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ABSTRACT
OIL AND GAS PRODUCTION: AN EMPIRICAL INVESTIGATION OF THE
COMMON POOL
BY
ANDREW TRAVIS BALTHROP
March 2012

Committee Chair: Dr. Kurt E. Schnier
Major Department: Economics

This dissertation focuses on the spatial aspects of oil and natural gas production
to investigate the extent and effects of inefficient and unnecessary spatial
competition. Because oil and natural gas are migratory, operators can cause
hydrocarbon resources to flow from a neighboring property onto his or her own
through rapid extraction. This problem is compounded when productive leases are
comparatively small, as is the case in Texas.

Following an introduction and literature review, the third chapter takes
advantage of a natural experiment to demonstrate how spillovers in production limit
total cumulative recovery, and how the assignment of secure property rights can
enhance economic outcomes. The chapter examines production from wells in
Oklahoma and Texas near the panhandle border. While wells on either side of this
line have similar geologies and so should be similarly productive they are exposed to
different treatments: Oklahoma has a much higher rate of unitization (a contractual
scheme where competing owners hire a common operator and share profits),
whereas the unitization rate in Texas is lower. Using regression discontinuity design,
I find that Oklahoma wells are produced more slowly early on, and that this results
in greater cumulative recovery over the course of a well’s life (150% more relative to
Texas). These results are robust after controlling for reservoir specific effects, and

across parametric, semi-parametric and nonparametric specifications.
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The fourth chapter quantifies the degree to which competing owners interfere
with each other’s production through spatial spillovers. I use a spatial econometric
model that controls for spatial autocorrelation and spatial dependence and can
therefore identify the spillovers in production. Additionally, by comparing leases
owned by competing producers to leases owned by a common producer, I show
empirically how securing property rights through common ownership can alleviate
the externality in production. A priori, one would expect that when a common
producer owns adjacent leases, the producer has the incentive to fully account for
how spillovers in production affect neighboring wells. Conversely, when adjacent
landowners are in competition to extract the resource, they will not account for the
damage rapid production causes at neighboring wells. After controlling for
secondary injection I find that this is indeed the case for Slaughter field of West
Texas.

The fifth chapter investigates the statistical properties of oil and natural gas
production. I find striking evidence that both oil and natural gas production are
power-law distributed with the exponent approximately equal to one. This
distribution might arise from disequilibrium in production and exploration.
Highlighting this distribution is important because it has potential consequences for
the political economy of regulation as well as for resource management. For
example, because the most productive wells lie in the far-right tail of the
distribution, regulation geared to prevent a Deepwater Horizon scale spill need fall
on a vanishingly small percent of wells. The distribution also has consequences for
management because a company profitability depends disproportionately on how it
manages its most productive wells.

The sixth chapter provides a short conclusion.

Xlil



Chapter I

INTRODUCTION

Oil and natural gas are economically vital commodities accounting for over half of
US primary energy consumption according to the Energy Information
Administration. This will remain the case for the foreseeable future. While the fact
that so much of US energy consumption is based on non-renewable resources is a
potential cause for concern, that these non-renewable resources are currently being
managed less than optimally most definitely is. This dissertation demonstrates that
common pool externalities remain an issue in domestic production, quantifies the
effectiveness of policies designed to abate the common pool problem, and
characterizes the statistical properties of the distribution of oil and gas lease
productivities.

Why the common pool externality in production is important to address is that

it prevents optimal resource exploitation along four pathways:

1. The resource is not exploited efficiently in a spatial sense because correlative

rights are infringed upon.

2. The resource is not exploited efficiently dynamically because extraction occurs

too early relative to the price rule.

3. There is physical inefficiency because rapid extraction damages the reservoir.



4. There is economic inefficiency because too much of the rents from the resource

are dissipated in the variable factors of recovery.

When property rights to the resource are secure, it is in the producer’s best interest
to fully account for the exhaustibility, and manage the resource in a way that is in
the best interest of society. The trouble arises when producers do not have exclusive
rights to the resource. Oil and gas reservoirs are large and the resources flow freely
within them, but leases in the study area are small. It is possible, then, for
competing producers to poach each others’ hydrocarbons (1).This incentivizes rapid
extraction (2), which can actually damage the reservoir (3), and wastes resource
value in excess extraction and storage capacity (4).

A straightforward solution to this common pool problem is to unify reservoir
management under a single operator, unitization. Unitization secures property
rights, maximizes the resource rents, and enhances cumulative recovery. Yet this
simple solution has not been universally adopted. In my third chapter, I exploit a
natural experiment to quantify the difference in cumulative recovery that results
from differential rates of unitization. The difference in recovery is stark: unitization
enhances cumulative recovery.

The fourth chapter uses a spatial econometric model to explicitly characterize
how the production of nearby but competing producers influences own production.
The result is consistent with the predictions of theory. When nearby leases are
managed by competitors, operators produce at a higher rate than when they
themselves own those nearby leases. Fractionalization of reservoir management thus
results in dynamically inefficient production—a race to extract.

The fifth chapter characterizes the statistical properties of the distribution of
cumulative oil and gas production for the state of Texas. The preceding chapters
are based on averages, but it is not clear beforehand that it makes sense to focus on

the average lease. An astonishing amount production is carried out by only a few



wells and leases. Because of this managers might not care about what is happening
on the average lease. The US Army Corps of Engineers does not decide how high to
build their levees based on the average flood. It would be folly to do so because the
distribution of floods is so wildly varying. The same may be true for oil and gas
managers and the government regulators—there is no point in worrying about the
average well because that is not where the profits come from. I find that the average
lease is descriptive of the distribution. The numbers produced in the proceeding
chapters are therefore economically relevant. Securing rights to the resource in situ

can result in economically meaningful gains.



Chapter II

LITERATURE REVIEW: THE ECONOMICS OF OIL AND GAS
PRODUCTION

Introduction

The literature on oil and natural gas production, to which this dissertation seeks to
add, is extensive and covers a great variety of topics. Maximizing the economic
value of the resource involves addressing both spatial and dynamic considerations:
one must decide where to harvest the migratory resource, and which periods of time
to do the harvesting. Throw in other economic agents who may be competing for
the resource, and the problem grows in complexity, becoming worthy of the research
effort it has received.

In this chapter, I review the state of the literature on petroleum and natural gas
recovery as it exists at present. My focus is on the managerial side, the micro-level
decisions made by the agents involved directly in production, and the relevant
constraints these agents face. As such, I will not touch on the broader
macroeconomic literature which looks at how the oil and gas industry affects the
broader economy, and is affected by it. However, as will become clear, especially
with Hotelling-type models, this distinction can get hazy.

I begin my analysis with the basic theory of non-renewable resource recovery.
My initial focus is on the dynamic issues of recovery, then the spatial ones, then a

combination of the two approaches. I then review the important empirical findings.



Given the complexity of the theory, even with so many simplifying abstractions, it is
perhaps not surprising that the results of empirical tests have been mixed. The final
section focuses on a separate branch of the literature concerning the managerial side
of oil and natural gas production, and the constraints and incentives the agents face.
This section has less to do with a generalizable theory of nonrenewable recovery,
instead the focus is on applying core economic principles to oil and gas recovery. 1

conclude by discussing what this dissertation seeks to contribute.

Theory

Oil and natural gas are finite, exhaustible resources, and are nonrenewable on
relevant economic timescales. The resources form in places on the seafloor where
dead algae and zooplankton accumulate at a rate faster than they decay. On
geologic time scales, sediment is deposited overtop this organic material, later
forming rock. As more and more rock accumulates, the building heat and pressure
transforms the organic material first into kerogen, then into the more familiar
hydrocarbons: oil and natural gas. This process is slow. The petroleum deposits
used for spatial analysis in the third chapter were formed during the Permian
period, over 250 million years ago.

Given the resources are non-renewable, the first aspect of the theory I examine
deals mainly with the opportunity cost of extraction. Resource extracted at present
is unavailable for future extraction. What then is the optimal rate of extraction?
Another property of oil and natural gas is that they are migratory resources that
are subject to spatial competition, which is also examined in this section. I conclude
the section by reviewing articles that simultaneously examine both the spatial and

dynamic properties of extraction.



Theory of Dynamic Nonrenewable Recovery

The article that is commonly credited with beginning the literature on
nonrenewable extraction is Hotelling (1931)). Hotelling consider the basic problem of
the producer: how to maximize the present value of the future stream of profits
given a fixed quantity of exhaustible resource. The solution to this problem is
known as Hotelling’s rule, and is fundamental in the theory of nonrenewable

resource economics:

p_ r
=), M

The percentage rate of change of the price of the resource is on the left, the rate of
return of the next best asset is on the right. It is assumed the only benefit from
holding the nonrenewable resource is that it will appreciate in value-it can be sold
tomorrow for more than it was bought for today. If the resource gains value at
greater than the rate of return on the next best asset, there is no reason to extract
it at present. If on the other hand, the resource is appreciating at less than the rate
of the next best asset, then one should extract the whole stock of the resource at
present, sell it, and invest in the better asset. In equilibrium, what must be the case
is the RHS and LHS of equation [I] are equal.

Hotelling’s model is useful in that it demonstrates clearly a central feature of
non-renewable resource recovery: producers recognize the opportunity cost of
extraction as less extraction tomorrow. It can be shown under the assumptions of
the model, that producers will engage in the socially optimal amount of
conservation. Hotelling (1931)) also considers the case of the monopolist, finding the
monopolist will be excessively conservative, although Stiglitz| (1976) and Khalatbari

(1977) show that this isn’t inherently the case[l| The welfare implications of the

'Tt is the demand elasticity that determines whether a producer will delay production in an effort
to raise prices.



discount rate on conservation and future consumption are considered more in depth
by Vousden (1973)) and |Dasgupta and Heal (1979).

Serious criticism on the Hotelling model can be made along two fronts. First,
equation [l means that the price of the resource must be rising exponentially, which
has been difficult to find evidence for in the data. Part of the reason that the
theoretical predictions have not been validated is that the theory is based on
assumptions that do no accurately characterize the oil and natural gas industry.
The Hotelling model is based on the assumptions that the stock of the resource is
independent of the rate of production, as well as the production of other resources;
it is assumed that the stock is known, fixed, and homogeneous, and that production
is costless, unconstrained, and that technology is unchanging; it is also assumed
that demand for the resource is fixed and known. Well-known papers have extended
the Hotelling model in various ways, and demonstrated that the trajectory of price
can be shaped much differently with more realistic assumptions about pumping
cost, uncertainty (Pindyck|[1980)), exploration (Pindyck |1978), joint production with
natural gas (Pindyck||1982), among other things.

The more trenchant criticism is that equation [1| does not contain a term for
production in it. Something must be coordinating individual production so that
aggregate production behaves correctly and price rises at the rate of interest, and
yet in equilibrium each individual producer is indifferent as to his or her level of
production—how is it that in aggregate the individuals produce the just the right
amount 7

Well-known papers have demonstrated that the trajectory of price can be
influenced by pumping cost, uncertainty (Pindyck|/1980), exploration (Pindyck

1978), joint production with natural gas (Pindyck! [1982), among other things.

20f course, maybe Hotelling is telling us that nothing is coordinating production, and overshoot-
ing is exactly what to worry about.



Spatial Aspects of Recovery

The reservoirs in which oil and natural gas are found can be expansive, covering
many thousands of acres. On the other hand, the leases from which the
hydrocarbons are withdrawn are frequently much smaller, so that no single owner
has property rights to the resource in situ (while it is in the ground). Why this is a
problem is that the oil and gas are not fixed in space, they can be moved. In fact,
rapid extraction at neighboring pump sites can actually cause hydrocarbons to flow
off the lease. The spatial competition means the oil in the ground is a fugacious
resource, more similar to fish and wild game than to other non-renewables such as
minerals and old growth forest. The result is that oil and gas deposits must be
frequently modeled not as private goods, as with the basic Hotelling models, but as
a common pool resource.

The theory of common pool resources was first developed for explaining
problems with overfishing. Common pool resources are defined as goods which are
rival, in that one agent’s consumption precludes the consumption of another agent,
but nonexclusive—other’s consumption can’t be prevented, except by gobbling up all
the good oneself. |Gordon| (1954) demonstrates this issue with a productive fishing
ground. A single fisher would harvest until the marginal product of the last unit of
effort equals the marginal cost of expending that effort; however, this can only
happen when the fishing ground is exclusive. When the fishing ground is open, the
fishers instead harvest until the average product equals marginal cost, driving the
profit stemming from the productive ground to zero. Scott (1955) further develops
the work of Gordon. The same argument holds for oil, except the productive
grounds become reservoirs and the fishing boats become wells.

Brown (1974) analyzes a renewable common pool in a dynamic setting,
providing a nice segue to the final theory subsection. Before getting there, however,

there is another issue with the common pool that is important to highlight: the lost



profit, and why the common pool remains a common pool. Why, given the economic
damages, is the common pool not privatized? Demsetz (1967) argues that the
reason the commons are not privatized is that (1) the benefits from privatization are
low, or (2) the cost of privatization must be great. This critique must be taken
seriously. On the other hand, in explaining why common pool externalities persist,
one must consider who wins in a common pool. Weitzman| (1974) makes this
argument elegantly, showing that the economic rents are dissipated in excess capital
(or, more generally, in the non-fixed inputs to production). Thus, while the lease
owner may lose out from failing to unify the common pool, and the profitability of
land is dissipated in the drilling of too many wells on the property, the roustabouts,

roughnecks, and drill-rig operators are making out just fine.

Spatial-Dynamic Models of Recovery

In light of Weitzman’s findings, it is useful to turn back to [Brown| (1974)). The first
issue is that given common pool nature, the producers leave too little resource stock
for the future. A manager can alleviate this problem by charging the appropriate fee
for a unit of stock. The second issue is that the producers use too much of the
variable input to produce too little. A tax on the variable instrument could be used
to deal with this congestion externality. The stock, still, for all intents, has no
spatial dimension. Most of the non-renewable literature has continued to model it
as such. Long (1974) deals with substantively the same problem as Brown, but from
the perspective of non-renewable resources. |Long| (1975) equates the common pool
externality with the threat of future resource expropriation, finding that this has the
same affect on recovery as a higher rate of discount: extraction proceeds at a higher
rate, and the resource is exhausted more quickly.

Levhari and Mirman| (1980) retain the assumption that resource stocks are

independent of space, but do model the strategic behavior between two agents given
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a common renewable stock in the presence of dynamic feedback. |Lewis and
Schmalensee| (1980) consider similar strategic behavior on the part of multiple
producers from a non-renewable perspective, but without common pool or dynamic
feedback. Instead, firms are assumed to be able to commit to initial production
plans, which are in Nash equilibrium ( [Levhari and Mirman| (1980) compute
dynamic reaction functions so that there is a Nash Equilibrium at each point in
time). Reinganum and Stokey (1985)) model a common pool with both plan
commitment and dynamic feedback. The authors find that the length of contract
commitment can be an important avenue for addressing the common pool. As the
the period of contractual commitment approaches zero, howewer, the agents extract
all of the resource instantaneously.

The spatial dynamic aspects of extraction have been more realistically dealt with
in the groundwater literature, albeit with less emphasis on the strategic interactions
of producers. Neumann! (1972) develops a single-celled aquifer where the aquifer’s
response to pumping is not instantaneous. |Alley and Schefter| (1987)), fearing that a
single-cell aquifer exaggerates the common pool problem, build a multiple cell model
that effectively slows the lateral movement of water. The qualitative results of the
multi-cell model are identical to the single cell, since any water savings alters the
gradient in favor of neighbors. Brozovic et al.| (2006 builds a model that explicitly
accounts for the spatial distribution of water users, as well as their history of
extraction, finding such assumptions make the resource less public. The authors
then compare the model to traditional single-cell aquifers and show that predictions

can diverge.

Empirical Findings

This section review empirical findings related to the Hotelling model. The Hotelling

framework lends itself to a variety of frameworks for empirical tests, including via
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structural estimation from restricted cost-functions, asset arbitrage models, time
series analyses of market prices, and exploitation of what is known as the Hotelling
valuation principle. I examine each of these methods in turn. The results are
decidedly mixed, and are based on a variety of nonrenewable resource data.

Halvorsen and Smith! (1991) and |Chermak and Patrick (2001 employ the
restricted cost function approach. One implication of Hotelling’s theory is that the
value of the resource in situ should rise at the rate of interest. In the restricted cost
function approach this hypothesis is implemented as a parametric restriction on an
estimated cost function. An unrestricted cost function is also estimated, and a
Hausman test is used to determine whether the restriction is valid.

In particular, these two papers take advantage of the vertical integration of
many resource companies. The identification strategy is based on companies that
produce both intermediate and final goods. The intermediate good is extracted
from the ground and then some processing takes place at the wellhead before the
final good is put in the pipeline and sold. The price of the intermediate transaction
is not directly observed, but the final cost is diminishing in intermediate production.
That is, for any given level of final production, costs are lower when more of the
intermediate input is used up. Both studies observe final and intermediate output.
They can then estimate the price of the intermediate good that results in the
producer choosing to consume the observed value of the intermediate good. The
restricted cost function restricts this intermediate price to rise at the rate of interest.

The weakness of this type of estimation is that errors in estimation of the virtual
cost parameter results in potentially erroneous conclusions about Hotelling’s rule.
Halvoresen and Smith (1991) uses macro data on Canadian metals industry from
1954- 1974 | and reject Hotelling’s rule. They admit that macro data may not be
appropriate, especially in the presence of heterogeneous deposits. Moreover, the

authors recognize that their restriction is based on ex post interest rates, when the
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valid rates are actually ez ante. The authors conclude that Hotelling’s model is not
strictly valid, and the assumptions of complete certainty and perfect arbitrage need
to be relaxed. They also note that substitutes for the resource or discovery of new
stock (Pindyck, 1978, 1980) would shift the price path, and lead to a rejection of
Hotelling’s theory.

Chermak and Patrick (2001) employs micro data and finds no evidence against
Hotelling’s rule. The authors examine 29 natural gas wells from 1987- 1991 to make
only 449 observations, which does not give them much power. The authors do take
engineering considerations seriously, accounting for pressure constraints and reserves
that are dependent on the path of extraction.

Heal and Barrow| (1980) uses a model of asset arbitrage in which resources and
capital assets are explicitly linked. The authors estimate a reduced form equation of
supply and demand for the resource flow which is a function of resource price,
income, and return on the resource relative to return on other assets. The authors
examine the return on copper, lead, tin and zinc from 1965-1977. Krautkraemer
(1998) comments that this sort of model explains mineral price behavior relatively
well. Heal and Barrow find that movement in resource prices are related to a change
in the rate of interest rather than being a function of interest levels as Hotelling’s
theory predicts.

Hotelling’s theory makes predictions about the value of the resource in situ, and
not about the resource price itself. So one must tread carefully in interpreting price
movement in the context of Hotelling’s framework. What cannot be is for price to
have a unit root. A unit root occurs when price is regressed on lagged price and the
coefficient of lagged price is equal to one. This implies the effect of the past shock
never diminishes and the price path never reverts to a stationary trend-it is totally
stochastic. For Hotelling’s theory to hold there must be some deterministic aspect

of price. Lee et al. (2006 runs time series regressions on 11 nonrenewable
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commodity prices from 1870- 1990. Using a new technique, they allow for two
endogenously determined structural breaks. The authors are then able to reject unit
roots for all 11 commodities (using the same data that others had used and found
unit roots). The authors find that prices are trend stationary until a large shock
comes along. Encouragingly, the endogenously determined structural breaks occur
at significant points in history (WWLII and Energy Crisis). |Livernois| (2008)
criticizes the use of long time series since they must be deflated by some price index
as follows, presenting new difficulties.

Miller and Upton| (1985) demonstrates that, as a consequence of the Hotelling
principle, the value of a unit of reserves today depends on current prices and
extraction costs regardless of when the reserves are extracted. This is because,
following the Hotelling principle, the producer must be indifferent between
extracting the resource today and extracting it tomorrow—the present value of
extraction must be the same in all periods. Miller and Upton then regress the value
of a unit of reserves on the net price of extraction. The coefficient should be equal
to one. Costs, which are cumulative in production, decreasing returns to scale, and
non-competitive prices are all allowable and would be incorporated into the
intercept. Taxes are not explicitly included and so the coefficient may be somewhat
less. A weakness is in how Miller and Upton (1985) determines the value of reserves,
which is taken as stock value divided by reserves. Ideally, what is needed is the
value of the lease. Stocks are a problem because many companies are diversified into
other assets besides reserves, and so a correction must be made to the data. After
this Miller and Upton (1985) finds that the Hotelling Valuation Principle (HVP)
does hold for a sample of natural gas and oil producing companies over the period
1979-1981.

In a theoretical exercise, |[Davis and Cairns| (1999) shows that the HVP coefficient

equaling one is an upperbound. This is counterintuitive, since discounted cash flows
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of reserves in general provide a lower bound. The authors criticize Miller and Upton
(1985) for lacking sufficient realism, particularly in regard to engineering and
regulatory constraints and the option value of future production. These
considerations explain the lower coefficients other studies found on Hotelling
Valuation Principle (in the range of 0.5). Berck| (1995)) criticizes Miller and Upton
(1985) for not making allowances for size of reserves. He argues that small scale
extraction and large scale extraction are not the same, nor should they be treated as
such.

Given the failure of Hotelling models to deal with spatial considerations (which
are important in the case of oil and natural gas recovery) it is perhaps not surprising
to find mixed results. Nevertheless, in a working paper, [Pfeiffer and Lin| (2009) are
able to empirically identify spillovers in water extraction from the High-Plains
Aquifer. Instrumenting for neighbor’s production with permitted maximum
production and weighting according to Darcy’s Law, they find externalities to
comprise 2% of extraction. Despite the spatial externalities farmers are found to

extract water in a dynamically optimal manner consistent with Hotelling (1931).

Applied Oil and Gas Research

While the last section has focused on nonrenewable extraction for oil and gas
recovery, extraction is not the only relevant variable. In addition to that, economic
agents and public policy makers have a variety of tools at their disposal to alleviate
common-pool problems, and influence extraction profile of gas and oil. This section
focuses on research particular to the oil and gas industry.

One possible private response to such a common pool problem in the oil and gas
industry is the unitization agreement, whereby leaseholders over a common pool
effectively merge their leases and hire a single operator. Production is then

allocated among leaseholders according to a pre-arranged allocation mechanism;
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Libecap and Smith| (1993) and [Libecap and Smith (1999)) list the characteristics of
these successful unitization agreements. Alternatively, producers may buy out their
competitors or negotiate pro-rationing agreements that limit production. [Libecap
and Wiggins (1984)) considers the determinants of unitization in five oil fields in
Texas and Oklahoma, finding that, barring military occupation, fields with large
numbers of producers face significant barriers. Such contractual failure may be
partly explained by diverging views on lease productivities between producers
(Wiggins and Libecap||1985), or by a heterogeneous resource consisting of two
substances, (Libecap and Smith |1999). Regulations in Texas systematically favor
small landholders (Libecap and Wiggins||1985)), (Libecap|/1989b)) so that government
intervention has been unable to alleviate the problem. When contractual response
fails, lease owners will even split individual leases among competing operators to
increase inflow onto the property (Yuan/2002)

Much of the failure for private response can be attributed to initially diffuse
landholdings (Libecap |1989a). Some of the diffusion may be explained by
exploration. Hendricks and Porter, among others, have undertaken intensive study
of exploration, bidding, and initial land allocation in the Outer Continental Shelf
Auctions of the US Department of the Interior. Of particular interest are [Hendricks
and Porter (1993), [Hendricks and Porter| (1996)) and Lin| (2009). These studies
examine the hazard rates for drilling on OCS wildcat tracts to see if firms are more
likely to drill when drilling occurs on neighboring tracts, thus explaining initial
congestion.

Since oil deposits are spatially correlated, one would expect an informational
externality. Hendricks and Porter (1993) describe a war of attrition resulting from
this externality, where firms have the incentive to wait for neighbors to undertake
the cost of drilling in order to see if the property is worthwhile. The evidence for an

informational externality is mixed in Hendricks and Porter (1993), while Lin (2009),
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having specified what it is to be a neighbor in a different manner, finds against any
such externality. One possible explanation for the failure to find results is the
importance of future production externalities. Waiting to drill is costly: with each

passing day production is lost irrevocably to neighbors.

Conclusion

Such is the present state of research on the oil and natural gas industry. This
dissertation contributes in three ways. First, it explicitly quantifies the physical
wastage of hydrocarbons as a result of common pool externalities. The possibility of
such wastage is discussed extensively by Libecap and Wiggins, but not quantified.
Second, the dissertation demonstrates that partial unitization is effective in abating
spillovers, whereas there is evidence of a race to extract in non-unitized areas.
Finally, the dissertation observes that the distribution of well-productivities is
particularly skewed towards the right-tail. This is important to understand because
the heavy tails have consequences for management, regulation and statistical

analysis.



Chapter III

A REGRESSION DISCONTINUITY APPROACH TO OIL AND
NATURAL GAS REGULATION

Introduction

From their first discovery, oil and natural gas have suffered from externalities in
production.This stems from the nature of the resource. Oil and natural gas exist
jointly in subterranean geological strata, and these strata often span large areas so
that they underlie multiple productive leases. The upshot is that no single producer
has rights to the entire reservoir. Property rights to the resource are assigned
according to the “rule of capture” so legal ownership begins only when the resource
is extracted. Thus we have a classic common-pool resource: rival, but non-exclusive.
Previous literature has illustrated that secure property rights can be used to
minimize production externalities (Libecap and Wiggins/|[1985)) (Wiggins and
Libecap|[1985). The present research uses a quasi-experimental approach to
empirically test these findings. Our results are striking: wells in Oklahoma, where
policies encourage unitization, making property rights more secure, produce
between 3,360 and 4,217 more barrels of oil than comparable wells in Texas.
Common-pool externalities typically lead to too much extraction and the
dissipation of rents with excess capitalization (Gordon|(1954) (Scott|1955) (Hardin
1968)) (Weitzman![1974)) (Brown/[1974). Unitization, where competing producers

contract a single common operator and share profits, is a potential remedy. Kaffine

17
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and Costello (Kaffine and Costello|2011]) demonstrate that in the presence of
common pool externalities, unitization can lead to the first-best outcome. And,
although unitization has been a tool favored mainly by oil and natural gas
producers, it can be used to secure a variety of migratory natural resources,
including wild game and fish. The Chignik Salmon Cooperative of Alaska, the
shiroebi shrimp fishery of Toyama Bay, Japan provide salient examples of unitization
concepts applied in fisheries (Costello and Deacon [2007). In oil and natural gas
production, where cumulative recovery depends on the rate of extraction, a race to
extract can be particularly damaging. The common-pool externality results not
only in economic inefficiency, but also limits physical recovery.

Texas is widely known to suffer from common-pool externalities due to
regulations that are biased in favor of small landowners. Oklahoma, in contrast, has
been more effective in securing the property rights of producers (Libecap and
Wiggins||1985). By comparing wells in Oklahoma to similar wells in Texas, we find
Oklahoma producers are more successful in terms of cumulative oil recovery than
their Texas counterparts. This is because Oklahoma producers extract at a slower,
more sustainable rate. These results are driven by the difference in regulatory policy.

The paper is organized as follows. In section 2 we provide background on the
nature of oil and natural gas production and summarize previous literature. Section
3 describes the relevant policy differences between Oklahoma and Texas. Section 4
describes our regression discontinuity design. In section 5 we detail our unique data
set made available by the HPDI Corporation. Section 6 presents results; a summary

and conclusion is found in the final section, section 7.

Background

Oil and natural gas in situ exist jointly under phenomenal pressures thousands of

feet below the surface. The tremendous weight of the overlying sediment forces the
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oil and natural gas into solution within the pore space of the rock. In “primary
recovery,” a well is drilled, creating an area of low pressure in the resource bearing
strata. It is the expansion of the compressed gas that forces the mixture through
the pore space of the rock, toward the volume of low pressure at the well face, then
drives the resource up the well to the surface. The compressed gas provides the
energy for recovery.

Pressure drawdown and production are the same thing (Nind |1981)). Increasing
the rate of production means lowering the pressure at the well face. As the reservoir
ages the pressure across the reservoir tends toward equilibrium and thus falls toward
the pressure of the well face. The pressure at which natural gas leaves solution is
called the “bubble point.” When the pressure at the well face is below the bubble
point, the reservoir pressure may also fall below the bubble point, which is
particularly damaging to the reservoir in terms of productivity. The reason is that
at the bubble point natural gas leaves solution— it literally bubbles out. “Then,
because gas is lighter and travels more quickly than oil, it is expelled first, leading
to a too-rapid decline in subsurface pressure per barrel of oil produced. As gas is
drawn off in condensate fields, it clogs pore space in the reservoir, permanently
trapping large quantities of 0il.” (Libecap and Wiggins |1985)).

In “secondary recovery,” producers inject water, carbon dioxide, and other
substances, into the resource bearing strata to maintain the field pressure, or to
drive the resource to the producing wells. In this stage of recovery, it is often the
case that wells formerly used for production are switched over to injection.

In fields with many competing producers, recovery is limited along two
pathways. First, extraction proceeds too rapidly, leaving large quantities of oil in
the ground. Extraction problems with endogenous stocks have been modeled by
(Chermak and Patrick [1995)) (Chermak and Patrick/ 2001)). Second, because of the

common-pool externality, we can expect too little effort in secondary recovery
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because the benefits of injection may accrue to neighboring producers (Wiggins and
Libecap|[1985). Thus failure to address the common-pool externality may result in
large losses in potential recovery over the life of the well.

Leaseholders can privately deal with the externality through outright purchase,
unitization, or pro-rationing agreements in production (Libecap and Wiggins[1984).
Perhaps the most promising recourse for producers is the unitization agreement,
whereupon the different leaseholders come together to contract a single operator to
produce the field. The profits from production are then shared by the leaseholders
according to the terms of the unitization agreement. Not surprisingly, the chances of
settlement depend on the concentration of ownership (Libecap and Wiggins|/1984),
with more concentrated fields quicker to reach an agreement.

Libecap and Wiggins (Libecap and Wiggins||1985) consider unitization under the
different regulatory environments of Wyoming, Oklahoma, and Texas. In Wyoming,
where drilling is often on federal leases, unitization is encouraged prior to
production. Oklahoma has compulsory unitization whereby, when 63% of
leaseholders (weighted by acreage on the field) agree to unitize, the field must then
be produced as a unit. In Texas, unitization agreements must be unanimous.
Libecap and Wiggins find that the institutional arrangements do matter, with a
much higher percentage of Wyoming wells unitized than Oklahoma, and, in turn, a
higher percentage of Oklahoma wells unitized than in Texas. Unitization rates in
Table 1 are consistent with the findings of Libecap and Wiggins. We see from the
second column that for a sample of wells within five miles of the Texas-Oklahoma
border at 36.5° latitude, the unitization rate of Oklahoma is at 15 %, while Texas
has no units.

The difference in unitization across Oklahoma and Texas brings two further
questions: (1) why is it that Oklahoma was able to pass legislation making it more

easy to unitize than Texas, and (2), is this regulation really welfare improving.
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Libecap (Libecap|[1989b)) discusses the different political histories of Texas and
Oklahoma. Relative to federal lands, which had large acreages, Texas and
Oklahoma had a large number of small landholders. Oklahoma was, however, able
to pass well spacing regulations in 1935 and compulsory pooling regulations in 1941,
paving the way for Oklahoma’s first unitization law in 1945] The average Texas
firm in 1930 was only 63 % the size of the average Oklahoma firm (Libecap |1989a))
and so was even more resistant to unitization. Compounding this was the discovery
of the East Texas Field resulting in a boom in small producers. Prorationing
regulations were implemented on a per well basis, and so did little to rationalize
drilling to make it easier for future unitization. Owing to the large number of small
firms, prorationing regulations were favored, and no compulsory unitization
regulations were ever passed (Libecap|[1989a).

One can also dig deeper into the question of why, if unitization is welfare
improving, the parties involved cannot contract to solve the problem. Employing
Demsetzian logic, property rights are only established when the value of doing so
exceeds the cost (Demsetz||1967). Economist have taken it for granted that the costs
for establishing rights for the resource in situ is large, which is why rights to the
resource were given according to the rule of capture in the first place (Lueck| 1995).
Furthermore, the nature of oil and natural gas recovery, the fact that seismic
technology is imperfect and that the extent and nature of the resource can only be
know by drilling wells, etc., provides good reason to believe that contracting is
costly. Our paper attempts to shed light on the other side-to quantify in physical
terms the benefits of unitization. Regression discontinuity design allows us to
identify the treatment effect of Oklahoma ’s unitization policy, which results in
between 3,360 and 4,217 bbls more cumulative oil recovery (relative to Texas), with

no significant difference in natural gas recovery. This is relative to a Texas fitted

3The first unitization law was repealed as well as challenged in court, the 63 % threshold passed
in 1963, see (Libecap|[1989al)), chapter 6.
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production at the border of 1,026 bbls of oil. Wells along the border seem to be
slightly less productive than in terms of oil than Texas wells, Kellogg finds that

median lifetime production to 8,625 bbls (Kellogg|2010)).

Policy

The failure to account for the externalities in production leaves the potential for
government intervention. In both states, the production of hydrocarbons is highly
regulated. Petroleum production in Texas is overseen by the Texas Railroad
Commission; in Oklahoma, by the Oil and Gas Conservation Division. Both
agencies use production quotas and royalties, as well as command and control

policies. We examine each of these measures in turn.

Command and Control

Command and control type policies include a great variety of regulations] Of these
regulations, well spacing regulations and regulations on the inclination of drilling
(slant and horizontal drilling) are the most relevant in addressing issues of common
pool production.

To prevent outright theft, neither Texas nor Oklahoma allows for slant drilling
without special permission. Texas has a statewide spacing rule, which disallows the
drilling of wells within 467" of a property line or within 1200’ of an existing well.
While Oklahoma has no explicit spacing requirement, wells must be located at the
center of standard leases, and according to the size of the lease, must be a certain
minimum distance from the nearest border. For a standard 40-acre lease ]
Oklahoma wells must lie at least 330" from the border. Thus, it is not immediately

clear which spacing regulations are more onerous. Since we have restricted our data

4Texas Administrative Code, Title XVI, Part 1, Chapter 3; Oklahoma Administrative Code,
Title 165: Chapter 10

50ur definition of standard is as defined in the Texas regulatory code: Texas Administrative
Code, Title XVI, Part 1, Chapter 3
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sample to be of equal areas on either side of the border, we can sum the number of
wells within a given latitude, to get an idea of well density. Oklahoma has a much
higher well density. Within two miles of the border, Oklahoma drilled 1104 wells to
Texas’s 658. Within half a mile of the border, Oklahoma drilled 217 wells to 166 in
Texas. Combining the figures translates into a density difference of 0.75 to 1.64
wells per square mile between Oklahoma and Texas. Given the higher density of
wells in Oklahoma along the border, we would expect this to have a downward bias
on our empirical estimates of the treatment effect of unitization because each well in
Oklahoma sweeps out less area. This lends further credence to the positive impact
we observe in our analysis.

Well spacing exceptions may be granted to protect correlative rights or to
prevent resource waste. In the former case, a producer would be allowed to drill
closer to a property line if drilling according to regulation would result in
substantial portion of the resource underlying the lease to be captured by
neighboring producers. In the latter case, exception may be granted if the oil could
not otherwise be recovered. Yet these two goals frequently conflict when production
tracts are small, as in the case of Texas. Until the decision Halbouty vs. Texas
Railroad Commission (1962), small leaseholders were given a greater production
allowable, to cover the costs of drilling plus a reasonable profit, even at the expense
of neighbors’ production (Lowe |2003). The alternative to well spacing exceptions,

preferred by most states, is forced pooling.

Taxes and Quotas

Monthly quotas on production are assigned in both states as a percentage of a
maximum allowable production for the well. Maximum allowable production is
based on the depth of the well, and the lease size, with these allocation guidelines

being similar in both Oklahoma and Texas. Texas’s maximum allowables are more
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restrictive for substandard leases, less so for standard leases and larger ff| Because of
the mature stage of development of the fields in the analysis, quotas are not likely
to bind.

An important difference between the two states are the royalties on natural gas
and oil production. In Oklahoma, these royalties are 7 % of the value of production,
for both natural gas and oil. In Texas, natural gas is subject to a royalty of 7.5%
the value of production, while oil is subject to a lower royalty of 4.6% the value.
While these taxes are not consistent with Pigouvian taxation to address the
common pool externalities (Dasgupta and Heal |1979), economic theory predicts
royalties slow the rate of extraction (Gamponia and Mendelsohn |1985)).
Nevertheless, given the endogeneity of the petroleum reserves, the joint nature of
production, the presence of common-pool externalities and the relative difference of

the royalties, it is not entirely clear the effect that royalties will have in our context.

Policy Analysis via Regression Discontinuity

Oklahoma and Texas both suffer from common-pool production externalities, but
have implemented different policy measures to mitigate these damages. Oklahoma,
through its emphasis on securing property rights through unitization should have
slower rates of extraction than Texas (Long|1975), and because of the physical
dynamics of production discussed earlier, greater cumulative recovery. Lueck and
Schenewerk (Lueck and Schenewerk||1996) model and simulate how unitization
affects the trajectories of extraction. Their model leads to the following hypothesis:
(1) production in unitized reservoirs will be tilted toward the future; (2) for a single
reservoir the production rate should decline after a unit is formed; (3) recovery
should be greater in unitized reservoirs; (4) the productive life of unitized reservoirs

should be longer; (5) for nonunitized reservoirs, cumulative recovery should decline

6Specifics are available upon request.
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in the number of firms. In this paper, we are able to test hypotheses (1), (3) and (4)
using production data from Texas

In order to test these hypotheses, it would be ideal to set up an experiment with
exposure to the different policies (the experimental treatment) being random across
the different wells. The randomization gives a valid counterfactual so we may know
what would have occurred in the absence of the policy. Wells that are otherwise
identical could be randomly exposed to different property rights schemes in an effort
to scientifically identify the impact property rights have on production profiles and
cumulative extraction. By comparing wells across Oklahoma and Texas we can
identify the impact of unitization. We would not, however, want to compare all wells
in Oklahoma to all wells in Texas, as these populations are likely to have different
unobserved geological characteristics. Identification of the treatment effect of policy
requires wells be comparable along both observed and unobserved variables.

Regression discontinuity design provides the framework to address comparability
concerns. Since oil and natural gas production are geologically driven, and geology
is spatial, wells that are near one another in space are comparable. By looking at
the border region of two states, we may find that wells close together, and therefore
similar, are exposed to different policy treatments. For this study, we examine wells
in Texas and Oklahoma along 36.5° latitude.

Define the treatment as exposure to Oklahoma’s policies. That is, OK =1 for
wells lying in Oklahoma, and OK = 0 for wells lying in Texas. We can then think of
the potential productivity for a particular well, 7, whether it is exposed to the
Oklahoma policies or to the Texas policies. Letting Y; being some measure of

production, we have,

Y;(0) if OK; =0
V(1) if OK; = 1.
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Yi(1) — Y;(0) gives the treatment effect of Oklahoma’s policy relative to that of
Texas for well 7. While we can think of the potential outcomes for well 7 under each
treatment, in the real world we cannot simultaneously expose well ¢ to both the
Texas and Oklahoma treatments; therefore, we can never actually observe the
difference. Instead, we must find the average treatment effect Y (1) — Y'(0) over
some population of wells. For identification of the average treatment effect (ATE) to
be valid, those wells receiving the treatment must be comparable in all respects to
those wells that do not receive the treatment, excepting for the dimensions of
treatment and outcome.

Regression discontinuity design provides the framework for choosing the
population over which to calculate the average treatment effect. Wells that are close
together are geologically similar, and should therefore be similarly productive. Let
X; be the coordinates of well 7 in space, in particular, its latitude. Near the border,
where X = ¢ = 36.5° the only difference in the wells is the treatment to which they
are exposed: OK =1 when z > ¢ and OK = 0 when z < ¢. The average treatment

effect is then (Lee and Lemieux|2010) (Imbens and Lemieux|2008),

ATE =lim EYi(1)le < X; < e+ =lim E[Y;(0)|e > X; > ete] = B[Yi(1)-Y;(0)[X; = ¢|.

The equation states that by examining wells close enough to the border (within an
epsilon) we have identified the average treatment effect. Identification of the ATE is
based on the assumption of continuity of the conditional expectations at the border,
E[Y(1)|X = c] and E[Y(0)|X = ¢] (Imbens and Lemieux|2008)). Intuitively, this
means that moving an Oklahoma well slightly south into Texas while maintaining
OK =1 cannot cause any jump in outcomes. The same must hold true for Texas

wells exposed to the Texas treatment but moved slightly north into Oklahoma. An
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alternative way of stating this assumption is that the border at 36.5° must be

exogenous to the production of hydrocarbons.ﬂ

Data

The data for our analysis is provided by HPDI Corporation, which collects,
compiles, and publishes oil and natural gas production data for 31 US states, 4
Canadian provinces and the Federal offshore areas in the Gulf of Mexico and the
Pacific. We limit the analysis to production in the Anadarko basin of Texas and
Oklahoma to wells within five miles of the Oklahoma-Texas border and within a
longitude of [—100°, —101.9°]F] Figure 1 displays the well locations within our
sample. The sample includes monthly observations of production from 1980-2009.
The Anadarko Basin is in a mature state of exploration and development for what
the USGS labels “conventional resources”, where the natural gas and oil have
accumulated in discrete traps (USGS|2011).

Oklahoma production observations are entirely at the well level. Texas
production, however, is reported at the lease level for wells classified as producing
oil, and at the well level for wells classified as producing natural gas. In order to
make the data sets comparable, we transform Texas lease production data into well
level data by assigning to the lease the average production per active well,
appropriately weighted by the number of wells on the lease. Gas production
predominates in the Anadarko basin; over 80% of the wells in both states are
classified as natural gas.

Price data are obtained from Haver Analytics. For oil, we use the Cushing, OK

spot price in dollars/barrel; for natural gas, we use the EIA computed US Natural

"This border at 36.5° or 36°30' is a relic of the Missouri Compromise of 1820. As such, it was
set long before o0il was discovered in Texas or Oklahoma.
8West of -101.9 longitude wells get sparse, and lie mostly in Oklahoma.
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Figure 1: Well locations.

Gas Price in nominal dollars per thousand cubic feet. Both prices are then deflated
by the Consumer Price Index.

Table 1 provides means for variables of interest for a variety of samples;
standard deviations for each variable are reported below and highlighted in gray.
Columns represent four subsamples: the first two columns are wells located within a
half-mile of the border for Texas and Oklahoma, respectively; the next two columns
are for wells lying within five miles of the border; the fifth and sixth columns are a
sample of wells within the first two years of production and within five miles of the
border; the final two columns are observations of a well’s last reported production

for wells within five miles of the border.



Table 1: Summary statistics: Texas-Oklahoma border

Half-mile 5-mile First production Last production
X OK TX OK X OK TX OK
log gas 6.62 5.15 6.51 6.39 7.36 6.94 3.95 2.63
2.07 3.15 2.11 2.53 2.61 3.08 2.63 2.76
log oil 241 241 2.55 1.12 3.54 2.24 1.39 1.85
2.36 2.75 2.36 2.18 2.92 3.01 1.82 2.31
log monthly revenue 8.09 7.55 8.02 7.81 9.17 8.77 5.53 5.86
1.31 2.23 1.45 1.71 1.77 2.04 2.18 2.43
well depth (ft) 7315.8 7635.8 7534.0 6295.1 7825.9 7525.3 7846.4 7492.1
1643.4 1208.3 1678.4 2419.5 1852.5 1646.7 1614.4 1347.0
months produced 122.0 120.0 114.5 138.4 11.2 11.3 106.9 160.3
89.3 84.9 88.1 96.7 6.9 6.9 87.5 106.0
longitude -100.77 -100.72 -100.72 -100.91 -100.75 -100.78 -100.71 -100.69
0.53 0.41 0.49 0.55 0.52 0.57 0.47 0.44
cumulative revenue 13.22 13.26 13.17 13.15 11.78 11.33 12.51 12.55
1.34 1.82 1.45 1.56 1.89 2.12 1.90 1.99
unitization rate 0 0.36 0 0.15 0 0.10 0 0.18
0 0.48 0 0.36 0 0.30 0 0.38
log cumulative oil 6.43 8.02 6.99 4.96 9.74 9.35 10.56 9.16
3.97 3.75 3.68 4.30 2.97 3.59 2.96 4.43
log cumulative gas 11.59 10.61 11.50 11.48 5.90 4.38 6.80 7.13
2.38 3.36 2.30 3.10 3.63 3.94 3.62 3.61
log gas-oil ratio (gor)  4.21 2.74 3.96 5.28 3.82 4.70 2.56 0.77
3.49 4.56 3.38 3.93 3.88 4.66 3.09 4.55
observations 12560 12427 132129 189038 13050 10162 493 585

Notes: Sample means for the variables are above and standard deviations are below, highlighted in gray. Four samples are presented: the
half-mile sample represents wells within a half-mile of the border; the five-mile sample, wells within five miles of the border. The table
contains a sample of wells during their first 2 years of production, and a sample of wells on the last month of production. Log gas it the
log of natural gas production per well (units are log(thousand cubic feet)) , log oil is oil production in log(barrels). Log monthly revenues
is real revenue from monthly oil and gas production. First seen is the day of first production, units are days withs Jan. 1, 1960=0.
Months produced is the number of months a well has been in active production. Longitude is the longitude of the well, in decimal degrees.
Cumulatives represents undiscounted sums over the entire production history, and are then logged. Unitization rate is the percent of wells
that are unitized. Log gas to oil ratio is monthly gas production divided by monthly oil production (thousands of cubic feet/ barrels)
which is then logged. Texas observations represent lease average per well, with averages weighted by wells/lease.

Looking first at the half-mile sample, it is apparent from the means of log gas
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and log oil production, as well as gas to oil ratio (GOR)E that Oklahoma produces

more oil per unit of gas than does Texas. Also note that the average age of a well

(months produced) is fairly close across the states—-it differs by only two months.

These statistics are consistent with the idea that Oklahoma wells are produced more

sustainably: gas is kept in the reservoir to maintain pressure. Oklahoma also leads

Texas in cumulative oil recovery, and trails in cumulative natural gas recovery. Well

depth is the total depth of the well (the deepest well in the case of lease-level data).

Longitude is the longitudinal coordinate of the well in decimal degrees.

9This is gas-oil ratio measured at the well-head: log gas production minus log oil production
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Oklahoma’s regulations lead us to expect Oklahoma wells to have longer life
spans, to produce at a lower rate of production and GOR early on, but to have
greater cumulative recovery by the time the well is finally exhausted. To examine
these hypotheses, samples of wells both at the beginning and end of life are
required. These samples are provided in the last two columns of Table 1.
Particularly striking in these cases is the discontinuity in unitization.

For the sample of wells within the first two years of production, we see
Oklahoma wells are produced at a lower rate in terms of monthly gas and oil
production, although the ratio of these two is slightly higher in Oklahoma. As with
the full five-mile sample, the sample of young Oklahoma wells is shallower and more
westerly than the young Texas sample.

For the sample of wells in the final month of production, notice that the
Oklahoma wells are more than thirty months older than the sample of Texas wells.
The sample of exhausted Texas wells are younger on average than the wells in either
the half-mile or the five-mile sample. For both states production rates are lower
than for the sample of young wells, which is expected. In terms of cumulative
recovery, Oklahoma leads in gas, Texas in oil, although the difference in oil recovery

is not significant.

Results

Parametric Specifications

Summary statistics in the previous section presage the main findings, but do not tell
a causal story in themselves. Graphical analysis indicates that wells become
shallower, less productive and more gas-producing as we move to more northerly

latitudes. To control for the spatial heterogeneity and to implement the regression
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discontinuity design we estimate

}/;t:Oé—{—B*XZ—{—T*OKl—F’}/t—i—En (2)

where X; is a vector of polynomials of distance to the border interacted with the
dummy variable for treatment, OK, allowing estimated slope coefficients to differ on
either side of the border. The parameter 7 gives the average treatment effect of the
Oklahoma’s policy relative to those of Texas; v are time-specific fixed effects.
Additionally, to control for unobserved heterogeneity in reservoir geology, reservoir
fixed effects can be added. To determine the highest order distance polynomial in
the specification, we begin with the first-order polynomial, adding higher order
polynomials so long as F-tests indicate their joint significance.

Table [2| presents parametric results for nine different dependent variables using
the full sample of wells within five miles of the bordeff?} Only the coefficients for
average treatment effects are shown; their robust standard errors clustered at the
lease level are reported in parentheses underneath. Without controlling for reservoir
fixed effects, in all cases first order polynomials for distance are the preferred
specification. Results indicate Oklahoma wells produce almost 60% less gas and an
order of magnitude less oil. Not surprisingly, when output is weighted by their
respective prices and summed to arrive at log monthly revenues, Oklahoma wells
generate significantly less revenue. As wells age, production tends to decline, and
this explains some of the difference in production: the coefficient on months
produced indicate that at the border, Oklahoma wells have been producing for 619
more days than wells in Texas. With the wells in Oklahoma almost two years older,

it is not surprising that they would be less productive. Yet, despite the Oklahoma

10The analysis of this chapter and the next acknowledges that the independent variables are not
necessarily independent from each other, i.e., that there is simultaneity in the production of oil and
natural gas, which is not explicitly specified.
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wells being older, they recover less in terms of cumulative oil (significant at the 10

% level).

Table 2: ATE of Oklahoma policy: full sample

Polynomial Order

(1)

(1) (2) (3) (4)

DEP. VAR.
log gas -0.597** -1.432%%% -0.912  -1.882%**  _2 404%**
(0.238) (0.518) (0.604) (0.552) (0.516)
log oil -1.137%** -1.024%**
(0.331) (0.383)
log rev -0.549%** -0.932%*
(0.162) (0.369)
log cum rev -0.178 -0.183
(0.172) (0.299)
log cum gas -0.35 -1.096** -0.351
(0.24) (0.486) (0.559)
log cum oil -0.941* -0.010
(0.559) (0.546)
well depth -866.322%**  -316.849*
(250.139)  (168.987)
longitude -0.154%* -0.103
(0.065) (0.064)
produced time 619.538***  1,175.506%**
(177.667) (202.353)
reservoir FEs No Yes Yes Yes Yes
observations 321167

Notes: The columns represent average treatment effects estimates from OLS regression for different orders of
polynomial distance interactions. Rows represent different independent variables. Robust standard errors clustered
at the lease level are reported in parentheses. Only specifications where the polynomials are jointly significant are

reported.

The parametric regressions make possible a specification test. For the regression

discontinuity design to be valid samples should be comparable both along

observables as well as unobservables. While it is impossible to test for the

comparability of unobservables, spatial variables measuring the longitude and depth

of the well are observed and, by the same arguments made for the exogeneity of

latitude, should be exogenous to treatment. A simple falsification test is to take

these other dimensions in space and plug them into the parametric specification to
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see if there is a discontinuity. The statistically significant estimates for the ATE for
both longitude and well depth indicate that Oklahoma and Texas samples are
observably different.

Reservoir specific fixed effects do not qualitatively change estimates in terms of
monthly production. Controlling for reservoir differences does, however, seem to
make the samples slightly more comparable in terms of longitude and well depth,
although the treatment effect for well depth remains significant at the 10% level.
Controlling for reservoir fixed effects, we no longer observe differences in either
cumulative oil or natural gas recovery.

Reservoir dynamics and economic incentives predict that Oklahoma wells should
be produced at a lower rate early in the life of the well, and that this should result
in enhanced cumulative recovery and a longer well life relative to Texas (Lueck and
Schenewerk|[1996)). By failing to control for well age, it is impossible to determine
the impact of policy. Therefore we examine two smaller samples: wells in the first
two years of production, and a sample of wells on the final day of production.

Table |3| presents parametric specifications for the sample of young wells. The
results are qualitatively similar whether reservoir fixed effects are included.
Falsification tests on longitude and well depth come up clean, in that the parameter
for ATE is insignificant at conventional levels. Second order terms are needed for
log gas and log cumulative gas production, and, when added, result in an
insignificant estimate for the average treatment effect. First order distance
polynomials are sufficient for log oil, log cumulative oil production, log revenue and
log cumulative revenue. While all the coefficients are negative, only the coefficients
on monthly and cumulative revenues are significant. This evidence indicates that
early in the life of a well Oklahoma wells are produced more slowly in the joint

terms of oil and natural gas and price. It may be the case that Texas wells are
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completed more pro-cyclically, so that they take advantage of high prices early in

the life of the well, when it is the most productive.

Table 3: ATE of Oklahoma policy: young sample with reservoir

fixed effects

Polynomial Order

(1)

(2)

(1)

(2)

DEP. VAR.
log gas -0.911%%%  _0.317  -1.938%** _0.912
(0.347) (0.545) (0.420) (0.613)
log oil -0.515 -0.799
(0.433) (0.545)
log rev -0.827*** -1.282%*%
(0.276) (0.413)
log cum rev -0.803*** -1.259%%%*
(0.278) (0.412)
log cum gas -0.763* -0.074  -1.922*%** 0.755
(0.402) (0.627) (0.488) (0.702)
log cum oil -0.141 -0.598
(0.531) (0.675)
well depth 232.160 -138.284
(209.045) (163.322)
completion -4.810 -91.892
(54.610) (63.979)
longitude 0.040 -0.075
(0.065) (0.073)
reservoir FEs No No Yes Yes
observations 23212

Notes: The columns represent average treatment effects estimates from OLS regres-
sion for different orders of polynomial distance interactions. Rows represent different
independent variables. Robust standard errors clustered at the lease level are reported
in parentheses. Only specifications where the polynomials are jointly significant are

reported.

Table |4] contains findings of the parametric specification for the sample of wells

on their final day of reported production. This sample is particularly useful for

examining cumulative recovery, both in terms of revenue and quantity. Oklahoma

recovers significantly more oil in cumulative terms, with no evident impact on gas

recovery. What is perplexing is the difference in cumulative quantities does not

show up significantly in terms of cumulative revenues. Again, if Texan operators are
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particularly successful at drilling and rapidly producing wells when prices are high,
there may be no difference in cumulative revenue, while there is in terms of quantity
recovered. The sample of old wells is consistent with this story: Oklahoma recovers
much more oil, but there is no statistical difference in cumulative revenue. As in the
sample of young wells, the sample of old wells passes falsification tests based on
exogenous variables: there is no border discontinuity in the depths of wells or in
their longitude. Finally, wells appear to be decommissioned at the same age, in

contrast to what summary statistics had indicated.

Table 4: ATE of Oklahoma policy: old sample with reservoir fixed effects

Polynomial Order (1) (2) (3) (1) (2)
DEP. VAR.
log gas -2.186%** -2.419%**
(0.456) (0.601)
log oil 1.384%** 1.089%**
(0.321) (0.399)
log rev 0.734%* 0.393
(0.319) (0.426)
log cum rev 0.261 0.170 0.640 0.401
(0.314) (0.442) (0.579) (0.462)
log cum gas -0.873 -1.301
(0.618) (0.863)
log cum oil 2.721%%* 2.135%%*
(0.649) (0.713)
well depth 254.181 -156.054
(256.424) (258.131)
longitude 0.326***  0.117 0.040
(0.075) (0.111) (0.074)
prod. time 795.856**  -354.397 1,252.190**  332.347
(377.662)  (509.033) (503.883) (654.543)
reservoir FEs No No No Yes Yes
observations 1078

Notes: The columns represent average treatment effects estimates from OLS regression for different orders
of polynomial distance interactions. Rows represent different independent variables. Robust standard errors
clustered at the lease level are reported in parentheses. Only specifications where the polynomials are jointly
significant are reported.
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Nonparametric Specifications

Parametric regressions have the weakness that they use data far from the border in
order to estimate the discontinuity, adding potential bias. Regression discontinuity
design thus lends itself to nonparametric methods (Lee and Lemieux|2010). For the
purposes of robustness we employ two nonparametric estimators: local linear, and

rectangular kernel. The local linear estimator is given according to

minaomﬁok Z (YZ — QoK — BOK(Xi - C))2 (3)
i:c<X;<c+h
and
MiNarysex >, (Vi—arx — Brx(Xi — ). (4)
iic—h<X;<c

The average treatment effect is then calculated aq]

T =0oK — OrXx. (5)

The average treatment effect for the rectangular kernel estimator is given by

S szlchZ*K(%h_c> B szz<cY;*K(xl}:c) (6)
Zi:mizc K(%}: Zi::pi<c K(xl};

where K () represents the rectangular kernel. Each of these estimators requires
choosing a bandwidth, h. To show robustness, we use bandwidths of a half-mile and
of two miles. Additionally, we perform estimates based on the optimal bandwidth

that minimizes the cross validation criterion,

CVy () = 5 SO = V(X ) 7

HFor local linear estimates the fits are calculated at the border, i.e., x=c, so that only the intercept
terms are used. See (Imbens and Lemieux]/2008)).
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This procedure is very close to minimizing the estimate of residual variance, except
for two alterations. First, in estimating ?_i(Xi, h), the ith observation must be left
out, else the bandwidth would shrink until the predictions perfectly match the data
(Yatchew|1998). Second, the goal is to choose h, so as to get the best possible
estimates at the border. But to make predictions for Y(1) and Y'(0) at the border,
we can use observations from only one side. Only observations to the north are used
for predicting Y (1) (observations in Oklahoma); Only observations to the south in

~

predicting Y (0) (observations in Texas). Therefore, in fitting Y'(1) , we use
observations only to the north, in fitting YEO)_Z. we use observations only to the
south. This is the procedure used by Ludwig and Miller (Ludwig and Miller|2007)
and recommended by Imbens and Lemieux (Imbens and Lemieux |2008)).

Also, adapted from Imbens and Lemieux (Imbens and Lemieux|2008), the

asymptotic distribution of the average treatment effect is given by

4
\/ﬂ(f' — To) — N(07 fX—(C)(O-%OK + U%’TX)

where f,(c) is the an estimate of the density. Consistent estimates of the variances

and the density are given by

) Loy e
Yrx J

Nurx |

ol = 1 g €2
Yok J

N,
h,OK Jjie<Xj<ct+h

- Nhorx + Nurx
Jx(@) = ONh

where, €; are the estimated residuals.
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Nonparametric estimates for the average treatment effect of Oklahoma policy for
the sample of young wells are given in Table [5] Before estimation, the sample is
averaged over the first two years of production for each lease, resulting in 1,079
observations. Each column represents a different bandwidth and/or specification.
We find that at the border, and across all bandwidths and specifications, there is no
significant difference in either longitude or depth of well-two variables that we
expect to vary exogenously with policy. Also, by design, there is no significant
difference in the time the well is produced (measured here in days). Treatment
effects for measures of the dependent variables of interest, log oil and log gas
production, log cumulative revenues and log cumulative production are nearly
always negative. The variables that are particularly important are log gas and log
oil. Treatment effects of Oklahoma policy for log gas range from an insignificant
-20.3 % to a large and highly significant difference of -364 %, ( 1,966 MCF of
natural gas, evaluated at the border). In circumstances where the local linear and
Nadayara-Watson-style rectangular kernel give different estimates, it is the local
linear estimates that are more reliable, the rectangular kernel estimates more likely

to be biased (Fan//1992).
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Figure 2: Local linear regression: sample of first 24 months of production, endogenous
variables. Solid lines represent the fitted model based on local linear estimates with two-
mile bandwidth. Confidence intervals based on bootstrapped standard errors from 500
draws are represented with dashed lines. Texas is to the left in red, Oklahoma to the right,
in blue.

In terms of log oil the rectangular kernel and local linear estimates are closer
together, and with one exception, negative in sign. No bandwidth or estimate gives
significant difference between Texas and Oklahoma oil production. These results
combined with those of log gas indicate that, while there is little difference in initial
production of oil between Oklahoma and Texas, Texas owners do seem to bleed

away more gas in this initial phase of recovery.



41

Well depth Longitude
8 3
S S 4
T
o o
S _| L N
g R 2 87
[0} (o] -~
o | g I
g | 2
e o
~ o
I
36.45 36.50 36.55 36.45 36.50 36.55
latitude latitude
Local Linear Fit Bandwidth= 2 mi Local Linear Fit Bandwidth= 2 mi
Produced Time Log Cumulative Revenue
3 - ©
® S £
£ g 5 -
(]
g 2 2T
& © 3 i
o | 8
S — e |
® -
36.45 36.50 36.55 36.45 36.50 36.55
latitude latitude
!htpb] Local Linear Fit Bandwidth= 2 mi Local Linear Fit Bandwidth= 2 mi

Figure 3: Local linear regression: sample of first 24 months of production, exogenous vari-
ables. Solid lines represent the fitted model based on local linear estimates with two-mile
bandwidth. Confidence intervals based on bootstrapped standard errors from 500 draws are
represented with dashed lines. Texas is to the left in red, Oklahoma to the right, in blue.
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From Section 2, the initial degassing of wells should have consequences for
cumulative recovery. Indeed, Table [6] shows the impact on cumulative oil recovery is
large. Significant estimates (at conventional levels) indicate that Oklahoma recovers
between 145.3% and 159.0 % more oil than Texas. Moreover, there is no statistical
difference between Oklahoma and Texas in terms of cumulative gas recovery.
Analysis of treatment effect estimates for longitude and well depth show no evidence
that the Texas and Oklahoma samples differ in exogenous observable covariates.
Looking at production on the last day, it also seems clear that the threshold for
production is lower in Oklahoma, as coefficients are again almost uniformly negative
(significantly so for gas). Oklahoma wells are produced significantly longer (around

5 years longer, coefficient estimates are in days).
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Figure 4: Local linear regression: sample of last reported production, endogenous variables.
Solid lines represent the fitted model based on local linear estimates with two-mile band-
width. Confidence intervals based on bootstrapped standard errors from 500 draws are
represented with dashed lines. Texas is to the left in red, Oklahoma to the right, in blue.

Partial Linear Model

In an effort to control for the well age, while estimating the impact of well location
nonparametrically, we estimate a differencing model similar to the Robinson (1988)
partial linear model (Yatchew|1998). In particularly, we estimate the following

equation separately for Oklahoma and Texas,

Yii=a+ 0% Xy + v + f(latitude;) + €. (8)
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Figure 5: Local linear regression: sample of last reported production, exogenous variables.
Solid lines represent the fitted model based on local linear estimates with two-mile band-
width. Confidence intervals based on bootstrapped standard errors from 500 draws are
represented with dashed lines. Texas is to the left in red, Oklahoma to the right, in blue.
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The vector X;; includes well age, the square of well age, longitude, and well depth;
v 18 a vector of year-month dummy variables. It is the function f() that is of
particular interest, as it represents the component of production accounted for by
latitude. The equation is estimated by ordering the data according to latitude and
then estimating § and 7 with the difference estimator (Yatchew |1998) to get the
linear parametersE These parameters in hand, we can then back out fitted values
for f (latitude;) which we smooth with the local linear smoother. Then by taking
the difference for (latitude = 36.5°)— fpy (latitude = 36.5°) we isolate the average
treatment effect, after controlling for differences in well age and depth, which may

confound our results. These treatment effects are presented in Table [7]

Table 7: PLM estimates: full sample

Loc. Lin Loc. Lin.
Bin=1/2 mi. Bin=2 mi.
log gas -2.302%** -0.792
(0.458) (0.459)
log cumulative gas -1.302%** -0.187
(0.486) (0.489)
log oil 0.475 -0.412
(0.396) (0.399)
log cumulative oil  -0.38 -0.206
(0.592) (0.594)
observations 300,946 300,946

Notes:Discontinuity of spatial component of partial linear model
given in equation 7. Fits local-linearly smoothed with a bandwidth
of a half-mile (1st column) and two miles (2nd column).

Under the identification assumption that the productivity of the wells does not
change discontinuously at the border, there should be no difference between the
contribution of latitude to production based on whether the well is in Oklahoma or

Texas. Yet the first column of Table [7] indicates Texas wells are producing more gas.

12The data is ordered by latitude and then differenced by latitude to eliminate the impact of
latitude, any difference in Y must be the result of difference in the other covariates.
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This is consistent with the story of the rapid degassing of wells seen in the sample of

young wells, and reported in Table

False-border test

To illustrate that estimates for average treatment effects at the Oklahoma-Texas
border are attributable to policy and not merely to our spatial identification
strategy, we perform two false-border tests. That is, we test for average treatment
effects across latitudes where there should be none. Significant estimates would cast
doubt on our identification strategy. So as not to contaminate the analysis with real
policy differences, we split the sample of old wells into Oklahoma and Texas
subsamples. It is possible to imagine many false borders. We pick two lines of
latitude at the midpoints of the Oklahoma and Texas data. The Oklahoma false
border is given according to the formula, [36.5° 4+ max(latitudeok)]/2 = 36.536°;
the Texas false border is given by [36.5° + min(latituderx)]/2 = 36.463°. Lines of
latitude are chosen for the false border to maximize the number of relevant
observations || We use the midpoint formula in selecting this line so that we have

roughly the same number of observations on either side of the line.

13Because of the distribution of our sample, very many points would lie “far” from any given line
of longitude, or diagonal.
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Nonparametric estimates for average treatment effect at these false borders are
presented in Table [8] for the sample of old wells from Texas and Oklahoma.
Estimation is carried out using the same formulas as in the previous section. As
there are 64 different estimates for an ATE in the table, we expect some to come up
significant. Indeed, there are two significant results at the 95% level in the second
column, yet these results do not hold across columns, nor do even the directions of
the estimates. We conclude that there is not convincing evidence for discontinuities

where there is no policy shift.

Analysis

Parametric regressions of Table [2] show Oklahoma produces its wells at a slower
rate, both in terms of monthly oil and gas production and current revenue. We also
see that Oklahoma wells are older. The first explanation is exponential decline of
well productivity with well age-Oklahoma wells are older and so they should
produce less. The puzzle is that Oklahoma wells also seem to have recovered less oil
(though we say this with somewhat less confidence). An equally compelling story is
that Oklahoma wells are, on average, produced at a lower rate of production, and
that the wells are still young enough that the full benefits in terms of cumulative
production are not yet apparent. Finally, it is possible that we have made a bad
assumption in spatial identification, and for some reason Oklahoma wells are simply
less productive.

As for the reasonableness of the assumption, the false-boundary tests indicate
that intrinsic well productivity does not discontinuously change across space where
policy shifts are not involved. If we are to differentiate between the other two
hypotheses—of whether Oklahoma wells might reap benefits down the road from
reduced production early on, or whether they are merely less productive—we must

eliminate the confounding influence of the age of the well. To do this we focus on a
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sample of observations early in the life of a well (within the first 24 months) and a
group of observations for wells on their final day of production. Parametric
regressions of wells early in the life of the well indicate that Oklahoma wells are
produced less intensively in terms of revenues, but that there is no statistical
difference in terms of quantities of oil and natural gas produced. The revenues may
be interpreted as a lowered joint rate of production. The sample of old wells
indicates that there is no cumulative difference in natural gas recovery, but that
Oklahoma produces 270 % more oil than Texas. The parametric results point
toward Oklahoma wells being produced more sustainably early in the life, and that
this leads to greater cumulative resource recovery.

Our identification of the impacts of policy is based on the spatial contiguity of
wells, and so a worry with the parametric regressions is that estimates of average
treatment effects for wells near the border might unduly influenced by wells far from
the border. To guard against this, we repeat the analysis using nonparametric
specifications. The general story is the same: Oklahoma wells seem to produce at a
lower rate in the first years of life, and in particular, are subject to less degassing.
The benefits of this policy are apparent late in the life of a well in terms of a
significant, but more modest estimate of 145 % to 153 % greater recovery.

The difference in recovery is stark. At one level, the Anadarko Basin
predominately produces gas. Yet the difference in cumulative oil production
evaluated at the border over the course of the life of the well is 3,360 barrels (in
comparison to the Texas lifetime well production of 1,026 barrels at the border). E
Yet for effective secondary recovery operations to occur, fields must have
concentrated ownership. This is even more important for the Anadarko basin,

considering its mature state of development. And so it seems that for our sample of

14Without accounting for tax difference or discounting, and assuming a conservative price of
$90/bbl (the WTI Cushing price as of April 15, 2011 exceeded $108/bbl) this amounts to a lump
sum benefit of $302,400 for drilling in Oklahoma rather than Texas.
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wells near the border, the common-pool damage may be two pronged—damage to
the well as a result of wasteful competition, limiting full primary recovery, and
through fractured ownership, which impedes secondary recovery. Especially in light
of the latter, the large difference in cumulative oil recovery is not unreasonable.

We have focused on the difference in unitization rates as the policy difference
that drives the difference in output, yet at the Texas-Oklahoma border many
policies change discontinuously, including, well density, and tax regimes, and so it
can be argued that the impact of unitization is not wholly identified. Yet the
impact of well density should bias downwards our estimates for the treatment effect.
Oklahoma has a higher well density, and is thus sweeping out less area per well, and
should therefore recover less. Yet we found Oklahoma wells recover more. Texas has
a higher royalty on natural gas, and a lower royalty on oil, this should result in the
postponement of natural gas production into the future relative to Oklahoma, yet
we see Texas produces more natural gas early onE We therefore conclude our
estimates for the average treatment effect of the difference in unitization at the

border are a lower bounds of the true average treatment effects.

Conclusion

The physical dynamics of oil and natural gas production maintain that a slower rate
of production leads to enhanced primary recovery by conserving the gas pressure of
the field. The importance of unitization to secondary recovery also suggests that
unitized fields should be more successful in terms of cumulative recovery during this
phase of production. Oklahoma, with its greater emphasis on unitization, should be
more successful than Texas in terms of cumulative physical recovery. To test this
hypothesis, we employ regression discontinuity design. Because the production of

hydrocarbons is geologically driven, wells close together in space should be similarly

15This analysis uses a simple model of taxation (Gamponia and Mendelsohn|[1985). We do not
account for the endogeneity of cumulative recovery, or the joint nature of production.
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productive. A line at 36.5° latitude randomly exposes wells that are otherwise
similar to different policies; those wells north of the line receive the Oklahoma
treatment hypothesized to yield greater cumulative recovery, those below the line
receive the Texas treatment. Discontinuous jumps in outcomes at the border
identify treatment effects of the Oklahoma policy relative to Texas.

Looking at a sample of young wells and old wells to disentangle the impact of
policy over the course of a well’s life cycle, we find evidence that Oklahoma wells are
produced more slowly early on (in joint terms of oil and natural gas), are more
successfully unitized, and as a result are much more successful in terms of

cumulative oil recovery.



Chapter 1V

SPATTAL SPILLOVERS IN OIL AND NATURAL GAS PRODUCTION

Introduction

The goal of this paper is to quantify the spillovers in production and injection in oil
and natural gas recovery in Slaughter field of West Texas. Oil and natural gas
deposits are concentrated spatially in reservoirs, yet it is often the case in Texas
that no single producer has rights to the entire reservoir (Libecap and Wiggins
1985). Because property rights to the oil and natural gas are administered according
to the “rule of capture,” ownership is not fully secured until the resource is
extracted. While in the ground, it is an example of a common good: rival but
nonexclusive. Under these circumstances the resources can be the subject of fierce
competition as neighboring producers race to extract. Economic rents are dissipated
in the drilling and operation of more wells than are needed to efficiently drain the
reservoir (Weitzman|[1974). Additionally, owing to the dynamics of recovery, overly
rapid extraction can result in damage to the reservoir and lowered cumulative
recovery (Dake [2001)).

The present age of the majority of Texan fields only compounds the common
pool inefficiencies. In order to maintain the productivity of a maturing field,
operators shift production wells into injection. These injection wells pump
substances (e.g., water, carbon dioxide, natural gas) into the reservoir to drive the

resource towards neighboring production wells where it is then extracted. Injection

23
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is costly, and it makes little sense to undertake injection when ownership of the
reservoir is highly fractured and neighboring wells are likely to be owned by
competing operators. The resulting miserly secondary injection can lead to
substantial losses in recovery (Libecap and Wiggins|[1985)). Injection wells may also
be used to offset the production at neighboring wells. A neighbor’s production
creates a cone of depression in the resource bearing strata; oil and natural gas tend
to flow towards this depression. To prevent the resource from escaping the lease,
injection wells may be drilled along the border to halt resource emigration. These
offset injection wells are unnecessary for production and represent another economic
cost of intra-field competition (Libecap||1989a)).

The spatial interdependence of oil and natural gas production brings the
potential for economic inefficiency because competing producers discount the value
of leaving resource in situ for future periods resulting in a “race to extract.” The
goal of this paper is to demonstrate how a race to extract can be prevented through
unitary ownership. I use a spatial econometric model to explicitly characterize
spillovers in production while controlling for unobserved spatial autocorrelation.
This type of spatial model has been used recently to estimate spillovers in
production of fossil groundwater aquifers (Savage and Brozovic |2011)) (Brozovic
et al.[2006) (Pfeiffer and Lin/2009). The model is estimated using extensive and
novel data provided by HPDI Corporation. The main result is as expected: when
neighboring wells are under unitary ownership, extraction proceeds at a

comparatively slower pace than when wells have competing operators.

Background

Spillovers in the production of oil and natural gas, where one producer’s extraction
interferes with that of another, have been pervasive since the initial discovery of the

resources ((Yergin 2008). Addressing these spillovers in production are economically
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important because resource rents can be dissipated in excess effort and capital
(Gordon||1954) (Scott||1955)) (Hardin|1968) (Weitzman|/1974) (Brown!|[1974)).
Whereas it might take only a few wells to efficiently drain a field, competing
producers may drill many more in order to extract and secure the resource so that it
is not lost to neighboring producers. The capital tied up in excess wells could be
more efficiently used elsewhere in the economy. Additionally, the common pool
nature of the hydrocarbons undermines the producer’s incentive to conserve and so
is dynamically inefficient (Eswaran and Lewis|[1984) (Khalatbari [1977)) (Long/1974)
(Long |1975)) (Dasgupta and Heal [1979) (Reinganum and Stokey| 1985).

What is peculiar to oil recovery, however, is that the race to extract can cause
damage to the reservoir, limiting ultimate recovery (Libecap and Wiggins|/1985)
(Chermak and Patrick [2001)). Thus, the consequences of the common pool are not
limited to economic inefficiencies of too costly extraction, too soon, but to physical
inefficiencies as well. Overly rapid production destroys the resource. Oil and natural
gas exist in solution, and it is the expansion of natural gas that drives the oil to the
well-face and then up to the surface. Rapid extraction can cause the natural gas to
bubble out of the mixture. The natural gas is more mobile than oil, and is quickly
drawn off. Meanwhile, the oil becomes increasingly viscous, and so difficult to move
as to be permanently unrecoverable. It may well be that it is economically efficient
to sacrifice cumulative recovery in favor of present extraction (Clark|1973), but this
aspect of oil and natural gas exploitation has yet to be studied by economists.

The spillovers in production are essentially issues of property rights. When
production spillovers are large and involve a small number of agents, it is reasonable
to expect private contracting to solve the problem. In a series of papers, Libecap
and Wiggins describe the contracting failure in Texas. |Libecap and Wiggins| (1984))
consider three mechanisms through which leaseholder can address production

spillovers: lease consolidation, unitization, where competing leaseholders hire a
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single operator to jointly develop the field, and prorationing agreements on output.
The authors examine five oil fields in Texas, and find that firm concentration is an
important determinant of private contracting. Bargaining costs increase with the
number of firms, inhibit unitization and consolidation, and in some cases, the
ownership of the field is so fractured as to even prevent prorationing agreements.
Libecap and Wiggins (1985)) study the impediments to unitization agreements.
Comparing Wyoming, Oklahoma and Texas, the authors find Texas to be
particularly poor at unitizing fields because the unananimity required for
unitization creates a holdout problem. Wiggins and Libecap| (1985) model
unitization negotiations, and test the model empirically, finding that imperfect
information about reserves when combined with diffuse landholding prevents
unitization. When contractual response fails, lease owners will even split individual
leases among competing operators to increase inflow onto the property (Yuan![2002)).
The work of Libecap and Wiggins nowhere expressly quantifies the size of the
spillovers and how these spillovers differ when ownership of the resource is unitary
or highly fractured. The present paper contributes to the understanding of the
economics of oil and natural gas production by showing that unitary ownership does
significantly abate the race to extract as previous theoretical models have predicted.
Regulation is also important to consider when measuring possible interference
between leases. Regulation of hydrocarbon production in Texas is overseen by the
Texas Railroad Commission and comes in three flavors: command and control, taxes
and production quotas. Of the command and control regulations, well-spacing
regulations and regulations on the inclination of drilling (slant and horizontal
drilling) are the most relevant in addressing issues of common pool production.
Slant drilling is prohibited without special permission. Additionally, the statewide

spacing rule disallows the drilling of wells within 467" of a property line or within
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1200’ of an existing Well.ﬁ Although well-spacing guidelines have the virtue of easy
verification and enforcement, one-size-fits-all regulations are not flexible enough to
account for the heterogeneity in permeabilities and flow dynamics. Owing to local
geologic conditions wells 100" apart may communicate less than wells 3000 apart in
more permeable rock. Optimal well-spacing guidelines should account for the local
geologic parameters, and assign well spacing accordingly. By measuring the effect of
neighbor’s production on own production, this paper can provide evidence as to the
efficacy of spacing regulations.

Well-spacing exceptions may be granted to protect ownership rights, or to
prevent resource waste. In the former case, a producer would be allowed to drill
closer to a property line if drilling according to regulation would result in
substantial portion of the resource underlying the lease to be captured by
neighboring producers. In the latter case, exception may be granted if the oil could
not otherwise be recovered. Yet these two goals frequently conflict when production
tracts are small, as is the case in Slaughter field. Until the decision Halbouty vs.
Tezas Railroad Commission (1962) small lease holders were given a greater
production allowable, to cover the costs of drilling plus a reasonable profit, even at
the expense of neighbor’s production (Lowe |2003). The alternative to well-spacing
exceptions, preferred by most states, is forced pooling.

Monthly quotas on production are assigned in Texas as a percentage of a
maximum allowable production for the well. Maximum allowable production is
based on the depth of the well, and the lease size. In Texas, natural gas is subject to
a royalty at of 7.5% of the value of production, while oil is subject to a lower royalty
of 4.6% of the value. While these taxes are not consistent with Pigouvian taxation

to address the problems of common pool production (Dasgupta and Heal |1979),

16Texas Administrative Code, Title XVI, Part 1, Chapter 3
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economic theory predicts that these royalties slow the rate of extraction (Gamponia
and Mendelsohn||[1985)).

The interaction between regulation, contracting, geology and firm production
decisions determines the nature of the spillover. This paper provides empirical
evidence as to how these complex interactions play out on Slaughter field. I find,
after controlling for secondary injection, that regulation and contracting have not
been fully successful in securing property rights. Indeed the empirical model

uncovers evidence consistent with a race to extract.

Methods

The goal of the chapter is to estimate the impact of neighbor’s production, y;, on
own production, y;, for a cross-section of leases indexed 2,7 = 1,2, 3......, N. Doing
this via OLS regression would result in biased parameter estimates because of
simultaneity. The problem is that production at j is not predetermined: lease 7
affects the production of lease j, while the production of lease j simultaneously
affects production at lease 7. Adding further difficulty is that production on a patch
is partially determined by unobserved geological characteristics such as porosity and
permeability, and these unobserved variables are likely to be correlated through
space. This makes it difficult to tease out what part of production is impacted by
neighbors production, and what part of production is the result of correlated but
unobserved geological characteristics. Disentangling genuine spatial dependence
from autocorrelation is necessary for achieving the goals of this chapter.
Fortunately, Kelejian and Pruchal (1998)) and Kelejian and Pruchal (1999) develop a
computationally feasible generalized method of moments procedure for controlling

for spatial dependence and spatial autocorrelation. The canonical model I estimate
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is
y=XB8+\Wy+u
(9)

u=pMu-+e

where y is an N x 1 vector of the dependent variable, X is an N x k matrix of the k
independent variables, W and M are N x N spatial weighting matrix, g is a k x 1
vector of regression parameters, A\ and p are scalar spatial parameters, u is an n x 1
vector of regression disturbances, and finally, € are i.i.d. innovations. Full technical
assumptions necessary for estimation of the model, as well as the moment condition
exploited for estimation, can be found in Kelejian and Pruchal (1998)) Kelejian and
Pruchal (1999)); however, two assumptions are important to understand the intuition
of the model. First, the contribution of nearby producing leases (a, b, ¢) on the
production at lease i are assumed to be a linear function of production, some
weighting function (in our case a function of distance) and vector of spillover
parameters, (Aq, A\, A¢), such that y; = A\w(i, @)y, + \pw(7, 0)ys + Acw(i, ¢)y.. In
order to estimate the model, we assume that A, = A\, = A\, = A (otherwise there
would be N parameters and N observations). The second assumption is that

|A| < 1, which insures that spatial spillovers are non-explosive. Similar assumptions
hold for the structure of the errors.

Execution of this Generalized Spatial Two-Stage Least Squares (GS2SLS) model
requires three stages. In the first stage, to control for simultaneity in production
decision, Wy is instrumented for by H = (X, WX, W?X,...). The implicit
exclusion restriction is that a neighbor’s X affects your production only through
how the neighbor’s X affects her own production. Identification comes through the
spatial structure—the interaction between X variables and the weighting
matrix—and so there is no excluded instrument. This first stage generates
consistent results for 5 and A, but these estimates are inefficient because the

information available in the structure of the autocorrelated errors has yet to be
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exploited. In the second stage, residuals, u, from the first stage are plugged into a
moment condition to estimate spatial autocorrelation parameter, p, and the
innovation variance, o2. In the last stage, the structure of the autocorrelation is
exploited to arrive at more efficient estimates of 5 and .

Interpretation of the spatial parameters depends on the choice of weighting
matrix, W. The choice of weight matrix, in turn, is defined by the conceptual
framework one uses to interpret the spatial data. There are two possibilities:
viewing the data as a lattice of discrete spatial connections, or viewing the data as
sample points from a continuous surface (Anselin/2002). In the former case, w;;,
representing whether ¢ is connected with j takes on discrete values, 0 or 1. The
drawback is that defining the connections can be arbitrary. When the observations
are viewed as a sample from a continuous surface, w;; often takes the value of the
(inverse) distance between observation ¢ and j. When distance weighting is used,
the spatial autoregressive parameter has the potential to be interpreted as a
reservoir specific transfer coefficient, which reveals geologic information on reservoir
permeability, porosity, and Viscositym. Of course strategic interaction between
agents will result in biased estimates of the transfer coefficient. To see this consider
the primary model of the paper,

y=XB+\eFy+ A\Uy + u
(10)
u = pMu+e.
Here M represents an inverse distance weight matrix controlling for autocorrelation
in unobservables. The goal is to see if there is a difference in estimated spillover
coefficients between leases that have the same owners and leases with different

owners. Weight matrix W from the previous specification is broken up into two

1TWell reaction functions specified by Theis and Darcy flow equations have been used in physical-
economic models of water recovery. See |Savage and Brozovic| (2011)) [Brozovic et al.| (2006) [Pfeiffer
and Lin| (2009)).



61

separate weight matrices, F' and U (“F” for “friendly”, “U” for “unfriendly”).
Weights in F' take on inverse distance weights only when leases ¢ and j have the
same operator; conversely, weights in U take on values when leases ¢ and j have
different operators. Estimates of friendly (Ar) and unfriendly spillovers (Ay) can
then be estimated and compared. Without strategic interaction, spillover
parameters should be identical and negative, the result of the cone of depression
caused by production. With strategic interaction, the estimates of spillovers should
be biased upwards and should diverge with A\p < A\y. The divergence occurs because
the rights to the resource in situ are less secure when competing operators own
nearby leases. In fact, we may even see a race to extract, which would manifest
itself as apparently positive spillovers in production, Ay > 0. The positive spillovers
come from lease-owners shifting their production profile towards the present.
Discussion and results from this model can be found in Section 5.5.

To identify the shift in the production profile due to security of ownership, a
variety of cross-sections per field must be analyzed. Field age and ownership
structure of the fields affects the degree and nature of spillovers. Early in the life of
a highly decentralized field, the measured autoregressive parameter should be
positive, reflecting a race to extract. Later in the life of the decentralized field, the
spillover may decline toward zero as damage to the reservoir halts flow between
wells. Conversely, in a highly concentrated area, the autoregressive parameter might

be zero over the entire life of the reservoir as a result of effective management.

Data

Data for analysis is provided by HPDI Corporation, which collects, compiles and
publishes oil and natural gas production data for 31 US States, 4 Canadian
provinces and the Federal offshore areas in the Gulf of Mexico and the Pacific.

Previous research has indicated that Texas is a state where common pool problems
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can be substantial (Libecap and Wiggins||1984) (Libecap and Wiggins |1985)
(Wiggins and Libecap |1985). Not coincidently, Texas also has the most extensive
data available, with time series for production, injection and well tests going back
even before 1960. Data on leases size come from W-1 drilling permits, public
information made available by the Texas Railroad Commission.

The focus of the analysis is Slaughter field in West Texas, located near the
Texas-New Mexico border. Wells are mapped in Figure [6] This field has a variety of
characteristics making it a worthy focus or research. First, it ranks in the top 20
fields in the US country in terms of 2009 proved reserves for oil (EIA 2009), and is
therefore of economic interest. Second, in order to quantify the importance of
unitization and ownership concentration, it is necessary to have within field variation
of ownership Concentrationm A local Herfindahl concentration index mapped for

Slaughter field in Figure [7] shows the field has variation in ownership concentration.

Slaughter Field was discovered in 1937. My earliest data only goes back to 1955.
Figure [§| shows the evolution of the number of productive wells on the field over
time. Figure [9 shows the field aggregated history of production. Peak oil production
occurred in the middle 1970s. Also evident is a sharp drop in natural gas
production between December 2004 and January 2005. This is apparently due to
the weighty tails of the distribution. When looking at a figure of logged average well
production, no such drop off in production is evident(Figure . A large part of the
decline in gas production at the end of 2004 can be attributed to a significant
decline in gas production on the Slaughter Estate Unit and Central Mallet Unit.
These units, under the operation of Occidental Permian Ltd., were the subject of

legal controversy. Carbon dioxide and hydrogen sulfide injections on the Slaughter

18Because the underlying permeabilities and porosities will differ across fields, the estimated
spillover parameter will not be comparable across fields, and so cross-field variation in ownership
can not be exploited to demonstrate the impact of ownership concentration on the spillover.
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Figure 6: Well locations. Slaughter field is in green. To the north in gray is Levelland field
which is geologically similar, but separated from Slaughter by an anhydrite salt dome.
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Figure 7: Local Herfindahl concentration index. Herfindahl concentration index computed
for each cell in a 30 x 30 grid. Lighter colors indicate higher ownership concentration.
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Estate Unit—which have aided in the recovery of oil- contaminated gas in the

reservoir making it difficult to process. Occidental Permian, however, owns the gas
processing plant, and the Texas Supreme Court held in Helen Jones Foundation vs.
Occidental Permian, 2011 that Occidental used the increased costs of processing as

cover to avoid paying royalty owners.

Number of Operational Wells
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Figure 8: Total wells in production.

Summary statistics for Slaughter field can be found in Table [9] the bottom panel
displays summary statistics for the subset of the data used for regression analysis.

Production data is at the lease-level, while injection data is at the well level. Data
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for production spans January 1955 to May 2009, injection data becomes extensive
beginning in the late 1980s. The regression sample represents a subsample of

production data for the month of January in 1990, 1995, 2000, and 2005.

Table 9: Summary statistics: Slaughter field

Full Sample

variable Obs. Mean Std. Dev. Min Max
log gas 61427  6.00 3.75 0 14.3

log oil 61427  8.07 2.19 0 13.5

log water 61427  7.81 5.30 0 15.1
GOR 61427  -2.06 3.07 -12.53 9.9

age 61427  6324.72  7100.95 0 39870.0
age sq 61427  9.04e+07 1.75e4+08 0 1.59e+09
well count 61427  28.04 48.21 1 652.0
well count sq. 61427  3110.75  10426.54 1 425104.0
total depth 430431 608.42 1721.06 0 12384.0
lease acreage 421938 3507.56  2803.63 0 8684.3
Regression Sample

log gas 387 6.37 3.16 0 14.0

log oil 387 7.54 2.25 0 12.5

log water 387 8.01 4.76 0 14.3
GOR 387 -1.17 2.15 -9.25 54

age 387 8384.34  7521.19 0 36862.0
age sq 387 1.27e408 2.16e+08 0 1.36e+09
well count 387 23.39 41.65 1 243.0
well count sq. 387 2276.80  7588.24 1 59049.0
total depth 6125 306.90 1290.07 0 10700.0
lease acreage 6055 3673.79 2834.06 0 8684.3

Notes: This table reports summary statistics tests for the HPDI data available for Slaughter field in
the top panel, and for the regression sample in the bottom panel. The regression sample represents
a subsample of production data for the month of January in 1990, 1995, 2000, and 2005. Note that
injection observations far outnumber production observations because injection is reported at the well
level. In all regressions, injection is summed over the past year within a half mile of each production
observation. Log gas, log oil, and log water are log of one plus monthly lease level gas, oil and water
production, respectively. Water and oil production are reported in log barrels, while gas is reported in
log thousand cubic feet. GOR is gas to oil ratio, which is also logged. Age is the age of the most recent
well drilled on the lease. Well count is the number of active producing wells on the lease. Total depth
is the total depth of the most recently completed well on the lease. Lease acreage is the only variable
not provided by HPDI, it is taken from the Texas Railroad Commission and measures the area of the

lease.
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Results

This section presents results from cross sectional and panel models of Slaughter
field, with and without injection. Cross sectional models are valuable in measuring
how the spillover parameter evolves with time, but are limited in the sense that they
cannot account for unobserved fixed effects specific to location. Panel models allow
for unbiased estimates when spatial fixed effects are present. Both cross-sectional
and panel models are run with and without injection. The goal of the various
models is to demonstrate a race to extract when ownership is comparatively less
secure-that is, well operators should increase their rate of extraction leaving less in
the ground for the future. As a descriptive exercise I first run specifications of my
statistical model with a local concentration index with a half-mile radius (herf) as
the variable of interest. These results are presented in table [10| and include

lease-level fixed effects.



Table 10: Regression on local Herfindahl index

liq gas
OLS GLS OLS GLS
constant  0.000 0.126 0.000 -0.087
(0.016) (0.064) (0.057) (0.134)
went 0.013 0.018 0.052 -0.006
(0.003) (0.033) (0.013) (0.099)
went2 -0.006 0.015 -0.020 0.021
(0.001) (0.015) (0.006) (0.044)
age -0.000 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000)
wtr 0.592 0.618 0.935 1.608
(0.038) (0.131) (0.130) (0.415)
ginj -0.010 -0.045 -0.026 0.060
(0.002) (0.018) (0.009) (0.048)
winj 0.007 0.036 0.004 -0.026
(0.002) (0.019) (0.008) (0.051)
herf -1.469 -4.357  -2.845 -19.149
(0.571) (2.942) (1.939) (9.580)
moran 10990.750 1351.197
p 0.037 0.039
(0.001) (0.001)

Notes: OLS columns represent standard OLS regression. GLS columns
weight by inverse distance to account for spatial autocorrelation. herf is
the coefficient for a local Herfindahl concentration index with a half-mile

bandwidth.

Moran-I statistics for both oil and natural gas show significant evidence of

69

spatial autocorrelation["’] Because the productivity of a lease is driven by geological

characteristics, which are unobserved in the dataset but likely to be highly

correlated over space, it is expected that the residuals are positively correlated in

space. According to OLS specifications for both oil and natural gas, drilling another

well on the lease tends to increase production, but at a diminishing rate (the square

term is insignificant). The affect of the number of wells on the lease is estimated less

precisely in the GLS specification-the standard errors are larger and the coefficients

are not distinguishable from zero. The age of the latest well on the lease does not

19The Moran statistics are calculated with the same inverse distance weight matrix used in the

statistical models of the next sections.
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meaningfully impact lease-level production. Water injection enhances oil recovery,
but does not have a statistically noticeable affect on natural gas recovery. Gas
injection is negatively correlated with oil recovery, and has little effect on gas
recovery when controlling for spatial autocorrelation in the GLS specification. It
appears then, that gas injection is not very successful across leases in secondary
recovery in Slaughter field.

The variable of interest in the specification is the local Herfindahl concentration
index. As the concentration index falls, the rights to the resource in situ become
less secure, and the producer should extract at a higher rate. We, therefore, expect
a negative correlation between concentration and lease-level extraction, and indeed
this is what table [10] indicates. It can be argued that concentration is endogenous
because naturally more productive areas face fiercer competition and thus lower
concentration.@ By explicitly accounting for how the unobserved productivity is
correlated in space through the GLS specification, I hope to attenuate some of these
problems; and yet concentration is a choice variable for the economic agents
involved. Therefore in the rest of the paper, I use a different strategy to uncover a
race to extract. Treating the structure of ownership as predetermined, I investigate
how neighbor’s pumping affects own extraction. With no strategic interaction, the
estimated effect should be negative. A race to extract will manifest itself as a

positive correlation between neighbor’s extraction and own extraction.

20Tt could just as easily be the case that it is the more productive areas that are monopolized by
one owner; but this bias works in my favor, with the parameter for concentration taking a lower
bound to the true value.
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Cross-sectional Model: Single Inverse Distance Weight Matrix, No Injec-

tion

The initial cross sectional model I estimate is
Yi = A % Z Wi;Y; + o+ ﬁldepthi + 52U)C7”Lti + ﬁgwcnt? + ﬁ4agei + 5511)757‘2' + € (11)

where the weights are given by the inverse of distance between leases ¢ and j. The
spillover parameter of interest is A; estimates can be found in tables [[1I4] The
dependent variables I consider are the log of month lease-level oil and natural gas
production. Independent variables are depth, the total depth of the most recent well
completed on the lease; went, the number of active producing wells on the lease
(and its square); age, the time since the most recent well was completed; wtr, the
amount of water produced on the lease that month, a proxy for whether the lease is

constrained by disposal.



Table 11: Oil cross-section 1990s
1990 1995

OLS GLS 2SLS GS2SLS OLS GLS 2SLS GS2SLS
constant  3.347 3.473 3.353 2.381 2.339 2.241 2.318 2.102

(0.105)  (1.503) (0.474) (1.072) (0.107) (1.567) (0.493) (0.994)
depth 0.000 -0.000  0.000 0.000 0.000 0.000 0.000 -0.000

(0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
went 0.060 0.056 0.060 0.066 0.053 0.052 0.054 0.065

( 0.002) (0.074) (0.008) (0.017) (0.002) (0.035) (0.008) (0.014)
went2 -0.018 -0.013  -0.018 -0.021 -0.018 -0.019 -0.019 -0.022

(0.001) (0.037) (0.004) (0.009) (0.001) (0.016) (0.004) (0.007)
age -0.000 -0.000  -0.000  0.000 0.000 -0.000  0.000 0.000

(0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
wtr 0.166 0.210 0.166 0.227 0.279 0.370 0.278 0.246

(0.011)  (0.147) (0.023) (0.036) (0.011) (0.188) (0.031) (0.050)
A 0.002 0.002 0.002 0.002 0.002 0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
moran 133.63 -18.67
p 0.070 0.068 0.068 0.064

(0.004) (0.004) (0.004) (0.003)

Notes: The table presents results for cross-sectional regressions with logged lease level oil production as the dependent variable.
The columns entitled “OLS” present results for equation E The “GLS” column omits the variables for spatial dependence,
but allows errors to be correlated according to the same inverse distance weight matrix. The column “2SLS” is estimated
according to equation but with y; instrumented with w;; * X;, with X; = {depthj,wcnt],wcnt?, agej,wtr;}. Finally, the
“GS2SLS” column presents results from the model given by equation E Independent variables are depth, the total depth of
the most recent well completed on the lease; went, the number of active producing wells on the lease (and its square); age,
the time since the most recent well was completed; wtr, the amount of water produced on the lease that month, a proxy for
whether the lease is constrained by disposal. X is the parameter estimate for the spatial autoregressive lag; p is the parameter
for the spatial autoregressive error. The model is estimated using a single inverse-distance spatial weighting matrix.Standard

errors are reported on the line underneath coefficient estimates.
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Table 12: Oil cross-section 2000s

2000 2005
OLS GLS 2SLS GS2SLS  OLS GLS 25LS  GS2SLS

constant 3.621  3.660  3.608 3712  3.092  4.095 3.071  4.192
(0.073) (2.191) (0.369) (1.313) (0.094) (1.583) (0.448) (1.416)
depth  -0.000 0.000  -0.000  -0.000  -0.000  0.000  -0.000  -0.000
(0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
went 0.063  0.064  0.063  0.068  0.060 0064 0061 0.065
(0.001) (0.030) (0.006) (0.015)  (0.002) (0.048) (0.008) (0.017)
went2  -0.020  -0.022  -0.020  -0.022  -0.020 -0.021 -0.020 -0.022
(0.000) (0.016) (0.003) (0.008)  (0.001) (0.021) (0.004) (0.009)

age 0.000 -0.000 0.000 0.000 0.000 -0.000  0.000 0.000
(0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
wtr 0.171 0.214 0.170 0.161 0.210 0.227 0.209 0.157
(0.007) (0.084) (0.024) (0.062)  (0.009) (0.161) (0.030) (0.064)
A 0.001 0.001 0.001 0.001 0.001 0.002
(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000)
moran -81.27 -143.92
p 0.103 0.099 0.106 0.093
(0.009) (0.008) (0.011) (0.009)

Notes: The table presents results for cross-sectional regressions with logged lease level oil production as the dependent variable.
The columns entitled “OLS” present results for equation@ The “GLS” column omits the variables for spatial dependence, but
allows errors to be correlated according to the same inverse distance weight matrix. The column “2SLS” is estimated according
to equation but with y; instrumented with w;; * X;, with X; = {depth],wcntj,wcnt?, agej,wtr;}. Finally, the “GS2SLS”
column presents results from the model given by equation Independent variables are depth, the total depth of the most
recent well completed on the lease; went, the number of active producing wells on the lease (and its square); age, the time
since the most recent well was completed; wtr, the amount of water produced on the lease that month, a proxy for whether
the lease is constrained by disposal. A is the parameter estimate for the spatial autoregressive lag; p is the parameter for the
spatial autoregressive error. The model is estimated using a single inverse-distance spatial weighting matrix. Standard errors
are reported on the line underneath coefficient estimates.
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Table 13

: Gas cross-section 1990s

1990 1995
OLS GLS 2SLS GS2SLS  OLS GLS 2S5LS GS2SLS
constant  5.088 6.047 5.335 5.335 4.16561  7.669 4.182 4.105
(0.171)  (2.486) (0.856) (0.856)  (0.165) (3.189) (0.818) (1.140)
depth -0.000  -0.000 -0.000  -0.000 -0.000 -0.000  -0.000 -0.000
(0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
went 0.059 0.055 0.058 0.058 0.044 0.087 0.043 0.036
(0.003) (0.062) (0.013) (0.013)  (0.003) (0.059) (0.012) (0.014)
went2 -0.014  -0.012 -0.013  -0.013 -0.011 -0.031  -0.011  -0.009
(0.002) (0.031) (0.006) (0.006) (0.002) (0.029) (0.006) (0.007)
age 0.000 0.000 0.000 0.000 0.000 -0.000  0.000 0.000
(0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
wtr 0.104 0.109 0.105 0.105 0.366 0.128 0.367 0.457
(0.019) (0.182) (0.038) (0.038) (0.017) (0.152) (0.049) (0.049)
A 0.000 0.000 0.000 -0.000 -0.000 -0.001
(0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)
moran 886.068 230.246
p 0.000 0.000 0.039 0.039
(0.001) (0.001) (0.002) (0.002)

Notes: The table presents results for cross-sectional regressions with logged lease level gas production as the dependent variable.
The columns entitled “OLS” present results for equation@ The “GLS” column omits the variables for spatial dependence, but
allows errors to be correlated according to the same inverse distance weight matrix. The column “2SLS” is estimated according
to equation but with y; instrumented with w;; * X, with X; = {depth;, went;, wcnt?, agej,wtr;}. Finally, the “GS2SLS”
column presents results from the model given by equation E Independent variables are depth, the total depth of the most
recent well completed on the lease; went, the number of active producing wells on the lease (and its square); age, the time
since the most recent well was completed; wtr, the amount of water produced on the lease that month, a proxy for whether
the lease is constrained by disposal. A is the parameter estimate for the spatial autoregressive lag; p is the parameter for the
spatial autoregressive error. The model is estimated using a single inverse-distance spatial weighting matrix.Standard errors are

reported on the line underneath coefficient estimates.
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Table 14: Gas cross-section 2000s

2000 2005
OLS GLS 2SLS  GS2SLS OLS GLS 25LS  GS28LS

constant 2.919  6.834  3.094 1.644 2679 1449 2684  2.023
(0.215) (6.812) (1.134) (1.352) (0.207) (4.525) (1.024) (1.362)
depth  -0.000  -0.000  -0.000 -0.000  -0.000 -0.000 -0.000  -0.000
(0.000) (0.001) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
went 0064 0165 0061 0.046 0058 0.157 0058  0.048
(0.004) (0.113) (0.018) (0.019)  (0.004) (0.097) (0.018) (0.019)
went2  -0.017  -0.053  -0.016 -0.010  -0.018 -0.062 -0.018 -0.015
(0.002) (0.053) (0.009) (0.009) (0.002) (0.050) (0.009) (0.010)

age 0.000 -0.000 0.000 0.000 0.000 -0.000  0.000 0.000
(0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
wtr 0.323 0.054 0.333 0.446 0.330 0.576 0.331 0.437
(0.023) (0.361) (0.074) (0.070)  (0.021) (0.332) (0.069) (0.069)
A 0.001 0.000 0.000 0.001 0.001 0.000
(0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)
moran 385.388 -23.270
p 0.046 0.062 0.062 0.064
(0.004) (0.004) (0.009) (0.009)

Notes: The table presents results for cross-sectional regressions with logged lease level gas production as the dependent variable.
The columns entitled “OLS” present results for equation@ The “GLS” column omits the variables for spatial dependence, but
allows errors to be correlated according to the same inverse distance weight matrix. The column “2SLS” is estimated according
to equation but with y; instrumented with w;; * X;, with X; = {depth],wcntj,wcnt?, agej,wtr;}. Finally, the “GS2SLS”
column presents results from the model given by equation E Independent variables are depth, the total depth of the most
recent well completed on the lease; went, the number of active producing wells on the lease (and its square); age, the time
since the most recent well was completed; wtr, the amount of water produced on the lease that month, a proxy for whether
the lease is constrained by disposal. A is the parameter estimate for the spatial autoregressive lag; p is the parameter for the
spatial autoregressive error. The model is estimated using a single inverse-distance spatial weighting matrix. Standard errors
are reported on the line underneath coefficient estimates.
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Tables present regression results of the model for the month of January in
1990, 1995, 2000, and 2005. The columns entitled “OLS” present results for
equation The “GLS” column omits the variables for spatial dependence, but
allows errors to be correlated according to the same inverse distance weight matrix.
The column “2SLS” is estimated according to equation [I1], but with y;
instrumented with wy; * X;, with X; = {depth;, went;, went?, agej, wtr;}. Finally,
the “GS2SLS” column presents results from the model given by equation [0

There are two parameters of particular interest in Table [11{ and Table [12]. A, the
parameter for the spatial autoregressive lag, conflates the geophysical and strategic
effects of neighbor’s extraction. As mentioned earlier, the geophysical effects are
expected to be wholly negative: own extraction causes a cone of depression to
extend out from the well and causes oil to migrate from nearby leases, reducing
production at other nearby leases. Everyone knows this, and so neighbors react by
extracting at a higher rate to counteract the affects of the nearby pumping. In this
case the strategic effect is positive and may be large enough to countervail the
negative geophysical effects. The other parameter, p, measures the spatial
autocorrelation of the errors. A priori, it is expected that p > 0 because it captures
unobserved geological variables which are positively correlated through space.

Conditional on inverse distance weighting, I find consistent evidence of positive
spatial autocorrelation in errors. Assuming that unobserved geological productivity
is spatially correlated, these estimates are immanently reasonable. The parameter
for the spatial autoregressive lag (\) is also positive and significant across
specifications. This indicates an increase in neighbors’ production (or a diminution
in the distance to neighbor’s lease) results in an increase in own oil production,
which is consistent with a race to extract.

The story for lease level natural gas production is not as clear cut. Estimates for

the coefficient on spatial autoregressive lag (\) and spatial autoregressive error (p)
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are not as close across specifications or cross-sections. There is no evidence of
autocorrelation of errors in 1990; the coefficient is positive and significant thereafter.
The preferred specification for measuring A is the GS2SLS estimate, which is
negative and significant in 1995 but statistically non-distinguishable from zero in all
other years.

Cross sectional models may be flawed because it is unlikely that the independent
variables used in estimation are truly exogenous. Take for example the variable
went. 1t is easy to imagine that E(went; x €;) # 0: if a lease is especially productive,
or the lease owner expects that it will be, then more wells may be drilled. It is
possible to control for these unobserved lease-level time invariant productivity

differences by pooling the data and estimating the model adding fixed effects.

Cross-sectional Model: Simultaneous Inverse Distance Weight Matrices,

With Injection

In this model the weight matrices differ according to whether plots are operated by
the same owners or different owners. Weights are given as the inverse distance when
two plots have a common operator (the “friendly” weight matrix); similarly they are
also give as the inverse distance when two plots have different operators (the

“unfriendly” weight matrix). Results from these regressions are presented in tables

for Slaughter field.



Table 15: Oil cross-section 1990s, simultaneous weighting with injection

1990 1995
OLS GLS 25LS  GS2LS OLS GLS 25LS  GS2LS

constant 1.960  5.021 1943 2218 0664 6206 0.664 -1.313
(0.102)  (66.366) (1.013) (1.709) (0.105)  (3.627) (0.974) (1.919)
depth  0.000  0.000  0.000 0.000 0.000  0.000 0.000  0.000
(0.000)  (0.001)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)
went 0058 0104 0058 0.042 0051 0052 0051 0.050
(0.002)  (0.118)  (0.008) (0.009) (0.002)  (0.049) (0.008) (0.012)
went2  -0.018  -0.043  -0.018 -0.010 -0.018  -0.016 -0.018 -0.016
(0.001)  (0.060)  (0.004) (0.004) (0.001)  (0.023) (0.004) (0.005)

age 0.000  -0.000  0.000 -0.000 0.000  0.000  0.000  0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)
wtr 0151  -0.141  0.51 0174 0266 0323 0267  0.205
(0.011)  (0.242)  (0.023) (0.027) (0.011)  (0.214) (0.033) (0.034)
ginj 0.012 0130  -0.013 0021 -0012  0.029 -0.014 -0.091
(0.006)  (0.999)  (0.031) (0.090) (0.006)  (0.085) (0.029) (0.101)
winj 0122  -0421 0122  0.117 0130  -0205 0.129  0.334
(0.005)  (4.355)  (0.072) (0.161) (0.005)  (0.272) (0.072) (0.181)
Ap 0.003 0.003  0.002  0.001 0.001  0.001
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
Av 0.001 0.00  0.000  0.001 0.001  0.001
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)

Moran  -196.074 -384.907
p -0.234 0.219 0.118 0.128
(0.035) (0.039) (0.024) (0.011)

Notes: The table presents results for cross-sectional regressions with logged lease level oil production as the dependent vari-
able and separate inverse distance spatial weight matrices given according to whether neighboring leases are under common
ownership. Ap is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values when
leases have a common operator; Ay is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse
distance values when leases have competing operators. The canonical model is given by equation The column labeled
“OLS” presents results when no instrumentation is made for the spatially lagged dependent variable, and no spatial structure
is assumed in the errors; “GLS” is a specification, where the errors are assumed to be spatially autocorrelated; the column
“2SLS” instruments for endogenous production with WX; “GS2SLS” instruments for endogenous production, and assume the
errors to be spatially autocorrelated. Independent variables are depth, the total depth of the most recent well completed on
the lease; went, the number of active producing wells on the lease (and its square); age, the time since the most recent well
was completed; wtr, the amount of water produced on the lease that month, a proxy for whether the lease is constrained by
disposal; winj is water injected within a half-mile of the lease in the past year; ginj is the gas injected within a half mile of
the producing lease in the past year; p is the parameter for the spatial autoregressive error. Standard errors are reported on
the line underneath coefficient estimates.
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Table 16: Oil cross-section 2000s, simultaneous weighting with injection

2000 2005
OLS GLS 2SLS  GS2LS OLS GLS 2SLS  GS2LS

constant 3.309  6.126  3.310  4.651  3.019  3.661  3.024  3.406
(0.070)  (22.653) (0.714) (1.028) (0.092)  (25.114) (0.934) (1.654)
depth  0.000  -0.000  0.000 -0.000 0.000  -0.000  0.000  -0.000
(0.000)  (0.001)  (0.000) (0.000) (0.000)  (0.001)  (0.000) (0.000)
went 0062 0074 0062 0075 0.060 0063 0060 0.062
(0.001)  (0.198)  (0.006) (0.009) (0.002)  (0.196)  (0.008) (0.013)
went2  -0.020  -0.024  -0.020 -0.025 -0.020  -0.015  -0.020 -0.020
(0.000)  (0.098)  (0.003) (0.004) (0.001)  (0.097)  (0.004) (0.006)

age 0.000 0000  0.000 0.00 0000 0000  0.000 0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) (0.000)
wtr 0157 0046 0158 0.160 0201  0.029 0200 0.170
(0.007)  (0.619)  (0.025) (0.026) (0.009)  (0.667)  (0.031) (0.030)
ginj 0036 0056 0035 0062 0044 0008 0043  0.021
(0.004)  (0.638)  (0.019) (0.040) (0.005)  (0.458)  (0.025) (0.070)
winj 0013  -0.156 0012 -0.102 -0.008  0.026  -0.009 0.019
(0.003)  (1.626) (0.050) (0.093) (0.005) (1.574)  (0.065) (0.139)
Ap 0.001 0.001  0.001  0.001 0.001  0.001
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
v 0.001 0.001  0.001  0.001 0.001  0.001
(0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)
Moran  -300.429 -238.674
p 0.252 0.225 0.198 0.182
(0.038) (0.028) (0.022) (0.044)

Notes: The table presents results for cross-sectional regressions with logged lease level oil production as the dependent variable
and separate inverse distance spatial weight matrices given according to whether neighboring leases are under common ownership.
A is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values when leases have a
common operator; Ay is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values
when leases have competing operators. The canonical model is given by equation @ The column labeled “OLS” presents
results when no instrumentation is made for the spatially lagged dependent variable, and no spatial structure is assumed in the
errors; “GLS” is a specification, where the errors are assumed to be spatially autocorrelated; the column “2SLS” instruments
for endogenous production with WX; “GS2SLS” instruments for endogenous production, and assume the errors to be spatially
autocorrelated. Independent variables are depth, the total depth of the most recent well completed on the lease; went, the number
of active producing wells on the lease (and its square); age, the time since the most recent well was completed; wtr, the amount
of water produced on the lease that month, a proxy for whether the lease is constrained by disposal; winj is water injected within
a half-mile of the lease in the past year; ginj is the gas injected within a half mile of the producing lease in the past year; p is
the parameter for the spatial autoregressive error. Standard errors are reported on the line underneath coefficient estimates.

79



Table 17: Gas cross-section 1990s, simultaneous weighting with injection

1990 1995
OLS GLS 2SLS  GS2LS OLS GLS 2SLS  GS2LS

constant 8981  9.260 8995 9489  6.756  11.821  6.758  2.866
(0.163)  (12.000) (1.700) (2.020) (0.156) (11.600) (1.490) (3.320)
depth  -0.000  -0.000  -0.000 -0.000 -0.000 -0.000  -0.000  0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)
went 0.061  0.090 0061 0047 0042 0072  0.041  0.032
(0.003) (0.063)  (0.013) (0.015) (0.003) (0.063)  (0.012) (0.014)
went2  -0.016  -0.029  -0.015 -0.009 -0.009 -0.025  -0.009  -0.006
(0.001)  (0.036)  (0.006) (0.007) (0.001) (0.029)  (0.006) (0.007)

age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
wtr 0.096 0.071 0.098 0.156 0.349 0.240 0.348 0.493
(0.018) (0.098)  (0.038) (0.042) (0.016) (0.206)  (0.050) (0.055)
ginj 0.133 0.010 0.133 0.122 0.122 0.154 0.122 -0.041
(0.009) (0.189)  (0.052) (0.082) (0.009) (0.128)  (0.046) (0.156)
winj -0.255  -0.259 -0.258 -0.184 -0.172  -0.467 -0.172  0.046
(0.008) (0.761)  (0.116) (0.155) (0.008) (0.677)  (0.108) (0.290)
AR 0.002 0.002 0.004 0.000 0.000 0.000
(0.000) (0.001) (0.002) (0.000) (0.001) (0.001)
Au -0.001 -0.000 -0.003 -0.002 -0.002  -0.001
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)
Moran 372.317 -21.177
P 0.031 0.031 0.054 0.062
(0.001) (0.001) (0.005) (0.005)

Notes: The table presents results for cross-sectional regressions with logged lease level gas production as the dependent
variable and separate inverse distance spatial weight matrices given according to whether neighboring leases are under common
ownership. Ag is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values when
leases have a common operator; Ay is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse
distance values when leases have competing operators. The canonical model is given by equation @ The column labeled
“OLS” presents results when no instrumentation is made for the spatially lagged dependent variable, and no spatial structure
is assumed in the errors; “GLS” is a specification, where the errors are assumed to be spatially autocorrelated; the column
“2SLS” instruments for endogenous production with W.X; “GS2SLS” instruments for endogenous production, and assume the
errors to be spatially autocorrelated. Independent variables are depth, the total depth of the most recent well completed on
the lease; went, the number of active producing wells on the lease (and its square); age, the time since the most recent well
was completed; wtr, the amount of water produced on the lease that month, a proxy for whether the lease is constrained by
disposal; winj is water injected within a half-mile of the lease in the past year; ginj is the gas injected within a half mile of
the producing lease in the past year; p is the parameter for the spatial autoregressive error. Standard errors are reported on
the line underneath coefficient estimates.
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Table 18: Gas cross-section 2000s, simultaneous weighting with injection

2000 2005
OLS GLS 2SLS  GS2LS OLS GLS 25LS  GS2LS

constant 7.864  9.423 7881  7.290 5901  4.153 5894  5.071
(0.203) (19.644) (2.080) (3.398) (0.196)  (19.121) (2.002) (3.306)
depth  -0.000  -0.000  -0.000 -0.000 -0.000  -0.000  -0.000  -0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) (0.000)
went 0068 0128  0.067 0.057 0066 0073  0.066 0.054
(0.004) (0.064) (0.017) (0.018) (0.004) (0.111)  (0.017) (0.019)
went2  -0.018  -0.052  -0.018 -0.015 -0.020  -0.025  -0.021 -0.018
(0.002) (0.039)  (0.009) (0.009) (0.002) (0.051)  (0.009) (0.010)

age 0.000  0.000  0.000 0.000 0.000  0.000  0.000  0.000
(0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) (0.000)
wir 0307 0499 0311 0426 0283 0279 0286  0.418
(0.021)  (0.295)  (0.075) (0.062) (0.020) (0.366)  (0.071) (0.054)
ginj 0130 0212 0135 0033 0138 0074 0134  0.059
(0.012) (0.145)  (0.057) (0.126) (0.011)  (0.191)  (0.055) (0.135)
winj 0354  -0510  -0.351 -0.385 -0.224  -0.076  -0.229  -0.205
(0.011)  (1.082)  (0.145) (0.274) (0.010)  (1.079)  (0.140) (0.274)
Ap 0.003 0.003  0.002  0.003 0.003  0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
v -0.000 -0.001  0.002  -0.001 -0.001  0.001
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)

Moran  155.359 -142.382
p 0.068 0.080 0.123 0.107
(0.005) (0.005) (0.013) (0.022)

Notes: The table presents results for cross-sectional regressions with logged lease level gas production as the dependent variable
and separate inverse distance spatial weight matrices given according to whether neighboring leases are under common ownership.
AF is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values when leases have a
common operator; Ay is the estimated spatial autoregressive coefficient for the weight matrix that takes inverse distance values
when leases have competing operators. The canonical model is given by equation The column labeled “OLS” presents
results when no instrumentation is made for the spatially lagged dependent variable, and no spatial structure is assumed in the
errors; “GLS” is a specification, where the errors are assumed to be spatially autocorrelated; the column “2SLS” instruments
for endogenous production with WX; “GS2SLS” instruments for endogenous production, and assume the errors to be spatially
autocorrelated. Independent variables are depth, the total depth of the most recent well completed on the lease; went, the
number of active producing wells on the lease (and its square); age, the time since the most recent well was completed; wtr,
the amount of water produced on the lease that month, a proxy for whether the lease is constrained by disposal; winj is water
injected within a half-mile of the lease in the past year; ginj is the gas injected within a half mile of the producing lease in the
past year; p is the parameter for the spatial autoregressive error. Standard errors are reported on the line underneath coefficient
estimates.

Focusing first on GS2SLS specifications of oil production in Slaughter Field,
there does not appear to be a clear pattern in the relationship between Ap and A\y;
friendly spillovers are positive and significant across years, larger than unfriendly
spillovers in 1990 and equal to unfriendly spillovers in 2005. There is evidence that
the errors are strongly correlated over space. There is also significant autocorrelation
in Slaughter gas production. Friendly spillovers are positive and significant in 1990;
no other spillover parameters are significant at the 95% confidence level, and point

estimates between friendly spillovers and unfriendly spillovers are close.
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Panel Model: Single Inverse Distance Weight Matrix, No Injection

Table [19 presents fixed effects estimated for the pooled data. The fixed effects

models for lease-level gas production indicate positive and significant spatial

autocorrelation in the time-varying aspect of the errors. There is also evidence of a

race to extract in natural gas production, as the estimates for A are positive and

stable, although the preferred GS2SLS estimate is insignificant.

Table 19: Fixed effects panel regressions

Oil Gas
OLS GLS 2SLS GS2SLS OLS GLS 2SLS GS2SLS
constant  3.915 5.401 3.347 6.053 3.139 4.461 2.872 3.183
(0.059) (0.517) (0.212) (1.902)  (0.096) (0.680) (0.348) (0.992)
went 0.088 0.090 0.093 0.074 0.093 0.026 0.095 0.087
(0.001) (0.019) (0.004) (0.028)  (0.002) (0.028) (0.007) (0.010)
went2 -0.033 -0.044  -0.034 -0.029 -0.034 -0.002  -0.035 -0.030
(0.000) (0.010) (0.002) (0.013)  (0.001) (0.013) (0.003) ( 0.004)
age 0.000 -0.000  0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
wtr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)
A 0.002 0.002 0.000 0.001 0.001 0.001
(0.000) (0.000) (0.001)  (0.000) (0.000) (0.001)
moran 5049.479 7359.250
p 0.031 0.031 0.015 0.015
(0.001) (0.001) (0.000) (0.000)

Notes: The table presents results fixed effects panel regressions with log gas and log oil production as the dependent variable
and a single inverse distance spatial weight matrix with coefficient A. The column labeled “OLS” presents results when no
instrumentation is made for the spatially lagged dependent variable, and no spatial structure is assumed in the errors; “GLS”
is a specification, where the errors are assumed to be spatially autocorrelated; the column “2SLS” instruments for endogenous
production with WX ; “GS2SLS” instruments for endogenous production, and assume the errors to be spatially autocorrelated.
Independent variables are depth, the total depth of the most recent well completed on the lease; went, the number of active
producing wells on the lease (and its square); age, the time since the most recent well was completed; wtr, the amount of water
produced on the lease that month, a proxy for whether the lease is constrained by disposal; winj is water injected within a
half-mile of the lease in the past year; ginj is the gas injected within a half mile of the producing lease in the past year; p is
the parameter for the spatial autoregressive error. Standard errors are reported on the line underneath coefficient estimates.
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Turning to the oil results, it is apparent that the OLS and 2SLS estimation yield
parameter estimates for A that are positive and significant and very close to
previous cross-sectional estimates. The parameter for the spatial autocorrelation in
errors (p) is a third to half the size of estimates in Tables [I1] and [12] This difference
cannot be wholly attributed to the importance of lease fixed effects in controlling for
spatial autocorrelationE-] nevertheless, it is expected for the error to attenuate
because fixed effects diminishes the unexplained variation in the model. What is
striking is the insignificance of A in the GS2SLS specification when controlling for
lease-level fixed effects.

There are two ways to interpret the insignificance. The first is that the spatial
dependence in production is a statistical illusion. Cross sectional GS2SLS
estimation is not powerful enough to properly distinguish true production spillovers
from time invariant differences in lease productivities. But going deeper, fixed
effects estimation differences out the variation in ownership structures, which are

precisely the effects that I seek to isolate.

Panel Model: Separate Inverse Distance Weights, No Injection

To isolate the spillovers that result from different ownership structures, I estimate
the fixed effects models in two specifications which differ in the weight matrix used.
In particular, I separately estimate
y=XBi+\Wiy+u 12)
u; = piMu; + €
where ¢ = {F, U} indexes the weight matrix to be used in the specification. M
represents the inverse distance weighting matrix used previously. Wr represents the

inverse distance weights, but take values only when the neighboring leases are

21The models have different regressors. The variable depth is time invariant and cannot be used
in fixed-effect specification.
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produced by a common operator ( i.e., the weights take values only for “friendly”
leases.) Similarly, Wy takes inverse distance values when neighboring leases do no
share a common operator (the leases are said to be “unfriendly”) A priori, we would
expect leases with common owners to more fully account for the spillovers in
production , so that Ap < Ay. Equation [12| thus provides a testable hypothesis.
Result from estimation of models with weight matrices given according to
Equation [12] are given in Tables 20| and 21} Again, the preferred specification is
GS2SLS. For oil production, the parameter measuring the spatial spillover among
friendly wells is positive and statistically significant. What is surprising is that the
parameter for friendly spillover is larger and significantly different than the
parameter for unfriendly spillovers (which is not significantly different from 0).
Results are qualitatively similar for natural gas production. Combined, these results
seem to indicate that leases under common stewardship are more likely to engage in

a race to extract.



Table 20: Fixed effects, separate weighting: oil

Friendly Unfriendly
OLS 2SLS GS2SLS OLS 2SLS GS2SLS

constant 5.617  5.630 5630  4.353  4.110  5.482
(0.061) (0.112) (0.112)  (0.064) (0.258) (1.696)
went 0078  0.078 0078  0.082 0084 0.071
(0.001) (0.005) (0.005)  (0.001) (0.005) (0.020)
went2  -0.029  -0.029 -0.029  -0.032 -0.032 -0.030
(0.000) (0.002) (0.002)  (0.000) (0.002) (0.009)

age 0.000  0.000  0.000  0.000  0.000  0.000
(0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000)

wir 0.000  0.000 0.000  0.000  0.000  0.000
(0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000)

A 0.004  0.004 0.004  0.00l  0.002 0.001

(0.000)  (0.000) (0.000)  (0.000) (0.000) (0.001)

moran 5163.20 6276.67
p 0.000 0.031
(0.001) (0.000)

Notes: The table presents results fixed effects panel regressions with log oil production as the
dependent variable and a single inverse distance spatial weight matrix with coefficient A. In
”Friendly” columns this weight matrix takes inverse distance values only when neighboring leases
have common operators; ” Unfriendly is the oppositte;The column labeled “OLS” presents results
when no instrumentation is made for the spatially lagged dependent variable, and no spatial
structure is assumed in the errors; the column “2SLS” instruments for endogenous production with
WX; “GS2SLS” instruments for endogenous production, and assume the errors to be spatially
autocorrelated. Independent variables are depth, the total depth of the most recent well completed
on the lease; went, the number of active producing wells on the lease (and its square); age, the
time since the most recent well was completed; wtr, the amount of water produced on the lease
that month, a proxy for whether the lease is constrained by disposal; winj is water injected within
a half-mile of the lease in the past year; ginj is the gas injected within a half mile of the producing
lease in the past year; p is the parameter for the spatial autoregressive error. Standard errors are
reported on the line underneath coefficient estimates.
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Table 21: Fixed Effects, Separate weighting: gas

Friendly Unfriendly
OLS 2SLS GS2SLS OLS 2SLS GS2SLS

constant 3.822  3.883  4.007  4.632 4.319  5.067
(0.088) (0.162) (0.166) (0.098) (0.397) (0.772)
went 0.094 0.093  0.090  0.083 0.085 0.085
(0.001) (0.007) (0.006)  (0.002) (0.008) (0.009)
went2  -0.033  -0.033  -0.032  -0.031 -0.032 -0.032
(0.001) (0.003) (0.003)  (0.001) (0.003) (0.004)

age 0.000  0.000  0.000  0.000 0.000  0.000
(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000)

wtr 0.000  0.000  0.000  0.000 0.000  0.000
(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000)

A 0.006  0.005  0.006  -0.000 -0.000 -0.000

(0.000) (0.000) (0.001)  (0.000) (0.000) (0.000)

moran 5395 7552
p 0.015 0.015
(0.000) (0.000)

Notes: The table presents results fixed effects panel regressions with log gas production as the
dependent variable and a single inverse distance spatial weight matrix with coefficient A. In
”Friendly” columns this weight matrix takes inverse distance values only when neighboring leases
have common operators; ” Unfriendly is the opposite;The column labeled “OLS” presents results
when no instrumentation is made for the spatially lagged dependent variable, and no spatial
structure is assumed in the errors; the column “2SLS” instruments for endogenous production with
WX; “GS2SLS” instruments for endogenous production, and assume the errors to be spatially
autocorrelated. Independent variables are depth, the total depth of the most recent well completed
on the lease; went, the number of active producing wells on the lease (and its square); age, the
time since the most recent well was completed; wir, the amount of water produced on the lease
that month, a proxy for whether the lease is constrained by disposal; winj is water injected within
a half-mile of the lease in the past year; ginj is the gas injected within a half mile of the producing
lease in the past year; p is the parameter for the spatial autoregressive error. Standard errors are
reported on the line underneath coefficient estimates.
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One plausible explanation for the unexpected results is that no account has been
made for how injection impacts recovery. Injection is more likely and more effective
when contiguous leases are controlled by a common operator. If these types of leases
are more successful in injection, then recovery across the leases may be highly
correlated, contributing to what looks like spatial dependence. Moreover, the
impact of injection will not be swept up with lease-level fixed effects because
injection varies over time. This can be tested for by adding injection into the model.
The variables for injection are defined as the sum of injection that occurred within a

half-mile radius of the well within the past year.

Panel Model: Simultaneous Inverse Distance Weights, With Injection

The next model I estimate is

y=XB+AX\eWry+ \gWyy+u (13)
u = pMu+e.

Tables [22| and 23| present estimations controlling for gas and water injection for
the spillover parameters Ar and Ay for oil and gas, respectively. This model is
slightly different from equation [12]in that the effect of spillovers from friendly wells
is estimated in the same model as spillovers from unfriendly wells. In the columns
labeled “GS2SLS” in both tables [22] and [23] we see evidence of a race to extract, in
that the spillover estimate for unfriendly wells comes up as positive and significant,
and is larger than the estimate for the spillover from friendly wells. Take for
example table [22] The spillovers from nearby leases managed by the same operator
is insignificantly different from zero, evidence that the operator is fully accounting
for the externality in production. Meanwhile, the spillover from unfriendly wells is

significant and positive. After controlling for spatial autocorrelation, this indicates
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that when a neighboring competing operator increases production, you also tend to

increase production—a classic race to extract.

Table 22: Fixed effects, simultaneous weighting: oil

OLS  GLS  2SLS  GS2SLS
constant -0.009 -0.014 -0.010 -0.015
(0.014)  (0.235) (0.015) (0.006)
went 0.013  0.140 0.013  0.016
(0.003)  (0.039) (0.005) (0.013)
went2  -0.007  -0.049  -0.007  -0.011
(0.001) (0.014) (0.002) (0.006)

age 0.000 0.000 0.000 0.000
(0.000)  (0.000) (0.000) (0.000)
wtr 0.542 0.136 0.543 0.335
(0.033) (0.138) (0.036) (0.051)
ginj -0.006 0.071 -0.007  -0.023
(0.002)  (0.020) (0.005) (0.008)
winj 0.009 -0.069  0.009 0.014
(0.002) (0.012) (0.004) (0.007)
AR 0.008 0.007 -0.006
(0.001) (0.002) (0.005)
AU 0.004 0.004 0.005
(0.000) (0.000) (0.000)
moran 201.341
p 0.120 0.093
(0.005) (0.003)

Notes: The table presents results fixed effects panel regressions
with logged lease level oil production as the dependent variable and
separate inverse distance spatial weight matrices given according to
whether neighboring leases are under common ownership. Ag is the
estimated spatial autoregressive coefficient for the weight matrix that
takes inverse distance values when leases have a common operator;
Ay is the estimated spatial autoregressive coefficient for the weight
matrix that takes inverse distance values when leases have compet-
ing operators. The column labeled “OLS” presents results when no
instrumentation is made for the spatially lagged dependent variable,
and no spatial structure is assumed in the errors; “GLS” is a specifica-
tion, where the errors are assumed to be spatially autocorrelated; the
column “2SLS” instruments for endogenous production with WX;
“GS2SLS” instruments for endogenous production, and assume the
errors to be spatially autocorrelated.



Table 23: Fixed effects, simultaneous weighting: gas

OLS GLS 2SLS  GS2SLS

constant -0.013 -0.858  -0.019 -0.009
(0.057) (0.293) (0.057) (0.019)

went 0.051 0.217 0.051 0.054
(0.013) (0.044) (0.021) (0.025)

went2 -0.022 -0.036  -0.023 -0.019
(0.006) (0.020) (0.010) (0.011)

age 0.000 0.000 0.000 0.000
(0.000)  (0.000) (0.000) (0.000)
wtr 0.871 1.354 0.847 0.543
(0.129)  (0.408) (0.136) (0.111)
ginj -0.023 0.051 -0.022  0.008
(0.010)  (0.074) (0.021) (0.021)
winj 0.011 -0.107  0.010 -0.013
(0.008)  (0.052) (0.018) (0.017)
AR 0.007 0.004 0.010
(0.004) (0.006) (0.007)
AU 0.004 0.005 0.004
(0.001) (0.002) (0.001)
moran -685.593
P 0.068 0.045
(0.003) (0.002)

Notes: The table presents results fixed effects panel regressions with
logged lease level gas production as the dependent variable and sepa-
rate inverse distance spatial weight matrices given according to whether
neighboring leases are under common ownership. Ar is the estimated
spatial autoregressive coefficient for the weight matrix that takes in-
verse distance values when leases have a common operator; Ay is the
estimated spatial autoregressive coefficient for the weight matrix that
takes inverse distance values when leases have competing operators.
The column labeled “OLS” presents results when no instrumentation
is made for the spatially lagged dependent variable, and no spatial
structure is assumed in the errors; “GLS” is a specification, where the
errors are assumed to be spatially autocorrelated; the column “2SLS”
instruments for endogenous production with WX; “GS2SLS” instru-
ments for endogenous production, and assume the errors to be spatially
autocorrelated.
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Panel Model: Simultaneous Inverse Distance Weights By Well Age, With

Injection

We observe that there is a large "positive” spillover when neighboring wells are

owned by competing operators— evidence of a race to extract. However, it is possible
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that it is not ownership per se that drives the results. Well age is an important
variable to consider in modeling reservoir dynamics. Young wells are likely to have
much more capacity to communicate with neighboring wells, than comparatively
older wells, simply because, all things being equal, younger wells will be in higher
energy parts of the reservoir and more potential for drawdown. To test for this, I
allow the spillover parameter to be vary across wells of different ages, and these
parameters are allowed to be different for both friendly and unfriendly operators.

The model T estimate is

Yy = Xﬁ + Za()‘F,aWFya + )\U,aWUya) +u
u = pMu + e.

(14)

Production at neighboring wells, y, has been separated into 4 vectors depending
on what age bin production falls. I arbitrarily choose 4 bins, so that each
production been of well age represents a quartile, a € 1,2, 3,4. We expect that the
spillover parameter should decline with as neighboring wells increase in age. The
decline occurs for two reasons. First, since the neighboring wells are older, there is
likely less capacity at those wells for drawdown because with time the pressure in
the surrounding reservoir and at the well face tends toward equilibrium. Second, it
is reasonable to expect that the age of wells is correlated across space; therefore,
when neighboring wells are older, it is likely that your own well is older, and that
you have less capacity to adjust own production, although this effect would be
accounted for to some degree by the linear term in age. Results for regressions with

oil as the dependent variable are in table while gas results are in table [25]



Table 24: Oil spillover by well age
OLS GLS 2SLS GS2SLS

constant  0.005 0.236 -0.012  0.006
(0.014) (0.311) (0.020) (0.008)

went 0.013 0.152 0.012 0.021
(0.003) (0.044) (0.005) (0.016)

went2 -0.007  -0.048 -0.007 -0.015
(0.001) (0.017) (0.002) (0.007)

age 0.000 0.000 0.000 0.000
(0.000)  (0.000) (0.000) (0.000)
wtr 0.533 0.530 0.541 0.005
(0.033) (0.188) (0.038) (0.002)
ginj -0.006  0.059 -0.007  -0.012
(0.002) (0.030) (0.005) (0.009)
winj 0.009 -0.055  0.007 0.012
(0.002) (0.023) (0.004) (0.008)
AF1 0.008 -0.004  0.030
(0.001) (0.007) (0.004)
Ao 0.071 0.004 -0.000
(0.057) (0.000) (0.000)
Ar3 -0.545 -0.000  0.000
(0.532) (0.000) (0.000)
Ap4 -0.697 -0.000  0.000
(0.883) (0.000) (0.000)
A1 0.003 0.005 0.004
(0.000) (0.001) (0.000)
A2 0.032 0.010 0.024
(0.008) (0.026) (0.016)
AUs -0.060 -0.004  0.000
(0.208) (0.001) (0.000)
AU -0.053 0.012 0.001
(0.129) (0.000) (0.000)
moran 317.985
p 0.125 0.117
(0.005) (0.004)

Notes: The table presents results fixed effects panel regressions

with logged lease level oil production as the dependent variable and
separate inverse distance spatial weight matrices given according to
whether neighboring leases are under common ownership. Ap; — Apy
are the estimated spatial autoregressive coefficient for the weight ma-
trix that takes inverse distance values when leases have a common op-
erator, and well the ages of the wells are in the quartile 1-4; A1 — Ay
are the estimated spatial autoregressive coefficient for the weight ma-
trix that takes inverse distance values when leases have competing
operators and well the ages of the wells are in the quartile 1-4, respec-
tively. The column labeled “OLS” presents results when no instru-
mentation is made for the spatially lagged dependent variable, and
no spatial structure is assumed in the errors; “GLS” is a specifica-
tion, where the errors are assumed to be spatially autocorrelated; the
column “2SLS” instruments for endogenous production with W.X;
“GS2SLS” instruments for endogenous production, and assume the
errors to be spatially autocorrelated.
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Table 25: Gas spillover by well age

OLS GLS 2SLS GS2SLS
constant  0.018 -2.332  -0.011  -0.060
(0.055)  (1.335) (0.046) (0.026)
went 0.049 -0.859  0.050 0.055
(0.012)  (0.163) (0.021) (0.025)
went2 -0.021 0.119 -0.022  -0.016
(0.006)  (0.071) (0.009) (0.011)

age 0.000 -0.000  0.000 0.000
(0.000) (0.000) (0.000) (0.000)
wtr 0.864 -0.371  0.849 0.053
(0.126) (1.379) (0.141) (0.022)
ginj -0.025 0.010 -0.022  0.023
(0.009) (0.227) (0.021) (0.022)
winj 0.014 0.118 0.010 -0.028
(0.008) (0.158) (0.017) (0.017)
A1 0.005 0.001 0.011
(0.004) (0.013) (0.008)
Aro 0.005 0.013 -0.020
(0.136) (0.002) (0.008)
A3 -0.101 0.001 -0.003
(0.622) (0.000) (0.001)
Py -0.037 0.010 -0.021
(0.145) (0.007) (0.010)
Aut 0.000 0.004 0.008
(0.001) (0.002) (0.002)
Ave 0.046 0.010 -0.020
(0.014) (0.049) (0.028)
AUs 0.268 -0.014  -0.016
(0.243) (0.005)  (0.006)
AU4 0.069 0.017 -0.096
(0.044) (0.035) (0.049)
moran -725.961
P 0.093 0.046
(0.004) (0.001)

Notes: The table presents results fixed effects panel regressions with
logged lease level gas production as the dependent variable and sepa-
rate inverse distance spatial weight matrices given according to whether
neighboring leases are under common ownership. Ap; — Apy are the
estimated spatial autoregressive coefficient for the weight matrix that
takes inverse distance values when leases have a common operator,
and well the ages of the wells are in the quartile 1-4; A\y; — Ayy are
the estimated spatial autoregressive coefficient for the weight matrix
that takes inverse distance values when leases have competing opera-
tors and well the ages of the wells are in the quartile 1-4, respectively.
The column labeled “OLS” presents results when no instrumentation
is made for the spatially lagged dependent variable, and no spatial
structure is assumed in the errors; “GLS” is a specification, where the
errors are assumed to be spatially autocorrelated; the column “2SLS”
instruments for endogenous production with WX; “GS2SLS” instru-
ments for endogenous production, and assume the errors to be spatially
autocorrelated.

Looking first at results for oil, the Moran-I statistic indicates significant positive
spatial autocorrelation in the errors, making inference on the OLS parameters

untenable. After controlling for other covariates an, an extra day of production (age)
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does not meaningfully affect oil production. The OLS and GS2SLS specifications
also indicate that gas injection is negatively correlated with production when
controlling for spillovers; however, local gas injection is positive in the GLS
specification while local water injection is negative and statistically significant. The
instability of the parameter estimates for injection is likely due to to the complex
spatial dynamics of the reservoir. A sudden within drop off in production could
precipitate a local within increase in injection to compensate; a positive relationship
is also easy to explain. The countervailing pressures in injection explain why
estimates are not significant in the GS2SLS specification. The specifications for oil
do pick up significant positive autocorrelation in oil production between leases.

Results for explanatory variables for natural gas are similar to those for oil. The
age of the well does not seem to significantly impact production; the number of
wells on the lease increases production, although the negative square term, indicates
that this is at a decreasing rate. Injection is generally insignificant. Injection is
likely to be even more difficult to identify with gas production, since produced gas
can be re-injected into the reservoir. The Moran-I statistic on the OLS regression
indicates negative spatial correlation, while the GLS and GS2SLS specification pick
up the expected positive spatial autocorrelation in errors.

The parameters for spatial autoregressive lag are graphed in figure |11 for oil and
figure [12] for gas. The older the age of the neighboring well the more the spillover
parameter should attenuate, and so we see a negative slope in the graphs in both
cases. Additionally, there should be more of a race to extract when wells are owned
by competing ("unfriendly” ) operators, and so we would expect that the unfriendly
line lies above the friendly line on the graphs. This is generally the case for oil, with
the exception being spillovers from wells within the first quartile of age. Unlike oil
the spillovers parameters for natural gas are, with the exception of the first period,

negative, here the friendly spillover tends to lie above estimates for unfriendly



95

spillovers, and is closer to zero. Pinning down the interpretation of the spillover
parameter requires a full spatial dynamic model of joint resource recovery, as well as

controls for cumulative recovery, which is not attempted at present.

Conclusion

The spatial interaction between wells is an important consideration in efficiently
draining oil an natural gas from expansive underground reservoirs. Yet previous
research has shown that the present structure of lease-ownership in Texas impedes
efficient field development because rights to the resources in situ are not fully
delineated. This insecurity perverts economic incentives so that the resources are
extracted too quickly, with too much of the rents depleted by costly excess capital.
This paper exploits recent advances in spatial econometrics to quantify the
production spillovers between leases. Results show evidence of a race to extract
across a variety of specifications. The most extensive model show that after
controlling for injection and fixed effects, consolidated ownership reduces spillovers
and tends to slow the rate of extraction as compared to areas where ownership is

highly fractured. These results are directly in line with economic theory.



Chapter V

POWER LAWS IN TEXAS OIL AND NATURAL GAS PRODUCTION

Introduction

Power laws are of growing interest to economists. They are relations of the type

Y = kX% where Y and X are two variables, and « is the power-law exponent, also
known as the scaling parameter. Power laws are used to describe the distribution of
firm sizes (Axtell|2001)), the distribution of city sizes (Gabaix and Ioannides [2004)),
and most famously, the distribution of income and wealth (Atkinson and Piketty
2007)), (Pareto |1896). More speculative laws include the distribution of stock price
fluctuations and trading volume, as well as the relationship between the number or
lines of state regulations and state population, and the number of links to a website
and it’s popularity (Gabaix [2009)). There are also many proposed power laws
outside the realm of economics. Most famously, Zipf finds that the frequency a word
is used is inversely proportional to its rank (in terms of usage) (Zipf1949).

In this paper, I examine the distribution of oil and natural gas recovery in Texas
and find that recovery is power law distributed. In particular, I find that recovery
for a lease of rank r is proportional to 1/r, i.e., high ranking leases have a
disproportionate share of total recovery. In distributional terms, this implies that
the probability that a lease recovers more than x barrels of oil is proportional to
1/x. In particular, P(Recovery > x) = k/x®, with a ~ 1 for cumulative oil recovery.

For cumulative natural gas recovery, o ~ 1.3 . What this means, intuitively, is that
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the distribution of oil and natural gas wells have extremely fat tails, and that a
small percentage of producers are responsible for a great percentage of recovery.
These findings have policy relevance in terms of regulation of spills, as “large” spills
are only possible for a few leases. Thus to prevent a BP-type spill regulation need
not be universal. The same principle applies to royalty enforcement, as a great

portion of royalty revenues come from a small percent of leases.

Data

Identifying power laws is very data-intensive. Power law behavior is most apparent
in the tails of a distribution, which is also where there are the fewest observations.
It, therefore, takes very large datasets to be able to distinguish between different
distributions. The HPDI data set, which compiles time series for oil and natural gas
production for 31 states as well as the federal offshore areas in the Gulf and the
Pacific, is uniquely well-suited for the purpose. In this chapter, I limit my focus to
the oil leases and gas wells in Texas (oil is reported at the lease level, gas at the well
level). Time series for these data go back to as early as 1934. I focus on cumulative
oil production, and cumulative gas production yielding 591,764 observations. Many
of these wells are still active.

Moments and summary statistics for the distributions can be found in table [26]
The first thing to notice is that both the oil and gas distribution are right-skewed:
The mean is significantly higher than the median in both cases, and the sample
estimate for skewness is large and positive in both cases. Secondly, and what is very
suggestive of the power law behavior of the distribution, is that it spans nine orders
of magnitude. The minimum cumulative oil and gas produced is 0, while the
maximum in both cases is measured in the billions. While it could be argued that

this dispersion is a result of the units chosen, parameter estimates of power law
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distributions are independent of the units of measure chosen.@ For gas production
50% of the data lie within the first 4 orders of magnitude, for oil 50 % of
observations lie within the first 3 orders of magnitude. The large sample estimate

for kurtosis indicates that there is substantial weight in the tails of the distribution.

Table 26: Moments of sample distri-

bution
gas oil
mean 533619.6  73111.9
median 10676 266
maximum  2.49e+9  1.18e+9
minimum 0 0

variance 4.11e+13 7.89e+12
skewness 216.79 271.97
kurtosis 66594.53 94687.69

Notes: Statistical moments for Texas hydrocar-
bon production.

Digression on Moments

The moment generating function for a power law distribution is given by

a—1

@ = [ sl = (15)

Tmin

where p(x) and x,;, are defined in equation The important thing to notice is
that for the power law distribution, moments become infinite unless m < o — 1. In
this chapter, I find evidence that o < 3 for both oil and gas. This implies that there
is no finite moment beyond the mean. Of course, in any finite sample, it is possible

to calculate higher order moments such as variance, skewness and kurtosis. The

22Tndeed, they are the only family of distributions where the parameters do not depend on the
units of measurement, hence, they are known as scale-free or scaling distributions (?).
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Figure 13: Distribution of Oil Productivities. x is log cumulative production in barrels, y
is the probability.
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catch is that as the sample size is increased, the sample estimate for moments will
increase, never converging to anything.

The reality is that there is a finite amount of oil and gas resources on the planet,
a finite number of wells that can be drilled, and so practically speaking, the
moments cannot increase without bound. Yet the power law still captures
important aspects of the distribution. To make this point more clear I take an
example from Newman| (2005)). The magnitude of flooding is thought to be power
law distributed with a < 2. In this case there is not even a well-defined mean for
the distribution. It is possible to calculate the average flood from the historical
data, but this is not particularly useful, because most of the data will be far from
that average. The quantiles of the distribution are informative, however, which is
why instead of talking about the average flood, we make reference to the Great

Mississippi Flood of 1927.

Methods

To estimate the exponent of the presumed power law distribution of cumulative oil
and natural gas recovery, I focus on the right tail of the data. In particular, I choose
two samples. In one I limit observations to those in the top 5% as recommended by
Gabaix! (2009) of cumulative oil and natural gas recovery, resulting in two samples,
each with 29,588 observations. In the second sample, I endogenously estimate the
threshold using techniques described in the following paragraphs. In this chapter I
use three methods for estimating the power law exponent. The most straightforward
is by using the method of maximum likelihood.

The probability distribution function for a power law is given by

s =L () (16)

Tmin Tmin
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where « is the parameter of interest. The parameter x,,;, is the threshold at which
the power law behavior begins. Notice that as x,,;,— > 0 the probabilities diverge,
and so power laws cannot match real world data over the entirety of the
distribution. It is for this reason that power laws are normally relegated to modeling

the tails of the distribution. The log likelihood function is then written as

n

L = Z[ln(oz—l)—lnxmm—aln xl}

Lo s
i=1 mwn

= nln(a—l)—nlnxmm—aZln . (17)

Lo i
i=1 mwn

By taking the derivative of the log likelihood function with respect to «, setting it

equal to zero and solving for a;, the maximum likelihood estimate is

" -1
odMEE — 1 4 (Z In 2 ) : (18)
i=1

LTmin

of which the standard error is
o= —n—. (19)

A potential point of contention with MLE estimation is in specifying the
threshold parameter, x,,;,. Researchers have traditionally “eyeballed” the data to
determine where the power-law behavior begins. |Gabaix| (2009) recommends
limiting the analysis to the 95% quantile, which I follow for one of the data samples I
analyze. For the other data sample, I follow the procedure recommended by |Clauset
et al.| (2009) and choose x,,;, endogenously to minimize the Kolmogorov-Smirnov
(KS) goodness of fit statistic. The basic idea is to choose x,;, to minimize the

distance between the empirical cumulative distribution, F(z), and the estimated
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power law cumulative distribution function, P(x). The KS statistic is given as

KS = max |E(x)— P(z)|. (20)

The thresholds that minimize this statistic are given in table [28]|
Also commonly employed, and asymptotically equivalent to a™*F — 1 is Hill’s

estimator, which is given by

; n—2

,}/H 1l — — ( ) (21)
Yo (Ina; — Inaypn,)

The standard error for the Hill estimator is given by % (n — 3)~1/2. Finally, the

power law exponent can be estimated via the following OLS specification.

(i) = a -y Inx; + ¢ (22)

OLS

where (i) represents the observation’s rank in the distribution, o and ~ are the

parameters to be estimated, and ¢; is the error term. The asymptotic standard error

is given by v9&5(n/2)71/2,

v and «

The literature is divided on reporting of the exponent for the probability
distribution function, and the reporting of the exponent for the counter-cumulative
distribution function, v E This section is meant to clarify any misunderstanding.

The counter-cumulative distribution function, P(X > x) is given as

P(X >z) = /;O P(X)dX = <xim>_a+l - (xi’n)_7 (23)

2The counter-cumulative distribution function is just (1-CDF).
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Results

Results for the sample of the 5 % tail of the distribution are presented in table
(The threshold cutoff for oil is 175,375, bbls, the threshold cutoff for gas is 2,051,885
MCF). The MLE and Hill estimator give virtually identical results owing to the
large sample size in both the oil and gas samples. For both cumulative oil and gas
recovery, the OLS estimates exceed the MLE. Cumulative oil recovery is very close
to following Zipf’s law ( a power law relationship where v = 1). The maximum
likelihood parameter estimate for oil recovery implies that 82.5% of oil is recovered
on 1 % of the leases. For natural gas recovery, the exponent is slightly larger. The
divergence between Hill and OLS estimators is also slightly greater. The parameter
implies that 1% of wells account for 45.5 % of cumulative gas recovery. For both oil
and natural gas, estimates of the scaling parameters imply the distributions have

infinite variance.

Table 27: Power law estimates, 5% tail

gas oil
aMLE 2.206 2.043
(0.007) (0.006)
AHl 1.206 1.043
(0.007)  ( 0.006)
AOLS 1.368 1.079

(0.011)  (0.008)
Observations 29,588

Notes: Estimates for PL exponent based on 5 %
tail. Standard error are in parentheses.

Results for estimates where the sample is chosen endogenously to minimize the
Kolmogorov-Smirnov statistic are presented in table 28] The procedure chooses a
threshold cutoff further in the tail for both oil and natural gas, and so the sample
size diminishes. Compared to the 5% threshold, the estimated exponent for natural

gas increases substantially; the same is true for oil recovery, but less pronounced.
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Again, parameter estimates indicate that neither distribution has a finite variance.
Exponents imply that 1% of gas wells recover 16.9% of gas, while 1% of oil leases

are responsible for 70 % of oil recovered.

Table 28: Power law estimates, endogenous threshold

gas oil

Threshold 11,599,772 MCF 372,460 bbls
KS 0.010 0.005
aMLE 2.630 2.086

(0.028) (0.009)
~Hill 1.629 1.085

(0.028) (0.009)
~HOLS 1.612 1.097

(0.039) (0.013)
Observations 3379 13780

Notes: Estimates for power law exponent based on sample with
endogenous cutoff. Standard error are in parentheses.

Robustness Tests

Simple parameter estimation is not enough to assert oil and natural gas are power
law distributed. Although the data appear linear on a log-log graph, over short
enough spans, other distributions such as log-normal can also appear linear. There
are two tests that may be implemented, Clauset et al. (2008) recommend
Kolmogorov -Smirnov testing based on simulated samples; at present I implement a
simpler test based on the linear regression proposed by Gabaix and Ibragimov
Gabaix and Ibragimov| (Gabaix and Ibragimov)). Define xx as

cov((Inz;)?, Inx;)

* = , (24)

2var(Inz;)
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then regress the following equation,

1
In(i — 5) =a+ Cln;+q(Inz; — 2%)* + €. (25)

The test parameter is ¢/ QA" 2. The null hypothesis, that cumulative oil and natural gas
recovery is power law distributed is rejected if 4% > 1.95(2n) /2. Results of the tests
are printed below. The null hypothesis that oil and natural gas are power law

distributed—at least in the upper tail-cannot be rejected in any sample.

Table 29: Gaibaix-Ibragimov test of power law

gas oil
95% sample
Test Statistic 1.79e-10 4.11e-10
Threshold 0.008
Endogenous threshold sample
Test Statistic 1.56e-08 2.18e-08
Threshold 0.023 0.011

Notes: Gabaix-Ibragimov test statistics. Reject PL distribution if test
statistic;, threshold.

The most convincing evidence of power laws is visual. Graphs of the data can be
found below, along with the best fitting distributions from the class of power law,
exponential, and log-normal distributions. When the data are graphed in levels, it is
difficult to see very much; however, the linear relationship after log transformation
of the data and axes is stunning. The best fit exponential and log-normal
distributions can not adequately explain fit the data in the tails: these distributions
assume that such observations are just too unlikely. Only the power law can fit the

explosive randomness in the tails.
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Oil Distribution, 95% Sample
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Figure 15: Log cumulative production versus log empirical probability. The data and
their empirical probabilities are plotted with circles. The likelihood maximizing power law
distribution is in red, the exponential in blue, and the log-normal in green. The data are
the 5% tail.
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Gas Distribution, 95% Sample
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Figure 16: Log cumulative production versus log empirical probability. The data and
their empirical probabilities are plotted with circles. The likelihood maximizing power law
distribution is in red, the exponential in blue, and the log-normal in green. The data are
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The qualitative evidence provided by the graphs can be made quantitative by
implementing a likelihood-ratio type test, as recommended by ?. The test compares
the predicted likelihoods of two competing distributions, favoring the distribution

that is more likely. In particular, the test is computed as

R = Z [In py (2;) — Inpa()] (26)

where pi(z) and po(z) are the probabilities predicted by two distributions[”] The
authors go on to show that R is normally distributed and give formulas for
calculating p-values. I compare the likelihoods computed under the assumption of
power law to those under the assumption of exponential and log-normal. These
results are presented in table It is readily apparent that the power law
distribution has much more explanatory power than the competing distributions

across both samples and for both oil and natural gas.

Table 30: Likelihood ratio tests of competing distributions

PL-Exponential PL-Log-normal

Gas

95% sample 18560.26 15585.86
(0.000) (0.000)

Endogenous Threshold 2819.377 1441.832
(0.000) (0.000)

Oil

95% sample 30499.41 32302.33
(0.000) (0.000)

Endogenous Threshold 13827.24 14751.59
(0.000) (0.000)

Notes: Likelihood ratios computed as power law log likelihood-competing distribu-
tion log likelihood. Positive numbers indicate the power law distribution is the better
fit. P-values for significant differences in likelihoods are in parentheses.

24These predicted values are obtained after estimating parameters for the competing distributions
via maximum likelihood
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Conclusion

This chapter presents strong evidence for power law tails in the distribution of
cumulative oil and natural gas production. Leases productivities span many orders
of magnitude, log-log graphs of cumulative production demonstrate a striking linear
relationship, and quantitative robustness tests indicate the power law distribution
to be a good approximation. Of course, given the infinite number of distributions to
select from, it is possible to find one that better fits the data. Yet the power
distribution illustrates key features in the data (its heavy tails) and does so
parsimoniously. I have also shown that a power law distribution fits the data in the
tails much better than more commonly used distributions such as exponential and
log-normal.

The power law result is significant for both management and regulation,
particularly in the case of oil production. By overseeing just 1 % of leases,
regulators can monitor nearly 83 % of cumulative production. Similarly for
production companies, their profitability is determined not by the vast majority of
the leases operated, but by their most productive 1 %. How this distribution should
affect managerial decisions is an exciting avenue for further research.

Finally, it is natural to ask what is causing the data to be power law distributed.
Power law distributions have been found to result from a broad away of processes,
including, optimization problems with a particular set of constraints, random walks,
Yule processes, combinations of exponential distributions, and phase
transitions—and this is still a very active area of research. A likely explanation is
that scaling is common in nature, and therefore the scaling distribution is as well.
Indeed we see it in the distribution of galaxies, supernovas, severity of flooding and

earthquakes, and, apparently, in the productivity of oil an natural gas leases.



Chapter VI

CONCLUSION

In this dissertation, I have examined data in Texas and Oklahoma, looking for
evidence of common pool externalities, which distort production incentives away
from the social optimum. To identify the common pool externality, I compare areas
where ownership is secure-where leases are operated by a single manager—to areas
where in situ resource ownership is insecure—areas where there are many competing
operators. I find that secure property rights enhance cumulative oil recovery. This
result cannot be explained with present economic models that assume the stock of
recoverable reserves is fixed. For empirical applications, it is necessary to model the
stock of reserves as endogenous to the slope of the extraction profile. Using two very
different empirical techniques, I also uncover evidence of distorted production
profiles that can explain the difference in cumulative recovery. Both regression
discontinuity and the spatial model indicate that lease owners with insecure rights
to the resource in situ extract at a higher rate conditional on the age of the well.
Finally, I demonstrate the the results are economically important. The average well
is important from a managerial and regulatory perspective, and so enhancing
recovery at the average well by solving the common pool externality is economically

important.
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Appendix A

APPENDIX TO CHAPTER III

Federal Regulation

Federal regulations, being identical for both Texas and Oklahoma, cannot be the
sole contributor to differences in production evident at the border. Federal
regulations can, however, magnify or diminish the effects of existing state-level
policy differences previously mentioned. In this section, I give an overview of
important federal regulation of oil and natural gas production, which, excluding
production on federal lands, is implemented mostly through the federal tax code

through credits and deductions.

e ENHANCED OIL RECOVERY CREDIT. This tax credit has been a target
for repeal in the 2012 fiscal year (FY2012). The tax credit is worth 15% of
allowable costs related to secondary injection and is only available in years
where oil price is “low” (it has not been effective in recent years). The credit

was first introduced in 1990 and was worth 10% of allowable costs.

e CREDIT FOR OIL AND GAS FROM MARGINAL WELLS. The credit is
designed to keep high-cost wells in production even when prices are low and
has been targeted for repeal in FY2012. Marginal wells are defined as wells
that produce less than 15 bbls of oil (or oil equivalent) per day. This credit

came into effect as part of American Jobs Creation Act of 2005.
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EXPENSING OF INTANGIBLE DRILLING COSTS. Costs of drilling such
as land clearing, surveying, wages, drilling mud, chemicals, cement, etc., can
be expensed. This is at present only available to independent oil producers.
Major integrated oil companies (i.e, vertically integrated companies) can only
expense 30 % of drilling costs over a 60 month period (rather than expensing
it in the same year). This was first introduced in 1916, and is a target for
repeal in FY2012. Without expensing, drilling costs would be capitalized into
the well, and expensed over the lifetime of the well (standard capital
depreciation allowance). Taking it all in one year does much to make the well
profitable. This measure was eliminated for large companies in 1970s. It does
not take too much imagination to see how this measure could exacerbate

common pool externalities in Texas.

TERTIARY INJECTANTS DEDUCTION. Tertiary injectants (injectants
used in enhanced recovery operations distinct from secondary flooding) can be
fully deducted in the current tax year. This deduction has been targeted for

repeal in FY2012.

PASSIVE LOSS EXCEPTION FOR WORKING INTERESTS IN OIL
PROPERTIES. Although not a large item in terms of revenue, the exception
permits deduction of losses in oil and gas projects against other income

earned. It is targeted for repeal in FY2012.

PERCENTAGE DEPLETION ALLOWANCE. Independent companies are
allowed a 15 % deduction from gross income for depletion of the deposit. This
allowance was repealed for major oil companies in 1975. It was first

introduced in 1926 and has been targeted for repeal in FY2012.

MANUFACTURING TAX DEDUCTION. The oil and gas industry is

classified as being in the manufacturing sector according to 2005 US Jobs
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Creation Act. Companies are allowed a 9 % deduction from net income with a

cap given according to employment.

e AMORTIZATION OF GEOLOGICAL AND GEOPHYSICAL PERIOD. This
measure concerns costs associated with exploration: Independent oil and gas
companies take geological /geophysical expenses in the same year, while major
oil companies must amortize the expenses over 7 years (which is less

beneficial). This measure is a target for repeal in FY2012.

e SECTION 29 PRODUCTION TAX CREDIT FOR NON-CONVENTIONAL
OIL. Originally part of the windfall profits tax, this credit was retained after
the repeal of the windfall profits tax. The credit allows a $3 (indexed in 1979
dollars, $6.80 today) credit per barrel of oil equivalent production. This credit

is especially beneficial for the production of coal-bed methane.

e 1980 WINDFALL PROFITS TAX. A higher tax rate goes into effect when

price climbs above a threshold; the tax was repealed in 1988.

e CERCLA. A $ 0.098 per barrel tax is levied on crude oil received at refineries;

the tax expired in 1995.

Other Parametric Specifications

Parametric regression discontinuity results in Chapter 3 are estimates from a fully

interacted model of the form:

yi =+ Y Bidist] + Y Bidist] x OK + TOK + 7 + €. (27)

J=1 Jj=1
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Where dist; represents distance to the border (in terms of decimal degrees) of well i.

To show robustness of results, in this appendix I re-estimate a model of the form:

Vit = 0+ Z B;latitude] + TOK + v, + €. (28)

j=1

The reasoning for showing this result is that since there is no reason to expect
that the Oklahoma treatment should affect latitude, except via the intercept,
latitude should not be interacted with treatment. This is to say that latitude affects
the dependent variable in the same way in Oklahoma and Texas. These models were
run with pooled data, as well as a sample of data limited to the reservoirs straddling
the border ("within”), and the sample of reservoirs that do not cross the border
("between”).

As is argued in the paper, we expect the sample of within reservoirs to provide a
lower bound on the true treatment effect because Texas production may interfere
with the benefit of partial Oklahoma unitization. Indeed, the tables show that
between estimates are larger, but also slightly less comparable in terms of exogenous

variables.
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Table 32: Within and between estimation: sample of old wells

Pooled Within Between
DEP. VAR. (1) (2) (1) (2) (1)
log gas -2.299%FFk 2 207H*K* -2.289%** -1.961
(0.456) (0.455) (0.561) (1.407)
log oil 1.452%#F  1,385%** 1.277%** 1.189***  3.104***
(0.319) (0.320) (0.394) (0.389) (0.893)
log rev 0.711%* 0.48 2.209%4*
(0.319) (0.379) (0.815)
log cum rev 0.323 0.364 -0.208
(0.310) (0.387) (0.965)
log cum oil ~ 2.967***  2.786G*** 2.860*** 2.692%#* 4 O8*H*
(0.638) (0.645) (0.732) (0.735) (1.802)
log cum gas -0.873 -1.038 -0.701
(0.618) (0.759) (1.580)
well depth 281.35 169.881 1,117.48
248.287 (243.706) (1031.974)
completion  -983.098** -1,118.789** -81.629
(386.351) (472.208) (1195.052)
longitude 0.333*** 0.274%** 0.650**
(0.074) (0.078) (0.279)

Notes: The columns represent average treatment effects estimates from OLS regression for different orders
of polynomial distance interactions (the model is specified in equation 28). Rows represent different inde-
pendent variables. Robust standard errors clustered at the lease level are reported in parentheses. Only
specifications where the polynomials are jointly significant are reported.
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Appendix B

APPENDIX TO CHAPTER IV

The main result of Chapter IV is of the model with separate weighting for the effect
of neighboring wells, based on whether those wells have common owners or
competing owners, while controlling for other covariates. The results from this
specification are flawed because they fail to include dummy variables for time. The
tables below include time dummies, which significantly change the results. The
estimated spillover parameter for “ friendly” and “unfriendly” wells are negative

and not statistically different from each other or zero.
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Table 33: Simultaneous weight matrices with injec-
tion and time dummies: oil

OLS GLS 25LS  GS25LS

c.l1.1. ~ -0.0097 0.1188 -0.0102 -0.0115
0.0148 0.2879 0.0153 0.0058

went 0.0135 0.1220 0.0134 0.0219
0.0034  0.0425 0.0057 0.0129

went2  -0.0076  -0.0422  -0.0076  -0.0151
0.0016  0.0155 0.0026 0.0059

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0000  0.0000 0.0000

wtr 0.5416  0.6595  0.5418 0.3074
0.0337  0.2499  0.0364 0.0497

ginj  -0.0069 0.0879 -0.0070  -0.0270
0.0026  0.0305  0.0064 0.0110

winj 0.0103 -0.2609  0.0103 0.0453
0.0021  0.1247  0.0211 0.0452

AR 0.0088 0.0058  -0.4663
0.0016 0.3131 0.6755
AU 0.0041 0.0519  -0.0703
0.0004 0.0452 0.0715

Moran 177.2908
P 0.1229 0.0938
0.0053 0.0035

Notes: Results in this table replicate the specification of table 22 in
Chapter IV, except with time dummies added to the specification.
Oil production is the dependent variable.




120

Table 34: Simultaneous weight matrices with injection
and time dummies: gas

OLS GLS 25LS  GS2SLS

c.1.1. -0.0125 -0.9334 -0.0188 -0.0102
0.0566  0.3252  0.0566 0.0174

went 0.0502 0.2354 0.0501 0.0560
0.0131  0.0522  0.0211 0.0246

went2 -0.0217 -0.0521 -0.0228  -0.0172
0.0061  0.0258  0.0097  0.0109

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0001  0.0000 0.0000

wtr 0.8746  1.2446  0.8489 0.5178
0.1285 0.4780 0.1360 0.1080

ginj -0.0314  0.0970 -0.0305 0.0141
0.0098 0.1183  0.0238 0.0238

winj 0.0701 -0.3051 0.0681  -0.0804
0.0082 0.2402 0.0781 0.0845

AF 0.0068 -0.8763 1.1273
0.0040 1.1605 1.2704
AU 0.0036 0.0254 0.1200
0.0012 0.1674 0.1627

Moran -692.7790
p 0.0684 0.0469
0.0034 0.0019

Notes: Results in this table replicate the specification of table 23
in Chapter IV, except with time dummies added to the specification.
Gas is the dependent variable.

This specification is still the favored model because it controls for local injection,
and the different incentives for production based on the ownership of nearby wells.
The result can be investigated further in future research with different specifications
of the friendly and unfriendly weighting matrix. At present both use simple inverse
distance, which may put too much weight on wells that are far apart. There is little
reason to expect wells to communicate at great distances; even wells that are close
would not communicate if there is not a direct line of sight between them.
Parameter estimates are of an average spillover based on the assumption that the
spatial landscape is homogenous and isotropic. Within reservoir, I argue this

assumption is tenable, but it undoubtedly becomes more so as we examine only the
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wells that are relatively close to one another within reservoir (which the square of
inverse distance would achieve). Additional information on the reservoir, such as
rock permeabilities, elevations changes, faults and nonconformities would allow even
more accurate weighting.

Also for future research, owner dummies can be added to the models. At present
the idiosyncrasies of producers fall in the error term, and it is possible that this can

bias the estimated spillover parameters.
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