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NONPARAMETRIC INFERENCES FOR THE HAZARD FUNCTION WITH RIGHT

TRUNCATED DATA

by

HACI MUSTAFA AKCIN

Under the Direction of Dr. Xu Zhang

ABSTRACT

Incompleteness is a major feature of time-to-event data. As one type of incompleteness,

truncation refers to the unobservability of the time-to-event variable because it is smaller

(or greater) than the truncation variable. A truncated sample always involves left and right

truncation.

Left truncation has been studied extensively while right truncation has not received the

same level of attention. In one of the earliest studies on right truncation, Lagakos et al. [40]

proposed to transform a right truncated variable to a left truncated variable and then apply

existing methods to the transformed variable. The reverse-time hazard function is introduced



through transformation. However, this quantity does not have a natural interpretation.

There exist gaps in the inferences for the regular forward-time hazard function with right

truncated data. This dissertation discusses variance estimation of the cumulative hazard

estimator, one-sample log-rank test, and comparison of hazard rate functions among finite

independent samples under the context of right truncation.

First, the relation between the reverse- and forward-time cumulative hazard functions

is clarified. This relation leads to the nonparametric inference for the cumulative hazard

function. Jiang [32] recently conducted a research on this direction and proposed two variance

estimators of the cumulative hazard estimator. Some revision to the variance estimators is

suggested in this dissertation and evaluated in a Monte-Carlo study.

Second, this dissertation studies the hypothesis testing for right truncated data. A series

of tests is developed with the hazard rate function as the target quantity. A one-sample log-

rank test is first discussed, followed by a family of weighted tests for comparison between

finite K-samples. Particular weight functions lead to log-rank, Gehan, Tarone-Ware tests

and these three tests are evaluated in a Monte-Carlo study.

Finally, this dissertation studies the nonparametric inference for the hazard rate func-

tion for the right truncated data. The kernel smoothing technique is utilized in estimating

the hazard rate function. A Monte-Carlo study investigates the uniform kernel smoothed

estimator and its variance estimator. The uniform, Epanechnikov and biweight kernel esti-

mators are implemented in the example of blood transfusion infected AIDS data.

INDEXWORDS: Right truncation, Reverse-time hazard, Kernel function, Hypothesis
testing, Counting process
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CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

Survival analysis mainly deal with time-to-event data. The statistical interest is the

survival quantities of the time-to-event variable such as the survival function, hazard rate

function and cumulative hazard function. Statisticians often have to deal with incomplete-

ness problem when analyzing time-to-event data. Censoring and truncation are the common

reasons for incompleteness. Censoring refers to the scenario that the lifetime of an individ-

ual is known to stay in certain time interval but the exact lifetime is unknown. Truncation

relates to the problem that the lifetime of an individual is unobservable because it is smaller

(or greater) than the truncation time.

The counting process methodology has helped statisticians to develop inferences for

censored and/or truncated time-to-event data. Basic properties of counting process and the

martingale central limit theory are briefly presented in this chapter. This dissertation aims

to develop inferences for right truncated data. Important works related to truncated data,

especially analysis of right truncated data are reviewed in this chapter.

This chapter consists of three sections. The first section introduces the concepts of

counting process, filtration, martingales and predictable variation process followed by the

Nelson-Aalen estimator of the cumulative hazard function and the Kaplan-Meier estimator of

the survival function. The second section presents some details of censoring and truncation,

including three types of censoring, left and right truncation. The literature review on the

inferences of truncated data is given in the third section.
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1.1 Basic Properties

1.1.1 Filtrations

Define a time interval [0, τ ] where 0 < τ ≤ ∞. Let (Ω,F , P ) be a probability space.

The σ-algebra F is a set of events (subsets of Ω), F ⊆ 2Ω and satisfies following conditions:

(1) ∅ ∈ F

(2) If A ∈ F then Ac ∈ F , where A ∪ Ac = Ω

(3) If Ai ∈ F then ∪iAi ∈ F , i = 1, 2, ..., n.

The probability measure P is a function on F , P : F → [0, 1]. Let t ∈ [0, τ ], then a filtration

Ft is defined as an increasing right-continuous family of sub-σ-algebras of F on Ω [5](pp.

60-61). A filtration is also known as a history. Completeness is an important concept of

filtration with the definition that σ-algebra Ft contains all σ-algebras on Ω for each t ∈ [0, τ ].

It was noted that assumption of completeness can be omitted. Jacod [31] discussed that the

completeness assumption is not necessary while Von Weiszacker and Winkler [60] developed

the whole theory without this assumption. Under the assumption of completeness, Ft is

increasing and right-continuous.

Let Ft be a filtration on Ω then a random variable S : Ω → [0, τ ] is called a stopping

time if (S ≤ t) ∈ Ft,∀t ∈ [0, τ ]. A stopping time is also called as a hitting time where a

process hits a predetermined set for the first time [17]. One example of traffic lights can

make stopping time easier to understand. Assume that there are only two lights, green and

red. Once light runs to red, it stays red forever and it cannot be green (i.e. stopped once,

stopped forever). Consider three options for the traffic light:

(1) it is red forever (stopped immediately)

(2) it is green at the beginning but turns red and stays red (stopped at some point)

(3) it stays green forever (never stopped)

The green-red process described here is a simple example for stopping time. The traffic light

can only change at t based on the information up to t.
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1.1.2 Martingale theory

In the second half of 18th century, martingale referred to an unusual betting practice for

a coin toss in Monte Carlo [45]. In this simple game, coin with head up represented winning

the game. The strategy for the gambler was to double his bet after every loss to recover

previous losses and win a sum equal to the first bet. The expected winnings will sum up to

zero. As time approaches to infinity, probability of having a coin with head up would be 1,

so winning was guaranteed. However, the strategy only works in case of unlimited resources

of money and time. Because of bets were doubled for each game, gambler would eventually

go bankruptcy.

The martingale theory in probability was introduced by Levy [42] and improved by Doob

[13]-[14], Ito [28] and Meyer [48] among others. A sequence of random variables X1, X2, · · · is

called a martingale if E(|Xn|) < ∞ and E(Xn+1|X1, · · · , Xn) = Xn. It is another way of say-

ing that the expected value of next observation given all the past observations is equal to the

last observation. Using linearity of expectation, E(Xn+1|X1, · · · , Xn)−Xn = 0 which means

average winnings to be zero. In the case where the value of last observation Xn is no more

than or no less than the expected value of next observation given all the past observations,

we will have submartingales and supermartingales respectively. A sequence of random vari-

ables X1, X2, · · · is called a submartingale if E(|Xn|) < ∞ and E(Xn+1|X1, · · · , Xn) ≥ Xn

and a supermartingale if E(|Xn|) < ∞ and E(Xn+1|X1, · · · , Xn) ≤ Xn.

In more general form, a martingale M is integrable and the expected value of M at

t ∈ [0, τ ] given the filtration(history) is equal to the value right before t. In other words,

E(|M(t)|) < ∞, and

E(M(t)|Fs) = M(s) (1.1)

where ∀s ≤ t and ∀t ∈ [0, τ ]. M is called a submartingale if E(M(t)|Fs) ≥ M(s) and a

supermartingale if E(M(t)|Fs) ≤ M(s).

A martingale M is called a square integrable martingale if supE(M2(t)) < ∞. Let
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Sn be a sequence of increasing stopping times, Sn : Ω −→ [0,∞]. M is called a local

martingale if the stopped processM(t)Sn is a martingale for each n. M is called a local square

integrable martingale if M(t)Sn is a square integrable martingale. Similarly, M is called a

local submartingale (or supermartingale) if M(t)Sn is a submartingale (or supermartingale)

for each n. M is called a local square integrable submartingale (or supermartingale) ifM(t)Sn

is a square integrable submartingale (or supermartingale).

1.1.3 Predictable and optional variation processes

Let M(t) and M
′
(t) be a local square integrable martingale and V (t) = ⟨M⟩(t) be a

process such that

(1) V (t) is predictable (i.e. V (t) is Ft measurable), and

(2) M2(t)− V (t) is a local martingale with respect to Ft,

then V (t) is called the predictable variation process ofM(t) and denoted as ⟨M⟩(t). Similarly,

let V
′
(t) = ⟨M,M

′⟩(t) be a process such that V
′
(t) is predictable and M(t)M

′
(t)− V

′
(t) is

a local martingale with respect to Ft then ⟨M,M
′⟩(t) is called the predictable covariation

process of M(t) and M
′
(t).

The predictable variation process of M(t) can also be written as
∑

var(M(ti) −

M(ti−1)|Fti−1
) where i = 1, · · · , n. If we ignore the conditional expectation and only take

the sums of squares,
∑

(M(ti)−M(ti−1))
2, then the process is called the optional variation

process. Formally, we can denote the optional variation process as [M ](t). Assume M(t) is

a local martingale (M(t) does not have to be local square integrable),

[M ](t) = M(t)2 − 2

∫ t

0

M(s−)dM(s)

and the optional covariation process of M(t) and M
′
(t)

[M,M
′
](t) = M(t)M

′
(t)−

∫ t

0

M(s−)dM
′
(s)−

∫ t

0

M
′
(s−)dM(s),

where s ≤ t and M(t)2 − [M ](t) is a local martingale.



5

1.1.4 Counting processes

A counting process is a stochastic process that counts the number of discrete events.

Bremaud [7] was one of the pioneers who defined counting process by showing that integrated

intensity process of counting process is actually its compensator. Aalen [1] studied the

statistical inferences of counting processes. Developments of counting process theory was

made by Jacod [29]-[30]. Andersen et al. [4] explained the notion of starting a counting

process.

A counting process N(t) satisfies the following conditions: nondecreasing with jumps of

size 1, N(0) = 0, sample paths of N(t) is right continuous and P (N(t) < ∞) = 1 [38] (p.

79).

The counting process N(t) has a compensator Λ(t) which also is a predictable process

such that M(t) = N(t) − Λ(t) is a local square integrable martingale. The predictable

variation process of M(t) is given by

⟨M⟩(t) = Λ(t)−
∫ t

0

∆Λ(s)dΛ(s)

and ⟨M⟩(t) = Λ(t) when Λ(t) is continuous.

1.1.5 The martingale central limit theory

The martingale central limit theorem for discrete time was first considered by Billingsley

[6] and followed by Brown [9] and Dvoretsky [15] among others. Aalen [1] extended this work

to continuous-time context. Rebolledo [55] and Fleming and Harrington [19] were among

the first mathematicians who studied a general continuous-time martingale central limit

theorem.

Although there are many versions of martingale central limit theorem, the theorem

proposed by Rebolledo [55] is commonly employed for the inferences related to survival data

[5] (p. 83)

Let M (n) = (M
(n)
1 , · · ·M (n)

p ) be a vector of p local square integrable martingales
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for each n and assume M
(n)
ϵ be a vector of p local square integrable martingales

where ϵ > 0 and |∆M
(n)
k −∆M

(n)
ϵ,k | ≤ ϵ where k = 1, 2, · · · , p. Also, let M (∞) be a

Gaussian martingale where ⟨M (∞)⟩ = [M (∞)] = σ2(t) and M (∞)(t)−M (∞)(s) ∼

N(0, σ2(t)− σ2(s)). Further assume ∀t ∈ T0 for T0 ⊆ T . As n → ∞, if

⟨M (n)⟩(t) →P σ2(t) (1.2)

and

⟨M (n)
ϵk ⟩(t) →P 0, (1.3)

then

(M (n)(t1), · · · ,M (n)(tq)) →D (M (∞)(t1), · · · ,M (∞)(tq)), (1.4)

where ∀t1, · · · , tq ∈ T0.

1.1.6 The Nelson-Aalen estimator

Estimation of the cumulative hazard function with censored failure time data was first

studied by Nelson [50]-[51] and Altshuler [3]. It was extended to counting process models by

Aalen [1]-[2] and the proposed estimator is commonly known as the Nelson-Aalen estimator.

Consider a sample with random variables T1, T2, · · · , Tn. Note that all event times are

observed. We can define the counting processes Ni(t) = I(Ti ≤ t), N̄(t) =
∑n

i=1Ni(t) and let

Yi(t) = I(Ti ≥ t), then Ȳ (t) =
∑n

i=1 Yi(t) is the risk set. Suppose that the counting process

N̄(t) has the intensity process λ(t) = α(t)Ȳ (t), where α(t) is the hazard rate function. The

compensator of N̄(t) is Λ(t) =
∫ t

0
λ(s)ds. Denote the cumulative hazard function as

A(t) =

∫ t

0

α(s)ds.
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The local square integrable martingale, M̄(t) =
∑n

i=1Mi(t), is given by

M̄(t) = N̄(t)− Λ(t) = N̄(t)−
∫ t

0

α(s)Ȳ (s)ds

and dN̄(t) = α(t)Ȳ (t) + dM̄(t) where M̄(t) is a process of random noise. The Nelson-Aalen

estimator of A(t) is given by

Â(t) =

∫ t

0

dN̄(s)

Ȳ (s)
(1.5)

1.1.7 The Kaplan-Meier estimator

The Kaplan-Meier estimator [35] is used for estimating the survival function of a ran-

dom variable. A heuristic explanation of the estimator is as follows: to estimate the survival

function at a time point t, one needs to divide [0, t] into smaller intervals based on distinct

event times and find the proportions of survival for each interval. Multiplying these propor-

tions together gives an estimate of the survival probability at t. Therefore, it is also known

as the product-limit estimator.

The survival function of a continuous random variable T , S(t), is defined by

S(t) =
∏
s≤t

(1− dA(s)) = exp

(
−
∫ t

0

α(u)du

)
.

One can plug in the Nelson-Aalen estimator to obtain the Kaplan-Meier estimator

Ŝ(t) =
∏
s≤t

(1− dÂ(s)) =
∏
s≤t

(
1− dN̄(s)

Ȳ (s)

)
.

1.2 Censoring and Truncation

Incompleteness is a common feature of time-to-event data. The reasons for incomplete-

ness include censoring and truncation. In censoring, the lifetime of an individual is known to

stay in certain interval but the exact lifetime is unknown. In truncation, the lifetime of an
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individual is unobservable because it is smaller (or greater) than the truncation variable. In

short, censoring means partial information about the lifetime while truncation means unob-

servability of the lifetime. Left censoring, right censoring and interval censoring are different

types of censoring whereas left truncation and right truncation are categories of truncation.

The details about censoring and truncation are presented in this section.

1.2.1 Censoring

Consider counting processes of n individuals Ni(t) = I(Ti ≤ t) where i = 1, · · · , n.

Right censoring happens if the event occurs after a random time Ci. We can observe Ni(t)

only if Ti ≤ Ci and it is censored if Ti > Ci.

Let Ri be a right-censoring process then we can define Ri(t) = I(t ≤ Ci). Let NRC
i (t)

denote the right censored counting process, in other words, the observable part of counting

process for individual i,

NRC
i (t) =

∫ t

0

Ri(s)dNi(s).

The simple idea behind the above equation is that the event is observed if it happens before

Ci. Let Xi = min(Ti, Ci) be a random variable that gives the information on the smaller one

between the event time and the censoring time. Let ∆i = I(Xi = Ti). ∆i = 1 when the event

happens before the censoring time, Ti ≤ Ci; ∆i = 0 when the censoring is observed, Ti > Ci.

The right-censored counting process can also be written as NRC
i (t) = I(Xi ≤ t,∆i = 1).

Right censoring is the most common type of incompleteness. It also branches out to

two subcategories: Type I and Type II censoring. Assume that all subjects enter the study

same time. Type I censoring occurs if the event of interest is observable only if it occurs

before a predetermined time c0. Here, the censoring time is same for each individual. So

right-censoring process Ri(t) = I(t ≤ c0) is nonrandom and predictable. A more common

Type I censoring is related to the context that individuals enter the study at different times.

In a clinical trial, researchers usually end the study at a predetermined date. Event times

are observed on patients who have events before this study closing date while event times of

remaining patients are censored. The observed censoring times differ by subjects.
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Type II censoring arises when the study continues until occurrence of the rth event,

where r ≤ n. In other words, Ci = T(r), i = 1, · · · , n and Ri = I(t ≤ T(r)) is predictable

where T(r) is the time to the rth event. In an electronics factory, engineers may want to

analyze the life-time of a certain component. They continue to monitor a sample of n

components until occurrence of rth events (in this case failure) [38](p. 67). We should note

that in Type II censoring, the observed times X1, · · · , , Xn are dependent.

One special type of right censoring occurs in the context of competing risks. Competing

risks are exclusive causes of failure. Failing due to one cause precludes failing from any other

causes. For example, during the follow up of a cohort of breast cancer patients, patients may

die from non-cancer causes such as stroke or pneumonia. When the study emphasis is the

hazard of cancer failure, deaths from non-cancer causes are treated as censoring.

Left censoring is not as common as right censoring in real applications. In left censoring,

there is information that the event time Ti happens before the censoring time Ci but the

exact Ti is unknown. We can define Xi = max(Ti, Ci) and ∆i = I(Xi = Ti). Following

the similar format as the right-censored counting process, we can write the left-censored

counting process as NLC
i (t) = I(Xi ≥ t,∆i = 1). One example of left censoring is survey

study conducted on high school students to find out the ages when they started smoking

cigarettes. Some students may not remember the exact ages therefore the age of smoking

cigarettes is left censored by the age at the study.

Interval censoring often occurs in longitudinal studies. Interval censoring can be under-

stood as a general type of censoring with left and right censoring as special cases. Interval

censoring refers to the scenario that the event time Ti falls in an interval (CL
i , C

R
i ) without

observing exact Ti. Define Xi = max[min(Ti, C
R
i ), C

L
i ] and ∆i = I(Xi = Ti). ∆i = 1 when

the exact event time is observed and ∆i = 0 when the event time is interval censored. Inter-

val censoring becomes left censoring if the interval is (0, CL
i ) and it becomes right censoring

if it is (CR
i ,∞).
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1.2.2 Truncation

Truncation is another type of incompleteness occurring in time-to-event data. It is very

different from censoring. An event time falling outside of an interval can not be observed,

therefore it is not included in the sample and hence truncated. Concept of truncation differs

from censoring in that partial information about event time is available for censoring but

an event time is not observable for truncation. There are two types of truncation: left

truncation and right truncation.

In left truncation, only the event time variable greater than the truncation variable is

observable. The event time variable less than the truncation variable is unobservable and

hence truncated. Right truncation occurs if one can observe an event time if it is less than

the truncation variable. The event time variable greater than the truncation variable is

unobservable and truncated.

The life tables constructed by Halley [27] was one of the earliest applications of left

truncation. He recorded birth, death and cause of death of the individuals in the city of

Breslow, United Kingdom. Let L be the time interval from date of birth till date of recording

and L is the age at recording for a study participant. Let T be the age of death. Individuals

could be recorded only if they were alive at the time of study and whomever died before

this time were not captured in the study. In mathematical language, if T < L then T is

left truncated by L. Similarly, Kaplan and Meier [35] constructed a life table where they

recorded entrance (L) and exit (T ) ages of individuals. Additional information on exit was

recorded to indicate whether the exit was due to death or right censoring. Kaplan and Meier

named left truncation as delayed entry since individuals could only be observable since they

enter the study. In this case, T is only observable if L < T and T is left truncated by L.

Hald [25]-[26] was among the earliest statisticians discussing the concepts of censoring

and truncation. Kaplan and Meier [35] were the first to contribute the survival function esti-

mator with left truncated and right censored time-to-event data. There has been increasing

attention on the truncation issue of survival data in recent years. There are still gaps for

the inferences with truncated data.
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1.3 Literature Review for the Inferences with Truncated Data

Incompleteness introduces challenges for analyzing time-to-event data. Let (L, T ) be

random variables with constraint of L ≤ T . Under random truncation, T is left-truncated by

L while L is right-truncated by T . Most of the literature about random truncation focuses

on left truncation. In left truncation, T is the event time and of study interest while L is

defined as study entrance time. Kaplan-Meier [35] described left truncation as late entrance.

Truncated samples involve biased sampling, since the probability of selection depends

on the length of the variable. Kalbfleisch and Lawless [33] noted that the right truncation

occurs in AIDS blood transfusion infected data that were originally collected by Centers

for Disease Control and Prevention (CDC) in 1980’s. CDC required all AIDS cases to be

reported, after the (Morbidity and Mortality Weekly Report) MMWR of description of five

cases defined as pneumocystis carinii pneumonia (PCP) which would later become to known

as acquired immunodeficiency syndrome (AIDS) [49].

The blood transfusion infected AIDS data set contains information with diagnosis of

AIDS cases up to July 1, 1986. The variable of interest to estimate is the incubation time

of AIDS. The incubation time is defined as the duration between infection with HIV and

onset of clinical AIDS. Infection date can only be determined if infection caused by blood

transfusion. Since the closing date of study is July 1, 1986, the CDC data can only capture

the cases if the diagnosis date of clinical AIDS is earlier than July 1, 1986. In other words,

the incubation time of AIDS should be less than the duration between the infection date and

the closing date. In mathematical framework, let L be the incubation time and T be the

duration between infection date and the closing date then the individuals with AIDS only

be observable if L < T which is defined as right truncation.

Due to its truncated characteristic, the blood transfusion infected AIDS data set has

been analyzed by many researchers worked in random truncation field such as Lui et al.

[43], Medley et al. [46]-[47], Kalbfleisch and Lawless [33]-[34] among others. The truncated

version of Kaplan-Meier [35] estimator routinely used to estimate the distribution of L and
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T [66]. The consistency and asymptotic properties of truncated version of Kaplan-Meier

[35] estimator studied by Woodroofe [66], Wang, Jewell and Tsai [63], Keiding and Gill

[36], and Chen, Chao and Lo [11]. The weak convergence established by Chao and Lo

[10] after presenting the independent and identically distributed representation of the left

truncated version of the Kaplan-Meier estimator. Lai and Ying [41] modified the Kaplan-

Meier estimator when distribution function is not continuous for data subject to truncation

by an independent but not necessarily identically distributed random variable. Gurler, Stute

and Wang [24] presented a strong representation of the empirical quantile function for left

truncated data. Uzunogullari and Wang [59] studied the kernel estimators of the hazard

rate for left truncated/ right censored data. They particularly choose adaptive bandwidth

to get smoother curves and more precise estimation result. Regression analysis under left

truncation and right censoring was studied by Klein and Zhang [39].

Right truncation has been routinely tackled by transforming it to left truncation. Let

τ be a large constant. The transformed variable τ − L is left truncated by τ − T . Using

this relationship, the distribution function of L coincides with the survival function of the

transformed variable τ − L, and Kaplan-Meier estimator became the natural estimation

method [40], [66], [36]. In recent years, Chi et al. [12] developed a test to compare integrated

weighted differences between two survival functions. Another important survival quantity

related to the transformed variable τ − L is its hazard rate function. This function is

commonly interpreted as a hazard rate function with τ as the origin and counted backwards

along the time axis. Therefore, it is known as reverse-time hazard or retro-hazard. Lagakos

et al. [40] proposed a weighted log-rank test to compare the reverse-time hazard rates.

Gross and Huber-Carol [23] and Kalbfleisch and Lawless [33] studied Cox regression of the

reverse-time hazard rate. The standard Nelson-Aalen estimator is applicable for estimating

the cumulative reverse-time hazard.

Interpretation of the reverse-time hazard function was noted to be difficult and unnatu-

ral [16]. In recent years, inferences about regular forward-time hazard draw more attention.

Finkelstein et al.[16] studied the proportional hazards model. Chi et al.[12] developed a
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two-sample test to compare survival functions. Shen [56] proposed a semiparametric test to

compare weighted forward-time cumulative hazards functions where he suggested a resam-

pling approach to estimate the variance. Jiang [32] studied two Nelson-Aalen type variance

estimators of the forward-time cumulative hazard function.

Jiang [32] mentioned variance estimators increase dramatically when t approaches to the

largest time of L. In Chapter 2, those variance estimators are slightly modified to improve

the estimation and replicated the simulation study to validate it. One-sample weighted log-

rank test is introduced in the following sections. In Chapter 3, the research is extended

to hypothesis testing of K -sample and two-sample cases. The weighted log-rank test is

developed for right truncated data in forward-time.

In general, inference about the hazard rate function under right truncation is scarce.

In Chapter 4, the hazard rate function is directly estimated and subsequently the nonpara-

metric inferences are developed. Our motivation for estimating the hazard rate function

relies on the dynamic characteristic of this function and it gives more precise information

about distribution than any other quantity such as cumulative distribution function, survival

function or cumulative hazard function.
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CHAPTER 2

NONPARAMETRIC INFERENCE FOR THE CUMULATIVE HAZARD

FUNCTION WITH RIGHT TRUNCATED DATA

2.1 Motivation

Chapter 1 contains the literature review of the inferences related to truncated survival

data. The existing methods for analysis of right-truncated data focus on the reverse-time

hazard function. However, this quantity lacks of natural interpretation. In recent years, there

has been an increasing interest on the inferences of the forward-time quantities. This chapter

focuses on the nonparametric inferences of the forward-time cumulative hazard function.

This chapter organized as follows. Chapter 2.2 introduces the existing nonparamet-

ric inference for the reverse-time cumulative hazard function. Nonparametric inference of

the cumulative hazard function was recently studied by Jiang [32]. Chapter 2.3 shows the

similar procedure as Jiang but emphasizes on two modified variance estimators of estimated

cumulative hazard function. Chapter 2.4 presents one-sample weighted log-rank test to com-

pare the mortality rate of the study population to the known rate. Chapter 2.5 consists of

two simulation studies designed to assess the performances of proposed methods. The final

discussion is given in Chapter 2.6.

2.2 Nonparametric Inference for the Reverse-time Cumulative Hazard Function

One primary objective in survival analysis is to assess instantaneous, as well as cumu-

lative, risk of failure. Censoring and truncation makes analysis of time-to-event data cum-

bersome. Analysis of truncated data is of primary interest in this dissertation. Throughout

the dissertation, the univariate truncated sample is denoted as {Li, Ti}, i = 1, 2, ..., n, and

Li ≤ Ti. The variable of study interest, L, is right truncated by the truncation variable, T .

Let α(t) and A(t) and be the hazard rate and cumulative hazard function of L, respectively.
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Their mathematical definitions are given by

α(t) = lim
∆t→0

P [t ≤ L < t+∆t|L ≥ t]

∆t
(2.1)

and

A(t) =

∫ t

0

α(u)du =

∫ t

0

dG(u)

P (L ≥ u)
, (2.2)

respectively, where G(t) is the distribution function of L that G(t) = P (L ≤ t).

In a truncated sample, right truncation can be easily transformed to become left trun-

cation. Let τ be a large constant greater than max{T1, · · · , Tn} and consider the trans-

formed random variables with L∗ = τ − L, T ∗ = τ − T . For the newly constructed sample

{L∗
i , T

∗
i }, i = 1, · · · , n, there is the constraint L∗

i > T ∗
i . Therefore, the variable L∗ is left

truncated by the variable T ∗. The hazard rate function of L∗ is a quantity with τ as its

origin and counted backwards along the time axis towards zero. As a result, such a quantity

is called as “reverse-time hazard” by Lagakos et al. [40] or “retro hazard” by Keiding and

Gill [36]. Let α∗(t) and A∗(t) denote the reverse-time hazard rate and cumulative hazard

function, respectively with the definitions [36]

α∗(t) = lim
∆t→0

P [t ≥ L∗ > t−∆t|L∗ ≤ t]

∆t
(2.3)

and

A∗(t) =

∫ τ

t

α∗(u)du =

∫ τ

t

dG(u)

P (L ≤ u)
. (2.4)

A∗(t) can be estimated by the Nelson-Aalen estimator. A clear definition about the

reverse-time martingale is needed in order to establish the inference of the Nelson-Aalen

estimator. For a truncated sample, define the following counting processes NL
i (t) = I(Li ≥

t), Yi(t) = I(Li ≤ t ≤ Ti) and let N̄L(t) =
∑n

i=1N
L
i (t), Ȳ (t) =

∑n
i=1 Yi(t). The counting
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process NL
i (t) is defined to count an event via the reversed time-axis. The corresponding

martingale is given by

M∗
i (t) = NL

i (t)−
∫ t

τ

Yi(u)dA
∗(u). (2.5)

It is the standard result that M∗(t) is a local square integrable martingale [36]. Consider

A∗+(t) =
∫ t

τ
α∗(u)J(u)du, where indicator process J(t) = I(Ȳ (t) > 0). It is obvious that

A∗+(t) is almost equal to A∗(t) if there is a small probability that Ȳ (s) = 0 for some s ≤ t.

Let Ni(t) = I(Li ≤ t) and N̄(t) =
∑n

i=1Ni(t). The Nelson-Aalen estimator of A∗(t) is given

by

Â∗(t) =

∫ t

τ

J(u)

Ȳ (u)
dN̄L(u) =

∫ τ

t

J(u)

Ȳ (u)
dN̄(u), (2.6)

when Ȳ (t) = 0, J(t)/Ȳ (t) is defined as 0. It follows that

Â∗(t)− A∗(t) =

∫ t

τ

J(u)

Ȳ (u)
dM̄∗(u), (2.7)

where M̄∗(t) =
∑n

i=1M
∗
i (t). Keiding and Gill [36] studied the weak convergence of

√
n[Â∗(t)−A∗(t)] based on the martingale central limit theorem.

√
n[Â∗(t)−A∗(t)] →D Ut

where Ut is a Gaussian process with mean zero and variance
∫ τ

t
α∗(u)du/y(u) where

y(u) = E[Ȳ (u)/n]. Based on the properties of martingales, the predictable variation process

for Â∗(t)− A∗(t) is

⟨Â∗ − A∗⟩(t) =
∫ t

τ

J(u)α∗(u)

Ȳ (u)
du. (2.8)

Optional variation process can be used to estimate the variance of Â∗(t),

v̂ar(1)[Â∗(t)] =

∫ τ

t

J(u)dN̄(u)

Ȳ (u)2
. (2.9)

An alternative variance estimator developed by Klein [37] by assuming a binomial dis-
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tribution for a jump in the event counting process. Using (2.5) and definition of predictable

variation process in (1.1.3), the alternative variance estimator of Â∗(t) is

v̂ar(2)[Â∗(t)] =

∫ τ

t

J(u)
Ȳ (u)−∆N̄(u)

Ȳ (u)3
dN̄(u). (2.10)

2.3 Nonparametric Inference for the Cumulative Hazard Function

Estimation of the distribution function of L has been well studied. The cumulative

distribution function of L, G(t), can also be viewed as the survival function of L∗ in reverse-

time axis.

G(t) = P (L ≤ t) = P (L∗ ≥ τ − t). (2.11)

Therefore, G(t) can be estimated by Kaplan-Meier estimator [66], [36],

Ĝ(t) =
∏
u>t

(
1− d[

∑n
i=1 I(Li ≤ u)]

Ȳ (u)

)
. (2.12)

It is known as the right truncated version of Kaplan-Meier estimator. Under the context of

right truncation, Nelson-Aalen estimator of the cumulative hazard function is not applicable.

Instead, one has to consider a plug-in estimator to estimate (2.2)

Â(t) =

∫ t

0

dĜ(u)

1− Ĝ(u−)
, (2.13)

where Ĝ(u−) is the Kaplan-Meier estimate of P (L ≤ t) prior to u.

It is necessary to establish a relationship between A(t) and A∗(t). Transforming the right

truncated data to the left truncated data enables usage of existing inferences for left truncated

data. The relation between reverse- and forward-time hazard functions was discussed by
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Lagakos et al. [40] for two independent samples. They noted that

α∗
1(t)

α∗
2(t)

=
α1(t){1−G1(t)}G2(t)

α2(t){1−G2(t)}G1(t)
, (2.14)

where the subscript 1 or 2 is added to indicate that the quantity is associated with sample

1 or 2, respectively. Equation (2.14) suggests that whenever forward-time hazards have a

constant ratio, proportionality of reverse-time hazards is violated. Based on the equations

that G(t) = exp[−A∗(t)] and 1 − G(t) = exp[−A(t)], we can clarify the relation between

A(t) and A∗(t) as

A(t) = −log(1− exp[−A∗(t)]). (2.15)

It has been mentioned in the previous section that
√
n{Â∗(t)−A∗(t)} →D Ut, where Ut is a

mean-zero Gaussian process. Applying the generalized delta method, we can get

√
n{Â(t)− A(t)} →D κ(A∗(t))Ut (2.16)

where

κ(Â∗(t)) = − exp(−A∗(t))

1− exp(−A∗(t))
= − G(t)

1−G(t)
.

Based on this asymptotic result, the variance of Â(t) can be approximated by the

following formula,

var[Â(t)] ≈
[

G(t)

1−G(t)

]2
var[Â∗(t)]. (2.17)

The naive and alternative variance estimators of Â∗(t) given in Equations (2.9) and

(2.10) can be plugged into (2.17), leading to the variance estimators of Â(t). Jiang [32]

proposed the following two estimators,

ṽar(1)[Â(t)] =

[
Ĝ(t)

1− Ĝ(t)

]2 ∫ τ

t

J(s)dN̄(s)

Ȳ (s)2
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and

ṽar(2)[Â(t)] =

[
Ĝ(t)

1− Ĝ(t)

]2 ∫ τ

t

J(s)
Ȳ (s)−∆N̄(s)

Ȳ (s)3
dN̄(s).

A simulation study conducted by Jiang [32] suggested that the variance estimates using

the above formulas overestimate the actual variance when t is large. This problem can be

fixed by using 1 − Ĝ(t−) instead of 1 − Ĝ(t). Please note that the same form, 1 − Ĝ(t−),

was also used in the plug-in estimator given in Equation (2.13). Here, two modified variance

estimators are presented and will be investigated in the simulation study. The naive variance

estimator is given by

v̂ar(1)[Â(t)] =

[
Ĝ(t)

1− Ĝ(t−)

]2 ∫ τ

t

J(s)dN̄(s)

Ȳ (s)2
(2.18)

and the alternative variance estimator is given by

v̂ar(2)[Â(t)] =

[
Ĝ(t)

1− Ĝ(t−)

]2 ∫ τ

t

J(s)
Ȳ (s)−∆N̄(s)

Ȳ (s)3
dN̄(s). (2.19)

2.4 One-sample Weighted Log-rank Test

Let α0(t) denote a known hazard rate function. The aim of study is to assess whether

the hazard rate of the univariate sample equals to the known rate. The null hypothesis can

be written as H0 : α(t) = α0(t), where α0(t) is the known hazard rate function. Define A0(t)

as the cumulative hazard function associated with α0(t). Let’s revisit basic definitions, then

A(t) =

∫ t

0

α(u)du and A0(t) =

∫ t

0

α0(u)du.

We can define the test statistic as

Z(t) =

∫ t

0

W (u)d[Â(u)− A0(u)], (2.20)

where W (t) is a stochastic weight function. A common choice of W (t) is the risk set process,
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Ȳ (t). When this weight function is chosen, the test becomes the one-sample log-rank test.

For the complete data or the survival data subject to right censoring and/or left truncation,

the log-rank test statistic is exactly the difference between observed number of events and

expected number events. However, this type of interpretation is not obtainable under right

truncation. The test discussed in this section is a closed form of log-rank test.

Z(t) is a local square integrable martingale and we can derive the predictable variation

process of Z(t) with details given in Appendix A1. Based on the martingale central limit

theorem, it can be proved that Z(t) → Wt, where Wt is a Gaussian process with mean zero

and variance σ2(t),

σ2(t) =

∫ 0

t

[
W (s)

G0(s)

1−G0(s)
−
∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]2
α∗
0(s)ds

y(s)

+

∫ t

τ

[∫ t

0

W (u)d

(
G0(u)

1−G0(u)

)]2
α∗
0(s)ds

y(s)
. (2.21)

The variance of Z(t) can be estimated as

σ̂2(t) =

∫ t

0

[
W (s)

G0(s)

1−G0(s−)
−
∫ s

0

W (u)d

(
G0(u)

1−G0(u−)

)]2
dN̄(s)

Ȳ 2(s)

+

∫ τ

t

[∫ s

0

W (u)d

(
G0(u)

1−G0(u−)

)]2
dN̄(s)

Ȳ 2(s)
. (2.22)

The asymptotic distribution of Z(t) is discussed in Appendix A1. Distribution of the

statistics Z(t)/σ̂(t) is asymptotically normal when H0 is true. Therefore, H0 can be rejected

when |Z(t)/σ̂(t)| > 1.96 for the significance level of 0.05.

2.5 Simulation Studies

This section consists of simulation studies that investigate performance of proposed

variance estimators and the one-sample test. Distributions of the variables had to carefully
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selected due to identifiability issue of truncated samples. Let (ak, bk) be the inner support of

a distribution function K(t), where ak = inf{z > 0 : K(z) > 0}, bk = sup{z > 0 : K(z) < 1}.

Let F be the distribution function of T . G and F have the interior support (aG, bG) and

(aF , bF ), respectively. Based on a truncated sample, only the distribution function given

T ≥ aG, L ≤ bF are estimable [66]. Practically, one can choose a∗ = min(L0
1, · · · , L0

n), b
∗ =

max(T 0
1 , · · · , T 0

n) and estimate the conditional distribution functions F ∗(t) = P (T ≤ t|T ≥

a∗),∀ t ≥ a∗ and G∗(t) = P (L ≤ t|L ≤ b∗), ∀ t ≤ b∗ [38], [62]. For estimating distribution

function of L, if it happens that b∗ > bG, then G∗(t) = G(t).

When the parametric distribution of L is defined on [0,∞), the estimated conditional

distributions vary by each sample, causing difficulties in assessing the outcome. This issue

can be solved by choosing the distributions that are defined on a bounded interval, [0, π] such

as the uniform and truncated exponential distributions for L. The exponential distribution

for T can be considered consequently, in the simulated settings, b∗ > π for all replicates, so

that the underlying conditional distribution agrees with the G(t), regardless of replicates.

Another disturbing issue may arise whenever the risk set equals to 1 at t but some

events still occur after t. This issue causes the estimated distribution probability to reach 1

at t. Since there are still some events observed after t, the estimated distribution probability

should not be evaluated as 1 at t. One solution is to set the risk set to a positive integer,

c > 1, whenever it is less than c [66]. Keiding and Gill [36] referred to this problem as empty

inner risk sets. Their Monte Carlo simulation of 10,000 samples yielded relative frequency of

0.003 for n = 50 and 0.0003 for n = 100. Large sample sizes, 200 and 400, were considered

in this simulation study to avoid the problem of empty inner risk sets.

Two sets of simulation studies were conducted. Aim of Study I was to evaluate perfor-

mances of proposed variance estimators by reporting bias and 95% coverage probabilities.

Study II considered the one-sample context and evaluated the power of the test.
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2.5.1 Study I

Uniform[0, 1] and exponential distribution truncated at 1.2 were chosen to be distribu-

tions of L. The cumulative hazard functions are given by

A(t) = − log(1− t), 0 ≤ t ≤ 1

and

A(t) = − log

(
1− 1− e−t

1− e−1.2

)
, 0 < t < 1.2.

Table 2.1 The simulation results of A(t) when the underlying distribution of L is
Uniform[0, 1].

Naive Alternative

variance estimator variance estimator

Sample Estimated Estimated

n L% t Bias variance variance Coverage variance Coverage

200 25 0.20 0.000 0.0012 0.0012 0.943 0.0012 0.944

0.50 -0.003 0.0059 0.0056 0.941 0.0056 0.941

0.80 -0.005 0.0269 0.0253 0.950 0.0253 0.950

50 0.20 -0.002 0.0014 0.0012 0.929 0.0012 0.933

0.50 0.001 0.0081 0.0077 0.949 0.0076 0.950

0.80 0.002 0.0445 0.0408 0.937 0.0404 0.937

400 25 0.20 0.000 0.0006 0.0006 0.950 0.0006 0.951

0.50 0.002 0.0027 0.0029 0.952 0.0029 0.952

0.80 0.000 0.0135 0.0128 0.939 0.0128 0.939

50 0.20 0.000 0.0006 0.0006 0.947 0.0006 0.947

0.50 0.003 0.0038 0.0038 0.959 0.0038 0.959

0.80 0.004 0.0207 0.0207 0.947 0.0207 0.947

The exponential distribution with mean 1/λ was used as the distribution of the trunca-

tion variable T . The value of λ was selected to yield two truncation rates, 25% and 50%. The

truncation rate is calculated by (N − n)/N , where N is the size of the pool from which the
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Table 2.2 The simulation results of A(t) when the underlying distribution of L is truncated
exponential.

Naive Alternative

variance estimator variance estimator

Sample Estimated Estimated

n L% t Bias variance variance Coverage variance Coverage

200 25 0.15 0.000 0.0012 0.0012 0.947 0.0012 0.945

0.43 -0.003 0.0059 0.0058 0.941 0.0058 0.941

0.82 -0.005 0.0286 0.0279 0.942 0.0276 0.942

50 0.15 -0.002 0.0012 0.0012 0.935 0.0012 0.933

0.43 0.001 0.0090 0.0088 0.941 0.0086 0.937

0.82 0.008 0.0620 0.0562 0.945 0.0552 0.944

400 25 0.15 0.000 0.0006 0.0006 0.953 0.0006 0.953

0.43 0.002 0.0031 0.0029 0.954 0.0029 0.954

0.82 0.000 0.0144 0.0142 0.933 0.0142 0.933

50 0.15 0.000 0.0006 0.0006 0.948 0.0006 0.947

0.43 0.002 0.0048 0.0045 0.951 0.0045 0.948

0.82 0.004 0.0306 0.0286 0.948 0.0282 0.948

truncated sample is selected. Sample sizes were chosen to be 200 and 400. 1000 replicates

were generated for each setting. Let Â(i)(t) be the cumulative hazard estimate for the ith

replicate at t. Let Â(t) denote the average cumulative hazard estimate across 1000 replicates,

where Â(t) =
∑1000

i=1 Â(i)(t).

The bias was defined as the deviation between average cumulative hazard estimate and

the true value, that is, Bias = Â(t)−A(t). Sample variances were calculated by the following

formula

Sample variance =
1

1000− 1

1000∑
i=1

(
Â(i)(t)− Â(t)

)2
.

Variance estimators that are given in (2.18) and (2.19) are evaluated and averages of 1000

replicates obtained from

Estimated variance =
1

1000

1000∑
i=1

v̂ar(k)[Â(i)(t)], k = 1, 2.
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95% confidence interval were calculated for each replicate and actual coverage rate across

1000 replicates were obtained.

Estimation results are reported at time points that correspond to 0.2, 0.5, 0.8 in G(t).

For the settings that the uniform distribution was used as the underlying distribution of L,

we report the estimation result at t = 0.2, 0.5, 0.8 (see Table 2.1). For the settings using the

truncated exponential distribution, we evaluated at t = 0.15, 0.43, 0.82, still relating to 0.2,

0.5, 0.8 in G(t) (see Table 2.2).

In both tables, biases are very close to zero across the settings. The numerical values

yielded from these two variance estimators are evaluated very close, and the averages match

the variance among 1000 cumulative hazard estimates. The coverage percentages are close

to the nominal level, with the exception for small t and heavy truncation, in which slight

undercoverage is observed.

2.5.2 Study II

The performance of the one-sample test was evaluated in this study. We continue to use

uniform and truncated exponential distribution for L. The truncation variable was generated

from exponential distribution with different means to produce predetermined truncation

rates. First, the known hazard rate function α0(t) was assumed to be Uniform[0,1]. Three

settings were generated from Uniform[0, 1], Uniform[0, 1.2] and Uniform[0, 1.3], respectively

(see Table 2.3). Second, α0(t) was assumed to be exponential distribution with mean 1 and

truncated at 1.2. The simulated settings were exponential distributions truncated at 1.2

with different means (see Table 2.4).

The test statistic given in Equation (2.20) was evaluated for each sample in one setting

to construct the one-sample log-rank test. The weight function was chosen to be Ȳ (t). The

null hypothesis, H0, was rejected at level 0.05. The proportion of rejection among 1000

samples is shown in Tables 2.3 and 2.4.

When sample distribution agrees with population distribution, the observed rejection

rates are close to the significance level 0.05. Table 2.3 shows a trend of increasing power
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Table 2.3 The proportions of rejection for one-sample test when α0(t) ∼ Uniform[0, 1].

Proportion of rejecting H0 at level 0.05

n L% t Uniform[0,1] Uniform[0,1.2] Uniform[0,1.3]

200 25 0.20 0.049 0.233 0.388

0.50 0.055 0.561 0.838

0.80 0.049 0.966 0.999

50 0.20 0.060 0.256 0.437

0.50 0.055 0.505 0.774

0.80 0.054 0.869 0.988

400 25 0.20 0.043 0.390 0.628

0.50 0.037 0.836 0.986

0.80 0.059 0.999 1.000

50 0.20 0.047 0.409 0.677

0.50 0.048 0.761 0.975

0.80 0.040 0.990 1.000

by time when distributions differ from each other. The power is higher if the mean of the

sample distribution differs more from the mean of distribution of α0(t).

Table 2.4 shows a different trend. The power of test peaks for middle t. The reason to

explain different trends with these two distributions has been explored in the first simulation

study. The power also increases as expected when the difference between the means becomes

greater. Generally, a higher truncation proportion leads to a lower power in both settings.

2.6 Discussion

This chapter emphasized on the nonparametric inference of the cumulative hazard func-

tion with right truncated data. The weak convergence properties of the plug-in estimator

was derived and two variance estimators were presented. A weighted one-sample log-rank

test was developed to compare the hazard rate function of the truncated sample to a given

rate function. Two sets of simulation studies were conducted to investigate the practical

performances of proposed variance estimators and the one-sample log-rank test. The vari-

ance estimators developed by Jiang [32] overestimated the variance when t is large. This
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Table 2.4 The proportions of rejection for one-sample test when α0(t) ∼ Exp(1).

Proportion of rejecting H0 at level 0.05

n L% t Exp(1.0) Exp(1.5) Exp(2.0)

200 25 0.15 0.047 0.199 0.661

0.43 0.047 0.264 0.764

0.82 0.048 0.169 0.524

50 0.15 0.056 0.163 0.535

0.43 0.046 0.167 0.468

0.82 0.051 0.120 0.304

400 25 0.15 0.049 0.397 0.926

0.43 0.047 0.550 0.972

0.82 0.062 0.313 0.855

50 0.15 0.058 0.355 0.875

0.43 0.055 0.348 0.816

0.82 0.054 0.215 0.573

issue was fixed by the variance estimators proposed in this chapter. It can be concluded

from simulation studies that proposed variance estimators have satisfactory results.

An important extension of this research is the weighted two-sample and K -sample tests.

There are various methods to assess survival outcomes between two independent samples.

One may consider to compare the survival probabilities up to t, H0 : S1(s) = S2(s), ∀s ≤ t.

Another option is to compare the survival probabilities at a selected time point, H0 : S1(t) =

S2(t). Chi et al. [12] developed a nonparamteric test to compare two survival functions

for the entire study period with right truncated data by finding the integrated weighted

difference. A more common hypothesis for survival outcome comparison is to compare the

hazard rate function up to t, H0 : α1(t) = α2(t), ∀s ≤ t. This type of test captures the direct

risks of failure over the interval [0, t]. The tests developed for such hypothesis are the family

of weighted log-rank tests. A few common choices of weight function lead to the well-known

tests such as the log-rank, Gehan [21] as well as Tarone and Ware [57] tests. The family of

weighted log-rank tests with right truncated samples will be considered in the next chapter.
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CHAPTER 3

K-SAMPLE HYPTHESIS TESTING WITH RIGHT-TRUNCATED DATA

3.1 Motivation

This dissertation centers on the inferences of right truncated data. Chapter 2 contains

the nonparametric inference for the cumulative hazard function, together with a one-sample

weighted log-rank test. Real applications often involve risk assessment among finite groups.

Although there are various methods to compare survival outcomes betweenK groups, assess-

ment on the hazard rate function up to selected time point has the advantage of capturing

the instantaneous failure rates in the chosen time interval. Therefore, a K-sample test is

practically needed and this chapter focuses on this issue with right truncated data.

In this chapter, a K -sample test statistic is first developed for right truncated data. The

test at the two-sample setting is subsequently considered. The family of weighted log-rank

test contains several commonly used tests. Choices of different weight function leads to log-

rank, Gehan and Tarone-Ware tests. Simulation studies are designed for the two-sample and

three-sample settings to evaluate performance of proposed tests. AIDS blood transfusion

data was analyzed to give a real example to illustrate the methods.

3.2 K -Sample Tests

The one-sample test developed in the previous chapter provides the foundation for

the K -sample test. Suppose that there are K independent samples, denoted as {Lki, Tki}

where k = 1, ..., K, i = 1, ..., nk and with constraint Lki ≤ Tki. Lk and Tk are the random

variables associated with the kth sample and they have the distribution functions Gk and

Fk, respectively. Let αk(t) and Ak(t) be hazard rate and cumulative hazard functions of Lk,
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where

Ak(t) =

∫ t

0

αk(s)ds =

∫ t

0

dGk(s)

P (Lk ≥ s)
. (3.1)

Let τ be the largest observed time in the pooled samples. We can define L∗
k = τ − Lk and

T ∗
k = τ − Tk where L∗

k is left truncated by T ∗
k . The concept of reverse-time hazard rate and

cumulative hazard functions have been introduced in Chapter 2. Let α∗
k(t) and A∗

k(t) be

these two quantities associated with the kth sample. Their mathematical definitions are

α∗
k(t)dt = P (t− dt < Lk ≤ t|Lk ≤ t)

and

A∗
k(t) =

∫ t

τ

dA∗
k(s)ds =

∫ τ

t

α∗
k(s)ds =

∫ τ

t

dGk(s)

P (Lk ≤ s)
. (3.2)

The relation between reverse-time and forward-time cumulative hazard functions have been

clarified in Chapter 2. Here, for the kth sample,

Ak(t) = −log[1− exp(−A∗
k(t))].

It is known that the reverse-time cumulative hazard function can be estimated by the Nelson-

Aalen estimator. For the kth sample, the Nelson-Aalen estimator of A∗
k(t) is given by

Â∗
k(t) =

∫ τ

t

Jk(s)
dN̄k(s)

Ȳk(s)
, k = 1, ..., K,

where Jk(t) = I(Ȳk(t) > 0), Yki(t) = I(Lki ≤ t ≤ Tki) , Nki(t) = I(Lki ≤ t), Ȳk(t) =∑nk

i=1 Yki(t) and N̄k(t) =
∑nk

i=1Nki(t).

The reverse-time martingale was defined in Chapter 2. It is a fundamental quantity for

establishing properties of the estimator of forward-time cumulative hazard function. The

martingale can be similarly defined in the K-sample setting. Define the counting process,
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NL
ki(t) = I(Lki ≥ t), which count event occurrence backwards from τ . The reverse-time

martingale is defined as

M∗
ki(t) = NL

ki(t)−
∫ t

τ

Yki(s)dA
∗
k(s).

Let M̄∗
k (t) =

∑nk

i=1M
∗
ki(t). It can be shown that

Â∗
k(t)− A∗

k(t) =

∫ t

τ

Jk(s)

Ȳk(s)
dM̄∗

k (s). (3.3)

The hypothesis that needs to be tested is H0 : α1(t) = α2(t) = ... = αK(t). Let α•(t)

and A•(t) be the assumed common hazard rate and cumulative hazard function. A•(t) can

be estimated by Formula (2.13) based on the pooled samples. For the hypothesized common

value, the reverse-time Nelson-Aalen estimator can be constructed as

Â∗
•(t) =

∫ t

τ

J(s)
dN̄L

• (s)

Ȳ•(s)
, (3.4)

where J(t) = I(Ȳ•(t) > 0), Ȳ•(t) =
∑K

k=1

∑nk

i=1 I(Lki ≤ t ≤ Tki), N̄
L
• (t) =

∑K
k=1

∑nk

i=1 I(Lki ≥

t). Also let n =
∑K

k=1 nk. The test for the above hypothesis requires comparison between

Â∗
k(t) and Â∗

•(t). It is acceptable to compare Â∗
k(t) with Â∗

•(t) only for the time when

Ȳk(t) > 0. If the null hypothesis holds true,

Â∗
k(t)− Â∗

•(t) =

∫ t

τ

Jk(s)
dM̄∗

k (s)

Ȳk(s)
−
∫ t

τ

Jk(s)
dM̄∗

• (s)

Ȳ•(s)
, (3.5)

where M̄∗
• (t) =

∑K
k=1 M̄

∗
k (t). The difference between Â∗

k(t) and Â∗
•(t) is a zero-mean random

noise process related to martingales.

Let Wk(t) be a stochastic weight process for the kth sample. Let Âk(t) and Â•(t) be the

plug-in estimators given in Equation (2.13) based on the kth sample and the pooled samples,

respectively. Consider the following statistic,

Zk(t) =

∫ t

0

Wk(s)d[Âk(s)− Â•(s)]. (3.6)
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Suppose that W (t) is a common weight function for K samples. W (t) usually only depends

on pooled counting process N̄•(t) and pooled risk set Ȳ•(t). We further assume thatW (t) = 0

and W (t)/Ȳ•(t) = 0 when Ȳ•(t) = 0. Let Wk(t) = W (t)Ȳk(t) and then the above statistic

can be written as

Zk(t) =

∫ t

0

W (s)Ȳk(s)d[Âk(s)− Â•(s)].

Asymptotic distribution of Zk(t) and its covariance matrix are established in Appendix A2.

The asymptotic variance is

∫ 0

t

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]2
yk(u)

y•(u)

(
δkm − ym(u)

y•(u)

)
α∗(u)y•(u)du

+

∫ t

τ

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]2
yk(u)

y•(u)

(
δkm − ym(u)

y•(u)

)
α∗(u)y•(u)du

Under the null hypothesis, mean of Zk(t) is zero with covariance E⟨Zk, Zm⟩(t). The covari-

ance can be estimated by (details shown in Appendix A2)

σ̂2
km(t) =

∫ t

0

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
δkm − Ȳm(u)

Ȳ•(u)

)
dN̄•(u)

+

∫ τ

t

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
δkm − Ȳm(u)

Ȳ•(u)

)
dN̄•(u) (3.7)

and the variance can be estimated by

σ̂2
kk(t) =

∫ t

0

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
1− Ȳk(u)

Ȳ•(u)

)
dN̄•(u)

+

∫ τ

t

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
1− Ȳk(u)

Ȳ•(u)

)
dN̄•(u). (3.8)

Some options of W (t) lead to a few standard tests. For example, the log-rank test

can be obtained by choosing W (t) = I(Ȳ•(t) > 0). With the choice of W (t) = Ȳ•(t), the
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test statistic is Gehan [21] generalization of Wilcoxon and Kruskal-Wallis test. The choice

that W (t) = g(Ȳ•(t)) and g(x) =
√
x leads to the Tarone and Ware [57] test. The log-rank

test for complete or censored survival data can be interpreted as the differences between

observed and expected number of events. However, such interpretation is not feasible for

right truncated data.

Let Σ̂(t) denote theK×K matrix where the kth diagonal position is given by σ̂2
kk(t) and

(k,m)th element is given by σ̂2
km. Consider a column vector Z(t) = (Z1(t) Z2(t) ... ZK(t))

T .

The test statistic for testing H0 : α1(t) = α2(t) = ... = αK(t) will have the following form

X2 = Z(t)T Σ̂−(t)Z(t) ∼ χ2
K−1, (3.9)

where Σ̂−(t) is a generalized inverse and X2 is asymptotically chi-squared distributed with

K − 1 degrees of freedom (details given in Appendix A2).

For all k and m, if there exists a time point where N̄L
• (t) jumps, also W (t), Ȳk(t) and

Ȳm(t) are positive then Σ̂(t) has rank K−1 [22]. One can reduce the Σ̂(t) to a K−1×K−1

full-rank matrix. One can delete the last row and last column of Σ̂(t) and denote it by Σ̂d(t).

Let Zd(t) = (Z1(t) Z2(t) ... ZK−1(t))
T , which contains the first K − 1 elements of Z(t). The

test statistics (3.9) can be alternatively given as

X2 = Zd(t)
T Σ̂−1

d (t)Zd(t), (3.10)

where Σ̂−1
d (t) is the ordinary inverse of a full-rank matrix.

3.3 Two-Sample Tests

Two-sample comparison appears frequently in real applications. It is useful to clarify

the test procedure for the two-sample setting. In this section, the test procedure introduced

in the previous section is studied for K = 2. For two-sample setting, Σ̂d(t) is equal to σ̂2
11(t)
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and Zd(t) = Z1(t). The null hypothesis of H0 : α1(t) = α2(t) can be tested by the statistic

X2 = (Z1(t))
2/σ̂2

11(t).

The alternative test statistic is

U(t) = Z1(t)/σ̂11(t),

where U(t) follows a standard normal distribution. Let L(t) =
Ȳ1(t)Ȳ2(t)

Ȳ1(t) + Ȳ2(t)
, the variance

estimator of Z1(t) is

σ̂2
11(t) =

∫ t

0

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]2
L2(u)

Ȳ1(u)Ȳ2(u)
dN̄•(u)

+

∫ τ

t

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]2
L2(u)

Ȳ1(u)Ȳ2(u)
dN̄•(u). (3.11)

At the significant level 0.05, the null hypothesis can be rejected if the absolute value of U(t)

is beyond 1.96.

3.4 Simulation Studies

This section contains two sets of simulation studies designed for the K-sample and two-

sample tests. Rationales for choosing underlying distributions and sample size were discussed

in Chapter 2.5. The uniform and exponential distributions were chosen for these simulation

studies. Large sample sizes 200 and 400 were considered to avoid empty inner risk sets.

Two simulation studies were constructed. The first set of simulation evaluates the

performances of two-sample tests and the second set of simulation considers the three-sample

settings to evaluate the K-sample tests.
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3.4.1 Study I

This study centers on the performance of the two-sample tests. The uniform and trun-

cated exponential distributions were used for event time variable while exponential dis-

tribution was chosen for truncation variable. For the first set of the simulated settings,

Uniform[0, 1] was consistently used as the underlying distribution of the event time vari-

able for Group 1, while Uniform[0, 1], Uniform[0, 1.2] and Uniform[0, 1.3] were chosen for the

distribution of the event time variable for Group 2 (see Table 3.1).

The truncation variables in Groups 1 and 2 were generated from exponential distribu-

tions with different means, to produce the same level of truncation rate in these two samples.

For the second set of settings, the underlying distributions of the event time variables were

the exponential distributions truncated at 1.2. The exponential distribution with mean 1

truncated at 1.2 was selected for Group 1. Different truncated exponential distributions were

selected for Group 2. The explicit distributions of the event time variables for Groups 1 and

2 are provided in Table 3.2.

Selection of different weight functions lead to different types of test. The weight function

I(Ȳ•(t) > 0) leads to the log-rank test. Other choices of weight functions were Ȳ•(t) and√
Ȳ•(t) and yielded Gehan and Tarone-Ware tests, respectively. The null hypothesis of

equivalence in cumulative hazard was rejected at level 0.05 for each pair of samples. The

proportion of rejection among 1000 pairs of samples is shown in Tables 3.1 and 3.2. In both

tables, when the underlying distributions for Groups 1 and 2 are identical, the observed

rejection rates are close to the significance level 0.05. When the underlying distributions in

the two samples are different the observed power increases by time in Table 3.1, while Table

3.2 shows a different trend that the observed power increases for small t but declines when

t gets large.

We depicted the underlying distributions of event time variables to find the plausible

explanation for trends of observed power. When the event time variables follow different

uniform distributions in two groups, the differences between two cumulative hazard func-

tions monotonously increase by time. When the event time variables follow two truncated
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exponential distributions, the differences on the cumulative hazard increase by time first,

but start to decline when t is towards the end. In Table 3.1, the log-rank test has the highest

power among all three tests. The explanation is that the log-rank test is most powerful when

the hazard functions are proportional. When the underlying distributions are uniform, the

hazard functions are close to proportional.

3.4.2 Study II

This study was designed to evaluate the performance of the K -sample tests. The uni-

form and truncated exponential distributions were selected for event time variables and

three-sample settings were simulated for each. Truncation variables were generated from

exponential distribution as described in Study I. The event time variables were generated

from uniform distributions for first three settings, while exponential distributions truncated

at 1.2 were used for the next three settings. The underlying distributions for each group can

be found in Tables 3.3 through 3.6.

Tables 3.3 and 3.5 show the proportions of rejecting null hypothesis for the settings that

the vent time variables followed uniform distributions. When the underlying distributions

are identical for all three groups, observed rejection rates are consistently close to 0.05. The

power of tests increases by time when the distributions are different among three groups.

For the settings with same size, a higher truncation rate causes reduction in power.

Truncated exponential distributions were also used for the event time variables and the

results are depicted in Tables 3.4 and 3.6. Observed rejection proportions are all around

0.05 when all three groups have the same underlying distributions. Unlike the first setting,

the power of tests decreases by time when distributions vary among groups. Explanation for

this discrepancy has been offered in Chapter 2.

3.5 The AIDS Latent Time Example

We used blood transfusion infected AIDS data set described in Section 1.3. Our analysis

focused on nonparametric inference of the cumulative hazard functions. The data set contains
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three variables: AIDS incubation time, infection time counted since January 1, 1978, and

age at blood transfusion. Let L denote the incubation time. The truncation time T is the

time from infection to the end of study, July 1, 1986. This data set was routinely divided

into three subgroups: children (age range 1-4), adults (age range 5-59) and elderly patients

(age ≥ 60), with the sizes 34, 120 and 141, respectively. The largest incubation times are

respectively 43, 89, and 83 months for children, adults and elderly patients.

In Figure 3.1, we depicted the estimated cumulative hazard curves for each subgroup.

We can conclude from Figure 3.1 that children have significantly higher cumulative hazard

than adults and elderly patients which suggests that children has higher intensity of AIDS

onset than adults and elderly patients.

The weighted log-rank tests were applied to compare the hazard functions between

subgroups. In Table 3.7 shows the results of log-rank, Gehan and Taronea and Ware tests

for comparing hazard functions up to 12, 24 and 36 months. Results of all tests indicate

that the differences among subgroups are statistically significant at level 0.05. It can be

easily recognized from Figure 3.1 that dramatically higher hazard function in children is the

primary source of difference.

3.6 Discussion

This chapter extended the one-sample test developed in Chapter 2 to the K-sample con-

text. The family of weighted log-rank tests was proposed and selection of different weight

functions was discussed. The family of tests include several commonly used tests such as the

log-rank test, Gehan and Tarone-Ware tests. Subsequently, two-sample test was particularly

studied. The simulation studies were conducted to evaluate the performances of proposed

tests for the two-sample and three-sample context. The log-rank, Gehan and Tarone-Ware

tests were implemented for each setting. The simulation study yielded satisfactory result.

Performances of three tests are slightly different, depending on the selected underlying dis-

tributions.

When there are multiple factors or continuous predictors are associated with survival
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outcome, a regression model is needed to assess the association between covariates and

survival. Regression analysis of survival data often models the hazard rate function. The

Cox proportional hazards model is the most commonly used regression model because result

is easy to interpret. Estimation of regression parameters in a Cox model and the inferences

routinely rely on the partial likelihood. Finkelstein et al. [16] studied the Cox model for

right truncated data using the full-likelihood approach. It is interesting to investigate the

partial-likelihood-based solution of Cox analysis for right truncated data. Compared to the

full-likelihood approach, estimation using the partial likelihood should have the advantage

of computational efficiency.
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Table 3.1 The proportion of rejecting H0 when the underlying distributions are uniform.

Uniform[0,1], Uniform[0,1]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.048 0.055 0.044

0.50 0.044 0.050 0.038

0.80 0.038 0.034 0.044

50 0.20 0.049 0.045 0.047

0.50 0.054 0.051 0.049

0.80 0.049 0.037 0.046

400 25 0.20 0.044 0.045 0.048

0.50 0.042 0.038 0.040

0.80 0.045 0.038 0.048

50 0.20 0.042 0.054 0.053

0.50 0.053 0.041 0.051

0.80 0.044 0.037 0.036

Uniform[0,1], Uniform[0,1.2]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.212 0.218 0.213

0.50 0.367 0.344 0.366

0.80 0.709 0.686 0.703

50 0.20 0.126 0.120 0.117

0.50 0.172 0.166 0.169

0.80 0.384 0.373 0.371

400 25 0.20 0.430 0.399 0.418

0.50 0.675 0.640 0.659

0.80 0.951 0.942 0.949

50 0.20 0.172 0.143 0.146

0.50 0.272 0.251 0.258

0.80 0.660 0.657 0.665

Uniform[0,1], Uniform[0,1.3]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.423 0.400 0.411

0.50 0.632 0.602 0.620

0.80 0.951 0.930 0.940

50 0.20 0.137 0.145 0.144

0.50 0.254 0.230 0.245

0.80 0.585 0.574 0.579

400 25 0.20 0.749 0.724 0.739

0.50 0.930 0.914 0.926

0.80 1.000 1.000 1.000

50 0.20 0.301 0.277 0.291

0.50 0.536 0.505 0.525

0.80 0.908 0.904 0.908
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Table 3.2 The proportions of rejecting H0 when the underlying distributions are exponential.

Exp(1.0), Exp(1.0)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.056 0.048 0.048

0.43 0.045 0.050 0.039

0.82 0.045 0.044 0.040

50 0.15 0.047 0.046 0.051

0.43 0.046 0.049 0.048

0.82 0.039 0.042 0.041

400 25 0.15 0.051 0.053 0.049

0.43 0.056 0.051 0.042

0.82 0.054 0.054 0.047

50 0.15 0.053 0.055 0.043

0.43 0.057 0.053 0.065

0.82 0.039 0.044 0.044

Exp(1.0), Exp(1.5)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.165 0.146 0.159

0.43 0.173 0.133 0.150

0.82 0.115 0.082 0.092

50 0.15 0.093 0.104 0.091

0.43 0.113 0.082 0.094

0.82 0.064 0.069 0.061

400 25 0.15 0.292 0.269 0.281

0.43 0.318 0.249 0.281

0.82 0.209 0.140 0.160

50 0.15 0.175 0.159 0.163

0.43 0.172 0.150 0.164

0.82 0.090 0.072 0.072

Exp(1.0), Exp(2.0)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.543 0.513 0.521

0.43 0.570 0.440 0.497

0.82 0.374 0.244 0.301

50 0.15 0.296 0.262 0.279

0.43 0.287 0.213 0.239

0.82 0.111 0.108 0.108

400 25 0.15 0.838 0.794 0.816

0.43 0.872 0.772 0.835

0.82 0.670 0.473 0.539

50 0.15 0.562 0.496 0.530

0.43 0.571 0.411 0.480

0.82 0.216 0.165 0.180
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Table 3.3 The proportions of rejection for three-sample settings when the underlying distri-
butions are all Uniform[0,1].

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.052 0.044 0.045

0.50 0.049 0.046 0.049

0.80 0.047 0.055 0.054

50 0.20 0.050 0.059 0.060

0.50 0.064 0.056 0.055

0.80 0.054 0.055 0.053

400 25 0.20 0.043 0.043 0.047

0.50 0.048 0.051 0.054

0.80 0.055 0.051 0.052

50 0.20 0.057 0.057 0.050

0.50 0.050 0.058 0.052

0.80 0.047 0.045 0.047

Table 3.4 The proportions of rejection for three-sample settings when the underlying distri-
butions are all Exp(1.0).

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.055 0.051 0.052

0.43 0.038 0.048 0.041

0.82 0.047 0.042 0.050

50 0.15 0.047 0.056 0.057

0.43 0.057 0.054 0.053

0.82 0.050 0.057 0.055

400 25 0.15 0.043 0.048 0.047

0.43 0.050 0.047 0.045

0.82 0.045 0.040 0.042

50 0.15 0.036 0.039 0.033

0.43 0.052 0.056 0.053

0.82 0.050 0.048 0.048
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Table 3.5 The proportions of rejecting H0 when the underlying distributions are uniform.

Uniform[0,1], Uniform[0,1], Uniform[0,1.2]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.232 0.227 0.225

0.50 0.372 0.352 0.365

0.80 0.764 0.750 0.764

50 0.20 0.084 0.084 0.089

0.50 0.150 0.143 0.145

0.80 0.379 0.383 0.387

400 25 0.20 0.454 0.444 0.457

0.50 0.728 0.690 0.709

0.80 0.978 0.981 0.984

50 0.20 0.156 0.143 0.152

0.50 0.313 0.302 0.312

0.80 0.761 0.753 0.754

Uniform[0,1], Uniform[0,1], Uniform[0,1.3]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.441 0.422 0.429

0.50 0.669 0.651 0.672

0.80 0.963 0.959 0.963

50 0.20 0.153 0.146 0.156

0.50 0.298 0.295 0.300

0.80 0.709 0.700 0.704

400 25 0.20 0.769 0.772 0.777

0.50 0.951 0.941 0.947

0.80 1.000 1.000 1.000

50 0.20 0.318 0.306 0.312

0.50 0.605 0.569 0.589

0.80 0.967 0.961 0.965

Uniform[0,1], Uniform[0,1.2], Uniform[0,1.3]

n L% t Log-rank Gehan Tarone-Ware

200 25 0.20 0.339 0.330 0.335

0.50 0.525 0.502 0.515

0.80 0.887 0.857 0.874

50 0.20 0.135 0.122 0.131

0.50 0.205 0.195 0.204

0.80 0.493 0.475 0.485

400 25 0.20 0.645 0.628 0.640

0.50 0.873 0.751 0.869

0.80 0.995 0.994 0.995

50 0.20 0.242 0.222 0.223

0.50 0.440 0.411 0.435

0.80 0.861 0.854 0.857
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Table 3.6 The proportions of rejecting H0 when the underlying distributions are exponential.

Exp(1.0), Exp(1.0), Exp(1.5)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.127 0.128 0.130

0.43 0.153 0.126 0.135

0.82 0.096 0.076 0.085

50 0.15 0.091 0.089 0.090

0.43 0.115 0.100 0.104

0.82 0.058 0.055 0.057

400 25 0.15 0.294 0.276 0.298

0.43 0.329 0.263 0.287

0.82 0.176 0.112 0.135

50 0.15 0.158 0.141 0.152

0.43 0.174 0.122 0.137

0.82 0.083 0.072 0.086

Exp(1.0), Exp(1.0), Exp(2.0)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.527 0.489 0.505

0.43 0.567 0.416 0.488

0.82 0.312 0.180 0.226

50 0.15 0.252 0.220 0.233

0.43 0.243 0.164 0.199

0.82 0.072 0.066 0.070

400 25 0.15 0.872 0.844 0.859

0.43 0.901 0.763 0.832

0.82 0.650 0.395 0.497

50 0.15 0.542 0.451 0.498

0.43 0.508 0.343 0.399

0.82 0.171 0.127 0.139

Exp(1.0), Exp(1.5), Exp(2.0)

n L% t Log-rank Gehan Tarone-Ware

200 25 0.15 0.402 0.366 0.378

0.43 0.434 0.326 0.369

0.82 0.266 0.162 0.198

50 0.15 0.208 0.283 0.200

0.43 0.219 0.151 0.182

0.82 0.109 0.098 0.096

400 25 0.15 0.770 0.721 0.746

0.43 0.809 0.668 0.738

0.82 0.577 0.381 0.466

50 0.15 0.468 0.414 0.442

0.43 0.456 0.318 0.379

0.82 0.190 0.149 0.163
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Table 3.7 The weighted log-rank tests for comparing the hazard rate functions between
subgroups of the AIDS blood transfusion data set.

Log-rank Gehan Tarone-Ware

Time X2 p-value X2 p-value X2 p-value

12 months 87.67 < 0.001 80.74 < 0.001 84.34 < 0.001

24 months 110.74 < 0.001 84.39 < 0.001 96.93 < 0.001

36 months 87.48 < 0.001 51.82 < 0.001 65.91 < 0.001
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Figure 3.1 The comparisons of the cumulative hazard estimates between subgroups of AIDS
data set
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CHAPTER 4

NONPARAMETRIC INFERENCE FOR THE HAZARD RATE FUNCTION

WITH RIGHT TRUNCATED DATA

4.1 Motivation

Chapters 2 and 3 center on inferences of cumulative hazard function with right truncated

data. In some studies, the instantaneous risk of failure is of interest. If one can estimate the

cumulative hazard function and plot the curve, the hazard rate function is the slope of the

curve. Some smoothing technique needs to be employed to estimate the slope. The aim of

this chapter is to develop the nonparametric inference of the hazard rate function with right

truncated data. The commonly used kernel smoothing technique is chosen for estimating

the hazard rate function.

Chapter 1 has explained that the reverse-time hazard function, not the regular hazard

function, has been the study focus in the past. However, natural interpretation of the reverse-

time hazard function does not exist. The hazard rate function is a dynamic measurement of

the risk over time. It is an useful quantity for assessing short term treatment efficacy.

In this chapter, the kernel function estimator is first introduced for estimating the

reverse-time hazard function. Common symmetric kernel functions such as uniform,

Epanechnikov and biweight kernels are discussed. Subsequently, nonparametric inference

of the forward-time hazard rate function is developed for right truncated data. The result

from a simulation study is presented, showing satisfactory performance of the proposed infer-

ence. The AIDS blood transfusion data is revisited as an illustrative example of the inference

of the hazard rate function.
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4.2 Kernel Function Estimator of Reverse-Time Hazard Rate Function

We continue to use α(t) and A(t) to denote hazard rate and cumulative hazard func-

tions of random variable. When we have complete survival data or right censored (or left

truncated) survival data, the method for estimating α(t) is to obtain the Nelson-Aalen esti-

mator of A(t), and then apply some smoothing technique to estimate the slope of the curve.

A large number of smoothing methods have been developed for estimating the hazard rate

function. Kernel smoothing, spline, and local polynomial regression are the most commonly

used techniques. Kernel smoothing and local polynomial methods are theoretically more

tractable than the spline approach [61]. The kernel smoothing method is considered in this

chapter for estimating the hazard rate functions. Watson and Leadbetter [64]-[65] defined

the kernel function estimator of the hazard rate function. Anderson et al. [5] (p. 231) sum-

marized the general results of such estimator using the counting process notations, which

was originally proposed by Ramlau-Hansen [53]-[54]. Let Â(t) be an estimator of A(t). The

kernel function estimator of α(t) is derived by smoothing the increments of Â(t),

α̂(t) =
1

b

∫ t

0

K

(
t− u

b

)
dÂ(u). (4.1)

A kernel function is bounded in the interval [−1, 1] and should be integrated to 1. The

bandwidth b is a parameter taking positive values.

Some inferences related to the right truncated data have been developed on reverse-time

quantities in the past. However, direct estimation of the reverse-time hazard rate function

has not been studied before. The reason is the difficulty in interpreting this quantity. The

fundamental aim of this chapter is to develop the inference of the regular hazard rate func-

tion. For the purpose of comparison, estimation of the reverse-time hazard rate function is

discussed first. The univariate truncated sample has been defined as {Li, Ti} for i = 1, · · · , n

and Li ≤ Ti. α∗(t) is the reverse-time hazard rate function with explanation and explicit

definition given in Chapter 2. It is also defined in Chapter 2 that A∗+(t) =
∫ τ

t
α∗(u)J(u)du

where J(u) = I(Ȳ (u) > 0). If P (Ȳ (s) = 0) is really small for some s ≤ t, then A∗+(t) is
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almost equivalent to A∗(t). Introduce the quantity

α∗+(t) =
1

b

∫ t

τ

K

(
t− u

b

)
dA∗+(u),

then α∗+(t) is very close to the smoothed version of α∗(t) which is

α∗s(t) =
1

b

∫ t

τ

K

(
t− u

b

)
α∗(u)du. (4.2)

A∗(t) can be estimated by the Nelson-Aalen estimator. The explicit expression is given by

Equation (2.6). Similar to (4.1), the kernel function estimator of α∗(t) is given by

α̂∗(t) =
1

b

∫ t

τ

K

(
t− u

b

)
dÂ∗(u). (4.3)

The statistical properties of α̂∗(t) can be developed by using the fact that

Â∗(t)− A∗+(t) =

∫ t

τ

J(u)

Ȳ (u)
dM̄∗(u).

Then

α̂∗(t)− α∗+(t) =
1

b

∫ t

τ

K

(
t− u

b

)
d(Â∗ − A∗+)(u) (4.4)

=
1

b

∫ t

τ

K

(
t− u

b

)
J(u)

Ȳ (u)
dM̄∗(u).

α̂∗(t)− α∗+(t) is a stochastic integral with respect to the local martingale M̄∗(t). The first-

and second-order moments of α̂∗(t) exists if E{α̂∗(t)−α∗+(t)}2 < ∞. The optional variation

process of a martingale helps us to find a naive variance estimator of α̂∗(t),

v̂ar[α̂∗(t)] =
1

b2

∫ t

τ

K2

(
t− u

b

)
dN̄L(u)

Ȳ 2(u)
. (4.5)

Asymptotic normality can be established using the martingale central limit theorem.
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4.3 Nonparametric Inference of Hazard Rate Function

Chapter 2.3 clarified the relation between forward- and reverse-time hazards, A(t) =

−log(1 − exp[−A∗(t)]). Under the context of right truncation, the Nelson-Aalen estimator

of the cumulative hazard function is not applicable. Instead, one may consider a plug-in

estimator given in Equation (2.13).

In this section, the kernel-smoothed estimator of the hazard rate function is presented.

The above relationship will be utilized to derive the variance of the estimator. Define A+(t) =∫ t

0
α(u)J(u)du, we get

α+(t) =
1

b

∫ τ

0

K

(
t− u

b

)
dA+(u) =

1

b

∫ τ

0

K

(
t− u

b

)
−G(u)

1−G(u−)
dA∗+(u). (4.6)

Plug in the Nelson-Aalen estimator of A∗(t) and right truncated version of Kaplan-Meier

estimator of G(t). One will have the following estimate of α(t),

α̂(t) =
1

b

∫ τ

0

K

(
t− u

b

)
−Ĝ(u)

1− Ĝ(u−)
dÂ∗(u). (4.7)

It is straightforward that

α̂(t)− α+(t) =
1

b

∫ τ

0

K

(
t− u

b

)
d[A+ − A](u) (4.8)

=
1

b

∫ τ

0

K

(
t− u

b

)[
−Ĝ(u)

1− Ĝ(u−)
dÂ∗(u)− −G(u)

1−G(u−)
dA∗+(u)

]
.

Appendix A3 shows that (nb)1/2[α̂(t) − α+(t)] is asymptotically equivalent to the sum of

functions of martingales,

(nb)1/2[α̂(t)− α+(t)] =

√
1

nb

∫ 0

τ

H

(
t− u

b

)
J(u)

dM̄∗(u)

Ȳ (u)
(4.9)
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where

H

(
t− u

b

)
=

[
K

(
t− u

b

)
G(u)

1−G(u−)
−
∫ u

0

K

(
t− x

b

)
d

(
G(x)

1−G(x−)

)]
.

Through the martingale central limit theorem, α̂(t)−α+(t) converges in distribution to

a normal random variable with mean zero and variance

1

b2

∫ 0

τ

H2

(
t− u

b

)
α∗(u)du

y(u)
.

Based on above result, the variance of α̂(t) is estimated as

v̂ar[α̂(t)] =
1

b2

∫ 0

τ

Ĥ2

(
t− u

b

)
dN̄L(u)

Ȳ 2(u)
, (4.10)

where

Ĥ

(
t− u

b

)
=

[
K

(
t− u

b

)
Ĝ(u)

1− Ĝ(u−)
−
∫ u

0

K

(
t− x

b

)
d

(
Ĝ(x)

1− Ĝ(x−)

)]
.

The kernel smoothed estimator of α(t) is a weighted average of crude hazard estimates over

event times close to t. Most kernel functions allow the closer event times to t to have more

weight than those farther from t. Bandwidth, b, is defined to control this closeness. b is cho-

sen to include those events that are in [t− b, t+ b] interval. Symmetric kernel functions are

commonly used such as uniform, Epanechnikov and biweight, with the following expressions:

K(x) = 1/2, −1 ≤ x ≤ 1 (Uniform kernel),

K(x) = 3(1− x2)/4, −1 ≤ x ≤ 1 (Epanecnikov kernel),

K(x) = 15(1− x2)2/16, −1 ≤ x ≤ 1 (Biweight kernel).

The above kernels are applicable if b ≤ t ≤ tn − b, where tn is the biggest event time. If

t < b, then adjustment is necessary because t− b will be less than zero and inappropriate. In
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this case symmetric kernels need to be modified and these modified or “asymmetric” kernels

should be used. Gasser and Muller [20] suggested the boundary kernel method to modify

kernels. The boundary kernel method uses linear multiples of the kernel function around the

boundary, which chosen to minimize bias error.

The main problem is to find the best bandwidth to get a kernel smoothed estimate

of hazard rate. There is a trade off between bias and variance in terms of choosing the

bandwidth b. Generally speaking, small bandwidth will result less smooth curve; therefore,

it will have smaller bias but larger variance. One way to choose an optimum bandwidth is

to use mean integrated squared error (MISE) to see what value of b minimizes such error

[38]. MISE of α̂ can be defined by

MISE(b) = E

[∫ τ

0

[α̂(u)− α(u)]2du

]

MISE(b) = E

[∫ τ

0

α̂2(u)du

]
− 2E

[∫ τ

0

α̂(u)α(u)du

]
+ E

[∫ τ

0

α2(u)du

]
. (4.11)

MISE(b) depends both on the kernel that used to estimate α and on the bandwidth b.

Since the last term is independent from both kernel and bandwidth, it can be ignored. Let

t1 < t2 < ... < tn be distinct event times, first term can be estimated by using trapezoidal

rule, and the second term can be estimated by using cross-validation estimate given by

Ramlau-Hansen [53]. Optimum bandwidth, b, minimizes following function [38],

g(b) =
n−1∑
i=1

(
ti+1 − ti

2

)
[α̂2(ti) + α̂2(ti+1)]−

2

b

∑
i̸=j

K

(
ti − tj

b

)
∆Â(ti)∆Â(tj) (4.12)

4.4 Simulation Study

A simulation study was constructed to assess the performance of the kernel smoothed

estimator of the hazard rate function. Random variables (L, T ) were generated with con-



50

straints of L < T . Two settings were considered for distribution of L: uniform [0,1] and

exponential with mean 1 truncated at 1.2. The truncation variable T was generated from an

exponential distribution with mean 1/λ. Following steps were taken to generate a truncated

sample with size n: First, random variables (L, T ) were generated. This pair of variables

would be discarded if L > T . Otherwise, we kept this pair in sample. Repeated this proce-

dure until the desired sample size was obtained. Let N be the size of all generated pairs of

random variables. The truncation rate is defined as (N −n)/N . We considered two levels of

truncation rates 25% and 50%. In order to obtain a particular truncation rate, we searched

for appropriate value for λ for the distribution of the truncation variable.

Each simulated setting contained 1000 replicates. For simplicity, a uniform kernel was

used in a smoothing process. In order to obtain the optimum bandwidth, we searched for b,

that minimized g(b) given in (4.15) for each replicate. Searching for the optimum bandwidth

can be computationally challenging when the sample size is large. Due to this limitation, the

sample size used in simulation was chosen to be 200. Let ¯̂α(t) be the average of the kernel

smoothed hazard estimates of 1000 replicates and α̂(i)(t) be the kernel smoothed hazard

estimate for the ith replicate, Then

¯̂α(t) =
1000∑
i=1

α̂(i)(t).

The relative bias provides a measure of the magnitude of the bias:

Relative bias =
B[¯̂α(t)]

α(t)
=

¯̂α(t)− α(t)

α(t)

where the bias, B[¯̂α(t)], was defined as the deviation between the average kernel smoothed

hazard estimate and the true value.

The variance estimator v̂ar[α̂(t)] was evaluated for each replicate and the average of

these values was calculated by

Estimated variance =
1

1000

1000∑
i=1

v̂ar[α̂(i)(t)].
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The sample variance was calculated using the formula

Sample variance =
1

1000− 1

1000∑
i=1

(
α̂(i)(t)− ¯̂α(t)

)2
.

The 95% confidence interval for the hazard rate function for each replicate was calculated

and the actual coverage fraction across 1000 replicates was obtained. The estimation results

were reported at time points that corresponds to 0.2, 0.5, 0.8 in G(t). For this reason,

results were evaluated at t = 0.2, 0.5, 0.8 for the uniform distribution and settings at t =

0.15, 0.43, 0.82 for the truncated exponential distribution (see Table 4.1).

The relative biases are very small for all the settings. Although there is no clear trend

but larger time points are associated with smaller relative biases in general. Estimated

variances are very close to sample variances indicating good performance of the variance

estimator. The observed coverage proportions are slightly below the nominal level but the

result is acceptable in general.

Table 4.1 The simulation results for estimating the hazard rate function based on 1000
replicates with size 200.

Distribution Truncation Relative bias Sample Estimated

of L rate t (%) variance variance Coverage

Uniform[0,1] 25 0.20 1.2 0.492 0.484 0.930

0.50 1.8 0.860 0.844 0.926

0.80 1.2 2.194 2.249 0.926

50 0.20 -0.9 0.389 0.377 0.920

0.50 -0.8 0.735 0.742 0.937

0.80 0.4 2.304 2.262 0.919

Exponential(1.0) 25 0.15 0.5 0.391 0.380 0.937

truncated at 1.2 0.43 -1.7 0.570 0.559 0.918

0.82 0.3 1.352 1.278 0.908

50 0.15 0.1 0.314 0.301 0.924

0.43 0.2 0.488 0.498 0.942

0.82 0 1.385 1.322 0.911
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4.5 The AIDS Latent Time Example

In this simulation study, the blood transfusion infected AIDS data is analyzed. Details

about data given in Chapters 1.3 and 3.5. Three subgroups of data set considered for

analysis: children (age range 1-4 years), adults (age range 5-59 years) and elderly patients

(age ≥ 60). Sample sizes are 34 for children, 120 for adults and 141 for elderly people.

The largest incubation times recorded are 43, 89, and 83 months for children, adults and

elderly patients, respectively. Our goal is to get kernel smoothed hazard rate estimates and

compare them between different groups. Comparisons between adults vs children and elderly

vs children are graphed until 40 months as the largest incubation time for children was 43

months. For similar reasons, comparison between adults vs elderly goes up to 80 months.

We have used kernel smoothing to get a smoothed hazard rate function for right trun-

cated data. We looked for the optimum bandwidth for each group using three different

kernels. For the uniform kernels, optimum bandwidth selections were b = 5 for adults, b = 8

for the elderly and b = 8 for children. In Figure 4.1, smoothed hazard functions for three

types of kernels are plotted for each group. Epanechnikov and biweight kernels assign more

weight in the middle and less weight towards the tails where the uniform kernel assigns a

homogeneous weight. For weight homogeneity, illustration purposes and simplicity, we chose

a uniform kernel to smooth the hazard function for right-truncated data.

Figure 4.1 shows that the kernel-smoothed hazard rate estimates for adults increase by

time for all three kernels. There is a sudden decrease towards the end when Epanechnikov

or biweight kernels are used. In elderly patients, the Epanechikov kernel increases up to 50

months and levels off afterwards. The hazard rate smoothed with the biweight and uniform

kernels shows similar trends, increasing after 50 months. Children had higher smoothed

hazard rates compared with the other two groups. All hazard rate estimates show a sudden

jump around 5 months and increase slowly up to 30 months. The uniform and biweight

kernel smoothed hazard rate estimates increase after 30 months where the Epanechnikov

kernel smoothed hazard estimate stays flat for children. Using a uniform kernel for smoothing
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distributes weight evenly for all time points.

Figure 4.2 shows the uniform kernel smoothed hazard rate functions and pointwise 95%

confidence intervals for each group. The pointwise confidence intervals are very wide, even

include negative values for adults and elderly after 60 months. The estimated hazard rates

of these two groups are associated with low degree of precision. The children group had

much higher hazard rate estimates and the 95% pointwise confidence intervals are slightly

narrower, compared to the result in other two groups.

Figure 4.3 shows the estimated differences between two kernel smoothed hazard rate

functions and 95% pointwise confidence intervals. The differences of smoothed hazard rates

between adults and elderly is not significant since 95% confidence intervals includes zero;

The differences of smoothed hazard rates between children and the other two groups are

significant, indicating higher instantaneous risks of AIDS onset in infected groups.

4.6 Discussion

The aim of this chapter was to study one important survival quantity, the hazard rate

function for right-truncated data. The reverse-time hazard rate has been studied by many

researchers but the forward-time hazard rate has not received the same degree of attention.

One of the earliest researches on the forward-time hazard was done by Finkelstein, Moore

and Schoenfeld [16]. They studied the Cox model for right truncated data and proposed

to use the full likelihood to estimate regression parameters. Estimations of the hazard rate

function helps one to examine the shape of the function and gives a direct assessment of

proportional assumption in case of multiple samples. Nonparametric inference makes it fea-

sible to compare hazard rate functions of different groups without any time transformation.

Pointwise comparison of hazard rates between two samples can be implemented by finding

a confidence interval for the differences of the hazard rate.
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Figure 4.1 Smoothed hazard rate curves using three kernels
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CHAPTER 5

CONCLUSIONS

The fact that few researches have been done on the inferences for the hazard function

with right truncated data was my motivation to study this subject. Chapter 1 of this

dissertation describes different types of incompleteness in time-to-event data, as well as the

subcategories in censoring and truncation. Between two types of truncation, left and right

truncation, left truncation has received more attention. One of the earliest studies about

random truncation model was published by Lynden-Bell [44], who noted the truncation issue

in astronomic data. In time-to-event data, left truncation takes the form of left entrance.

Analysis of cancer or bone-marrow transplant registry data often involves the complexity of

left truncation.

Lagakos et al. [40] were one of the pioneers to suggest transforming the right-truncated

variable to the left-truncated one and then applying the existing statistical inferences. The

reverse-time hazard function was introduced by this type of transformation. Inferences such

as log-rank test, Cox regression model were developed on this quantity. However, lack of

natural interpretation remains an unsolved issue for the reverse-time hazard function. A

few researches have been done in the recent years on the forward-time hazard function,

including the full-likelihood-based Cox model by Finkelstein, Moore and Schoenfeld [16] and

the semi-parametric log-rank test by Shen [56].

Chapter 1 introduces basic concepts and provides a literature review for analysis of

truncated data. First, the concepts and properties of filtration, martingales and counting

process were reviewed, following by a discussion of predictable and optional variation process

of a martingale process. Rebolledo’s [55] version of the martingale central limit theorem was

presented. The Nelson-Aalen estimator of the cumulative hazard function and the Kaplan-

Meier estimator of the survival function were discussed briefly. Another major component
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of this chapter is a description of censoring and truncation. Right censoring is almost an

inevitable issue in analysis of survival data. Occurrence of truncation is not as frequent

as censoring. The mechanism of truncation is not well understood by researchers in other

disciplines. The issue of truncation may be ignored even though it is truly present. In this

chapter, the difference between truncation and censoring as well as the relation between left

and right truncation are clarified. The last component of this chapter is a review of the

literature related to statistical analysis of truncated data.

Chapter 2 develops nonparametric inference for forward-time cumulative hazard func-

tion. The existing inference for the cumulative reverse-time hazard function is first presented,

including an explicit definition of the reverse-time martingale. Using the relation between

forward-time and reverse-time hazards, weak convergence of estimated cumulative hazard

is derived. Two existing variance estimators are revised to correct the problem of overes-

timation when t is large. The weighted one-sample log-rank test is the new development.

The revised variance estimators of the cumulative hazard and the one-sample test show

satisfactory performances in the simulation studies.

Chapter 3 studies a family of weighted log-rank tests for comparing survival outcomes

among independent samples. A test statistic is proposed and its asymptotic normality is

studied. Selection of weight function leads to different types of tests, including the well-

known log-rank, Gehan and Tarone-Ware tests. Simulation studies designed for two-sample

and three-sample tests show satisfactory results. Application of the proposed tests has been

demonstrated on the AIDS blood transfusion data set, for which the hazard rate functions

of three age subgroups are compared.

Chapter 4 studies the nonparametric inference of the hazard rate function of right trun-

cated data. The kernel smoothed estimator of the forward-time hazard rate is proposed.

Different choices of kernel function such as uniform, Epanechnikov and biweight kernels are

discussed. Weak convergence of the kernel smoothed estimator of the hazard rate function is

provided in the appendix. The estimator of the hazard rate function using the uniform ker-

nel s investigated in the simulation study, yielding a low level of relative bias. The criterion
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to select optimum bandwidth is presented and implemented in both simulation study and

example. The AIDS blood transfusion data set is revisited to illustrate the developed meth-

ods. Three kernels, uniform, Epanechnikov and biweight are all implemented to estimate

the hazard rate functions of three age subgroups.

Future work on analysis of right truncated data can be Cox regression analysis. The

Cox proportional hazards model is the most commonly used regression model for survival

data because the result is easy to interpret. Finkelstein, Moore and Schoenfeld [16] studied

the Cox model for right truncated data using the full likelihood. It should be interesting

to investigate a solution based on the partial likelihood of Cox model with right truncated

data. The tentative solution is a weighted score estimating equation which stems from the

partial likelihood. Proper weigh function should be employed to compensate probabilities of

selection, which vary among subjects in the truncated sample. This approach is expected to

have the advantage of computational efficiency.

Another path for future research is to consider other weight functions to extend the

tests given in Chapter 3. Peto and Peto [52] suggested using a weight function close to

the Kaplan-Meier estimator of the survival function of the pooled samples. Fleming and

Harrington [18] proposed a weight function which is the product of the power functions of

the pooled Kaplan-Meier estimator and its complement. One can consider tests using these

weight functions to analyze right truncated data. Following Peto and Peto approach, one

can utilize the weight function G̃•(t) for the K-sample test where

G̃•(t) =
∏
u>t

(
1− d[

∑K
k=1

∑nk

i=1 I(Lki ≤ u)]

Ȳ•(u) + 1

)
. (5.1)

Note that G̃• is close to the right truncated version Kaplan-Meier estimator of P (L ≤ t).

Similarly, Fleming and Harrington approach leads to a weight function Wp,q(t) = [Ĝ•(t)]
p[1−

Ĝ•(t)]
q where p ≥ 0 and q ≥ 0, where Ĝ•(t) denotes the right truncated version Kaplan-

Meier estimator of pooled survival function. The tests developed in Chapter 3, together

with Peto and Peto’s test and Fleming and Harrington’s test have little power in detecting
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the differences if hazard rate functions cross. Renyi type tests can be constructed for right

truncated data to achieve better power for the context of crossing hazard functions.

One meaningful research extended from this dissertation is to compare the performances

of the weighted log-rank tests to other tests. One candidate is the pointwise comparison of

the survival probabilities, H0 : S1(t) = S2(t). The hypothesis can be tested by a Wald test

using the Kaplan-Meier estimates of the distribution probabilities at t. Another candidate

is the test proposed by Chi et al. [12] for the hypothesis H0 : S1(u) = S2(u), 0 ≤ u ≤ τ .

Their test statistic is the integrated weighted differences between distribution probability

estimates. In addition, one can consider a two-sample median test for right truncated data.

Such a test was initially studied by Brookmeyer and Crowley [8] for censored survival data

and the test has acceptable power to detect the differences between survival functions when

the hazard rate functions cross. More investigation is needed to construct the test statistic

suitable for right truncated samples. It is very interesting and practically useful to design a

Monte-Carlo study to evaluate the aforementioned tests, together with the tests developed

in Chapter 3 of this dissertation.
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Appendix A

ASYMPTOTIC PROPERTIES

A1

The one-sample log-rank test was discussed in Chapter 2. This appendix sketches the

asymptotic distribution of the proposed test statistic. Let α0(t) and A0(t) be the true hazard

rate and cumulated hazard functions. α∗
0(t) and A∗

0(t) are the corresponding reverse-time

hazard rate and cumulative hazard functions. The test statistics forH0 : α(t) = α0(t) is given

by Z(t) =
∫ t

0
W (u)d[Â(u) − A0(u)], where Equation (2.13) presents the explicit expression

of Â(t). Then the test statistic formula can be evaluated as

√
n

∫ t

0

W (u)d[Â(u)− A0(u)] =
√
n

∫ t

0

W (u)[
−Ĝ(u)

1− Ĝ(u)
dÂ∗(u)− −G0(u)

1−G0(u)
dA∗

0(u)].

Add and subtract an interim term,
Ĝ(u)

1− Ĝ(u)
dA∗

0(u), there will be

√
n

∫ 0

t

W (u)
Ĝ(u)

1− Ĝ(u)
d[Â∗(u)− A∗

0(u)] +
√
n

∫ 0

t

W (u)[
Ĝ(u)

1− Ĝ(u)
− G0(u)

1−G0(u)
]dA∗

0(u).

In the following context, ≈ indicates asymptotic equivalence. Let
∫ t

τ
Yi(u)α

∗
0(u)du be the

compensator of counting process NL
i (t) andM∗

i (t) = NL
i (t)−

∫ t

τ
Yi(u)α

∗
0(u)du is a martingale.

Under the null hypothesis, the first term is asymptotically equal to the sum of martingales

√
n

∫ 0

t

W (u)
Ĝ(u)

1− Ĝ(u)
d[Â∗(u)− A∗

0(u)] ≈
√
n

∫ 0

t

W (u)
G0(u)

1−G0(u)
[J(u)

dN̄L(u)

Ȳ (u)
− α∗

0(u)du]

≈
√
n

∫ 0

t

W (u)
G0(u)

1−G0(u)
[J(u)

dM̄∗(u) + α∗
0(u)Ȳ (u)du

Ȳ (u)
− α∗

0(u)du]
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=
√
n

∫ 0

t

W (u)
G0(u)

1−G0(u)
J(u)

dM̄∗(u)

Ȳ (u)
.

For the second term, Taylor series expansion can be applied

√
n

∫ 0

t

W (u)[
Ĝ(u)

1− Ĝ(u)
− G0(u)

1−G0(u)
]dA∗

0(u) ≈
√
n

∫ 0

t

W (u)[Â∗ − A∗
0](u)d

(
G0(u)

1−G0(u)

)
=

√
n

∫ 0

t

W (u)

[∫ s

τ

J(u)
dM̄∗(u) + α∗

0(u)Ȳ (u)du

Ȳ (u)
−
∫ s

τ

α∗
0(u)du

]
d

(
G0(u)

1−G0(u)

)
=

√
n

∫ 0

t

W (u)

[∫ s

τ

J(u)
dM̄∗(u)

Ȳ (u)

]
d

(
G0(u)

1−G0(u)

)
.

Change the order of integration in above double integrals,

√
n

∫ t

0

[
W (u)

∫ s

0

d

(
G0(u)

1−G0(u)

)]
J(u)

dM̄∗(u)

Ȳ (u)
+
√
n

∫ τ

t

[
W (u)

∫ s

0

d

(
G0(u)

1−G0(u)

)]
J(u)

dM̄∗(u)

Ȳ (u)
.

Combining the first and second terms leads to the following result,

√
n

∫ t

0

W (u)d[Â(u)−A0(u)] ≈
√
n

∫ 0

t

[
W (u)

G0(u)

1−G0(u)
−
∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]
J(u)

dM̄∗(u)

Ȳ (u)

−
√
n

∫ t

τ

[∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]
J(u)

dM̄∗(u)

Ȳ (u)

√
n
∫ t

0
W (u)d[Â(u)−A0(u)] converges in distribution to a zero-mean normal random variable

with variance

∫ 0

t

[
W (u)

G0(u)

1−G0(u)
−
∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]2
α∗
0(u)du

y(u)

+

∫ t

τ

[∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]2
α∗
0(u)du

y(u)
.

The variance of Z(t) can be estimated by

σ̂2(t) =

∫ t

0

[
W (u)

G0(u)

1−G0(u)
−
∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]2
dN̄(u)

Ȳ 2(u)
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+

∫ τ

t

[∫ s

0

W (u)d

(
G0(u)

1−G0(u)

)]2
dN̄(u)

Ȳ 2(u)
.

Based on the above weak convergence result, U(t) = Z(t)/σ̂(t) follows standard normal

distribution.

A2

The asymptotic properties of K-sample test is given in this appendix. In Chapter 3, the

test statistic for the K-sample context is given as Zk(t) =
∫ t

0
Wk(s)d[Âk(s)− Â•(s)]. Using

the relation in (2.15),

√
n

∫ t

0

Wk(s)d[Âk(s)− Â•(s)] =
√
n

∫ t

0

[
−Ĝk(s)

1− Ĝk(s)
Wk(s)dÂ

∗
k(s)−

−Ĝ•(s)

1− Ĝ•(s)
Wk(s)dÂ

∗
•(s)].

Add and subtract the interim term
Ĝk(s)

1− Ĝk(s)
dÂ∗

•(s) to above equation,

√
n

∫ 0

t

Ĝk(s)

1− Ĝk(s)
Wk(s)d[Â

∗
k(s)− Â∗

•(s)] +
√
n

∫ 0

t

[
Ĝk(s)

1− Ĝk(s)
− Ĝ•(s)

1− Ĝ•(s)

]
Wk(s)dÂ

∗
•(s).

Under the null hypothesis, the first term is asymptotically equal out to the following expres-

sion

√
n

∫ 0

t

Wk(u)
G•(u)

1−G•(u)
d[Â∗

k(s)−Â∗
•(s)] =

√
n

∫ 0

t

Wk(u)
G•(u)

1−G•(u)
Jk(u)

[
dM̄∗

k (u)

Ȳk(u)
− dM̄∗

• (u)

Ȳ•(u)

]
.

The similar technique can be applied to the second term. Add and subtract the interim

term
G•(s)

1−G•(s)
, then we will have

√
n

∫ 0

t

Wk(s)

[(
Ĝk(s)

1− Ĝk(s)
− G•(s)

1−G•(s)

)
−

(
Ĝ•(s)

1− Ĝ•(s)
− G•(s)

1−G•(s)

)]
dÂ∗

•(s).
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Using the plug-in estimator dÂ∗
•(s) =

−dĜ•(s)

Ĝ•(s)
and applying Taylor series expansions

(
Ĝk(s)

1− Ĝk(s)
− G•(s)

1−G•(s)

)
≈ −G•(s)

(1−G•(s))2
(Â∗

k − A∗
•)(s)

and (
Ĝ•(s)

1− Ĝ•(s)
− G•(s)

1−G•(s)

)
≈ −G•(s)

(1−G•(s))2
(Â∗

• − A∗
•)(s).

For the second term, we now have

√
n

∫ 0

t

Wk(s)
[
(Â∗

k − A∗
•)(s)− (Â∗

• − A∗
•)(s)

]
d

(
G•(s)

1−G•(s)

)
Note that under the null hypothesis

(Â∗
k − A∗

•)(s) =

∫ s

τ

Jk(u)
dM̄∗

k (u)

Ȳk(u)
and (Â∗

• − A∗
•)(s) =

∫ s

τ

Jk(u)
dM̄∗

• (u)

Ȳ•(u)

then

√
n

∫ 0

t

Wk(s)d

(
G•(s)

1−G•(s)

)[∫ s

τ

Jk(u)
dM̄∗

k (u)

Ȳk(u)
−
∫ s

τ

Jk(u)
dM̄∗

• (u)

Ȳ•(u)

]
.

Changing the order of the double integral leads to

√
n

∫ t

0

[∫ u

0

Wk(s)d

(
G•(s)

1−G•(s)

)]
Jk(u)

[
dM̄∗

k (u)

Ȳk(u)
− dM̄∗

• (u)

Ȳ•(u)

]

+
√
n

∫ τ

t

[∫ t

0

Wk(s)d

(
G•(s)

1−G•(s)

)]
Jk(u)

[
dM̄∗

k (u)

Ȳk(u)
− dM̄∗

• (u)

Ȳ•(u)

]
.

Combining the above results and let Wk(t) = W (t).Ȳk(t) where W (t) is a locally bounded,

non negative weight process. W (t) depends on the process (N̄L
• (t), Ȳ•(t)) and it is assumed

W (t) is zero when Ȳ•(t) is zero, then
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Zk(t) =
√
n

∫ 0

t

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]
Jk(u)

[
dM̄∗

k (u)− Ȳk(u)
dM̄∗

• (u)

Ȳ•(u)

]

−
√
n

∫ t

τ

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]
Jk(u)

[
dM̄∗

k (u)− Ȳk(u)
dM̄∗

• (u)

Ȳ•(u)

]
.

Let

C = W (u)
G•(u)

1−G•(u)
, D = W (s)d

(
G•(s)

1−G•(s)

)
,

using Kronecker delta we can rewrite the equation as

Zk(t) =
K∑
p=1

√
n

∫ 0

t

[
C −

∫ u

0

D

] [
δkp −

Ȳk(u)

Ȳ•(u)

]
Jk(u)dM̄

∗
p (u)

−
K∑
p=1

√
n

∫ t

τ

[∫ t

0

D

] [
δkp −

Ȳk(u)

Ȳ•(u)

]
Jk(u)dM̄

∗
p (u). (A.1)

Based on the martingale central limit theorem,
√
n
∫ t

0
Wk(s)d[Âk(s) − Â•(s)] converges in

distribution to a mean zero Gaussian martingale with covariance

∫ 0

t

[
C −

∫ u

0

D

]2
yk(u)

y•(u)

(
δkm − ym(u)

y•(u)

)
α∗(u)y•(u)du

+

∫ t

τ

[∫ t

0

D

]2
yk(u)

y•(u)

(
δkm − ym(u)

y•(u)

)
α∗(u)y•(u)du. (A.2)

Under the null hypothesis, Zk(t) has mean zero and the covariance between Zk(t) and Zm(t)

can be estimated by

σ̂2
km(t) =

∫ t

0

[
W (u)

G•(u)

1−G•(u)
−
∫ u

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
δkm − Ȳm(u)

Ȳ•(u)

)
dN̄•(u)
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+

∫ τ

t

[∫ t

0

W (s)d

(
G•(s)

1−G•(s)

)]2
Ȳk(u)

Ȳ•(u)

(
δkm − Ȳm(u)

Ȳ•(u)

)
dN̄•(u). (A.3)

Let Σ̂(t) denote the k × k matrix for which the (k,m)th element is given by σ̂2
km(t) and let

Z(t) = (Z1(t) Z2(t) ... ZK(t))
T . The test statistic for H0 : α1(t) = α2(t) = ... = αK(t) has

the following form

Z(t)Σ̂−1(t)ZT (t) ∼ χ2
K−1, (A.4)

where Σ̂−1(t) is a generalized inverse. This test statistic followsa Chi-square distribution

with K − 1 degrees of freedom, χ2
K−1.

A3

Asymptotic consistency of a kernel estimator has been routinely established under the

condition that n → ∞, the bandwidth b → 0 and nb → ∞ [53], [54]. In this study, we

try to exploratively investigate the limiting distribution of α̂(t), and we do not give a proof

of asymptotic consistency. In the following context, “≈” indicates asymptotic equivalence.

Please note that (nb)1/2[α̂(t)− α+(t)] can be expressed as

(nb)1/2[α̂(t)− α+(t)] =
(nb)1/2

b

∫ τ

0

K

(
t− u

b

)[
−Ĝ(u)

1− Ĝ(u)
d(Â∗ − A∗+)(u)

]

−(nb)1/2

b

∫ τ

0

K

(
t− u

b

)(
Ĝ(u)

1− Ĝ(u−)
− G(u)

1−G(u−)

)
dA∗+(u)

For the first term on the right hand side of the above equation, it can be shown that

(nb)1/2

b

∫ τ

0

K

(
t− u

b

)
−Ĝ(u)

1− Ĝ(u−)
d(Â∗ − A∗+)(u)

≈
√

n

b

∫ 0

τ

K

(
t− u

b

)
G(u)

1−G(u−)
d(Â∗ − A∗+)(u)

=

√
n

b

∫ 0

τ

K

(
t− u

b

)
G(u)

1−G(u−)
J(u)

dM̄∗(u)

Ȳ (u)
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To investigate the second term on the right hand side, we first consider the Taylor series

expansion,

Ĝ(u)

1− Ĝ(u−)
− G(u)

1−G(u−)
≃ d

dA∗(u)

(
G(u)

1−G(u−)

)
(Â∗ − A∗+)(u).

Then we will have

(nb)1/2

b

∫ τ

0

K

(
t− u

b

)[
−

(
Ĝ(u)

1− Ĝ(u−)
− G(u)

1−G(u−)

)
dA∗+(u)

]

≈
√

n

b

∫ τ

0

K

(
t− u

b

)[
−d

(
G(u)

1−G(u−)

)
(Â∗ − A∗+)(u)

]
=

√
n

b

∫ τ

0

K

(
t− u

b

)[
−d

(
G(u)

1−G(u−)

)∫ u

∞
J(x)

dM̄∗(x)

Ȳ (x)

]
=

√
n

b

∫ τ

0

K

(
t− u

b

)[
d

(
G(u)

1−G(u−)

)∫ ∞

0

I(x ≥ u)J(x)
dM̄∗(x)

Ȳ (x)

]
=

√
n

b

∫ τ

0

[∫ u

0

K

(
t− y

b

)
d

(
G(y)

1−G(y−)

)]
J(x)

dM̄∗(x)

Ȳ (x)

=

√
n

b

∫ 0

τ

[
−
∫ u

0

K

(
t− y

b

)
d

(
G(y)

1−G(y−)

)]
J(x)

dM̄∗(x)

Ȳ (x)

Combining the above results, we get (nb)1/2[α̂n(t)− α+
n (t)] to be equal to

√
1

nb

∫ 0

τ

[
K

(
t− u

b

)
G(u)

1−G(u−)
−
∫ u

0

K

(
t− y

b

)
d

(
G(y)

1−G(y−)

)]
J(u)

dM̄∗(u)

Ȳ (u)/n

Through the martingale central limit theorem, when n → ∞, b → 0, nb → ∞, (nb)1/2[α̂(t)−

α+(t)] converges in distribution to a normal random variable with mean zero and the follow-

ing variance function,

1

b

∫ 0

τ

[
K

(
t− u

b

)
G(u)

1−G(u−)
−
∫ u

0

K

(
t− x

b

)
d

(
G(x)

1−G(x−)

)]2
α∗(u)du

y(u)
.

In addition, it needs to be confirmed that (nb)1/2[α+
n (t) − α(t)] is asymptotically negligi-

ble. Some regularity conditions for establish such a result can be found in Ramlau-Hansen

[53](§4). We do not further investigate this problem in this study.
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Appendix B

THE AIDS DATA SET

Table B.1 AIDS Blood Transfusion Data Set

Age L T Age L T Age L T Age L T Age L T

1 11 38 3 23 29 29 68 72 39 17 57 50 39 62
1 10 57 3 21 48 29 61 99 39 13 44 50 25 48
1 10 54 4 43 52 29 12 26 39 5 28 50 10 26
1 10 17 4 37 71 29 4 35 41 31 45 51 49 55
1 10 13 4 37 53 30 69 87 41 23 27 51 48 67
1 8 31 4 27 79 30 46 81 41 22 24 51 44 47
1 8 26 4 27 40 32 41 68 42 48 74 51 34 69
1 8 22 4 11 19 32 32 43 42 26 41 51 33 45
1 8 16 5 51 53 32 10 36 42 10 28 51 31 37
1 4 35 6 68 87 33 79 80 44 29 31 52 53 83
1 4 11 11 41 45 33 53 85 44 24 49 52 29 43
2 23 63 17 70 83 33 33 44 44 24 30 52 24 52
2 20 37 20 34 79 34 37 65 45 14 35 52 17 27
2 20 35 21 60 90 34 29 68 46 50 61 53 65 73
2 18 33 21 36 44 34 16 33 46 43 49 53 54 55
2 17 26 22 47 66 35 39 42 46 38 74 53 36 43
2 15 22 23 35 55 35 18 38 46 36 52 53 29 69
2 14 64 23 18 45 36 15 21 46 34 77 53 21 32
2 13 52 24 29 50 36 12 16 46 17 60 54 80 85
2 13 40 25 30 65 36 4 5 46 12 49 54 55 73
2 13 34 26 48 67 37 53 63 46 4 20 54 51 54
2 12 49 26 32 68 37 46 49 47 43 48 54 29 69
2 6 38 26 30 46 38 89 90 48 63 76 54 23 40
3 33 54 27 51 54 38 22 40 49 64 65 54 13 29
3 32 38 28 58 62 38 16 17 49 40 42 55 39 42
3 32 33 28 36 41 38 10 19 49 17 18 55 12 19
55 11 18 60 49 54 63 20 28 66 17 46 68 6 27
56 48 50 60 32 57 63 15 54 66 13 26 69 67 73
56 38 76 60 20 34 63 13 34 67 64 73 69 62 63
56 38 66 60 18 20 63 12 32 67 63 66 69 58 83

NOTE: Study starting date is January 1, 1978 and closing date is July 1, 1986 (102 months). L is the

incubation period in months, T is the duration between infection date and closing date and Age is the age

in years at the time of transfusion.
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Table B.2 AIDS Blood Transfusion Data Set Cont’d.

Age L T Age L T Age L T Age L T Age L T

56 32 44 61 57 61 63 0 36 67 63 65 69 38 52
56 20 49 61 48 83 64 56 57 67 42 56 69 38 39
56 15 64 61 26 59 64 52 60 67 41 69 69 31 45
57 63 66 61 25 62 64 48 63 67 29 43 69 28 56
57 37 67 61 19 27 64 40 56 67 21 59 69 13 42
57 28 75 61 18 45 64 23 44 67 20 37 70 62 80
57 22 53 61 14 33 64 18 45 67 20 36 70 41 44
57 9 15 61 11 24 65 62 75 67 18 36 70 27 30
58 62 90 61 10 18 65 59 61 67 17 23 70 24 25
58 53 61 62 63 76 65 47 51 67 10 34 70 21 54
58 29 37 62 43 59 65 36 43 68 54 64 70 19 46
58 25 48 62 42 61 65 35 56 68 46 61 70 19 42
58 19 40 62 37 70 65 34 44 68 38 42 70 14 26
59 67 80 62 35 53 65 32 36 68 32 37 71 53 57
59 63 65 62 33 60 65 29 35 68 27 47 71 49 69
59 55 59 62 29 67 65 25 33 68 27 31 71 33 34
59 38 53 62 29 57 65 23 27 68 24 60 71 32 34
59 16 35 62 24 38 65 18 66 68 22 26 71 31 32
59 11 27 62 21 22 66 83 94 68 20 41 71 26 46
59 11 17 62 16 32 66 33 41 68 19 47 71 14 23
60 68 73 63 61 66 66 32 46 68 15 27 71 12 31
60 59 75 63 37 39 66 23 37 68 11 35 72 52 61
72 40 41 72 29 37 72 29 35 72 16 35 73 72 73
73 42 60 73 40 42 73 34 50 73 30 46 73 15 17
73 8 37 74 41 42 74 19 34 76 37 59 76 24 30
77 49 57 77 20 30 77 19 25 78 76 85 78 38 57
78 34 45 78 29 39 78 20 49 80 55 65 80 27 40
81 19 29 81 10 27 82 37 60 84 25 20 85 38 39

NOTE: Study starting date is January 1, 1978 and closing date is July 1, 1986 (102 months). L is the

incubation period in months, T is the duration between infection date and closing date and Age is the age

in years at the time of transfusion.
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