., H+, ATP and ADP), provide a fast 

mechanism to regulate vascular tone. 

8.1.2. Chronic regulation 

Gene transcription is another mechanism that modulates KATP channel activity in a slow 

way. The expression of KATP channel subunits could be altered in some chronic diseases (e.g. 

diabetes). A declined SUR2B instead of Kir6.1 and Kir6.2 is observed in aortic SMCs 

dissociated from diabetic rats (Ren et al., 2003). The changes in channel expression change are 

more significant in sepsis. Both mRNA and protein levels for Kir6.1 are increased in the 

diaphragm of rats treated with LPS, with the mRNA level augmented by 4-fold in 48h, whereas 

protein levels enhanced 9-fold after 24h (Czaika et al., 2000). Moreover, Kir6.1 expression in 

colonic smooth muscle is enhanced by 22-fold, the mRNA level for SUR2B is decreased by 3-

fold in experimental colitis (Jin et al., 2004). Flow stress increases the expression of Kir6.2 (both 

mRNA and protein) in rat pulmonary microvascular endothelial cells. Flow stopping initiates 

cellular depolarization in a KATP channel dependent way (Chatterjee et al., 2003). In the present 

study, we have demonstrated that LPS increase both Kir6.1 and SUR2B mRNA in a NF-κB and 

PKA dependent fashion. Such an up-regulation increases KATP channel activity, and may lead to 

excessive vasodilation during sepsis.  
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Figure 8-1 Schematic representation of vascular KATP channel in regulatory matrix. 
KATP channels are regulated in multiple levels. Metabolic products (e.g. H+, ATP, ADP) change 

channel gating through binding to specific residues. For example, Elevated H+ (pH 6.8-7.4) stimulates 
Kir6.2Δ36 channel via binding to His175 (Xu et al., 2001). Both ATP and ADP bind to NBD1 and NBD2 
of SUR subunit. In addition, ATP binds to N- and C- termini of Kir6.x subunit (Dabrowski et al., 2004; 
Matsuo et al., 2000). Vascular KATP channels are also targeted by vasoconstrictors and vasodilators 
through protein kinase-dependent ways. Vasopressors, such as AVP, activate PKC, which consequently 
inhibits the channel through phosphorylating Ser379, Ser385, Ser391, and Ser397 in C-terminus of Kir6.1 
(Shi et al., 2007a; Shi et al., 2008b). PKA is stimulated by vasodilators (e.g., VIP), and opens the channel 
through phosphorylating Ser1387 in SUR2B (Shi et al., 2007b; Yang et al., 2008). In addition, H2O2 
inhibits vascular KATP channel activity through a thiol modification mechanism. Furthermore, KATP 
channels are subjected to transcriptional regulation. LPS elevate both Kir6.1 and SUR2B expression in a 
NF-κB and CREB dependent pathways.  

 

8.2. Double-edged vascular KATP channel during sepsis 

Our study, together with the findings from other groups (Czaika et al., 2000; Jin et al., 

2004), suggest that the vascular KATP channel activity is up-regulated during sepsis, leading to 

severe vasodilation and fatal hypotension. However, Kir6.1-null mice exhibit a high mortality 

with a challenge of infection, indicating functional KATP channel is essential for survival from 

sepsis (Croker et al., 2007; Kane et al., 2006). Therefore, the vascular KATP channel, with a 

beneficial side and a dark side, acts as a double-edged sword in the process of sepsis.  

8.2.1. A beneficial side of KATP channel 

KATP channels located in coronary arterioles (<100 µm) become active when coronary 

pressure is less than 80 mmHg. The activated KATP channels contribute to coronary vasodilation 

during reactive hyperemia and hypoxia (Duncker and Bache, 2008). A transgenic mouse model 

further demonstrates that functional Kir6.1-containing KATP channels are critical for coronary 

circulation since the animals exhibit spontaneous coronary vasospasm, a symptom that is similar 

to Prinzmetal angina in human. An interesting phenomenon is that only one silent mutation in 

Kir6.1 (C to T, Ile37Ile) is found in patients with coronary spastic angina in studies from 2 

individual groups (Emanuele et al., 2003; Tomita et al., 2006). In comparison, dozens of 



 
 

102

mutations in the Kir6.2 subunit were discovered in patients with Diabetes mellitus and persistent 

hyperinsulinemic hypoglycemia of infancy (PHHI) (Gloyn et al., 2006). Such diversity is caused 

possibly by the lethal outcome of Kir6.1 mutation—the individual carrying Kir6.1 mutation dies 

early and may be erased during evolution.  

Sepsis as an uncontrolled infectious inflammation challenges immune response and 

changes hemodynamics dramatically. The decreased peripheral resistance requires an adequate 

cardiac function, but the incidence of myocardial depression during sepsis is so common (nearly 

50%) (Maeder et al., 2006) that makes the disease situation even worse. Epidemiological studies 

show that the cardiovascular impairment during sepsis would elevate the mortality rate from 

20% to 90% (Merx and Weber, 2007; Parrillo et al., 1990). Therefore, the LPS-induced up-

regulation of KATP channel doubtlessly plays a protective role for survival from sepsis.  

8.2.2. A dark side of KATP channel 

KATP channels regulate vascular tone in resistant arteries as well as coronary artery. 

SUR2 is reported to be a susceptibility gene for essential hypertension in humans (Sato et al., 

2006). In addition, SUR2-null mice exhibit hypertension (Chutkow et al., 2002). Together with 

the observations from the major circulatory systems that are described in the Introduction, we 

can conclude that the KATP channel plays an important role in the regulation of peripheral 

circulation. During sepsis, an enhanced channel activity will not only increase coronary arterial 

perfusion, but also cause severe peripheral vasodilation leading to excess low blood pressure and 

organ failure. Several therapeutic approaches have already been developed to attenuate septic 

vasodilation through targeting, at least partially, the KATP channel.  
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8.2.2.1 KATP channel blocker  

Glibenclamide as a SUR subunit-binding KATP channel inhibitor has been tested in 

several septic animal models. It augments blood pressure through increasing systemic vascular 

resistance (Landry and Oliver, 1992; Vanelli et al., 1995). However, in a recent double blind 

clinical trial, glibenclamide neither changed blood pressure, nor decreased requirements of 

norepinephrine in septic patients (Warrillow et al., 2006). This is due to the complication of 

using SUR-binding blockers. They will not only inhibit vascular KATP channels, but also 

suppress pancreatic KATP channel activity leading to an increase in insulin secretion. When oral 

glibenclamide (10 to 30 mg) is provided, a blood glucose concentration will drop before a better 

hemodynamic is achieved (Morelli et al., 2007). In order to avoid this complication, a new 

Kir6.x pore blocker PNU-37883A has been developed, and displays better effect to reverse LPS-

induced vascular hyporeactivity (O'Brien et al., 2005). Noticeably, Kir6.1/SUR2B channel is 

more sensitive to PNU-37883A than Kir6.2, suggesting that a proper dose could be found to 

selectively suppress vascular isoform KATP channels instead of pancreatic isoform. Hence, 

developing new blockers specifically targeting Kir6.1 appears to be a promising strategy to 

manage septic hypotension.  

8.2.2.2 AVP  

Traditional anti-shock vasopressors, such as norepinephrine, have limitations in 

management of sepsis, since the high dose of catecholamines may decrease cardiac output and 

adequate organ perfusion, and increase mortality (Russell et al., 2008). AVP is a special potent 

vasoconstrictor, because septic patients show insufficiency in AVP secretion and elevated 

sensitivity to exogenous AVP application (Landry et al., 1997a; Landry et al., 1997b). In a 

guideline released in 2004, AVP (0.01-0.04 U/min) was recommended for management of sepsis 
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to avoid usage of high-dose of catecholamines (e.g. norepinephrine, dopamine) (Dellinger et al., 

2004). However, a dose higher than 0.03 U/min is not suggested by some groups, since it may 

induce coronary vasoconstriction and impair cardiac function(Holmes et al., 2001b). Our 

findings clearly show that vascular KATP channel is a downstream target of AVP. Therefore, it is 

not difficult to understand that AVP increases blood pressure through suppression of KATP 

channels located in peripheral blood vessels, and decreases coronary perfusion through inhibiting 

coronary arterial KATP channels.  

 8.2.2.3. Transcription interference  

Clinical trials suggest that septic patients managed by low dose of corticosteroids 

displayed a better outcome (Annane et al., 2002). The underlying mechanisms are 1. septic 

patients exhibit relative adrenal insufficiency (Annane et al., 2000; Rothwell et al., 1991); 2. 

corticosteroid increases expression of adrenoceptor (Hotchkiss and Karl, 2003), and improves 

the effect of vasopressors (e.g. norepinephrine, phenylephrine) in septic patients (Annane et al., 

2002). KATP channel is subject to regulation by glucocorticoids. Dexamethasone attenuates LPS-

induced KATP channel activation, and improves vascular reactivity to PE (d'Emmanuele di Villa 

Bianca et al., 2003). The effect could be caused by down-regulation of KATP channel expression 

or synthesis of an intermediate molecule that alters channel expression. Our study suggested that 

both NF-κB and CREB were required for up-regulation of vascular KATP channel during sepsis, 

and blocking either of them attenuated LPS-induced vascular hyporeactivity. Therefore, 

transcription interference targeting KATP channels may be a promising therapeutic approach to 

manage sepsis.  
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8.3. Summary  

The two faces of the KATP channel set a therapeutic dilemma for administration of sepsis, 

which means that we need to reasonably control vascular contractility but avoid impairing 

coronary circulation. All of these depend on an understanding of the molecular mechanism 

regulating the vascular KATP channel. The findings in this thesis elucidate the channel regulation 

at a molecular level, and will shed light on new therapeutic strategies designed to manage sepsis. 
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